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I. INTRODUCTION 

The method of noise analysis as a useful tool in the 

investigation of the kinetic behavior of nuclear systems has 

become very widespr ead. The methods used to extract informa-

tion from reactor noise are quite varied . In early work only 

one detection channel was used to gather information. With 

the advent of two detection channel systems it became possible 

to reduce the effect of extraneous noise in the system by 

cross correlating the outputs of the two detection channels . 

The method of coherence function measurement additionally 

eliminates (theoretically) the effect of signal analysis system 

frequently response on the signal being studied. 

It has been shown that the polarities of the two signals 

in a two channel noise analysis system carry enough information 

to allow reactor noise signals to be analyzed by the method of 

polarity cross-correlation. Thus, the coherence function 

measurement offers a good method of measuring prompt neutron 

decay constant as well as subcritical reactivity in a nuclear 

reactor . 

The objective of this study is to explore the theory, and 

to make experimental measurements of the coherence function , 

prompt neutron decay constant, and shutdown reactivities for 

the UTR-10 reactor, using the method of polarity cross-

correlation . 
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II. LITERATURE SURVEY 

This section contains a brief survey of contributions to 

the field of reactor noise analysis in general, leading to the 

advent of the polarity correlation method for noise analysis, 

coherence function measurements, and subcritical reactivity 

measurements. A survey of papers suggesting improvements in 

the coherence function measurements and subcriticality measure-

ments by the method of polarity correlation is then given. 

Many options and combination of options are available to 

the designer of a reactor noise analysis system. One option 

is the choice of input signal. Experiments by Balcomb (3), 

Stern (32), and Valat (34) used externally applied signals. 

Other experiments such as those of Cohn (10), Danofsky (13), 

and Seifritz et al. (30), relied on the natural stochastic 

processes of fission, capture, etc ., for the random noise 

input signal with no externally applied input. 

The second option in noise analysis method is the choice 

of analyzing the signal in the frequency or the time domain. 

Balcomb et al. (4), Dragt (15), and Rajagopal (25) performed 

experiments in the time domain, while Badgley and Uhrig (2) 

and Seifritz (29) conducted investigations in the frequency 

domain. 

The third option of the experimenter in reactor noise 

analysis is the number of detection channels to be used. 

Early experiments by Balcomb et al. (4), Cohn (10), and 
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Rajagopal [25] used only one detection channel to determine 

the output signal. Use of only one detection channel requires 

that detector efficiency be high enough to make the reactor 

noise signal observable above the random detection noise. The 

efficiency requirements can be relaxed somewhat by the use of 

two detection channels. Cross correlation of the signals from 

these two channels enhances the signal and rejects the uncor-

related noise. This type of cross correlation was used in 

investigations by Kryter et al. [22], and Hendrickson [19]. 

Recently the use of the polarity correlation technique in 

reactor noise analysis has rece ived much attention. In the 

polarity correlation process only the signs of the signals, 

with respect to their mean values, are correlated. Theoretical 

inves~igations by Pacilio [24], and experimental investigations 

by Dragt [14] and Seifritz [29) have demonstrated that the 

polarity of the signals contains sufficient information to 

allow reactor noise to be analyzed by this method. 

Cohn [11) proposed a noise-equivalent source obtained 

from the Schottky formula which calculates the noise due to 

the random flow of electrons in a diode. The analogy to 

production, absorption, and leakage of neutrons holds because 

all of these processes obey the Poisson distribution. It was 

noted that the spectral density of the noise-equivalent source 

for prompt neutrons is independent of frequency, and thus the 

noise input is white. 
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Seifritz [29] used a two-detector cross-correlation 

method of zero-power reactor noise analysis to determine 

characteristic kinetic reactor parameters. This method, called 

polarity correlation in the frequency domain, is based on the 

detailed analysis of the stochastic coherence function, in 

contrast to the analysis of auto and/or cross power spectral 

density functions. The coherence function was obtained by 

polarity correlation of two filtered random neutron noise 

signals simultaneously sampled in a reactor system using 

neutron sensitive detectors in the current mode of operation. 

The advantage of using this technique is both its simplicity 

and the automatic elimination of the equipment frequency 

response. Furthermore, shutdown reactivity measurements were 

made using the polarity correlation method. 

Analysis of the precision of the coherence function 

measurements was done by Seifritz [29] and the results were 

also later reported by Vaurio [35]. Errors in the polarity 

correlation method of reactivity measurements were calculated 

by Hess and Albrecht [20] using Korn and Korn [21] equation 

for the variance of the coherence function. 

Effect of gamma radiation on subcriticality measurements 

using noise analysis were considered by Roux and Buhl [27]. 

They showed that residual gamma radiation reduces the signal-

to-noise ratio and hence the precision of a subcriticality 

measurement. They proposed that 235u fission chambers are the 
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10 3 best choice compared to B and He detectors in high gamma 

fields. 

Ackermann and Buhl [l] suggested that a systematic error 

in the subcritical reactivity measurement may occur due to 

unexpected changes in the neutron detection efficiencies of 

the detectors. They proceeded by developing new equations for 

subcriticality by taking into account the changes that might 

occur in detector efficiencies. 

Yasuda and Miyoshi [36] applied the polarity correlation 

method of noise analysis to a graphite moderated reactor. 

They suggested that in graphite and heavy-water moderated 

reactors with long prompt neutron lifetime, it is difficult to 

measure the prompt neutron decay constant, especially at near 

critical state. The reasons for this are, very low signal to 

noise ratio, because of many independently occurring prompt 

neutron decay chains, which overlap each other, and that the 

mean lifetime of the precursors to the short-lived delayed 

neutrons is not sufficiently longer than the lifetime of the 

prompt neutrons. This complicates the separation of the 

prompt neutron decay mode from the associated delayed neutron 

mode. 
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III. THEORY OF THE COHERENCE 

FUNCTION FORMULATION 

A. Background 

In the following sections it is shown how the coherence 

function can be derived using the reactor noise source, reactor 

transfer function, auto-spectral densities, and cross-spectral 

densities. 

It will be shown that the coherence function is related 

to the prompt neutron decay constant , a c . The prompt neutron 

decay constant is defined as 

a = e/t = ev E c a (1) 

where e is the delayed neutron fraction, 

i is the prompt neutron lifetime, 

E is the total macroscopic absorption cross section a 
for the thermal neutrons, and 

v is the thermal neutron velocity. 

Basic information about impulse response, convolution, 

transfer functions, correlation functions, and Fourier 

transforms of correlation functions, viz, the spectral density 

functions, can be found in texts by Bendat [SJ, Bendat and 

Piersol [6J, Brown and Nilsson [BJ, and Uhrig [33J . 
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B. Reactor Noise Source 

In most reactor physics work the neutrons are treated as 

a continuous fluid instead of discrete particles . For most 

purposes , this is quite adequate . However, the discreteness 

of the neutrons and the statistical nature of the chain 

reaction give rise to random fluctuations in reactor power 

level which may be characterized by the term "pile noise". 

The pile noise may be considered as arising from a random 

"noise equivalent" neutron source driving the reactor, which 

represents the fluctuations in the number of neutrons available 

to the reactor caused by the natural statistical fluctuations 

in the rates of neutron absorption and fission . At any instant 

this source may be either positive or negative , representing, 

respectively , an excess or a deficiency from the average . 

The production, absorption, and leakage of neutrons in a 

reactor may be considered analogous to the random flow of 

electrons in a diode, because all of these processes obey the 

Poisson distribution. Therefore, the magnitude of the noise -

equivalent source may be obtained from the Schottky formula, 

which was originally developed to calculate the noise in a 

temperature-limited electronic diode. It is usually written 

in the form 

2-2e m , (2) 
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where <lrl 2 > is the spectral density of the diode current noise 
2 -1 in amps sec e is the charge carried by each electron in 

coulombs, and m is the average number of electrons flowing per 

second. 

For calculating the noise-equivalent neutron source the 

above formula is modified in form by Cohn [11], and is written 

as 

4> ns (3) 

Here 4> is the spectral density of the noise equivalent ns 
2 -1 source in neutrons sec , q . is the net number of neutrons 

l 

produced in the occurrence of one nuclear reaction of type i, 

and m. is the average number of reactions of type i occurring 
l 

per second in the reactor. The summation is taken over all 

possible types of nuclear reactions which may occur in the 

reactor. 

The term "spectral density" used above is defined as the 

mean square amplitude of that part of the noise contained in a 

given narrow frequency band, divided by the band width in 

cycles per second. 

It is shown in Appendix A that the spectral density of 

the noise equivalent neutron source is given by 

4> ns 
2nvo = -r- I ( 4) 
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where n is the neut ron density in the reactor , v is the average 

number of neutrons released per fission and D is the Diven 
-2 - - 2 

factor defined as D = (v - v)/v . 

The spectral density of the equivalent reacti vity fluctua-

tions , ¢ , may be obtained from the expression nn 

¢ = (~) 2 ¢ 
nn n ns ( 5 ) 

because a smal l reactivity fluctuation p can be looked upon as 

supplying to a critical reactor a source of strengt h pn/~ 

neutrons per second so long as the resulting fluctuations in n 

remain small . Inserting Equation 4 in 5, we get 

<ti nn 
2 ~vD = - -n (6 ) 

It is o bvious from the Equations 4 and 6 that the spectral 

density of the noise-equivalent source and hence the spectral 

density of the equivalent reactivity fluctuations are 

independent of frequency, and thus represent white noise . 

According to Cohn [11) this will hold true up to frequencies 

of the order of the reciprocal of the time required for the 

complete transition between the bound and unbound quantum 

states of the neutron , which is less than lo- 20 seconds . 

In deriving Equation 6 the effect of delayed neutrons 

was ignored , and it was assumed that there were no extraneous 

neutron sources in the reactor . This model is sufficient for 

the present work . Sheff and Albrecht [31) have developed a 
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neutron noise source model which includes the effect of 

delayed neutrons, extraneous sources, non-whiteness of fission 

neutron spectrum, and separate accounting of absorption 

processes in the reactor. 

C. Reactor Transfer Function 

In this section, two types of open loop transfer functions 

for a reactor are given. These are the so called source and 

reactivity transfer functions. 

The transfer function of a system is defined as the ratio 

of the Laplace transforms of the output to the input with zero 

initial conditions. In the present case the output is con-

sidered to be a small variation in the neutron level and the 

input is a small varying source or a small varying reactivity 

for the source and reactivity transfer functions respectively. 

That is 

H (s) r 

= L(output neutron variation) = 
L(input source variation) 

= L(out ut neutron variation) 
L input reactivity variation 

6N(s) 
6S(s) 

6N(s) = 6 R (s) 

( 7) 

( 8) 

where Hs(s) is the source transfer function and Hr(s) is the 

reactivity transfer function. 

The open loop or zero power transfer function of a 

nuclear reactor is the transfer function of the reactor based 

only on delayed neutron effects and neglecting all feedback 
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effects. This type of transfer function is theoretically 

formulated from space independent reactor kinetic equations, 

or a point reactor model. 

The formulation of source and reactivity transfer 

functions for the case of a single delayed neutron group are 

given in Appe ndix B. The square modulus of the source transfer 

function for one delayed neutron group and a subcritical 

reactor is 

I H ( w ) 12 = s 
1 1 

N2 (1-$)2 + 2 I ~c (w/ac) 
(9) 

which reduces to 

I H (w ) 12 = s (10) 

for a critical reactor. 

The square modulus of the reactivity transfer function 

for one delayed neutron group and subcritical reactor is 

1 (11) ·, 
(1-$)2 + (w/ac)2 

which reduces to 

( 12) 

for a critical reactor. 



12 

In the above equations w is frequency in radians per 

s e cond, a is the prompt neutron decay constant defined as c 
a = S/A where S is the one-group delayed neutron fraction, c 
A = i/k is neutron generation time, n

0 
is neutron density at 

steady state, and $ represents the subcriticality of the 

reactor in dollars . 

In the above equations for square moduli of transfer 

functions it is assumed that w >> A, where ~ is the average 

delayed neutron precursor decay constant. If this simplifying 

assumption is not used and all 6 delayed groups are considered 

the critical reactor reactivity transfer function will become 

H {s) r = tiN {s) 
~lSf 

s[l + 

1 
6 
I: 

i=l 

i3 . 
1 

i {s+X . ) 1 
1 

{13) 

where Si are the individual delayed neutron fractions and Ai 

are the individual delayed neutron precursor decay constants. 

The derivation of Equation 13 is given by Schultz [28]. 

D. Pile Noise Effect on Dete ctors 

Since the pile noise must be observed in order to be 

useful , the process of observation must be considered. This 

observation is commonly done by means of a detector such as 

an ionization chamber which absorbs some of the neutrons in 

the reactor and produces an electrical signal. Consider that 

this detector collects a fraction £ of all the neutrons 
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absorbed in the reactor in whatever manner . The average 

current I passing through the chamber will then be given by 

I = £qn 
t (14) 

where q is the average charge transferred per neutron absorbed, 

and n is total number of neutrons in the reactor . Super-

imposed on this current will be fluctuating currents which 

arise in two ways. First, fluctuations will be produced by 

the pile noise fluctuations in the reactor neutron population 

to which the chamber is exposed. The spectral density of these 

fluctuations is given by Cohn [11] as 

2-2 
~_g__ jH (w) j 2 ¢ (w), =-2::"2 r nn v t 

(15) 

where W = V£ (16) 

is the detector efficiency defined as ne utrons detected per 

fission in the reactor, and ¢ (w) is the source spectral nn 
density defined by Equation 6. 

Secondly, since the steady current I in the chamber is 

made up of many pulses of current produced by randomly 

arriving neutrons , there will be a white noise component due 

to the statistical nature of this detection process . Its 

spectral density can be obtained from Equation 2 and is given 

by Cohn [11] as 
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4>d (w) 
-2 = 2q Wn 
h> 

(17) 

Since these two noise components are to first order 

uncorrelated if £ << 1, their spectral densities add in 

quadrature, giving for the total current noise in the chamber 

output 

4> (w) q 
-2 w2-2 2 = 2q Wn + ~ IH (w) I 4> (w). 
~v v~2 r nn 

(18) 

Thus the relative proportion of pile noise to white noise in 

the chamber output signal depends on the detection efficiency 

w. 

E. Auto-spectral Density 

The signal flow diagram resulting in two signals x(t) and 

y(t), the outputs of two independent and non-identical 

detection channels, is shown in Figure 1. The auto-correlation 

function of a zero mean signal b(t) is by definition 
T 

lim 1 I ¢bb{ T) = T~oo 2T b(t)b(t+T)dt. 
-T 

(19) 

The auto-spectral density of b(t) is the Fourier transform of 

¢bb(T) or 

(20) 
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It can be shown (33] that the auto-spectral density of a 

system is equal to the square modulus of the transfer functions 

of the system times the input auto-spectral density. Thus 

The spectral output of an ionization chamber was defined 

by Equation 18. For the two non-identical detectors considered 

here the spectral outputs can be written as 

- 2 2-2 
ct> (w) 

2q Wxn Wxq I Hr (w) 12 ct> (w) = + -2 2 qx R. \) nn , 
\) R. 

(22) 

and 

-2 2-2 2q W n w q 
jHr(w)j2 ct> (w) = y_ + +i- <Ii (w) 

qy R. v nn , 
\) R. 

(23) 

where ct> and ct> are the spectral outputs of the two detectors 
qx qy 

x and y and W and W are their efficiencies . x y 

The concept introduced in Equation 21 leads to the auto-

spectral densities of the output signals x(t) and y(t); 

(24) 

and 

ct> (w) = I Hdy (w) 1
2 

<I> (w) yy qy (25) 

where HdX(w) and Hdy(w) are the transfer functions of the two 

signal processing channels . 
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A reasonable simplifying assumption will be introduced at 

this point. It will be assumed that the two signal processing 

channels affect the amplitudes of the two signals x(t) and y(t) 

through unequal gain factors, only. With this in mind we can 

write 

(26) 

and 

(27) 

Substituting in Equations 24 and 25, we have 

¢ ( w ) = A 2 ( w ) I Ha < w ) I 2 
¢ ( w ) , xx x qx {28) 

and 

¢ ( w ) = A 
2 

< w ) I Ha < w ) I 2 
¢ < w ) yy y qy (29) 

In Equations 22 and 23, the second term is the reactor noise 

contribution, while the first term is the detection noise 

contribution. A ratio of correlated reactor noise to uncor-

related detection noise, or a signal-to-noise ratio, can be 

defined as 

{30) 

where the subscripts n = x,y refer to either channel x or y 

except for ¢ n and ¢ . Upon substitution of Equations 6, n ns 
11 and 17, Equation 30 reduces to 



where 

Q (w) = n 

Q n,m,c = 

18 

2 2 = 
(1-$) + (w/cxc) 

W D n 

7 

Q n,m,c (31) 
(1-$)2 + (w/cxc)2 ' 

( 3 2) 

is the maximum signal-to-noise ratio at delayed critical ($=0) 

and low frequency (w << cxc) • 

When the effects of the statistical nature of the 

detection chamber ionization process are included, as was done 

by Seifritz [29], the maximum ratio of reactor noise to 

detection noise is reported as 

Q n,m,c = 
W D n 
R82 I 

where R is the "Bennett factor" defined as 

2 
R = g_ 

-2 q 

( 3 3) 

(34) 

In either case, the importance of detector efficiency in 

making the correlated reactor noise signal observable above 

the uncorrelated detection noise in the auto-spectral densities, 

¢ (w) and¢ (w) , is apparent since the ratio is directly xx yy 
proportional to W , the detector efficiency. n 

In deriving Equation 33 for maximum signal-to- noise ratio, 

the effect of gamma radiation was ignored. Roux and Buhl [27] 

have shown that current induced in the detectors by gamma 
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radiation can reduce the signal-to-noise ratio significantly 

if the ganuna field is intense ( >10 5R/h) near the detectors. 

This kind of situation could arise if a reactor is operated 

at high power and then shut down. The signal-to-noise ratio 

is degraded by a factor C = (U + U ) / U , where Un and UY are n y n 
the uncorrelated noise due to neutrons and y -rays respectively. 

The signal-to-noise ratio of Equation 33 will take the form 

Q n,m,c = 
W D n 
R8 2C • 

(35) 

The effect of gamma radiation degradation of signal-to-

noise ratio will be kept to a minimum in this work by con-

trolling the experimental procedures. This could be easily 

achieved by not making measurements right after the reactor has 

been operated at high power. 

F. Cross-spectral Density 

It has been previously mentioned that the use of two 

detection systems enhances the rejection of the random 

detection system noise. This follows from the formulation of 

the cross-spectral density function given in Appendix C. The 

cross -spectral density of two signals x(t) and y(t) is shown 

to be 

¢ ( w ) = w w A ( w ) A ( w ) I Ha ( w ) I 2 ~ . . ( w ) xy x y x y 11 (36) 
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where ~ . . (w) is the spectral density of a conunon signal in both 
1.1. 

detectors. From Equations 22 and 23 it is easily seen that 

~ .. (w) 
1.1 

After substituting this in Equation 35 the cross-spectral 

density function of x(t) and y(t) becomes 

(37) 

(38) 

It is readily seen that this cross-spectral density function is 

independent of ~dx (w) and ~dy(w), which are the uncorrelated 

parts of the spectral outputs of the detectors, and arise from 

the random detection system noise. 

G. Coherence Function 

The inherent advantage in introducing the coherence 

function is that it is independent of the detection system 

transfer funct i on, Hd( w), appearing in the definitions of the 

auto- and cross-spectral densities given in Equations 28, 29 

and 38. 

This independence is achieved by the way that the 

coherence function is defined. The coherence function of two 

signals x(t) and y(t) is by definition [29] 
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y(w) 
ct> (w) = xy 

[ct> (w) ct> (w))l/2 • 
xx yy 

(39) 

This definition of coherence function is commonly used in the 

literature, but Bendat and Piersol [6) and Uhrig [33) have 

called y 2 (w) the coherence function. In this work the 

definition given by Equation 39 will be used for the coherence 

function. 

The spectral densities can be replaced in Equation 39 by 

Equation 28, 29 and 38. The result i s 

y(w) = 

= 

-2 
WW A (w)A (w) _s__2 2 IHd(w) 12 1H (w) 1

2 
ct> ( w ~ x y x y v ~ r nn 

[ ct> (w) • 
qx 

I H ( w) 1
2 

ct> (w) r nn 

ct> (w) )l/2 
qy 

(4 0) 

It is now evident from Equation 40 that the coherence function 

is indepe ndent of Hd(w) . If ct> (w), IH (w) 12 , ct> (w) and nn r qx 
~ (w) are replaced by Equations 6, 11, 22 and 23 respectively, 
qy 

and the definition given in Equatio n 31 is used, y (w) could be 

written as 
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[ ]

1 / 2 Q (w ) • Q (w ) 
- x y 

y (w) - [l+Qx(w)][l+Qy(w)] 

where Q (w) and Q (w) are defined by Equation 31 as x y 

where 

Q 

Q n,m,c 
2 2 (1-$) + (w/a ) c 

= n,m,c 
W D n 
R8 2 I 

and n = x,y depending on the channel specified. 

( 41) 

( 4 2) 

( 43) 

If it is assumed that the detector efficiencies are equal 

(Wx = WY = W) , the cohere nce function takes the form 

y (w ) Q(w) = 1 + Q (w) ' (44) 

where 

Q( w) = 2 2 , 
(1-$) + (w/a ) c 

(45) 

and 

DW = 
R8 2 (46) 

or 

Y (WI$) = 2 2 • 
(1-$) + Q + (w/ac ) m,c 

(47) 
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If it is further assumed that the reactor is critical 

($=0) , the coherence function becomes 

~ , c ( 4 8) 

Examination of Equation 48 shows that the coherence 

function has a low frequency plateau value of 

Y = y (w << a ) c , o c c 
0m, c = 1 + Q I 

m, c 
( 4 9) 

and a break frequency of 

= a (1 + o )1/ 2 . c 'ln,c (SO) 

Combining Equations 49 and 50 and solving for a c yields 

(51) 

Therefore, if the coherence function is known , the prompt 

neutron decay constant, a c' can be determined. 

In the general and more realistic case where the detector 

efficiencies are not assumed to be equal, Equations 31 and 41 

yield 

Y (w' $) = [ 2 
[ (1 - $) 

Q • Q x,m , c y ,m, c 
+Q + (w/a ) 2 ][(1-$) 2+Q x,m,c c y 1 m,c 

(52) 
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For a critical reactor $=0 and the coherence function becomes 

y (w) c = [ [l + Q + x,m,c 

Q Q x,m,c y,m,c 
2 

(w/ac) ] (1 + Qy ,m,c + ]

1/2 

2 . 
(w/ac) ] 

(53) 

The plateau value of the coherence function is now given by 

~ 
Q Q jl/2 

Y = y (w << a ) x,m,c y,m,c 
c I 0 c c = ~ 1 + Qx Im I c) ( 1 + Qy , m, c} I 

(54) 

and the break frequency is given by 

= (Ox,m,c 
Q ) 1/ 4 71 m,c 1 2 

Yc ,o 
{ 55) 

For th e determination of a c in this case Equations 54 and 55 

are not sufficient and a third measured quantity along with 

y and w is required which contains a relationship between c,o c 
Q and Q . From Equation 33, x,m,c y,m,c 

and from 

Q 
x,m,c = W D/RS 2 

x 
Q y ,m,c 

Equation 14 and 16, 

! w q n/v t x x x = 
I w q n/vt y y y 

= 

w x =w-
y 

Wxqx 

Wyqy 

(56) 

{57) 
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If the detectors are of the same kind then qx = qy and 

-I w x x = w I y y 

(58) 

Combining Equations 56 and 58, we have 

-I w Q x x x,m,c r = = w = 
I Q 

y y y,m,c 
(59) 

Thus the ratio r, of the two mean currents I and I , of the x y 
two detectors x and y can be used as the third measured 

quantity along with y and wc to determine a c. Equations 54, c,o 
55 and 59 represent three equations and three unknowns, ac' 

Q and Q . Solving for these three unknowns, we have x,m,c y,m,c 

Q = y,m,c 
y 2 (l+r) + [y 4 (l+r) 2 + 4ry 2 (l-y 2 ) ] 1/ 2 c,o c,o c,o c,o 

2r (1 - y 2 ) c,o 
( 60) 

0x,m,c = r Qy,m,c ' (61) 

and 

(62) 
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IV. SHUTDOWN REACTIVITY FROM THE 

COHERENCE FUNCTION 

A. Case of Identical Detectors 

Seifritz [29 ] suggests that , besides the measurement of 

prompt neutron decay constant of the delayed critical reactor, 

the coherence function measurement offers a convenient 

possibility of subcriticality determination. From Equation 47 

it is seen that the low-frequency coherence function is 

strongly dependent on the reactivity of the system. If one 

assumes, for simplicity, that the two neutron detectors have 

equal efficiencies (W = W = W) , the subcritical reactivity x y 

yields with the use of Equations 47 and 48, 

= 1 - [ Yc,o 
1-y c,o 

1- l 1/ 2 Ys,o 
I 

Ys,o 
( 6 3) 

where y and y are the plateau values of the coherence c , o s,o 
function for the critical and subcritical reactor respectively , 

and the reactivity , $ ~ 0 1 is in dollars. The derivation of 

Equ ation 63 is given in Appendix D. 

B. Case of Non-Identical Detectors 

If the detector efficiencies are not equal, the relation-

ship between the reactivity and the two plateau values given 

in Equation 63 will additionally contain the ratio of the 
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detector efficiencies given by Equation 59. From the general 

formulas for the subcritical and critical coherence functions 

given by Equations 52 and 53 and Equation 59 one can find the 

subcritical reactivity in this case as 

(l+r)y c,o 
2 2 + [(1-r) y c,o 

+ 4r]l/2 

x 

1 -

2 2 [ (1-r) y s,o 
+ 4r]l/ 2 

2Ys,o 

2 2r(l - y ) c,o 

s,o - (l+r)y ]1/2 
( 64) 

The derivation of this Equation is given in Appendix D. 

C. Detection Efficiency Dependence of 
Subcriticality Measureme nts 

It has been shown by Ackermann and Buhl [l] that a 

systematic error in the subcritical reactivity measurement may 

occur due to unexpected changes in the neutron detection 

efficiency . As was previously mentioned, the neutron detection 

efficiency, W, of a neutron detector placed in or near a 

reactor core is defined as the number of neutrons detected per 

fission occurring in the core. Ackermann and Buhl [l] give 

the following definition for detector efficiency as it is 

defined above: 



where 

w = n 

Iv Jall d E 

fv Jall E c 
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drdEEd(r,E)¢(r,E) 

drdEEf (r,E)~(r,E) 

= detector and reactor core 
volumes, respectively 

neutron detection and fission 
macroscopic cross reactions, 
respectively 

¢(r,E) = space- and energy-dependent 
neutron flux. 

( 6 5) 

W is very sensitive to a local perturbation in the flux n 

distribution since the numerator is integrated in space only 

over the volume of the detector, whereas the denominator is 

integrated over the entire reactor core. 

If we assume that W = W = W, but do not assume that the x y 

detector efficiency is the same for the reactor being critical 

or subcritical, that is to say, if Wc ~ Ws it could be shown 

(Appendix D) that the subcriticality is defined as 

Yc,o 
1-y c,o 

1- l 1/ 2 Ys,o 
Ys ,o 

( 6 6) 

Equation 66 suggests that in order to calculate subcriticality 

one needs to know the detector efficiencies both when the 

reactor is critical and when it is subcritical, and that just 

knowing the ratio of detector efficiencies at critical state 
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is not sufficient. 

For the more general case of having two asymmetric 

detectors such that Wx ~ WY, the relationship corresponding to 

Equation 66 is 

$ = 1 - [Q~ ,m, s l[y2 (1-r ) 2 + 4r ] l/2_Y (l+r >] l 1/2, 
Ys,o L s,o s s s,o s 

(67) 

where 

w 
Q = ...L.!!. y y,m,s W c,o y,c 

(l+r )y + [(1-r ) 2y 2 + 4r ] 11 2 
c c,o c c,o c , 

2r (1-y ) c c,o 

(68) 

w 
r = ~ (69) c w y,c 

and 
w 

r = x,s (70) 
5 w-y,s 

The formulation of Equations 67 and 68 are also given in 

Appendix D. 

The ratio re = W /W can be measured experimentally x,c y,c 
by the method outlined for deriving Equation 59. For measuring 

the ratio r = W /W experimentally for the subcritical s x,s y,s 
reactor, we can use Equation 14 
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e:qn 
-R,- (71) 

where e: = fraction of all neutrons absorbed in the reactor 

which are absorbed by the detector. 

Now, in a subcritical reactor there is always a neutron source 

introduced to maintain a steady power level. Thus, e: can be 

defined in this case as 

where 

Thus 

and 

or 

e: = [fraction of (neutrons produced by fission + neutrons 
emitted by the source) 

which are absorbed by the detector] 

= [fraction of (Fv + S) which are absorbed by the 

detector] 

F = fission rate, and 

S = neutron source strength. 

It is also true that 

Neutrons detected per second= e: (Fv + S) 

r s 

e: = WF 
Fv+S 

I = [F~Sl - n 
q r 

w I 
= ~ = ~ w -y,s I y,s 

= WF 

I 

(7 2) 

(7 3) 

(74) 
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if identical detectors are used. 

The ratio W /W appearing in Equation 68 is not easy y ,s y,c 
to get at experimentally. Using Equation 73, we can write 

I = y , s 
W F y,s s 
F v+S s 

for the subcritical reactor, and 

[\c;c] -I = q y,c 

-w y,cq n = <r> c 
\) 

n <r> c 

(75} 

(76} 

for the delayed critical reactor, where it has been assumed 

that the source intensity is zero at delayed critical. It is 

obvious that a ratio of mean currents from the detectors can 

not be used to measure the ratio W /W and additional y,s y,c' 
information about fission rates, F and F , total reaction s c 
rates (n/~} and (n/ ~ } , and source intensity s, is needed. s c 
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V. MEASUREMENT OF THE COHERENCE FUNCTION 

A. Polarity Correlation Method 

In contrast to the traditional procedure of calculating 

the coherence function b y measuring the three spectral 

densities in Equation 39, y(w) is determined directly by the 

method of polarity correlation introduced by Seifr itz [29) and 

shown in Figure 2. 

If x(w , t) and y(w,t) are two correlated neutron noise 

signals with vanishing means, passed through bandfilters with 

the center frequency w, their normalized joint-probability 

density function is given by Seifritz [29) as 

f (x,y) = {2Ticr (w) cr (w) [l - y 2 (w)) 112 }-l x w x y 

exp 2 [l->(w)] ~~~:) - 2y (w) x 

er (w) cr (w) x y 

xy 2] + y 
2 cry(w) 

where y (w) is the coherence function of filtered signals 

x{w ,t ) and y(w , t), and cr 2 {w) and cr 2 {w) are the mean-square 
~ ~ x y 

2 2 values, x {w,t ) and y {w,t ) of the two filtered signals. 

(77) 

The appropriate assumption made for the validity of the 

bivariate distribution of Equation 77 is that x(w , t) and y(w , t) 



x(t) 

Multiplier 

x(t)cos(wt+e ) 

Low-pass 
filter 

, - -
x( w,t) 

34 

Oscil lator 
cos(wt + e) 

x(w,t) y(w,t) 

y(t) 

Multiplier 

y (t) cos (wt+ e ) 

Low-pass 
filter 

POLARITY CORRELATOR 

I 
I 
I 
I 
I 

Fast 
comparator 

sgn x(w,t} 

'-
100 KHz 

Pulser 

Scaler 

Logical 
multiplier 

Scaler 

Fast 
comparator 

sgn y(w,t) 

= sgn x( w,t). sgn y (w,t) 

c (t) = w 
2C -C s M 

CM 
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technique in the frequency domain 
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are "normal random noise" signals. 

It is clearly seen from the mathematical operations of 

the polarity correlator, indicated in Figure 2, that the 

coherence function y (w) is easily obtained by time averaging 

the correlator output C (t) . This signal is a binary random w 
function with two logical states, +l and -1. The upper state 

+l and the lower state -1 are occupied if the signs of x(w,t) 

and y(w,t) coincide and anticoincide, respe ctively. The total 

probabilities P+ and P that C (t) = +l or -1 are given by the w 
volumes enclosed between the probability surface f (x , y) from w 
Equation 77 and the plane x, y in the first and third 

quadrants or in the s e cond and fourth quadrants . These 

probabilities derived by Cramer (12) are 

p+ = f00J00 
f w(x , y)dxdy + f

0 
f

0 
f w(x,y)dxdy 

0 0 - oo - oo 

1 + 1 sin y( w) = 2 - arc I 1T 

and 

p = 1:00J: f w (x,y)dxdy + f
00

f
0 

f w (x, y )dxdy 
0 - oo 

1 1 sin y {w) • = 2 - arc 
1T 

Hence , the time averaged signal C (t) is w 

Cw (t) = P+ - P 2 = arc s~n y (w), 
1T 

(78) 

( 7 9) 

(80) 
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or the coherence function is obtained as 

where c (t) = w 

y (w ) = sin~ Cw (t~, 
Cs - (CM-Cs) 

CM 

( 81) 

(82) 

where Cs is the "gated" scaler reading and CM is the clock 

scaler reading, and the measurement is done for a specified 

period of time . 

B. Dynamic Filtering 

The filtering of the broadband noise signals can be 

achieved by means of dynamic filters as shown in Figure 2. 

The two signals x(t) and y(t) are multiplied by an oscillator 

signal , cos(wt+e ). Since signals x(t) and y(t) may contain a 

spectrum of frequencies, the resulting output spectra will 

contain the sum and difference frequencies of every possible 

product of the frequency components of the two multiplied 

signals. If these resulting signals are passed through low 

pass filters, only the signals with frequencies equal to the 

difference of the oscillator frequency and components of the 

signal x(t) or y(t) which have a frequency w. ~ w will get 
l. 

through. The above condition can be expressed as 



or 

where 
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w - w. < wb , 
i i\, 

w = oscillator frequency 

w. = component i of input spectrum 
1 

wb = break frequency of low pass filter. 

( 8 3) 

(84) 

Since both conditions expressed in Equations 83 and 84 

are sufficient for allowing a signal through the low pass 

filters , the effective width of the filters will be 2wb' 

centered around the frequency w of the oscillator. By changing 

the oscillator frequency, the whole spectrum of the input 

signals can be scanned. The advantage of dynamic filtering is 

the better resolution ( ~w)/w, which can be chosen independent 

of the center frequency w. 

The method of dynamic filtering is used to obtain 

coherence functions in this work. Adjustable band pass 

filter s were us e d in subcriticality measurements. 

C . Errors and Uncertainties 

The variance in the measured value of the coherence 

function as defined by Equation 81 is given by Vaurio [35) as 

2 
CJ ( y) 

7T 3 2 = ~wT (1-y ) (1 - -7T 
2 arc sin y ) ( 85) 
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where 6w = 2rr 6 f is the width of band-pass filter used in the 

measurement , and T is the measurement time . It is obvious that 

to reduce the variance a long measurement time is necessary. 

This is achieved by recording the signals on magnetic tape for 

the desired time period, and then analyzing the recorded signal 

over the desired frequency range. 

The variance for the value of subcriticality as given by 

Equation 63 can be calculated from Equation 85 . Applicat ion 

of propagation of error analysis on Equation 63 gives 

a 2 ( $) = [ .~:.J (86) 

where 

(1 - y ) s,o (87) 

and 

Yc,o (88) 

2 2 Equation 85 may be used to calculate a (yc,o) and a (y ) s , o ' 
then Equation 86 takes the final form 



CJ 2($) 
3 

'TT 
= 46wT 

39 

(1 -
2 . arc sin 
'TT 

2 - arc sin y ) 
'TT c ,o 

It is evident from Equations 85 and 89 that to reduce 

( 8 9) 

uncertainties it is desirable to use as large a filter width 

as possible and as long a measurement time as feasible. 

Korn and Korn [21] have given a definition for the 

variance of the coherence function as 

2 CJ (y) = (9 0) 

where N is the number of times the coherence function is 

sampled. This is simply the number of zero crossings in the 

present case where only the information carried in the 

polarity of the detector signal is used. 

Bendat [S] gives the expected number of zero crossings in 

T seconds for band-limited white noise with zero lower-

frequency cutoff as 

N = 0.577 
'TT 

(91) 
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Since the where wb is the upper cutoff in radians per second . 

coherence function is essentially a constant over the region 

of interest, Equation 91 may be used to e valuate N. 

Hess and Albrecht [20) have used Equations 90 and 91 in 

conjunction with Equation 86 to derive an equation for the 

variance of the reactivity in dollars, which after making some 
corrections is given as 

C1 2($) = 1. 361 ~ri[l -y s, o] 
wbT 1-y c,o 

[
1-y l + s,o 
1-y c , o 

Yc , o 
--y--
y s , o 

( 1 +y ) 2 c,o 

(92) 

To arrive at Equation 92 the assumption was made that the 

lower-frequency cutoff was at zero. This assumption cannot be 

made for the present work due to the effect of delayed neutrons 

on the lower-frequency portion of the coherence function for 

the UTR-10 reactor . Band pass filters with lower frequency 

cut off greater than zero were employed for subcriticality 

measurements for the UTR-10. Due to above reasoning, Equations 

85 and 89 will be used for error analysis in this work. 

Equation 92 could be used if the effect of delayed neutrons are 

considered . 
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VI. EQUIPMENT AND PROCEDURES 

Coherence function measurements were performed in the 

UTR-10 reactor at four different positions shown in Figure 3. 

All measurements but one were performed at a reactor power of 

1 watt . One extra measurement was performed at position 1 at 

a power of 3 watts to study the effect of power level on the 

coherence function measurement. At position 1, an 8 11 x 4" x 4" 

piece of graphite was removed from the reactor so that the 

detectors could be inserted . At position 2 in the thermal 

column, a 50" x 4" x 4" piece of graphite was removed. At 

position 3 in the thermal column, an additional 19.5" piece of 

graphite had to be removed. At position 4 in the internal 

reflector of the reactor, the detectors were lowered in from 

the top of the reactor, after a 48" x 4" x 4" piece of 

graphite was removed and a 20" x 4" x 4" piece was put in 

place of it. The detectors were placed on top of this 20" 

stringer. At positions 2, 3 and 4, the detectors were placed 

in holes inside a 10" long piece of graphite which was locally 

fabricated. The holder kept the detectors in position and 

compensated for some of the removed graphite. 

Equation 85 was used to determine length of measurement 

time necessary. It was decided that a 60 minute signal 

recording time was adequate. All coherence function measure-

ments were made for 60 minutes except for the case of the 3 

watt run at position 1, where a 90 minute recording time was 
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used. 

The data acquisition system is shown in a block diagram in 

Figure 4. Two Westinghouse type 6376 fission chambers were 

placed side by side in the desired position in the reactor . 

The resulting currents from the fission chambers wer e fed to 

two high speed picoarnrneters (Keithley, model 41 7). The steady 

currents were suppressed and the fluctuations on top of the 

steady currents were amplified and converted to voltage signals . 

The resulting voltage fluctuations were then amplified on the 

TR- 48 analog computer and recorded on two separate channels of 

an FM tape recorder (Precision Instrument, model PI-6200) . The 

recording was done at a speed of 3.75 ips, and t he recorded 

signals were monitored on a dual beam oscilloscope . 

~he block diagram of the data analysis system is given in 

Figure 2 . The two signals x(t) and y(t) are the recorded data 

on tape which were played back at ten times the recording 

speed, i . e . , at 37.5 ips, to shorten the analysis time. The 

process of playing back the recorded signal at ten times the 

recording speed multiplies all frequencies by a factor of 10. 

The analysis was then done at this higher frequency and the 

results were then adjusted to the original frequency . The 

signals x(t) and y(t) were multiplied by a common oscillator 

sinusoidal signal. The multiplication was performed on the 

TR-48 analog computer. The resulting signals were then fed to 

two band-pass filters (Krohn-Hite, model 330A), which were 
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operated as low-pass filters by setting the low cutoff 

frequencies at their minimums (0.019 Hz). The outputs of the 

filters were then fed to the polarity correlator. 

As was mentioned in the theory of polarity correlation, 

the two signals to be correlated need to have zero means . 

This requirement was achieved effectively by subtracting the 

mean value of the two signals from the signals as is shown 

schematically in Figure 2. To achieve this the two signals 

sgn x(w,t) and sgn y(w,t) shown in Figure 2 were taken 

directly to the AND gate and adjustments were made in the 

values of x( w,t) and y(w ,t ) until the gated scaler reading was 

one- half the clock scaler reading. 

The output of the polarity correlator was used to gate a 

nuclear counter (Canberra , model 895) which was driven by a 

100 KHz pulser. Another nuclear counter was used to record 

the number of pulses. 

The oscillator frequency was changed over the desired 

frequency range and the coherence function was measured at 

specific frequencies. It was necessary to change the width 

of the filters at different center frequencies . The change 

was not made for all frequencies, rather a filter width was 

used for a specific frequency range. 

The cutoff frequencies of the two filters were compared 

by feeding a sinusoidal test voltage to the filters and 

observing the Lissajous' patterns of the output voltage wave-
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forms on a dual beam oscilloscope. The cutoff frequencies o f 

the two filters were adjusted until a zero phase shift between 

the output signals of the two filters was observed. 

The polarity correlator was locally constructed using the 

concepts provided by Lehto et al. [23). 

From Equation 59, it is obvious that the ratio of the 

detector efficiencies could be measured experimentally by 

measuring the ratio of the average currents from the detectors. 

This could be done satisfactorily by measuring the ratio of 

the suppress currents on the picoammeters . To make sure that 

the suppress current readings on the picoammeters were equal 

to the input steady currents a picoampere source (Keithley, 

model 261) was used to feed known currents to the picoammeters , 

and the suppress currents which gave zero meter readings were 

recorded. It was found that the suppress currents were very 

nearly equal (within ~ 0.5%) to input test currents . 

As shown in Figure 2, the time average value C {t) was w 
calculated using Equation 82, where Cs and CM were read from 

the two nuclear counters. The value of the coherence function 

at each specific frequency was calculated using Equation 81 . 

After measuring the coherence function over the desired 

frequency range, a logarithmic plot of the coherence function 

versus frequency was made and the plateau value y and the 
0 

break frequency w were estimated from the plot . The ratio of c 
the detector efficiencies, r, was also measured experimentally 
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by measuring the ratio of the suppress currents from the pico-

ammeters . The application of values of y0 , wc and r in 

Equations 60, 61 and 62 gives values for Q , Q and ac . x,m,c y,m,c 
These last three parameters and experimentally determined 

values of the coherence function at different frequencies were 

used to make a weighted least-squares fit to the coherence 

function given by Equation 53. The method of fitting used is 

that of Bevington [7], which is a least-squares fitting routine 

by linearization of the fitting function. The standard 

deviations of the coherence function at each frequency measured 

given by Equation 85 , were used for weighting the least-

squares fit . 

To measure the subcritical reactivity, only the plateau 

values of the coherence function in the delayed c ritical and 

desired subcritical states were needed. Band-pass filters 

were used to analyze the data, and they were set over the flat 

(plateau) region of the coherence function . 

The subcritical measurements were done directly without 

having to resort to recording the data on tape. 

Equations 63 and 64 were used to calculate the sub-

critical reactivity. The standard deviation in the measured 

subcriticalities wer e calculated from Equation 89 . 

In all coherence function measurements the cables from 

and to the detectors , the detectors, and the DC power supply 

for the detectors were shielded to reduce extraneous noise 

input. 
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VII. DISCUSSION AND RESULTS 

A. Coherence Function Measurements 

The results of coherence function measurements are given 

in Figures 5 through 9 for the five cases examined . The 

results of prompt neutron decay constant measurements are given 

in Table 1. -1 They range from ac = 42 . G(sec) to ac = 48.2 
-1 (sec) . The measurements agree very well with data of another 

-1 investigator [9] , who suggests a = 43 . 0(sec) . The reactor c 
manufacturer suggests a prompt neutron lifetime of i = 1 . 35 x 

10- 4 sec for the UTR-10 reactor. Assuming a delayed neutron 

fraction of 8 = 0 . 0064, we have a c = 8/i = 47 . 4(sec)-l . 

The value of a = 48. 2(sec) -l deviates from the average c 
of all measurements (a = 44.4(sec)-l) more than other values . c 
A reason for this could be that the detectors were nearest to 

the core for this case. Since prompt neutron lifetime is 

s horter in light water than it is in graphite, a larger value 

of ac is expected at or near the core . 

The plateau value of the coherence function , y
0

, is 

largest when the signal-to-noise ratio (S/N ) is the largest, 

which agrees with Equation 54 . The break frequency , w , c 
changes from 55.1 to 111 sec-l in the cases examined. The 

reason is quite visible from the form of Equation 55, which 

shows that the break frequency will increase as S/ N increases . 

It must be noted that the break frequency of the coherence 
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Table 1. Results of a c = 8/t measurements in the UTR-10 reactor 

I Q a =8/t w w w 
x Q Q x,m,c c c x y r = Yo 

I x,m,c y,m,c Q -1 -1 x 104 x 10 4 
sec sec y y,m,c 

Detectors at 
position 1, 
power = 1 watt 1. 02 2.10 1. 72 1.22 44.2 75.4 0.655 1. 29 1. 06 

Detectors at 
position 1, 
power = 3 watts 1. 05 1. 84 1. 80 1. 02 43.0 72.2 0.645 1.13 1.10 

Detectors at 
position 2, U1 

power = 1 watt 1. 04 0.63 0.548 1.15 43.8 55.1 0.370 0.387 0.337 ~ 

Detectors at 
position 3, 
powe r = 1 watt 1.06 2.97 2.66 1.12 48.2 94.0 0.737 1. 82 1. 63 

Detectors at 
position 4, 
power = 1 watt 1. 04 5. 91 5.76 1. 03 42.6 111 0.854 3.63 3.54 
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function is directly proportional to the prompt neutron decay 

constant. In fast reactors where the prompt neutron decay 

constant is large the break frequency occurs at much higher 
4 -1 frequencies (~ 10 sec ), as could be seen from the results 

obtained by Seifritz (29). In the UTR-10, which is a light 

water moderated and graphite reflected reactor, some modera-

tion is also done by the graphite, and the value of ac is 

expected to be lower than what one might observe in a light 

water moderated and reflected reactor. 

The above effect influences the measurement of a c by the 

coherence function method since as it is suggested by Yasuda 

and Miyoshi (36) the mean lifetime of precursors of the short-

lived delayed neutron emitters is not sufficiently longer than 

the lifetime of prompt neutrons in a reactor like UTR- 10. This 

complicates separation of the prompt neutron decay mode from 

the associated delayed neutron decay mode. To demonstrate 

this effect for the UTR-10 reactor, a "theoretical " coherence 

function was developed, given in Appendix E, which takes into 

account the effect of delayed neutrons. The resulting 

coherence function was plotted on logarithmic paper , and the 

fitted coherence function measured at 3 watts was superimposed 

on this "theoretical" curve for comparison purposes. The 

result is given in Figure 10. It can be seen that the effect 

of the delayed neutrons is quite pronounced, and possibly 

affects the break frequency determination, and hence the 
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measured value of a • It should also be noted that some c 
graphite had to be removed from the reactor during each 

coherence function measurement, which had some effect on the 

results , since the composition of the reactor was slightly 

altered in each case. The most important case is probably the 

removal of some graphite from the internal reflector of the 

reactor . 

The detector efficiencies given in Table 1 were calculated 

using Equation 33 a nd a Diven factor equal to 0 .8 for pure 

u235 , a Bennett factor of 1 . 2 , and a delayed neutron fraction 

of 0.0064. 

The results of the coherence function measurements at 

4 .5 11 from the south tank are given in Appendix F . 

B. Subcritical Reactivity Measurements 

During the normal operation of the UTR-10 reactor the two 

safety rods shown in Figure 3 are fully withdrawn and the 

positions of the shim rod and regulating rod are adjusted to 

achieve criticality at desired power level. To operat e the 

reactor at a subcritical state, the shim and regulating rods 

could be inserted and a source of neutrons introduced so that 

a constant power level could be maintained. The two safety 

rods could subsequently be inserted to give different states 

of subcriticality. 
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Table 2 summarizes the results of subcriticality measure-

ments at three positions in the UTR-10 reactor. Three states 

of subcriticality were examined for each position , except for 

position 3, where a fourth configuration was also examined . 

In the case that shim and regulating rods are fully inserted 

but the safety rods are kept withdrawn , the subcriticality can 

be calculated approximately from the rod worth curves of the 

reactor . This information is also given in Table 2 . Also an 

average of subcriticality values measured in the north and 

south cores of the UTR-10, using pulsed neutron source 

technique and Gozani method of calculation [18) are given for 

comparison . It must be noted that the pulsed neutron technique 

of measuring subcriticality is space dependent . The standard 

deviation values and the per cent standard deviation values 

were calculated using Equation 89. 

As can be seen from Equation 89 the variance of the 

subcriticality values can be reduced by increasing the measure-

ment time. A measurement time of 20 minutes was used for all 

subcriticalities given in Table 2. The standard deviations 

are large because a very narrow filter width of 0 . 7 Hz (0 . 7 -

1 . 4 Hz) had to be used . The reason for choosing such a narrow 

filter width can be seen from Figure 10. Both the effect of 

delayed neutrons and low break frequency decrease the width of 

the plateau region of the coherence function over which the 

band filters could be set. 239 For a Pu fueled fast reactor 



Table 2 . 

Safety #1 
and 2 out 

Subcr iticalities ($) , standard deviations (cr $) and per cent standard 

deviations (%cr$) , all given in dollars , for 3 detector positions and 4 
reactor configurations 

Det ectors at 
position 1 , 
east side of 
the reactor 

$ 

Detectors at 
position 3, 
4- 1 / 2 inches 
f r om south 
tank 

$ $ 

Detector at 
position 4 , 
in the 
internal 
reflector 

Subcriticali-
ties by 
pulsed 
neutron 
technique 

$ (GOZ) 

(Case 1) -0 . 769 0.280 36 . 4 -0.599 0.224 37 . 4 - 1 . 06 0.282 26.6 - 0 . 95 

Safety #1 
and 2 out , 
from r od 
worth 
curves 

Safety #2 
out 
(Case 2) 

Safety #1 
out 

-0.55 

(Case 3) -2 . 59 

Rods in 
(Case 4 ) - 3 . 89 

-0.53 

-1. 09 

1 . 17 45 . 2 -2 . 67 

2 . 72 69 . 9 -3. 85 

- 0.75 

0 . 329 30 . 2 

0.97 36 . 3 - 2 . 40 0.583 24 . 3 - 2 . 14 

1. 94 50 . 4 - 3 . 81 2 . 99 78 . 5 - 2.99 
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the break frequency is at a much higher frequency. Here a 

filter width of ~100 Hz could be used [29], which reduces the 

variance in the values of measured subcriticalities. The 

other alternative in the present case was to increase measure-

ment time considerably. This was found to be impractical. 

As was shown by Equation 65 the detector efficiencies 

depend on their position in the reactor and hence the flux at 

that position. It can also be seen from Equation 66 that the 

subcriticality is dependent on the value of detector efficiency 

at the subcritical state as well as the critical state. The 

subcriticality measurements at the three positions given in 

Table 2 were performed for a set of identical rod positions so 

that the effect of position dependence could be studied. This 

effect is quite visible in the data of Table 2. Particularly 

for position 3 where the detectors were in the vicinity of the 

regulating rod and safety rod #2, the effect can be seen for 

cases 2 and 3 given in Tcible 2 . In each case both the shim and 

regulating rods were inserted, but for case 2 safety rod #1 

was also inserted, while for case 3 safety rod #2 was inserted. 

Although the two safety rods are supposedly of the same worth, 

the subcriticality in the case 3 was lower than case 2 due to 

the fact that the flux was lowered at the detector position by 

inserting safety rod #2. 
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VIII. SUMMARY AND CONCLUSIONS 

It was demonstrated in the theoretical part of this work 

that the coherence function is independent of uncorrelated 

input noise and the frequency response of the signal analysis 

system . It was pointed out that the theory of polarity corre-

lation applied only to zero mean value signals , thus making it 

necessary to adjust signals with non-zero means before they 

were processed by the polarity correlator. 

Coherence function measurements and subcritical reactivity 

measurements were made at different positions in the UTR-10 

reactor. Prompt neutron decay constants were calculated for 

each position from the coherence function. Based on the 

results of these measurements the following conclusions can be 

made: 

1. The value of prompt neutron decay constant does not 

change with the position of the detectors except for the case 

of detectors being closest to the fuel region where a larger 

value is observed. This larger value is probably due to the 

fact that prompt neutron lifetime is lower in water than it is 

in graphite. 

2. Subcritical r e activity measurements are dependent on 

the position of the detectors as was expected from the theory 

presented . 

3. In a reactor like the UTR-10, where ~ome moderation 

is done by graphite, the break frequency of the coherence 
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function occurs at frequencies less than ~110 rad/ sec. This 

effect dictates the use of narrow filter band widths in sub-

criticality measurements which in turn reduces the precision 

of these measurements. 
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IX. SUGGESTIONS FOR FURTHER WORK 

Some extensions could be made in the work presented here, 

in both theoretical and experimental aspects. 

The theory could be extended by adding the effect of 

delayed neutrons and extraneous neutron sources to the deriva-

tion of the reactor noise source formula. 

The theory of subcritical reactivity measurements can be 

extended by considering the effect of detector efficiency 

changes with local flux variations . 

Compensation for detector efficiency changes could be 

applied if accurate measurements of source intensity , fission 

rate, and total reaction rate were available . 

More precise subcriticality measurements are possible by 

increasing the measurement time and studying the effect of 

larger filter band widths. 

Use of more efficient detectors like 3He detectors can 

increase the precision of all measurements. 



64 

X. LITERATURE CITED 

1 . N. J. Ackermann and A. R. Buhl, Nuclear Technology, 
g, 320 (1971) . 

2. R. Badgley a nd R. Uhrig, Nuc . Sci . Eng., ~' 158 (1964 ). 

3 . J . Balcomb in Noise Analysis in Nuclear Systems , 
Proceedings of the Symposium , Gainesville, Fl orida , 1963 , 
pp . 183-201. 

4 . J. Balcomb , H. Demuth, and E. Gyftopoulous , Nuc. Sci. 
Eng.,~' 159 (1961). 

5 . J . S. Bendat , Principles and Applications of Random 
Noise Theory , pp . 1-143 , Wiley and Sons , Inc ., New York 
(1958). 

6. J . S. Bendat and A. G. Piersol, Random Data: Analysis 
and Measurement Procedures , Wiley and Sons, Inc., 
New York ( 19 71 ) . 

7 . P. R. Bevington, Data Reduction and Error Analysis for 
the Physical Sciences, pp. 237-240 , McGraw-Hi l l , New York 
(1969) . 

8. R. G. Brown and J. W. Nilsson, Introduction to Linear 
Systems Analysis, pp . 78-247 , Wiley and Sons , Inc., 
New York (1962). 

9 . T . Chan, "Reactor Transfer Function Measurements with the 
Reactor Oscillator," M. S. Thesis, Iowa State University , 
(1971). 

10. C. E. Cohn, Nuc . Sci. Eng., ~' 331 (1959). 

11. C. E. Cohn, Nuc . Sci . Eng . , l i 472 (1960) . 

12 . H. Cramer, Mathematical Methods of Statistics , pp . 287-
290 , Princeton University Press, Princeton , N.J. (1946) . 

13. R. A. Danofsky in Noise Analysis in Nuclear Systems , 
Proceedings of the Symposium, Gainesville , Florida , 1963 , 
pp . 229-248. 

14 . J . B. Dragt in Neutron Noise, Waves, and Pulse Propagation, 
Transactions of the Symposium, Gainesville , Florida , 1966, 
pp. 47-48. 



65 

15. J. B. Dragt, Nukleonik, ~' 188 (1966). 

16. S. Glasstone and A. Sesonske, Nuclear Reactor En ineerin , 
pp. 297-298, D. VanNostrand, Princeton, New Jersey 1967 . 

17. S. Goldman, Frequency Analysis, Modulation and Noise, 
pp. 355-356, McGraw-Hill, New York (1948). 

18. G. W. Hannaman, "Reactivity Measurements Based on the 
Pulsed Neutron Technique," M.S. Thesis, Iowa State 
University (1971). 

19. R. A. Hendrickson, "Cross-Spectral Density Measurements 
in a Coupled-Core Reactor," Ph.D. Dissertation, Iowa 
State University (1966). 

20. G. M. Hess and R. W. Albrecht, Trans. Am. Nucl. Soc., 
g, 738 (1969). 

21. G. A. Korn and T. M. Korn, Mathematical Handbook for 
Scientists and Engineers, p. 622, McGraw-Hill, New York 
(1961) . 

22. R. C. Kryter, D. N. Fry, and D. P. Roux, Trans. Am. Nuc. 
Soc. , 10, 2 8 3 ( 19 6 7) . 

23. W. Lehto, M. Larson, R. Goin and J. Hutton, Nuc. Ins. 
Meth., 22_, 507 (1971). 

24. N. Pacilio, Nuc. Sci. Eng., 35, 249 (1969). 

25. V. Rajagopal, Nuc. Sci. Eng.,~' 218 (1962). 

26. J. c. Robinson and N. J. Ackermann, Nuclear Technology, 
_!2, 250 (1972). 

27. D. P. Roux and A. R. Buhl, Nuclear Technology, 12 137 
(1971). 

28. M. A. Schultz, Control of Nuclear Reactors and Power 
Plants, 2 ed., pp. 85-132, McGraw-Hill, New York (1961). 

29. W. Seifritz, Nuc. Appl. Tech.,~' 513 (1969). 

30. W. Seifritz, D. Stegemann, and W. Vath in Neutron Noise, 
Waves, and Pulse Propagation, Transactions of the 
Symposium, Gainesville, Florida, 1966, p. 40. 

31. J. R. Sheff and R. W. Albrecht, Nuc. Sci. Eng., 24, 246 
(1966). 



66 

32. T. E. Stern in Noise Analysis in Nuclear Systems, 
Proceedings of the Symposium , Gainesville, Florida, 1963, 
pp . 203-215. 

33. R. E. Uhrig, Random Noise Techniques in Nuclear Reactor 
Systems , pp. 83-119, Ronald Press, New York (1970). 

34. J. Valat in Noise Analysis in Nuclear Systems, 
Proceedings of the Symposium, Gainesville, Florida, 1963, 
pp . 219-228. 

35 . J. K. Vaurio , Journal of Nuclear Energy,±..§_, 44 (1772) . 

36 . H. Yasuda and R. Miyoshi, Nuc. Sci. Tech.,~' 40 (1972). 



67 

XI. ACKNOWLEDGMENTS 

The author wishes to express his gratitude to his major 

professor , Dr. Richard A. Hendrickson. His tireless counsel 

and instructive advice during the investigation , and in 

preparing this thesis is highly appreciated. 

A special appreciation is expressed by the author to his 

father , Mr . Mehdi Nabavian, whose financial support made this 

educational experience possible. 

It is also a pleasure to express appreciation to the 

staff of the UTR-10 reactor for many hours of preparation and 

reactor operation during the experiment . 



68 

XII. APPENDIX A: REACTOR NOISE 

SOURCE FORMULATION 

This formulation follows the method given by Cohn (11). 

The specific reactions contributing to the noise-equivalent 

source are listed in the following table. 

Table Al. Contributions to pile noise source 

Nature of process 

Non-productive absorption 
including leakage 

Fission giving rise to 
v prompt neutrons 

Average rate of 
occurrence (q . ) 

1 

L n c r LC + Lf 

n Lf 
Pv r L + Lf c 

Net number of 
neutrons 

produced (mi) 

-1 

v-1 

Here the only reactions considered are nonproductive 

absorption, leakage, and fission. Additional reactions 

comprising the generation and decay of delayed neutron 

precursors give contributions a fraction 8 weaker than the 

others, and thus are neglected. Here , Le is the macroscopic 

cross reaction for all nonproductive neutron absorptions 

including leakage, Lf is the macroscopic cross reaction for 

fission, n is the total number of neutrons in the reactor, t 

is the prompt neutron lifetime and 8 is the delayed neutron 

fraction. Lc and Ef are subject to the criticality condition 
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(Al) 

-where v is the average number of neutrons, both prompt and 

delayed, produced per fission. Pv is the probability that v 

prompt neutrons will be produced in any one fission. It is 

subject to the constraints 

00 

E 
v=l 

VP 
\) 

00 

E 
v=l 

p = 1 , 
\) 

= c1-a>v "' -"' \) 

Substitution of the quantities in Table Al into the 

equation for the spectral density of the noise-equivalent 

source 

yields 

¢> ns 

<l>ns 

Application of the conditions Al, A2, A3, and A4 then 

yields 

¢> 
ns = 2n \) 2 - \) 

r-
\) 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 



where 

is the Diven factor. 
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2m>D = - R, -

2 -
D = v - v 

-=-2 
\) 

(A7) 

(AS) 
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XIII. APPENDIX B: REACTOR OPEN LOOP 

TRANSFER FUNCTIONS FORMULATION 

Following the procedures given by Glasstone and Sesonske 

[16], and Schultz [28], formulas are derived for source and 

reactivity transfer functions for both critical and sub-

critical reactors for the case of one delayed neutron group. 

where 

The point reactor kinetic equations are 

ok k Sn dn 
dt 

0 0 = ~i- n - ~-i- + AC + S 

dC 
dt 

k Sn 
0 = --i - - AC 

3 n = time dependent neutron density (neutrons/cm ) 

C = time dependent delayed neutron precursor 

concentration (cm- 3 ) 

k = neutron multiplication constant at steady state 
0 

oko = ko -1 

S = one group delayed neutron fraction 

(Bl) 

(B2) 

A = one group delayed neutron precursor decay constant 

(sec-1 ) 

i = prompt neutron lifetime (sec) 

S = time dependent extraneous neutron source density 

(neutrons/ sec-cm3 ) 
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A. Source Transfer Function 

To derive the source transfer function let 

n = no + on 

c = co + oC 

s = s + 0 
oS 

(B3) 

(B4) 

(BS) 

where n , C and S are quantities at time zero and on , oC and 
0 0 0 

oS r epresent small perturbations of time zero values. 

Substituting Equations B3, B4 and BS in Equations Bl and 

B2 we have 

d Ot on = 
ok n ok on 

0 0 + 0 
Jl Jl 

k Bn 
0 0 

Jl 

+ AOC + S + oS 
0 

k Bn k Bo n 

k Bo n 
0 

--=-Jl - + ACO 

d 
dt cS C = o o + o _ AC 

Jl Jl 0 
- AOC 

At steady state Equations BG and B7 reduce to 

0 = 

0 = 

Thus we have 

ok n 
0 0 
Jl 

k Bn 
o o + AC + S 

Jl 0 0 

k Sn 
o o - AC 

Jl 0 

AC 
0 = 

k Bn 
0 0 

Jl 

and substituting in Equation BS we have 

(BG) 

(B7) 

(BS) 

(B9) 

(BlO) 

(Bll) 
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Substituting back into Equations B6 and B7 and 

introducing new notations 

for time zero reactivity and 

A = t/k 
0 

for neutron generation time we have 

d at on = 
p on 

0 
A 

(3 on 
A + AO C + oS 

d (3o n at oC = p:- - Ao C 

The Laplace transform of this coupled set of linear 

differential equations is 

Po (3 
s 6N(s) = p:- 6N(s) - K 6N(s) + A6C(s) + 6S(s) 

(3 s 6C(s ) = K 6 N(s) - A6C(s) • 

Solving for 6C(s ) in Equation Bl7 and substituting in 

Equation Bl6 we find the s o urce transfer function 

6N(s) 
...,..,,,,..~ = H (s) = lSS(s) s 

1 

(Bl2) 

(Bl3) 

(Bl4 ) 

(BlS) 

(Bl6) 

(B17 ) 

(B18) 
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Multiplying the numerator and denominator by (s+A), and 

assuming that A << (p
0

-B)/A, we have 

H (s) = s p x 
0 

A 

(Bl9) 

Substituting s = jw and taking the square modulus of the 

transfer function, we have 

IH (w)l2 = s 
w2 + A2 

(B20) 
(w2 + 

If we neglect the effect of delayed neutrons we may assume 

w >> A and w2 >> p A/A and we have 
0 

2 I H (w) I = s 
1 

1 = 
2 ~ (1- Po ]2 w + 13> 

1 = 2 (~)2(1-$)2 w + A 

1 1 (B21) = 2 (1-$)2 + 2 , 
ac (w/ac) 
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and 
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$ = p
0
/S = subcriticality in dollars, 

a c 
s = = K prompt neutron decay constant. 

B. Reactivity Transfer Function 

To derive the reactivity transfer function let 

n = n + on 
0 

C = C + o C 
0 

P = p
0 

+ op 

The point reactor kine t i c equations in this case are 

dn = pk n - Sk n + AC + S 
dt r r 

dC = kS n _ AC • OE r 

(B22) 

(B23) 

(B24) 

(B25) 

(B26) 

Substituting Equations B22, B23 and B24 in Equations B25 

and B26 we have 

+ AO C + S 

Sk on + 'C r I\ o 

(B27) 
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(B28) 

At steady state Equations B27 and B28 reduce to 

0 k Sk + AC + s = r po no - n 
i 0 0 

(B29) 

0 = k S n - AC -r 0 0 
(B30) 

Solving for S we have 

s = (B31) 

Substituting in Equations B27 and B28 and introducing new 

variable A = i /k, we have 

(B32) 

~ oC = i on - AO C . (B33) 

Taking Laplace transforms of Equatio ns B32 and B33, we 

have 

s 6N(s) Po no 13 = X- 6N(s) + X- 6p (s) - A 6N( s ) + A6C(s) (B34) 

s 6C(s) = ~ 6N(s) - A6C(s) (B35) 
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Solving for tiC(s) in Equation B35 and then substituting 

in Equation B34 and rearranging we finally find the transfer 

function as 

H (s) r 
tiN(s) = tiR(s) 

n 
0 =r 1 

Multiplying the numerator and denominator of Equation 
P0 - S 

B36 by (s+A) and assuming that A << --,;:--- , we have 

= 
n 

0 r s + A 

Assuming that w >> A and taking the square modulus of 

Equation B37, we finally have 

IHr( w) 12 
n 1 = (~)2 

t3 (1-$)2 + (~) 2 
ac 

(B36) 

(B37) 

(B38) 

For a critical reactor $=0 and Equation B38 reduces to 

(B39) 
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XIV. APPENDIX C: CROSS SPECTRAL 

DENSITY FORMULATION 

Figure Cl shows two non-identical detection signal 

processing systems which have as inputs the sum of a common 

signal, i(t), and an uncorrelated signal, Z (t), for each n 

channel, where n = x,y refers to channels x and y. Note that 

i(t), Z (t) and Z (t) have no correlation with each other. x y 
When the convolution integral is applied, it is found that 

(Cl) 

and 

(C2) 

where W and W are detection efficiencies. x y 

The cross-co rrelation function of x(t) and y(t) is by 

definition 

lirn 1 JT = T+oo 2T x(t)y(t+T)dt 
-T 

[Zy (t+T-v) +WY i(t+T-v)dudvdt 



ct> . . (w) 
l. l. 

i (t) 

H(w) - transfer function 

h(t) - impulse response 
function 

ct> (w) - spectral density function 

ct>Zx(w) 
Zx(t) 

ct>Zy (w) 

Zy (t) 

Figure Cl. Signal processing system 

X channel 
signal 

processing 
system 

Y channel 
signal 

processing 
system 

ct> (w) xx 
x (t) 

y(t) 

.....J 
\0 
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W Z {t-u)i{t+T-v) + W i{t-u)Z {t+T-v) + y x x y 

WW i(t-u)i(t+T-v)]dudvdt x y 

w z (t-u)i(t+T-v) + w i(t-u)Z (t+T-V) + y x x y 

WW i(t-u)i(t+T-v)]dtl dudv x y 

W •z . (T+u-v) + w •·z (T+u-v) + y xi x 1. y 

WW •·. (T+u-v)]dudv. x y 1.1. 

Since i(t), Zx(t), and Z (t) are uncorrelated, •z z , 
y x y 

(C3) 

•z i and •iz are equal to zero, leaving the cross~correlation 
x y 

of x(t) and y(t) as 

•x (T) = J
00 

J
00 

hd (u)hd (v) WW• · . {T+u-v) y - oo - oo x y x y 1.1. 
(C4) 

The cross7spectral d e nsity function is the Fourier 

transform of the cross~correlation function, or 



4> (w) xy J
oo -j wT = - oo cp xy(T) e dT 
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hd (u)hd (v) cp .. (T+u-v)e-j wT dudvdT . (CS) x y l.l. 

If a change in variables is made, 6 = T+u-v , then T = 6+v-u, 

and 

4> (w) xy hd (u)hd (v) cp .. (6) e-jw( 6+v-u)dudvd6 
x y l.l. 

cp .. (6)e-j w6 d6 
l. l. 

* =WW Hd (w)Hd (w)4> .. (wt x y x y l.l. 

where * signifies the complex conjugate. 

(C6) 

Assuming that the signal processing systems only affect 

the gain of the signals we have 

(C7) 

and 

(CS) 
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And finally the cross spectral density of the two signals x(t) 

and y(t) could be written as 

~ (w ) =WW A {w)A (w) I Ha(w) 1 2 ~ .. {w). xy x y x y 11 
(C9) 

. 
I 
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XV. APPENDIX D: SUBCRITICAL 

REACTIVITY FORMULATIONS 

For the case of ide ntical detectors the plateau values of 

the coherence function for the cases of subcritical and 

critical reactor can be found from Equations 47 and 48 as 

and 

(1-$) 2 + 0 -rn,c 

1 + om,c 

(Dl) 

(02) 

o can be eliminated in the above two equations giving $ in -rn,c 
terms of Ys,o and Y0 , 0 : 

[ 

y 
- 1 c,o $(y e o ' Ys o) - - 1-y 

I f C,0 

1-y l 1 / 2 s,o 
Ys,o 

(D3) 

For the case of non-identical detectors the plateau 

values of the coherence functions for the cases of subcritical 

and critical reactor can be found from Equations 52 and 53 as 

Q • Q x,m,c y,m,c 
1/2 

Ys,o = 
(04) 

[ (1-$) 2 + ox,m,c] [ (1-$) 2 + oy,m,c] 

and 

~ 
Q • Q j 1/ 2 = x,m,c y ,m,c • 

{l + 0x,m,c) (l + 0y,m,c) 
(05) 
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After squaring Equation DS and dividing the numerator and 

denominator of the right hand side by Q2 we have y,m,c 

r 
{r + l/Qy,m,c) {l + l/Qy,m,c) . 

Equation D6 can be solved for Q giving y,m,c 

Q y,m,c 

2 2 (l+r) y + [(1-r) y c,o c,o 
2 2r{l - y ) c,o 

+ 4r]l/ 2 

(D6) 

(D7) 

After squaring Equation D4 and dividing the numerator and 

denominator of the right hand side by o2 we have y,m,c 

2 r {DB) Ys,o = 
(1-$) 2 (1-$)2 r + Q 1 + Q y,m,c y,m,c 

Equation DB can be solved for $ giving 

$ = 1 _ [Qy,m,c 
2Ys,o l 1 / 2 

lc y 2 (1-r) 2 + 4r] l / 2- y (l+r)] . (D9) I l s,o s,o 

Q can be substituted in from Equation D7 to yield y,m,c 
the subcriticality as 
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2 2 (l+r) y + [(1-r ) y c,o c,o 
2 2r[l - y ] c,o 

2 2 [(1-r) y s,o + 4r] 1/ 2 - (l+r) y ~ 1/2 s,o 
2Ys,o 

+ 4r]l/ 2 

(DlO) 

For the case of Wx = WY = W, but Ws t We' a n equation for the 

s ubcri ticality can be f o und in the following manner. Equation 

46 can be rewritten in the followi ng f a shio n 

and 

= 
DW c 
R8 2 ' 

DW s 
Qm, s = RS 2 

Q c a n be found from Eq uation D2 as m, c 

1 - Yc ,o 

From Equations Dll and Dl3 it can be found that 

D 

R8 2 
= 1 Yc,o 

WC 1 - Yc,o 

From Equation Dl it can b e seen that 

( 1- $ ) 2 = Q [-1- - l l . m, s y s,o 

(Dll) 

(Dl2) 

(Dl3) 

(Dl4) 

(DlS) 
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Application of Equations 012 and 014 in Equation 015 gives the 

subcriticality as 

[
w Y 

$ = 1 - ~ c,o w 1-y c c,o 
1-y l s,o 

Ys ,o 

1/2 
(016) 

Finally for the general case of W ~ W and W ~ W x y n,s n,c 
the subcriticality can be found in the following fashion. 

From Equations 08 and 09 we can deduce that 

$ = 1 _ [~ , rn , s ~ Y 2 ( 1 _ r ) 2 + 
2ys,o I l s,o s 

4r ]1/2 
s ]] 

1/2 
- y (l+r ) , s,o s 

where 

Q 

and 

= y ,m, s 

w 

OW y,s 

RS 2 

r s 
= x,s w--

y,s 

From Equations 06 and 07 it can be found that 

Qy,rn,c = Yc,o 

where 

(l+r ) y + ((1-r ) 2y 2 + c c,o c c,o 

Q y,m ,c = 

2r (1 - y 2 ) c c,o 

OW y,c 

RS 2 

4r 1112 
c 

(017) 

(018) 

(019) 

(020) 

(021) 
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w = x,c w--
y,c 

From Equation D21 it can be seen that 

D = 
Rf3 2 

Q y,m,c 
w y,c 

(D22) 

(D23) 

Application of Equation D23 in Equation Dl8 and use of 

Equation D20 gives 

Q y,m,s 
w 
=~ y w c,o y,c 

2 2 (l+r ) y + [(1-r) y + c c,o c c,o 
2 2r ( 1 - y ) c c,o 

4r )1/2 
c 

(D24) 

Insertion of Equation D24 in Equation Dl7 gives the 

desired equation for subcriticality . 
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XVI. APPENDIX E: THEORETICAL COHERENCE 

FUNCTION FORMULATION 

The square modulus of the reactor transfer function 

defined by Equation 11 was found with the assumption that 

w >> A, i . e. the effect of delayed neutrons were ignored. 

Yasuda and Miyoshi [36] suggest that in a graphite moderated 

reactor the mean lifetime of precursors to the short- lived 

delayed neutron emitters is not sufficiently longer than the 

lifetime of prompt neutrons. This complicates the separation 

of the prompt neutron decay mode from the associated delayed 

neutron mode. 

In this section a "theoretical" coherence function is 

formulated using the transfer function given by Equation 12 

which includes the effect of six delayed neutron groups. But 

the noise equivalent source spectral density which is used is 

that of Equation 6 which does not include the effect of delayed 

neutrons. 

The coherence function was defined by Equation 41 as 

y (w) 
] 

1/2 Q (w ) • Q (w ) x y • 
+ Qx( w)) [l + Qy(w)] (El) 

Using Equations 6, 17 and 30 and introducing the Bennett 

factor R we have 

(E2) 
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The reactor trans f e r function with six delayed neutron 

groups is given in expanded form by Schultz [28] as 

H (s) r 
(E3) 

where X. are delayed neutron precursors' decay constants and 
l. 

ai are lengthy e quations in terms of Xi, Si ' the delayed 

neutron fractions and i , the prompt neutron lifetime . 

The square modulus of Equation E3 can be written in the 

form 

jH (w ) 12 r 

2 n = 2 A(w) , 
i 

where A( w) is the frequency dependent part of the square 

modulus of the transfer function. 

(E4) 

Substituting Equation E2 and E4 in Equation El we have 

y(w) = DA(w) 

The Diven 

w w x 
W DA(w)] [t2R + W DA( w}] x y 

1/ 2 

235 factor D has a value of ~o . 8 for U , the 

Bennett factor has a value of ~1.2. Since a , the prompt c 

(ES) 

neutron decay constant can be found experimentally, i can be 

estimated from e quation i = S/ac' where S is the total delayed 

neutron fraction and will be assumed to be .0064 . From 

Equation 33 
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the values W and W can be estimated since Q can be x y n,man 
found experimentally. Insertion of these values in Equation 

ES gives a "theoretical" cohe rence function which estimates 

the effect of delayed neutrons. 
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XVII . APPENDIX F: RESULTS OF COHERENCE FUNCTION 

MEASUREMENT AT 4.5" FROM THE SOUTH TANK 

The results of the coherence function measurement at 4.5" 

from the south core are given in Table Fl, with the results 

of weighted least squares fitting of the experimental data and 

standard deviation of experimental data. 



Table Fl. Results of the coherence f unction measurement at 4 • 5 II from the south core 

Frequency Effective Gated Clock Experimental Curve Standard 
Hz filter scaler scaler coherence fitted deviation -reading, width, Hz reading , function, y coherence a -

c CM function, y y 
s 

0.3 0.08 28196094 36042158 0.775 0.737 0 . 0546 
0.4 0 .08 27367357 36055861 0.726 0 . 737 0 . 0625 
0.5 0.08 2819 5364 36051453 0.775 0.736 0.0546 
0.6 0 . 0 8 28031529 36045940 0 . 765 0 . 736 0.0561 
0.7 0.08 28396055 36039829 0.786 0.736 0.0527 
0.8 0.08 28683535 36069371 0.800 0.735 0.0503 
0.9 0.08 27758197 36052433 0.750 0.735 0 . 0587 
1. 0 0.08 27667836 36052034 0.744 0.734 0.0599 
1.25 0.24 27332504 36053455 0 . 725 0.732 0.0362 
1. 5 0 . 24 27506109 36038315 0.737 0.730 0.0351 
2.0 0.40 26921946 36057266 0.700 0 . 724 0.0298 
2.5 0.40 27193060 36044126 0.718 0.717 0.0286 
3 . 0 0.40 26879927 36063703 0.697 0.709 0 .0299 
4 . 0 0.80 26867416 36079905 0.695 0 . 688 0 . 0213 
5 . 0 0.80 26433012 36057376 0.669 0 . 663 0 . 0 225. 
6.0 0.80 25726437 36051710 0.622 0 . 635 0.0245 
7.0 0.80 25114566 36069601 0.578 0 . 605 0.0263 
8 . 0 0 .80 24952071 36058804 0 . 567 0 . 573 0 . 0268 
9 .0 0 . 80 24587424 36060407 0.540 0.541 0 . 0278 

10 . 0 0.80 24140546 36063116 0 . 508 0 . 510 0.0290 
12.0 1.60 23435707 36075389 0 .4 53 0 .44 9 0 . 0218 
14.0 1. 60 22419697 36055453 0 .373 5 0.393 0 . 0236 



16. 0 1. 60 22131434 36241315 0.342 0. 34 4 0.02 43 
18.0 1. 60 21486796 36063425 0. 296 0.301 0.0251 
20 . 0 1. 60 21 04 6639 36075955 0.259 0.265 0.0258 
22.5 2.0 20718899 36072804 0.232 0.226 0 . 0235 
25.0 2.0 20331992 36022623 0.201 0.195 0.0239 
27.5 2.0 20123514 36008379 0.184 0.168 0.0242 
30 . 0 4.0 19441914 36016603 0.124 0.147 0.0249 
35.0 4.0 19354218 36079495 0.114 0 .114 0 . 0177 
40.0 4.0 1921 440 3 36068451 0 . 103 0 . 0906 0 . 0178 
50.0 8.0 19036 51 4 36076719 0.0869 0.0606 0.0127 
60.0 8.0 20089087 36074656 0.177 
70.0 8.0 18513699 36088563 0.0408 0.0322 0 . 0129 
80.0 8 . 0 18433221 36035257 0.0362 0.0249 0.0129 
90.0 8.0 18274779 36003742 0.0216 0.0198 0.0130 

100 .0 8.0 18315013 36011376 0 . 0266 0.0162 0.0130 

l.O 
w 


