FLUX PERTURBATION BY GOLD FOILS

by

Robert Mansfield Mills

A Thesis Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of MASTER OF SCIENCE

Major Subject: Nuclear Engineering

Approved:

Signatures have been redacted for privacy

Iowa State University Of Science and Technology Ames, Iowa

TABLE OF CONTENTS

		Page
I.	INTRODUCTION	1
II.	REVIEW OF LITERATURE	5
III.	THEORY OF FLUX PERTURBATION IN FOILS	13
IV.	EXPERIMENTAL PROCEDURE AND DESCRIPTION	
	OF EQUIPMENT	20
٧.	EXPERIMENTAL AND THEORETICAL RESULTS	35
VI.	CONCLUSIONS	45
VII.	RECOMMENDATIONS FOR FURTHER STUDY	47
VIII.	LITERATURE CITED	48
IX.	ACKNOWLEDGEMENTS	50
х.	APPENDIX	51

I. INTRODUCTION

The object of this thesis is to determine whether or not the perturbation (depression) of the thermal portion of a neutron flux will be affected by changes in the energy distribution of the flux as measured by the cadmium ratio. Gold foils in a graphite medium were chosen for this experiment.

In the field of nuclear engineering accurate measurements of the magnitude of a neutron flux are often required. One of the standard methods of measuring this flux requires the use of a thin metallic foil called a neutron detector foil. The detector foil is used to measure the neutron flux by means of induced radioactivity. The foil is placed in the neutron flux where it absorbs neutrons, producing a nuclide which is radioactive. The activity of this radioactive product can then be measured. This induced activity is directly related to the magnitude and energy distribution of the neutron flux.

However, in absorbing some of the neutrons from the flux, the detector foil depresses the flux. Therefore, the foil does not measure the actual undisturbed flux, but it measures the depressed or perturbed flux. This disturbance is called flux perturbation.

The ratio of the average flux through the foil to the unperturbed flux in the absence of the foil is the flux perturbation factor. This flux perturbation factor has been found to vary in relation to a number of factors all of which

affect the actual measurement of the flux. Some of these factors are foil material, size, thickness, and density; properties of the surrounding medium; and energy and angular distribution of the flux.

To simplify the variable factor of energy distribution of the flux, only thermal fluxes will be considered in this thesis. In the case of a gold detector foil this can be accomplished experimentally in either of two ways; by placing the foil in a thermal flux or by subtracting the resonance activity (obtained by irradiating the foil enclosed in a cadmium cover) from the total activity (obtained by irradiating the bare foil).

The cadmium ratios of the fluxes measured at positions 1 and 2 were 1534 and 125 respectively. Even at a cadmium ratio of 125, only 1/125 of the flux was above thermal or epi-cadmium. Therefore, the flux at these positions was considered almost entirely thermal. Since the flux was thermalized in a diffusion medium, it should have approximately a Maxwellian energy distribution.

The thermal flux obtained by the cadmium difference method should have a slightly different energy distribution than the flux that was almost entirely thermalized by the diffusion medium.

The perturbation factors obtained for gold foils in graphite acted on by a thermal flux have been fairly well

established.

The purpose of this thesis is to determine whether or not these perturbation factors determined from thermal fluxes can be applied directly to the thermal or subcadmium portion of a total flux containing neutrons in a wide range of energies.

To measure the perturbation factor stacks of foils of varying thicknesses were placed in the graphite thermal column of the UTR-10 reactor and activated. By extrapolating the value of the flux measured down to zero thickness of detector foil, the unperturbed flux could be determined. Since the flux had been measured with the varying thicknesses of stacks of detector foils, the effect of foil thickness on the perturbation factor could be seen.

To determine the effect of changes in cadmium ratio on the perturbation factor, the stacks of detector foils were placed at four different positions along the center of the thermal column. The cadmium ratio varies along the thermal column from about 4 to 1500. A greater portion of the flux in the thermal column is thermal at positions further from the core of the reactor.

The perturbation of the flux was found to increase greatly as the foil stack thickness was increased. Plots of the flux perturbation factor vs. foil thickness showed that the perturbation for the thermal portion of the flux (that

below the Cd cutoff energy) was fairly close to that predicted by theory and to that obtained by other experimenters.

Therefore, it was concluded that the perturbation factors measured for thermal fluxes (cadmium ratio equal to 125 or greater) could be applied to the thermal portion of fluxes measured at low cadmium ratios.

A discrepancy occurred in the results for the perturbation factors obtained in thermal fluxes. The perturbation factors were too great compared to the results of other experimenters and compared to the perturbation factors obtained for the thermal portion of fluxes with low cadmium ratios.

No definite explanation for this discrepancy could be determined.

II. REVIEW OF LITERATURE

The problem of flux perturbation by detector foils has been studied by many authors who obtained widely varying results. In the earlier investigations (1, 7, 9, 10) much of this variation in results was due to a lack of agreement in the definition of the perturbation factor and to different methods of approach to the problem.

However, in the past few years a fair amount of agreement has been attained. When modified, many of the results, even of earlier investigators, are found to agree fairly well with each other and with the theories presented by such investigators as Bothe (1) and Skyrme (7). (See Table 1.)

The more widely accepted theory is that the flux perturbation consists of two effects superimposed on each other. The first of these effects consists of a depression of the flux in the neighborhood of the foil. This local depression is caused by absorption of neutrons by the foil; thus lowering the density of neutrons available near the foil. This effect is sometimes described as shedowing. In an isotropic system neutrons which are absorbed by the detector foil are not later available to diffuse back to the area of the foil. Also a neutron which enters the foil from one side and is absorbed by the foil will not be present to contribute to the neutron flux on the other side of the foil--thus the shedowing effect. This effect is called "flux depression. H".

	Foil thicknesses (in mils)									
	mandate alternation and an alternation of the alter	2	3	4	6	10	15	20		
Sola (measured)	0.951	0.925	0.905	0.883	0.864	0.788	0.733	0.683		
Bothe (calculated)	0.968	0.936	0.915	0.893	0.872	0.792	0.731	0.675		
Skyrme (calculated)	0.962	0,933	0.907	0.883	0.862	0.763	0.678	0.587		

Table 1. Flux perturbation for circular gold foils a in graphite

BAll foils were 1/2 inch in dismeter.

Ch.

(See Figure 1.)

The second of the two effects which contribute to flux perturbation is caused by the attenuation of the neutron flux as it penetrates the foil so that the interior of the foil has a lower saturated activity than the surface layers. This effect is called "self shielding, G".

The total effect then of both "flux depression H" and "self-shielding G" is "flux perturbation, F^* . F = (G)(H).

Initial investigation of the problem of flux perturbation was conducted by Bothe (1). He simplified the problem by assuming that the flux is originally constant throughout the medium and that first-order diffusion theory can be used to determine the movement of the neutrons in the medium. Bothe developed his equations on the basis of a spherical detector and then related them to a disc. His final result for the self-shielding factor is

$$=\frac{1-e^{-x}(1-x)-x^2E_1(x)}{2x}$$

where x is the foil thickness measured in mean-free-path units and

$$E_1(x) = \int_{x}^{\frac{e^{-2}}{8}} ds$$

G is found by considering the foil to be a thin plane infinite in extent in an unperturbed isotropic flux. Since the foils used are not infinite in extent some error is introduced. However, other investigators (7) have found that the

(a) Partial flux-perturbation due to self-shielding only

(b) Total flux-perturbation due to self-shielding plus flux depression in the surrounding medium

Figure 1. Schematic of flux perturbation in a detector foil

error made in G by this assumption is very small--approximately 0.5%.

Bothe's formula for the flux depression factor H was slightly modified by Tittle (10), the final result being

$$H = \frac{1}{1 + \frac{\infty}{2} \left(\frac{3}{2} \frac{R}{\lambda tr} \frac{L}{R+L} - 1\right)}$$

if $R > 2 \lambda tr$

or

$$H = \frac{1}{1 + 0.34 \propto \frac{R}{\lambda tr}}$$

if $R \ll \lambda tr$

where R = foil radius, om

 λ tr = transport mean free path in medium around

foil, cm

$$\alpha = 1 - e^{-X} (1 - x) - x^{2} E_{1}(x)$$

$$L^{2} = \frac{\lambda_{tr} - \lambda_{a}}{3(1 - 2 - \frac{\lambda_{tr}}{\lambda_{a}})^{2}}$$

As = absorption mean free path in medium around

The perturbation factor, that is, the ratio of the average flux measured in the detector to the unperturbed flux is then

F = GH

Skyrme (7) solved the problem by transport-perturbation theory using much the same assumptions that Bothe did. A few investigators have determined experimentally the flux perturbation factor of gold in graphite. The main objective of their experiments was to compare their results with the existing theories. Therefore, their measurements were generally made with a thermal flux of neutrons. In this thesis the variation of the perturbation factor in fluxes which are not entirely thermal were observed, since in practice measurements are not necessarily made in thermal fluxes.

One investigator, Thompson (9), made some measurements in varying neutron spectra. He used 1-om radius indium foils in a graphite medium. The foils were irradiated in three neutron spectra; a thermal flux, and fluxes with cadmium ratios of 2.9 and 1.9. The results showed a much greater flux perturbation for the non-thermal fluxes. The flux having the lower cadmium ratio (relatively less thermal neutrons) had the greater perturbation. However, Thompson's results do not show any real significance, because he does not separate the thermal flux from the opi-cadmium flux. A flux measured at the lover cedmium ratio will normally contain a larger proportion of resonance neutrons than a flux measured at a higher cadmium ratio. The resonance cross section for gold is 1558 barns while the thermal cross section is 98 barns. Therefore, the rate of absorption of the resonance neutrons will be greater than the rate of absorption of thermal neutrons. (See Figure 2.) The perturbation will be

Figure 2. Absorption cross section versus neutron energy for cadmium and gold

greater in proportion to the larger number of resonance neutrons present. When a gold foil is used as a detector, it is not of any value to know the perturbation of the total flux when the flux has a wide energy distribution. It would not be known which proportion of the perturbation was due to the depression of the thermal flux and which was due to the depression of the resonance flux.

A more logical approach to the problem is to determine the perturbation of only the thermal portion of the flux as the cadmium ratio changes.

III. THEORY OF FLUX PERTURBATION IN FOILS

Since the depression of the flux is caused by the absorption of neutrons, any variable which causes a change in the absorption of neutrons should also cause a change in the perturbation factor. However, since the perturbation factor is a ratio, a change in the number of neutrons absorbed would not necessarily cause a change in the perturbation factor. For example, if the number of neutrons absorbed by the foil was doubled by doubling the flux acting on the detector, the perturbation of the flux by the foil should also be doubled. The perturbation factor would remain unchanged.

Now if the thickness of the foil is doubled, approximately¹ twice as many neutrons will be absorbed by the foil, causing an increase in the perturbation of the flux. In this case the flux in the surrounding medium was not changed (except near the foil). Therefore, the perturbation factor was decreased.

It has been established that the thickness of a thin circular (or square) detector foil greatly effects the flux perturbation factor. Under <u>specific</u> conditions the amount of change in the perturbation factor for change in foil thickness

¹Not quite twice as many since flux perturbation will cause a reduction of the flux in the foil.

has been established within a few per cent.² To obtain agreement with these previous results specific conditions must be met. Some of these conditions for the experimental measurement are the following:

1. Use of a thin foil applicable to neutron detection.

2. Isotropic flux in a diffusion medium.

3. Almost entirely thermal flux (cadmium ratio over 100). The first condition is relatively easy to accomplish. There are a number of detector materials which can be used; e.g., gold, indium, dysprosium, and aluminum. From the standpoint of available information on flux perturbation gold and indium are the best detector materials.

It is difficult to create a purely isotropic flux. However, the assumption of an isotropic flux in the center of the thermal column of the reactor will give a good approximation.

Although an almost entirely thermal flux can easily be accomplished, this is not always the condition under which a desired measurement of the flux will be made. For example, a flux measured near the core of the reactor is not made in thermal flux.

When a neutron flux with a wide energy distribution is measured, the thermal portion of the flux is often of greatest

²See chart by Sola, Table 1.

importance in measuring the magnitude of the flux. This thermal portion of the flux is measured by the cadmium difference method. A cadmium covered foil as well as a bare foil are exposed to the flux. The cadmium cover absorbs all of the thermal neutrons allowing the foil to be activated by those epicadmium neutrons which fall in the resonance range of the absorber foil. The activity of a cadmium-covered foil is subtracted from the bare foil (total) activity leaving the thermal activity. Since the cadmium cover is not a perfect absorber of thermal neutrons, some leak through to activate the cadmium covered foil. The correction to give the true thermal activation is made by the cadmium correction factor, F_{Cd} .

FCd = Activation due to epicadmium neutrons Actual activation of Cd-covered foil

The purpose of this experiment is to determine whether or not flux perturbation factors measured or derived in or for entirely thermal fluxes can be applied to the thermal portion of a flux having a wide energy distribution.

The following theory is developed in Meghreblian and Holmes (4). In order to calculate what the perturbation factor should be for a detector foil in a thermal flux a model is chosen which resembles the physical situation. First, the assumption is made that the absorber foil is in an isotropic neutron flux field.

Two different models which allow relatively easy calcu-

lation are available from diffusion theory.

1) In the <u>diffusion model</u> the neutron is assumed to make many scattering collisions within the foil before it is absorbed or it escapes. It can be seen that for a strong absorber of thermal neutrons such as gold the neutron would <u>not</u> tend to be scattered many times on the average before it is absorbed or it escapes from the thin foil. Through calculations the author found that the diffusion model did not apply.

2) In the <u>first-flight transport model</u> the neutron makes no scattering collisions in the foil, but continues along a straight line until it escapes or suffers an absorption collision.

Definition of terms

The transmission coefficient, \propto .

fraction of all neutrons incident upon the surface $\propto \equiv$ of absorbing foil of material which pass through the foil without being absorbed.

Flux perturbation factor, Fth.

Fth = Average flux throughout volume of an absorber Value of flux at position of absorber before it was introduced

The general procedure for solving the first-flight transport model is first to solve for the transmission coefficient which is related to the flux perturbation factor.

The complete directional specification of the current is

$$J(\mu, \Psi) a\mu a\Psi = \frac{1}{4\pi} p_0 \mu a\mu a\Psi \qquad (1)$$

where $\phi_0 = magnitude$ of the isotropic flux

µ = cos 0.

Figure 3. Scatterings from direction (0, γ)

This expression is consistent with the angular distribution specified by an isotropic flux. The integral of equation (1) from all directions toward the foil is $1/4 \ \text{S}_{\text{L}} \varnothing_{0}$, where S_{L} is the surface area of the foil.

The probability that a neutron will pass through a distance S of the foil is $exp(-\leq_{as})$. Therefore, the transmission coefficient is

$$\alpha = \frac{4}{s_{L} \varphi_{0}} \int_{S_{L}} dS(R) \int_{0}^{1} d\mu \int_{0}^{2\pi} J(\mu, \mathcal{Y}) e^{-\frac{2}{2} as(R, \mu, \mathcal{Y})} d\gamma$$

$$\frac{1}{\pi S_{L}} \int_{S_{L}} dS(R) \int_{0}^{1} \mu d d \mu \int_{0}^{2\pi} - \mathcal{Z}_{aS}(R, \mu, \mathcal{Y}) d \mathcal{Y}$$
(3)

(2)

where dS(R) is the surface element at surface coordinate R and $s(R, \mu, \Psi)$ is the straight-line distance across the foil for a neutron incident at R traveling in direction (μ, Ψ) . In this case, s does not depend upon the position R on the surface (except near the edges), so $s(R, \Theta, \Psi) \rightarrow (\Theta, \Psi)$, and equation (3) reduces to

$$\alpha = \frac{1}{\pi} \int_{0}^{\pi/2} \sin \theta \cos \theta \, d \, \theta \int_{0}^{2\pi} - \mathcal{L}_{as}(\theta, \mathcal{V})_{d} \, \mathcal{V} \quad (4)$$

upon integration for an infinite slab

$$\alpha = e^{-x_0} - x_0 e^{-x_0} + x_0^2 E_1(x_0)$$
 (5)

where $x_0 = 2 \le a$ a.

The transmission coefficient is related to the flux perturbation factor, F

$$1 - \alpha = \frac{2 \sum_{a} v_{L}}{S_{L}} F = \sum_{a} \overline{S} F \qquad (6)$$

where $\overline{s} = \frac{2V_{\perp}}{S_{\perp}}$

$$=\frac{4a S_L}{S_L} = 4a \text{ for infinite slab.}$$

$$F = \frac{1 - \alpha}{\varepsilon_0 + \varepsilon}$$
(7)
$$F = \frac{1 - \alpha}{\varepsilon_0 + \varepsilon}$$
(8)

Figure 4. Cross section of infinite slab

Equation (8) was used to calculate the flux perturbation in the gold foils. The results are given in Table 3, page 36, under first flight transport approximation.

IV. EXPERIMENTAL PROCEDURE AND DESCRIPTION OF EQUIPMENT

Gold was selected as the neutron detector material for a number of reasons:

- 1. Gold in nature has only one isotope -- 100% Au¹⁹⁷.
- 2. It has a prominent absorption resonance at 4.87 ev.
- The thermal cross section is 98 barns and has a l/v variation.
- 4. The half-life of Au¹⁹⁸ is 2.7 days which allows sufficient time for removal from the thermal column of the reactor and the counting of a large number of foils without appreciable decay.
- 5. The decay scheme of Au¹⁹⁸ is very simple, with 98.7% of the beta decay accompanied by a single energy gamma ray of 411.8-kev.
- 6. Gold is an easy material to work for punching and weighing in the form of thin foils.

Gamma counting was desirable because the self absorption of the gamma rays by the foils would not be very great.

Graphite was an appropriate material for the surrounding medium, since it is commonly used in reactor work. In addition some experimental data of the perturbation of thermal fluxes by gold foils in graphite were available for comparison.

The general method used in measuring the perturbation factor was to irradiate stacks of identical gold foils in

the reactor. The number of foils in the stack was varied from one to twelve. It had been determined by other experimenters (8-12) that a stack of foils produced exactly the same effect as a foil equal to the total stack thickness. Since it was not possible to irradiate a foil of zero thickness, it was necessary to extrapolate to zero thickness the values of activity obtained with small foil thicknesses. The corrected activities, A_{std} , obtained for the stacks of foils were directly proportional to the average flux through the stack. These activities were expressed as A_1 , A_2 , A_4 , A_8 , and A_{12} . The subscript indicated the number of foils in the stack. These relative fluxes were expressed as inverted fractions of A_{12} .

$$\frac{A_{12}}{A_8}, \frac{A_{12}}{A_4}, \frac{A_{12}}{A_2}, \frac{A_{12}}{A_1}$$

The only reason for normalizing these fluxes to A_{12} was to relate all the fluxes for the different positions to the same scale. The above fractions $\frac{A_{12}}{A_1}$, $\frac{A_{12}}{A_2}$, \cdots were plotted versus stack thickness. (See Figures 10-13.) This plot was then extrapolated to zero foil thickness where the fraction was $\frac{A_{12}}{A_0}$. This value $\frac{A_{12}}{A_0}$ was divided into A_{12} giving A_0 . Then by definition,

$$p_1 = \frac{p_1}{p_0} = \frac{\Lambda_1}{\Lambda_0}$$

the perturbation factors could be calculated.

Since it was desired to measure the flux perturbation in gold over a range of cadmium ratios, four positions were selected along the central stringer of the graphite thermal column in the UTR-10 reactor. The central stringer of the thermal column was chosen in an attempt to obtain a symmetrical flux across the line of foils. These four positions were all in a direct line, but as widely spaced as possible. (See Figure 5.) This spacing of about 24 inches between positions allowed foils to be irradiated at all four positions during a single reactor run without causing significant interaction between the foils. According to Thompson (9) there was some slight interaction between indium foils that were spaced as far as 10 inches apart within an anisotropic flux equivalent to 6 per cent change in flux per centimeter along the line of centers.

For each run a standard bare gold foil was placed in the stringers 12 inches to each side of the central stringer. These standards were used to measure the variations in reactor power from one irradiation to the next.

To determine the cadmium ratio at each of the four positions, a single bare gold foil was irradiated in each location. Then a single foil covered with a 0.020 inch cadmium cover was irradiated at each position. The ratio of the activity of a bare foil to the activity of a cadmium-covered foil gave the cadmium ratio at each position. These cadmium

ratios were corrected with a cadmium correction factor which took into account the fact that the cadmium cover was not a perfect filter, but allowed some of the thermal neutrons to leak through. Tittle (10) had stated that a 0.020 inch cadmium cover would absorb all of the thermal neutrons. Therefore, the experiment was performed using 0.020 inch cadmium covers. However, subsequent measurement of the cadmium correction factor showed that a 0.020 inch thick cadmium cover was not black (totally absorbant to thermal neutrons). The cadmium correction factor was determined experimentally by using cadmium covers with thicknesses varying from 0.010 inch up to 0.080 inch.

Gamma counting was accomplished with a NaI(T1) crystal coupled to a photomultiplier tube with the pulse amplified and fed into a Model 181A Nuclear Chicago Scalar with a fixed sensitivity setting of 50 mv. The crystal was covered with an aluminum cap to absorb the beta particles. The activated gold foils were placed in a lead shield which was partially surrounded by another 2 inches of lead since the background gamma was quite high in the counting room. The background count was reduced from 10,000 counts per minute to 300 counts per minute by the lead shielding.

The gold foils were all circular, 1/2 inch in diameter, and 0.001 inch thick. They were punched out; then they were weighed to \pm 0.1 mg. The approximate weight was 60 mg.

Figure 6. Counting set up

The cadmium covers were punched from sheets of cadmium and formed into cups which fitted inside of each other. All cadmium covers except those used to determine the cadmium correction factor were 0.020 inch thick. (See Figure 7a.)

Figure 7a. Cadmium cover Figure 7b. Graphite disc

The bare gold foils that were placed in the reactor were stacked in graphite discs. Each graphite disc had a small depression in the top which was just large enough to allow a 1/2 inch diameter gold foil to be stacked in it. The stack

of foils was pressed down in the depression in the graphite disc by means of a small graphite cap. (See Figure 7b.) This procedure insured the straight alignment of the stack and tight packing of the foils on top of each other. The cadmium covered foils were not placed in graphite discs.

To determine the flux perturbation factor bare gold foils were activated and their activity counted for the four positions along the central stringer of the reactor thermal column. Stack thicknesses of 1, 2, 4, 8, and 12 mils were used. Then cadmium-covered gold foils were activated and counted for positions 3 and 4. These positions were the ones closer to the reactor core and at the lower cadmium ratios. The flux at the other two positions (1 and 2) giving cadmium ratios of 1534 and 125 was considered to be essentially thermal. Therefore, the bare foil activities were sufficient to measure the thermal fluxes at positions 1 and 2. Cadmium-covered stack thicknesses of 1, 2, 4, 8, and 12 mils were again used.

The cadmium correction factor was determined by activating 1-mil-thick gold foils at position 3 using cadmium cover thicknesses of 10, 20, 30, 40, 50, 60, and 80 mils. These activities versus the cadmium cover thickness were then plotted. (See Figure 8.) The straight line portion of the plot represents the attenuation of epicadmium neutrons by the cadmium. The curved portion shows the leakage of thermal

Cadmium thickness (mils)	Corrected foil activit (relative)			
10	14.56			
20	13.81			
30	12.93			
40	12.05			
50	11.93			
60	12.17			
80	11.29			

Table 2. Cadmium correction factor data

neutrons through the cadmium cover. The straight line portion of the graph was extrapolated back to zero cadmium thickness. This activity represented the activation of the gold foil that would have resulted if all of the epicadmium neutrons had passed through the cadmium, but none of the thermal neutrons had penetrated the cadmium to activate the gold. This activity at zero cadmium thickness was divided by the activity at 20 mil cadmium thickness to give the cadmium correction factor to be applied to cadmium ratios measured with 20 mil cadmium covers.

In measuring the activities of all foils throughout the experiment the following corrections were applied to the counting rates in the following order:

- 1. Dead time
- 2. Background
- 3. Variation in foil weight
- 4. Foil decay time
- 5. Variation in reactor power.

The data for the above corrections are shown in Table 6 in the Appendix.

Dead time correction

The dead time, 5μ seconds, of the scalar was the determining factor in counting system, since the resolving time of the NaI(T1) crystal and photomultiplier tube was much shorter, about 0.25 μ second. The number of counts lost by the scalar increased linearly as the counting rate increased.

 $r_{d} = true count/minute$ r = observed count/minute r = dead time-minutes $r_{d} = \frac{r}{1 - rr}$ $r_{d} = \frac{(47.062 \text{ c/m})^{4}(60 \text{ sec/min})}{1 - (47,062 \text{ c/m})(5x10^{-6} \text{ sec})}$ $r_{d} = 47,248 \text{ c/m}$

"Counting rate for foil 30dMl.

Background correction

 r_{-b} = counting rate corrected for background r_d = counting rate before background correction r_b = background counting rate r_{-b} = r_d - r_b r_{-b} = (47,248 - 355)c/m r_{-b} = 46,893 c/m

Normalizing for foil weight

 r_{-b} = counting rate before normalizing for foil weight r_n = counting rate after normalizing for foil weight $ext{Bgt}$ = foil weight

$$r_n = \frac{r_{-b}}{Wgt}$$

= $\frac{46.893 \text{ c/m}}{0.0613 \text{ gm}}$
= 765,000 c/m g
= 765.0 c/m mg

Foil decay correction

All foils were irrediated at constant power for 20 minutes. However, the period of constant power was preceded by a period of increasing reactor power during start up and followed by a period of decreasing reactor power during shut down or scram. The start up time during which the reactor

871B

was at a sufficient power level to effect the activation of the foil was short (approximately 2 minutes) in comparison with the constant power run (20 minutes). The scram time was much shorter (a few seconds). Any fluctuations in the integrated power from one run to the next were measured by the activation of the standard foils. Therefore, it was unnecessary to apply the decay correction to the start up or shut down period. The standard decay equation was used to calculate the activity that the foil would have had if it had been irradiated to saturation and counted immediately upon removal from the flux. Making the assumption that the power dropped instantly to zero when the reactor scramed, the decay correction was applied to the period of constant power with tw beginning at the instant of reactor scram. Exposure time. te, was taken as the time at constant power. The standard decay equation is

$$A(x) = \frac{\lambda M_e^{\lambda t_W}}{(1 - e^{-\lambda t_e})(1 - e^{-\lambda t_c})}$$

where $A_{(x)}$ = saturation activity at time of removal

M	-	counts/mg.
2	a.	1.7824 (10)-4 min-1, decay constant for gold
te	-85	time of exposure (min)
te	100	time of count (min)
tw	-	time of wait (min) from scram to start of count
rn	-	normalized counting rate (c/m).

For to and to \leq 23 min.

$$(1-e^{-\lambda t_e}) \simeq \lambda t_e$$

and $(1-e^{-t_e}) \simeq \lambda t_c$

Therefore

$$A(x) = \frac{\lambda(r_n)(t_0)e^{\lambda t_W}}{\lambda t_e \lambda t_0}$$

which reduces to

$$\frac{\lambda t_{w}}{r_{n} e} = \frac{r_{n} e^{\lambda t_{w}}}{(20)(1.7624)(10)^{-4}} \quad \text{for } t_{e} = 20 \text{ min}$$
$$= 280 r_{n} e^{(1.7824 \text{ min}^{-1})(t_{w})}$$

The constant 280 was dropped since all fluxes were rela-

Reactor power normalization

The reactor power of run D was chosen as the base level to which all other runs were normalized.

Corrections for variations in reactor power from one run to the next were made by relating the activity of the standard foils of each run to the standard foils of run D. A_{std} = foil activity normalized (standardized) to run D $A_{(x)}$ = foil activity before normalizing for power level

A		(Average $A_{(x)}$ of standards from run D)($A_{(x)}$ of particular foil)
~870		Average $A_{(X)}$ of standards from particular run
	H	(1762 c/m-mg)(815.5 c/m-mg) (1684.5 c/m-mg)

= 850.4 c/m-mg

After a stack of foils was irradiated, the activity of each of the individual foils in the stack was measured. Corrections 1 through 4 were made to that activity. Then the corrected activities of all the foils in a single stack were used to determine the average activity across the stack. Measuring the activities of the individual foils in the stack eliminated the need for corrections due to changes in geometry which varying stacks of foils under the crystal would have required. It also made it unnecessary to make corrections for the absorption of the gamma rays by the succeeding layers of foils.

The standard deviations calculated by counting statistics were less than 0.75% for all data used in the determination of the flux perturbation factors and the cadmium correction factor.

The estimated standard deviation of the weight of the foils was $0.33\%(\pm 0.1 \text{ mg}$ for a 60 mg foil).

V. EXPERIMENTAL AND THEORETICAL RESULTS

The relative average saturation activities through the stacks of foils after all corrections were made are shown in Table 4.

The corrected activities obtained with cadmium cover thicknesses of 10 to 80 mils are shown in Table 2. These activities are plotted in Figure 8. The cadmium correction factor was calculated to be 0.912.

The measured flux perturbation factors are shown in Table 3 along with the values calculated using the first flight transport approximation. Figure 9 shows a plot of the measured flux perturbation factors and those calculated from the first flight transport approximation versus foil stack thickness.

The perturbation factor is seen to become less in all cases as the cadmium ratio at which the measurements were made decreases. The perturbation factors measured in the foils at positions 3 and 4 (cadmium ratios 7.9 and 4.1 respectively) are seen to be considerably lower than the perturbation factors measured at the thermal positions 1 and 2 (cadmium ratios 1534 and 125 respectively). Also the perturbation factors measured at positions 3 and 4 are close to the values calculated using the first flight transport model.

The experimental values by Sola and the theoretical

annan gu chundar ann an fhainn ann an tardach chàithean an an san ann ann ann ann ann ann ann	angen son verset verseten af af Board Brunder voor verseten die soo	Fail thickness in mile						
	1	2	4	8	12			
Position 1 C.R.=1534 Measured	0.996	0.990	0.975	0.886	0.802			
Position 2 C.R.=125 Measured	0.991	0.967	0.938	0.873	0.793			
Position 3 C.R.=7.91 Measured (thermal)	0.954	0.905	0.870	0.805	0.765			
Position 4 C.R.=4.14 Measured (thermal)	0.951	0.885	0.844	0.789	0.759			
First-flight transport approximation	0.963	0.934	0.881	0.801	0.759			

Table 3. Flux perturbation for circular gold foils in graphite

values of Bothe and Skyrme are also close to those obtained at positions 3 and 4.

The values calculated using the first-flight transport model and based on diffusion theory are almost identical with the calculated results of Skyrme who uses equations based on transport theory. Skyrme's formula takes into account the radius of the foil and the properties of the diffusion media surrounding the foil. The perturbation factors obtained for positions 1 and 2 are somewhat high and the curves of perturbation factor versus stack thickness have a different slope than might be expected. The curves are convex instead of concave.

		Foil	thicknesses	(in mils)	
	1	2	4. 	8	12
Position 1 Bare activity	220.4	219.0	215.7	195.6	177.1
Cd-covered act.	0.130				
Position 2 Bare activity	2150	2097	2038	1891	1720
Cd-covered act.	15.7				
Position 3 Bare activity	11,894	11,020	10,398	9,512	8,900
Cd-covered act.	1,371	1,008	752.6	582.9	496.6
Position 4 Bare activity	34,574	30,900	28,576	26,111	24,750
Cd-covered act.	7,623	5,765	4,532	3,517	2,996

Table 4. Relative average saturation activities for stacks of gold foils

	La za genega internationale na sana na sija da ala da anato man	na ga padaga kang na gana kada na mataka na daga na manga kang daga na manga	nga manan menangangan kang kawa ya di kenangkapan kuma manan kanya	in an	elaco ela unada o bredinada e o precisa
		Position 1			
Steck thickness (mils)		Bare activity	Ø12 Ø1		Fth.
1 2 4 8		220.4 219.0 216.7 195.6 177.1	0.805 0.810 0.822 0.906 1.000		0.996 0.990 0.975 0.886 0.802
		Position 2			
Stack thickness (mils)		Bere activity	Ø12 Ø1		Fth.
1 2 4 0 12		2150 2097 2038 1891 1720	0.800 0.820 0.845 0.909 1.000		0.991 0.967 0.938 0.873 0.793
		Position 3			
Stack thickness (mils)	Bare	(FCd)	Thermal	Ø12 Ø1	Fth.
12402	11,694 11,020 10,398 9,512 8,900	1251 918 686 531 453	10,643 10,102 9,712 8,981 8,547	0.803 0.846 0.880 0.951 1.000	0.954 0.905 0.870 0.805 0.765
		Position 4			
Stack thickness (mils)	Bare activity	(Cd- covered activity (Fcd)	Thermal	<u>Ø12</u> Ø1	Fth.
1 2 4 8 12	34,574 30,900 28,576 26,111 24,750	6950 5260 4130 3204 2732	27,624 25,740 24,446 22,907 22,018	0.797 0.859 0.900 0.962 1.000	0.951 0.885 0.844 0.789 0.759

Table 5. Calculated data

Figure 9. Flux perturbation factor versus foil stack thickness

Figure 12. Extrapolation to zero thickness absorber for position 3

Figure 13. Extrapolation to zero thickness absorber for position 4

VI. CONCLUSIONS

45

The perturbation of the thermal portion of the flux by gold foils in regions of low cadmium ratio was found to agree closely with the perturbation obtained by other experimenters in thermal fluxes and with the calculated theoretical values.

Therefore, it is concluded that the perturbation factors measured for thermal fluxes can be applied to the thermal portion of fluxes measured at low cadmium ratios.

Since the perturbation factors in this experiment measured for fluxes in the entirely thermal region did not agree with those measured at low cadmium ratios or with the results of other experimenters or with theoretical calculations, they must have been affected by some factor other than the change in cadmium ratio.

A number of possible causes for the high perturbation factors at positions 1 and 2 were considered such as the change in angular distribution of the flux, hardening of the thermal portion of the neutron spectrum, interaction of the foils on each other, or disturbance of the flux near the boundaries of the thermal column. However, the unexpected results could not definitely be attributed to any of these possibilities. Also the difference between the slopes of the flux perturbation factor versus foil stack thickness for positions 1 and 2, and positions 3 and 4, could not be explained. The perturbation of the flux at position 4 did not agree as closely with the results of other experimenters as the perturbation did at position 3. This was probably a result of the disturbance of the flux near the boundary of the diffusion medium. Position 4 was 2 inches from the boundary of the thermal column.

VII. RECOMMENDATIONS FOR FURTHER STUDY

In order to gain more accuracy and reliability of the experimentally determined perturbation factors additional data points could be taken. It would be particularly helpful to take data with thinner foils to make the extrapolation to zero foil thickness more reliable.

An experiment should be performed to determine whether or not the angular distribution of the flux changes for different positions in the thermal column.

Also a more accurate determination of the cadmium correction factor should be made.

The possibility of interaction between the foils should be investigated. This could be done by placing foils progressively closer to each other in the thermal column until some change in the relative activation of the foils resulted.

VIII. LITERATURE CITED

- Bothe, W. Zur Methodik der Neutronen sonden (Concerning the methodology of neutron probes). Z. Physik 120: 437. (Original available but not translated; reviewed in Sola, A. Flux perturbation by detector foils. Nucleonics 18, No. 3: 78-81 and 141. March, 1960.)
- Glasstone, S. and Edlund, N. C. The elements of nuclear reactor theory. Princeton, N.J., D. Van Nostrand Company, Inc. 1952.
- Martin, D. H. Correction factors for Cd-covered foil measurements. Nucleonics 13, No. 3: 52-53. March, 1955.
- Meghreblian, Robert V. and David K. Holmes. Reactor analysis. New York, N.Y., McGraw-Hill Book Company, Inc. 1960.
- Price, William J. Nuclear radiation detection. New York, N.Y., McGraw-Hill Book Company, Inc. 1958.
- Ritchie, R. H. and others. Thermal neutron flux depression.
 U. S. Atomic Energy Commission Report ORNL-2806 Oak Ridge National Lab., Tenn. : 133-137. July 31, 1959.
- Skyrme, T. H. R. Reduction in neutron density caused by an absorbing disc. United Kingdom Atomic Energy Authority. MS-91. 1961.
- 8. Sola, A. Flux perturbation by detector foils. Nucleonics 18, No. 3: 78-81 and 141. Harch, 1960.
- Thompson, M. W. Some effects of the self-absorption of neutrons in neutron-detecting foils. J. Nuclear Energy 2: 286-290. 1956.
- Tittle, C. W. Slow-neutron detection by foils. II. Nucleonics 9, No. 1: 60-77. July, 1951.
- 11. Trubey, D. K., Blosser, T. V., and Estabrook, G. M. Correction factors for foil-activation measurements of neutron fluxes in water and graphite. U. S. Atomic Energy Commission Report ORNL-2842 Oak Ridge National Lab., Tenn. : 204-215. September 1, 1959.

- 12. Zobel, W. Determination of experimental flux depression and other corrections for gold foils exposed in water. U. S. Atomic Energy Commission Report ORNL-2842 Oak Ridge National Lab., Tenn. : 202-203. September 1, 1959.
- 13. Experimental determination of flux depression and other corrections for gold foils exposed in water. U. S. Atomic Energy Commission Report ORNL-3016 Oak Ridge National Lab., Tenn. : 267-269. September 1, 1960.

IX. ACKNOWLEDGEMENTS

The author wishes to thank his major professor, Dr. Glenn Murphy, for his guidance and encouragement which made possible the completion of this thesis and also Mr. Richard Danofsky for his assistance on the experimental set up and procedure.

X. APPENDIX

Calculation of counting statistics

Calculate the standard deviation in counting rates:

$$r_{s} \pm \sigma_{s} = (r_{t} - r_{b}) \pm (\sigma_{b}^{2} + \sigma_{t}^{2})^{1/2}$$

reduces to $r_{s} \pm \sigma_{s} = (r_{t} - r_{b}) \pm \left(\frac{r_{b}}{t_{b}} + \frac{r_{t}}{t_{t}}\right)^{1/2}$

$$r_{s} \pm \sqrt{s} = (118,677 - 550 \text{ c/m}) \pm \left(\frac{550 \text{ c/m}}{10 \text{ min}} + \frac{118,677 \text{ c/m}}{2 \text{ min}}\right)^{1/2}$$

= 118,127 ± 247 c/m

1210

% standard deviation = $\frac{247(100)}{118,127} = 0.209\%$

Explanation of column headings for Table 6

Foil--First number indicates position along thermal column in which foil was exposed.

S indicates foil used to monitor reactor power level.

Cd indicates foil was cadmium covered.

First letter or letters following letter S or Cd indicates reactor run.

Lest number gives location of the individual foil in the stack starting with 1 on the top of the stack.

Example 1: Foil 15H--number one standard foil, reactor run H.

- Example 2: Foil 3H7--foil stack in position number 3, reactor run H, seventh foil from the top of the stack.
- Example 3: Foil 4CdK12--foil stack in position number 4, foil stack cadmium-covered, reactor run K, twelfth foil from the top of the stack.

Wgt--Weight of foil, + 0.0001 gm.

tw--Time in minutes between shut down of the reactor to beginning of counting activity of the foil.

te--Length of time foil was counted.

counts -- Total number of counts recorded.

- rate--Counts/tc (counts/minute of foil activity from gamma decay).
- rd--Counting rate (foil activity) corrected for dead time of counting system.

r_b--ra minus background activity.

rn--r_h/foil weight (counting rate normalized for foil weight).

A(x) -- rn corrected for foil decay (activity corrected back to the activity the foil would have if irradiated to saturation and counted immediately upon removal from flux). Astd--A(x) normalized to the reactor power level of Run D. % So--Per cent standard deviation, including standard deviations for background.

Note: All values for r_n are multiplied by 10^{-3} .

Foil	Wgt (gm)	t _w (min)	(min)	Counts	Rate, r (c/m)	(c/m)	(c/m)	rn (c/m)	(e/m)	Astd	× 58
			Rea Pow Cadi Bac Ura	ctor run: er level: mium cove kground s mium stan	D April 500 wat rs: 20 m ctivity: dard: 84	6, 1962 ts for 20 11 thickn 617 c/m ,514 coun	minutes less lts/2 minu	tes	*		
1SD 2SD Av.	0.0606 0.0606	62 66	22	210,010 210,549	105,005 105,274	105,932 106,409	105,315 105,792	1,738 1,746	1,757 1,766 1,762	1.0000	0.21
101	0.0642	53	5	73,116	14,623	14,633	14,016	218.3	220.4	220.4	0.37
2D1	0.0642	59	2	271,283	135,641	137,191	136,574	2,127	2,150	2,150	0.19
3CdD1	0.0639	43	3	260,879	86,960	87,595	86,978	1,361	1,371	1,371	0.20
40aD1	0.0639	48	1	464,731	464,731	483,455	482,838	7,556	7,623	7,623	0.14

Table 6. Data for foil activity with corrections

Table 6. (Continued)

Poll	Wgt (gm)	t _w (min)(1	t _c min)	Counts	Rete, r (c/m)	(c/m)	(e/m)	(e/m)	A(x) (c/m)	Asta	গ বন্ধ
			Res Fow Cadi Bac Urs	ctor run er level aium cov kground aium stal	E April 500 wat ers: 20 m activity: ndard: 84	12, 1962 ts for 23 il thickn 550 c/m ,600 coun	minutes ess ts/2 min	utes			
1SE 2SE Av.	0.0658	93 96	22	232,794 234,447	116,397 117,223	118,677 119,713	118,127 119,163	17,952 18,110	1,825 1,842 1,834	0.96074	0.16
1E1 1E2 Av.	0.0642 0.0642	100 103	22	29,981 29,790	14,990 14,895	15,009 14,914	14,959 14,364	233.0 223.7	237.2 227.9 232.5	219.0	0.41
2E1 2E2 AV.	0.0647 0.0647	106 109	22	275,826 274,302	137,913 137,151	139,533 138,731	138,983 138,181	2,148 2,136	218.9 217.8 218.3	209.7	0.11
30dEl 30dE2 Av.	0.0600	112 115	22	124,365 122,494	62,182 61,247	62,504 61,560	61,954 61,510	1,032 1,025	105.3 104.6 104.9	1,008	0.28
4CdE1 4CdE2 Av.	0.0606 0.0607	118 121	22	683,226 709,555	341,613 354,777	351,483 362,190	350,933 361,640	5,791 5,958	5,915 6,088 6,001	5,765	0.12

07 (7) Table 6. (Continued)

Foil	Wgt (gm)	tw (min)(te min)	Counts	Rate, r (c/m)	(c/m)	r-b (c/m)	rn (c/m)	A(x) (c/m)	Astd	1 da
			Res Pow Cad Bac Urs	etor run: er level: imium cove kground s nium stan	F April 500 wat rs: 20 m ctivity: dard: 84	12, 1962 ts for 20 il thickn 381 c/m ,280 coun	minutes ess ts/2 minu	ites			
1SF 2SF AV.	0.0650 0.0651	50 53	22 02	216,709 219,606	108,359 109,803	109,359 110,813	108,9 7 8 110,432	1,677 1,696	1,692 1,712 1,702	1.0353	0.21
1F1 1F2 1F3 1F4 AV.	0.0634 0.0634 0.0636 0.0636	59 62 65 56	222	26,948 26,552 26,671 27,247	13,474 13,276 13,335 13,623	13,489 13,281 13,350 13,639	13,108 12,900 12,969 13,258	206.7 203.5 203.9 208.3	210.0 205.8 207.4 210.4 208.4	215.7	0.61
2F1 2F2 2F3 2F4 Av.	0.0632 0.0631 0.0631 0.0631	70 73 76 79	20 20 20	246,826 239,608 241,925 245,073	123,413 119,804 120,962 122,536	124,693 121,024 122,192 123,806	124,312 120,643 121,811 123,725	1,967 1,911 1,930 1,960	1,992 1,937 1,957 1,989 9,969	2,038	0.20
3FCd 3FCd 3FCd 3FCd Av.	1 0.0614 2 0.0614 3 0.0614 4 0.0614	85 88 91 94	NNNN	103,996 71,101 71,125 106,975	51,998 35,550 35,562 53,487	52,224 35,652 35,665 53,722	51,843 35,271 35,284 53,341	844.3 574.4 574.7 868.7	857.2 583.4 584.1 883.3 727.0	752.6	0.33
4FCd 4FCd 4FCd 4FCd	1 0.0616 2 0.0616 3 0.0616 4 0.0616	97 100 103 108	2222	622,737 429,558 423,026 598,986	311,368 214,779 211,513 299,493	319,568 218,699 215,273 307,093	319,187 218,318 214,892 306,712	5,182 3,544 3,489 4,979	5,272 3,608 3,554 5,077	4 530	0.14

The face sub-state tage and an an an an an and a	Tabl	Le	6.	(Continued)
---	------	----	----	-------------

Foil	Wgt (gm)	t _w (min)(s	t _c ain)	Counts	Rate, r (c/m)	rd (c/m)	r-b (c/m)	rn (c/m)	^A (x) (c/m)	Asta	\$J8
			<u>Reac</u> Powe Cadm Back Uran	tor run: r level: ium cove ground a ium stan	<u>G April</u> 20 watte rs: 20 mi ctivity: dard: 83,	13, 1962 for 20 i 1 thickno 381 c/m 662 coun	sinutes ess ts/2 minu	tes			
186 286 Av.	0.0646	5 9 65	0	22,154 22,537	4,430.8 4,507.4	4,432 4,509	4,051 4,128	62.71 63.90	63.37 64.65 64.01	27.527	0.75
301	0.0641	73	3	82,967	27,656	27,718	27,337	426.5	432.1	11,894	0.35
401	0.0641	77	2	158,506	79,253	79,776	79,395	1,239	1,256	34,574	0.25
			<u>Resc</u> Powe Cadm Back Uran	tor run: r level: ium cove ground s ium stan	H April 20 wattu rs: 20 mi ctivity: dard: 83	13, 1962 s for 20 11 thickn 401 c/m ,662 coun	minutes ess ts/2 minu	tes			
19H 2SH Av.	0.0651 0.0650	37 43	55	22,566 22,804	4,513 4,561	4,514 4,562	4,113 4,161	63.17 64.01	63.59 64.50 64.04	27.514	0.75
3H1 3H2 3H3 3H4 3H5	0.0621 0.0623 0.0623 0.0623 0.0623	(This 181 184 187 160	foil 2 2 2 2	was acc 42,827 41,068 40,235 39,979	idently of 21,414 20,534 20,117 19,989	21,453 20,569 20,151 20,022	orrection 21,052 20,168 19,750 19,621	made) 337.9 323.7 317.0 314.9	347.1 332.7 326.0 324.0		

Table	6.	(Continued)

Foll	Wgt (gm)	t _w (min)	te (min)	Counts	Rate, r (c/m)	r _d (c/m)	r_b (c/m)	rn (e/m)	A(x) (c/m)	Asta	108
387	0.0623	166	2	39,439	19,719	19.752	19.351	310.6	319.9		
388	0.0623	169	2	39,075	19.537	19.569	19,168	306.1	315.5		
3 H9	0.0623	172	2	39.456	19.728	19,761	19.360	315.1	324.9		
3810	0.0622	175	2	40.213	20,106	20.140	19,739	317.3	327.3		
3811	0.0622	178	2	40.407	20,203	20,237	19.836	318.9	329.2		
3812	0.0622	181	2	43,485	21.742	21,781	21,380	343.7	355.0		
Av.			-						329.9	9,077	0.50
4 = 1	0.0629	192	2	192.789	61.394	61.707	61.306	974.7	1006.		
482	0.0629	195	9	11,897	55 948	56 208	55,807	887.9	918.5		
483	0.0828	199	5	105.416	52.708	80 041	52 540	ASA.A	866.6		
4 14	0.0628	201	2	104,599	69 900	52 526	52,125	830.0	860.1		
485	0.0628	204	2	105,682	59,841	53.074	52 673	838.7	869.6		
486	0.0628	223	2	100,786	50 383	50, 597	50,196	799.3	831.7		
447	0.0628	228	2	106,494	53, 919	53 449	53,048	844.7	879.4		
488	0.0626	229	2	104.654	52.327	52,555	52,154	833.1	867.7		
4 19	0.0626	231	2	106,177	53,089	53, 325	52.924	845.4	880.9		
4810	0.0626	234	2	108,618	53.309	53.546	53,145	849.0	885.1		
4811	0.0625	237	2	110,501	55,250	55.505	55,104	891.7	919.8		
4812	0.0625	240	2	120,672	60,336	60,639	60,238	963.8	1006.		
AV.		and an av							899.4	24.750	0.30

Table 5. (Continued)

Foll	(gm)	tw (min)(te min)	Counts	Rate, r (c/m)	ra (c/m)	r_b (c/m)	rn (o/m)	A(x) (c/m)	Asta	% (s
			Res Pow Bac Ura	ctor run: er level: kground s nium stan	I April 20 watt ctivity: dard: 83	17, 1962 5 for 20 387 c/m ,976 coun	sinutes ts/20 min	utes			
18I 28I Av.	0.0619 0.0619	77 83	5	22,352 23,562	4,470.4 4,712.4	4,472 4,714	4,085 4,327	65.99 69.90	66.89 70.94 68.91	25.59	0.75
3I1 3I2 AV.	0.0613 0.0614	89 92	02 02	53,014 52,423	26,507 26,211	26,565 26,267	26,178 25,880	427.0 421.5	433.8 428.5 431.1	11,020	0.45
411 412 Av.	0.0610 0.0610	95 98	22	145,324 144,147	72,662 72,073	73,102 72,503	72,715 72,116	1,192 1,182	1,212 1,203 1,208	30,900	0.26
			Rea Pow Bac Urs	er level: kground s	K April 500 wat ctivity: dard: 83	17, 1962 ts for 20 357 c/m .357 coun	minutes ts/2 minu	ites			
19K 29K Av.	0.605	38 41	22	195,906 196,307	97,953 98,153	98,700 98,958	98,347 98,601	1,626 1,630	1,636 1,642 1,639	1.07504	0.24
1K1 1K2 1K3 1K4 1K5	0.0637 0.0637 0.0637 0.0637 0.0637	274 277 280 283 286	10 10 10 10 10	21,888 20,577 20,801 20,129 20,129	10,944 10,289 10,400 10,064 10,064	10,954 10,298 10,410 10,073 10,073	10,597 9,941 10,053 9,716 9,716	166.4 156.1 157.8 152.5 152.5	174.7 164.0 165.9 160.4 160.5		

Table 6. (Continued)

Foil	Wgt (gm)	(min)	t _c (min)	Counts	Rate, r (c/m)	rd (e/m)	r_b (c/m)	rn (c/m)	A(x) (c/m)	^A s td	\$6s
188	0.0638	289	2	20,089	10,045	10,054	9,997	156.7	165.0		
127	0.0630	202	Ko O	20,308	10,404	10,644	10,087	100.1	166 0		
110	0.0830	000	0	20,050	10,0%	10,003	0 736	160.4	100.0		
1810	0.0639	301	sus D	20,123	10,061	10,020	0,713	152.0	160.4		
1811	0.0640	304	2	20,618	10, 309	10,318	9.961	1.55.6	164.3		
1812	0.0641	307	2	21.212	10,606	10,616	10.259	160.0	169.0		
AV.									164.7	177.1	0.70
281	0.0621	331	2	193,499	96,749	97,529	97,172	1,565	1,660		
282	0.0621	334	2	190,765	95,382	96,142	95,785	1,542	1,637		
213	0.0622	337	2	183,661	91,830	92,530	92,173	1,482	1,574		
214	0.0623	340	2	182,569	91,284	91,977	91,620	1,471	1,563		
215	0.0623	343	2	182,560	91,280	91,973	91,616	1,471	1,564		
216	0.0623	346	2	181,659	90,829	91,514	91,157	1,463	1,556		
287	0.0624	349	2	181,222	90,611	91,295	90,938	1,457	1,550		
288	0.0624	352	2	184,709	92,354	93,064	92,707	1,486	1,582		
289	0.0625	355	2	185,544	92,772	93,489	93,132	1,490	1,587		
2810	0.0626	358	2	185,924	92,962	93,681	93,324	1,491	1,589		
2811	0.0627	361	See	192,706	96,353	97,125	96,768	1,543	1,646		
2815	0.0627	364	2	197,769	98,879	99,989	99,632	1,089	1,696	3 800	0 00
AV.									1,000	1,720	0.20

	Tabl	0	6.	(Continue	(b)
--	------	---	----	-----------	-----

Foil	Wgt (gm)	(min)(nin)	Counts	Rate, r (c/m)	Pd (c/E)	r-b (c/m)	rn (c/m)	A(x) (c/m)	Ástá	260
30aK)	0.0630	380	2	91.798	45.899	46.074	45.717	725.7	776.6		
3CdK	0.0630	383	2	55,643	27,821	27,884	27,527	436.9	467.8		
3Caka	5 0.0630	386	12	48,723	24,361	24,410	24,053	381.8	409.0		
3CdR4	0.0631	389	2	45,194	22,597	22,639	22,282	353.1	378.5		
3Caki	5 0.0631	392	2	44,231	22,115	22,150	22,798	361.3	387.5		
3Cak(6 0.0632	395	E	43,147	21,573	21,612	21,255	336.3	360.8		
3Cak'	7 0.0632	398	2	42,191	21,096	21,133	20,776	328.7	352.9		
3Call	3 0.0633	401	2	44,577	22,288	22,329	21,972	347.1	372.8		
3CdES	0.0634	404	2	46,129	23,064	23,108	22,751	358.8	385.6		
3Cak)	00.0634	407	2	48,807	24,409	24,458	24,101	380.1	408.8		
3CdK)	10.0635	410	2	54,819	27,409	27,470	. 27,113	427.0	459.4		
3Cakl	20.0635	413	2	92,697	46,349	46,829	46,172	727.1	782.7		
Av.									461.9	496.6	0.41
4CaK	0.0615	520	2	507,378	253,689	259,000	258,643	4,206	4,614		
4CaKi	2 0.0616	523	2	312,912	156,456	158,500	158,149	2,567	2,018		
4Caka	5 0.0616	526	2	274,743	137,372	138,842	138,485	2,248	2,469		
4Cak4	1 0.0617	529	2	261,034	130,517	131,957	131,600	2,133	2,344		
4Caki	5 0.0617	531	2	246,741	123,371	124,656	124,299	2,015	2,215		
4Cast	\$ 0.0617	534	2	243,587	121,793	123,020	122,666	1,988	2,187		
4CdK'	7 0.0617	637	2	242,933	121,467	122,697	122,340	1,983	2,192		
4Cake	3 0.0617	540	2	242,934	121,467	122,697	122,340	1,983	2,203		
4CdK!	0.0618	543	2	257,501	128,750	130,160	129,803	2,100	2,347		
4Cak)	0.0619	546	2	257,627	128,813	130,223	129,866	2,098	2,358		
4Calo	10.0620	54.9	2	313,327	156,664	158,714	158,357	2,554	2,883		
4CaKJ	20.0620	552	2	515, 341	257,670	263,323	262,966	4,241	4,814		
Av.									2,787	2,996	0.19

2,787 2,996 0.19

Table	6.	(Continued)	-anti-

Foil	Wgt (gm)	(min)(t _c min)	Counts	Rate, r (c/m)	rd (c/m)	rīb (c/m)	rn (c/m)	A(x) (c/m)	Asta	\$0.
			Rea Fow Bac Ura	ctor run: er level: kground a nium stan	L April 20 watt: ctivity: dard: 83,	19, 1962 5 for 20 387 c/m 890 count	sinutes ts/2 minu	ites			
1SL 2SL Av.	0.0655	300 306	5	22,520 22,613	4,504 4,525	4,505 4,526	4,118 4,139	62.87 63.19	66.33 68.73 66.53	26.4842	0.75
3L1 3L2 3L3 3L4 Av.	0.0636 0.0636 0.0637 0.0637	334 337 340 346	2222	49,866 47,228 46,888 46,907	24,933 23,614 23,444 23,453	24,984 23,660 23,489 23,498	24,597 23,273 23,102 23,111	386.7 365.9 362.7 362.8	410.4 388.6 385.4 385.9 392.6	10,398	0.46
411 412 413 414 AV.	0.0640 0.0640 0.0641 0.0641	315 318 321 324	N N N N	136,394 128,425 128,671 128,659	68,197 64,212 64,335 64,329	68,583 64,555 64,678 64,672	68,196 64,168 64,291 64,285	1,066 1,003 1,003 1,004	1,128 1,062 1,062 1,064 1,064	28,576	0.28

Table 6. (Continued)

(gm)	(min)	(min)	Counts	Rate, r (c/m)	(c/m)	r-b (c/m)	(e/m)	A(x) (c/m)	^A std	15
		Res Pow Cad Bac Ura	ctor run: er level: mium cove kground s nium stan	April 500 wat rs: 20 m ctivity: dard: 23	20, 1962 ts for 20 il thickn 355 c/m ,885 coun	minutes ess ts/2 minu	tes			
0.0647 0.0648	28 31	2	218,064 213,570	109,032 106,785	110,037 107,730	109,652 107,375	1,695 1,657	1,703 1,666 1,684	1.0460	0.22
0.0651 0.0652	17 60	10 10	20,154 20,739	2,015 2,074	2,015 2,074	1,660 1,719	25.50 26.36	25.58 26.64 26.11	27.300	1.56
0.0617 0.0618 0.0619 0.0620 0.0620 0.0621 0.0621 0.0622 0.0622	270 273 277 280 283 286 289 292	N N N N N N N N	23,444 22,970 22,701 22,568 22,439 22,453 22,744 22,635	11,722 11,485 11,351 11,284 11,219 11,227 11,372 11,317	11,734 11,497 11,362 11,295 11,229 11,237 11,383 11,588	11,379 11,142 11,007 10,940 10,874 10,872 11,028 10,973	184.4 180.3 177.8 176.5 176.4 175.1 177.3 176.4	193.5 189.3 186.8 185.6 184.5 184.5 184.3 186.7 185.8		
	0.0647 0.0648 0.0651 0.0652 0.0617 0.0618 0.0619 0.0620 0.0620 0.0621 0.0622 0.0622 0.0622	0.0647 28 0.0648 31 0.0651 17 0.0652 60 0.0617 270 0.0618 273 0.0619 277 0.0620 283 0.0620 283 0.0621 286 0.0622 289 0.0622 292	Res Res Fow Cad Bac Ura 0.0647 28 2 0.0648 31 2 0.0651 17 10 0.0652 60 10 0.0653 270 2 0.0617 270 2 0.0618 273 2 0.0619 277 2 0.0620 283 2 0.0621 286 2 0.0622 292 2	Resctor run: Fower level: Cadmium cove Background s Uranium stan 0.0647 28 2 218,064 0.0648 31 2 213,570 0.0651 17 10 20,154 0.0652 60 10 20,739 0.0617 270 2 23,444 0.0618 273 2 22,701 0.0620 260 2 22,568 0.0620 283 2 22,439 0.0621 286 2 22,453 0.0622 292 2 22,635	Resctor run: April Fower level: 500 wat Cadmium covers: 20 m Background activity: Uranium standard: Uranium standard: 23 0.0647 28 2 218,064 109,032 0.0648 31 2 213,570 106,785 0.0651 17 10 20,154 2,015 0.0652 60 10 20,739 2,074 0.0651 27 2 23,444 11,722 0.0652 60 10 20,739 2,074 0.0651 27 2 22,701 11,351 0.0617 270 2 22,568 11,284 0.0620 283 2 22,453 11,219 0.0621 286 2 22,453 11,227 0.0622 292 2 22,635 11,317	Resctor run: April 20, 1962 Fower level: 500 watts for 20 Cadmium covers: 20 mil thickn Background setivity: 355 c/m Uranium standard: 23,885 coun 0.0647 28 2 2 213,570 106,785 0.0648 31 2 2 23,444 11,722 0.0651 17 10 20,154 2,015 0.0652 60 10 20,739 2,074 2,074 0.0651 17 10 20,154 2,015 2,074 0.0652 60 10 20,739 2,074 2,074 0.0617 270 2 23,444 11,722 1,734 0.0619 277 2 22,701 11,351 11,362 0.0620 280 2 22,568 11,284 11,295 0.0620 283 2 24,439 11,219 11,229 0.0621 286 2 22,443 11,317 11,383 0.0622 289 2	Resctor run: Marril 20, 1962 Fower level: 500 watts for 20 minutes Cadmium covers: 20 mil thickness Background activity: 355 c/m Uranium standard: 23,885 counts/2 minu 0.0647 28 2 213,570 106,785 107,730 0.0651 17 10 20,154 2,015 2,074 0.0651 17 10 20,154 2,015 2,074 1,739 0.0651 17 10 20,739 2,074 2,074 1,719 0.0652 60 10 20,739 2,074 2,074 1,719 0.0617 270 2 23,444 11,722 11,734 11,379 0.0618 273 2 22,970 11,485 11,497 11,142 0.0618 273 2 22,701 11,351 11,362 11,007 0.0620 283 2 22,439 11,219 11,229 10,874 0.0621 286 2 22,443 11,227 11,383 11,028 <	Resctor run: M April 20, 1962 Fower level: 500 watts for 20 minutes Cadmium covers: 20 mil thickness Background sctivity: 355 c/m Uranium standard: 25,885 counts/2 minutes 0.0647 28 2 218,064 109,032 110,037 109,652 1,695 0.0648 31 2 213,570 106,785 107,730 107,375 1,657 0.0651 17 10 20,154 2,015 2,015 1,660 25.50 0.0652 60 10 20,739 2,074 2,074 1,719 26.36 0.0617 270 2 23,444 11,722 11,734 11,379 184.4 0.0618 273 2 22,970 11,485 11,497 11,142 180.3 0.0620 280 2 22,668 11,294 11,295 10,940 176.5 0.0620 283 2 22,453 11,227 11,237 10,672 175.1 0.0621 286 2 24,453 11,227 12,383 </td <td>Resctor run: April 20, 1962 Fower level: 600 watts for 20 minutes Cedmium covers: 20 mil thickness Background activity: 355 c/m Uranium standard: 63,885 counts/2 minutes 0.0647 28 2 213,570 106,785 107,730 0.0651 17 10 20,154 2.0652 60 10 20,739 2,074 2.0618 273 2 23,444 1,722 1.724 1,379 184.4 193.5 0.0617 270 2 23,444 1,722 1.734 1,379 184.4 193.5 0.0618 273 2 22,701 1,351 0.0620 280 2 22,568 1,284 0.0620 283 2 22,453 1,227 1,237 0.0621 286 2 22,453 1,227 1,237 10,872 175.1 0.0620 283 2 22,744 1,372 1,383 1,028 177.3 186.7 0.</td> <td>Resctor run: April 20, 1962 Fower level: 500 watts for 20 minutes Cadmium covers: 20 mil thickness Background activity: 355 c/m Uranium standard: 23,885 counts/2 minutes 0.0647 28 2 213,570 106,785 107,730 107,375 1,665 1,664 1.09,032 110,037 109,652 1,665 1,666 0.0648 31 2 213,570 106,785 107,730 107,375 1,667 1,666 0.0651 17 10 20,154 2,015 2,015 1,660 25.50 25.58 0.0652 60 10 20,739 2,074 2,074 1,719 26.36 26.11 27.300 0.0618 273 2 22,701 11,351 11,362 11,007 17.78 186.8 0.0620 260 2 25.68 11,294 10,940 176.5 185.6 0.0620 283 2 2,635 11,219 11,229 10,672 175.1 184.3 0.0</td>	Resctor run: April 20, 1962 Fower level: 600 watts for 20 minutes Cedmium covers: 20 mil thickness Background activity: 355 c/m Uranium standard: 63,885 counts/2 minutes 0.0647 28 2 213,570 106,785 107,730 0.0651 17 10 20,154 2.0652 60 10 20,739 2,074 2.0618 273 2 23,444 1,722 1.724 1,379 184.4 193.5 0.0617 270 2 23,444 1,722 1.734 1,379 184.4 193.5 0.0618 273 2 22,701 1,351 0.0620 280 2 22,568 1,284 0.0620 283 2 22,453 1,227 1,237 0.0621 286 2 22,453 1,227 1,237 10,872 175.1 0.0620 283 2 22,744 1,372 1,383 1,028 177.3 186.7 0.	Resctor run: April 20, 1962 Fower level: 500 watts for 20 minutes Cadmium covers: 20 mil thickness Background activity: 355 c/m Uranium standard: 23,885 counts/2 minutes 0.0647 28 2 213,570 106,785 107,730 107,375 1,665 1,664 1.09,032 110,037 109,652 1,665 1,666 0.0648 31 2 213,570 106,785 107,730 107,375 1,667 1,666 0.0651 17 10 20,154 2,015 2,015 1,660 25.50 25.58 0.0652 60 10 20,739 2,074 2,074 1,719 26.36 26.11 27.300 0.0618 273 2 22,701 11,351 11,362 11,007 17.78 186.8 0.0620 260 2 25.68 11,294 10,940 176.5 185.6 0.0620 283 2 2,635 11,219 11,229 10,672 175.1 184.3 0.0

Table 6. (Continued)

Foil	(gm)	t _w (min)(t _e (min)	Counts	Rate, r (c/m)	rd (c/m)	$\binom{r_{-b}}{(c/m)}$	rn (c/m)	A(x) (c/m)	^A etd	S J.
281 282 283 284 285 286 286 287 288 288 288	0.0607 0.0607 0.0608 0.0608 0.0608 0.0609 0.0609	334 331 328 310 313 316 319 322	ા ગ ગ ગ ગ ગ ગ ગ	210,451 206,833 203,397 205,515 201,996 205,564 206,073 211,405	105,225 103,417 101,698 102,757 100,998 102,782 103,036 105,702	106,157 104,317 102,548 103,697 102,048 103,672 103,926 106,642	105,802 103,952 102,193 103,342 101,693 103,317 103,571 105,287	17,430 17,126 16,836 17,000 16,726 16,965 17,007 17,453	18,500 18,170 17,850 17,970 17,690 17,950 18,000 18,480 18,076	1,891	0.22
30dM1 30dM2 30dM3 30dM4 30dM6 30dM6 30dM6 30dM8 Av.	0.0613 0.0614 0.0614 0.0614 0.0614 0.0614 0.0615 0.0615	358 361 364 367 370 373 377 380	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	94,121 58,684 53,536 51,208 52,069 54,002 59,331 94,069	47,062 29,342 26,768 25,604 26,035 27,001 29,666 47,035	47,248 29,411 26,831 25,658 26,082 27,061 29,738 47,120	46,893 29,056 26,476 25,303 25,727 26,706 29,383 46,765	765.0 474.0 431.2 412.1 419.0 435.0 477.8 760.4	815.5 505.5 460.1 440.0 447.6 464.9 511.0 813.7 557.3	582.9	0.41
40dM1 40dM2 40dM3 40dM4 40dM6 40dM6 40dM6 40dM6 40dM8	0.0594 0.0595 0.0595 0.0598 0.0600 0.0601 0.0605 0.0607	394 397 400 403 406 410 413 416	10 10 10 10 10 10 10 10	532,392 334,575 305,248 294,319 299,112 304,665 341,312 542,343	266,196 167,287 162,624 147,159 149,056 152,333 170,656 271,172	272,206 170,287 155,344 148,979 151,436 185,063 173,281 276,412	271,851 169,932 154,989 148,624 151,081 151,081 154,708 172,826 276,057	4,577 2,861 2,605 2,485 2,518 2,518 2,574 2,857 4,548	4,910 3,071 2,798 2,670 2,707 2,769 3,075 4,898 3,362	3,517	0.18

Table 6. (Continued)

Foll	(ga)	tw (min)	t _e (min)	Counts	Rate, r (c/m)	rd (c/m)	r_b (c/m)	(c/m)	$\mathbb{A}(\mathbf{x})$ (c/m)	Astd	× 5
			Rea Pow Bac Ura	<u>ctor run:</u> er level: kground a nius stan	N April 20 watt ctivity: dard: 83	19, 1962 s for 20 1 341 c/m ,278 coun	ninutes ts/2 minu	ites			annan (17 an 19
1SN 2SN AV.	0.0649 0.0649	366 372	5	21,800 22,696	4,360 4,539	4,361 4,540	4,020 4,199	61.94 64.67	66.12 69.11 67.61	26.0593	0.74
381 382 383 384 385 385 386 386 387 388 388	0.0642 0.0643 0.0643 0.0643 0.0644 0.0645 0.0645 0.0646	378 381 387 390 393 396 399	ે જે જે જે જે જે જે જે	46,818 44,913 43,802 43,007 43,723 43,642 43,749 46,310	23,409 22,456 21,901 21,503 21,862 21,821 21,874 23,155	23,454 22,498 21,941 21,541 22,902 21,861 21,914 23,199	23,113 22,157 21,600 21,200 21,561 21,520 21,573 22,758	360.0 344.6 335.9 329.7 334.8 333.6 333.9 352.3	385.1 368.9 359.7 353.3 388.9 357.8 357.8 358.3 378.3 378.3 365.0	9,512	0.48
4812 4823 4834 4856	0.0610 0.0611 0.0611 0.0611 0.0611	410 413 416 419 422	0 0 0 0 0 0 0	122,489 113,552 110,279 109,665 108,804	61,244 56,776 55,139 54,832 54,402	61,556 57,044 55,394 55,082 54,649 55,972	81,215 56,703 55,053 54,741 54,308	1004. 928.0 901.0 895.9 888.8	1080. 998.9 970.4 965.4 958.3 980.7		
4N7 4N8 AV.	0.0612 0.0612 0.0613	428 431	2 22	112,130	56,065 61,033	56,327 61,343	55,986 61,002	914.8 995.1	987.4 1075. 1002.	26.111	0.30

and the second	Tabl	.0	6.	(Con	tinued)
--	------	----	----	------	---------

Foil	(gm)	(min)	t _c (min)	Counts	Rate, r (c/m)	ra (c/m)	r-b (c/m)	r _n (c/m)	A(x) (c/m)	Astd	5 Ja
niga indi amerikan			Rea Pow Bac Ura	stor run: er level: kground s nium stan	O April 10 kw f ctivity: dard: 83	20, 1962 or 20 min 332 c/m ,885 coun	utes ts/2 minu	ites	-		ana sudmer - suscent
350 450 Av.	0.0659 0.0657	201 204	22	67,046 67,890	33,523 33,945	33,614 34,038	33,282 33,706	505.0 513.0	523.5 532.0 527.8	0.05175	0.39
10401	0.0656	81	60	29,674	494.6	494.6	162.6	2.479	2.515	0.1301	17.8
20â01	0.0655	77	2	39,804	19,902	19,935	19,602	299.3	303.4	15.70	0.51
			Rea Fow Cad Bac Ura	ctor run: er level: mium cove kground a nium sten	P April 500 wat rs: 10 m ctivity: dard: 83	24. 1962 ts for 20 11 thickn 322 c/m ,481 coun	minutes ess ts/2 minu	ites			
18P 28P Av.	0.0630	31 34	2	208,296 210,648	104,148 105,324	105,058 106,254	104,736 105,932	1,662 1,681	1,671 1,691 1,681	1.04818	0.21
3PCdl	0.0649	38	2	178,441	89,220	89,880	89,558	1,380	1,389	1.456	0.23

Table 6. (Continued)

Foil	₩gt (gm)	t _w (min)(t _c (min)	Counts	Rate, r (c/m)	rd (c/m)	r-b (c/m)	r_n	A(x) (c/m)	^A stā	ST8
			Rea Pow Cadi Bac Urai	stor run: er level: mium cove kground a nium ston	<u>Q April</u> 500 wat rs: 40 m ctivity: dard: 83	26, 1962 ts for 20 il thickn 317 c/m ,485 coun	minutes ess ts/2 minu	ites			
180 280 Av.	0.0625 0.0625	90 93	2	214,657 213,164	107,328 108,582	108,296 107,522	107,979 107,205	1,728 1,715	1,756 1,744 1,760	1.00113	0.21
3QCaL	0.0638	96	2	150,770	75,385	75,858	75,541	1,184	1,204	1.205	0.26
			<u>Rea</u> Pow Cadi Bac Ura	ctor run: er level: mium cove kground s mium stan	R April 500 wat rs: 60 m ctivity: dard: 83	26, 1962 ts for 20 il thickn 335 c/m ,485 coun	minutes ess ts/2 minu	ites			
188 288 Av.	0.0628 0.0628	40 43	22 02	210,847 211,962	105,424 105,981	106,359 106,823	105,024 106,488	1,694 1,701	1,706 1,714 1,710	1.03040	0.21
3RCal	0.0638	46	2	149,152	74,576	75,051	74,716	1,171	1,181	1.217	0.26

Table 6. (Continued)

Foll	Wgt (gm)	(min)(tc min)	Counts	Rate, r (c/m)	rd (c/m)	r-b (e/m)	rn (c/m)	A(x) (c/m)	Asta	10 s
			Rea Pow Cadi Bac Urai	ctor run: er level: nium cove kground s nium stan	<u>S May 9</u> 500 wat rs: 30 m ctivity: dard: 83	, <u>1962</u> ts for 20 il thickn 336 c/m ,694 coun	minutes ess ts/2 minu	tes			
168 285 Av.	0.0629 0.0629	37 40	22	212,658 215,823	106,329 107,911	107,274 108,906	106,938 108,570	1,700 1,726	1,711 1,738 1,725	1.02144	0.21
30481	0.0637	46	2	159,584	79,792	80,322	79,986	1,256	1,266	1293	0.25
			<u>Rea</u> Pow Csdi Bac Ura	ctor run: er level: mium cove kground s nium stan	T May 9 500 wat ers: 50 a ctivity: dard: 83	<u>1962</u> ts for 20 il thickn 292 c/m ,957 coun	minutes ess its/2 minu	ites			
1ST 2ST Av.	0.0629 0.0629	485 488	2	206,099 202,684	103,049 101,342	103,944 102,192	103,552 101,900	1,646 1,620	1,794 1,767 1,781	0.98933	0.22
3CdT1	0.0632	500	2	139,254	69,627	70,032	69,740	1,103	1,206	1193	0.27

Table 6. (Continued)

Foil	[⊯] gt (gm)	t _w (min)(^t e min)	Counte	Rate, r (c/m)	r _d (e/m)	r-b (c/m)	rn (c/m)	A(x) (c/m)	Astd	5
			Read Powe Cada Baol Uran	etor run: er level: sium cove ground e sium stan	U May 2 500 wat rs: 60 m ctivity: dard: 83	3, 1962 ts for 20 il thickn 316 c/m ,968 coun) minutes less lts/2 minu	tes			
18U 29U Av.	0.0622 0.0624	107 110	22	203,977 206,026	101,989 103,013	102,859 103,903	102,543 103,587	1,649 1,660	1,681 1,693 1,687	1.04075	0.22
3CaUl	0.0632	116	2	144,458	72,229	72,664	72,348	1,145	1,169	1,217	0.27
			Read Powe Cadi Baci Uran	tor run: er level: aium cove ground s aium stan	V May 2 500 wat rs: 80 s ctivity: dard: 83	4, 1962 ts for 20 11 thickn 317 c/m ,853 coun) minutes less lts/2 minu	ites			
13V 25V	0.0662 0.0667	59 66	2	229,232 229,288	114,616 114,644	115,716 115,744	115,399 115,427	1,743 1,731	1,761 1,751 1,756	1.00342	0.18
306 V1	0.0654	51	2	145,542	72,771	73,211	72,894	1,115	1,125	1,129	0.26