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CHAPTER 1. INTRODUCTION 

Aircraft performance optimization has been a subject of 

considerable attention over the past several years and, with 

the advent of high-speed aircraft, it is even more so now. 

One area of interest to many investigators is that of the 

minimum time-to-climb problem and, in particular, the 

minimum time-to-climb problem for supersonic aircraft. This 

area has received much attention because today's aircraft 

are better built, have larger flight envelopes, and thus 

have higher performance capability. This problem is 

especially important for the intercept mission. 

To study this problem, mathematical models are needed 

to describe the aircraft and its motion. For subsonic 

aircraft, the quasi-steady approximation, where 

accelerations are neglected completely, is adequate for 

performance analysis. However, for supersonic aircraft the 

accelerations are so great that if accurate performance 

analysis is desired they cannot be neglected. Hence, a more 

complex model is required. However, as the complexity of 

the dynamic model increases, so does the amount of 

difficulty and computer expense required to determine the 

optimal flight path of the aircraft. This is clearly seen 

in Bryson's and Denham's investigation [1] in which they use 

a four-state variable model with velocity, flight path 

angle, height, and mass as the dependent variables. 
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To simplify the complexity of the dynamic model for 

high performance aircraft, Lush [2] proposes an energy 

approach. Rutowski [3] applies this approach to the minimum 

time-to-climb problem. Here, the aircraft performance 

problem is considered from the point of view of the balance 

that must exist between the potential energy and the kinetic 

energy change of the aircraft. Based upon this idea, Bryson 

et al. [4] present a very simple approximation model known 

now as the energy-state model. In this model, only one 

state variable is used, and that variable is the total 

energy per unit mass. This model saves much time and 

expense, but it leads to unrealistic slope discontinuities 

in velocity and altitude in the region of the dive and zoom

climb. 

The minimum time-to-climb problem has also been treated 

by Garfinkel [5], Miele [6], Landgraf [7]., Kelley [8], and 

Ardema [9]. These investigators contribute to the 

development of numerical techniques to enhance the solving 

of minimum time-to-climb problems. The results have been 

encouraging. Ardema [9] applies singular perturbation 

techniques to this problem and shows that the computational 

cost of the singular perturbation solution is considerably 

less than that of Bryson's steepest ascent solution [1]. 

However, the initial preparation time to set up the problem 

is high. 
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A better approach is to apply parameter optimization 

techniques to aircraft trajectories. This approach allows a 

lot of flexibility in changing models, performance indices, 

and constraints and yet requires only modest computer 

expense. Here, the optimal control problem is reformulated 

as a parameter optimization problem by choosing a form for 

the control time history which contains a finite number of 

parameters. Minimization then takes place over this set of 

parameters. Rader and Hull [10] demonstrate this technique 

on the minimum time-to-climb problem, and it has proven to 

be very useful. Based upon this idea, Pouliot, Pierson, and 

Brusch [11] have developed a highly efficient code, 

sequential quadratic programming, and the results obtained 

thus far have been impressive. 

Although much work has been done on the minimum time

to-climb problem, it is interesting to note that most 

investigators [14-31], and the ones mentioned above, have 

been concerned mainly with the development of numerical 

techniques for solving this problem. The numerical 

techniques are applied to a specific dynamic model, and the 

corresponding results are compared. The advantages and 

disadvantages of one method over another can then be easily 

seen. These improved numerical techniques along with the 

simplified dynamic models save much time and money. 
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However, many questions arise. For example, is the choice 

of a particular dynamic model a "good" one or not? What 

happens if another dynamic model is used? Will a two-state 

model produce the same results as a three-state model? If 

so, which variable produces little or no change in the 

results and can therefore be excluded from the equations of 

motion to save computational expense? If not, what causes 

the change in the results? Is it because the equations of 

motion have been linearized? Is it because motion out of 

vertical plane is not included? Or is it because an 

important variable has been excluded? These are just a few 

of the many unanswered questions. 

An earlier work by Ardema [12] answers some of these 

questions. He solves the minimum time-to-climb problem 

using the energy-state, two-state, and a modified two-state 

model. From his work, he concludes that thrust and weight 

influence the time-to-climb most strongly and that the 

modified two-state model is significantly better than the 

other two. However, no numerical results are presented for 

the three-state, four-state, and five-state models. Thus, 

it is likely that other factors may be present that 

influence significantly the minimum time-to-climb. Pierson 

[13] also compares several dynamics models with the help of 

a sequential quadratic programming method, but his study 
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involves a minimum-noise problem rather than the minimum 

time-to-clirnb problem treated here. However, his approach 

serves to motivate and guide the present study of a whole 

range of models so that a model comparison can be made .. 

In the following study, five dynamic models are 

examined. The models used range from the simple energy

state model to the complete five-state model. The 

descriptions of each model as well as the problem 

formulation are given in Chapter 2. To provide a basis for 

comparison, we use sequential quadratic programming [11] to 

solve the minimum time-to-clirnb problem. This method of 

solution is described in Chapter 3. In Chapter 4, numerical 

solutions and model comparison are presented, and in Chapter 

5, we have the summary and conclusions. 
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CHAPTER 2. PROBLEM FORMULATION 

It is desired that the flight path of a supersonic 

aircraft be found which gives a minimum-time climb from a 

given initial energy-level to a final energy-level. The 

aircraft is represented by five dynamic models, and the 

models used range from the simple energy-state approximation 

model to the complete five-state point-mass model. This 

Chapter presents the problem formulations for these five 

dynamic models. 

Equations of Motion 

Figure 1 shows the nomenclature commonly used for an 

aircraft flying in a vertical plane. The general system of 

equations of motion in a vertical plane is the fifth-order 

system which describes a variable weight point-mass moving 

over a flat non-rotating earth. By considering only motion 

in the vertical plane, we obtain the equations of motion 

[ 4] : 
. 

m V = T cos(a + £ ) - D - m g sino (2-1) 
. 

m V 0 = T sin(a + £ ) + L - m g coso (2-2) 

h = V sin~ (2-3) 

x = V cos~ (2-4) 
. 
m = -f (2-5) 



AIRCRAFT 
CENTER OF 
MASS 

WEIGHT 

7 

ZERO-lI~T AXIS 

VELOCITY 

--y----'-- HORIZONTAL 

~X~ 
h 

HORIZONTAL DISTANCE 

FIGURE 1. Aircraft nomenclature 

Equations (2-1) and (2-2) represent the aircraft motion 

along and normal to the direction of the relative velocity 

respectively. These two equations results from Newton's 

-- ~ second law (F = m a) applied to an aircraft in planar 

flight. Equation (2-3) shows the vertical height rate, 

while equation (2-4) is the horizontal rate. The last 

equation governs the mass loss due to fuel consumption. 

The variables in the equations of motion are defined as 

follows: 

v - relative velocity 
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r - flight path angle 

h - altitude 

x - horizontal range 

m - mass 

~ - angle of attack (measured 

from zero-lift axis) 

£ - angle bet!'leen thrust axis 

and zero-lift axis 

g - gravity acceleration 

T - thrust 

D - drag 

L - lift 

f - fuel flow rate 

The aerodynamic forces are approximated by assuming 

lift to be a linear and drag to be a quadratic function of 

(1, i.e., 

L = q S C
L 

~ (2-6) 
(1 

D = q S (CD + Tl C
L 

~2) (2-7) 
0 ~ 

where q = p V2/2 is the dynamic pressure, S is the 

aerodynamic reference area, CL is the lift coefficient 
~ 

slope, CD 
o 

is the zero-lift drag coefficient, and Tl is the 

efficiency factor (0 ~ Tl ~ 1). In general, CL ' CD ' and Tl 
~ 0 
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depend on the Mach number. Tables and curve fittings for 

these aerodynamic characteristics are given in Appendix I. 

The thrust is a function of both velocity and altitude. 

A fourth-order polynomial in velocity and altitude is fitted 

by a least-squares method to the thrust data and is given in 

Appendix II. 

To make our minimum time-to-climb problem more 

realistic, the mass of the aircraft is not assumed to be 

constant. Instead, the higher order models (order 4 and 5) 

have the aircraft's mass dependent on the fuel consumption 

rate, f, which in turn is a function of thrust, i.e., 

f = T/cg (2-8) 

where c = 1600 seconds, and g = 32.174 ft/sec 2 . The 

remaining lower order models have the aircraft's mass 

approximated by a linear function of range, i.e., 

(2-9) 

where kl and k2 are constants determined from the aircraft's 

mass boundary conditions (see Table 1 for values). 

All the models being examined utilize a variable 

atmospheric density. A standard exponential form for the 

atmospheric density is used, i.e., 

(2-10) 
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where p = 2.54 X 10 l slug/ft l and hI = 2.73 X 10 4 ft. 
o 

The above relationships enabled us to use explicit 

function representations to model the aircraft's thrust, 

lift, drag, and fuel consumption characteristics. 

To illustrate a physical problem, Figure 2 shows a 

typical mission of a fighter aircraft intercepting a target 

in Earth's atmospheric space. Should the target be an 

enemy, it becomes important that the target be intercepted 

in the least possible time. Thus, a form of a minimum time-

to-climb path is necessary. 

Target 

Optimal Path? 

Takeoff/Land 

FIGURE 2. Aircraft intercept mission 
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Aircraft Models 

The various aircraft models being examined will now be 

discussed. We will begin from the most complex model to the 

least complex one. 

models are: 

In order of decreasing complexity, the 

1) five-state point-mass equations 

2) four-state point-mass equations 

3) three-state point-mass equations 

4) two-state point-mass equations 

and 5) energy-state approximation 

The problem formulations for these five dynamic models are 

as follows: 

Five-state point-mass equations 

We want to minimize the time it takes for an aircraft 

to climb from one energy-level to another. Thus, an obvious 

possible function to be minimize is 

min J = 't 
f (2-11) 

where J is the performance index, and t f is the final time. 

Five state variables are involved. They are velocity, 

altitude, flight path angle, range, and mass with time as 

the independent variable. Only one control function is 

used, and that control is the angle of attack, a. 
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If we assumed that the angle between thrust axis and 

zero-lift axis (e) is zero, as is often the case, the state 

equations are exactly the same as equations (2-1)-(2-5) 

except for e = O. Thus, the problem can then be stated as: 

To find the angle of attack history, a(t), which 

minimizes 

J = t f (2-12 ) 
. 

subject to: m V = T COSa - D - m g sino (2-13) 

m v 0 = T sina + L - m g coso (2-14) 

h = V sino (2-15) 

x = V coso (2-16) 
. 
m = -f (2-17) 

and specified initial and final states and the constraint h 

~ 0 (refer to Table 1 in Chapter ·4 for specified states). 

The above formulation is an example of an optimal control 

Meyer problem and it features the usual point-mass equations 

of motion in a vertical plane. The dot notation ( ) 

indicates that it is a time rate of change of the concern 

variable. 

Four-state point-mass equations 

In this and the remaining models, range is used to 

replace time as the independent variable. Since time is no 

longer a variable, the performance index (2-12) would have 

to change. We can think of J as the integral of time, i.e., 
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t f 
J = 10 dt (2-18) 

From equation (2-16), we can solve for dt in terms of dx to 

get 

dt = 1 
V cosr dx (2-19) 

substituting (2-19) into (2-18) for dt, the performance 

index becomes 

1 dx V cosr (2-20) 

where R
f 

is the final range at t f obtained from solving 

Modell. This integral, which is now with respect to range, 

will still give us a minimum-time performance. As final 

range is specified, the problem is then of a fixed-range 

minimum time-to-climb problem. 

The states are velocity, altitude, flight path angle, 

and mass with angle of attack as the control. The 

derivatives of these states are taken with respect to range 

and they can be easily obtained by dividing equations 

(2-13)-(2-15) and (2-17) by equation (2-16). In doing so, 

we obtain the following equations of motion: 

V' T COSel - D - m g sinr = (2-21) m V cosr 

r' T sinel + L - m 9: cosr = (2-22) m V2 cosr 

h' = tanr (2-23) 

m' = f (2-24 ) - V cosr 
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The prime notation (') indicates that derivatives are taken 

with respect to range. We can now consider the following 

problem: 

To find the angle of attack history, a(x), which 

minimizes equation (2-20) subject to equations 

(2-21)-(2-24) and specified initial and final 

states and the constraint h ~ O. 

Model 1 and 2 are basically the same. The only 

difference is in the independent variable used. The first 

uses time while the latter uses range as the independent 

variable. 

Three-state point-mass equations 

This model is a simplification of the previous model. 

The four-state model is reduced to a three-state model by 

omitting the mass differential equation. Velocity, 

altitude, and flight path angle remain as the states with 

angle of attack still as the control. The mass, now, for 

simplicity, is approximated by a linear function of range, 

i.e., 

(2-25) 

where kl and k2 are constants determined from the aircraft's 

mass boundary conditions. 
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The problem statement is then: To find the angle of 

attack history, ~(x), which minimizes 

J 
Rf 1 dx (2-26) = 10 ---V coso 

subject to: V' T cos~ - D - m g sino (2-27) = m V coso 

0' T sin~ + L - m 9: coso (2-28) = m V2 coso 

h' = tano (2-29) 

and specified initial and final states and the constraint h 

~ O. 

Two-state point-mass equations 

This model results from further simplifications of 

Model 3. By inclusion of two additional assumptions, i.e., 

i) The angle of attack, ~, is small so that 

by small angle approximation, cos~ = 1 

and ii) Flight path angle dynamics are neglected 

the three-state model is reduced to a two-state model. Only 

velocity and altitude remain as the states with flight path 

angle now playing the role of the control. 

The aerodynamic drag for this model, however, requires 

some modifications. The form that we have for our more 

complex models, i.e., 

D = q S (CD + n CL ~2) 
o ~ 

(2-30) 
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could no longer be used here because of the small angle of 

attack assumption. A suitable form needs to be developed, 

and we can do so using the drag polar function 

D (2-31) 

where ~ is a constant. 

By neglecting flight path angle dynamics and with the 

small angle of attack approximation, equation (2-2) reduces 

to 

o = L - m g coso (2-32) 

which means that lift is equal to the component of the 

aircraft's weight normal to the flight path. The 

aerodynamic lift, L, is given by 

Using (2-33) in (2-32), and solving for CL, we get 

= m g coso 
q S 

(2-33) 

(2-34) 

Substituting for CL in the drag polar function (2-31), we 

obtain 

D S [c + Q (m ~ ~oso) 2 ] = q D ... 
o 

(2-35) 

This form of aerodynamic drag will be used for our model. 

The problem statement may now be given as: 
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To find the flight path angle history, o(x), 

which minimizes 

subject to: 

1 dx V coso 

V' = T - D - m g sino 
m V coso 

h' = tano 

(2-36) 

(2-37) 

(2-38) 

and specified initial and final states and the constraint h 

~ O. As a reminder, mass is not constant, but is 

approximated by a linear function of range. 

Energy-state approximation 

The last model to be examined is the well-known energy-

state approximation model. In this approximation, only the 

specific energy, E, is treated as the state variable: 

E = 1 V2 + g h 
2 (2-39) 

The range rate of change of E is obtained by differentiating 

equation (2-39) with respect to range 

E' = V V' + g h' (2-40) 

Using (2-37) and (2-38) to eliminate V' and h', we get 

E' = T - D 
m coso 

An additional assumption made in the energy-state 

(2-41) 

approximation is that the flight path angle is small so that 

by the small angle approximation, coso = 1. Thus, the range 
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rate of change of E reduces to 

E' = T - D 
m (2-42) 

In addition the altitude constraint has to be modified. If 

we solve for gh in equation (2-39), we get 

g h = E _ 1 V2 
2 (2-43) 

Thus, to ensure altitude remains positive, we require 

(2-44) 

The problem statement will now be stated: 

To find the velocity history, V(x), which 

minimizes 

J 
Rf 1 dx = 10 V (2-45) 

subject E' T - D to: = m (2-46) 

and specified initial and final states and the constraint 

(2-44). Note that velocity now plays the role of the 

control. 

The problem formulations for the five dynamic models 

have been precisely stated above. Table 1 (see Chapter 4) 

summarizes these problem formulations. Also included in 

this table are flight conditions and control constraints. 

These problems, however, will not be solved as optimal 
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control problems. Rather, they will be solved as 

parameterized optimization problems. In the next Chapter, 

we will show how these optimal control problems can be 

reformulated as parameterized optimization problems. The 

choice of a numerical technique to solve the minimum time

to-climb problems to provide a basis for comparison will 

also be discussed. 
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CHAPTER 3. METHOD OF SOLUTION 

The minimum time-to-climb problems can be solved in two 

ways, either as infinite-dimensional problems or as 

parameterized optimization problems. In this Chapter we 

discuss the latter approach. The numerical method chosen to 

solve these minimum time-to-climb problems is also given. 

Optimal Control Problem Statement 

A general statement of the optimal control problem 

treated here is: 

Find the scalar control function, u(t), which 

minimizes the performance index 

t
f 

J = ~[x(tf)] + It L(x,u,t) dt 
o 

subject to the n state equations 

x = f(x,u,t) 

the initial and terminal state constraints 

x(t ) = x . o 0' 

and to the cpntrol constraints 

~ u u 

(3-1) 

(3-2) 

(3-3) 

(3-4) 

Here, n refers to the number of states, and u l and Uu are 

the lower and the upper control bounds, respectively. 

The above optimal control problem can be treated as an 

infinite-dimensional problem, i.e., we can minimize the 

performance index while satisfying the specified constraints 
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for an entire control time" history. Infinite-dimensional 

numerical techniques such as 'shooting' or 

quasi linearization methods can then be employed to solve 

this problem. This approach, however, has two main 

drawbacks. First, the initial preparation time to set up 

the problem is high. This is due to the analytic work 

involved in deriving the costate equations and the influence 

function equations. It is even more so and cumbersome as 

well when the particular problem involved is highly 

nonlinear. Second, the problem must be defined analytically 

in order that these infinite-dimensional methods can be 

implemented. We know often that such is not the case. 

Thus, instead of posing the optimal control problem as 

an infinite-dimensional problem, we will reformulate it as a 

parameterized optimization problem. 

Parameter Optimization 

In this approach, the optimal control problem is 

transformed into a parameter optimization problem by 

choosing a form for the control function which contains a 

finite number of parameters. Rather than minimizing the 

performance index over the entire control history, we now 

minimize over this set of parameters. The resulting 

parameterized problem becomes simpler and easier to solve. 
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Control discretization 

Figure 3 shows how the continuous control function, 

u(t), is discretized. We let the interval (to' t f ) be 

divided equally into q intervals. At each time point, we 

let u. approximate the control value at time t., i.e., 
~ ~ 

u. = u(t.) 
~ ~ 

(3-5) 

where i = 0, 1, ... , q. We will have q+l control nodes, the 

ui's, and these control nodes serve as the control 

parameters. The control parameters are corrected at each 

iteration until some termination criterion is satisfied 

which results in an optimal solution. As the number of time 

interval increases, we will have more control nodes, and 

thus a closer approximation to the continuous control, u(t). 

A piecewise linear interpolation scheme is used to 

calculate control values between control nodes. One major 

advantage of this scheme is that we can set an upper and a 

lower bound on these control nodes. In doing so, we ensure 

that the control constraints are never violated. Cubic 

interpolation scheme is another possibility. However, one 

has to be a little careful when using this scheme because 

the cubic nature of the interpolation can result in control 

constraint violations. 
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FIGURE 3. Control discretization 

Choice of Numerical Method 

The solution to our minimum time-to-climb problem 

involves integration of differential equations. The 

computational cost associated with doing this can be 

t 

exceedingly high, especially if the differential equations 

are very complex and highly nonlinear. Since we want to 

make a model comparison between five dynamic models, the 

solutions to each model must also be accurate. Hence, we 

desire a method of solution that is both relatively accurate 



24 

and inexpensive. In addition, the method must be flexible 

to accommodate dynamic model, performance index, and 

constraint changes with relatively little reprogramming. It 

is for these reasons that the method of sequential quadratic 

programming [11] has been chosen. 

The sequential quadratic programming algorithm is a 

constrained Quasi-Newton method which exhibits superlinear 

convergence. This method, which solves a series of 

quadratic programming problems, has proven to be very useful 

for problems with computationally expensive function and 

gradient evaluations. It consists of basically four steps 

[ 13 ] : 

i) For an initial guess of the control parameters and 

an initial (positive definite) estimate of the 

Hessian matrix, compute the required first partial 

derivatives via numerical integration and finite

difference approximation and solve a quadratic 

programming problem for the corrections to the 

control parameter vector and the associated Lagrange 

multipliers. 

ii) Perform a one-dimensional search along the direction 

of search vector obtained in step (i) by minimizing 

an auxiliary performance index. This step-size 

selection procedure is used to enhance convergence 

from poor initial control parameter estimates. 
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iii) Update the control parameter vector and test for 

convergence. 

iv) If convergence is not achieved, update the Hessian 

matrix estimate by a variable-metric formula and 

repeat from step (i). 
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CHAPTER 4. NUMERICAL RESULTS AND MODEL COMPARISON 

Numerical results of the minimum time-to-climb problem 

for our models are presented in this Chapter. All numerical 

computations were performed on the Iowa State University 

NAS/9160 computer using Fortran 77 with double precision 

arithmetic. A program listing for Modell is given in 

Appendix III. 

Flight Conditions and Control Constraints 

We want to compare the minimum time-to-climb results 

among five dynamic models. As the complexity of these 

models differ from one another, the initial and the final 

states for each model are modified accordingly so that the 

same initial and the same terminal flight conditions apply 

to each model. In our case, we always want the aircraft to 

fly from zero altitude at 400 ft/sec to an altitude of 

65,600 feet at Mach number one. 

All control variables are bounded. For Models 1, 2, 

and 3, the control angle of attack, a, is bounded between 

±100. This is to prevent the aircraft from stalling. For 

Model 4, the control flight path angle, 0, is constrained to 

±80 0 . This is to avoid the singularity problem should 0 

approach 90 0 , a feature of using range as the independent 

variable. For Model 5, the control velocity, V, is 
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constrained to 0 ~ V ~ 1750 ft/sec so that the physical 

capability of the aircraft is not violated. Table 1 

summarizes the flight conditions and control constraints for 

the minimum time-to-clirnb problem. 

Solutions to Models 1-5 

Fifteen control points were used for each model. A 

piecewise linear interpolation scheme was used to 

interpolate between control points in each interval. 

Trapezoidal rule was used to evaluate the performance 

indices, and a fourth-qrder, fixed-step, Runge Kutta 

numerical integration scheme was used to integrate the 

differential equations of motion. One hundred integration 

steps were used. 

Control histories 

The optimal angle of attack histories for Models I, 2, 

and 3 are shown in Figures 4-6, respectively. The flight 

path angle history for Model 4 is shown in Figure 7, and the 

velocity history for Model 5 is shown in Figure 8. It is 

apparent that the control points are not distributed evenly. 

A sensitivity analysis indicates that the distribution of 

the control points is highly important. In this case, more 

control points are needed in the earlier portion of the 

trajectory. All five models show this characteristic. When 
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these extra control points are not included, no solutions 

could be generated. The study reveals that sensitivity to 

control location varies throughout the climb trajectories. 

This in turn indicates that some portions of the climb 

trajectory are more sensitive than the rest, and that the 

portions which are more sensitive require more control 

points. Thus, to avoid difficulties in generating optimal 

trajectories a clear understanding of the sensitiveness of 

any problem to be solved is helpful. In our problem, the 

initial portion of the climb trajectories seems to be the 

most sensitive area. This is because of the altitude 

inequality constraint. 

Figure 9 shows the comparison of flight path angle as a 

state (in Model I), and as a control (in Model 4). We see 

clearly that the history of the flight path angle as a 

control is very similar to that when it is used as a state. 

However, when used as a control, we were able to employ a 

very simple 2-state model, rather than a much more complex 

one, thereby reducing the computational expense. The 

velocity, see Figure 10, also shows similar results, and 

could, therefore, be used as a state or as a control 

depending upon the complexity of the model desired. 
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Figure 11 shows the comparison between the control 

histories for Model I, 2, and 3. Qualitatively, these 

control histories are similar, as one would have expected. 

In addition, the angle of attack remained small for a large 

portion of the trajectory. This verifies the validity of 

our small angle of attack assumption. 

Energy results 

The energy results of all models, i.e., the exchange 

between kinetic energy and potential energy, are shown in 

Figure 12. An interesting feature of the results is that 

the trajectories categorize themselves into two distinct 

categories. Model I, 2, and 3 fall into one group, while 

Model 4 and 5 fall into the other. In our study, the first 

three models include flight path angle dynamics while the 

latter two models do not. Although the results for all 

models are similar, the addition of flight path angle 

dynamics in the equations of motion can make a difference 

quantitatively. As a result, the flight path angle may 

significantly influence the minimum time-to-climb, in 

addition to the thrust and weight as indicated by Ardema 

[22]. This result is more apparent when the minimum-time 

climb for all models is compared later. 

All models, except Model 4, exhibit dive and zoom climb 

trajectories from the initial energy level to the final 
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energy level. The dive portion of the trajectories occurs 

just before supersonic speed while the zoom-climb portion 

occurs near the upper bound of the velocity constraint, V = 
u 

1750 ft/sec. The altitude where these transitions occur, 

however, differ between each model. The transitions seem to 

occur at a higher altitude for those models that have flight 

path angle dynamics. 

Observe also that all trajectories before the dive 

remain very close together. The zoom-climb region also 

exhibits the same characteristic. This can be explained by 

the fact that we have the same flight boundary conditions 

for all models. The trajectories at these two portions are 

flown mainly to satisfy these boundary conditions. It is 

obvious then that the primary role of the trajectories 

between these two portions is to minimize the time-to-climb. 

Figure 13 compares Bryson's, Rader and Hull's, and our 

Model 5 solution for the minimum time-to-climb problem. The 

results are basically similar in nature, except that the 

dive occurs at a higher altitude-in both Bryson's and Rader 

and Hull's solutions. Two reasons account for this 

difference. First, different optimization techniques have 

been used to solve the minimum time-to-climb problem. 

Bryson uses steepest descent method, while Rader and Hull 

use the hard constraint approach. Second, the values for 
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our aerodynamic curve fit are not exactly the same as those 

of Bryson's and Rader and Hull's, although they are very 

close. 

Climb trajectories 

Figure 14 shows the plots of altitude with range. The 

distinction between models that include flight path dynamics 

and models that do not is perhaps seen more clearly. Models 

1 and 2 have virtually the same optimal climb trajectories. 

This is to be expected because the equations of motion for 

both models are basically the same. The only difference is 

that Model 1 uses time whereas Model 2 uses range as the 

independent variable. However, the computation expense for 

these two models is not the same, as will be shown later. 

Note that all models, except for Model 5, have smooth 

plots. This is because the states of these models are 

evaluated from differential equations. However, for Model 

5, velocity is not a state. Rather, it is a control. It is 

for this reason we see slope discontinuities in the flight 

profile. The occurrence of each slope discontinuity in the 

plot is exactly at the locations of our control points. If 

more control points are used for Model 5, then one would 

expect a smoother plot, but at the expense of computation 

cost. 
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Again, we see that the two extreme portions of each 

trajectory serve to satisfy the initial and terminal 

constraints, while the middle portion serves to minimize the 

time-to-climb. Also, the monotonic increase in range as 

shown by the plots verifies the validity of using range as 

the independent variable. 

Cost and time-of-flight comparison 

TABLE 2. Cost and time-of-flight comparison 

Model 

1 

2 

3 

4 

5 

Control 

points 

15 

15 

15 

15 

15 

CPU time 

per iter, sec 

1.2604 

1.1113 

.9227 

.7613 

.3388 

Bryson (Energy-state approximation) 

Rader and Hull (Hard Constraint) 

Time-of-flight 

sec 

290.09 

290.40 

293.95 

283.23 

272.88 

277 sec 

317 sec 
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Table 2 shows the time-of-flight and computation time 

results for each model. Models 1 and 2 show essentially no 

difference in the time-of-flight as the equations of motion 

for these two models are basically the same, except in the 

independent variable used. However, their computation times 

differ. It takes only 1.1113 CPU sec per iteration for 

Model 2 compared to 1.2604 CPU sec per iteration for Model 1 

- a saving of 12% in computation time. 

Among Models I, 2, and 3, those models that include 

flight path angle dynamics, Model 3 uses the least 

computation time - .9227 CPU sec per iteration, a saving of 

27% in computation time compared to Model 1. No mass 

differential equation, however, is included in this model as 

well as in the remaining lower-order models. A linear 

function of range is used instead to approximate the 

aircraft's mass. It is this inexact mass approximation that 

results in a slight difference in the optimal climb 

trajectories. We have a higher altitude dive transition for 

Model 3 than for Models 1 and 2. This in turn leads to an 

additional 3.86 seconds in the flight time - 293.95 seconds 

compared to 290.09 seconds for Model 1. If a more accurate 

aircraft mass model is used, then we would expect negligible 

differences in the climb trajectories as well as for the 

flight time. The high saving in computation cost for Model 
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3 coupled with a very simple mass model, however, far exceed 

the desire to pursue an accurate mass modeling. Moreover, 

the accuracy of the result was not sacrificed to any large 

extent only a mere 1.3% difference in the flight time 

between Model 3 and Model 1. 

Let's now consider the results of Models 4 and 5. For 

Model 4, it takes the aircraft 283.23 seconds of flight time 

to meet the specified terminal constraints; for ModelS, 

which is the energy-state model, it takes only 272.88 

seconds. These are smaller times, but they should be 

considered only as rough approximations to the actual time

of-flight. The reason for this statement is that these 

models are so simplified that they become unrealistic, 

especially for the energy-state model where only one state 

variable is used. However, the results remain fairly 

accurate and can be obtained inexpensively. If we consider 

the computation time, it takes only .7613 CPU sec per 

iteration for Model 4, and .3388 CPU sec per iteration for 

ModelS. These are savings of 40% and 73%, respe~tively, in 

computation costs when compared to Model 1; a substantial 

savings. If one has no "feeling" for the solutions to the 

minimum time-to-climb problems for other supersonic 

aircraft, these two models, either Model 4 or ModelS, might 

be the models to be considered initially to generate a 

nominal solution for use in higher order models. 
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CHAPTER 5. SUMMARY AND CONCLUSIONS 

The minimum time-to-clirnb problem is formulated as a 

parameterized optimal control problem and is solved using 

sequential quadratic programming. Five dynamic models are 

treated. The models used range from the simple energy-state 

model to the complete five-state point-mass model. The 

five-state model features the usual point-mass equations for 

flight in a vertical plane.- Time is the independent 

variable, and speed, altitude, flight path angle, range, and 

mass are the dependent variables. Range is used to replace 

time as the independent variable for the remaining four 

models. 

It is clear that sensitiveness plays an important role 

in optimal aircraft trajectory generation. A lack of this 

understanding can lead to difficulties in obtaining optimal 

trajectories. This difficulty can be avoided when more 

control points are used for portions of the trajectories 

that are highly sensitive. 

The two-state and the energy-state approximation models 

provide easily solved but optimistic results for minimum 

time-to-clirnb. The results, however, remain fairly accurate 

and can be used as nominal solutions for higher-order 

models. 
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Although the addition of flight path angle dynamics 

complicates the solution process, its addition significantly 

influences the minimum time-to-climb. For accurate 

performance prediction of the flight-time, it is necessary 

that the flight path angle dynamics be included in the 

equations of motion. 

The intermediate three-state model indicates that the 

aircraft's mass differential equation can be replaced by a 

simple linear function of range without significant loss in 

accuracy. This replacement eliminates the need to integrate 

the mass differential equation, thus simplifying the model 

by one order. 

Consideration of our numerical example shows a fairly 

good agreement between values of the minimum time-to-climb 

as predicted by the five dynamic models. However, the 

computation time between models varies significantly; Model 

1 is the most expensive, while Model 5 is the least 

expensive. It can be seen that the energy-state 

approximation, properly set up, is adequate for performance 

optimization of supersonic aircraft. 

Many extensions to this study are possible. Further 

models might include: 1) rotational dynamics, 2) non-flat 

rotating earth, 3) aircraft structural dynamics, and 4) 

multiple control variables. The study can also be extended 
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to compare flight profiles for: 1) minimum fuel climb, 2) 

maximum range in given time, 3) maximum range for a given 

amount of fuel, or 4) maximum range glide between specified 

energy levels. 
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APPENDIX I. AERODYNAMIC CHARACTERISTICS 

The aerodynamic data used in our study are that of an 

early representation of the F-4 fighter aircr~ft [4]. 

Equations (2-6) and (2-7) show the aerodynamic lift and drag 

equations. The lift coefficient slope, CL ' the zero-lift 
« 

drag coefficient, CD ' and the efficiency factor, n, are all 
o 

Mach number dependent. These Mach number dependent 

aerodynamic parameters are restated here in Table 3. 

It is desirable that the aerodynamic data be 

represented in terms of analytic functions. These functions 

should be continuous and should have continuous first 

derivatives as well. A third-order polynomial function of 

Mach number is chosen to represent each of these aerodynamic 

parameters within each interval. 

To illustrate how this is done, let us consider the 

lift coefficient slope parameter, CL « 
is 

The particular form 

where M. is the discrete Mach number value in Table 3 such 
~ 

that 

(1-2) 
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TABLE 3. Lift and drag characteristics [4] 

M 0 0.8 0.9 1.0 1.2 1.4 1.6 1.8 

C
L 

3.44 3.44 3.58 4.44 3.44 3.01 2.86 2.44 

ex 

C
n 

0.013 0.013 0.014 0.031 0.041 0.039 0.036 0.035 

o 

T) 0.54 0.54 0.75 0.79 0.78 0.89 0.93 0.93 

-----------------
s = 530 ft 2 

By differentiating (I-I) with respect to Mach number, we 

obtain 

(1-3) 

The slope C
L

I can be estimated graphically from a plot of 
ex 

CL 
ex 

vs. M at the selected Mach number, M.. These slopes are 
~ 

tabulated in Table 4. Therefore, in a specified interval, 

(Mi' M
i

+
1

), we have the following boundary values: 

(1-4) 



56 

TABLE 4. Lift and drag parameter slopes with Mach number 

M 0 0.8 0.9 1.0 1.2 1.4 1.6 1.8 

CL 
, 

0 0 6.75 0 -4.0625 -1.25 -0.833 -0.2 
ex 

Cn 
I 0 0 0.0231 0.155 0 -0.0157 -0.0106 0 
0 

11 0 0 0.85 0.325 0.25 0.2 0.1313 0 

CL 
I = dCL /dM Cn I = dCn /dM 11 I = dn/dM 
ex IX o 0 

The polynomial coefficients ao, a l , a2, and a3 can then be 

obtained by solving equations (I-I) and (I-2) at each end of 

the interval, i.e., 

CL (Mi + l ) = a o + al 6 + a2 6 2 + a3 6 3 

IX 

CL ' (M i + l ) = al + 2 a2 6 + 3 a3 6 2 

IX 

from which we get 

(I-5) 

(I-6) 

(I-7) 

(I-8) 
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Here, ~ = Mi +1 - Mi· These coefficient are then used in 

equation (I-I) to calculate CL (M) on the interval (Mi' 
a 

Mi +
1

). The same procedure is repeated for the next interval 

and so on. The zero-lift drag coefficient, CD (M), and the 
o 

efficiency factor, n(M), are determined in the same manner. 

Table 5, 6, and 7 show the polynomial coefficients for CL ' 
a 

CD ' and n, respectively, for each of tr..e seven Mach number 
o 

intervals. 

Both the atmospheric density, p, and the speed of 

sound, a, vary with altitude. For the density, we have 

[31]: 
-hjh 

p (h) = poe 1 

where Po = 2.54 X 10 3 slug/ft 3 and hl = 2.73 X 10 4 ft. For 

the speed of sound, we have [31]: 

(k 1 - k2h) 1/2 , h ~ 36,000 ft 

a(h} = 

968.1 ft/sec h > 36,000 ft 



TABLE 5. 

Mach number 

interval 

0 - 0.8 

0.8 - 0.9 

0.9 - 1.0 

1.0 - 1.2 

1.2 - 1.4 

1.4 - 1.6 

1.6 - 1.8 

TABLE 6. 

;-lach number 

interval 

o - 0.8 

0.8 - 0.9 

0.9 - 1.0 

1.0 - 1.2 

1.2 - 1.4 

1.4 - 1.6 

1. 6 - 1.8 
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Polynomial coefficients for CL 
ex 

3.44 

3.44 

3.58 

4.44 

3.44 

3.01 

2.86 

Polynomial coefficients for C
L 

a 

0 0 

0 -25.50 

6.75 123.00 

0 -54.69 

-4.06 14.63 

-1.25 5.42 

-0.83 -22.17 

a, 

0 

395.00 

-1045.00 

148.44 

-25.31 

-14.58 

79.17 

Polynomial coefficients for CD 
o 

Polynomial coefficients for CD 
o 

0.0130 0 0 

0.0130 0 0.0688 

0.0140 0.0232 3.0875 

0.0310 0.1550 -0.8000 

0.0410 0 -0.0714 

0.0390 -0.0157 -0.0147 

0.0360 -0.0106 0.0313 

a, 

0 

0.3125 

-16.1875 

1.3750 

0.1071 

0.0915 

-0.0156 



TABLE 7. 

Mach number 

interval 

o - 0.8 

0.8 - 0.9 

0.9 - 1.0 

1.0 - 1.2 

1.2 - 1.4 

1.4 - 1.6 

1. 6 - 1.8 

59 

Polynomial coefficients for n 

Polynomial coefficients for n 

a2 a3 

0.540 0 0 0 

0.540 0 54.500 -335.000 

0.750 0.850 -8.250 37.500 

0.790 0.325 -0.375 0.625 

0.845 0.250 -0.125 0 

0.890 0.200 0.344 -1. 719 

0.930 0.131 -1.313 3.281 
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APPENDIX II. THRUST CHARACTERISTICS 

In this Appendix, we discuss the curve fit for the 

thrust system of the F-4 fighter aircraft [31]. Thrust 

varies with both Mach number and altitude. These data [31] 

are given in Table 8. Like the aerodynamic characteristics 

curve fitting, we need a continuous function with continuous 

first derivative to approximate the thrust data. A fourth

order polynomial least-squares fit of Mach number and 

altitude has been chosen. 

is 

In this approximation, the form for the thrust fitting 

1 

h 

T(M, h) = [1, M, M2, M3
, M4] [A] h 2 

h 3 

h4 

where [A] is a SxS matrix of constant values to be 

determined to best represent the thrust data. By performing 

a least-squares analysis to these data, we obtain a set of 

twenty-five linear equations and twenty-five unknowns. 

These unknowns are the elements in the matrix [A]. The 

results are presented in Table 9. Table 10 shows the thrust 

values calculated from this fourth-order polynomial least 

squares fit. It can be seen by comparing tables 7 and 5 
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that these values approximate very closely the actual thrust 

data of the F-4 fighter aircraft. 
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APPENDIX III. OPTIMIZATION PROGRAM LISTING 

A complete listing of the optimization program that 

solves the most complex model, i.e., Model I, is given in 

this Appendix. A sample input to the optimization program, 

and a sample output from Sequential Quadratic Programming 

are also given. 

Program listing for Model 1 

IIMODEL5 JOB I3546, 'SHAW ONG' 
I*JOBPARM LINES=8,DEST=RMT11 
IIS1 EXEC FORTVLG,FVPOPT=2,REGION.GO=512K,TIME.GO=4 
IIFORT.SYSIN DD * 
C******************************************************** 
C* * 
C* 
C* 
C* 

THIS IS THE DRIVER PROGRAM. IT SETS UP SQP TO 
SOLVE THESIS MODEL 1. 

* 
* 
* 

C******************************************************** 
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
C 
C-----DEFINE STORAGE REQUIREMENTS. 
C 

C 

PARAMETER (MAXX=3000) 
PARAMETER (MAXF=2 ) 
PARAMETER (MAXG=100 ) 
PARAMETER (MAXH=100 ) 
PARAMETER (MAXIO=12) 
DIMENSION N(6),IO(MAXIO) 
DIMENSION X(MAXX),F(MAXF) ,H(MAXH) ,G(MAXG) 
DIMENSION MD(20) 

C-----COMMON BLOCKS 
C 

C 

C 

COMMON 1 STATE 1 Y1(102),Y2(102),Y3(102), 
> Y4(102),Y5(102) 

COMMON 1 CNTRL 1 U(102) 
COMMON 1 INTPLN 1 INTPLN 

NAMELIST 1 TYPE 1 INTPLN 

EXTERNAL EVAL 
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C 
C-----SET INPUT/OUTPUT PARAMETERS. 
C 

C 

IPFLAG=l 
IPRINT=2 
ICARD=2 
IIN=S 
IOUT=6 
IPUNCH=7 
ISCALE=2 
IO(l)=IPFLAG 
IO(2)=IPRINT 
IO(6)=ICARD 
IO(7)=IIN 
IO(8)=IOUT 
IO(9)=IPUNCH 
IO(ll)=ISCALE 

C-----DEFINE VECTOR STORAGE SIZE 
C 

C 

N(4)=MAXX 
N(S )=MAXH 
N(6)=MAXG 

C-----DEFINE PROBLEM SIZE 
C 

C 

C 

NX=16 
NG=lO 
NH=2 
N(l)=NX 
N(2)=NH 
N(3)=NG 

CALL ERRSET(208,2S6,-1,1,0,0) 

C-----INPUT NAMELIST IF ANY 
C 

READ(S,TYPE) 
CALL RQP(EVAL,N,X,F,G,H,IO,MD,O) 

C 
C-----PERFORM OPTIMIZATION 
C 

CALL RQP(EVAL,N,X,F,G,H,IO,MD,-l) 
C 
C-----CONTROL AND STATE VARIABLES OUTPUT 
C 

DO 3 I=l,NX 
WRITE(10,*) XCI) 

3 CONTINUE 
DO 4 1=1,101 



67 

WRITE(11,2000) Y1(I) 
WRITE(12,2000) Y2(I) 
WRITE(1S,2000) Y3(I) 
WRITE(16,2000) Y4(I) 
WRITE(17,2000) YS(I) 
WRITE(13,2000) U(I) 

4 CONTINUE 
C 
2000 FORMAT(F1S.6) 

STOP 
E~ 

SUBROUTINE EVAL(N,X,F,G,H,IO,IER) 
C 
C******************************************************** 
C* * 
C* THIS IS THE USER PROVIDED SUBROUTINE. IT IS * 
C* CALLED BY THE SQP OPTIMIZATION ROUTINE TO * 
C* EVALUATE THE OBJECTIVE FUNCTION AND THE * 
C* CONSTRAINTS. * 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

SUBROUTINES 
RK4 
FGH 

SPLINE 
LINEAR 

REQUIRED: 
RUNGE KUTTA 4TH ORDER 
EVALUATING CONSTRAINTS AND 
PERFORMANCE I~EX 
CUBIC SPLINE INTERPOLATION 
LINEAR INTERPOLATION 

* 
* 
* 
* 
* 
* 
* 

C******************************************************** 
C 

C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION N(*),X(*),F(*),G(*),H(*),IO(*) 
DIMENSION XIN(102),YIN(102),XOUT(102),YOUT(102) 

C-----COMMON BLOCKS 
C 

COMMON / STATE / Y1(102),Y2(102),Y3(102), 
> Y4(102),YS(102) 

COMMON / CNTRL / U(102) 
COMMON / INTPLN / INTPLN 

C 
IPRINT=IO(2) 
IOUT=IO(8) 
NX=N(1) 
NG=N(3) 
NH=N(2) 
IER=O 
IGO=1 
IF (10(12) .EQ. 0) IGO=7 

C 
C-----OUTPUT CONTROL VECTOR U 
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C 
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IF (IPRINT .GE. 5) THEN 
WRITE(IOUT,1000) (I,X(I),I=1,NX) 

ELSE 
IF (IGO .EQ. 7) THEN 

IF (IPRINT .GE. 3 .AND. IPRINT .LE. 4) THEN 
WRITE(IOUT,1000) (I,X(I),I=1,NX) 

END IF 
END IF 

END IF 

C-----SETTING UP DATA FOR CUBIC SPLINE/LINEAR INTERPOLATION 
C 

DT=O.01DO*X(16) 
JOUT=101 
NSTEP=JOUT 
XIN(1)=O.DO 
XIN(2)=.02DO*X(16) 
XIN(3)=.04DO*X(16) 
XIN(4)=.06DO*X(16) 
XIN(5)=.08DO*X(16) 
XIN(6)=.10DO*X(16) 
XIN(7)=.20DO*X(16) 
XIN(8)=.30DO*X(16) 
XIN(9)=.40DO*X(16) 
XIN(10)=.50DO*X(16) 
XIN(11)=.60DO*X(16) 
XIN(12)=.70DO*X(16) 
XIN(13)=.80DO*X(16) 
XIN(14)=.90DO*X(16) 
XIN(15)=X(16) 
XOUT(1)=O.DO 
XOUT(JOUT)=X(16) 
DO 15 I=2,JOUT-1 

XOUT(I)=XOUT(I-1)+DT 
15 CONTINUE 
C 

U(102)=X(16) 
C 
C-----INTERPOLATION FLAG: 
C-----
C 

1 - CUBIC 
2 - LINEAR 

IF (INTPLN .EQ. 1) GO TO 17 
IF (INTPLN .EQ. 2) GO TO 18 

17 CALL SPLINE(15,XIN,X,JOUT,XOUT,U,IERR) 
GO TO 19 

18 CALL LINEAR(15,XIN,X,JOUT,XOUT,U,IERR) 
GO TO 19 

19 CONTINUE 
C 
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C-----INITIAL STATE VALUES 
C 

C 

NN=5 
Yl(1)=400.DO 
Y2(1)=0.DO 
Y3(1)=0.DO 
Y4(1)=0.DO 
Y5(1)=1305.DO 

C-----EVALUATE STATE VARIABLES 
C 

CALL RK4(NN,NSTEP,DT) 
C 
C-----EVALUATE CONSTRAINTS AND PERFORMANCE INDEX 
C 

CALL FGH(F,G,H,DT) 
C 
C-----OUTPUT CONSTRAINTS AND OBJECTIVE FUNCTION 
C 

IF (IPRINT .GE. 5) THEN 
WRITE(IOUT,lOOl) F(l) 
IF (NH .NE. 0) WRITE(IOUT,1002) (H(I),I=l,NH) 
IF (NG .NE. 0) WRITE(IOUT,1003) (G(I),I=l,NG) 

ELSE 
IF (IGO .EQ. 7) THEN 

IF (IPRINT .GE. 3 . AND. IPRINT .LE. 4) THEN 
WRITE(IOUT,lOOl) F(l) 
IF (NH .NE. 0) WRITE(IOUT,1002) (H(I),I=l,NH) 
IF (NG .NE. 0) WRITE(IOUT,1003) (G(I),I=l,NG) 

C 
1000 

1001 
1002 

1003 

C 

END IF 
END IF 

END IF 

FORMAT('O' ,6X, 'U(CONT. VAR) =' ,5(lX,I3,lX,E15.8)/,lX, 
> 40(6(lX,I3,lX,E15.8)/,lX» 

FORMAT(lX, 'OBJ. FUNCTION =' ,2X,E16.8) 
FORMAT(lX, 'EQUALITIES =' ,5X,6(E15.8,2X)/, 

> l5(17X,6(E15.8,2X)/» 
FORMAT(lX, 'INEQUALITIES =' ,3X,6(E15.8,2X)/, 

> l5(17X,6(E15.8,2X)/» 
RETURN 
END 
SUBROUTINE RK4(NN,NSTEP,DT) 

t 

C******************************************************** 
C* * 
C* 
C* 
C* 
C* 

THIS SUBROUTINE USES RUNGE KUTTA 4TH ORDER FOR 
NUMERICAL INTEGRATION 

FUNCTION REQUIRED: 

* 
* 
* 
* 



C* 
C* 
C* 
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RK4RHS -- EVALUATING RHS OF THE STATE 
EQUATIONS * 

* 
* 

C******************************************************** 
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION Y(lO),YS(lO),YSS(lO),YSSS(lO),Tl(lO), 

> T2(10),T3(10),T4(10) 
C 
C-----COMMON BLOCKS 
C 

COMMON / STATE / Yl(102),Y2(102),Y3(102), 
> Y4(102),YS(102) 

COMMON / CNTRL / U(102) 
C 
C-----INITIAL STATE VALUES 
C 

C 

Y(1)=400.DO 
Y(2)=0.DO 
Y(3)=0.DO 
Y(4)=0.DO 
Y(S)=130S.DO 

C-----THE MAIN LOOP 
C 

DO 20 I=2,NSTEP 
C 
C-----TEMPORARY ARRAYS NEEDED FOR THE FUNCTIONS TO SAVE 
C-----THEM FOR THE FINAL CORRECTOR STEP 
C 
C-----FIRST (HALF STEP) PREDICTOR 
C 

DO 22 J=l,NN 
Tl(J)=RK4RHS(J,Y,I) 
YS(J)=Y(J)+.SDO*DT*Tl(J) 

22 CONTINUE 
C 
C-----SECOND STEP (HALF STEP CORRECTOR) 
C 

DO 24 J=l,NN 
T2(J)=RK4RHS(J,YS,I) 
YSS(J)=Y(J)+.SDO*DT*T2(J) 

24 CONTINUE 
C 
C-----THIRD STEP (FULL STEP MID-POINT PREDICTOR) 
C 

DO 26 J=l,NN 
T3(J)=RK4RHS(J,YSS,I) 
YSSS(J)=Y(J)+DT*T3(J) 

26 CONTINUE 
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C 
C-----FINAL STEP (SIMPSON'S RULE CORRECTOR) 
C 

DO 28 J=l,NN 

28 
C 

T4(J)=RK4RaS(J,YSSS,I) 
Y(J)=Y(J)+DT/6.DO*(T1(J)+2.DO*(T2(J)+T3(J»+T4(J» 

CONTINUE 

C-----STORING STATE 
C 

Y1(I)=Y(1) 
Y2(I)=Y(2) 
Y3 ( I) =Y( 3) 
Y4(I)=Y(4) 
Y5(I)=Y(5) 

20 CONTINUE 
RETURN 
END 

VARIABLES AT EACH INTEGRATING STEP 

SUBROUTINE FGH(F,G,H,DT) 
C 
C******************************************************** 
C* * 
C* 
C* 
C* 

THIS SUBROUTINE EVALUATES THE CONSTRAINTS AND 
THE PERFORMANCE INDEX. 

* 
* 
* 

C******************************************************** 
C 

C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION F(2),G(*),H(*) 

C-----COMMON BLOCKS 
C 

COMMON / STATE / Y1(102),Y2(102),Y3(102), 
> Y4(102),Y5(102) 

COMMON / CNTRL / U(102) 
C 
C-----EVALUATING PERF. INDEX 
C 

F(1)=U(102) 
C 
C-----EVALUATING CONSTRAINTS 
C 

H(1)=Y3(101)-65600.DO 
H(2)=Y1(101)-968.1DO 
DO 30 I=l,10 

G ( I ) =Y3 ( I + 1 ) 
30 CONTINUE 
C 

RETURN 
END 
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REAL FUNCTION RK4RHS(J,Y,II) 
C 
C******************************************************** 
C* * 
C* THIS SUBROUTINE EVALUATES THE RIGHT HAND SIDE * 
C* OF THE STATE EQUATIONS * 
C* * 
C******************************************************** 
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION Y(lO) 
REAL LIFT 
COMMON / CNTRL / U(102) 

C 
C-----CONSTANTS 
C 

C 

DNSTY=.0023764DO 
S=S30.DO 
AR=3.DO 
G=32.174DO 

C-----ELEMENTS OF MATRIX [A] 
C 

C 

C 

C 

C 

Qll=30.21D3 
Q12=-.6682D-l 
Q13=-6.877D-S 
Q14=19.S1D-IO 
QlS=-lS.12D-lS 

Q21=-33.8D3 
Q22=3.347D-l 
Q23=18.13D-S 
Q24=-S8.6SD-IO 
Q2S=47.S7D-IS 

Q31=lOO.8D3 
Q32=-77.S6D-l 
Q33=S.441D-S 
Q34=28.64D-IO 
Q3S=-33.SSD-IS 

Q41=-78.99D3 
Q42=lOl. 4D-l 
Q43=-30.28D-S 
Q44=32.36D-IO 
Q4S=-lO.89D-lS 

QSl=18.74D3 
QS2=-31. 6D-l 
QS3=12.04D-S 



C 

Q54=-17.85D-I0 
Q55=9.417D-15 
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C-----EVALUATING SPEED OF SOUND 
C 

C 

IF (Y(3) .LT. 36000.DO) THEN 
SPSND=DSQRT(I.244D6-8.57DO*Y(3» 

ELSE 
SPSND=968.1DO 

END IF 

C-----THRUST CALCULATIONS 
C 

A=Y(I)/SPSND 
A2=A**2 
A3=A**3 
A4=A**4 
HT=Y(3) 
H2=HT**2 
H3=HT**3 
H4=HT**4 
THRST=Qll+A*Q21+A2*Q31+A3*Q41+A4*Q51+HT*(QI2+A*Q22+ 

> A2*Q32+A3*Q42+A4*Q52)+H2*(QI3+A*Q23+A2*Q33+ 
> A3*Q43+A4*Q53)+H3*(QI4+A*Q24+A2*Q34+A3*Q44+ 
> A4*Q54) +H4* (QI5+A*Q25+A2*Q35+ 
> A3*Q45+A4*Q55) 

C 
C-----FLAG TO DECIDE WHAT AERODYNAMIC CHARACTERISTIC 
C-----VALUES TO USE 
C 

IF (A .LE. 0.8DO) GO TO 4100 
IF (A .GT. 0.800 .AND. A .LE. 0.900) GO TO 
IF (A .GT. 0.900 .AND. A .LE. 1. ODO) GO TO 
IF (A .GT. 1.0DO .AND. A .LE. 1. 200) GO TO 
IF (A .GT. 1.200 . AND. A .LE . 1. 400) GO TO 
IF (A .GT. 1.400 .AND. A .LE. 1. 600) GO TO 
IF (A .GT. 1. 600) GO TO 4160 

C 
4100 CLA=3.44DO 

CDO=0.01300 
ETA=0.54DO 
GO TO 4190 

C 
4110 AA=A-0.8DO 

CLA=3.44DO-25.5DO*AA**2+395.00*AA**3 
CDO=0.01300+0.06875DO*AA**2+0.312500*AA**3 
ETA=0.5400+54.5DO*AA**2-335.DO*AA**3 
GO TO 4190 

C 
4120 AA=A-0.900 

4110 
4120 
4130 
4140 
4150 



C 
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CLA=3.58DO+6.75DO*AA+123.DO*AA**2-1045.DO*AA**3 
CDO=0.014DO+0.023125DO*AA+3.0875DO*AA**2-16.1875DO*AA**3 
ETA=0.75DO+0.85DO*AA-8.25DO*AA**2+37.5DO*AA**3 
GO TO 4190 

4130 AA=A-l. ODO 
CLA=4.44DO-54.6875DO*AA**2+148.4375DO*AA**3 
CDO=0.031DO+0.155DO*AA-0.8DO*AA**2+1.375DO*AA**3 
ETA=O. 79DO+0.325DO*AA-0.375DO*AA**2+0. 625DO*AA**3 
GO TO 4190 

C 
4140 AA=A-l. 2DO 

CLA=3.44DO-4.0625DO*AA+14.625DO*AA**2-25.3125DO*AA**3 
CDO=0.041DO-0.0714285DO*AA**2+0.10714125DO*AA**3 
ETA=0.845DO+0.25 DO*AA-O. 125DO*AA**2 
GO TO 4190 

C 
4150 AA=A-1.4DO 

C 

CLA=3.01DO-1.25DO*AA+5. 416665DO*AA**2-14. 583325DO*AA**3 
CDO=0.039DO-0.0157143DO*AA-0.014732DO*AA**2+0.0915175DO*AA**3 
ETA=O. 89DO+0. 2DO*AA+0. 34375DO*AA**2-1. 71875DO*AA**3 
GO TO 4190 

4160 AA=A-l. 6DO 
CLA=2.86DO-0.8333DO*AA-22.1667DO*AA**2+79.16675DO*AA**3 
CDO=0.036DO-0.010625DO*AA+0.03125DO*AA**2-0.015625DO*AA**3 
ETA=0.93DO+0.13125DO*AA-1.3125DO*AA**2+3.28125DO*AA**3 
GO TO 4190 

C 
4190 CONTINUE 
C 
C-----LIFT AND DRAG CALCULATIONS 
C 

C 

UMID=(U(II-1)+U(II»/2.DO 
DRAG=.5DO*.00254DO*DEXP(-.00003663DO*Y(3»*Y(1)**2* 

> S*{CDO+ETA*CLA*UMID**2) 
LIFT=.5DO*.00254DO*DEXP(-.00003663DO*Y{3»*Y{1)**2* 

> S*CLA*UMID 

C-----FLAG TO DIRECT THE EVALUATION OF 
C-----THE APPROPRIATE RHS STATE EQUATION 
C 

C 
3000 

> 

IF ( 
IF ( 
IF ( 
IF ( 
IF ( 

J .EQ. 1 ) GO TO 3000 
J .EQ. 2 ) GO TO 3010 
J, .EQ. 3 ) GO TO 3020 
J .EQ. 4 ) GO TO 3030 
J .EQ. 5 ) GO TO 3040 

RK4RHS={THRST*DCOS(UMID)-DRAG-Y(5)*G*DSIN(Y(2»)/ 
Y(5) 



75 

GO TO 3050 
C 
3010 

> 
RK4RHS={THRST*DSIN{UMID)+LIFT-Y{5)*G*DCOS{Y{2»)/ 

(Y(5)*Y(1» 

C 
3020 

C 
3030 

C 
3040 

C 

GO TO 3050 

RK4RHS=Y(1)*DSIN(Y(2» 
GO TO 3050 

RK4RHS=Y(1)*DCOS{Y{2» 
GO TO 3050 

RK4RHS=-THRST/(1600.DO*G) 
GO TO 3050 

3050 CONTINUE 
RETURN 
E~ 
SUBROUTINE SPLINE(IIN,XIN,YIN,JOUT,XOUT,YOUT,IERR) 

C 
C******************************************************** 
C* * 
C* THIS SUBROUTINE COMPUTES A CUBIC SPLINE FOR THE * 
C* * 
C* GIVEN DATA AND RETURNS INTERPOLATED VALUES OF THE * 
C* * 
C* FUNCTION AT SPECIFIED X LOCATIONS. * 
C* * 
C** 
C** NOTE: INPUT DATA **MUST** BE IN ORDER OF 
C** INCREASING X !!! 
C** 
C* 
C* VARIABLES: 
C* 
C* lIN = NUMBER OF INPUT DATA POINTS - lIN <= 25 
C* XIN(I) = LOCATION OF INPUT DATA POINTS 
C* YIN(I) = VALUE OF THE FUNCTION TO BE INTERPOLATED 
C* AT X=XIN(I) 
C* JOUT = NUMBER OF VALUES TO BE INTERPOLATED TO 
C* XOUT(J) = X LOCATIONS USED FOR INTERPOLATION 
C* YOUT(J) = INTERPOLATED VALUE OF Y AT XOUT(J) 
C* 
C** IERR = ERROR FLAG (PLEASE CHECK THIS VARIABLE) 
C* 
C* 
C* 
C* 
C* 

IERR=O - INTERPOLATION OK 
IERR=l - PROBLEMS WERE ENCOUNTERED DURING 

INTERPOLATION 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************** 



C 

C 
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IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION XIN(*),YIN(*),XOUT(*),YOUT(*) 
DIMENSION YPP(25),Cl(25),C2(25),DX(25),DY(25) 
DIMENSION A(25),B(25),C(25),D(25) 

C-----ZERO ERROR FLAG 
C 

IERR=O 
C 
C-----SET VALUES OF SECOND DERIVATIVES AT ENDPOINTS 
C-----ZERO VALUES INDICATE NATURAL CUBIC SPLINE 
C 

C 

YPP(l)=O.DO 
YPP(IIN)=O.DO 

C-----SET UP TRIDIAGONAL MATRIX 
C 

DO 40 I=l,IIN-l 
DX(I)=XIN(I+l)-XIN(I) 
DY(I)=YIN(I+l)-YIN(I) 

40 CONTINUE 
IL=2 
IU=IIN-l 
DO 50 I=IL, IU 
A( I )=DX( I) 
D(I)=2.DO*(DX(I)+DX(I-l» 
B(I)=DX(I-1) 
C(I)=6.DO*(DY(I)/DX(I)-DY(I-l)/DX(I-l» 

50 CONTINUE 

C 

C(2)=C(2)-DX(1)*YPP(1) 
C(IU)=C(IU)-DX(IU)*YPP(IU+l) 
B(IL)=O.DO 
A( IU)=O.DO 

C-----INVERT TRIDIAGONAL MATRIX TO OBTAIN YPP 
C 

60 

70 
C 

CALL SY(IL,IU,B,D,A,C) 
DO 60 I=2,IIN-l 
YPP(I)=C(I) 
CONTINUE 
DO 70 I=l,IIN-l 
Cl(I)=YIN(I+l)/DX(I)-YPP(I+l)*DX(I)/6.DO 
C2(I)=YIN(I)jDX(I)-YPP(I)*DX(I)/6.DO 
CONTINUE 

C-----DETERMINE SECTION OF CUBIC SPLINE FOR INTERPOLATION 
C 

DO 120 J=l,JOUT 
IF (XOUT(J) .LT. XIN(l» THEN 
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C 
C-----OUTPUT LOCATION OUTSIDE INPUT DATA RANGE ( TOO 
C-----SMALL ) 
C 

WRITE(5,80) J 
80 FORMAT (//' ***** XOUT(' ,12.') < XIN(l) -CHECK 

C 

>YOUR DATA ***') 
IERR=l 
RETURN 
END IF 
IF (XOUT(J) .GT. XIN(IIN» THEN 

C-----OUTPUT LOCATION OUTSIDE INPUT DATA RANGE ( TOO 
C-----LARGE ) 
C 

WRITE(S,90) J 
90 FORMAT (//' ***** XOUT(' ,12,') > XIN(IIN) - CHECK 

>YOUR DATA ***') 
IERR=l 
RETURN 
END IF 
DO 100 I=2,IIN 
IF (XOUT(J) .LE. XIN(I» GO TO 110 

100 CONTINUE 
110 CONTINUE 

IS=I-1 
C 
C-----INTERPOLATED VALUE OE' YOUT(J) 
C 

YOUT(J)=YPP(IS)/(6.DO*DX(IS»*(XIN(IS+l)-XOUT(J»**3 
> +YPP(IS+l)/(6.DO*DX(IS»*(XOUT(J)-XIN(IS»**3 
> +C1(IS)*(XOUT(J)-XIN(IS»+C2(IS)*(XIN(IS+1)-XOUT(J» 

120 CONTINUE 
RETURN 
END 

C 
SUBROUTINE SY(IL,IU,BB,DD,AA,CC) 

C 
C******************************************************** 
C* * 
C* SUBROUTINE SY SOLVES TRIDIAGONAL * 
C* SYSTEM BY ELIMINATION * 
C* IL = SUBSCRIPT OF FIRST EQUATION * 
C* IU = SUBSCRIPT OF LAST EQUATION * 
C* BB = COEFFICIENT BEHIND DIAGONAL * 
C* DD = COEFFICIENT ON DIAGONAL * 
C* AA = COEFFICIENT AHEAD OF DIAGONAL * 
C* CC = ELEMENT OF CONSTANT VECTOR * 
C* * 
C******************************************************** 
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C 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION AA(l),BB(l),CC(l),DD(l) 

C 
C-----ESTABLISH UPPER TRIANGULAR MATRIX 
C 

LP=IL+1 
DO 130 I=LP,IU 
R=BB(I)jDD(I-1) 
DD(I)=DD(I)-R*AA(I-1) 
CC(I)=CC(I)-R*CC(I-1) 

130 CONTINUE 
C 
C-----BACK SUBSTITUTION 
C 

140 

CC(IU)=CC(IU)jDD(IU) 
DO 140 I=LP,IU 
J=IU-I+IL 
CC(J)=(CC(J)-AA(J)*CC(J+1»/DD(J) 
CONTINUE 

C 
C-----SOLUTION 
C 

STORED IN CC 

C 

RETURN 
END 
SUBROUTINE LINEAR(IIN,XIN,YIN,JOUT,XOUT,YOUT,IERR) 

C******************************************************** 
C* * 
C* THIS SUBROUTINE COMPUTES A LINEAR FIT FOR THE * 
C* * 
C* GIVEN DATA AND RETURNS INTERPOLATED VALUES OF THE * 
C* * 
C* FUNCTION AT SPECIFIED X LOCATIONS. * 
C* * 
C** 
C** NOTE: INPUT DATA **MUST** BE IN ORDER OF 
C** INCREASING X !!! 
C** 
C* 
C* VARIABLES: 
C* 
C* lIN = NUMBER OF INPUT DATA POINTS - lIN <= 25 
C* XIN(I) = LOCATION OF INPUT DATA POINTS 
C* YIN(I) = VALUE OF THE FUNCTION TO BE INTERPOLATED 
C* AT X=XIN(I) 
C* JOUT = NUMBER OF VALUES TO BE INTERPOLATED TO 
C* XOUT(J) = X LOCATIONS USED FOR INTERPOLATION 
C* YOUT(J) = INTERPOLATED VALUE OF Y AT XOUT(J) 
C* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
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C** IERR = ERROR FLAG (PLEASE CHECK THIS VARIABLE) * 
C* * 
C* IERR=O - INTERPOLATION OK * 
C* IERR=l - PROBLEMS WERE ENCOUNTERED DURING * 
C* INTERPOLATION * 
C* * 
C******************************************************** 
C 

C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION XIN(*),YIN(*),XOUT(*),YOUT(*) 

C-----ZERO ERROR FLAG 
C 

IERR=O 
C 
C-----DETERMINE SECTION OF LINEAR FIT FOR INTERPOLATION 
C 

DO 120 J=l,JOUT 
IF (XOUT(J) .LT. XIN(l» THEN 

C 
C-----OUTPUT LOCATION OUTSIDE INPUT DATA RANGE ( TOO 
C-----SMALL ) 
C 

WRITE(S,BO) J 
BO FORMAT (//' ***** XOUT(' ,12, ') < XIN(l) -CHECK 

C 

>YOUR DATA ***') 
IERR=l 
RETURN 
END IF 
IF (XOUT(J) .GT. XIN(IIN» THEN 

C-----OUTPUT LOCATION OUTSIDE INPUT DATA RP~GE ( TOO 
C-----LARGE ) 
C 

WRITE(S,90) J 
90 FORMAT (//' ***** XOUT(' ,12,') > XIN(IIN) - CHECK 

>YOUR DATA ***') 
IERR=l 
RETURN 
END IF 
DO 100 I=2,IIN 
IF (XOUT(J) .LE. XIN(I» GO TO 110 

100 CONTINUE 
110 CONTINUE 

IS=I-1 
C 
C-----INTERPOLATED VALUE OF YOUT(J) 
C 

YOUT(J)=(YIN(I)-YIN(IS»/(X1N(I)-X1N(IS»*(XQUT(J)-XIN(1S»+ 
> YIN(IS) 



120 CONTINUE 
RETURN 
END 

IILKED.SYSLIN DD 
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II DD DSN=N.I3137.0BJECT.LIB(SQP),DISP=SHR 
II DD DSN=N.I3137.0BJECT.LIB(SECOND),DISP=SHR 
IIGO.ET05EOOl DD DSN=S.I3546.MODEL55.INPUT,DISP=SHR 
IIGO.ET06EOOl DD SYSOUT=A 
IIGO.ET07EOOl DD DSN=S.I3546.MODEL55.REST, 
II UNIT=DISK, 
II DISP=(NEW,CATLG), 
II DCB=(RECEM=EB,LRECL=80,BLKSIZE=6160), 
II SPACE=(TRK,(lO,lO),RLSE) 
IIGO.ETIOEOOl DD DSN=S.I3546.CONTROL.DAT, 
II UNIT=DISK, 
II DISP=(NEW,CATLG), 
II DCB=(RECEM=EB,LRECL=80,BLKSIZE=6160), 
II SPACE=(TRK, (lO,lO),RLSE) 
IIGO.ETIIEOOl DD DSN=S.I3546.YY1.DAT, 
II UNIT=DISK, 
II DISP=(NEW,CATLG), 
II DCB=(RECEM=EB,LRECL=80,BLKSIZE=6160), 
II SPACE=(TRK,(lO,lO),RLSE) 
IIGO.ET12EOOl DD DSN=S.I3546.YY2.DAT, 
II UNIT=DISK, 
II DISP=(NEW,CATLG), 
II DCB=(RECEM=EB,LRECL=80,BLKSIZE=6160), 
II SPACE=(TRK,(lO,lO),RLSE} 
IIGO.ET15EOOl DD DSN=S.I3546.YY3.DAT, 
II UNIT=DISK, 
II DISP=(NEW,CATLG}, 
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160), 
II SPACE=(TRK,(lO,lO),RLSE) 
IIGO.ET16EOOl DD DSN=S.I3546.YY4.DAT, 
II UNIT=DISK, 
II DISP=(NEW,CATLG), 
II DCB=(RECFM=EB,LRECL=80,BLKSIZE=6160), 
II SPACE=(TRK, (lO,lO),RLSE) 
IIGO.ET17EOOl DD DSN=S.I3546.YY5.DAT, 
II UNIT=DISK, 
II DISP=(NEW,CATLG), 
II DCB=(RECFM=EB,LRECL=80,BLKSIZE=6160}, 
II SPACE=(TRK,(lO,lO},RLSE} 
IIGO.ET13EOOl DD DSN=S.I3546.UU.DAT, 
II UNIT=DISK, 
II DISP=(NEW,CATLG}, 
II DCB=(RECFM=EB,LRECL=80,BLKSIZE=6160), 
II SPACE=(TRK,(lO,lO),RLSE} 
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Inputs to Model 1 

C**************************************************** 
C* * 
C* INPUTS TO MODEL 1 BEFORE CALLING * 
C* SQP * 
C* * 
C**************************************************** 
C 

seventh 
INTPLN = 2, 

&END 
&SQP 

ISCALE = 2, 
MAXNPI = 200, 
MAXFUN = 2{)O, 
lLOMAX = 200, 
IUPMAX = 200, 
IPRINT = 2, 
ICARD = 2, 
IRSTRT = 2, 
MGRAD = 1, 
FDPCT = 0.00, 
FDP (1) = 14*.1. D-6, 1. D-5, 1. D-2, 
TOLHNP = 5.D-3, 
TOLGNP = 1.0-3 I 
TOLFNP = 1.0-8, 
TOLSNP = 1. D-5, 
ISFMOD = 1, 
XSCALE(1)~16*1.DO, 
FSCALE = 1.DO, 
GSCALE = 1.DO, 
HSCALE = 1.DO, 
BOXL(l) = 15*-.02DO,O.DO, 
BOXU(l) = 15*.17DO,1000.DO, 
DELTAX(1)=15*.OOOOlDO,1.DO, 
XR(l) = .105443114500DO, 
XR(2) = .211899586749D-l, 
XR(3) = .447023441329D-l, 
XR(4) = .382973212640D-1, 
XR(5) = .292484688648D-1, 
XR(6) = .128786412930D-l, 
XR(7) = . 149126419715D-l, 
XR(8) = .308402949874D-1, 
XR(9) = .207402984632D-1, 
XR(10)= .213691408635D-l, 
XR(ll)= .202589380879D-1, 
XR(12)= .182242251625D-1, 
XR(13)= .265208946206D-1, 
XR(14)= .636955316069D-1, 
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XR(lS)= . 768118631641D-l, 
XR(16)= 480.DO, 

&END 
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Sample output from Sequential Quadratic Programming 

SEQuENTIAl.. QUADItAfle ~IIOG .... ,."tNQ QP"'UZ"'flO~ O"I ... [~ 
W[ItUDN A.l 2J'lSJ'el 

UNSCALC' )(-'I[CTO~. 
a.""7a"SI~.,!t·03 
0.1.72'.3'1[·". 

SQP ST:)~"'G:: R!QU( ~C"::NTS 

a.4000aoocu:·os 
O.9a87c,a"t-4l 
0.170'3,.7'·04 

1.".77110(_03 
0.13343115['0", 
0.17201235('0. 

X, .04, :. .. VECTelll STORAGE AVAILASLC lOaD 100 100 
x, 11, G .. IIterO_ STO~"G[ IIIE:lUIR(.D 11,e • 11 
CNT[.1tO V"COH -- SQP DRIVCIII: 
,.opel:!! 0.000[·00 IPIitINTa .2 
NPIIOBV':a 15 NCQ:. TYa .2 HI_ il 

a.I.":J"75[·Ol 
0.13''15517£''. 
0.,7'08712£-03 

IL.:J:"'I&1I8 200 [UP''' •• 200 PUtA, p'ltea 0.20010(*01 0.20000('00 
, .. "NPt= 200 '' ....... IN. zoo "G ''''.0 a 1 

O.100l.2'4['~. 
0.150136'.['04 

TOLGN"a 0.IQOOO[-02 TOL.liNP. 0.10000[-02 TOL""". 0.10100£-07 TOLSNP1I 0.10000£-02 
S(::;Y"'I.~ 0.1I:I:l00t.07 $I'UI.I._ O.IGaoat-07 
TI."Z"~"" 0.50000£-10 YZC:"O _ O.10000£-lt n .. 'uo£. 0.10100£_0, 
15''''00- IZ":)"'IO. 1 
,ulDa". ~ N)a~"T1I 1 lCt1KQP. 0 "OOtQ~. 1 "" .... 1510. 5 GL. ... t. a.1ooOt_Ol 

0.10153""0['04 
0.15." •• ,[_04 

UN SCI..) UII'III '0". 0.17500000[.0Il10 '.115GOOOCU:·0_ O.I1'OGOOO!·O_ 0.17500003(.0_ 0.175000Ut.O_ 1.17500000[.0_ 
0.17500000[.0_ 0.17500:l0Cl[·0_ 0.17500000£:·0_ '.17500003:::.0. a.175000'0£.0_ '.17530000[.C' 
0.17500000[.040 0.115AOOOO£.0_ 0.17500000[·0_ 

UJIrISCI..:'I 1,. .. 111 so... 0.0000011001;.00 0.00000000[·00 O.Oooooooot·OO ,.ooaouI,'.OQ I.0I10aOo,oC.OO o.aoooooOOC.Oo 
:1.00000000[.00 0.0000.0000[·00 O.OOOOOOOO!:_OO O.oOOOaOolC.OO ,.ooaOOll:lO[.OO 0.03000000[.00 
0.00000000[.00 0.00000000[·0, O.lOaOOOOae·oo 

U't5CA ... £) Dt~T." 0.10000000[-0.., 0.10000000[-1. 0.1000CIoO'0[-0_ 0.100oo00:J[-0. '.10000000["'0_ 0.111000000E-0_ 
13.10000000£-0_ 0.10000000["0. 0.10000000e-0_ 0.100,0000[-0'" a.la.ooOOOOC"O_ 0.1:1000000t .. O--
3.10.,000.,OE-Q4t 0.100110000["0.., O.lOOOOOOot-O .. 

SCAI.C ,. ... CT~,.S: Q.10000000[.01 0.1l10000GO[·01 O.lOOOOQOO!:·OI 0.1II000000C.Ol 0.l«1000000e.01 0.lC:J00000C.01 
'.1:1000000(.01 0.10000000[·01 0.10000000[·'1 0.10000000[.111 O.100000l0C-Ol 0.12000000C.01 
O.lDOOOOOOC.Ol 0.10000000E·Ol 0.10000.000&·01 JIll." ,,"'CHANG[S: 0.1:1000000£-01 0.10000000(-01 O.1GDODQOOt .. Ol 0.10000000£-01 0.10000000[ .. 01 0.13000000["01 
Q.l:101S01S11iQt-Ol IJ.10000000[-n. 11.100QOOOO~"Ol 0.10000000[-01. 0.10000ooD[-01 O.laOaOOO[-Ol 
O.1000000l!:"OI 0.10000000[-01 0.111000000t-Ol 

CPU 'I~£ "001 ~U:, IAL WUH "£5P[CT TO 1 TM CaNTJtOI.. vallIASLE: • 0.012: Sr:CO~DS 

C'U '1"[ "0" .3AIITUL W,nt Jt[SPECT TO 2 TH CONfllOL. ".III"8L.£ • 

C:tU TI-.[ "0" :'&IIITIo\1.. wITH IItESJlletT TO J TN CONTJtal.. V.AlalL.£ • 

CPU n"'£ "Ollt DUITIAL WITH U:SPECT fa • TN CO"'T"OL. VA",ADI..£ 11 

CPU fI"'t 1'0' ~.AT tAL. WUH III£SP£CT TO ~ TM CONTAOL ., .. "t"IL.E: • 

C'u TI"£ 1'0' ~.JtT UI.. WUH IIt£SPttT TO • TH CONrlitOL .,.lItt"BI.[ • 

CPU 11"[ ro, " .. ",Tl"\.. WITH "'[SPECT TO l' TM CO'UIIO\.. .,",n."'Lt • 

CPU fI"[ 1'0' s."T UI.. WUH ,,[spter ra I TH CONTIIIOL ""IIt".I.£ • 

CitU 'IIItC "0" a •• T UI. WITH IICSPtCT TO • TN COHTIIIOL. va"IAIIL.E • 

CPU 1IM£ rOil ".111' tiL. vITH IIIEspteT TO 10 TN CONTIIOL .,.111'''11..1£ • 

C'U 1I"'t rD. a.IIT (AI.. wtTM JtESPECT TO 11 TM CONTIIOL. V"lII.tAIL.E • 

C:-u 11"'[ ,.Olt :» •• T 'AL. VITH .£S"[C:T TD 12 TM CONT.OL V.IIIaSLt 11 

C: .. U fJ"I[ "0111: .... IIITt.L. .,.,TH IIItS_[C:T TO I) TN C:ONTIitOL VAInA!I..[ • 

C:DU tl"'[ '-Ollt aU.TU.1.. IItt" «CS"eCT to 1_ '" CQN''''O~ V""'II.SL.t • 

c:su 11"1£ "0111: s •• , tAL wtT" IICS"£CT TO 1S TN C:ONTJtOL. '1AIIII .... LE • 

0.020 seC:ON!O$ 

0.020 S£COfiifOS 

0.020 sceo .. Os 

0.0015 seCOfiifOS 

0.0.1 SECONDS 

0.020 stto",:'IS 

0.031 StCONOS 

a.~ot SeCONOS 

• .02:1 S£CO .. OS 

'.00' StCONOS 

0.012 SttONOS 

0.02' StCONOS 

o .oao SECOMOS 

a.02' SeCONDS 

~!~!!!-~~-~~~~!~!~~!-~~~~!~~-------- .. -.. -----------... ----_ .. -------------_ ... --------------------------.... _------------------
0.l.o,2'.5e.0) 0.2'81'2 •• [.') 0.2'1'91217£-0) -0.2.,s •• 0te.01 -0.1'5327 •• £.0. -0.32 •• '178[.0. -G.5220!'70t 

_ 0.17'2,7 7:Je .0. -0.331 '91'.IC_O. -c. 300 .,,76,Ot .0_ -0.2'. '2218[.0_ -O.22,.25Z5£. O. -0.133510.,7(. O. -:J. 2'~!l' 32!1[ 

.. -~.:.!!~!!!~~~:!!-----------------------.. ---.. ---------------------.. _-----------------------------------------... _------_ .. _-
O.OD:lOOOoat.OI o.oooooooot.oo 0.00000000[ •• 1 0.0I000000t.OO O.03ooooooe.oo O.OOOOOOO:l£:.Oll o.ooeOQ;JCO[ 
0.00000003£.00 0.00100000[-110 0.0000'000[.'1 o.ooooooOO~.OO o.OOOOOOOOC.oo O.OOOODOOOt.oo 3.000001l00C 
:J.I0000000C·Ol 

-: ~:;;;;;;; ;~:;;---.. ; :;;;;;;;;[:;;----;:;;;;;;;;~:;;----a:;;;;;;; ;t:;;----;:;;;;;;;;t: ;;----;:;; ~;;;;; t: 00'" ---;:;;;; ;;;;~ 
O.ODOOQOOo£.;n 0.01000000£.00 ..... 00.000[.0. 0.00000000£0.01 o.oooooo'Ot_OO 0.00000000(.00 O.OOOOOOOOt 
0.0:10001100[·00 

-: ;:;;;;;; i~~:;;---:; :2~=i;~;;c;;;----;:;;;;;;;;;:;;----;:;;; ;;;;;~: 0;----;:;;;;; ;;;c :;; ----;:;;;;;;;; c:;; ----; :,,;,;;;;; 
O.OO.,oooooc.,o Q.QOGO:UOOt.O. ca..OOOtooe-QC·OO O.OOOOOOOOt_oo o.ooooooooc.oo o.oooooooot.oo O.OCODOoOO[ 
O.OooOOOOOt·oo 

--;:~ i;;;;; ,c: ;;---:; :;;;; ;;~;[:;;----;:;;;;;;;;[:;i----;:;;;;; ;;;~:; ;----;:;;;;;;;; ~: ;0----; :;00; ;;;;;:;; ----;:;;; ;;;;;r 
o.ooooooooc.oo 0.00000101£ •• 1 ,.0000Goooc.0' 0.00000000[.01 o •• :uooooo[.ao o.oooooooot.oo 0.00000000[, 
,.ooooooo=t·oo 

--;:; ;~; ;;;;c:;;· .. -:; :;0 ;;; ;;;r:;;---:;:;ii;;i;:c:;;----;:;;a 0 ;;;;~:; ;----;:;;;; ;oooc :;0-" --; :000;;;;;;; c:;; ----;:;0;; ;;;;~ 
0.00000000(.00 o.oooooOOOt.OI 0.00000000[-00 O.OOOOOOOOt.o. o.ooooooooe_o. o.oooooooot_OO 0.00000000£ 
,.ooooooooe·oo 

--;:; ;:; =;; i[:; i ...... -; :;; ii; ;;,~:;;---:c:;;;i;;~; e:;; ----a:;;; aooooe: ;;----;:;;; 0;;;;;:; ;----;:;;;;;0;; c:;;-_ .. -;:;;;;;;;; t 
l.OlC:lOOlO[.OO 0.300110000[.00 0.00000000(_00 0.00000000£.00 o.ooooooooe.oo 0.0000000,£:.00 0.00000000( 
o.ooooooooc·o, 

--~:; ~;~ 12 ~2t:;; ----; :~;oi~~;iE:02-_-: o:~ ;O-;;28;~:OS" ·-:o::7i;~~zit :;;----;:o;;;;;;;~:; ;----;:; ao; a;;; [:;; ---.. ;:;;;;; ;;; [ 
0.00000000£.00 0.00000000[.0' ,.ooooooooc·oo 0.00000000[.00 0.00000000[.00 0.00000000(.110 O.OOOQOOOO[ 
0.00000000[·00 

--;:~;;;;; ~;[:;; -.. --; :;;;;;; ;;t :;;----;: ;;;::;;;t:;;---:; :;;i;;; ;;;:; ;----;:;;;0;; ;;c: a; ----;: o~;;;; c; t:;;----;:;;;0 a;; ac 
O.OOOOOOOOt.oo 0.00000000(.00 o.ooooooooc.oo '.10000000[.00 O.O:lOOOoooc.oo O.OOOOOOOOt.oo O.OOOQOOOO[ 
0.00000000[·00 

.. -;:~ ;;;; ;;;,:; i ----; :;;;;;;;; [: oi----;:;;:;;; ;~;: ;;---:; :;;i ;;i;~E:; ;---:;:;; ~;;; i~t :;;----;: ;;;; ;;;; t:;; ----;:;;; ;;;;; [ 
O.Ol"OOO":I[.oo •• oooooooot.o. O.OlOooooot.oo o.ooO:Jooo:u;.oo o.ooooooooe.oo :J.oooooooo!:.oo O.O~OOOOQQC 
C.OOOOOIIOO[·OO 

... -;::;;; i; i i ~:;; .. ---; :;;;;;;: ;~:;z----;:;:;;;i;;~:;i---:;: ;;; i;i;~~:; ;---: ;:1;; ;;; ;;c: ;~---";:;;0;; 0 0 0 t: 0; -.... -;:;;;O'; ~;;; 
o.oooooooOC.oo !J.OOtuaOooc.ol:J O.OOOOOOOOt·oo o.oao::uooot.oo o.ooooooooe.oo O.OOOOOOOO!;.oo o.oOQQCQaoc 
o.ooooooooc_oo 

_ .. ~::!! i;;; c[:;; -.. --; :;; :;;; ;ir:;;" ---a:; i;;;;; 7C :;;---:;:;~; ~;;; 7t:; i-- -:;:;;; ;;;:; t: os-" -:;:;i;; i;:;!:; i - ..... -;:;;; 0' ~;; ~ ; 
l.Ol:lOCO!J:J(.oo l.OOOlooooe.oo 0.00000000(.00 o.oooooooor.oo 0.03000000C.00 o.ooooooooe.oo O.OOOOCJ~;~ 
c .oooooo,oc·oo 

--; ~: ;;;;;; it: ;;--- .. ; :;;;;;;;:[:;;----;:,;;;;=;i~:;i- .. -:;:;;~;;;;;::; ;---:;:;~;~;;;;~ :;;;-... -: ;:;;;;;;;; ~:;;-_ ... -;:;;;;~ ----
:.000000:)0(·00 a.oooooooo£.oo c.ooooooooc.oo o.o,o:aoooc.oo 0.110000000(.00 ,.ocoooooo!:.oo o.ooooo:!eo£ 
~.OOOOOO~O[·oo 
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••• "UNCTION [VALUATION CPU Tr ... [~ 
••• T:JYAL GJtA:.r£'H tVALUAHON CPU Tl",a 

0.020 SeCONDS 
0.30' seCONOS 

•••• Ot",W'.n'l£ S:ALtNG CHtCK AND "00 •• 

GIU.t", c."tO"'~, AND 
CO""'''':)L VU: uaLe. 

1 • • • • • 1 • • ,. 
11 
12 
1> .. 
15 

WI L\. at IlEStU.£D 
"""'" O("-IY.l.TI'I( 

0.0000000:1£-00 
:I.OO~OOOOO(.OO 
0.00000000[_00 
o.ooaQQOOQ[·OO 
0.00000000[_00 
0.00000000[_00 
O.OOOOOOOQ£·oo 
0.00000000£-00 
o.ooooooooe-oo 
0.000011000[-00 
:).00000000£-00 
G.OOOOOOOO[_OO 
o.oooooooot_OO 
0.00000000[-00 
o.oooooooot·oo 

::IP IASIS "Anlx OCTt""'INANT • 

••••••• ITEAATIOfill SU""AltT ••••••••• 

.. IX D£iI(JVA'Iyt 
0."0010 oooc-o J 
0 •• 31125.0[-03 
o.al~UI3·U[.Ol 
0.10 lOIU,57[' 0 S 
0.10,""1113[_05 
0.32,'''171£ .. 03 
0.52201'70[.03 
0.371112"1"'10t_123 
O.lll'l~h'E·al 
0.30030760[.-0) 
0.2."'2218[.-03 
0.225.2525C_03 
0.1.)3'.0 .. 7[_0) 
O.2"5']2.C.0~ 
O.125OCO.,5C.01 

0.000.00000[·00 

.C:O,,","D[D .SCAL£: Cr ..... G[ "AI:TOA 
O.liJGOOOOO[·Ol 
e.10000aooC·Ol 
~.11100000ot·01. 
0.10000000[.00 
0.111000000[·00 
O.laOO~OOO(.OO 
J.laDOOOOD[·Oo 
'3.1~OOaaaOt·oa 
0.10000000£·00 
~.10000000e·oO 
0.10000000[.00 
C.l0000000[·oa 
Co.l0DOOOOO(·oa 
0.10000000[·01 
0.10000000[.01 

He... 1 • rV'f:l'I)1'III [VALS. 1 TOl'AL "u~e eVALS. 1. • G.AOI(NT eVALS" 1 ,.u,. 0.2720.115.,e.O) 
GL"IIOlt ... o.oooe.oo :0" JrtO"". 0.102e.0. SeA.I:" NOli". o.oooe.o, DELTA''',. o.oooe.oo ALP"A. 0.000(.00 
."VEI:TO... , •• ,00000:£.0] 0 •• ,.,7110£.01 0.8"'.C,,75!:.O) 0_1003"'2'.[.05 0.10153 ... 70[_05 0.,.70.,.'(-0'" 

0 •• ,,70'0"-0. 0.133.)115£_05 0_13.",517(.05 0.1501;'.5'(.05 0.15.3'1.5(.05 0.1.1,72 •• 56(.05 
0.110'33.,'£.05 \) .1'Z01235(.0~ O. '''50a712[.03 

;;IUOI t~f. • 0 .17Zl"3".~"0 1 -0.1756517""'01 -0.10051730 !:-01 -0.72"'11'''.£-0) -a. ' •• 11111£:-0 3 -0.211'0 533 [-02 
-:1.];1 .Z.O".'-02 .. a .21.''1'5''''02 -0.1781_73"[_02 -0.15.38."(-02 -0.11'5721 ,e- 02 -0. 12'~1'0 7[-0 2 
-0.120.0'.7£:-02 .. 0.1 • .5'02.7( ... 01 -1.12.'.31'£-01 

eQUAL.. ITlts- -0.10 oa7 301C. 0. 0.'.871235'. 01 
l .. tOUALIlIES. D.DIIOOOOOD[.OO 0.5302.333[.0. -0.355""15!:.0. -0.122 ... .557[.0. -0."53"""£.040 -~.5Z7'0'G'C.0. 

-0.1022573.,·05 0.'.02172SE.05 0.11 .... 12'0£_0' 0.1'7582'2e.O. ,.25'27,$OC.O • 
••• OJADIUrIC P.:J~"A" CPU TI"'. 0.1'0 Sel:ONDS ••• 

•••••••••• OUAD •• TIC g.OG,"',,,, CONST."UifT .... lIIrIAL COIIIIII,(r10N rACTO •• 
:)~CDI 1.''4rO''''ATfO~: 'TtAATlONa 1 
~"'ULT_ 0.2127.1O,C-03 0 •• 3815'02[-01 0.1135111,!:"Ol 

0.'.11151'l-ll. 0.10000000(.01 0.203'5025t-02 
0.10000000C·Ol 

0.10000000C·Ol 
0.10000000t·Ol 

0.137353"[-03 
0.IOO00000t·01 

O.I:oaoaooe·OI 
O.IDOOOO;oc·ot 

••• StlltCH STe~ & 0.0 roo .. O.Z"Z0115'(.~3 C NO"". 0.111\IS'51(.Olo 
••• S(A~I:" STell' • 1.0 "IX'. 0.27201256'·03 eND"". 0.101"7 •• ,7[.0, 
(II ... ,T PtJrtALTT "U't:TION LIN(.RIZATION ".eTOIII: "HAT a 0.207'1202(.01 

\."Ga 0.2720115'[.01 Plil. 0.481'3'''",C.0. OPSls-0.57 
I. ... ,. 0.27201'57(.01 Plil. O ••• 0.37!U,t.0... OPHl .... 0.l1 

"1.X )(-C'iA't~'$. :l.10000000t-01 0.10000000£.01 0.10000.o00t-01 
0.1:30110000C-Ol 0.10000000[-01 0.10000000(-01 
O.I:3000000~·01 0."'0000000£-01 0.10000000[-CII 

IT(a"TIOIIif SU"'''AJtT ••••••••• 

0."'000000'£-01 
0.1:1000000(-01 

O.IOOOoOOU:-ol 
0.10000000(-01 

0.1:000000£-01 
0."000000C-01 

I r~.... 2' • ":.n:TllN C'tALS. Z TOTAL rUNC CVALS. 12 • '.1.01tNT C""\"S. 2: ru,). 0.2'2~125'E.O) 
jlt.~OIl"'. 0.l'ge.01 :Ollf lifO .. :... 0.102'.0' S(.JtCH NO ...... 0.131'.00 OCL'.''''. 0.35'£-0, ALP~". 0.100E.01 
.-'1cCTO". ' .... 000000[.0] 0.,5.7"1.,[·01 0 ••• 5!1"'2E"·Ol 0.1003.1"C.0' 0.1015).S'(.05 0 ••• 70.323(-0. 

G.~.e7:10.6'·0" 0.133.3077[.05 0.13"'5"".'.05 0.15013"2'[.05 0.1511'1)9(.05 0.1'72 •• 35'.05 
O.170~331"".05 0.17201135£.0'" 0 •• 75080.7£.0] 

'''''DltNT. -Ihl 722.,,,~ .. t-Ol -0 .l7'5"~"'lZ[-01 -0.1 OD5t"1Zt-01" -0. 7Z.12: .... 't -0] -a ..... 11 3 ,.C-O 3 -11.211"0,.7£-02 
., .32 c.2. 3"0(-0' -0.21.,,3302£-02 -0.1 711.'2.~-02 -a .15""02't-02 -0 .1]'" 7265[-02 -0.12651"35(-0 2 
·0.120" ••• 7(-02 _0.1.3.,0.00(_01 -0.12.5.535'-01 

()UAL ITI [5. -0.1007 .... 15(.06 0.' "0"' •• '.01 
INC~UALITltS. o.Ooooooooe.OI 0.53037536'." "0.3555255'[.0' -1.121"'220e.0. -0 ...... 735 •• £.0. -Cl __ ,2".,,1\1t..,. 

-O.1021.723t.oS 0.".02"21[.05 0.11.'7315(.1' 0.11751511[.0. 0.25'28S1.(.0 • 
•••••••••• QU.,JtAfIC -»JtOGJtA'" CONSTJtAINT PAIII'IAL CO"'-CI:T ION "AeTO". ;.11120"'01l5a£:-oz 
0"11[01 IlIIrO""'ATIO"U ITC""UON. 2 
'1""\)I..T. :1.122'8513£-03 0."0., • .,5.5C-Ol 0.7''''5003[-.. 0.50000000£.00 0 •••••• 111.' .. 0. '.50000000(.00 

0.1I28'S501[-03 o.,oooonlc.,o 0.1137 •••• £-OZ 0.50000100t.10 1.500000:10'.00 o.!toooooo,c.ao 
0.50000000,·00 

••• S'A~I:H STt~ - 0.0 ,.,.,. 0.Z720125'[." C NO"". 0.1'1'7 •• '7[.0' LAG. 0.27201%5".0] ~Hl. 0.35 •• 7081£.0' DPSta-0.3 • 
••• S£:AiII:" srtp • I.' ru,. 0.2720IS'.£.OS C NO."". 0.101')13.,.0, LA'. 0.2720114,(.0) PHI. 0.35).,152.".0. DP"I.-0.'5 
tWACT "[NALTT ,. .... :TIO". LIJrt(""I2ATtON ,."CTOJt: AHl.r. 0.2075"'31IC.01 
...... x. X·t"'A~tit.S. ;.1;001000£:-0\, 0.10000000[-01 O •• OlUClOOIt.-Ql 0."0"0100(-0\ D.l~DOOOOot-OI 0.1000oo00E-01 

0.10000000(-01 0.10000000e-Ol 0.10000000C-01 0.10000000'-01 0.10.000000(-01 0.10000000[-01 
0.10000000["01 0 •• 0000000£.-11 O.l00oAOOOt-Ol 

IT' •• TIO't SU~"'Jtl' ••••••••• 
lTt... 1 • "u.:Tl'N tV.LS. 3 TOTAL.. rUNt 'YALS- •• • '''AOttNT [VALS. 3 "lIra 0.27Z01S"[.03 
;;LNO""'.0.731t.0, :0" ,..0 ..... 0.102E.04 S'AJtC" NO ..... 0.175£ •• 0 O£LTAe",. 0 •• 13'-05 ALP"A. 0.100r.01 
1I·~tt:ro... ~ •• oo'OO.O£.Ol 0 •• 5.7"000(.Ol 0.1.5, •• 12[.0) 0.I003.o3IC.o, l.l0153,,,.C.05 0.""03.0.£.0. 

0."8."'15C.'. 0.133 ... 3021£:·05 '.13'55 •• ".0' 0.1501l5.7C.Q, 0.1S&3""0"'.05 '.1"72,, ... ,.£:.--05 
a .17~'33 •• t.OS 0.172010'2[.1. o •• 7507SZo(.Ol 

:a "01 £~f. -0.1 72Z.52H:-OI -0.175,5 701C-Ol -0.1 oa 521. 5£-01 ·0.72.1.537£-03 -0 •••• 1 t .50C-0, -0.211.,08.,1'-02 
-, .3Z ,,2.771[-02 _0.21.,,3.71£_OZ -'.171 U'3It-OZ -0.15. 3"1 01'-02 -0 .13.,,712 7[-oZ -0.12,51'75[-0 2 
-0.120407Zlt-o, -0.1.3.,0.1,(-01 -0.12.5 .. "77£-01 

tavAL I 11 [S" ... ~ _I 0 0"7212C. otr. 0 .4,132Q)2£. a 1 
'''HQU''LI Tl !S. 0.0' 00 000 0(.00 0.5305 37HC· O. -0.3551302Zt·0. -a .121 .2510 t... -0 ••• 3.,.)'7£.0. _~. 525"31 •• t.0' 

-0.1' ZII 53.2E· 05 0.5'0 321120£ .05 0.1 H,"7.S7C· 04 0.1875'.0 7e. O. 0.25'2.78 lC., • 
•••• • ••••• OUAO .. "flt: - .. OGJtA .. CJllfSTJtAINT PA.'IAL co",,£eT10N rACTO.. 0.1"'3'0'11.'(-02 
:)'-1(01 IffrO""ATI:I': ITt".TIO"': 1 
"'MY"". '."sasa""t-G' 0.33'1,,11'5£·00 0.""5~7't·0" 0.25000000C.00 0.70)7771)£-0" 0.25000000[.00 
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