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CHAPTER 1. INTRODUCTION

Aircraft performance optimization has been a subject of
considerable attention over the past several years and, with
the advent of high-speed aircraft, it is even more so now.
One area of interest to many investigators is that of the
minimum time-to-climb problem and, in particular, the
minimum time-to-climb problem for supersonic aircraft. This
area has received much attention because today's aircraft
are better built, havellarger flight envelopes, and thus
have higher performance capability. This problem is
especially important for the intercept mission.

To study this problem, mathematical models are needed
to-describe the aircraft and its motion. For subsonic
aircraft, the quasi-steady approximation, where
accelerations are neglected completely, is adequate for
performance analysis. However, for supersonic aircraft the
accelerations are so great that if accurate performance
analysis is desired they cannot be neglected. Hence, a more
complex model is required. However, as the complexify of
the dynamic model increases, so does the amount of
difficulty and computer expense required to determine the
optimal flight path of the aircraft. This is clearly seen
in Bryson's and Denham's investigation [1] in which they use
a four;state variable model with velocity, flight path

angle, height, and mass as the dependent variables.



To simplify the complexity of the dynamic model for
high performance aircraft, Lush [2] proposes an energy
approach. Rutowski [3] applies this approach to the minimum
time-to-climb problem. Here, the aircraft performance
problem is considered from the point of view of the balance
that must exist between the potential energy and the kinetic
energy change of the aircraft. Based upon this idea, Bryson
et al. [4] present a very simple approximation model known
now as the energy-state model.‘ In.this model, only one
state variable is used, an& that variable is the total
energy per unit mass. This model saves much time and
expense, but it leads to unrealistic slope discontinuities
in velocity and altitude in the region of the dive and zoom-
climb.

The minimum time-to-climb problem has also been treated
by Garfinkel [5]), Miele [6], Landgraf [7], Kelley [8], and
Ardema [9]. These investigators contribute to the
development of numerical techniques to enhance the solving
of minimum time-to~climb problems. The results have been
encouraging. Ardema [9) applies singular perturbation
techniques to this problem and shows that the computational
cost of the singular perturbation solution is considerably
less than that of Bryson's steepest ascent solution [1].
However, the initial preparation time to set up the problem

is high.



A better approach is to apply parameter optimization
techniques to aircraft trajectories. This approach allows a
lot of flexibility in changing models, performance indices,
and constraints and yet requires only modest computer
expense. Here, the optimal control problem is reformulated
as a parameter optimization problem by choosing a form for
the control time history which contains a finite number of
parameters. Minimization then takes place over this set of
parameters. Rader and Hull [10] demonstrate this technique
on the minimum time-to-climb problem, and it has proven to
be very useful. Based upon this idea, Pouliot, Pierson, and
Brusch [11] have developed a highly efficient code,
sequential quadratic programming, and the results obtained
thus far have been impressive.

Although much work has been done on the minimum time-
to~climb problem, it is interesting to note that most
investigators [14-31], and the ones mentioned above, have
been concerned mainly with the development of numerical
techniques for solving this problem. The numerical
techniques are applied to a specific dynamic model, and the
corresponding results are compared. The advantages and
disadvantages of one method over another can then be easily
seen. These improved numerical techniques along with the

simplified dynamic models save much time and money.



However, many gquestions arise. For example, is the choice
of a particular dynamic model a "good" one or not? What
happens if another dynamic model is used? Will a th-state
model produce the same results as a three-state model? If
so, which variable produces little or no change in the
results and can therefore be excluded from the equations of
motion to save computational expense? If not, what causes
the change in the results? Is it because the equations of
motion have been linearized? Is it because motion out of
vertical plane is not included? Or is it because an
important variable has been excluded? These are just a few
of the many unanswered questions.

An earlier work by Ardema [(1l2] answers some of these
questions. He solves the minimum time-to-climb problem
using the energy-state, two-state, and a modified two-state
model. From his work, he concludes that thrust and weight
influence the time-to-climb most strongly and that the
modified two-state model is significantly better than the
other two. However, no numerical results are presented for
the three-state, four-state, and five-state models. Thus,
it is likely that other factors may be present that
influence significantly the minimum time-to=-climb. Pierson
[13] also compares several dynamics models with the help of

a sequential quadratic programming method, but his study



invélves a minimum-noise problem rather than the minimum
time-to-climb problem treated here. However, his approach
serves to motivate and guide the present study of a whole
range of models so that a model comparison can be made..

In the following study, five dynamic models are
examined. The models used range from the simple energy-
state model to the complete five-state model. The
descriptions of each model as well as the problem
formulation are given in Chapter 2. To provide a basis for
comparison, we use sequential quadratic programming [11l] to
solve the minimum time-to-climb problem. This method of
solution is described in Chapter 3. 1In Chapter 4, numerical
solutions and model comparison are presented, and in Chapter

5, we have the summary and conclusions.



CHAPTER 2. PROBLEM FORMULATION

It is desired that the flight path of a supersonic
aircraft be found which gives a minimum~time climb from a
given initial energy-level to a final energy-level. The
aircraft is represented by five dynamic models, and the
models used range from the simple energy-state approximation
model to the complete five-state point-mass model. This
Chapter presents the problem formulations for these five

dynamic models.
Equations of Motion

Figure 1 shows the nomenclature commonly used for an
aircraft flying in a vertical plane. The dgeneral system of
equations of motion in a vertical plane is the fifth-order
system which describes a variable weight point-mass moving
over a flat non~rotating earth. By considering only motion

in the vertical plane, we obtain the equations of motion

[4]:
mV="T cos(a + £€) - D - m g sin? (2-1)
mV?y="T sin(a + ¢) + L = m g cos¥ (2-2)
h = V sin¥ (2-3)
X = V cos¥ (2-4)

m= -f (2-5)
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FIGURE 1. Aircraft nomenclature

Equations (2-1) and (2-2) represent the aircraft motion
along and normal to the direction of the.relative velocity
respectively. These two equations results from Newton's
second law (f = m 3) applied to an aircraft in planar
flight. Equation (2-3) shows the vertical height rate,
while equation (2-4) is the horizontal rate. The last
equation governs the mass loss due to fuel consumption.

The variables in the equations of motion are defined as

follows:

V - relative velocity



¥ - flight path angle

h - altitude

X - horizontal range

m - mass

¢ - angle of attack (measured

from zero-lift axis)

¢ - angle between thrust axis
and zero-lift axis

- gravity acceleration

- thrust

drag

- lift

Hh 0O H Q
'

- fuel flow rate

The aerodynamic forces are approximated by assuming
lift to be a linear and drag to be a quadratic function of

a, i.e.,

L=qSC, «a (2-6)

L

a

D=qg$s (C, *+nC, a?) (2-7)
(o} o4

where g = p V?/2 is the dynamic pressure, S is the

aerodynamic reference area, CL is the lift coefficient
a

slope, CD is the zero-lift drag coefficient, and n is the
o

efficiency factor (O < n < 1). In general, CL , CD , and n
o o)



depend on the Mach number. Tables and curve fittings for
these aerodynamic characteristics are given in Appendix I.

The thrust is a function of both wvelocity and altitude.
A fourth-order polynomial in velocity and altitude is fitted
by a least-squares method to the thrust data and is given in
Appendix II.

To make our minimum time-to-climb problem more
realistic, the mass of the aircraft is not assumed to be
constant. Instead, the higher order models (order 4 and 5)
have the aircraft's mass dependent on the fuel consumption

rate, £, which in turn is a function of thrust, i.e.,
£f = T/cg (2-8)

where ¢ = 1600 seconds, and g = 32.174 ft/sec?. The
remaining lower order models have the aircraft's mass

approximated by a linear function of range, i.e.,
m = k1 X + kz (2"9)

where k, and k, are constants determined from the aircraft's
mass boundary conditions (see Table 1 for values).

All the models being examined utilize a variable
atmospheric density. A standard exponential form for the

atmospheric density is used, i.e.,

p(h) = p e /M (2-10)
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where p = 2.54 x 10°® slug/ft® and h, = 2.73 x 10* ft.

The above relationships enabled us to use explicit
function representations to model the aircraft's thrust,
lift, drag, and fuel consumption characteristics.

To illustrate a physical problem, Figure 2 shows a
typical mission of a fighter aircraft intercepting a target
in Earth's atmospheric space. Should the target be an
enemy, it becomes important that the target be intercepted
in the least possible time. Thus, a form of a minimum time-

to-climb path is necessary.

Target

Optimal Path?

;f;ﬁ Takeoff /Land

— P

FIGURE 2. Aircraft intercept mission
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Aircraft Models

The various aircraft models being examined will now be
discussed. We will begin from the most complex model to the
least complex one. 1In order of decreasing complexity, the
models are:

1) five-state point-mass equations
2) four-state point-mass equations
3) three-state point-mass equations
4) two-state point-mass equations
and S) energy-state approximation
The problem formulations for these five dynamic models are

as follows:

Five-state point-mass equations

We want to minimize the time it takes for an aircraft
to climb from one energy-level to another. Thus, an obvious

possible function to be minimize is

min J ='tf (2-11)

where J is the performance index, and tf is the final time.
Five state variables are involved. They are velocity,
altitude, flight path angle, range, and mass with time as

the independent variable. Only one control function is

used, and that control is the angle of attack, «.
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If we assumed that the angle between thrust axis and
zero-lift axis (e¢) is zero, as is often the case, the state
equations are exactly the same as equations (2-1)-(2-5)
except for € = 0. Thus, the problem can then be stated as:

To find the angle of attack history, «(t), which

minimizes
J=t (2-12)
subject to: m V="Tcose -D-m g sin¥ (2-13)
mvy="Tsine + L - m g cos¥ (2-14)
h = V sin¥ (2-15)
X = V cos¥ (2-16)
m= -f (2-17)

and specified initial and final states and the constraint h
2 0 (refer to Table 1 in Chapter 4 for specified states).
The above formulation is an example of an optimal control
Meyer problem and it features the usual point-mass equations
of motion in a vertical plane. The dot notation (')
indicates that it is a time rate of change of the concern

variable.

Four-state peoint-mass equations

In this and the remaining models, range is used to
replace time as the independent variable. Since time is no
longer a variable, the performance index (2-12) would have

to change. We can think of J as the integral of time, i.e.,



J=17I," dt (2-18)

From equation (2-16), we can solve for dt in terms of dx to

get

dt = L

= ¥V cost (2-19)

Substituting (2-19) into (2-18) for dt, the performance

index becomes

Re 4

J = JO V cosY¥

dx (2-20)

where Rf is the final range at tf obtained from solving
Model 1. This integral, which is now with respect to range,
will still give us a minimum-time performance. As final
range is specified, the problem is then of a fixed-range
minimum time-to-climb problem.

The states are velocity, altitude, flight path angle,
and mass with angle of attack as the control. The
derivatives of thesé states are taken with respect to range
and they can be easily obtained by dividing equations
(2-13)-(2-15) and (2-17) by equation (2-16). In doing so,

we obtain the following equations of motion:

v+ _ T cosa - D -m g sin¥ _
v = m V cos¥ (2-21)
y _ T sina + L - m g cos¥ _
¥ o= m V? cos¥ (2-22)
h' = tan?¥ (2-23)
m' = - Lt — (2-24)

V cos¥
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The prime notation (') indicates that derivatives are taken
with respect to range. We can now consider the following
problem:

To f£ind the angle of attack history, a(x), which

minimizes equation (2-20) subject to equations

(2-21)~(2-24) and specified initial and final

states and the constraint h 2 0.

Model 1 and 2 are basically the same. The only

difference is in the independent variable used. The first

uses time while the latter uses range as the independent

variable.

Three-state point-mass equations

This model is a simplification of the previous model.
The four-state model is reduced to a three-state model by
omitting the mass differential equation. Velocity,
altitude, and flight path angle remain aé the states with
angle of attack still as the contreol. The mass, now, for
simplicity, is approximated by a linear function of range,

i.e.,
m=k, x + k, (2-25)

where k; and k, are constants determined from the aircraft's

mass boundary conditions.
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The problem statement is then: To find the angle of

attack history, a(x), which minimizes

Re
Jd = IO V cost dx (2-26)
subject to: v' = L cesa =D -mgd sin¥ (2-27)

m V cos¥

T sina + L - m g cos¥
m V? cos¥

tan¥ (2-29)

i = (2-28)

hl

and specified initial and final states and the constraint h

= 0.

Two-state point-mass equations

This model results from further simplifications of
Model 3. By inclusion of two additional assumptions, i.e.,
i) The angle of attack, a, is small so that
by small angle approximation,_COSa = 1

and ii) Flight path angle dynamics are neglected
the three-state model is reduced to a two-state model. Only
velocity and altitude remain as the states with flight path
angle now playing the role of the control.
The aerodynamic drag for this model, however, requires
some modifications. The form that we have for our more

complex models, i.e.,

D=gsS(Cy *nC, a?) (2-30)
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could no longer be used here because of the small angle of
attack assumption. A suitable form needs to be developed,
and we can do so using the drag polar function
D=gSsS (CDo + B CLz) (2-31)
where B is a constant.
By neglecting flight path angle dynamics and with the
small angle of attack approximation, equation (2-2) reduces

to
O=L - mg cos¥ (2-32)

which means that lift is equal to the component of the
aircraft's weight normal to the flight path. The

aerodynamic lift, L, is given by

L=gs CL (2-33)
Using (2-33) in (2-32), and solving for CL’ we get
- m g cos¥ -
CL g S (2-34)

Substituting for CL in the drag polar function (2-31), we
obtain
D=gqslc, +pBILest):, (2-35)
o g
This form of aerodynamic drag will be used for our model.

The problem statement may now be given as:
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To find the flight path angle history, ¥(x),
which minimizes

f 1

J = JO V cos¥

dx (2-36)

T -D-m g sin¥
m V cos¥

tan¥ (2-38)

subject to: V' = (2-37)

hl

and specified initial and final states and the constraint h
2 0. As a reminder, mass is not constant, but is

approximated by a linear function of range.

Energy-state approximation

The last model to be examined is the well-known energy-
state approximation model. In this approximation, only the

specific energy, E, is treated as the state variable:

E = % V2 + gh (2-39)
The range rate of change of E is obtained by differentiating

equation (2-39) with respect to range
E' =V V' + gh' ' (2-40)

Using (2-37) and (2-38) to eliminate V' and h', we get

l_T"D__ -
E* = m cos¥ (2-41)

An additional assumption made in the energy-state
approximation is that the flight path angle is small so that

by the small angle approximation, cos¥ = 1. Thus, the range
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rate of change of E reduces to

E' = (2-42)

In addition the altitude constraint has to be modified. If

we solve for gh in equation (2-39), we get

v? (2-43)

Thus, to ensure altitude remains positive, we require
E-2v220 (2-44)

The problem statement will now be stated:
To find the velocity history, V(x), which

. minimizes

dx (2-45)

subject to: E' = (2-46)

and specified initial and final states and the constraint
(2-44). Note that velocity now plays the role of the

control.

The problem formulations for the five dynamic models
have been precisely stated above. Table 1 (see Chapter 4)
summarizes these problem formulations. Also included in
this table are flight conditions and control constraints.

These problems, however, will not be solved as optimal
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control problems. Rather, they will be solved as
parameterized optimization problems. In the next Chapter,
we will show how these optimal control problems can be
reformulated as parameterized optimization problems. The
choice of a numerical technique to solve the minimum time-
to~-climb problems to provide a basis for comparison will

also be discussed.
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CHAPTER 3. METHOD OF SOLUTION

The minimum time-to-climb problems can be solved in two
ways, either as infinite-dimensional problems or as
parameterized optimization problems. In this Chapter we
discuss the latter approach. The numerical method chosen to

solve these minimum time-to-climb problems is also given.

Optimal Control Problem Statement

A general statement of the optimal control problem

treated here is:
Find the scalar control function, u(t), which

minimizes the performance index
t
f

t
o

subject to the n state equations

3= ¢(x(t)] + f.° L(x,u,t) dt (3-1)

x = f(x,u,t) » (3-2)
the initial and terminal state constraints

X(to) = X; x(tf) = Xe (3-3)

and to the control constraints

v, < u(t) < u, (3-4)

Here, n refers to the number of states, and ul and uu are
the lower and the upper control bounds, respectively.
The above optimal control problem can be treated as an

infinite-dimensional problem, i.e., we can minimize the

performance index while satisfying the specified constraints
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for an entire control time history. Infinite-dimensional
numerical techniques such as 'shooting' or
quasilinearization methods can then be employed to solve
this problem. This approach, however, has two main
drawbacks. First, the initial preparation time to set up
the problem is high. This is due to the analytic work
involved in deriving the costate equations and the influence
function equations. It is even more so and cumbersome as
well when the particular problem involved is highly
nonlinear. Second, the problem must be defined analytically
in order that these infinite-dimensional methods can be
implemented. We know often that such is not the case.

Thus, instead of posing the optimal control problem as
an infinite-dimensional problem, we will reformulate it as a

parameterized optimization problem.
Parameter Optimization

In this approach, the optimal control problem is
transformed into a parameter optimization problem by
choosing a form for the control function which contains a
finite number of parameters. Rather than minimizing the
performance index over the entire control history, we now
minimize over this set of parameters. The resulting

parameterized problem becomes simpler and easier to solve.
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Control discretization

Figure 3 shows how the continuous control function,
u(t), is discretized. We let the interval (to, tf) be
divided equally into g intervals. At each time point, we

let u, approximate the control value at time ti’ i.e.,

u, = u(ti) (3-5)

where i = 0, 1, ..., g. We will have g+l control nodes, the

ui's, and these control nodes serve as the control
parameters. The control parameters are corrected at each
iteration until some termination criterion is satisfied
which results in an optimal solution. As the number of time
interval increases, we will have more control nodes, and
thus a closer approximation to the continuous control, u(t).
A piecewise linear interpolation scheme is used to
calculate control values between control nodes. One major
advantage of this scheme is that we can set én upper and a
lower bound on these control nodes. 1In doing so, we ensure
that the control constraints are never wviolated. Cubic
interpolation scheme is another possibility. However, one
has to be a little careful when using this scheme because

the cubic nature of the interpolation can result in control

constraint violations.
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FIGURE 3. Control discretization

Choice of Numerical Method

The solution to our minimum time-to-climb problem
involves integration of differential equations. The
computational cost associated with doing this can be
exceedingly high, especially if the differential equations
are very complex and highly nonlinear. Since we want to
make a model comparison between five dynamic models, the
solutions to each model must also be accurate. Hence, we

desire a method of solution that is both relatively accurate
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and inexpensive. In addition, the method must be flexible
to accommodate dynamic model, performance index, and
constraint changes with relatively little reprogramming. It
is for these reasons that the method of sequential quadratic
programming [11] has been chosen.

The sequential quadratic programming algorithm is a
constrained Quasi-Newton method which exhibits superlinear
convergence. This method, which solves a series of
quadratic programming problems, has proven to be very useful
for problems with computationally expensive function and
gradient evaluations. It consists of basically four steps
[13]:

i) For an initial guess of the control parameters and
an initial (positive definite) estimate of the
Hessian matrix, compute the required first partial
derivatives via numerical integration and finite-
difference approximation and solve a quadratic
programming problem for the corrections to the
control parameter vector and the associated Lagrange
multipliers.

ii) Perform a one-dimensional search along the direction
of search vector obtained in step (i) by minimizing
an auxiliary performance index. This step-size
selection procedure is used to enhance convergence

from poor initial control parameter estimates.
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iii) Update the control parameter vector and test for
convergence.

iv) If convergence is not achieved, update the Hessian
matrix estimate by a variable-metric formula and

repeat from step (1i).
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CHAPTER 4. NUMERICAL RESULTS AND MODEL COMPARISON

Numerical results of the minimum time-to-climb problem
for our models are presented in this Chapter. All numerical
computations were performed on the Iowa State University
NAS/9160 computer using Fortran 77 with double precision
arithmetic. A program listing for Model 1 is given in

Appendix III.
Flight Conditions and Control Constraints

We want to compare the minimum time-to-climb results
among five dynamic models. As the complexity of these
models differ from one another, the initial and the final
states for each model are modified accordingly so that the
same initial and the same terminal flight conditions apply
to each model. In our case, we always want the aircraft to
fly from zero altitude at 400 ft/sec to én altitude of
65,600 feet at Mach number one.

All control variables are bounded. For Models 1, 2,
and 3, the control angle of attack, e, is bounded between
+10°. This is to prevent the aircraft from stalling. For
Model 4, the control flight path angle, ¥, is constrained to
+80°. This is to avoid the singularity broblem should ¥
approach 90°, a feature of using range as the independent

variable. For Model 5, the control velocity, V, is
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constrained to O £ V £ 1750 ft/sec so that the physical
capability of the aircraft is not violated. Table 1
summarizes the flight conditions and control constraints for

the minimum time-to-climb problem.
Solutions to Models 1-5

Fifteen control points were used for each model. A
piecewise linear interpolation scheme was used to
interpolate between control points in each interval.
Trapezoidal rule was used to evaluate the performance
indices, and a fourth-order, fixed-step, Runge Kutta
numerical integration scheme was used to integrate the
differential equations of motion. One hundred integration

steps were used.

Control histories

The optimal angle of attack historiés for Models 1, 2,
and 3 are shown in Figures 4-6, respectively. The flight
path angle history for Model 4 is shown in Figure 7, and the
velocity history for Model 5 is shown in Figure 8. It is
apparent that the control points are not distributed evenly.
A sensitivity analysis indicates that the distribution of
the control points is highly important. 1In this case, more
control points are needed in the earlier portion of the

trajectory. All five models show this characteristic. When
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these extra control points are not included, no solutions
could be generated. The study reveals that sensitivity to
control location varies throughout the climb trajectories.
This in turn indicates that some portions of the climb
trajectory are more sensitive than the rest, and that the
portions which are more sensitive require more control
points. Thus, to avoid difficulties in generating optimal
trajectories a clear understanding of the sensitiveness of
any problem to be solved is helpful. 1In our problem, the
initial portion of the climb trajectories seems to be the
most sensitive area. This is because of the altitude
inequality constraint.

Figure 9 shows the comparison of flight path angle as
state (in Model 1), and as a control (in Model 4). We see
clearly that the history of the flight path angle as a
control is very similar to that when it is used as a state.
However, when used as a control, we were able to employ a
very simple 2-state model, rather than a much more complex
one, thereby reducing the computational expense. The
velocity, see Figure 10, also shows similar results, and
could, therefore, be used as a state or as a control

depending upon the complexity of the model desired.
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Figure 11 shows the comparison between the control
histories for Model 1, 2, and 3. Qualitatively, these
control histories are similar, as one would have expected.
In addition, the angle of attack remained small for a large
portion of the trajectory. This verifies the validity of

our small angle of attack assumption.

Energy results

The energy results of all models, i.e., the exchange
between kinetic energy and potential energy, are shown in
Figure 12. An interesting feature of the results is that
the trajectories categorize themselves into two distinct
categories. Model 1, 2, and 3 fall into one group, while
Model 4 and 5 fall into the other. 1In our study, the first
three models include flight path angle dynamics while the
latter two models do not. Although the results for all
models are similar, the addition of fligﬁt path angle
dynamics in the equations of motion can make a difference
quantitatively. As a result, the flight path angle may
significantly influence the minimum time-to-climb, in
addition to the thrust and weight as indicated by Ardema
[22]. This result is more apparent when the minimum-time
climb for all models is compared later.

All models, except Model 4, exhibit dive and zoom climb

trajectories from the initial energy level to the final
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energy level. The dive portion of the trajectories occurs
just before supersonic speed while the zoom-climb portion
occurs near the upper bound of the velocity constraint, Vu =
1750 ft/sec. The altitude where these transitions occur,
however, differ between each model. The transitions seem to
occur at a higher altitude for those models that have flight
path angle dynamics.

Observe also that all trajectories before the dive
remain very close together. The zoom=-climb region also
exhibits the same characteristic. This can be explained by
the fact that we have the same flight boundary conditions
for all models. The trajectories at these two portions are
flown mainly to satisfy these boundary conditions. It is
obvious then that the primary role of the trajectories
between these two portions is to minimize the time-to-climb.

Figure 13 compares Bryson's, Rader and Hull's, and our
Model 5 solution for the minimum time-to-climb problem. The
results are basically similar in nature, except that the
dive océurs at a higher altitude-in both Bryson's and Rader
and Hull's solutions. Two reasons account for this
difference. First, different optimization technigques have
been used to solve the minimum time-to-climb problem.

Bryson uses steepest descent method, while Rader and Hull

use the hard constraint approach. Second, the values for
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our aerodynamic curve fit are not exactly the same as those
of Bryson's and Rader and Hull's, although they are very

close.

Climb trajectories

Figure 14 shows the plots of altitude with range. The
distinction between models that include flight path dynamics
and models that do not is perhaps seen more clearly. Models
1 and 2 have virtually the same optimal climb trajectories.
This is to be expected because the equations of motion for
both models are basically the same. The only difference is
that Model 1 uses time whereas Model 2 uses range as the
independent variable. However, the computation expense for
these two models is not the same, as will be shown later.

Note that all models, except for Model 5, have smooth
plots. This is because the states of these models are
evaluated from differential equations. However, for Model
5, velocity is not a state. Rather, it is a control. It is
for this reason we see slope discontinuities in thé flight
profile. The occurrence of each slope discontinuity in the
plot is exactly at the locations of our control points. If
more control points are used for Model 5, then one would
expect a smoother plot, but at the expense of computation

cost.
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Again, we see that the two extreme portions of each
trajectory serve to satisfy the initial and terminal
constraints, while the middle portion serves to minimize the
time-to-climb. Also, the monotonic increase in range as
shown by the plots verifies the validity of using range as

the independent variable.

Cost and time-of-flight comparison

TABLE 2. Cost and time-of-flight comparison

Model Control CPU time Time-of-£flight
points per iter, sec sec

1 15 1.2604 290.09

2 15 ' 1.1113 290.40

3 15 .9227 293.95

4 15 .7613 283.23

5 15 .3388 272.88
Bryson (Energy-state approximation) 277 sec

Rader anleull (Hard Constraint) 317 sec
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Table 2 shows the time-of-flight and computation time
results for each model. Models 1 and 2 show essentially no
difference in the time-of-flight as the equations of motion
for these two models are basically the same, except in the
independent variable used. However, their computation times
differ. It takes only 1.1113 CPU sec per iteration for
Model 2 compared to 1.2604 CPU sec per iteration for Model 1
- a saving of 12% in computation time.

Among Models 1, 2, and 3, those models that include
flight path angle dynamics, Model 3 uses the least
computation time - .9227 CPU sec per iteration, a saving of
27% in computation time compared to Model 1. No mass
differential equation, however, is included in this model as
well as in the remaining lower-order models. A linear
function of range is used ihstead to approximate the
aircraft's mass. It is this inexact mass approximation that
results in a slight difference in the optimal climb
trajectories. We have a higher altitude dive transition for
Model 3 than for Models 1 and 2. This in turn leads to an
additional 3.86 seconds in the flight time - 293.95 seconds
compared to 290.09 seconds for Model 1. If a more accurate
aircraft mass model is used, then we would expect negligible
differences in the climb trajectories as well as for the

flight time. The high saving in computation cost for Model
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3 coupled with a very simple mass model, however, far exceed
the desire to pursue an accurate mass modeling. Moreover,
the accuracy of the result was not sacrificed to any large
extent only a mere 1.3% difference in the flight time
between Model 3 and Model 1.

Let's now consider the results of Models 4 and 5. For
Model 4, it takes the aircraft 283.23 seconds of flight time
to meet the specified terminal constraints; for Model 5,
which is the energy-state model, it takes only 272.88
seconds. These are smaller times, but they should be
considered only as rough approximations to the actual time-
of-flight. The reason for this statement is that these
models are so simplified that they become unrealistic,
especially for the energy-state model where only one state
variable is used. However, the results remain fairly
accurate and can be obtained inexpensively. If we consider
the computation time, it takes only .7613 CPU sec per
iteration for Model 4, and .3388 CPU sec per iteration for
Model 5. These are savings of 40% and 73%, respectively, in
computation costs when compared to Model 1; a substantial
savings. If one has no "feeling" for the solutions to the
minimum time-to-climb problems for other supersonic
aircraft, these two models, either Model 4 or Model 5, might
be the models to be considered initially to generate a

nominal solution for use in higher order models.
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CHAPTER 5. SUMMARY AND CONCLUSIONS

The minimum time-to-climb problem is formulated as a
parameterized optimal control problem and is solved using
sequential quadratic programming. Five dynamic models are
treated. The models used range from the simple energy-state
model to the complete five-state point-mass model. The
five-state model features the usual.point-mass equations for
flight in a vertical plane.- Time is the independent
variable, and speed, altitude, flight path angle, range, and
mass are the dependent variables. Range is used to replace
time as the independent variable for the remaining four
models.

It is clear that sensitiveness plays an important role
in optimal aircraft trajectory generation. A lack of this
understanding can lead to difficulties in obtaining optimal
trajectories. This difficulty can be avéided when more
control points are used for portions of the trajectories
that are highly sensitive.

The two-state and the energy-state approximation models
provide easily solved but optimistic results for minimum
time-to-climb. The results, however, remain fairly accurate

and can be used as nominal solutions for higher-order

models.
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Although the addition of flight path angle dynamics
complicates the solution process, its addition significantly
influences the minimum time-to-climb. For accurate
performance prediction of the flight-time, it is'necessary
that the flight path angle dynamics be included in the
equations of motion.

The intermediate three-state model indicates that the
aircraft's mass differential equation can be replaced by a
simple linear function of range without significant loss in
accuracy. This replacement eliminates the need to integrate
the mass differential equation, thus simplifying the model
by one order.

Consideration of our numerical example shows a fairly
good agreement between values of the minimum time-to-climb
as predicted by the five dynamic models. However, the
computation time between models varies significantly; Model
1 is the most expensive, while Model 5 is the least
expensive. It can be seen that the energy-state
approximation, properly set up, is adequate for performance
optimization of supersonic aircraft.

Many extensions to this study are possible. Further
models might include: 1) rotational dynamics, 2) non-flat
rotating earth, 3) aircraft structural dynamics, and 4)

multiple control variables. The study can also be extended
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to compare flight profiles for: 1) minimum fuel cilimb, 2)
maximum range in given time, 3) maximum range for a given

amount of fuel, or 4) maximum range glide between specified

energy levels.
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APPENDIX I. AERODYNAMIC CHARACTERISTICS

The aerodynamic data used in our study are that of an
early representation of the F-4 fighter aircraft [4].
Equations (2-6) and (2-7) show the aerodynamic lift and drag

equations. The lift coefficient slope, CL , the zero-lift
[+

drag coefficient, C and the efficiency factor, n, are all

D *
Mach number dependenz. These Mach number dependent
aerodynamic parameters are restated here in Table 3.

It is desirable that the aerodynamic data be
represented in terms of analytic functions. These functions
should be continuous and should have continuous first
derivatives as well. A third-order polynomial function of
Mach number is chosen to represent each of these aerodynamic
parameters within each interval.

To illustrate how this is done, let us consider the
lift coefficient slope parameter, CL . The particular form

[o
is

CL (M) = a, + 2, (M - Mi) + a, (M -Mi)2 + az;(M - Mi)3 (I-1)
a

where Mi is the discrete Mach number value in Table 3 such

that

Mi <M= Mi+1 (I-2)
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TABLE 3. Lift and drag characteristics [4]

M 0 0.8 0.9 1.0 1.2 1.4 1.6 1.8
c, 3.44 3.4  3.58  4.44  3.44  3.01 2.86 2.4
[+ 4
CD 0.013 0.013 0.014 0.031 0.041 0.039 0.036 0.035
o]
n 0.54 0.5 0.75 0.79 0.78 0.89 0.93 0.93
C.=C. a L=3,v2sc S = 530 ft?
L~ L, 2 L =
c.=C, +n¢C.a? p=1,visc
D~ "D L, 2 D

By differentiating (I-1) with respect to Mach number, we

obtain

CL' = a, + 2a,(M - Mi) + 3a;(M - Mi)2 (1-3)
a

The slope CL' can be estimated graphically from a plot of

o

C vs. M at the selected Mach number, Mi' These slopes are

L

a
tabulated in Table 4. Therefore, in a specified interval,

(Mi, Mi+1)’ we have the following boundary values:

1 t
a o [+ o
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TABLE 4. Lift and drag parameter slopes with Mach number

M 0 0.8 0.9 1.0 1.2 1.4 1.6 1.8

c.' 0 0 6.75 0 -4.0625 -1.25 -0.833 -0.2
a

c,' 0 0 0.0231  0.155 0 -0.0157 -0.0106 O
[o]

n' 0 0 0.85 0.325 0.25 0.2 0.1313 O

1 - C 1 - t =
CL dCL /dM D dCD /dM n dn/dM
a «a o o

The polynomial coefficients a,, a,, a,, and a; can then be

obtained by solving equations (I-1l) and (I-2) at each end of

thé interval, i.e.,

c, (M) = a (1-5)
a

CL, (Mi+1) = a, + a, A+ a, A? + a; A? (1I-6)
a

CL'(Mi) = a, (I-7)
a

C'(M;,)) = a1 + 2 a; & +3 a; A (1-8)
a

from which we get

a, = CL (Mi)
a
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a, = C.' (M)
Q

aq = A?.
- 1 t :
2(Cy My 4) Cp, (My)) + A[C, (M 4) + Cp (My)
— (+3 a o3 a
az; = AJ
Here, A = M -~ M.. These coefficient are then used in

i+l i
equation (I-1l) to calculate CL (M) on the interval (Mi,
Mi+1)' The same procedure is :epeated for the next interval
and so on. The zero-1lift drag coefficient, CD (M), and the
efficiency factor, n(M), are determined in theosame manner.
Table 5, 6, and 7 show the polynomial coefficients for CL .
CD , and n, respectively, for each of the seven Mach numer
inzervals.

Both the atmospheric density, p, and the speed of
sound, a, vary with altitude. For the density, we have
[31}:

p(h) = p, e /M
where p, = 2.54 x 10° slug/ft® and h; = 2.73 x 10* ft. For
the speed of sound, we have [31]:
(ki - k1), h € 36,000 ft
a(h) =
968.1 ft/sec , h > 36,000 ft

where k; = 1.244 x 10° ft?/sec?, and k, = 8.57 ft/sec?.
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Polynomial coefficients for C

L
a
Mach number Polynomial coefficients for CL
interval ap a; az : as
0-0.8 3.44 0 0 0
0.8 - 0.9 3.44 (o] -25.50 395.00
0.9 - 1.0 3.58 6.75 123.00 -1045.00
1.0 - 1.2 4.44 0 -54.69 148.44
1.2 - 1.4 3.44 -4.06 14.63 -25.31
1.4 - 1.6 3.01 -1.25 5.42 ~14.58
1.6 - 1.8 2.86 -0.83 -22.17 79.17
TABLE 6. Polynomial coefficients for CD
O
tlach number Polynomial coefficients for CD
interval a, a, aj ° as
0 - 0.8 0.0130 0 [ [¢]
0.8 - 0.9 0.0130 0 0.0688 0.3125
0.9 - 1.0 0.0140 0.0232 3.0875 ~-16.1875
1.0 - 1.2 0.0310 0.1550 -0.8000 1.3750
1.2 - 1.4 0.0410 0 -0.0714 0.1071
1.4 - 1.6 0.0390 -0.0157 -0.0147 0.0915
1.6 - 1.8 0.0360 -0.0106 0.0313 -0.0156




TABLE 7.

59

Polynomial coefficients for n

Mach number

Polynomial coefficients for 1

interval ag a, a, a,

0 0.8 0.540 0 0 0
0.8 0.9 0.540 0 54.500 -335.000
0.9 1.0 0.750 0.850 -8.250 37.500
1.0 1.2 0.790 0.325 -0.375 0.625
1.2 1.4 0.845 0.250 -0.125 0
1.4 1.6 0.890 0.200 0.344 -1.719
1.6 1.8 0.930 0.131 -1.313 3.281




60
APPENDIX II. THRUST CHARACTERISTICS

In this Appendix, we discuss the curve fit for the
thrust system of the F-4 fighter aircraft [31]. Thrust
varies with both Mach number and altitude. These data [31]
are given in Table 8. Like the aerodynamic characteristics
curve fitting, we need a continuous function with continuous
first derivative to approximate the thrust data. A fourth-
order polynomial least-squares fit of Mach number and
altitude has been chosen.

In this approximation, the form for the thrust fitting

is

T(M, h) = [1, M, M*, M®, M*] [A] h?

h3

L h* |
where [A] is a 5x5 matrix of constant values to be
determined to best represent the thrust data. By performing
a least-squares analysis to these data, we obtain a set of
twenty-five linear equations and twenty-five unknowns.

These unknowns are the elements in the matrix [A]. The
results are presented in Table 9. Table 10 shows the thrust

values calculated from this fourth-order polynomial least

squares fit. It can be seen by comparing tables 7 and 5
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that these values approximate very closely the actual thrust

data of the F-4 fighter aircraft.
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APPENDIX III. OPTIMIZATION PROGRAM LISTING

A complete listing of the optimization program that
solves the most complex model, i.e., Model 1, is given in
this Appendix. A sample input to the optimization program,
and a sample output from Sequential Quadratic Programming

are also given.

Program listing for Model 1

//MODEL5 JOB 13546, 'SHAW ONG'

/*JOBPARM LINES=8,DEST=RMT11

//S1 EXEC FORTVLG,EVPOPT=2,REGION.GO=512K, TIME.GO=4
//FORT.SYSIN DD *

Chrkhhkhkhhhhhkhhhhhhkhhdhhhhhhhhhhkhdhhhhhhhhkhhhhdhhhrhhkkhhrhrrkrhkkx

C* *
C* THIS IS THE DRIVER PROGRAM. IT SETS UP SQP TO *
C* SOLVE THESIS MODEL 1. *
C* *

Chhkkhhkhhhhhkhhkhhhhkhdhhhhhhhhhhhhhhhhhhhhhhhhhrkhhrohhhhhhhkihsk

c
IMPLICIT DOUBLE PRECISION (A-H,0-2)

c
Cmmm=- DEFINE STORAGE REQUIREMENTS.
o]
PARAMETER (MAXX=3000)
PARAMETER (MAXF=2 )
PARAMETER (MAXG=100 )
PARAMETER (MAXH=100 )
PARAMETER (MAXIO=12)
DIMENSION N(6), I0(MAXIO)
DIMENSION X(MAXX),F(MAXF),H(MAXH),G(MAXG)
DIMENSION MD(20)
o]
Cmm==-- COMMON BLOCKS
o]
COMMON / STATE / Y1(102),Y2(102),Y3(102),
> Y4(102),Y5(102)
COMMON / CNTRL / U(102)
COMMON / INTPLN / INTPLN
o]
NAMELIST / TYPE / INTPLN
o]

EXTERNAL EVAL
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SET INPUT/OUTPUT PARAMETERS.

IPFLAG=1
IPRINT=2
ICARD=2
IIN=5

IOUT=6
IPUNCH=7
ISCALE=2
I0(1)=IPFLAG
10(2)=IPRINT
I0(6)=ICARD
I0(7)=IIN
I0(8)=IOUT
I0(9)=IPUNCH
I10(11)=ISCALE

DEFINE VECTOR STORAGE SIZE
N(4)=MAXX

N(5)=MAXH

N(6)=MAXG

DEFINE PROBLEM SIZE

NX=16

NG=10

NH=2

N(1)=NX

N(2)=NH

N(3)=NG

CALL ERRSET(208,256,-1,1,0,0)
INPUT NAMELIST IF ANY

READ(5, TYPE)
CALL RQP(EVAL,N,X,F,G,H,I0,MD,0)

PERFORM OPTIMIZATION
CALL RQP(EVAL,N,X,F,G,H,I0,MD,-1)
CONTROL AND STATE VARIABLES OUTPUT
DO 3 I=1,NX

WRITE(10,*) X(I)

CONTINUE
DO 4 1=1,101
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WRITE(11,2000) Y1(I)
WRITE(12,2000) Y2(I)
WRITE(15,2000) Y3(I)
WRITE(16,2000) Y4(I)
WRITE(17,2000) Y5(I)
WRITE(13,2000) U(I)

4 CONT INUE

c

2000 FORMAT(F15.6)
STOP
END

SUBROUTINE EVAL(N,X,F,G,H, IO, IER)
cC
Chhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhrhdhhhhhkhhkkk*

C#* *
C* THIS IS THE USER PROVIDED SUBROUTINE. IT IS *
C* CALLED BY THE SQP OPTIMIZATION ROUTINE TO *
Cc* EVALUATE THE OBJECTIVE FUNCTION AND THE *
C* CONSTRAINTS. *
C* *
C* SUBROUTINES REQUIRED: %
C* RK4 -- RUNGE KUTTA 4TH ORDER *
C* FGH -- EVALUATING CONSTRAINTS AND *
C* PERFORMANCE INDEX *
C* SPLINE -- CUBIC SPLINE INTERPOLATION *
C* LINEAR =- LINEAR INTERPOLATION *
C* *

C********************************************************

C
IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
DIMENSION N(*),X(*),E(*),G(*),H(*),I1I0(*)
DIMENSION XIN(102),YIN(102),XOUT(102),YOUT(102)

Commm= COMMON BLOCKS

COMMON ,/ STATE ,/ Y1(102),Y2(102),Y3(102),
> Y4(102),Y5(102)

COMMON ,/ CNTRL / U(102)

COMMON / INTPLN / INTPLN

IPRINT=I0(2)

IOUT=10(8)

NX=N(1)

NG=N(3)

NH=N(2)

IER=0

1Go=1

1F (I0(12) .EQ. 0) 1GO=7

Cemm—- OUTPUT CONTROL VECTOR U
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IF (IPRINT .GE. 5) THEN
WRITE(IOUT,1000) (I,X(I),I=1,NX)
ELSE
IF (IGO .EQ. 7) THEN
IF (IPRINT .GE. 3 .AND. IPRINT .LE. &) THEN
WRITE(IOUT,1000) (I,X(I),I=1,NX)
END IF
END IF
END IF

Cmmmm- SETTING UP DATA FOR CUBIC SPLINE/LINEAR INTERPOLATION

DT=0.01D0*X(16)
JQUT=101
NSTEP=JOUT
XIN(1)=0.DO
XIN(2)=.02D0*X(16)
XIN(3)=.04D0*X(16)
XIN(4)=.06D0*X(186)
XIN(5)=.08D0*X(16)
XIN(6)=.10D0*X(16)
XIN(7)=.20D0*X(16)
XIN(8)=.30D0*X(16)
XIN(9)=.40D0*X(16)
XIN(10)=.50D0*X(16)
XIN(11)=.60D0*X(16)
XIN(12)=.70D0*X(16)
XIN(13)=.80DO*X(16)
XIN(14)=.90D0*X(16)
XIN(15)=X(16)
XOUT(1)=0.DO
XOUT (JOUT)=X(16)
DO 15 I=2,JOUT-1
XOUT(I)=XOUT(I-1)+DT
15 CONTINUE

c
U(102)=X(16)

o

Commmm INTERPOLATION FLAG: 1 - CUBIC

Commm-m 2 - LINEAR

c

IF (INTPLN .EQ. 1) GO TO 17
IF (INTPLN .EQ. 2) GO TO 18

17 CALL SPLINE(15,XIN,X,JOUT,XOUT,U, IERR)
GO TO 19

18 CALL LINEAR(15,XIN,X,JOUT,XOUT,U, IERR)
GO TO 19

19 CONTINUE
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Comcum INITIAL STATE VALUES -
c
NN=5
Y1(1)=400.DO
¥2(1)=0.DO
¥3(1)=0.DO0
Y4(1)=0.D0
¥5(1)=1305.D0
c
o Ta—— EVALUATE STATE VARIABLES
o
CALL RK4(NN,NSTEP,DT)
c
Conamn EVALUATE CONSTRAINTS AND PERFORMANCE INDEX
c
CALL FGH(F,G,H,DT)
c
[ I—— OUTPUT CONSTRAINTS AND OBJECTIVE FUNCTION
c
IF (IPRINT .GE. 5) THEN
WRITE(IOUT,1001) F(1)
IF (NH .NE. 0) WRITE(IOUT,1002) (H(I),I=1,NH)
IF (NG .NE. O) WRITE(IOUT,1003) (G(I),I=1,NG)
ELSE
IF (IGO0 .EQ. 7) THEN
IF (IPRINT .GE. 3 .AND. IPRINT .LE. 4) THEN
WRITE(IOUT,1001) F(1)
IF (NH .NE. O) WRITE(IOUT,1002) (H(I),I=1,NH)
IF (NG .NE. O) WRITE(IOUT,1003) (G(I),I=1,NG)
END IF
END IF
END IF
c
1000 FORMAT('O',6X,'U(CONT. VAR) =',5(1X,I3,1X,E15.8)/,1X,
> 40(6(1X,13,1X,E15.8)/,1X))

1001 FORMAT(1X,'OBJ. FUNCTION =',62X,E16.8)
1002 FORMAT(1X, 'EQUALITIES =',5X,6(E15.8,2X)/,

> 15(17X,6(E15.8,2X)/))
1003 FORMAT(1X,'INEQUALITIES =', 3X,6(E15.8,2X)/,

> 15(17X,6(E15.8,2X)/))

RETURN

END

SUBRQUTINE RK4(NN,NSTE€,DT)
C
Gk ek ek e e e e e e ek e e o ok ok ok Aok R ek ok ok e ok ok o ok ok ok o ok ok ok ok ok ok ok e
C* *
C* THIS SUBRCOUTINE USES RUNGE KUTTA 4TH ORDER FOR *
C* NUMERICAL INTEGRATION *
C* *
C* FUNCTION REQUIRED: *
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C* RK4RHS -- EVALUATING RHS OF THE STATE *
C* EQUATIONS *
C* *

Chrhhhhhhhhkhkhdhrhhhdhdhbhhhhhkhhhhhhkhkhhkhkhkhhhhhhkhhhhhhhkhik

c
IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION Y(10),YS(10),YSS(10),YSSS(10),T1(10),

> T2(10),T3(10),T4(10)
C
Comee- COMMON BLOCKS
C
COMMON / STATE / Y1(102),Y2(102),Y3(102),
> Y4(102),Y5(102)
COMMON / CNTRL / U(102)
C
Come=- INITIAL STATE VALUES
C
Y(1)=400.DO
Y(2)=0.DO
Y(3)=0.DO
Y(4)=0.DO
Y(5)=1305.D0
o)
Co==== THE MAIN LOOP
o]
DO 20 I=2,NSTEP
o)
C-==== TEMPORARY ARRAYS NEEDED FOR THE FUNCTIONS TO SAVE
Comee- THEM FOR THE FINAL CORRECTOR STEP
o]
Commma FIRST (HALF STEP) PREDICTOR
C
DO 22 J=1,NN
T1(J)=RK4RHS(J,Y,I)
¥YS(J)=Y(J)+.5DO*DT*T1(J)
22 CONTINUE
o)
Ce===- SECOND STEP (HALF STEP CORRECTOR)
C
DO 24 J=1,NN
T2 (J)=RK4RHS(J,¥S, I)
YSS(J)=Y(J)+.5DO*DT*T2(J)
24 CONTINUE
o)
Couum- THIRD STEP (FULL STEP MID-POINT PREDICTOR)
C

DO 26 J=1,NN
T3 (J)=RK4RHS(J, ¥YSS, I)
YSSS(J)=Y(J)+DT*T3(J)

26 CONTINUE
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C-=me- FINAL STEP (SIMPSON'S RULE CORRECTOR)

DO 28 J=1,NN
T4(J)=RK4RHS(J, YSSS, I)
Y(J)=Y(J)+DT/6.DO*(T1(J)+2.D0*(T2(J)+T3(J))+T4(J))

28 CONTINUE

(o}
C-==-- STORING STATE VARIABLES AT EACH INTEGRATING STEP
C
Y1(I)=Y(1)
Y2(I)=Y(2)
Y3(I)=Y(3)
Y4(I)=Y(4)
Y5(I)=Y(5)
20 CONTINUE
RETURN
END
SUBROUTINE FGH(F,G,H,DT)
C
Chrkkhkhhkhhhhhhhhhrhhhhhhhhhhhkhdhhhhhohhhhkhhkhhkhhrrhdr ks
C* *
C* THIS SUBROUTINE EVALUATES THE CONSTRAINTS AND *
C* THE PERFORMANCE INDEX. *
C* *

Chhkkkhhhkkhdhhhhhkhhkhkhhhhhkhhhdhdhhhhhhhdhhhhkhhhhkhhhrhhhhhhhhhrsk

o]
IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION F(2),G(*),H(*)

c
[T COMMON BLOCKS
c
COMMON / STATE / Y1(102),Y2(102),Y3(102),
> Y4(102),Y5(102)
COMMON / CNTRL / U(102)
c
Coo—e- EVALUATING PERF. INDEX
c
F(1)=U(102)
c
Comoe- EVALUATING CONSTRAINTS
c

H(1)=Y3(101)-65600.D0
H(2)=Y1(101)-968.1D0
DO 30 I=1,10
G(I)=Y3(I+1)
30  CONTINUE

RETURN
END
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REAL FUNCTION RK4RHS(J,Y,II)

C

Chhkhkhkhkhkhhhhkhhkhhhhhhhdhhhhhhhhhdohhhhhhhhhkdhhhhkhhhrhhhhrdk
C* *
C* THIS SUBROUTINE EVALUATES THE RIGHT HAND SIDE *
C* OF THE STATE EQUATIONS *
C* *

C********************************************************

c
IMPLICIT DOUBLE PRECISION (A-H,O0-2)
DIMENSION Y(10)

REAL LIET
COMMON / CNTRL / U(102)

Commm- CONSTANTS

DNSTY=.0023764DO
S=530.D0
AR=3.D0
G=32.174DO

C-===-- ELEMENTS OF MATRIX [A]

011=30.21D3
0l12=-.6682D-1
013=-6.877D=5
014=19.51D-10
015=-15.12D-15

Q21=-33.8D3
022=3.347D-1
023=18.13D-5
024=-58.65D-10
025=47.57D-15

©31=100.8D3
032=-77.56D-1
033=5.441D-5
034=28.64D-10
035=-33.55D-15

041=-78.99D3
042=101.4D-1
043=-30.28D-5
044=32.36D-10
045=-10.89D-15

©51=18.74D3
052=-31.6D-1
Q53=12.04D-5
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054=-17.85D-10
055=9.417D-15

o]
Comm== EVALUATING SPEED OF SOUND
Cc
IF (Y(3) .LT. 36000.D0O) THEN
SPSND=DSQRT(1.244D6-8.57D0*Y(3))
ELSE
SPSND=968.1D0
END IF
Cc
Ceemm=- THRUST CALCULATIONS
Cc
A=Y(1)/SPSND
AZ2=A%**2
A3=A**3
Ad=A**4
HT=Y(3)
H2=HT**2
H3=HT**3
H4=HT**4
THRST=Q11+A*Q21+A2*Q31+A3*Q41+A4*Q51+HT* (Q12+A*Q22+
> A2*Q32+A3*Q42+A4*Q52)+H2* (Q13+A*Q23+A2*Q33+
> A3*Q43+A4*Q53 )+H3* (Ql4+A*Q24+A2*%Q34+A3*Q44+
> A4*Q54)+H4* (Q15+A*Q25+A2*Q35+
> A3*Q45+A4*Q55)
o]
C-==== FLAG TO DECIDE WHAT AERODYNAMIC CHARACTERISTIC
Comeme VALUES TO USE
c
IF (A .LE. 0.8D0) GO TO 4100 .
IF (A .GT. 0.8DO .AND. A .LE. 0.9D0) GO TO 4110
IF (A .GT. 0.SDO .AND. A .LE. 1.0D0) GO TO 4120
IF (A .GT. 1.0DO .AND. A .LE. 1.2D0) GO TO 4130
IF (A .GT. 1.2DO .AND. A .LE. 1.4D0) GO TO 4140
IF (A .GT. 1.4DO .AND. A .LE. 1.6D0) GO TO 4150
IF (A .GT. 1.6D0) GO TO 4160
]

4100 CLA=3.44D0
CD0O=0.013D0
ETA=0.54D0O
GO TO 4190

4110 AA=A-0.8DO
CLA=3.44D0-25.5DO*AA**2+395 . DO*AA**3
CDO=0.013D0+0.06875D0*AA**2+0.3125D0*AA**3
ETA=0.54D0+54.5DO*AA**2-335 . DO*AA**3
GO TO 4190

4120 AA=A-0.9DO
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CLA=3.58D0+6.75DO*AA+123 .DO*AA**2-1045.DO*AA**3
CD0=0.014D0+0.023125DO*AA+3 .0875D0*AA**2-~16.1875DO*AA**3
ETA=0.75D0+0.85D0*AA~-8.25DO*AA**2+37.5D0*AA**3

GO TO 4190

4130 AA=A-1.0DO
CLA=4.44D0-54.6875D0*AA*%*2+148.4375DO*AA**3
CD0O=0.031D0+0.155D0*AA-0.8D0*AA**2+1.375D0O*AA**3
ETA=0.79D0+0.325DO0*AA-0.375DO*AA**2+0.625D0*AA**3
GO TO 4190 '

4140 AA=A-1.2DO
CLA=3.44D0-4.0625D0*AA+14.625D0*AA**2-25.3125D0*AA**3
CDO=0.041D0-0.0714285DO*AA**2+0.10714125DO*AA**3
ETA=0.845D0+0.25DO*AA~0.125D0*AA**2
GO TO 4190

4150 AA=A-1.4DO
CLA=3.01D0~-1.25D0*AA+5.416665D0*AA**2-14, 583325D0*AA**3
CDO=0.039D0-0.0157143DO0*AA~-0.014732D0*AA**2+0.0915175D0*AA**3
ETA=0.89D0+0.2D0*AA+0.34375D0*AA**2-1,71875D0*AA**3
GO TO 4190

4160 AA=A-1.6DO
CLA=2.86D0-0.8333D0*AA-22.1667D0*AA**2+79,.16675DO*AA**3
CDO=0.036D0~-0.010625D0*AA+0.03125D0*AA**2~0.015625D0*AA**3
ETA=0.93D0+0.13125DO*AA-1.3125DO*AA**2+3,28125DO*AA**3

GO TO 4190
o
4190 CONTINUE
c
Commmm LIFT AND DRAG CALCULATIONS
c
UMID=(U(II-1)+U(II))/2.DO
DRAG=. 5D0O* . 00254DO*DEXP (- . 00003663D0*Y (3) ) *Y (1) **2%
> S* (CDO+ETA*CLA*UMID**2 )
LIFT=.5DO0%.00254DO*DEXP (-.00003663D0*Y (3))*Y(1)**2*
> S*CLA*UMID
c
Co-cum FLAG TO DIRECT THE EVALUATION OF
Co-m== THE APPROPRIATE RHS STATE EQUATION
c
IF ( J .EQ. 1 ) GO TO 3000
IF ( J .EQ. 2 ) GO TO 3010
IF ( J .EQ. 3 ) GO TO 3020
IF ( J .EQ. 4 ) GO TO 3030
IF ( J .EQ. 5 ) GO TO 3040
o
3000 RK4RHS= ( THRST*DCOS (UMID) -DRAG-Y (5 ) *G*DSIN(Y(2)))/

> Y(5)



75

GO TO 3050
c
3010 RK4RHS=(THRST*DSIN(UMID)+LIET-Y(5)*G*DCOS(Y(2)))/
> (Y(5)*Y(1))
GO TO 3050
c
3020 RK4RHS=Y(1)*DSIN(Y(2))
GO TO 3050
c
3030 RK4RHS=Y (1) *DCOS(Y(2))
GO TO 3050
c
3040 RK4RHS=-THRST/( 1600.D0*G)
GO TO 3050
C ‘
3050 CONTINUE
RETURN
END
SUBROUTINE SPLINE(IIN,XIN,YIN,JOUT,XOUT, YOUT, IERR)
c
c********************************************************
c* *
C* THIS SUBROUTINE COMPUTES A CUBIC SPLINE FOR THE *

C* *
C* GIVEN DATA AND RETURNS INTERPOLATED VALUES OF THE *
C* *
C* FUNCTION AT SPECIFIED X LOCATIONS. *
C* *
C** *
C** NOTE: INPUT DATA **MUST** BE IN ORDER OF *
C** INCREASING X !!! *
C** *
C* %
C* VARIABLES: *
C* *
C* IIN = NUMBER OF INPUT DATA POINTS -~ IIN <= 25 *
C* XIN(I) = LOCATION OF INPUT DATA POINTS *
C* YIN(I) = VALUE OF THE FUNCTION TO BE INTERPOLATED *
C* AT X=XIN(I) *
C* JOUT = NUMBER OF VALUES TO BE INTERPOLATED TO *
C* XOUT(J) = X LOCATIONS USED FOR INTERPOLATION *
C* YOUT(J) = INTERPOLATED VALUE OF Y AT XOUT(J) *
C* *
C** IERR = ERROR FLAG (PLEASE CHECK THIS VARIABLE) *
C* *
C* IERR=0 - INTERPOLATION OK *
C* 'IERR=1 - PROBLEMS WERE ENCOUNTERED DURING *
C* INTERPOLATION *
C* *
CrkhkhhkhhhhhhhhhhhrhhRr Ak khdhr kR A*khhhhhkhhkkkkrxhkhhhkk*x*
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c
IMPLICIT DOUBLE PRECISION (A-H,O-2)
DIMENSION XIN(*),YIN(*),XOUT(*),YOUT(*)
DIMENSION YPP(25),C1(25),C2(25),DX(25),DY(25)
DIMENSION A(25),B(25),C(25),D(25)

c

Cm---- ZERO ERROR FLAG

c
IERR=0

c

Ce=mm- SET VALUES OF SECOND DERIVATIVES AT ENDPOINTS

oIy ZERO VALUES INDICATE NATURAL CUBIC SPLINE

c
YPP(1)=0.DO
YPP(IIN)=0.DO

c

Commmm SET UP TRIDIAGONAL MATRIX

c

DO 40 I=1,IIN-1
DX(I)=XIN(I+1)-XIN(I)
DY(I)=YIN(I+1)-YIN(I)
40 CONTINUE
IL=2
IU=IIN-1
DO 50 I=IL,IU
A(I1)=DX(I)
D(I)=2.DO*(DX(I)+DX(I-1))
B(I)=DX(I-1)
C(I)=6.DO*(DY(I)/DX(I)-DY(I-1)/DX(I~-1))
50 CONTINUE
C(2)=C(2)-DX(1)*YPP(1)
C(IU)=C(1U)-DX(IU)*YPP(IU+1)

B(IL)=0.DO
A(IU)=0.DO
c
Cre=e INVERT TRIDIAGONAL MATRIX TO OBTAIN YPP
C .

CALL SY(IL,IU,B,D,A,C)
DO 60 I=2,IIN-1
YPP(I)=C(I)

60 CONTINUE
DO 70 I=1,IIN-1
C1(I)=YIN(I+1)/DX(I)-YPP(I+1)*DX(I)/6.DO
C2(1)=YIN(I)/DX(I1)-YPP(I)*DX(I)/6.D0

70 CONTINUE

Cm===- DETERMINE SECTION OF CUBIC SPLINE FOR INTERPOLATION

DO 120 J=1,J0UT
IF (XOUT(J) .LT. XIN(1l)) THEN
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c

Commmm OUTPUT LOCATION OUTSIDE INPUT DATA RANGE ( TOO
C-=u-- SMALL )

C

WRITE(S,80) J
80 FORMAT(//' *##*%% XOUT(',I2.') < XIN(1) -CHECK
>YOUR DATA *#*')

IERR=1
RETURN
END IF
IF (XOUT(J) .GT. XIN(IIN)) THEN
c
Cmmmm- OUTPUT LOCATION OUTSIDE INPUT DATA RANGE ( TOO
Cam=-- LARGE )
C

WRITE(5,90) J
g0 FORMAT(//' **#%*% XOUT(',I2,') > XIN(IIN) - CHECK
>YOUR DATA #x%*')
IERR=1
RETURN
END IF
DO 100 I=2,IIN
IF (XOUT(J) .LE. XIN(I)) GO TO 110
100 CONTINUE
110 CONTINUE

Is=I-1
cC
Conmm= INTERPOLATED VALUE OF YOUT(J)
c

YOUT(J)=YPP(IS)/(6.DO*DX(IS))*(XIN(IS+1)=-XOUT(J))**3

> +YPP(IS+1)/(6.DO*DX(IS))* (XOUT(J)-XIN(IS))**3

> +C1(IS)*(XOUT(J)-XIN(IS))+C2(IS)*(XIN(IS+1)-XOUT(J))
120 CONTINUE

RETURN

END
c

SUBROUTINE SY(IL,IU,BB,DD,AA,CC)
Cc

Chhkkkhkhhhhkkhhkhhhhkhhhhhkhhhhhhhdhdhdhhdhhhrhdhhdhhhdrhhhhhdrsrx

C* *
C* SUBROUTINE SY SOLVES TRIDIAGONAL *
C* SYSTEM BY ELIMINATION *
C* IL = SUBSCRIPT OF FIRST EQUATION *
C* IU = SUBSCRIPT OF LAST EQUATION *
C* BB = COEFFICIENT BEHIND DIAGONAL *
C* DD = COEFFICIENT ON DIAGONAL *
C* AA = COEFFICIENT AHEAD OF DIAGONAL *
C* CC = ELEMENT OF CONSTANT VECTOR *
C* *

C********************************************************
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IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION AA(1),BB(1l),CC(1),DD(1)

--ESTABLISH UPPER TRIANGULAR MATRIX

LP=IL+1

DO 130 I=LP,IU
R=BB(I)/DD(I-1)
DD(I)=DD(I)-R*AA(I-1)
CC(I)=CC(I)-R*CC(I-1)
CONT INUE

-=-BACK SUBSTITUTION

CC(IU)=CC(IU)/DD(IV)

DO 140 I=LP,IU

J=IU-I+IL
CC(J)=(CC(J)-AA(J)*CC(J+1))/DD(J)
CONTINUE

--SOLUTION STORED IN CC

RETURN
END

"SUBROUTINE LINEAR(IIN,XIN,YIN,JOUT, XOUT, YOUT, IERR)

C********************************************************

C*
C*
C*
C*
C*
Cc*
C*
C*x*
C**
C**
C**
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*

THIS SUBROUTINE COMPUTES A LINEAR FIT FOR THE
GIVEN DATA AND RETURNS INTERPOLATED'VALUES OF THE

FUNCTION AT SPECIFIED X LOCATIONS.

NOTE: INPUT DATA **MUST** BE IN ORDER OF
INCREASING X !'!!

VARIABLES:

IIN = NUMBER OF INPUT DATA POINTS - IIN <= 25

XIN(I) = LOCATION OF INPUT DATA POINTS

YIN(I) = VALUE OF THE FUNCTION TO BE INTERPOLATED
AT X=XIN(I)

JOUT = NUMBER OF VALUES TO BE INTERPOLATED TO

XOUT(J) = X LOCATIONS USED FOR INTERPOLATION

YOUT(J) = INTERPOLATED VALUE OF Y AT XOUT(J)

ok b * o ok A ¥ % F Ok X F F F F A X F * F
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C** IERR = ERROR FLAG (PLEASE CHECK THIS VARIABLE) *
C* *
C* IERR=0 - INTERPOLATION OK *
C* IERR=1 - PROBLEMS WERE ENCOUNTERED DURING *
C* INTERPOLATION *
C* *
Chhhhhhhhhhhhhhhhhhhkhhhhdhhhhdhhhhhdhdhdhhhhhhhhhhdkdhhhkrrhkd

C
IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION XIN(*),YIN(*),XOUT(*),YOUT(*)

c
[T ZERO ERROR FLAG
c
IERR=0
c
[ DETERMINE SECTION OF LINEAR FIT FOR INTERPOLATION
c
DO 120 J=1,JOUT
IF (XOUT(J) .LT. XIN(1)) THEN
c
Cmmmm- OUTPUT LOCATION OUTSIDE INPUT DATA RANGE ( TOO
[CT—— SMALL )
c

WRITE(5,80) J
80 FORMAT(//' ##%%%%* XOUT(',I2,') < XIN(1) -CHECK
>YOUR DATA **%*')

IERR=1
RETURN
END IF
IF (XOUT(J) .GT. XIN(IIN)) THEN
c
Cevcen- OUTPUT LOCATION OUTSIDE INPUT DATA RANGE ( TOO
[ — LARGE )
c

WRITE(5,90) J
90 FORMAT(//' *#%*%%% XOUT(',I2,') > XIN(IIN) - CHECK
>YOUR DATA ***')
IERR=1
RETURN
END IF
DO 100 1=2,IIN
IF (XOUT(J) .LE. XIN(I)) GO TO 110
100 CONTINUE
110 CONTINUE

Is=I-1
o
Cemmm-= INTERPOLATED VALUE OF YOUT(J)
c

YOUT(J)=(YIN(I)=YIN(IS))/(XIN(I)=XIN(IS))*(XOUT(J)-XIN(IS))+
> YIN(IS)



120

80

CONTINUE
RETURN
END

//LKED.SYSLIN DD

/7
/7
/ /GO

DD DSN=N.I3137.0BJECT.LIB(SQP),DISP=SHR
DD DSN=N.I3137.0BJECT.LIB(SECOND),DISP=SHR
.FTO5F001 DD DSN=S.I3546.MODEL55. INPUT,DISP=SHR

.FTO6F001 DD SYSOUT=A

.FTO7F001 DD DSN=S.I3546.MODELSS.REST,
UNIT=DISK,

DISP=(NEW, CATLG),
DCB=(RECFM=FB, LRECL=80, BLKSIZE=6160),
SPACE=(TRK, (10,10),RLSE)

.FT10F001 DD DSN=S.I3546.CONTROL.DAT,
UNIT=DISK,

DISP=(NEW,CATLG),
DCB=(RECFM=FB, LRECL=80, BLKSIZE=6160),
SPACE=(TRK, (10,10),RLSE)

.FT11FO0O1 DD DSN=S.I3546.YY1.DAT,

UNIT=DISK,

DISP=(NEW, CATLG),
DCB=(RECFM=FB, LRECL=80, BLKSIZE=6160),
SPACE=(TRK, (10,10),RLSE)

.FT12F001 DD DSN=S.I3546.YY2.DAT,
UNIT=DISK,

DISP=(NEW, CATLG),
DCB=(RECFM=FB, LRECL=80, BLKSIZE=6160),
SPACE=(TRK, (10,10),RLSE)

.FT15F001 DD DSN=S.I3546.YY3.DAT,
UNIT=DISK,

DISP=(NEW,CATLG), _
DCB=(RECFM=FB, LRECL=80, BLKSIZE=6160),
SPACE=(TRK, (10,10),RLSE)

.FT16F001 DD DSN=S.I3546.YY4.DAT,
UNIT=DISK,

DISP=(NEW, CATLG),
DCB=(RECFM=FB, LRECL=80, BLKSIZE=6160),
SPACE=(TRK, (10,10),RLSE)

.ET17F001 DD DSN=S.I3546.YY5.DAT,
UNIT=DISK,

DISP=(NEW,CATLG),
DCB=(RECFM=FB, LRECL=80, BLKSIZE=6160),
SPACE=(TRK, (10,10),RLSE)

.FT13F001 DD DSN=S.I13546.UU.DAT,
UNIT=DISK,

DISP=(NEW,CATLG),
DCB=(RECFM=FB, LRECL=80, BLKSIZE=6160),
SPACE=(TRK, (10,10),RLSE)



81

Inputs to Model 1

Chrhhkhkhdhdhhhkhhhkhhhhhhhhhkhhhhhhhhhhrkhkhhhhdhhhhhrhhhkhrhrk

Cc* *
C* INPUTS TO MODEL 1 BEFORE CALLING *
C* SQP *
C* %

Chhkhhhhhhhkhhhhdhkhhhhhhhhkhhhhhhhhkkhhhhhhhhhkhhdhkkhx

c

seventh
INTPLN = 2,

&END

&SQP
ISCALE = 2,
MAXNPI = 200,
MAXFUN = 200,
ILOMAX = 200,
IUPMAX = 200,
IPRINT = 2,
ICARD = 2,
IRSTRT = 2,
MGRAD =1,
FDPCT = 0.DO,
FDP(1) = 14*1.D-6,1.D-5,1.D-2,
TOLHNP = 5.D=3,
TOLGNP = 1.D-3,
TOLENP = 1.D-8,
TOLSNP = 1.D-5,
ISFMOD = 1,
XSCALE(1)=16*1.DO0,
FSCALE = 1.DO,
GSCALE = 1.DO,
HSCALE = 1.DO,

BOXL(1l) = 15%-.02D0,0.DO,
BOXU(1) = 15%.17D0, 1000.DO,
DELTAX(1)=15%.00001D0, 1.D0,

XR(1) = .105443114500D0,
XR(2) = .211899586749D-1,
XR(3) = .447023441329D-1,
XR(4) = .382973212640D-1,
XR(5) = .292484688648D-1,
XR(6) = .128786412930D-1,
XR(7) = .149126419715D-1,
XR(8) = .308402949874D-1,
XR(9) = .207402984632D-1,
XR(10)= .213691408635D-1,
XR(11l)= .202589380879D-1,
XR(12)= .182242251625D-1,
XR(13)= .265208946206D-1,

XR(14)= .636955316069D-1,
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XR(15)= .768118631641D-1,
XR(16)= 480.DO,
&END



Sample output
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from Sequential Quadratic Programming

UNSCALED X~VECTOl=
0e%97045492+03

SQP STOoRA

0.40000080£03
0+9887C609€°03
0e17093397C04

SEQUENTIAL QUADRATIC PROGRAMMING OPTIMIZATION DAIVEN
VERSION Aol 2718/83

L T Y Y R YT R T Y TR TF T Py P

0.6%47711

Ga1334311SEe0%
0e17201233€<0¢

Q€03

Q.84860675E+0)
013935517636
0.37508712€+03

Bel10034260E000 [}
0e15013656E04 Q

Xy 4¢ 5 ~ VECTOR STORAGE AVAILABLE 3000 1300 100
Xo He G = VECTOR STOIAGE AEIVIRED 1898 L) 33
ENTERZID VMCON == S0P DRIVER
FOPCTz 0.000E+00 IPRINT= 2
NPROBYVZ 1S NEQLTYSZ 2 Ni=
ILINAXZ 200 JuPYaxxz 200 PARA, PAREBx 0.20000£403 0+20080C+00
MAXNP Tz 200 MAXCJIN2 2¢Q MGAAOE 1
TOLGNSS 0.13000E=02 TOLMNPE® 0+410000E=-02 TOLFNPE 0.13300£+07 TOLSNPE 0+10000E-02
BLGYAL=® 0+10000E*07 SmALL=® 0.10000E=07
TLPZAIx G+50000£=10 VZIERO = Ge10000E~-t9 TLMXDE= 0e10300€e03
I1SFMODx 1 [ZRJIwDs 1
NALDOB= » NI3ART2 1 1CHXQP® [] NODECPE 1 mAXB10= 5 GLAMTIz 0,1000%¢01
UNSCLD UPR 30XT 0.17300000E+0s 017S00000E+00 0417330000C+0s 0.17500000£+04 0+17%500030Ce0% Ge175000C0Ev04
0.17S00000E°04 0.17300300€e04 G+17900000E0008 0417300003S+04 De17500030E+0 32173530000€EeCH
0+17%00030Ee04 0.175Q6000E«Qs 0e17900000E«0
UNSCLD L¥A BOX® 0,000000G0£+6G9 0+00000000€+00 8+00000000E°00 9.408003003¢L000 2.30404930C+08 0+80000000E+00
9.0000008C0E*00 0e000000Q0E+00 0000000008900 0.00008002E+00 0.30000230€-00 2403000080€~G0
Q.00000000E°04Q Q+00000000E-00 043000000CE-0Q0
UNSCA_ED PEAT.x 0.10000000E~04 8+1G000000E=0¢ 0+10090030E~0» 04100000032-0% 9.20000000C=0» 0+10000000E~04
0.10000000E=04 8.10000000E-04 0.10000000E~0e 0+310000000E-04 8+10000000E~Cs 0+1J000000E-0A
2.183000Q30E=-q0 Q.10000000E=8% 0+109000QQE~Qs
SCALE FACTORS: 8+10000090E+01 9+190000C0E~02 0410000000001 0.18000000€701 0+13080000€001 8.15000000E°01
9.13300000£001 0.10000000E01 0.10000900E0a1 0410000000€°31 0+10000030E€+01 $+13000000E+01
9.10000000E*01L 0.10000000E°02 8.10000000€%01
MAX X-CHANGES: 0.13000000E=01 6410000000E~0L 0,10000¢00€=~01 0.10000003€-01 9+1080000800€C-01 %.130009000E~01
9213060003C=01 g.10008000€E~01 T.100000800C 012 8.10000000E-01 0410000000E-01 9.13080000€~-C1
841200000JE~01 0+10080000E~01 0410003000 -01
sees CPU TIME FOR SARTIAL ¥ITH RESPECT TO 1 TH CONTROL VARIABLE = 0.012 SECONDS eee
ese CIY TINE FOR PARTIAL WITH RCSPECT TO 2 TH CONTROL VARIASLE = 00020 SECONDS eoe
see CAU TIME FOU SARTIAL WITH RESPECT TO 3 TH CONTROL VAATAGLE = 0e020 SECINDS see
ess CPYU TIME FOR PAATIAL VITH RESPECT TO 4 TH CONTROL YARIAOLE = 0820 SCCONDS veae
see CPU TINME FOR 3ARTIAL wITH RESPECT TO S TM CONTROL YARIABLE = 0+008 SECONDS ooe
» €3y TIME FOR ARTIAL NITH RCSPECT TO & TH CONTROL VARIABLE = Qo083 SECONDS eve
CPY TIME FOR SARTIAL WETH RESPECY TO 7 T CONTROL VARIABLE = 0020 SECONDS see
CPU TIME FOR 2ARTIAL WITH RESPECT TO 8 TH CONTADL VAARIABLE = 0031 SECONDS eece
€Ay TIME FOR 3ARTIAL WITH RESPECT TO 9 TH COMTROL YVARIAGLE = 94309 SECONDS eoe
CPU TIME FOR PARTIAL WITH RESPECT TO 10 Tw CONTROL YAATASLE 2 9.023 SELCONDS see
€3y TIME FON 3ARTIAL WITH RESPECT TO 11 TH CONTROL VARIAGLE = 8208 SECONDS ooe
*ve CPU TIME FORX 2AATIAL WITH RESPECT TO 12 TH CONTROL VARIABLE =x 0+012 SECONDS ees
CAY TIME FOR PARTIAL WITH ACSPECT TO 13 T CONTROL VARIABLL = 2.020 SECONMDS
env COU TINE FOR AT IAL WITH RESPCCT TQ 164 TH CONTROL YARTASLE = 0.020 SECONDS
C3U TIME FOR 3ARTIAL WITH AESPECY TO 13 TH CONTROL VARIABLE = 0.028 SLCONDS vee
NATRIX OF CONSTRAINT NORNALS i
0e¢15062665E+03 042968135240E003 8+26391237€E¢03 «0e20384801C003 13532764C000 =0e32696178C¢00 ~G«52208970C
=0e37929773C004 *0+33191543E00¢ ~Ce30030760ECOe ~0e256492218E04 ~0e22392525E404 ~0.13388097C+0% ~3+2%86328€
0e12300093E+03
0+00000000E¢00 0.00000000€00 0+00000000€ 8.000000305000 083000000E00 0+,000000035+02 0e002003C0E
0.00000003E00 8460000000E03¢ 8.00000000 f+0000000CC+00 0+00000000E000 0.,00000000Z0090 3.00900000E
3+100000300€901
«0a40000000Ee0S 0.000Q0QQGESOR 000Q300000E00 0.00009800%L+00 0,000000008¢00 C.00000000E+00 D.0D000000E
G«0B000000E+30 0.00000000E000 Pe389002000E000 0.03000000i000 0.080000005¢00 0+00000C000E0D 0.00000000E
0s008003Q0E000
ceman -
~0+22708514E03 =0+26484478C03 0+00800000£000 0.000)0000E«00 0.90000000E000 0.00000000C~00 0.080002303C
G+00300000C«08C Ce00002000EvOS 2+00060000€Ce00 B.00000000L+00 0.00000000E+00 C.00Q00000Z°00 Q.00000000€
«03000000E 00D
0e610320846E002 *DehIBT2500L03 0.00000000E+060 2.00000000C+00 0.330000005+00 0400000000500 0.00000000E
0+00000800£00 04000020000E00 £+00004000E900 0e000J0000E0S 0s83300 00EeQ9 9.400000Q0£+08 2+90090003E
9e00000003E+0D
. - cenea
Oe357635350E002 *0+302738S7E+03 ~0e38172104E¢03 G«00000000Ee00 0+00000000£400 J.00000000E¢00 0.80000000E
C+00000000£200 0+00003000E+00 0200000000C~00 $e000000005e08 2.00000000E000 0+00000000E00¢C Qe00000000E
0400000900L90Q0
DeSeapa?61Ee02 0e10113366E003 ~Ce83518340L003 0+00000000E+00 G.00000000E+00 0.00000000E¢00 0.00080090€
203G33030EQ0 0+30000000E<00 0+000080000Cec0 0e00000000£¢00 0.00000000£+90 D.000000095¢00 0+00000300E
Q.000000008E%0)
DeS51767202E002 0960894515002 *0.40002286E083 “DebT154A20C403 0.03000000E000 0.00000000E°00 8,000000202C
0.00030000E°00 9.00000000CE08 CeQ0000000QE*00 0e00000000E+00 0400000000E00 0+00000800E°0D 0400000000E
0+00000000E=90
De®9570509E 002 V92011987L¢02 0+81440982E+02 =0+1D1086875+0s .00 [LLi<2 1] De3CO000D00ZeJ0 Q.00080000E
0.00000000E000 9.00000008L+00 0.00000000E00 0.00000000Es0D 8.03000000E+00 0.00008000E00 0.00008000E
0+00000080E200
e coan T
Qes7773380E002 288676110£002 0e78492214£02 “0+54179306E903 =8+31659524C+03 8.03000000E+00 3+00080C00E
0.03300030E+00 0+000C0000E00 0+00000003Ee00 0.00030003K000 0.000000080£000 2+000000002°00 0.050000080F
00QOE-Q0
3611Ce02 0eB84685745C002 0.74960120E£4+02 =0e00623176E002 =0.10953543E004 0.0CS00000E
0000€E°Qd 71000300003E+00 0.380000000E«00C 0+080030300E+00 0.00000000E000 0.0000CO00E
0000E*cOD
TA3CED2 0.8040%5081E002 0+71174C3T7E202 0755478375002 873008143 -:0-5150156!5003 0.,0C00
°°°:§'5= J.00030G03E«00 0.00000000£+00 0+00000000C¢00 8.03000000C 0+30000003E0CC 8.0000
2630L~0
6393E£+02 Je762563336L002 0675054126402 “0.726052812002 ~0+259413792+03 -:o:;;;;;;;;;:o~ $e2200¢
0030€+00 5.00000000E+00 €.00000880E+00 9.03030000£000 0.03000000E000 2.000000003¢00 0.000002C0€

0030E~Q0




ree FUNCTION EVALUATION CPU TIwME2

see TITAL GRADIENT TVALUATION CPU TINCs
seoe DERIVATIVE STALING CHECK AND MOD

GRADs CNORM,

CONTAROL VARIABLE 2 MIN DERIVATIVE
1 f.00000003C+00
2
3
L3
S
-
r
[
hd
10
11
12 ﬂOOOOUOOE.OB
13 2.00000000E 00
14 0+30000000E+00
15 3+00000000E+08

esevece ITERATION SUMMARY o

QP BASIS MATIIX DETERMINANT =

ces

84

64020 SECONDS ree
84309 SECONOS »ee

AND X WILL BE RESCALED oo

MAX DERIVATIVE
0e40000000E*03
3872%40C«03
3518340E003
01086S7E° Q)
0410953543E03
De32696178E¢03
0+32208970C03

0.1250C095C¢03

0.00000000C0C0

0.10000000E+31
€+1000G000Ee03
J.30000000€°Q1

S+10000000€+00
0+10000000£E00
J+100000800E%00
0e100060000E»00
Ce1000C00ODEsJD
Ce1Q0000000EeGC
0+10000000E°03
0.10000000Ee01)

ECOMMENOED XSCALE CHANGE FACTOA

ITERS 1 8 FUNITION EVALSE 1 TOTAL FUNC EVALSE 16 & GRADIEINT EVALSE Fixrs 0,27201159%9€+03
GLNORYE $.000£+00 ZON NORM3 0,102E¢06 SEARCH NORMx 0,000C+08 DELTA(F)= D.DDUEOBG ALPMAZ 0.,300C¢00
X=VECTOR= J+43000003E+03 0.65477110E+03 0e843406735003 0210034264C+08 0+,10153470E¢05 Ga99704649Ec00
De9387060%E¢04 Gel33e3115Le0S 0413959517603 0615013656Ee0S 94138361635€08% Selb724458EL00%
9.17C93397E+0% 0e17201235C0 00 0e37508712E03
GRADIENTS ~0el7565179E-01 =0.10031730C~01 ~0,72411698C<03 <~0.60411211E€E=03 <=0.21190533C-02
~0221463163E+02 ~0.17814739C=02 ~0,13638%66E-02 =0.,13957219€~02 ~0,126351907E€-02
“0.34390247E-01 <0422454376E-02
EOUALITIES™ 871235€C«01
INEQUALITIESS !ﬂ?QSJSEOUQ “0s335839135008 =0,12204337C004 <=0.69530869E+04 =0.527609C6EC¢0s
1022 064354021723 €¢0 1497260E006 0e18758292E206 J+2582795CE06
ese QJIADRATIC PID-IA! CPU YXNEI 0.8%0 SECDNDS
*QUADRATIC OROGRAM CONSV!IIN' PARTIAL CORRCCTION FACTORSE 0.6812074926€~-03
ONFUI INFORMATION: ITERATION®
VHULT= 0.21276209€-03 0-515!5!02!-01 0011355116503 0,10000060CeQ1 +13735396£-03 0.12000C00E01
:..n)xxsxbg-u~ 0.10000000€°01 0e203450255-02 0010000002Ke01 +10000000€+01 0.20000033E+01
+10000000C+01
eve STARCH STEP x 0.0 Fixis 0.27201139€+33 ¢ NOAME $,103183457Ee06 LAGD 0.27201159%E¢03 PHIZ 0.481634¢9¢Ee0a4 OPSIx
eve SEAACH STEP ¥ 1.0 FIX)s 0.27201256£°03 C NORMS 0.1037%467E¢06 LAGE 0.2720325T7E+03 PMIS 0,680637865004 OPHIx
EXACY PEINALTY FUNITION LINEARIZATION FACTOR: RHMAT = 0+20761202Ce01
MAX X=C4ANSES: 3+10000000E~01 0+10000000E~01 0e10000000E~-01 0+40000009E=01 «13000000E~01 0.1%000000E~012
0+13G00000E=01 QQO000SE~0] 0600000€£=-03 0410000000E-01 «10000000E=-01 041L000000E=01
0+29000000E-01 008D 000E~DY 10000000E-01
seesene xv:nnvron SUMMARY cevecesoe
1TER= 3 FUNZTION EvALSS TOYAL FUNC EYALS® 32 GRADIENT CvALSE 2 $X3IT 0,27201236E03
SLNQANZ 0-13!['0. COM NORNE 0.102€+06 SEARCH NORME 0.13 OOI DELTA(F )= 0-359[—03 ALPHAS 0,100E*01
2=VECTORE 3+40000000E003 0ebS476619E03 OeB84539 *03 B+10034168E00% 0e30153459%E405 0499706323E404
DeD88TI0BHEC0S Del3I303077E£+05 0-1!9556.6[005 0415013626E093 0.153836139€08% 0e16726435E008
De17093384E0% 0s17201133E+04 0e975080%7503
GRADIENT: =8217229456E=01 =0,17365412E~01 =0.100S19125«01" =0.72412943% =83 «0,68611396E=03 =3,21190687E=-02
“2.32424390€-02 1463302€-02 <=0.17814824Z+02 =0.156390295=02 <=0.139572465E-02 =0.12651938E=02
~0el20606Aa7C~-02 4390000E=01 <~0e12434338E=01
EAUALITIES= -a.xuu?u«xs:oos 7'0’650['0!
INEQUALITIES: 0 -C-l!SSZSSIt'O‘ “0.12199220C904 =0.6%473394E004 <=0.32686711E+34

ONCDI lﬂfﬁlﬂlfln"
vauLTs

ITERATIONS

0.50000000E00
SEAICH STEP = 0.9
SCAARZH STIP = 1.8

MAX XeCHANSESSE 2+13000003£-91
2.10000000C2~-02

eses ITERATION SUNRARY o
Ers= % FUNITION EVALS
SLNORYE 0,731Z¢0)
X=VECTORE

3.400230000€°03
0.9886%61SE+3¢
0e17293368£-08
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