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CHAPTER 1. INTRODUCTION 

1.1 Overv iew 

Ventricular late potentials are low amplitude, high frequency signals present in 

the terminal portion of the QRS of an ECG signal. These fragmented potentials 

are caused by the abrupt termination of the activation waveform in the electrically 

silent infarcted region. The non-invasive detection of these microvolt signals was first 

reported in 1973 [1] by using high gain amplification and ensemble signal averaging. 

Recent studies show that the presence of ventricular tachycardia (VT) can be quan-

tified using late potentials [2). It is an accepted indicator for identifying patients at 

risk for life threatening arrhythmias. A system which monitors these signals has a 

potential application in screening patients who are susceptible to various kinds of 

arrhythmias. Berbari was the first to demonstrate the feasibility of recording VLP's 

from the body surface signals [3]. He also showed a correspondence between the sur-

face recorded signal and those signals recorded directly from the epicardial surface. 

As late potentials are small in comparison with the amplitude of the QRS complex, 

the conventional ECG is unable to detect these signals. The signal averaged electro-

cardiogram (SAECG) has become a widely accepted technique for risk stratification 

of patients. The SAECG primarily uses two signal processing techniques to process 

the cardiac signal for late potential analysis: time ensemble averaging; and filtering. 



2 

However there are several potential disadvantages of signal averaging. This technique 

cannot detect any beat-to-beat variations. This thesis presents a real time system 

to detect the late potentials on a beat-to-beat basis allowing assessment of dynamic 

changes in these signals that occur after drug therapy. The Leaky LMS algorithm is 

used for the enhancement of late potentials. The system is realized using a Motorola 

56001 (DSP P rocessor). Approximately 13,000 instructions can be performed at a 

rate of 1 sample per millisecond. The commercially available SAECG devices average 

anywhere between 250-300 cycles to reduce the noise to approximately 1 microvolt. 

Thus at a sampling rate of lOOOHz and each QRS beat almost a second this corre-

sponds to 4-5 minutes before the RMS values can be det ermined. The DSP based 

SAECG algorithm can be used to generate RMS values in seconds and is easily incor-

porated to a stand alone system. Dynamic time warping is investigated for coherent 

averaging. The time varying filter is also discussed as an alterative to the SAECG 

system. 

1.2 Clinical Significance of Late Pot ent ials 

Several studies have evaluated the accuracy of a signal averaged ECG (SAECG) 

in detecting late potential's in patients with VT. It has been proved to be a non 

invasive technique for determination of the presence of ventricular tachycardia. The 

presence of late potentials has been demonstrated to be an independent risk factor 

for malignant ventricular arrhythmias. Surgical results can also be used to support 

the hypothesis that late potentials are related to damaged myocardium and ventric-

ular tachycardia. The absence of late potentials indicates a good heart surgery. It 

increases the predictive accuracy for identifying survivors of acute myocardial infarc-
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ti on who may be at risk of sudden death . Studies by Dennis, et.al. , showed that 

903 of the patients (survivors of acute myocardial infarction) who subsequently de-

veloped VT had persistence of late potentials [2]. Late potentials are the signals 

produced during the polarization of damaged ventricular tissue. Studies have shown 

a correlation between late potentials and fibrillation which have made this a marker 

for identifying patients with life threatening arrhythmias [2]. 

1.3 Need for the Study 

The SAECG has become a widely accepted technique for risk stratification of 

patients with potential reentrant arrhythmias. Presently six devices are commer-

cially available in the United States for identification of late potentials. All these 

devices analyze the ECG by Simson's method [4] . They all employ a signal averag-

ing algorithm. Although these devices employ a generally similar approach, totally 

standardized methods and criteria for the detection of late potentials have not yet 

been developed [2] . The results obtained from signal averaging depend on the align-

ment of the signals to be averaged. The average predictive accuracy is about 643 

[5]. This technique does not allow the detection of dynamic changes in ventricular 

late potentials which may occur either spontaneously or during various diagnostic 

and therapeutic interventions. The clinical advantage of detecting late potentials on 

a beat-to-beat basis is that it facilitates the study of the relationship between late 

potentials and the occurrence of spontaneous or reentrant tachycardia. This thesis 

will focus on methods to detect late potentials on a beat-to-beat basis using adaptive 

filtering techniques. The following sections discuss the origin of late potentials and 

its clinical significance. 
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1.4 Origin of Late Potentials 

Late potentials are usually found in the border zones surrounding the scar of a 

previous myocardial infarction [6]. The border zone that exists between scar tissue 

and normal tissue is composed of conducting and non-conducting tissue. Interstitial 

fibrosis forms in the insulating boundaries and this results in slowing and fragmen-

tation of the wave of electrical depolarization. Therefore the border zone is both the 

source of late potentials and the substrate for re-entrant ventricular tachycardia. 

1.5 Mechanism of Late Potentials 

The delayed conduction that manifests itself as a 'late potential' can be caused 

primarily by one of two factors: slow conduction velocity or a long path length of 

conduction. Slow conduction velocity can be due to depressed membrane characteris-

tics, or changes in anisotropic conduction properties caused by increased cell coupling 

resistances, or both. Conversely, the long path length of conduction is prolonged by 

tortuous conduction around regions of anatomical or functional conduction blockage. 

Infrequently, there is yet a third factor that can cause late potentials. Although most 

late potentials have been associated with depolarization of cardiac tissue, repolariza-

tion abnormalities and triggered activity can also give rise to signals that have the 

morphologic characteristics of late potentials. The model for reentrant excitation was 

proposed by Schmitt and Erlanger [7]. This model, which is based on the anatomy 

of a point of intersection of a Purkinje fiber and the ventricular myocardium, is 

equally applicable to the situation in a bundle of conducting myocardial fibers. Two 

properties are observed in an area of decremental conduction: Unidirectional block 
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and Slow cond uction. In Figure 1.1 we observe that when an impulse traversing 

the tissue encounters the proximal end (A, Figure 1.1) of the area of decremental 

conduction, where antegrade conduction is blocked, the normal propagation of the 

impulse through the myocardium continues and the impulse is eventually conducted 

to a point beyond the area of decremental conduction. At t his point the impulse 

enters the depressed area from its distal end (B), and because t he block is only in 

the antegrade direction the impulse is able to pass through the area of decremen-

tal conduction in a retrograde direction , emerging after a delay at the proximal end 

(A). If the impulse has been sufficiently delayed in its passage through t he area of 

decremental conduction, it arrives(re-enters) (A) after the normal t issue proximal to 

the depressed area has been recovered. In this way the second impulse is initiated in 

the proximal region of the myocardium that is propagated as a premature excitation. 

This excitation may in turn cause another excitation and through repetition of this 

mechanism, a run of premature excitations causes tachycardia. 

1.6 Signal C haracter istics 

Late potentials are identified as low amplitude , high frequency signals which 

are continuous with the QRS complex and extend to the ST segment. The signal is 

typically characterized as being between 1 - 40µvolts and comprised of frequencies 

in the range of 40 to 250 Hz. These micropotentials extend the duration of the QRS 

complex as seen in Figure 1.2 up to 120msec [8]. 
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Figure 1.1: The Infarcted Heart 

1.7 Summary of Previous Work 

Berbari [1] and Flowers [6] were the first to describe the anatomic basis for late 

potentials. Gardner [9] described in detail the electrophysiological basis for frac-

tionated electrocardiograms recorded from healed myocardial infarctions. The signal 

characteristics at the tissue level were studied in this paper. Simson [10] derived 

the proper identification criteria and perfected the recording procedures. This is 

now the accepted technique for the identification of late potentials. Signal averaged 

electrocardiograms were studied in detail by Sherif in [2]. Interest in beat-to- beat 

detection was studied by Sherif and Mehra [11]. S. Jesus [12] described a Kalman 

filter approach for this problem. Simultaneously spatial averaging techniques for 

beat-to-beat detection was proposed by Shelton [13] . The first known late potential 



p 

R 

~ 

~ QRS ~ 

: Duratibn 

7 

Late Potentials 

T 

-------------- ---------------- --- ·--- -----------------------()-6 _____ _ 
0 0.2 0.4 . 

Time (s) 

Figure 1.2: A Typical X Lead ECG Waveform 

synthesis was done by Tuteur in [14] . Tuteur modeled late potentials as a sine wave 

modulated by a gaussian envelope and he applied wavelets transformations to de-

tect t hese synthesized late potentials. Autoregressive modeling was done by Lander, 

et.al, [15] to detect intra-QRS late potentials. Spectrotemporal maps and frequency 

domain analysis using autoregressive modeling was perfected by Chan [16]. These 

met hods are now applied real t ime in commercial devices to detect la te potentials 

using spectrotemporal maps. Statistical methods like the maximum likelihood es-

timator were used to detect late potentials by Attarinejad [17]. Cameron,et.al, [8] 

suggested modeling of the late potentials as a decaying sin(x) / x function and per-
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formed bispectral analysis. Detection of a late potentials using adaptive filters was 

first suggested by Al-Nashash [18] and \.Vang [19]. Shelton and Coast also proposed 

detection of late potentials by adaptive filtering [20]. Recursive least squares filtering 

was suggested by Cameron [21] and the time variant filter was suggested by Coast [20] . 

Both [20, 21] showed results for synthesized late potential's. It was however observed 

that late potential's have not been modeled successfully in literature. The recent 

method for detection of late potentials was suggested by Chen [22] using P rony's 

method. Most researchers who applied different feature extraction techniques like 

wavelet transforms or Prony 's method or other statistical estimators have used the 

averaged electrocardiogram. The question arises whether any variable late potentials 

have been lost. 

1.8 Scope of T his Thesis 

The signal averaged ECG primarily uses two signal processing techniques to 

process the cardiac signal for late potential analysis: t ime ensemble averaging; and 

filtering. The standard technique for detection of VLP's results in a time-domain 

vector magnitude time series formed from a signal averaged, high pass filtered, three 

lead data set. The averaging technique can only detect late potentials which are ab-

solutely constant in duration, morphology, and timing with respect to the QRS com-

plex. Therefore, this technique cannot detect any beat-to-beat variations. Recording 

of late potentials on a beat- to-beat basis has the potential of directly identifying 

reentrant 'malignant ' versus focal 'benign ' vent ricular rhythms [2, 23]. Researchers 

found that spatial averaging is an alternative to the time average. But spatial aver-

aging is limited by the number of electrodes that can be placed on the chest. In this 
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thesis techniques to detect late potentials real time using adaptive filters is described. 

The leaky least means square algorithm was proposed as an alternative to the least 

mean square algorithm (LMS) as it yields a higher SNR. Dynamic t ime warping tech-

niques were studied for coherent averaging of ECG signals . A stat istical model was 

described for synthesizing late potentials and the time sequenced adaptive filter was 

modified to yield a higher SNR and this can be used as a better technique to detect 

late potentials on a beat-to-beat basis. Time varying filters are also described as a 

method to improve the SNR and detect time varying late potentials. 
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CHAPTER 2. HIGH RESOLUTION ELECTROCARDIOGRAPHY 

2.1 Introduction 

Ambulatory electrocardiography is recognized as a valuable non-invasive cardio-

logic diagnostic test to asses changes of cardiac arrhythmias and heart rate variability 

[11]. It has been observed that this scheme is not suitable to detect high frequency 

cardiac depolarizations . High resolution electrocardiography is the technique that is 

used to enhance the detection of low amplitude signals. The hardware used in this 

technique is described in the following section . The signal averaged ECG system is 

shown below in Figure 2. 2. 

2.2 Technical Aspects of Signal Averaged ECG System 

The standards for the hardware are defined in [24]. Commercially available 

devices comply with this standard. 

2.2.1 Electrodes 

Real-time signal averaging utilizes three or thogonal bipolar leads X Y and Z 

to record the cardiac electrical activity from the body surface. For recording late 

potentials from the surface of the body, most investigators use an XY Z lead system 

formed by three orthogonal bipolar electrode combinations (see Figure 2.1). The 
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Y Leads 

Figure 2.1: XYZ Electrode P lacement Scheme 

X lead is placed at the fourth intercostal space in both midaxillary lines. The Y 

lead should be positioned on the superior aspect of the manubrium and on either 

the upper left leg or left iliac crest. The Z lead should be positioned at the fourth 

intercostal space (V2) position . Silver-silver chloride electrodes are used and the skin 

impedance should be less than lOOOn. 

2.2.2 Hardware 

The typical hardware is shown in Figure 2.2. The ECG signal obtained from the 

orthogonal leads is amplified and the data is sampled at 1000 Hz. The A/D converter 

has a 12 bit precision. The software performs three functions; detection, template 
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matching and alignment of the accepted QRS complexes. Time domain analysis is 

done using the Simson's method. The beats after alignment and smnmation are 

passed through a bi-directional four pole Butterworth filter as recommended by the 

American College of Cardiology (ACC) policy statement [24]. Ringing effects of high 

pass filtering may prevent proper quantification of late potentials. Simson [4] adopted 

a variant of bi-directional filtering. The data is filtered roughly until the mid point of 

the QRS and then stops filtering which allows the ringing to subside before the end 

of the unfiltered QRS. The data is then reverse filtered through the same point until 

the QRS mid point. The filter has a bandpass 40-250 Hz or 20-250 Hz. Results are 

based on analysis of the vector magnitude of the filtered leads that is known as the 

RMS value and is defined JX2 + Y2 + Z 2. The endpoint and onset of the filtered 

QRS duration is then verified visually by the technician. 

2.3 Signal Averaging 

These standards indicate that the noise should be less than lmV with a 25 Hz 

high pass or less than 0.7µV with a 40 Hz cut off when used with the combined vector 

magnitude of XY Z leads. The first step is to find a reference point. For this purpose 

the R wave is usually selected. After this , beats are aligned and averaged. The 

computer algorithm should be capable of excluding ectopic (noisy) beats. Testing of 

new beats should be performed across all input leads. Mostly a cross-correlation is 

used for template matching and a correlation greater than 98% is used for acceptance. 

Beats are accepted for averaging only if the R wave to R wave is within 20% of the 

previous R-R interval. 
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2.3.1 Time Domain Analysis 

Results of most studies have been based on the analysis of the vector magnitude 

of the filtered QRS complex. The filtered QRS duration, RMS amplitude of the ter-

minal 40msec of the QRS complex, and the low amplitude signal duration measured 

from the QRS endpoint until the signal exceeds 40µ V are the parameters needed 

to establish the presence of fragmented potentials (Figure 2.3). The filtered QRS 

complex is defined as the midpoint of a 5msec segment in which the mean voltage 

exceeds the mean noise level plus three times the standard deviation of the noise 

sample [2]. The endpoint of the QRS complex should be verified visually and the 

system allows manual adjustment of the automatically determined end points. The 

definition of a late potential and the scoring of a high resolution ECG as normal or 

abnormal have not yet been standardized [24]. Representative criteria include that a 

late potential exists (using 40 Hz high pass bi-directional filtering) when 

1. The filtered duration of the QRS complex is greater than l 14msec. 

2. There is less than 20µ V of signal in the last 40msec of the vector magnitude 

complex, and 

3. The terminal vector magnitude complex remains below 40µ V for more than 

38msec. 
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Figure 2.3: Root Mean Square Value 

2.4 Beat to Beat Analysis of ECG signals 

2.4.1 Disadvantages of the Signal Averaged ECG System 

Signal averaging techniques has many disadvantages . The two major limitations 

are that it will not be able t o detect dynamic (beat-to-beat) changes in the signal 

due to sinusrhythm; and the SAECG cannot be recorded during complex cardiac 

arrhythmias. The variability of the R-R intervals is seen in Figure 2.4. The QRS 

detection algorithms [25) perform poorly under low SNR conditions. This is demon-

strated in Figure 2.4. The first graph shows the QRS detection algorithm [26) in a 
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Figure 2.4: RR Interval Variability and RR Detection 

low SNR environment and the other shows the performance of the algorithm under a 

high SNR. Even ±3msec error in detection of peaks may cause a significant change 

in the quantification of late potentials. 

Each of these problems are addressed separately. As described in Chapter 1, the 

statistical properties of the late potentials has not been well documented. But due 

to the variable nature of the heart 's oscillator. it is believed that the late potentials 

may exhibit cyclostationary properties. That is , the statistics of the signal may be 

repeated in multiple periodicit ies [21 ]. The detection of time varying signals is beyond 

the scope of the averaging technique. The signal averaging technique is done under 
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the assumption that the late potentials are constant in timing relative to the QRS. 

Another asswnption is that the late potentials are fixed in both morphology and 

duration. These are poor assumptions as the late potentials are influenced by factors 

like the nature of t he infarct and the time or the number of days after the infarct [6]. 

Since late potentials originate from ischemic areas where physiologic conditions are 

unstable, they a re inherently variable in terms of amplitude, bandwidth, and timing 

within the cardiac cycle (23]. The variability of late potentials are compounded 

by variations in the heart rate in F igure 2.4. Variations in heart rate as small as 

20% can shift the activation patterns on ischemic ventricles by as much as lOmsec. 

The results obtained from signal averaging also depend on the alignment of the 

beats. The QRS detectors have to be very precise else the QRS may manifest as 

a late potential. Probably the most important and best known source of beat-to-

beat variability in cardiac electrical signals is respiration. Expansion of the thorax 

during inspiration produces two effects on the ECG. First , it induces a direct baseline 

shift mainly as a result of electrode impedance change and, second, it alters the 

electrical propagation of electrical signals from the heart to the body surface. Both 

artifacts can introduce significant timing errors and need to be considered. A study 

(23] showed that the most prominent influence on the ort hogonal leads were on the 

QRS amplitude and azimuth. During deep inspiration, the QRS amplitude declined 

by 25% and azimuth increased significantly (in 69 patients) by an average of 11°. 

Respiration thus adversely influences the ability to align successive QRS complexes 

and determine the fiducial points. The effect of respiration was shown by simulating 

the ECG with a sinusoidal equation [23]. 

y(t) = asin(2IT /T +<I> - sin(<I> )) 
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F igure 2.5: The Differences in Two QRS Beats 

Two QRS beats are shown above in Figure 2.5. As can be seen, perfect alignment 

of these complexes is not possible and hence any method including cross correlation 

will accumulate errors. 

2.4.2 Statistics of the ECG Signal 

The ECG signal contains noise components that can be traced to patient related 

origins, e.g., muscular activity and to the electronics of the recording equipment. 

Knowledge of the statistics of the noise is important to calculate the QRS endpoints 

in the Simson's method. Besides quantization noise, the four primary sources of noise 



19 

are power frequency, electrode-skin interface, amplifier noise and elect romyogram 

(EMG) signals. The noise is a sswned to be uncorrela ted with the ECG. However 

low frequency noise due to respiration may have a beat-to-beat correlation, which is 

removed by high pass filtering [18]. 

2.4.3 Metho ds of Noise R eduction 

1. Signal Averaging 

Signal averaging is analogous t o low pass filtering. The signal averager may be 

viewed as a comb filter. The improvement in signal to noise ratio (SNR: defined as 

the ratio of the signal power to the noise power) varies as JFl where N is the number 

of averages. Consider adding together N beats and forming a mean beat or signal 

average x(i). This is given as 

N 
L Xj(i) 

A ( ") j=l xi = - --
N 

(2.1) 

where Xj(i) is beat j in N thbeat ensemble. The addition of the signal and noise 

components can thought of as taking place independently that is 

N N 
2: s1(i) 2: ni(i) 

x(i) = 1=1N + i= l N (2.2) 
N 

Since the cardiac signal is assumed to be identical , L s1 (i)/N = s(i) . The swnmat ion 
j= l 

of noise proceeds in from three asswnptions. The noise is assumed to be zero mean. 

The noise is a random process uncorrelated with the cardiac signal and is considered 

across the ensemble. The noise occurring at the same time may be considered to be 

independently and ident ically distributed. Then 
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(2.3) 

hence the signal average is 

x(i) = s(i) + ~ (2.4) 

2. Ensemble Averaging 

Researchers studied spatial averaging as a method to improve the SNR [13]. 

Significant improvement in the SNR was observed in comparison with the signal 

averaging technique. The major advantage of spatial averaging is that it allows 

appreciation on a beat-to-beat basis of changing R-R intervals and other dynamic 

changes in the heart. As spatial averaging requires averaging only two channels, the 

noise level in the vector magnitude was still high. There are many limitations to the 

spatial averaging technique. This technique is limited by the number of leads that 

can be placed on the chest. It is difficult to find a good lead position. The EMG 

noise in the parallel channels is not completely uncorrelated with each other and it is 

difficult to determine what the best positions are for the placement of the electrodes. 

2.4.4 Quantification of Noise 

The literature shows inconsistencies for quantification of noise. The definition 

used in this work is adapted from [2] and [23]. The noise measure is calculated by 

selecting a signal free portion of the ECG signal that is in the later portion of the ST 

segment, in the XY Z leads. The statistics of the noise was evaluated by calculating 

the histograms for samples in the ST segment (from the ST segment junction and 
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lOOmsec afterwards). It was observed that histograms closely approximate a gaussian 

distribution with a zero mean and a standard deviation between 10 - 20µ Volt s. 

Simulations were carried out for different sets of ECG signals and for different leads. 

The mean value was subtracted in order to reduce the effect of the signal component 

when calculating the amplitude histograms. This technique was adapted from [27]. 

The assumption that the noise is gaussian is valid and the noise figure is calculated 

with those assumptions. A range of time windows for calculating the noise figure 

(N.F) was seen in the literature [23]. Noise in t he three leads have different variances 

and closely approximate a gaussian distribution. Hence the vector magnitude is the 

sum of three non-central chi square distributions, resulting from the absolute value 

operation performed on each lead. The N.F suggested in the literature for a good 

estimate [23] is defined as 

l 3 m 

3m I: I: (J'Jv jk 
j = l k=l 

NF= (2.5) 

where j indicates the lead X , Y, Z and m equals the number of points in each lead 

from which the noise is calculated. The N.F given in (2.5) is the average of the signal 

variance for m points in the noise window which is again averaged over the three 

leads. 

The square root of N.F is the standard deviation of the noise process. Dividing 

the N .F by .Jii, results in an average measure of the standard deviation. The reduction 

of the noise is observed in Figure 2.6 as a function of t he number of averages. A 

lOmsec ·window was used to estimate N.F. For a variety of reasons, some ECG signals 

have a poor SNR and the burst of noise observed in the ECG signal is due to muscle 

movement. Such bursts can be detected in the noise curve a nd is used as a control 
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Figure 2.6: Calculation of Noise Figure 

measure. Averaging to a noise factor of < 0.3µV is required for the accurate detection 

of late potentials. 

2.5 Proposed System 

This thesis studies the different beat-to-beat techniques that can be applied to 

detect late potentials and study their nature from beat-to-beat. This thesis presents 

a real time system to detect the late potentials on a beat-to-beat basis. Beat-to-beat 

detection can be achieved only if the signal has a high SNR on individual beats. The 
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commercial devices that exists run on the Motorola 68K processor working as fast as 

27K instructions per second. Thus this system is limited in speed. The commercially 

available SAECG devices average anywhere between 250-300 cycles to reduce the 

noise to approximately < 0.3µVolts. Thus at a sampling rate of 1000 Hz and each 

QRS beat almost a second this corresponds to 4-5 minutes before the RMS values 

can be determined. The Leaky LMS algorithm is used for the enhancement of late 

potentials. The Motorola 56K processor can be used to run this algorithm. It works 

at a speed of 13.5 million instructions per second. Approximately 13,000 instructions 

can be performed at a rate of one sample per millisecond. Thus cross-correlation, 

Butterworth filtering, LMS and the RMS (for detection of late potentials) calculation 

can be performed between beats. The DSP based SAECG algorithm can be used to 

generate the RMS value in seconds and is easily incorporated into a stand alone 

system. The LMS algorithm is run in a simulator to test the results. The system 

block diagram is shown in Figure 2. 7. 
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Dynamic time warping is a technique used to align speech signals which differ 

due to speaking rate variation. This technique is used if time averaging of the beats 

is needed when the SNR from beat-to-beat is low. This is done to achieve a coherent 

averaging scheme. Noise figures in the latter 10 - llOmsec of the ST segments were 

calculated and a comparison was made with the existing averaging techniques. T he 

results show that the adaptive fil tering enhancement of the low level cardiac signals 

on a beat-to-beat basis is significant. Other techniques like least squares filtering and 

time varying filters were also studied . The results are shown in Chapter 6. 
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CHAPTER 3. ADAPTIVE NOISE CANCELER 

3 .1 Introduction 

The usual method of estimating a signal corrupted by additive noise is to pass 

the composite signal through a filter that tends to suppress the noise while leaving the 

signal relatively unchanged. Filters used for this purpose can be fL"Ced or adaptive. 

The design of fixed filters must be based on priori knowledge of both the signal 

and the noise , bu t adaptive filters have the ability to adjust their own parameters 

automatically, and their design requires little or no prior knowledge of signal and noise 

characteristics. Noise cancellation is a variation of optimal filtering that is highly 

advantageous in many applications. It uses an auxiliary or reference input containing 

both signal and noise. As a result, the primary noise is attenuated or eliminated by 

cancellation. Adaptive noise cancellation was successfully applied to cancelling 60 Hz 

noise in electrocardiography by Huhta and Webster [27] and by Widrow to cancel the 

donor heart interference in heart transplant electrocardiography. Widrow [27] also 

applied this principle to cancel the maternal ECG in fetal electrocardiography. 

3.2 Principle of a Correlator Canceler 

A correlator canceler is the best linear processor for estimating one signal from 

another in terms of minimizing the mean square error. It is a precursor to Wiener 
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Figure 3.1: Correlator Canceler 

filtering. Figure 3.1 illustrates the basic principle of a correlator canceler. If x has 

a part x 1which is correlated with y. Then x1 is will be canceled as much as possible 

from the output so as to minimize the mean square error. The correlator canceler is 

the optimal estimate of x from y. It can be viewed as an optimal signal separator 

that cancels that portion of x which is correlated with y . The adaptive noise canceler 

is based on the principle of a correlator. 

The basic noise canceling situation is illustrated in Figure 3.2. A signal is trans-

mitted over a channel to a sensor that receives the signal plus an uncorrelated noise 

v(n) . T he combined signal and noise x(n) + v(n) forms the primary input to the 

canceler. A second sensor receives a signal and uncorrelated noise that is y(n). This 

sensor provides the reference input to the canceler. The noise v(n) is filtered to pro-

duce an output d(n) that is a close replica of x(n). If one knew the characteristics 

of the channels over which the noise was transmitted to the primary and reference 

sensors, one could in general design a fixed filter. Noise free output from a fixed fil ter 

is difficult to achieve. The characteristics of the transmission paths are assumed to 

be unknown or known approximately, and the use of fixed filter is not feasible. The 
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e(n) 

" x(n) 

characteristics of t he ideal fixed filter would have to be adjusted with a precision dif-

ficult to attain, and the slightest error could result in increased noise at the output. 

In the system shown in Figure 3. 2 a slight modification of the above scheme is used. 

The reference input is derived from the primary input. The reference is delayed by 

N samples. The value of N was found by empirical methods. From t he principle of 

the correlator canceler, it is lmown that for Figure 3.2 

(3.1) 

where R is the cross correlation matrix , e is the error signal y is the output. 

(3.2) 
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hence solving (3.2) we get 

(3.3) 

Let x be composed of the following 

x(n) = q(n) + l (n) + v(n) (3.4) 

Where q(n) is the ECG signal which is observed from beat-to-beat. l (n) is the late 

potential which is also observed from beat-to-beat and v(n) is the white noise. Let 

y(n) consist of the following signals i.e. , 

y(n) - q'(n) + l'(n) + v'(n) (3.5) 

y(n) - q(n - N) + l(n - N) + v(n - N) 

y(n) is derived by delaying x(n) by N samples. Hence (3.2) becomes 

E ( eyH) = E ( ( q + l + v) - A ( q' + l' + v') yH) (3.6) 

The assumption made is that E[vv'] = 0 after the data is shifted by N samples and 

that E[qq'] and E [ll'] are non zero after a delay of N samples. Hence from (3.3) and 

(3.6). we can show that 

~ R R- 1 
X = SS !Illy (3.7) 
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where s(n) = l (n) + q(n). 

In practice we assume that the autocorrelation of the white noise is not significant 

after about 50 samples. The signals are strongly correlated within this lag. Any 

gradient descent algorithm can be used to reach this optimum Wiener solution. The 

Leaky LMS algorithm is discussed below. 

3 .3 LMS and the Leaky LMS 

The mean square error performance surface for the adaptive system is a quadratic 

function of the weights when the input and the desired response are statistically 

stationary. The task is to seek the minimum point on the performance surf ace. 

The LMS algorithm uses a special estimate of the gradient. The LMS algorithm 

is important because of its simplicity, ease of computation and because it does not 

require off-line gradient estimations or repetitions of data. The Leaky LMS is a 

variant of this algorithm. An equivalent leaky LMS can be realized by adding white 

noise of mean zero and variance a to the tap-input vector of the conventional LMS 

algorithm. The time varying cost function is defined as follows 

J (n) = le (n)l 2 +a llw (n)ll 2 (3.8) 

where w(n) is the tap weight vector of the transversal filter , e(n) is the estimation 

error and a is a constant. The error surface can be rewritten as 

J ( w) = a~ - wH P - pH w + wH Rw + awH w (3.9) 

The gradient is given by the derivat ive 
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8J - = -P + Rw+ aw aw· 
Hence the recursive equation to calculate the weights can be easily derived as 

w (n + 1) = w (n) - µ8
81 
w• 

Hence we can derive the update equation as follows 

w (n + 1) = (1 - µa) w (n) + µU(n)e •(n) 

Where 0 ~ a ~ 1 ~ µ 

(3.10) 

(3. 11) 

(3.12) 

The Wiener solution can also be derived by taking the expectations on both 

sides of (3.12) and its given as follows 

E [w (n)Jn-.= = (R + alf1 P 
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CHAPTER 4. DY NAMIC TIME WARPING 

4.1 Introduction 

Ventricular late potentials are time varying signals. Coherent averaging of these 

signals can be achieved if this fluctuation in time is avoided. Linear time normal-

ization techniques are insufficient to deal with highly non-linear fluctuation. The 

dynamic programming - matching technique was studied by Sakoe and Chiba for 

speech recognition [28]. It is well known that speaking rate variation causes nonlin-

ear fluctuation in a speech pattern time axis. Elimination of this fluctuation is called 

time normalization. The time-axis fluctuation is approximately modeled with a non-

linear warping function with some carefully specified properties. Timing differences 

between two speech patterns are eliminated by warping the time axis of one to the 

that of the other. Then the time normalized distance is calculated as the minimized 

residual distance between them. This minimization process is very efficiently carried 

out by use of dynamic programming. This technique is used to obtain a coherent 

time averaging scheme with ECG signals in this thesis. An optimum algorithm for 

dynamic programming matching is shown in (28]. There are two kinds of dynamic 

programming algorithms, the symmetric and asymmetric algorithm. In the asym-

metric form, time normalization was achieved by transforming t he time axis of one 

pattern onto that of the other. In the symmetric form, both axes are transformed into 
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Figure 4.1: The Warping Function 

a temporarily defined common axis. A slope constraint is introduced. This is done 

so that t he flexibility of the warping function is restricted. If the warping function is 

very flexible then it may result in poor warping. T his problem is discussed in a later 

section. 
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4.2 Warping Principle 

The signal can be expressed by appropriate feature extraction as a sequence of 

feature vectors. 

( 4.1) 

Consider the problem of eliminating the timing differences between those two pat-

terns. In order to clarify the nature of time-axis fluctuation or timing differences , 

let us consider an i - j plane as shown in Figure 4.1 where A and B are developed 

along the i- axis and j- axis respectively. Where these signal patterns are of the 

same category, the timing differences between them can be depicted by a sequence 

of points c = (i , j). 

F = c( l ), c(2) , ... c(k), ... c(K ) (4.2) 

where 

c(k) = (i(k),j(k)) (4.3) 

This sequence can be considered to represent a function which approximately realizes 

a mapping from the time axis of pattern A onto that of B. It is called a warping 

function. When there is no timing difference between these patterns, the warping 

function coincides with the diagonal j = i. It deviates further from the diagonal line 

as the timing difference grows. As a measure of the difference between the elements 

of the feature vectors , i.e. , ai and bi is a distance defined by 
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d(c) = d(i ,j) = llli - bil (-1.4) 

Then the weighted swnmation of distances on the warping function F becomes 

K 

E ( F) = L d ( c ( k)) w ( k) (4.5) 
k = l 

(where w( k) is a non-negative weighting coefficient , which is intentionally introduced 

to allow the E(F) measure, a flexible characteristic) and is a reasonable measure 

for the goodness of the warping function F . It attains its minimum value when a 

warping function F is determined so as to optimally adjust the timing difference. 

This minimum residual distance value can be considered to be a distance (between 

patterns A and B ) still remaining after eliminating the timing differences between 

them, and is naturally expected to be stable against time-axis fluctuation. Based on 

these considerations , the normalized distance between two signal patterns A and B 

is defined as follows: 

[
~ d (c(k))w(k)l 

D (A, B) = _k=_l_K __ _ 

L w(k) 
k = I 

(4.6) 

where the denominator is employed to compensate for the effect of K (number of 

points on the warping function F). (4.6) is no more than a fundamental definition of 

time normalized distance. Effective characteristics of this measure greatly depend on 

the warping function specification and the weighting coefficient definition. Desirable 

characteristics will vary according to t he signal pattern properties (especially time 

axis expression of speech pattern) to be dealt with. 
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4.2.1 Restrictions of the Warping Function 

The warping function F , defined by (4.6) is a model of the time-a'Cis fluctuation 

in a given pattern. Accordingly, it should approximate the properties of actual time-

axis fluctuation. In other words, function F, must preserve essential structures in 

pattern A and vice versa. Essential speech pattern time axis structures are continuity, 

monotonicity, slope limi ta ti on and so on. These considerations can be realized by 

the following restrictions on the warping function F (or points c( k) = ( i ( k) , j ( k)). 

1. Monotonic conditions 

i(k - 1) $ i(k) and j(k - 1) $ j(k) 

2. Continuity conditions 

i(k - 1) - i(k) $ 1 and j(k - 1) - j(k) $ 1 

As a result of the two restrictions the following relation holds between two con-

secutive points. 

(i(k ), j(k) - 1) 

c(k - 1) = (i(k) - l , j (k) - 1) 

(i(k) - l ,j (k)) 

3. Boundary conditions 

I(l) = 1, j(l) = 1 and I (K ) = I , J(K) = J 

4. Adjustment window condition Figure 4.1 

li(k) - j(k)I $ R 
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where r is an appropriate positive integer called window length. This condition 

corresponds to the fact that time-a.,"'<is fluctuation in usual cases never causes an 

excessive timing difference. 

5. Slope constraint condition 

Neither too steep nor too gentle a gradient should be allowed for warping function 

F because such deviations may cause undesirable time-axis warping. A very steep 

gradient , for example, causes an unrealistic correspondence between a very short 

pattern A and a relatively long pattern B segment. Therefore a restriction called a 

slope constraint condition, was set upon the warping function F. This is shown in 

Figure 4. 2. If the point c( k) moves forward in the direction of I (or J) axis consecutive 

m times, then the point c( k) is not allowed to step further in the same direction before 

stepping at least n times in the diagonal direction. The effective intensity of the slope 

constraint can be evaluated by the following measure P = n/m. 

The larger the P measure , the more rigidly the warping function slope is re-

stricted. When P = 0 , there are no restrictions in the warping function. When 

P = oo (that ism= 0), the warping function is restricted to diagonal j - i . Nothing 

more occurs than a conventional pattern matching; no time normalization. Gener-

ally speaking, if the slope constraint is too severe, then time-normalization would not 

work effectively. If the slope constraint is too lax, then discrimination between signal 

patterns in different categories is degraded. Thus, setting neither a too large nor a 

too small slope for P is desirable. 
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Figure 4.2: The Different Warping Algorithms 

4.2.2 Weighting coefficient 

If the denominator in ( 4.6) called the normalization coefficient is independent of 

the warping function F , th is simplifies the equation as follows: 

D (A,B) - ~mjn l~d {c(k))w{k)l (4.7) 

K 

N - l: w(k) 
k = l 
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This simplified problem can be effectively solved by use of the dynamic programming 

technique. There are two typical weighting coefficient definitions which enable this 

simplification. The theory is described as follows: 

1. Symmetric form: 

w(k) = (i(k) - i(k - 1) + j(k) - j(k - 1)) 

then N = I +J where I and J are the length of the patterns A and B respectively. 

2. Asymmetric form: 

w(k) = (i(k) - i(k - 1) 

then N = I. The basic concepts of the symmetric and asymmetric forms were 

originally defined by Sakoe and Chiba [28]. 

4.3 Practical DP matching Algorithm 

4.3.1 DP equation 

A simplified definition of time-normalized distance D (A, B) as given by (4.7) is 

one of the typical problems to which the well known DP-principle can be applied. 

The basic algorithm for calculating ( 4. 7) is written as follows. 

Initial condition 

DP equation: 

91(c(l)) = d(c(l))w(l) 

9k(c(k)) = min [gk-1(c(k - 1)) + d(c(k))w(k) 
c(k-1) 

(4.8) 
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Time normalized distance: 

1 
D(A, B) = Ngkc(K) 

It is implicitly assumed that c(O) = (0, 0). Accordingly w(l) = 2 in the symmetric 

form, and w(l) = 1 in the asymmetric form. The restriction on the warping function 

is realized by incorporating the weighting coefficient w( k). The algorithm for the 

symmetric form in which no slope constraint is employed is described in (4.9). The 

initial condition is given by 

D.P. equation: 

g(l , 1) = d(l , 1) 

g(i , j - 1) + d(i , j) 

g(i , j ) =min g(i- l,j-l)+d(i , j ) 

g(i - 1) + d(i , j) 

The restriction condition (adjustment window) 

Time normalized distance: 

1 
D(A, B ) - Ng(I , J ) 

where N I + J 

(4.9) 
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The algorithm, especially the DP equation, should be modified when the asymmet-

ric form is adopted or som e slope constraint is employed. Chiba [28] summarizes 

algorithms for symmetric and asymmetric forms. A flow chart is given in Figure 4.3 

which describes the algorithm. 

4.3.2 Calculation 

DP equat ion of g(i , j) must be recurrently calculated in ascending order with 

respect to coordinates I and J , starting from initial condition at (1, 1) up to (I , J). 

The domain in which the DP equation must be calculated is specified by 

1 < i-5:_ 1 

1 < j $. J and 

and r is the adjustment window. 
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CHAPTER 5. TIME - SEQUENCED ADAPTIVE FILTER 

5.1 Introduction 

Late potentials are time varying signals and the location of this t ime varying 

signal can be identified as l50msec after the occurrence of the R wave in the ECG 

waveform. Therefore a time varying filter will be able to catch the variations of the 

late potentials on a beat-to-beat basis. A new form of adaptive filter was proposed 

by Ferrara and Widrow [29] which will be used for the est imation of a class of non-

stationary signals. This new filter , called the time sequenced adaptive filter is an 

extension of the LMS adaptive filter. Both the LMS and the TSAF are digital 

filters composed of a tapped delay line, whose impulse response is controlled by an 

adaptive system. For stationary stochastic inputs, the mean- square error, which is 

the expected value of the squared distance between the filter output and externally 

supplied desired response, is a quadratic function of the weights. This is a paraboloid 

with a single fixed minimum point which can be sought by gradient techniques like 

the LMS. For non-stationary inputs however , the minimum point, curvature, and 

orientation of the error surface could be changing over time. The TSAF uses multiple 

sets of adjustable weights. At each point in time, one and only one set of weights is 

selected from the filter and is adapted using the LMS. The index set of weights that 

are chosen is synchronized with the recurring statistical character of the filter input 
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Figure 5.1: Symbolic Representation 

so that each set of weights is associated with a single error surface. After a number 

of adaptations of the weights , the minimum point of each error surface is reached 

resulting in a time-varying filter. For this filter, some apriori lmowledge of the input 

is assumed. For pulse type signals, this could be the location of the pulses in time. 

For signals with periodic statistics , lmowledge of the period is sufficient. This method 

was used to enhance fetal electrocardiograms against background muscle noise (30]. 

5.2 TSAF algorithm 

An adaptive transversal filter consists of a tapped delay line connected to an 

adaptive linear combiner that adjusts the weights of the signals derived from the 

taps of the delay line and combines them to form an output signal. The input signal 
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vector Xi of the adaptive linear combiner is defined as 

(5.1) 

The input signal components are assumed to appear simultaneously on all input lines 

at discrete t imes indexed by the subscript j. T he weighing coefficients or multiplying 

factors wo, w 1 , W2 ... Wn· are adjustable. The weight vector W is 

The output Yi is equal to the inner product of Xi and W 

Yi= (xfw) 

The error ei is defined as the difference between the desired response di and the 

actual response Yi 

In adaptive fil tering applications the desired response is usually composed of some 

underlying signal to be estimated plus additive noise uncorrelated with both the 

signal and the filter inpu t. Assume that the sequence of pairs { {di, XJ}} :
1 

is a 

stochastic process which need not be stationary. The expectations are taken over the 

ensemble described by this stochastic process. The correlation matrix at time j as 

defined by 

is assumed to be positive definite. The cross-correlation vector is defined by 
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Figure 5.2: Time Varying Error Surface 

The mean square error at time j is given by 

The error surface is a quadratic function of the weight vector at any particular 

time and can be viewed as a concave hyperparaboloidal surface. With non-stationary 

inputs , the minimum point , orientation , and curvature of the error surface could be 
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changing over time as shown in Figure 5.2. If, however the desired signal and input 

signal vectors are jointly stationary then the statistics Ri and Pi are constant , and 

only a single error surface needs to be considered. In this case the gradient search 

method can be used to find the minimum. The Leaky LMS algorithm was adopted. 

wj can be found by the following recursive equation: 

Signals composed of recurring pulses in noise are highly non-stationary due to their 

time-varying statistical character. The LMS adaptive filter , which is able to track 

such rapidly varying non-stationarities, essentially converges to the best time-invariant 

filter. 

5.2 .1 Filter Description 

T he signals to be considered are those whose statistical properties recur at var-

ious points in time called regeneration times. It is required that the autocorrelation 

matrix Ri and the cross-correlation vector Pi at any particular time are elements of 

some finite set and they occur in identical sequence after each regeneration time. The 

times between regenerations are allowed to be variable. Thus the entire sequence of 

R matrices and vectors will not in general be used each cycle, because the occurrence 

of regeneration starts the sequence over. There exists a sequence of error surfaces as 

show in Figure 5.2. The TSAF proposed uses a multiplicity of weight vectors usually 

one corresponding to each error surface. Since the number of different error surfaces 

for a statistically recurring processes is finite , the number of weight vectors is also fi-

nite. The weight vectors are denoted by Wo , W 1 , W2 . .. Wn. At a t ime, only one weight 
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is selected, based on the error surface present at that instant and is adapted towards 

the minimum error surface. When the minimum surface is reached the weight vector 

is the Wiener weight vector (optimum weights obtained by the Wiener solution) for 

that error surface, yielding a minimum mean squared error filter at that 'station' 

at that time. Thus each weight vector becomes an expert in filtering a particular 

portion of the interval between regenerations. For this procedure an external input 

to the filter , called the sequence number Sj is used to determine the appropriate 

weight which is used at t ime j. Thus when Sj = i the ith error surface is assumed 

to be present, so that the ith weight vector is used to form the filter output and 

then adapted towards the bottom of the error surface. In order to set the sequence 

number some a priori knowledge of the filter input is required. For pulse type signals, 

apriori knowledge could be the location of the pulse in time. For signals with periodic 

statistics (sometimes referred to as cyclostationary) t he knowledge of the period is 

sufficient. Mathematically t he TSAF algorithm is 

where Wi(j) is the value of the ith weight vector at time j. A differentµ is used for 

each weigh t vector. This is done in order to keep the percent loss in the steady-state 

performance (due to the adaptive process referred to as misadjustment) the same for 

each weight vector. A conceptual block diagram of the TSAF is shown in Figure 5.1. 
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5.2.2 Disadvantages of t he TSAF 

In some applications , due to uncertainty in s; at any particular time, error is 

introduced at the output. The performance in the face of uncertainty in s; was 

analyzed by Ferrara [29]. If the sequence number can be chosen perfectly, then it 

can be shown that the TSAF converges to the optimal (minimum point of each 

error surface is reached) time-varying filter when the adaptation is performed slowly 

enough. Although in comparison with the LMS, the computational complexity is the 

same, the TSAF is an expensive approach to signal processing. 

The number of data points required for the TSAF filter to converge to its time-

varying solution is greater than that required for a conventional LMS based system. 

The memory requirement to implement this filter is large due to the multi-weight 

vectors (memory must be allocated to store the filter weights). 

5.2.3 Typical Applications 

The increased performance resulting in the time-varying solutions compensates 

for the disadvantages in the TSAF. One application of the time-sequenced filter was to 

fetal electrocardiography. The location of the fetal pulses in time must be estimated 

in order to synchronize the filter time-varying impulse response to the fetal cardiac 

cycle. The TSAF can also be used to predict future samples of a stochastic process 

which has a periodic nature. The load prediction problem was studied in [30] by 

Ferrara. Power consumption exhibits a clear daily cycle. The actual demand during 

a particular hour varies from day to day. The TSAF can be used as a predictor to 

predict power consumption one-half hour to one week in the future based on past 

values. 
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5.3 Proposed Scheme to Detect Late Potentials 

The late potentials are modeled as described in Chapter 6. The late potentials 

are then added to the R wave of the QRS and allowed to decay into the ST segment. 

Two separate channels are required. The channels have correlated signal components 

but uncorrelated noise components. A leaky LMS algorithm which was found to 

yield a high SNR in comparison with the conventional LMS (other adavantages of 

the leaky LMS are discussed in (27]) , was used to find the weights. 

Figure 5.3 describes the proposed scheme. In both channels, the X lead data 

was used. White noise from two different sources was added to both the channels. 

Synthesized late potentials were added to both the channels. It is assumed that the 

electrodes are placed close together , but far apart so that the muscle noise in both 

the channels is uncorrelated. The sequence number used is the R wave. The TSAF 

requires knowledge and location of the Late potentials. This information is available 

from a R wave detector that was designed. The error in the R wave detector was 

approximately 3msec. The data was sampled at 1000 Hz and the regeneration times 

were from around 500msec to 650msec in the QRS waveform. Simulations were 

performed for different tap sizes and different µ for the Leaky LMS algorithm. The 

results are discussed in Chapter 6. 
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CHAPTER 6. SIMULATION RESULTS 

6.1 Data Acquisition 

The data were acquired through a commercial signal averaged ECG device. The 

data was sampled at lOOOHz and had a resolution of l.25µv / bit. The data contained 

about 15 minutes worth of raw ECG from the three orthogonal leads. Data are made 

available from two patients. The first set of data was used as control and the other 

as t he VT inducible case. Signal averaged data was also acquired from a database. 

This database consisted of 18 patients. The data contained only signal averaged 

ECG's, i.e. , one QRS beat for each of the XYZ lead and about 600 samples long 

and the data was sampled at lOOOHz. The data are only used to create and test the 

signal averaged ECG i.e. calculation of QRS endpoint and actual detection of late 

potentials. The four pole Butterworth filter was applied to this data and the R..\/IS 

value was calculated and compared with results available in the database. T ypical 

XY Z lead data are shown in Figure 6.1. 
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6 .2 Simulation methods 

6.2.1 Signal Averaging 
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The data were aligned using a QRS detection algorithm [26]. The R wave was 

used to align the beats. Ectopic (noisy) beats were rejected. A typical time average 

after the R wave detection is shown for the X lead in Figure 6.2. 

After the time averaging is done , the data is passed through a 4 pole Butterworth 

fil ter. The data is filtered to the QRS midpoint and then filtered in the other direction 

as described in Chapter 2. The filter bandwidth was set to 40-250Hz. The results 
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are shown in Figure 6.3. 

6.2.2 LMS and Leaky LMS 

The data for the three leads is passed through an adaptive line enhancer. The 

data was first scaled (by 1000) before it was passed through the filter. Both the LMS 

and the leaky LMS algorithm was run on the filter. Simulations were carried out 

for different filter tap sizes and different step sizes. The optimum filter length was 

found to be 64 taps and t he value ofµ and f3 for the leaky LMS were approximately 

.099 and .06 respectively. These values were obtained by trial and error. Figure 6.4 

compares the signal average , LMS and leaky LMS for the X Y and Z lead. 'rhe leaky 

LMS algorithm was also run on the :Y.lotorola 56K. The data was scaled before it was 

input to the fixed point DSP. The scaling factor was 1000 so that the data fell in the 

range of ±1. The output of the LMS based adaptive filter clearly shows reduction 

of the beat-to-beat noise level. In Figure 6.4 (X lead data) , the performance of the 

Leaky LMS algorithm yields lower noise levels on a beat-to-beat basis in comparison 

to the LMS. Similar results were observed for all the other orthogonal leads. The root 

mean square value was calculated and compared. The RMS values obtained by signal 

averaging before and after the LMS algorithms are shown in Figure 6.7. The Rl\IIS 

was evaluated on a beat-to-beat basis to show the feasibility of the algorithm. This 

is shown in Figure 6.8. The Rl\IIS value shows a clear reduction in the beat-to-beat 

noise level. 

The noise figure qualifies the SNR. This noise figure is used to show that there 

was significant improvement in the SNR after adaptive filtering. Literature showed 

inconsistencies in defining a time segment to calculate the noise figure. A comparison 
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was made for different time segments as shown in Figure 6.9. The noise figures 

for the three methods were also compared. The noise figures after the leaky LYIS 

was significantly low. This shows that the Leaky LMS algorithm can be used to 

detect beat-to-beat late potential detection technique. Figure 6.8 shows the vector 

magnitude when only one averaging was done. The noise seen after the ST time 

segment is very high (close to 20m Volts in the raw vector magnitude). After doing 

256 averages the noise after the ST time segment is reduced to 0.5 - 2µ Volts . The 

recommended noise level is less than 0.3 µVolt. The data from the orthogonal leads 

were then passed through the adaptive filter and the results showed an improvement 

in the SNR. Figure 6.8 shows the result of one averaging after the adaptive filter. 

The noise floor was already down to about 0.5µ Volts. After 2 averages, the noise 

floor was less than the recommended 0.3µ Volts as seen in Figure 6.9 for the Leaky 

LMS algorithm based adaptive line enhancer. The results are significant since late 

potentials can be detected on a beat-to-beat basis (real time) because the noise floor 

is small. This would allow the detection of variability in late potentials. This result 

can be used to observe changes in the late potential activity when different drugs are 

administered to the patient. Researchers [24] are still in the process of formulating 

specific criteria to identify late potentials on a beat to beat basis. 

6.3 D ynamic T ime Warping 

Dynamic time warping is recommended only when the QRS beats need to be 

averaged. Simulations were done with the asymmetric and symmetric algorithms 

proposed in [28]. The results are significantly different from results one would ob-

tain from aligning speech samples. Simulations showed that it was best to use the 
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asymmetric form. There were two cases observed during averaging. The first case is 

when no QRS detection algorithm is used. This is demonst rated in Figure 6.10. The 

second case in Figure 6.11 shows that a QRS detector is used and then the peaks are 

aligned . However the beats are different due to the variability inherent in the QRS. 

The DTW technique works well when there are no prominent peaks observed in the 

signal. Warping becomes complex when distinguishing features (like the R wave) are 

present in the ECG signal. Figure 6.12 illustrates the averaging procedure and shows 

that synthesized late potentials are not attenuated due to signal averaging. The re-

sults show that time axis fluctuations are removed and coherent averaging does not 

affect the amplitude of late potentials. Hence the warping technique is superior to 

the conventional averaging scheme which does not account for the variability of the 

late potentials. Simulation results show that warping works well in cases in which 

peaks are not aligned (Figure 6.10) and in cases in which (Figure 6.11) the peaks are 

aligned before warping. Thus the R-R interval detector can be avoided before time 

averaging. The warping has the disadvantage that a large memory space is required 

to store the reference samples and the path matrix. To simplify computation it was 

proposed that the beats be warped only in the 150msec before the ST segment. This 

is the region where late potentials are observed. However this technique would re-

quire different identification criteria as Simson's method cannot be used to detect 

late potentials. To illustrate this effect of warping on 150msec segments, simulations 

were carried ou t after averaging the beats. A typical [8) sin(x)/x model was used to 

illustrate this effect. The results are shown in Figure 6.12 for 10 averages. 
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6 .4 M odeling Lat e Potentials 

The late potentials are modelled as a 25 Hz sine wave in [14]. In [8] the late 

potentials are modelled as a decaying sin(x) / x function having an amplitude of 20µV 

and frequency of 40-200 Hz. Models that represent the actual statistics of the sig-

nal have not been described in literature. The following model is proposed for the 

late potential as a realization of the random process. The Figure 6.13 shows that 

white noise of unity variance is fed into the system modelled by two AR coefficients 

and modulated by a decaying exponential (typically e- 1
1
ot ) . The model is valid as 

it displays characteristics shown by late potentials. The time varying nature was 

incorporated by adding late potentials at different times after the QRS for different 

beats. 

6.5 Time Sequenced Adaptive filtering 

Simulations were carried out for TSAF by using the X lead data. The late 

potentials generated from the above models were added to the ECG 40msec after 

the presence of the R wave. The late potentials were generated at random times 

and they decayed into the ST segment. The idea is to use two X lead channel ECG 

signals. The electrodes must be kept as far apart as possible so that the noise in both 

the leads is uncorrelated. This was achieved by taking the X lead and branching them 

off as two channels by adding white noise from two different sources. The data was 

then passed through a TSAF. The TSAF consisted of a bank of 4 adaptive filters. 

The R wave was used as the sequence number. The first filter filtered the data 

until the end of the R wave. The second and third bank of filters filtered the data 
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until the beginning of the ST segment and t he last filter filtered the ST segments. 

Different tap sizes and differentµ' s were used for the filter. Figure 6.14 illustrates the 

output of the filter after 100 beats. The problem with this filter is that a large data 

segment needs to be passed through the fil ter before it can act as a time varying filter. 

This concept was indicated by Ferrara [30]. The filter works better than the regular 

adaptive line enhancer which will not detect t ime varying signals. This technique of 

using the T SAF to detect late potentials facilitates the detection of late potentials on 

a beat-to-beat basis without needing to calculate the RMS value. This filter can be 

used to track the variability of the late potentials over a 24 Hr period and the resu lts 
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will be clinically significant. The study is based on preliminary research results and 

real patient data are needed to achieve statistical significance. 
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CHAPTER 7. CONCLUSIONS 

Simulations show that there is a good agreement with clinical observation of 

late potentials and the results demonstrate significant improvement in the SNR af-

ter adaptive filtering. This improvement in SNR shows that adaptive filtering can 

be used to detect t he late potentials on a beat-to-beat basis. The time required to 

compute the RMS value is approximately 2-10 seconds as compared to the existing 

SAECG techniques that take about 5 minutes. This technique is easily realized in 

real time and this was demonstrated by running the program on a 56K simulator. 

Late potential variability can be tracked and it may be used to improve classifica-

tion of SAECG. Even though the preliminary study here suggests good results, it is 

aclmowledged that more data will be needed from patients with different symptoms 

(left bundle branch block (LBBB), RBBB etc.) to test the performance of the real 

time system. P reliminary research results show that the time sequenced adaptive 

filter can be used to track the late potential variability on a beat-to-beat basis. To 

achieve any statistical significance, real data from patients suffering form different ab-

normalities are needed. There is a need for a process for formalizing specific criteria 

for identification of late potentials on a beat-to-beat basis. 
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