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INTRODUCTION 

Sauvage and co-workers in 1974 stated, "the majority of deaths in 

the Western World are caused by arterial impairment to distal tissues." 

Since the most successful method of increasing distal arterial flow is 

the bypass graft, an enormous market is available for a satisfactory 

arterial .prosthesis. For the past twenty years, large caliber fabric 

prostheses, especially Dacron<ID, have provided good results in bypass 

or replacement applications at high flow conditions. Abdominal aorta, 

aorta-iliac and aortof emoral reconstructions have shown the best results 

with Dacron(ID fabrics (Edwards, 1978). 

Presently, fabric materials have shown little success with medium 

and small caliber (7 unn diameter or less) applications. Replacement of 

small caliber (5 unn diameter or less) arteries below the knee, such as 

tibial, popliteal and peroneal, has resulted in minimal success 

(DeBakey, 1979). Coronary bypass applications have shown similar re-

sults. 

The state-of-the-art for small caliber arterial replacement or by-

pass applications, the use of autogenous veins (primarily saphenous), 

·has demonstrated superior patency over fabric, polymeric or heterographic 

prostheses (Andrew and Lewis, 1976). Even though autogenous applica-

tions have demonstrated the greatest success, an accelerated effort to 

develop and fabricate a suitable hemocompatible material presently 

exists. Autogenous veins for arterial replacement are far from perfect 

due to the following: reduction of venous return from removal location, 

increased chance of hemorrhage or infection and occasional vein un-
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suitability due to disease or abnormal development. Therefore, an off-

the-shelf prosthesis for low flow, small diameter applications is 

desirable. 

With the interest in developing an off-the-shelf prosthesis that 

could be used in a small caliber arterial application, an evaluation 

procedure to assess degree of performance is manditory. 
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LITERATURE REVIEW 

Researchers studying small caliber vascular prostheses must consider 

several main topics. These include surface parameters of the blood-

material interface, factors of thrombus formation or activation and the 

method of evaluating performance. 

Small Caliber Prostheses 

There are two approaches to the design of small caliber vascular 

prostheses. The first considers the development of a nonpervious material 

capable of resisting thrombus activation and iunnune responses (the 

complement system of innnune responses). With a thrombus resistant 

material, development of an endothelial neointima (complete healing) 

is unnecessary. Two graft materials have been utilized in the develop-

ment of a thromboresistant material. These include innnobilized enzymes 

on polymer substrates and cultured endothelial seeding on Dacron(19 

graft material. 

The second approach involves the development of a material 

that allows cellular ingrowth and the formation of an endothelial 

neointima, i.e., complete healing (Sauvage, et al., 1974). A number 

of graft materials have been tested to achieve complete healing and 

biocompatibility. Such materials include Dacron(19 (polyethylene 

terephathalate) knit and woven fabrics, expanded polytetrafluoroethylene 

(expanded Teflon<19, Gore-tex<19)·, and Hydron(19 coated or impregnated 

materials. Others include replamineform grafts, human umbilical cord 

vein allografts, foreign body tissue and bovine arterial heterografts. 
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Immobilized enzymes 

Deactivating enzymes like heparin, immobilized on Dacro~and poly-

mer substrates, theoretically appear attractive as vascular substitutes 

(Hersh, et al., 1972; Kaetsu, et al., 1980). Kaetsu and associates 

extended the activity of immobilized enzymes on a 1:1 copolymer of 2-

hydroxyethyl methacrylate (HEMA) and tetraethyleneglycol diacrylate 

(TEGDA) using radiation-induced polymerization at low temperatures 

(- 78°C). There are insufficient data to assess the significance of 

this recently developed immobilizing process. Developing a way to pro-

long the activity of immobilized enzymes should receive further study. 

Endothelial seeded Dacro~ 

Cultured endothelial seeding on Dacro~·grafts has shown signifi-

cant promise and deserves future investigation. Mansfield, et al. 

(1975) indicated that endothelial cells prevented thrombus formation 

rather than thinning or organizing existing thrombus. The diffi-

culty in fabricating a dependable endothelial neointima is the permanent 

bonding, without 

Dacro~ fabric. 

initiating cell lysis, of endothelial cells to the 

Eskin, et al. (1978) reported that results were better 

with endothelial cells supported by tightly knit Dacro~ fabrics 

rather than by loose knits and velours. They attributed these observa-

tions to the inability of endothelial cells to bridge spaces greater 

than 20-30 ·µm. Precultured endothelial cell linings may find applica-

tion in a variety of cardiovascular prostheses (Eskin, et al., 1978). 
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Dacron® grafts 

Since 1952, when Voorhees and associates demonstrated the useful-

ness of fabrics as vascular materials, Dacron(!Y has proven superior in 

mechanical and compatible properties. Variations in knits, weaves, 

fiber caliber, velours, porosity and crimps have been tested to maxi-

mize cellular ingrowth and compatibility (Sawyer, et al., 1979; Sauvage, 

et al., 1976; Guidoin, et al., 1977). Fabrics require a preclotted 

fibrin surface to prevent hemorrhage. The preclotted fibrin surface is 

thrombogenic because of activated thrombin trapped within the fibrin 

mesh (Sauvage, et al.,- 1976). A four-step preclotting procedure that 

neutralizes thrombin with heparin has improved the thromboresistance of 

Dacron<JY preclotted fabrics (Yates, et al., 1978). Dacron® grafts 

are most successful as large artery aneurysm reconstructions (DeBakey, 

1979). A 4 mm I.D. noncrimped polypropylene supported filamentous velour 

knitted Dacron(!Y graft shows promise as a low flow arterial replace-

ment when saphenous autografts are not available (Kenny, et al., 1980; 

Sauvage, et al., 1979). 

Expanded Teflon® 

Polytetrafluoroethylene has been reported to be the most chemically 

inert and hydrophobic polymeric material known (Campbell, et al., 1979). 

Expanded microporous polytetrafluoroethylene (Gore-tex<JY) has been sug-

gested as the best small arterial substitute for femoropopliteal, distal 

popliteal or tibial bypasses (Campbell, et al., 1979). Microporous 

Gore-tex® was referred to as ~n ideally suited small arterial replace-

ment by Hiratzka and Wright (1978). Despite the enthusiasm shown for 
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Gore-tex(ID as an arterial replacement, there are several undesirable 

characteristics, Early occlusion has been reported by several surgeons 

(Hiratzka and Wright, 1978; Selman, et al., 1980; Veith, et al., 1980). 

Explanations for early occlusion include atherogenesis (Selman, et al., 

1980) and anastomotic geometry and flow factors caused by local vessel 

injury (Veith, et al., 1980). In addition, increased incidence of 

wound edema has been reported by Hollier, et al. (1980). Data concern-

ing long-term patency for Gore-tex(!Y are not yet available. 

Hydron(ID impregnated materials 

Lester R. Sauvage and associates in 1974 suggested use of hydrogel 

on Dacron(!Y fabrics to decrease blood permeability and enhance cellular 

ingrowth as a means of improving thromboresistance, Knoll (1980) 

fabricated a 4mm hydrogel impregnated Dacron(ID prosthesis with morpho-

logically different outer and luminal surfaces. The luminal surface 

had microvoids less than 1 µm, for greater blood compatibility, and an 

outer surface with microvoids between 5-15 µm for better tissue ingrowth, 

Implantation for twenty-one days in the canine carotid artery resulted 

in 80% patency rates, 30-40 µm of exterior tissue ingrowth and the 

development of an endothelial-like neointima. The above prosthesis used 

20% HEMA/Z'lo EGDM copolymer formulations with varied solvent ratios of 

methanol and water. Ratner and Hoffman (1975) reported that changing 

the methanol/water ratio allows variation of the morphology of polymer 

systems. Using scanning electron microscopy (SEM) for microstructural 

studies, Knoll observed the control of morphology by varying methanol/ 

water ratios. 
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Other prostheses 

Replamineform grafts of Bioelectric Polyurethane (BEP) and Silastic(ID 

using spines of the sea urchin H. trigonarious, were reported by Hiratzka, 

et al. (1979). These vascular prostheses contain pore diameters between 40 

to 45 µm and demonstrate good tissue ingrowth as well as possible endo-

thelial deve'lopment. Additional data must be obtained before assessing 

future contributions of replamineform grafts to vascular reconstruction. 

The use of human umbilical cord vein allografts has been limited 

because of degenerative changes in the allograft wall. The allograft 

veins that have been unsuccessful were fresh or fresh-frozen (Mindich, 

et al., 1977). Mindich and associates (1977) demonstrated improved 

results with ethanol-dialdehyde starch treated human umbilical cords. 

This treatment produces a thin walled, immunologically inactive, and 

mechanically stronger conduit. No long-term patency data are available. 

Heterografts of bovine arteries demonstrate aneurysmal degenera-

tion, early occlusion and infection (Dale and Lewis, 1976; Hollier, 

et al., 1980). Bovine arterial heterografts are presently inferior as 

arterial replacements. Some success with heterologous foreign body 

reactive tissue grafts of less than 5 mm was reported by Schoen, et al. 

(1979). Schoen and associates reported 50% patency when implanting 

grafts for two to three weeks in the canine carotid and femoral 

arteries. Further investigation of foreign body reactive tissue 

grafts has not been reported. 
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Surface Parameters 

The surface parameters of interest are texture (micro and macro), 

hydrophilicity and blood-solid interfacial energy. In addition, when 

considering a material for vascular use, one must examine the innnuno-

logical response, structural strength, flexibility and chemical 

stability. The latter parameters were not included in this study. 

Texture 

The texture of a surface has a significant effect on flow parameters. 

Micro and macro imperfections or voids can cause blood stagnation 

points that may initiate platelet and leukocyte deposition and possibly 

lead to aggregation and eventual thrombus formation (Cumming, 1980). 

Large surface imperfections in contact with flowing blood, may cause 

the formation of a localized wedge-shaped thrombus downstream from the 

imperfection (Rerzlinger and Cumming, 1980). The relationship of flow 

to thrombus formation i·s"primarily a shear effect. Shear has greater 

influence on fibrin and red cell deposition than on platelets. There-

fore, one finds "red thrombi" (red blood cells trapped in a fibrin 

mesh) predominately in venous or slow flow regions while "white 

thrombi" (platelets) are found in arteries or areas with high flow 

conditions (Schultz, et al., 1980). 

Hydrophilicity 

A polymer's degree of hydrophilicity is dependent on the number of 

electrophilic groups available on the monomer molecule and density of 

the cross-linking network. These two considerations affect the polymer's 
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ability to imbibe water (Holly and Refojo, 1976). Holly and Refojo 

refer to gels with large water contents as materials that increase in 

hydrophobicity with increasing water content. Structured water at 

the polymer-blood interface, rather than total water content, has been 

postulated to affect the blood compatibility of a material (Andrade, 

et al., 1973; Jhon and Andrade, 1973; Garcia, et al., 1980; Hoffman, 

1975). 

The role of plasma protein deposition on hydrophilic/hydrophobic 

materials has initiated recent interest in blood-polymer interactions. 

Selective adsorption and denaturing of plasma proteins are the two 

major considerations. Proteinated surfaces are formed several seconds 

after blood-material contact. This forms an intermediate bridge layer 

for adhering platelets. Platelet membranes contain glycosyl trans-

ferase enzymes that become active when in contact with glycoproteins 

(Kim, et al., 1974). Albumin is the only major nonglycoprotein found 

in blood. Therefore, a material that selectively adsorbs a greater 

quantity of albumin compared to other glycoproteins (fibrinogen or 

Y-globulin) would be more thromboresistant (Nyilas, et al., 1977). 

Boffa, et al. (1977) reported the extent of albumin adsorption on 

several polymeric materials. Albumin adsorption on polymethyl 

methacrylate (PMMA) was considerably higher than on polyhydroxyethyl 

methacrylate (PHEMA), while Polytetrafluoroethylene (PTFE) did not 

indicate appreciable bonding. Hydrophilic PHEMA surfaces have greater 

affinity for fibrinogen than hydrophobic polyethyl methacrylate (PEMA) 

surfaces. Hydrophilic surfaces show a greater rate of desorption or 

exchange of proteins, within 2-3 weeks, compared with that of hydrophobic 
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materials (Weathersby, et al., 1977). Once a proteinaceous layer forms 

on a material in contact with blood, the proteins will be influenced 

by the characteristics of both liquid-protein and solid-protein inter-

faces. Hoffman (1974) attributed the greater compatibility of polar 

hydrogel surf aces to body fluids compared to nonpolar hydrogel sur-

faces to reduced protein denaturing or unfolding. Hoffman ex-

plained the denaturing as an attraction between the centrally located 

nonpolar hydrophobic sites of the protein molecule and a nonpolar sur-

face material. Bruck (1977) emphasized the role of denatured proteins 

in the activation of plasma coagulation factors and blood elements, 

especially platelets. 

Several investigators have improved blood compatibility with co-

polymer mixtures of hydrophilic-hydrophobic monomers resulting in 

microphase-separated domains (Garcia, et al., 1980; Nakashima, et al., 

1977; Ratner, 1980; Ratner, et al., 1978). Nakashima, et al. (1977) at-

tributed the compatibility of hydrophilic-hydrophobic microphase-

separated domains to the structuring of water around hydrophobic sites 

and similarity with cellular membranes. Nakashima concluded that the 

·distribution of hydrophilic-hydrophobic sites may be the most important 

factor for blood compatibility. Garcia, et al. (1980) stated that the 

hemocompatibility of hydrogels was sensitive to the hydrophilic-hydro-

phobic ratio and was independent of water content. 

Interfacial energy 

Surface energy is a function of a material's available surface 

electrophilic groups (mainly OH), adsorbed or absorbed ions and inter-
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facial structured water. A relative measure of a solid's interfacial 

energy can be calculated from the contact angle (8) formed between a 

drop of liquid with known surface tension and the surface of the material 

in question. The solid-liquid contact angle determines the wettability 

of the material (Holly and Refojo, 1976). Wettability is the extent 

of spreading of a liquid over a material. As the contact angle de-

creases for various materials, the wettability and interfacial energy 

increase. A true hydrophilic material is completely wettable as water 

spreads spontaneously over the surface forming a zero contact angle 

(Holly and Refojo, 1976). Lindsay, et al. (1980) reported a correla-

tion between platelet adhesion and interfacial energy. As interfacial 

energy decreases so does platelet adhesion. Lindsay also mentioned a 

decrease in whole blood clotting time with decreasing interfacial 

energy. The results of platelet adhesion and whole.blood clotting time 

are contradictory with respect to interfacial energy. Baier and Dutton 

(1969) reported the deposition of high energy proteins (primarily 

fibrinogen) on high energy surfaces exposed to blood. The high energy 

protein surfaces favored platelet adhesion and subsequent thrombus. 

This sequence of events resembles the exposure of blood to high surface 

energy collagen from damaged vessels. Andrade, et al. (1973) attributed 

the low interfacial energy (interfacial surface tension (y8L) between 

1-3 dynes/cm) of a cell/medium to a carbohydrate rich cellular coating. 

The outer regions of the coat contain hydrated oligosaccharides and gel-

like proteins that highly extend into the aqueous solution. Andrade 

referred to an implant/blood interfacial tension (y8L) of 5 dynes/cm or 

less as hemocompatible. 
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Critical surface tension (Y ), in addition to interfacial energy, c 

is another energy parameter that is used to predict hemocompatibility. 

When obtaining the critical surface tension of a material, one must 

plot the surface tension (YL), of several liquids, against the cosine 

of their solid/liquid contact angles and extrapolate to cosine 9 = 1. 

This procedure is referred to as a Zisman plot or format (Baier and 

Dutton, 1969). A solid's critical surface tension (Y ) is equal to the c 

difference between the surface tension (y8) of the solid and the 

solid/liquid interfacial surface tension, YSL (Owens and Wendt, 1969). 

Owens and Wendt (1969) reported energy values of e = 101° Y = 24 , c 

dynes/cm and 9 = 1080, Ye= 18.5 dynes/cm for Silastic(!D and Teflon(ID, 

respectively. Baier, as reported by Nyilas, et al. (1977) and Andrade, 

et al. (1973), suggests the inner surface of blood vessels consists 

primarily of methyl groups having a critical surface tension (y ) of c 

25 dynes/cm. Therefore, materials with critical surface tensions (Ye) 

in the range of 20-30 dynes/cm would likely be hemocompatible. 

Thrombus Formation and Activation 

The sequence .of events for blood coagulation appears to be the 

following: adsorption of plasma proteins, adhesion of platelets and 

leukocytes, activation of platelets followed by the release reaction 

(degranulation), recruitment of nearby platelets via released ADP and 

thromboxane A2 and platelet aggregation on adherent platelets with 

eventual formation of thrombus (Lindsay, et al., 1980). There are 

three pathways that activate clotting mechanisms and possible thrombus 
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formation. These pathways include intrinsic, extrinsic and complementary 

systems. A flow chart of the intrinsic and extrinsic pathways is out-

lined in the Appendix. 

Intrinsic pathway 

Initiation of the intrinsic pathway usually occurs via blood 

trauma or exposure of blood to collagen. This initial impetus activates 

a cascade of factors and platelet phospholipids that eventually lead 

to activation of prothrombin to thrombin (Guyton, 1976). The protein 

enzyme thrombin strongly polymerizes the soluble protein f ibrinogen 

to nonsoluble fibrin. Once polymerized, fibrin forms a fibrous sheet 

over the area of activation. 

Extrinsic pathway 

The initial activation of the extrinsic pathway occurs via tissue 

trauma outside blood vessels. Activation occurs when blood contacts 

proteolytic enzymes (tissue factor) and tissue phospholipids (from cell 

membranes) released from injured tissue (Guyton, 1976). Following blood 

activation, the extrinsic and intrinsic pathways proceed by means of 

identical mechanisms with eventual fibrin formation. 

Complementary activation 

The components of the complement system contain a group of serum 

proteins that mediate both iimllune and allergic reactions. Therefore, 

activation of the complement system against foreign cells provides an 

iimllune response. There are two modes of activation: classical and 

alternative. The classical pathway is activated primarily by iimllune 
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complexes and occasionally specific types of viruses. The alternative 

pathway is activated by plant and bacterial polysaccharides and lipo-

polysaccharides which are polymeric in nature (Lindsay, et al., 1980). 

Lindsay and coworkers reconnnend further study of the complement system 

as an important factor in coagulation processes. 

Evaluation of Performance 

The standard procedure for evaluating arterial graft performance 

compares the length of time and percent of patency achieved during implant-

ation studies. Therefore, graft evaluation results in two levels of per-

formance, patent or nonpatent. 

Sauvage, et al. (1979) proposed a method of evaluation that al-

lowed a graded comparison of graft materials. This procedure included 

a six-hour exposure of each prosthesis to blood at reduced flow rates of 

25, SO, 75 and 100 cc/minute within the canine carotid artery. The 

method of evaluation included an assessment of percent of thrombus 

free surface (TFS) and thrombotic threshold velocity (TTV), defined 

as the velocity (cm/sec) of blood that would produce a 50% TFS rating. 

The following five 4 nnn arterial grafts were evaluated: three Dacron<!Y, 

an expanded Teflon(ID (Gore-tex(ID) and a preserved umbilical vein 

Meadox Biograft<ID). The gradation of performance from satisfactory 

to unsatisfactory was two noncrimped Dacron(g) grafts, Gore-tex(]), 

crimped Dacron(ID and Meadox Biograft<ID, respectively. A later 

publication by Kenny, et al. (1980), of the same research team; 

used this method of evaluation to compare a noncrimped polypropylene-

• I 

I 
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supported filamentous velour knitted Dacron(ID graft with Gore-tex<ID, 

Comparable results were obtained for both grafts, yet the Dacron(ID 

graft showed slight superiority. 
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STATEMENT OF THE PROBLEM 

Nature 

The vascular prosthesis industry evaluates various graft designs 

in an attempt to model parameters that affect thromboresistance and 

patency. Factors relevant to thromboresistance include surface 

morphology, hydrophilicity, surface energy and flow conditions. 

Mechanical properties, material chemistry and surgical techniques should 

also be considered. 

With nonstandardized procedures and evaluation criteria, a compari-

son of relevant parameters among researchers is nonconclusive and fre-

quently contradictory. Development of universally accepted testing 

procedures and evaluations is desirable. 

Approach to Problem 

Sauvage and associates at the Providence Medical Center in Seattle, 

Washington are presently extending preliminary work published in 1979 

that rates five prostheses by percent of thrombus free surface (TFS). 

TFS for six 4 mm arterial grafts were evaluated at four controlled flow 

rates (25, SO, 75 and 100 cc/minute) for six hours in the canine carotid 

artery. The TFS rating was used to predict each graft's ability to 

maintain long-term patency. Sauvage observed better predictability of 

long-term patency using TFS ratings than information obtained from 

seven-day implantation studies. This observation was attributed to the 

gradation of the TFS values compared to the biphasic patent/nonpatent 

information obtained from implant studies. A graph relating TFS to 
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flow rate showed an area of interest that included a flow rate of 

SO cc/minute. 

This study will incorporate a procedure and method of analysis 

similar to Sauvage and co-workers. Six different types of grafts will 

be tested by implanting a six centimeter section of each graft in the 

canine carotid artery for six hours at a reduced flow of SO cc/minute. 

The assessment of performance will utilize the percent of thrombus 

free surface (TFS), percent of luminal stenosis and percent of total 

volume occlusion. The thromboresistant character of three surface 

parameters will be compared. These comparisons will include preclotted 

fibrin to hydrogel impregnated Dacron(g) to expanded Teflon(g) (Gore-tex<El), 

smooth (less porous) to rough (porous) and variations of hydrophilicity 

(HEMA-EGDM to HEMA-MMA to expanded Teflon<E>). Additional information 

of interest will include: scanning electron micrographs (SEM) of surface 

morphology, light micrographs of interfacial thrombus, contact angles, 

critical surface tension (y ) and water imbibement data. c 

Significance of Research 

The results of this investigation will provide additional in-

formation on the importance of surface texture, hydrophilic/hydrophobic 

character, blood-solid interfacial energy and water content. This 

information may lead to improvements in thromboresistant materials 

as well as a better understanding of the influence of .such parameters 
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as microstructure, hydrophilicity, interfacial energy and water 

imbibement. 
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MATERIALS AND METHODS 

General Description 

All hydrogel grafts were fabricated using the procedure outlined 

by Knoll (1980). All other grafts were prepared for utilization using 

the procedures reconnnended by the manufacturers. 

The experimental design shown in Figure 1 was employed. Graf ts 

(4 mm in diameter and 6 cm long) were implanted, using simple continuous 

sutures, bilaterally in canine carotid arteries and maintained for six-

hours at a flow rate of 50 cc/minute. The rate of flow was controlled 

using a loop of umbilical tape and monitored by means of a cuff 

electromagnetic flow meter. Mean, maximum (systolic) and minimum 

(diastolic) flow rates were recorded during the six-hour blood-

prosthesis interaction. A platelet count and blood coagulation time 

were taken 1-2 hours following the initial flow measurement in order to 

assess animal variation. At least four trials were obtained for each 

prosthesis using both right and left carotid arteries. 

The samples were analyzed for surface morphology, percent of throm-

bus free surface, histology of interfacial thrombus and percent of 

luminal stenosis. Each formulation was used to obtain water imbibe-

ment and contact angle information. 

Materials 

Fabrication of hydrogel grafts 

The USCI(jy Sauvage™ filamentous straight vascular crimped Dacron(jy 

graft material (Lot 10K94073) was obtained from U.S. Catheters and 



20 

Figure 1. Experimental design showing placement of grafts (A), flow 
meters (B) and stenoses (C) 
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Instruments (USCI<!Y), a division of C.R. Bard, Inc., Billerica, 

Massachusetts. USCI<S) Sauvage™ noncrimped supported DacroJ!D (Lot 

61-2083) was received as a prototype from Sauvage and associates, 

Providence Medical Center, Seattle, Washington. Gore-tex<S) graft 

material (Lot 6334) was obtained from W. L. Gore and Associates, Inc., 

Medical Products Division, 1505 North Fourth Street, Flagstaff, 

Arizona. 

The monomer 2-hydroxyethyl methacrylate (Lot B889F9) was acquired 

from Alcolac, Inc., 3440 Fairfield Road, Baltimore, Maryland. The cross-

linking monomer ethylene glycol dimethacrylate (Lot 1-2-14) was ob-

tained from Monomer-Polymer and Dajac Lab, Inc., 36 Terry Drive, Trevose, 

Pennsylvania. Methyl methacrylate (Lot 041557) was purchased from 

Aldrich Chemical Co., Inc., Milwaukee, Wisconsin. 

All other chemicals used were reagent grade. Glass distilled 

water was used for all solutions. Soft glass rodding and tubing were 

utilized as well. 

Sample preparation and implantation 

Vacuum tubes containing 12 milligrams of siliceous earth 

(Vacutainer #3865), used for activated coagulation times (ACT), were 

obtained from Becton-Dickinson, Division of Becton, Dickinson and 

Company, Rutherford, New Jersey, Vacuum tubes (Vacutainer #3206Q) 

containing six milligrams of EDTA (Na 2) or Disodium edetate, an anti-

coagulant, were obtained from Becton-Dickinson, a Division of Becton, 

Dickinson and Co., Rutherford, New Jersey. Heparin sodium, sodium 

pentobarbital and Sleepaway<S) were obtained from Fort Dodge Laboratories, 
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Inc., Fort Dodge , Iowa. Blood dilutions for platelet counts were per-

formed using 1.98 ml Unopette reservoirs (Lot 9C5971Q) and 20 µl 

capillary pipettes (Lot 9B722) f rom Becton-Dickinson, Rutherford, 

New Jersey. A Spencer "Bright Line®" hemacytomet er (Cat . 1492) made 

by AO Instrument Company, Buffalo, New York , wa s also utilized for 

platelet determinations . 5- 0 silk suture material (K870-H) was ob-

tained from Ethicon, Inc., Somerville, New Jersey. 

Analysis of samples 

All chemicals used were of r eagent grade and all solutions were 

mixed with glass distilled water. 

Instruments used for SEM analysis were the following : JEOL-U3 

SEM, Japanese Electron Optics, Tokyo, Japan; Polaron SEM coating unit 

(E5100) and Polaron critical point dryer {E 3000) , Polaron Instruments, 

Inc., Warrington, Pennsylvania. The colloidal si lver medium was ob-

tained from SPI Supplies, Division of Structure Probe , Inc., West 

Chester, Pennsylvania. 

Fabrication of Hydrogel Grafts 

Both hydrogel formulations (HEMA cross-linked by EGDM or MMA) 

were fabricated using the procedure outlined by Knoll (1980) . The 

procedure r equired the preparation of a glass support apparatus and 

the utilization of a two-stage polymerization process . 
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Preparation of glass support apparatus 

Soft five millimeter glass rods and nine millimeter glass tubes 

were cut ten centimeters long and etched with hydrofluoric acid (HF) 

to achieve a desired texture and diameter. A rough or smooth tex-

ture was produced by varying the HF concentration. To obtain a rough 

texture a 49% HF solution was used and a 17% HF solution was used for 

smooth surface preparation. Three different types of glass rods were 

fabricated, two having rough surfaces with diameters of 4.9 ± 0.02 mm 

and 4.4 ± 0.03 mm and one having a smooth texture with diameter of 

4.4 ± 0.02 .mm. All glass tubes were rough etched with inside diameters 

of 4.90 ± 0.03 mm. 

Two-stage polymerization process 

USC!@ Sauvage™ crimped filamentous velour knitted Dacron@ 

tubes (4 mm) were cut into 3.5 cm sections and stretched over 4.9 mm 

rough etched glass rods. 
® . 

Each Dacron -glass apparatus was gently 

introduced into a rough etched 9 mm glass tube. The assembly was 

placed in a pyrex culture tube (16 x 125 mm) containing 16 cc of a 

nitrogen degassed monomer-solvent solution (20% HEMA/2% EGDM/19% 

methanol, 20% HEMA/2% MMA/15% methanol or 20% HEMA/2% MMA/20% methanol). 

Trapped air within the Dacron® fabric was removed by applying a partial 

vacuum to the culture tube assembly. The solution was replaced with 

a fresh aliquot to assure proper monomer/solvent ratios. The assembly 

was exposed to 60co radiation (0.25 Mrads for HEMA-EGDM and 0.50 Mrads 

for HEMA-MMA) in order to initiate polymerization. The glass assembly 

was removed by shattering the culture tube and peeling away the bulk 
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polymer. The 4.9 nnn glass rod was removed from the Dacron(ID-polymer 

matrix and replaced by a 4.4 nnn glass rod. The Dacron(ID-polymer matrix 

within the glass tube was then placed for twelve hours in a culture 

tube (16 x 125 nnn) containing an ethanol-water solution (1:1 for HEMA-

EGDM and 1:9 for HEMA-MMA). 

The second-stage polymerization required the insertion of a 4.4 nnn 

glass rod (rough for 20% HEMA/2% EGDM/19% methanol and 20% HEMA/2% MMA/ 

15% methanol and smooth for 20% HEMA/2% EGDM/39% methanol and 20% HEMA/ 

2% MMA/20% methanol) into the lumen of the first stage polymer-Dacron<© 

tube. The nonetched 5 nnn end of the 4.4 nnn glass rod allowed a uniform 

polymerization by centering the rod inside the Dacron(ID-polymer tube. 

The polymerization and retrieval of the newly formed graft followed the 

same procedure outlined earlier with the addition of the. cracking and 

removal of the glass tube. Twenty-four hours prior to utilization, the 

grafts were removed from the ethanol-water solution and placed in 

physiological saline containing 110 units of heparin per cubic centi-

meter of solution. 

Sample Preparation and Implantation 

Sample preparation 

<ID ™ <ID USC! Sauvage noncrimped supported Dacron prostheses were pre-

clotted prior to cutdown using the procedure outlined by the manufacturer. 

This procedure includes the following four-step sequence proposed by 

Yates, et al. (1978): 

Step 1 - Administer 6 cc of blood through the lumen, limit 

exposure time to 2-3 minutes and place graft in a clean 
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pan until blood clots. 

Step 2 - Inject 6 cc of blood through lumen, limit exposure time 

to 20-30 seconds and remove any excess blood by passing 

a four French Fogarty catheter through the lumen. 

Step 3 - Follow the procedure outlined in Step 2 but limit exposure 

time to 10-15 seconds. 

Step 4 - Clamp one end of graft, add 4,000 units of heparin to 10 cc 

of blood and inject blood, to allow expansion of prosthesis, 

until blood no longer oozes. Inspect lumen for smooth-

ness. 

The prosthesis was then placed in heparinized 

and Gore-tex<ID 

saline (110 units/cc) 

until implanted. All hydrogel prostheses were placed in 

heparinized saline (110 units/cc) at least twelve hours before utiliza-

tion. 

Implantation procedure 

Adult dogs weighing between 20-25 kg each were obtained through 

Laboratory Animal Resources, Iowa State University. The dogs were 

anesthetized by an intravenous injection of sodium pentobarbital (1 cc/ 

2.3 kg body weight). Proper anesthesia was maintained by giving 0.5 cc 

injections as needed. The anesthetized animal was placed in a supine 

position with neck extended to enhance exposure of desired location. All 

surgical procedures were performed by the author using nonaseptic tech-

niques. 

A lactated-Ringers and dextrose solution (25 cc lactate-Ringers 

solution (cone.) and 25 g of dextrose in 500 cc of solution) was given 
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intravenously to maintain stability during the lengthy surgical procedure. 

A midline incision was made through the subcutaneous tissue of the 

neck. Blunt separation of tissues was used to reduce hemorrhage. The 

sternocleidomastoid muscle and trachea were retracted laterally with 

blunt tip Gelpi self-retaining retractors. The carotid sheath containing 

the common carotid artery, vagus nerve and internal jugular vein, that 

lies immediately adjacent to the trachea, was exposed. A ten centimeter 

section of the common carotid artery was separated from the sheath. 

The retractors were then removed and placed to allow exposure of the 

remaining carotid arLery using the same procedure. The diameter of 

each artery was then determined by wrapping four turns of suture material 

around the artery and dividing the suture length by 4rr. The proper 

cuff electromagnetic flow meter size was determined by choosing the 

flow meter diameter that would result in a 25% constriction of the artery. 

After the flow meter reached a steady state (pen deflection of 

3-4 cm), the artery was occluded with umbilical tape ligatures at both 

exposed ends and transected approximately 6 cm cranial to the flow meter. 

The flow meter was then calibrated by ligating one end of a 4 mm diameter, 

2 ft. Silastic(!Y tube inside the transected artery, releasing the liga-

ture just caudal to the Silastic(E) tube and collecting 20 cc of blood 

in a 50 ml graduated cylinder. A one centimeter deflection, controlled 

by a screw clamp, was maintained throughout the procedure. A pen deflec-

tion of one centimeter was approximately equivalent to a 50 cc/minute flow 

rate. A four centimeter section of artery, containing the Silastic(!Y tube, 

was excised after tightening the umbilical tape ligature. The tunica ad-

ventitia was removed approximately five millimeters from the transected 
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ends by pulling the adventitia over the ends and transecting the overlap. 

The six centimeter prosthesis of interest was positioned by three 

5-0 silk guide sutures inserted 120° apart (O'Brian, 1977). This 

triangulation technique enables the posterior arterial wall to fall 

away from the anterior wall to reduce the possibility of catching the 

posterior wall with a suture. A simple continuous suture pattern (5-6 

sutures) was used between each pair of guide sutures to assure a proper bi-

lateral attachment. The ends of the guide sutures were used to flatten and 

curl the edges of the artery and prosthesis in order to avoid the expo-

sure of blood to the thrombogenic tunica media or adventitia of the 

artery wall. This procedure was repeated until a continuous vessel was 

obtained. All tissues were kept_ moist with saline to prevent drying. 

Gauze patches (2 x 2 inches) were cuffed around the anastomoses as a 

means of accelerating the formation of an impervious suture line. The 

distal stenosis was released first to permit the escape of trapped air. 

After a few seconds of blood exposure, the proximal stenosis was 

released, allowing the blood to flow freely. The best results were 

obtained when blood was pulsated through the graft by a series of 

·periodic occlusions. A different type of prosthesis was implanted in 

the remaining carotid artery using this procedure. Grafts differing in 

composition and/or morphology were implanted concurrently to reduce 

variations resulting from dissimilar blood parameters. After both 

grafts were functioning under normal flow conditions, a partial 

stenosis was achieved using umbilical tape placed distal (in order 

to avoid undesirable.turbulence) to each prosthesis. The flow rate 

for both prostheses was maintained at SO cc/minute for six hours. 
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After 1-2 hours of flow measurements, an activated coagulation 

time (ACT) and platelet count were taken. The activated coagulation 

time (ACT) was determined for each animal by withdrawing two milliliters 

of venous blood into a vacuum glass tube containing twelve milligrams of 

purified siliceous earth (Vacutainer #6522). The drawn blood specimen 

was incubated at approximately 37°C and gently tilted until the first 

unmistakable clot appeared. An additional two milliliters of venous 

blood were withdrawn into a vacuum glass tube containing six milligrams 

of EDTA (Na2) (Vacutainer #3206Q) and used for counting platelets. 

Twenty microliters of blood were withdrawn with a capillary pipette and 

diluted by means of a Unopette@) reservoir (1.98 ml). A small quantity 

of diluted blood was transferred to the hemacytometer and directly 

counted using the method of Rees and Ecker (Davidsohn and Henry, 1969). 

Values obtained for number of platelets were multiplied by one thousand. 

Baseline adjustments at zero flow were taken every 30-45 minutes. 

After six hours of blood exposure at a flow rate of 50 cc/minute, both 

grafts were removed and rinsed with heparinized saline (1.5 units/cc). 

The grafts were then fixed in 10% formaldehyde-buffer solution and kept 

for further analysis. 

Sample Analysis 

Each prosthesis was transected one centimeter inside each anastomo-

sis. A two millimeter section was transected from each one centimeter 

segment and measured photographically for extent of luminal occlusion. 

The four centimeter section was cut longitudinally and pinned on a cork 
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board to expose the lumen. Patent samples were tested for percent of 

thrombus free surface (TFS) by observation through a gridded dissecting 

microscope (Nikon). A histological characterization of the thrombus-

prosthesis interface was obtained for each type of graft. Each polymer 

formulation was tested for surface morphology (including fibrin sur-

face) using SEM techniques, solid-liquid contact angle, critical surface 

tension (y = dynes/cm) and water imbibement. c 

Percent of thrombus free surface 

The central four centimeters of each patent prosthesis was pinned 

to a cork board,. to expose the lumen,-and observed with a ·gridded dis-

secting microscope (Nikon). An average of forty-four squares for each 

prosthesis was assigned a value of 0, 25, 50, 75, or 100% thrombus 

covered. All thrombus percentages were totaled, divided by forty-four 

and subtracted from one-hundred to obtain percent of thrombus free 

surface (TFS). 

Percent of luminal stenosis 

A two millimeter cross-section was obtained from each of the two one 

centimeter segments that were transected from each patent graft. Each two 

millimeter section was photographed, printed, and analyzed for percent 

of luminal stenosis with the aid of a planimeter. 

Histology of interfacial thrombus 

Microscopic observations of thrombus were achieved with the use 

of light microscopy. A sample from each prosthetic type was imbedded 

in epoxy resin, sectioned and stained with toluidine blue and azure II. 
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Photographs were taken of each representative thrombus forma-

ti on. 

Surface morphology 

Scanning electron microscopy (SEM) techniques were used to 

observe the surface morphology of each prosthetic material. A five 

millimeter segment from each type of graft was cut longitudinally 

and dehydrated by a series of acetone rinses (30, 60, 7S, 90, 100 and 

100%). The samples were then critical point dried with liquid carbon 

dioxide in a Polaron model E3000 drier. The critical point dried samples 

were mounted on- carbon .stubs . .using a colloidal silver medium adhesive 
0 

and sputter coated with 300 A of gold using a Polaron Instruments SEM 

coating unit (ESlOO). Microscopic observations were made by the use 

of a JEOL-U3 scanning electron microscope. Photographs were prepared 

at a SO second per frame scan speed using Polaroid type SS film. 

Solid-liquid contact angles 

Hydrogel samples were obtained by cutting flat bulk polymer 

sheets with the aid of a razor blade. Water (H20), glycerin, pyridine, 

formamide and hydrogen peroxide (H2o2) were the liquids used in this 

study. The solid samples were placed on a level platform, photographed 

with the aid of close-up sleeves and prints used for contact angle analysis. 

Water imbibement 

Twelve, one centimeter long, samples (three for each formulation) 

of four millimeter USCI(ID SauvageTM crimped filamentous Dacron(ID 

were weighed and placed in a vacuum desiccator. After obtaining two 
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weights within 0.001 g, the samples were placed in a glass mold apparatus 

and polymerized with 60co radiation under normal fabrication conditions. 

The samples were placed in an ethanol and water solution for twenty-

four hours to leach out any unpolymerized monomer. They were then 

transferred to distilled water for twenty-four hours and weighed after 

gentle blotting to remove surface water. The weight of the Dacron(g) 

and polymer were found by dehydrating the samples in incremented ace-

tone solutions of 30, 60, 75, 90, 100 and 100%, placing them in a 

desiccator and weighing them periodically until no further weight changes 

occured. 



32 

RESULTS AND DISCUSSION 

Results 

Table I contains surgical and evaluation data for each individual 

prosthesis examined. Table II summarizes the overall hemocompatible 

performance of each type of prosthesis. Tables Ill and IV provide 

information about each material's physical and chemical characteristics 

that may or may not prove significant in reference to thrombogenicity. 

When considering overall performance, the USCI@ Sauvage™ non-

crimped supported Dacron® and 20% HEMA/2% MMA/20% methanol impregnated 

Dacron® prostheses demonstrated superior thromboresistance when com-

pared with other test grafts. The overall level of hemocompatibility 

resulted in the following descending order: user® Sauvage™ noncrimped 

supported Dacron®, 20% HEMA/2% MMA/20% methanol impregnated Dacron<ID, 

Gore-tex®, 20% HEMA/2% MMA/15% methanol impregnated Dacron<ID, 20% HEMA/ 

2'7. EGDM/39% methanol impregnated Dacron® and 20'7. HEMA/2'7. EGDM/19% 

methanol impregnated Dacron®. The top two grafts had similar values 

as well as the third and fourth. The level of hemocompatibility utilized 

the following criteria: percent of thrombus free surface, percent of 

luminal stenosis and percent of total volume occlusion. The degree of 

thromboresistance may reflect one or more of the surface characteristics 

listed in Tables III and IV. The parameters of interest are histology 

of interfacial thrombus, surface morphology, water imbibement, solid-

liquid contact angles and critical surface tension (y ) . 
c 



Table I. Complete surgical and analytical data 

Length Flow Activated a 
of Prosthesis meter Flow rate clotting % luminal 

patency Sample or size (cclminute} time Platelet stenos is % 
(hours) number formulation (mm) Diastolic Systolic (seconds) count Ends Av. TFS 

user® 
5.4 2s Sauvage™ 3.0 24 118 92 263,000 100 0 
6 3s supported 2.5 38 88 90 269,000 40/19 29 52 
6 4s noncri&)ed 3.5 19 144 90 278,000 14/13 13 43 
6 Ss DacronR 3.0 39 77 75 225 000 11/ 8 9 55 
2.5 20 20'7. HEMA 2.5 19 91 96 334,000 100 0 
6 21 2'7. MMA 3.0 24 108 96 377,000 27/ 8 18 60 
1 22 20% methanol 2.5 43 80 83 228,000 100 0 
6 26 58% water 2.5 35 76 96 205' 000 26/26 26 43 "' "' 6 27 3.5 24 107 86 136 000 23/18 20 55 
6 23 20% HEMA 2.5 38 73 96 377,000 60/17 39 33 
4.1 24 2% MMA 2.5 32 95 104 125,000 100 0 
6 28 15% methanol 3.0 6 131 96 205,000 59/33 46 36 
6 29 63% wate@ 3.0 29 96 86 136 ,000 22l22 22 12 
6 lg Gore-tex , 3,0 26 105 90 313,500 24/18 21 34 
6 2g expanded 2.5 35 80 90 313,500 62/22 42 12 
0 3g PTFE 2.5 97 279,500 100 0 
5.2 4g 3.0 33 61 97 279 500 100 0 
0.7 3 20% HEMA 3,0 39 69 90 269 '000 100 0 
6 4 2% EGDM 2.5 34 93 96 422,500 82/37 60 16 
0 5 39% methanol 3.0 86 194 ,500 100 0 
6 7 39% water 3.0 41 92 90 278' 000 69/40 54 24 
0.6 8 3.0 25 94 96 334,000 100 0 
0 12 3,0 83 228, 000 100 0 
2.6 13 3.0 37 81 104 125, 000 100 0 

aThe mean flow rate was maintained at so cc/minute. 



Table I. Continued 

Length Flow Activated 
of Prosthesis meter Flow rate clotting 'i'o luminal 

patency' Sample or size {cclminute} time Platelet stenosis % 
(hours) number formulation (mm) Diastolic Systolic (seconds) count Ends Av. TFS 

1.4 2 2070 HEMA 2.5 25 130 92 263' 000 100 0 
2.2 6 2% EGDM 3.0 30 94 96 422,500 100 0 
0.7 9 19% methanol 2.5 38 65 86 194,500 100 0 
1.3 10 59% water 3.5 34 102 75 225 ,000 100 0 



Table II. Sunnnary of performance of patent prostheses 

Prosthesis Number % Volume of % of 
or Number patent luminal % thrombus a occluded 

formulation implanted (6 hrs) stenosis TFS (cc) volumeb 

user® 
Sauvage™ 
supported 
noncri~ed 
DacronR 4 3 17 ± 11 so± 6 0.043 ± 0.03 8.7 ± 6 

20% HEMA 
2% MMA 

20% methanol 
58% water 5 3 21 ± 4 53 ± 9 0.050 ± 0.02 10 ± 4 w 

"' 
20% HEMA 

2% MMA 
15% methanol 
63% water 4 3 36 ± 12 27 ± 13 0.13 ± 0, 08 25 ± 16 

Gore-tex®, 
expanded 
PTFE 4 2 31 ± 15 23 ± 16 0.12 ± 0.09 24 ± 18 

a . 
of thrombus calculations: luminal stenosis x luminal (0.13 cm2) x length (4 cm) Volume area 

x (1 - TFS). 
b volume of thrombus {cm32 x 100. Percent of occluded volume: 3 total luminal volume (0.50 cm ) 



Table II. Continued 

Prosthesis Number % Volume of % of 
or Number patent luminal % thrombus a occluded 

formulation implanted (6 hrs) stenos is TFS (cc) volumeb 

20% HEMA 
2% EGDM 

397. methano 1 
39% water 7 2 57 ± 4 20 ± 6 0.23 ± 0.03 45 ± 6 

20% HEMA 
2'7. EGDM 

19% methanol 
59% water 4 0 100 0 a.so 100 

w 
"' 



Table III. Sunnnary of flow surface characteristics 

Prosthesis 
or 

formulation 

user® 
Sauvage™ 
supported 
noncri~ed 
Dacron@ 

20% HEMA 
2% MMA 

20% methanol 
58% water 

20% HEMA 
27. MMA 

157. methanol 
63% water 

Gore-tex~ 
expanded 
PTFE 

207. HEMA 
2% EGDM 

397. methanol 
397. water 

Imbibed 
water a 

(% by wt) 

84 ± 0.1 

83 ± 0.4 

0 

59 ± 1 

Void size 
(µ,m) 

Macro Micro 

9-14 

o. 2-1 

Smooth 
at 

5,000X 

Fla key 
at 

5,000X 

0. 5-1. 5 

< 0.1 

8 % water imbibed calculation: Wt, H20 + Wt. Polymer 

Histological analysis 

Dense fibrin formation containing de-
granulated platelets 

Fibrin and loose RBCs 

Degranulated platelets with leukocytes 
covered by fibrin 

Thick fibrin layer containing RBCs 
and leukocytes 

Leukocytes and RBCs covered by a thin 
fibrin layer 

x 100. 



Table III. Continued 

Prosthesis 
or 

formulation 

20% HEMA 
2% EGDM 

19% methanol 
59% water 

Imbibed 
water a 

(% by wt) 

75 ± o. 2 

Void size 
(µm) 

Macro Micro 

1-4 ~ 0.2 

Histological analysis 

Leukocytes, RBCs and a thin fibrin 
network 



Table IV. Data from contact angle and critical surface tension determinations 

Surface 
Contact 8 a ye tension, yy 

Material Liquid (degrees) Cosine 8 (dynes/cm (dynes/cm) 

Silicone H20 101 ± 0 - 0.19 ± 0 72.8 
rubber Glycerine 99 ± 1 - 0, 16 ± 0.01 63.4 26 Pyridine 42 ± 0,5 0.74 + 0.01 38.0 

Formamide 91 - 0.017 58.2 

HEMA/MMA H20 59 ± 3 0,52 ± 0.04 72.8 
20% methanol Glycerine 60 ± 1 0.50 ± 0.01 63.4 31 Pyridine 20 ± 1 0.94 ± 0.01 38.0 

Formamide 55 0.57 58.2 
w 

HEMA/MMA H20 70 ± 5 0.34 ± 0.08 72.8 '° 
15% methanol Glycerine 83 ± 1 0.12 ± 0.01 63.4 35 Pyridine 22 ± 1 0,93 ± 0.01 38.0 

Formamide 42 ± 0 0,74 ± 0 58.2 

HEMA/EGDM H20 41 ± 1 0.75 ± 0.01 72.8 
39% methanol Glycerine 30 ± 4 0.87 ± 0.03 63.4 54 

Formamide 13 ± 0 0.97 ± 0 58.2 

HEMA/EGDM H20 34 ± 2 0,83 ± 0.02 72.8 
19% methanol Glycerine 30 ± 4 0.87 ± 0.03 63.4 46 

H202 40 ± 0 o. 77 ± 0 76.1 

Gore-tex® H20 134 ± 0.5 - 0.69 ± 0.01 72.8 
Glycerine 133 ± 4 - 0,68 ± 0.03 63.4 28 Pyridine 50 ± 1 0.64 ± 0.01 38.0 
Formamide 102 ± 0 - 0.21 ± 0 58.2 

"weast, ed. (1976). 
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Percent of thrombus free surface 

The percent of thrombus free surface (TFS) for each graft is tabulated 

in Table I with the averages for the patent grafts of each type summarized 

in Table II. A graphic comparison of % TFS for each type of prosthesis 

is illustrated in Figure 2. The USCI(g) Sauvage™ noncrimped supported 

Dacron(g) preclotted grafts and the 20% HEMA/2% MMA/20% methanol impreg-

nated Dacron(g) grafts showed superior thromboresistance. Both 20% HEMA/ 

2% EGDM impregnated Dacron(g) graft formulations (19 and 39% methanol) 

showed inferior levels of thromboresistance. Figures 3-7 show the 

luminal surface of each patent graft. Notice the longitudinal streaming 

of thrombus across the lumen, possibly caused by proximal suture lines. 

Also, notice the cross-sectional thrombus formations on the hydrogel 

impregnated grafts, initiated by crimps in the Dacron(g) substrate. 

Percent of luminal stenosis 

The percent of luminal stenosis for each graft is tabulated in 

Table I with the average for each patent graft summarized in Table II. 

Each type of graft is graphically represented in Figure 8 for percent 

of luminal stenosis. In order to avoid confusion, the percent of 

luminal stenosis is represented, in Figure 8, as one-hundred minus the 

percent of luminal stenosis. The same trend of prosthesis performance 

observed for % TFS was observed for percent of luminal stenosis. The 

USCI(g) Sauvage™ noncrimped supported Dacron(g) and the 20% HEMA/2% MMA/ 

20% methanol impregnated Dacron(g) grafts had the lowest percent of 

stenosis. Both 20% HEMA/2% EGDM impregnated Dacron(g) graft formulations 
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Figure 2. Relationship of the percent of thrombus free surface for each 
type of prosthesis. Data were taken from Table II. Sauvage 
noncrimped Dacro~is A, 20% HEMA/2% MMA/20% is B, 20% HEMA/ 
2% MMA/15% is C, Gore-te,µDis D, 20% HEMA/2% EGDM/39% is E 
and 20% HEMA/2% EGDM/19% is F. Range represents one standard 
deviation 
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Figure 3. Luminal surface of uscf!Dsauvage™ noncrimped supported 

Dacron(IDprostheses. Sample 3s is A, 4s is Band Ss is 

C . Scale bar = 5 nun 



Figure 4. 
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Luminal surface of 20% HEMA/2% MMA/20% methanol impregnat-

ed Dacro~prostheses. Sample 21 is A, 26 is Band 27 is 

C. Scale bar = 5 mm 
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Figure 5. Luminal surface of 20% HEMA/2% MMA/15% methanol impregnat-

ed Dacron~rostheses. Sampl 23 is A, 28 is B and 29 is 
c. Scale bar = 5 mm 
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Figure 6. Luminal surface of Gore-te~grafts. Sample lg is A and 

2g is B. Scale bar = 5 mm 



Figure 7 . 
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Luminal surface of 20% HE~/2% EGDM/39% methanol impregnat-

ed DacroJ!Dprostheses . Sample 4 is A and 7 is B. Scale 
bar = 5 mm 
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Figure 8. Relationship of the percent of lurninal stenosis for each type 
of prosthesis. Data were taken from Table II. -sauvage non-
crimped Dacron® is 4, 20% HEMA/2% MMA/20% is B, 20% HEMA/2% 
MMA/15% is C, Gore-teJID is D, 20% HEMA/2% EGDM/39% is E and 
20% HEMA/2% EGDM/19% is F. Range represents one standard 
deviation 
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developed large percents of stenoses. The lumens of all patent 

prostheses are shown in Figure 9. 

Percent of total volume occlusion 

The percent of total volume occlusion was calculated using the 

following equation: 

2 luminal (decimal) x luminal (0.13 cm ) x length (4 cm) x ( 1 - TFS) 
stenos is area 

total luminal volume (0.50 cm3) 

Table II contains the values for each type of prosthesis while 

Figure 10 provides a graphical comparison. Percent of total volume 

occlusion provides a better representation of the overall performance 

of a graft than does percent of thrombus free surface or percent of 

luminal stenosis. 

Histology of interfacial thrombus 

The histological analysis of the slides presented in Figures 11-14 

is summarized in Table III. The hydrogel and expanded Teflon(i) surfaces 

seem to have a greater attraction for white blood cells (WBCs) than the 

preclotted fibrin surface. The Gore-tex(i) surface developed an extensive 

fibrin network that penetrated 40% of the wall thickness. A well-

developed fibrin network:was formed over the samples containing the 

largest voids (Gore-tex(i) and 20% HEMA/2% EGDM/19% methanol). The 

preclotted fibrin and 20% HEMA/2% MMA/20% methanol polymer surfaces 

seem to be the least reactive to blood components. 
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Figure 9. Cross sections of patent prostheses one centime t er f r om 

ach anastomosis. Sample 3s is A, 4s is B, Ss i s C, 21 

is D, 26 is E, 27 is F, 23 is G, 28 is H, 29 i s I, l g 

i s J, 2g i s K, 4 is Land 7 is M 
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Figure 10. Relationship of the percent of total volume occlusion for each 
type of prosthesis. Data were taken from Table· II. Sauvage 
noncrimped Dacron<S)is A, 20% HEMA/2% MMA/20% is B, 20% HEMA/ 
2% MMA/1S% is C, Gore-te~is D, 20% HEMA/2% EGDM/39% is E, 
and 20% HEMA/2% EGDM/19% is F. Range represents one standard 
deviation 
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pl 
/ , 

Figure 11. Light micrographs of usc:fS>sauvage111 noncrimped supported 

Dacro~sections stained with toluidine blue. A DacroJ!D-

fibrin flow surface is at ff, degranulated platelets at 

dp, fibrin at f, RBC at band platelet at pl. Notice the 

blood penetration into the graft (arrow) . DacroJB) fiber 

(d) and polypropylene fiber (p) 
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Lignt micrographs of 20% HEMA/2% MMA/20% methanol (A) and 
. ® 20% HEMA/2% MMA/15% methanol (B) impregnated Dacron sec-

tions stained with toluidine blue. A Dacro~fiber is at 

d, hydrogel polymer at h, fibrin at f, RBC at b, degran-

ulated platelets at dp, platelet at p and leukocyt e at 1 
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Figure 13. Light micrographs of sectioned Gore-te~stained with 

hematoxylin and eosin. Teflo~is at t, fibrin at f, 

RBC at b and leukocyte at 1. Notice the blood cells 

and fibrin penetration into the graft (arrow) 
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Figure 14. Llght ml rographs of s tion d 20% HEMA/2% EGDM/ 39% m h-
anol (A) and 20% IlEMA/2% EGDM/ 19% m thanol (B) impr gnat d 
Da ror\!Yprostheses stain d with toluidine blue. A Dacro~ 
flber is at d, hydrog 1 polymer at h , fibrin at £, RBC t 
b, d granulat d plat 1 ts at dp, plat 1 at p and 1 uko-
cyt at 1 
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Surface morphology 

The surface texture data (micro and macro voids) found in Table III 

were determined from the scanning electron micrographs (SEM) presented 

in Figures 15-17. The copolymer surfaces of polyhydroxyethyl methacrylate 

demonstrate greater thrombogenicity with increasing pore size. The 

least thrombogenic formulation of 20% HEMA, 2% MMA and 20% methanol 

possesses a smooth nonporous surface at 5,000X magnification while the 

most thrombogenic formulation of 20% HEMA, 2% EGDM and 19% methanol has 

void diameters between 1 - 4 µm. Gore-tex® was an exception showing 

compatibility similar to the formulation of 20% HEMA, 2% MMA and 15% 

methanol that possessed a flakey, nonporous surface at 5,000X magnifica-

tion. Since Gore-te~had voids between 9 - 14 µmin diameter 

and fiber lengths < 30 µm, the shape of the voids and the hydrophobic 
® . 

nature of Teflon must influence overall compatibility. 

Water imbibement 

Water imbibement data are.recorded in Table III. The polymer 

formulations of 20% HEMA/2% MMA with the largest water contents 

demonstrate the best hemocompatibility, while the most thrombogenic 

polymer formulations of 20% HEMA/2% EGDM had the lowest water content. 

Gore-tex® showed moderate thromboresistance and a zero water content. 

Solid-liquid contact angles 

An example 9f the sessile drop contact angle (0) measurement used 

in this study is represented in Figure 18. The wettability of 

on the hydr~gel copolymers, expanded Teflon® (Gore-tex®) a~d 
water 

silicone 

rubber (Silastic®) was observed with the use of solid-liquid contact 
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Scanning electron micrographs of a preclotted fibrin 

surface (A and B) and a Gore-te~surface (C, D and E). 

Fibrin forms a thin sheet over the DacroJ!D. Gore-te~ 
contains voids between 9-14 µm with fiber lengths of 

30 µm. 15 KeV (A), 5 KeV (B) and 10 KeV (C, D and E) 
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Figure 16. Scanning electron micrographs of 20% HEMA/2% MMA/20% 
methanol (A, B and C) and 20% HEMA/2% MMA/15% methanol 
(D, E and F) impregnated Dacron(E)grafts. lOKeV 
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Figure 17. Scanning electron micrographs of 20% HEMA/2% EGDM/39% 

methanol (A and B) and 20% HEMA/2% EGDM/19% methanol 
(C and D) impregnated Dacro~grafts. Grafts of HEMA/ 
EGDM/39% contain voids between 0.2-1 µm. Grafts of 
HEMA/EGDM/19% contain voids between 1-4 µm. 10 KeV 
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Figure 18 . Sessile drop method for contact angl e (8) measurements 
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angles (0) and recorded in Table IV. Figure 19 compares .the polymer-

water contact angles (0) of the materials listed in Table IV. 

The most wettable (lowest 9) materials were the copolymers of 

.HEMA/EGDM and the least wettable (highest 9) was expanded Teflon® 

(Gore-tex®). The water contact angle of 101° for silicone rubber 

(Silastic®) was the same as the contact angle reported by Owens and 

Wendt (1969). Literature values for the hydrogel formulations and 

expanded Teflon® (Gore-tex®) are not available for c~parison. 

Critical surface tension 

Contact angle information from Table IV was utilized in Figure 20 

to obtain a critic~! surface tension (y ) for each polymeric material. c . 

Silicone rubber (Silastic@), Gore-tex® and the polymer formulation 

of 20% HEMA/2% MMA/20% methanol had critical surface tensions ih. the 

20-31 dynes/cm range. The highest critical surface tensions were 

observed for 20% HEMA/2% EGDM copolymer formulations. The critical 

surface tension (y ) of Gore-tex® (28 dynes/cm) cannot be compared c 

with Teflon@ (18.S dynes/cm) due to structural differences. The sil-

icone rubber value of y =·26 dynes/cm showed good agreement with the c 
repqrted value of Ye= 24 dynes/cm (Owens and Wendt, 1969). 

General observations 

Table I shows the relationship between artery diameter ahd percent 

of stenosis. Every sample, except #23, that used the smallest flow 

meter (2.5 mm, indicating an arterial diameter of - 3.2 mm) had the 

largest percent of luminal stenosis within each graft type. 

Differences in activated clotting times, platelet counts and 
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Water wettability for each polymer fo~ulation using contact 
angle comparisons. Gore-t~is A, siiicone rubber is B, 20% 
HEMA/2% MMA/15% methanol is C, 20% HmJ/2% MMA/20% methanol 
is D, 20% HEMA/2% EGDM/39% methanol is JE and 20% HEMA/2% EGDM/ 
19% methanol is F. Silicone rubber was used as a standard 
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Figure 20. Zisman plot for determining the critical surface tension of 
each polymer formulation. (0) is silicone rubber, (e) is 
Gore-te~ (•)is HEMA/MMA/20%, (D) is HEMA/MMA/15%, (•) 
is HEMA/EGDM/39% and (A) is HEMA/EGDM/19%. Linear regres-
sion was utilized for line placement_. 
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systolic/diastolic flow rates did not seem to cause any significant 

changes with respect to graft performance. 

Statistical analysis of data 

Table V shows a comparison of the statistical interdependence of each 

type of graft with respect to percent of thrombus free surface (TFS), per-

cent of luminal stenosis (LS) and percent of total volume occlusion (TVO). 

A t-test for determining the significance between two sample means was 

used to determine sample independence. A t-score with a probability of 

0.05 or greater would indicate an insignificant difference between 

the two means measured (dependent). If at-score has a probability of 

0.01 or less then the difference between the two means is highly signifi-

cant (independent). A t-score with a probability between 0.05 and 0.01 

would possibly indicate a significant difference, but would be in-

conclusive. 

The difference between the USCI(g) Sauvage™ noncrimped supported 

Dacron(]) and 20% HEMA/2% MMA/20% methanol impregnated Dacron(]) &rafts 

was not significant (dependent) with respect to percent of thrombus 

free surface, percent of luminal stenosis and percent of total volume 

occlusion. The differences between the performances of the above grafts 

and those of Gore-tex(g) and 20% HEMA/2% MMA/15% methanol impregnated Dacron(g) 

grafts were questionably significant. The 20% HEMA/2% EGDM/39% methanol im-

pregnated Dacron(g) graft showed a highly significant difference (indepen-

dence) with respect to USCI(g) Sauvage™ noncrimped supported Dacron(]) 

and 20% HEMA/2% ·MMA/20% methanol impregnated Dacron(g) grafts. The 

difference between Gore-tex(g) and 20% HEMA/2% MMA/15% methanol impreg-
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Table V. t-test comparison of grafts with respect to percent of 
thrombus free surface (TFS), percent of luminal stenosis 
(LS) and percent of total volume occlusion (TVO) 

user® 
sa,,;vage™ 

Gore-tex®, supported 20% HEMA 20% HEMA 
noncriQPed 2% MMA 2% MMA expanded 
DacronR 20% methanol 15% methanol PTFE 

t a \)b t \) t \) t \) p p p p 

20% HEMA TFSc 0.7 4 
2% MMA Lsd 0.6 4 

20% methanol TVOe 0.7 4 

20% HEMA TFS 0.05 4 0.05 4 
2% MMA LS O.l 4 O.l 4 

15% methanol TYO 0.02 4 0.02 4 

Gore-tex®, TFS O.l 3 O.l 3 0.8 3 
expanded LS 0.4 3 0.4 3 0.7 3 
PTFE TVO 0.05 3 0.05 3 0.8 3 

20% HEMA TFS 0.01 3 0.02 3 0.5 3 0.8 2 
2% EGDM LS 0.01 3 < 0.01 3 0.05 3 0.2 2 

39% methanol TVO < 0.01 3 < 0.01 3 0.02 3 0.05 2 

aProbability of t-score. 
b Degrees of freedom (N - 2). 

c Percent of thrombus free surface·. 
d Percent ·of luminal stenosis. 
e Percent of total volume occlusion. 
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® f . "f" . h t t t f nated Dacron gra ts was not signi icant wit respec o percen o 

thrombus free surface, percent of luminal stenosis and percent of 

occluded volume. 

Discussion 

To predict a graft's patency several surface parameters such as 

texture (micro and macro), degree of hydrophilicity and blood-solid 

interfacial energy must be considered. Other long-term factors to 

be considered are tissue biocompatibility (immune response), struc-

tural strength, circumferential flexibility, chemical stability and 

neointimal healing (endothelial development). Long-term considerations 

were not included in this study. 

The criteria for evaluating graft performance included percent of 

thrombus free surface, percent of luminal stenosis and percent of 

total volume occlusion. 

Surface texture 

Variations in surface texture produced significant deviations in 

thromboresistance. The smoothest and least porous hydrogel surf ace 

(20% HEMA, 2% MMA, 20% methanol, and 58% water) demonstrated superior 

blood compatibility. The roughest and most porous hydrogel (20% HEMA, 

2% EGDM, 19% methanol and 59% water) was the most thrombogenic. Cumming 

(1980) attributed cellular adhesion and aggregation, with respect to 

surface texture, to flow effects. 

Large surface imperfections caused by suture lines, artery-graft 

mismatch and crimps of hydrogel impregnated grafts may initiate thrombus 
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formation. This is in agreement with the literature cited (Herzlinger 

and Culllllling, 1980). 

Gore-te,{!Ycontained the largest voids but was omitted from the 

texture discussion because of the fiber connected elongated pores and 

the hydrophobic cha~acter of Teflor\19. 

Hydrophilicity 

The degree of surface hydrophilicity, with respect to blood coagula-

tion phenomena, is influenced by the following: surface energy, water 

content and hydrophilic-hydrophobic microphase separation. 

The surface energy of materials can be compared using contact angle 

information. The 20% HEMA/2% EGDM formulations are the most hydrophilic 

(smallest 8) while Gore-te,{!Yis the most hydrophobic (largest 8). A 

decrease in thromboresistance with increasing hydrophilicity was 

observed by Baier and Dutton (1969). The increase in thrombogenicity 

with increasing hydrophilicity may influence plasma proteins, as pre-

viously suggested. This seems to disagree with the increasing protein 

denaturation with decreasing hydrophilicity observed by Hoffman (1974). 

Water content and structuring seem to affect hemocompatibility. 

Hemocompatibility increases with increasing water content, see Table III. 

Water content may directly influence the extent of water structuring. 

The importance of water within a material is presently unknown. 

There seems to be good blood compatibility with materials contain-

ing hydrophilic-hydrophobic microphase separations. This study was 

in agreement with the observations of Nakashima, et al. (1977) of 

improved blood compatibility with hydrophilic-hydrophobic microphase 
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separated copolymers. It is unknown whether water formations or 

protein phenomena are responsible for improved blood compatibility. 

Blood-solid interfacial energy 

Interfacial energy, represented by critical surface tension (Y ), c 

provides significant information with respect to thrombogenic character. 

The least thrombogenic surface·had a y = 31 dynes/cm which approached 
c 

the desired .range of 20-30 dynes/cm suggested by Andrade. The most throm-

bogenic materials had critical surface tensions (y ) above 35 dynes/cm. c 
A material with a critical surface tension (y ) between 20-35 dynes/cm c 

seems to be desirable for hemocompatibility. 
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CONCLUSION 

The patency of the small caliber prostheses tested in this 

study could be predicted by observed hemocompatibility. The USCI{g) 

Sauvage™ noncrimped supported Dacron(g) and 20% HEMA/2% MMA/20% 

methanol impregnated Dacron(g) grafts would be predicted to demon-

strate superior patency in small caliber, low flow arterial appli-

cations. Gore-tex(g) and 20% HEMA/2% MMA/15% methanol impregnated 

Dacron(g) grafts would be predicted to show moderate patency. The 

20% HEMA/2% EGDM impregnated Dacron(g) formulations would show the 

least patency. This type of graded evaluation of graft perfor-

mance could be used as a valuable tool for surgeons, as well as 

investigators working on a correlation between surface parameters 

and blood compatibility, 

Several surf ace parameters such as texture, degree of hydro-

philicity (with respect to surface energy, water content and micro-

phase separation of hydrophilic-hydrophobic sites) and blood-solid 

interfacial energy (critical surface tension, y ) were found to be c 
significant with respect to blood compatibility. The evaluation of 

hemocompatibility was measured by means of percent thrombus free 

surface, percent of luminal stenosis and percent of total luminal 
j 

occlusion. The determination of which surface parameter (texture, 

hydrophilicity or interfacial energy) had the most influence on the 

hemocompatibility performance (percent thrombus free surface, percent 

luminal stenosis and percent of total volume occlusion) of each graft 

was not obtainable. A study of each independent parameter (texture, 
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hydrophilicity and interf acial energy) should be perfonned before 

assigning a level of significance to each parameter with respect 

to hemocompatibility. 
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RECOMMENDATIONS FOR FUTURE RESEARCH 

Three- and six-week implantation studies of the grafts presented 

in this investigation would further indicate the significance of the 

percent of thrombus free surface, percent of luminal stenosis and 

percent of total volume occlusion with respect to patency prediction. 

The significance of artery-prosthesis mismatch could be determined 

by implanting dual coated hydrogel impregnated grafts, with 0.5 mm 

incremented diameters, in the canine carotid artery. This would allow 

varying degrees of mismatch. The percent of luminal stenosis. and per-

cent of total volume occlusion could be utilized as modes of evalua-

tion. 

Blood compatibility studies of several polymers, using the evalua-

tion methods of this investigation, would be desirable. The best poly-

mer formulation could then be maximized with respect to surface param-

eters. Of interest would be copolymers with microphase separated hydro-

philic-hydrophobic domains, such as HEMA/MMA and HEMA/EMA copolymers. 

The following surface parameters deserve further study: texture 

or microstructure, hydrophilicity and critical surface tension. 

Microstructure can be controlled by solvent ratios, as reported 

by Knoll (1980) and observed for several polymer systems. A cor-

relation between microstructure and hemocompatibility for each polymer 

system would provide significant information for choosing microstruc-

ture. 

Hemocompatibility in relation to hydrophilicity, as measured by 

water content and wettability, warrants further investigation. 
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It is possible that porous polymer networks, such as Gore-tex~ 

or 20% HEMA/2% EGDM/19% methanol, may demonstrate superior compati-

bility if preclotted prior to utilization. A thin fibrin surface over 

the compatible hydrogel would make exposure of the thrombogenic Dacron~ 

fibers less likely. The preclotted Gore-tex~ may reduce incidence 

of wound edema. 
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APPENDIX: INTRINSIC AND EXTRINSIC PATHWAYS 

This diagram is from Salzman (1972) and provides an overview of 

important factors involved in the clotting cascade with foreign materials. 
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