
A knowledge-based system for finding cutsets and

performing diagnostics

by

Ramin Mikaili

An Abstract of

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements fo r the Degree of

l\IASTER OF SCIENCE

Signatures have been redacted for privacy

Iowa State {j niversity
Ames, Iowa

1989

A knowledge-based system for finding cutsets and

performing diagnostics

Ramin ~Iikaili

Under the supervision of Dr. Richard A. Danofsky
From the department of Nuclear Engineering

Iowa State University

In performing a probabilistic risk assessment (PRA) , fault t rees are constructed and

evaluated; t his is called fault tree analysis. The end products of fault tree analysis

are cutsets. Fault tree analysis is error-prone and time-consuming. An expert

system called ESAS (Expert System for Analyzing Systems) is developed which

implements a method that bypasses fault tree analysis for finding cutsets . . This

expert system then uses these cutsets for diagnostic purposes. Given an anomaly,

ESAS finds the corresp on ding cutsets which contain the probable causes. ESAS is

written in P rolog and can be run on an IBM XT, AT, or compatible. By use of

vi rtual windows and menu systems, ESAS acquires knowledge and encodes it into

facts in P rolog. Therefore, knowledge of programming in Prolog is not required for

using ESAS.

A knowledge-based system for finding cutsets and

p e rforming diagnost ics

by

Ramin Mikaili

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

~ I A.STER OF SCIE~CE

Ylajor: Nuclear Engineering

Approved:

For the Graduate College

Iowa State University
Ames , Iowa

1989

11

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

1 INTRODUCTION .

1.1 Problem Statement .

1.2 Scope of Thesis . . .

1.3 A Short History of Artificial Intelligence

1.4 Introduction to Expert Systems .

1.4.1 Knowledge Base

1.4.2 Inference Engine

2 LITERATURE REVIEW

VI

1

1

4

5

9

12

13

15

2.1 AI in the Nuclear Industry 15

3

2.2 Review of Computer Programs Csed for Fault Tree Analysis . 20

2.3 Exper t Systems Developed for Diagnostics 24

A DESCRIPTION OF FAULT TREE ANALYSIS

3.1 Const ruction of a Fault Tree.

3.2 Evaluation of a Fault Tree . .

31

31

34

111

4 BASICS OF PROLOG 37

38

41

42

43

46

5

4.1 Knowledge Representation in Prolog

4.2 Iterative Techniques in Prolog .

4.2.l Backtracking

4.2.2 Recursion

4.3 Turbo Prolog

DEVELOPMENT OF ESAS 48

5.1 Acquisition and Representation of Information 49

5.1.l Semantic ~etwork Representation of a System 49

5. 1.2 Other System Info rmation . . . 53

5.1.3 Representation of Facts in ESAS 55

5.2 Rules for Finding Paths Through a System 58

5.3 Rules for Finding Cutsets and Failure Probability of a System . 61

5.4 Rules Developed for Diagnostics 68

5.5 Interacting with ESAS 69

6 ANALYSIS OF NUCLEAR PLANT SYSTEMS 72

72

75

78

80

6.1 An Emergency Core Cooling System

6.2 A Pressure Tank System

6 .3 The PWR Containment Spray Injection System .

6A A Power Distribution Box

7

8

IV

CONCLUSIONS

7.1

7.2

Rest rict ion on Types of Systems Analyzed by ESAS

Suggestions fo r Future Work

BIBLIOGRAPHY

84

8'1

85

88

Figure 1.1:

Figure 3.1:

Figure 3.2:

Figure 5.1:

F igure 5.2:

Figure 5.3:

Figure 6.1:

Figure 6.2 :

Figure 6.3 :

Figure 6.4:

Figure 6.5:

F igure 6.6:

v

LIST OF FIGURES

Expert system framework

Configuration of a pumping system ..

The fault tree for the pumping system

The configuration of the modified pumping system

A tree representation of a graph

The menu system of ESAS .

The configuration of ECCS

The fault tree constructed for ECCS

The failure menu tree for ECC

The configuration of the pressure tank system

The configuration of the P \YR

The configuration of the power distribution box

11

36

36

5

59

70

73

7-1

75

76

79

1

VI

ACKNOWLEDGEMEN TS

The nuclear ind us try has been struggling to convince the public of the safety

of nuclear power plants for the past two decades. There has not been any demand

for nuclear plants for the las t decade. This has forced nuclear engineering and

other related nuclear fields to di versify. T he :J uclear Engineering Department at

Iowa State University, under direct ion of Dr. Spinrad has chosen to respond to the

demand for the diversification . I would like to acknowledge the faculty members

of t he 1 uclear Engineering Depar tment for providing s uch di versity. Exploring

artificial intelligence is an example of this diversificat ion.

The person responsible for introducing artificial intelligence to the Nuclear En-

gineering Department at Iowa State University is Dr. Danofsky. He, with a great

deal of enthusiasm for research in new areas , has always been able to interest stu-

dents . I am greatly a ppreciat ive of hi s guidance. It has been a pleasant experience

to work with Dr. Danofsky. \ Iostly, I would li ke to thank Dr. Danofsky for hi s

frien dship and trust.

Dr. Spinrad took part in thi s project by giving invaluable suggestions. His

efforts a re greatly appreciated not only fo r this project but also for motivat ing me

to become more research oriented. Also, I express my gratitude to Dr. \,\"right for

being a member of my graduate committee.

Vil

Also , I am indebted to the . uclear Engineering Department for the financial

support during my graduate studies. In this regard, the interest and financial

support of the Power Affiliates and Iowa Electric Company is appreciated.

Special thanks to Dr. Williams (Bob) and Ruth Anderson for their assistance

and advices but mostly for their friendship. Their constant help in bureaucratic

and personal affairs made this project much easier. I specially wish Ruth strength

and health.

Dr. ~Iostafa \Iikaili and Ha jar ~ lahmoudian \ [i kaili (my parents) played a

great role in my education. They not only financially supported my undergraduate

studies but also inspired me to pursue higher education. \ Iy parents· goal ha,·e

always been to facilitate the education of thei r chi ldren by means of financial and

moral support. They both had to make great sacrifices in their lives to achieve t hi s

goal. I express my deepest gratitude to them. Very special t hanks to my brothers

Arman and Afshin who have always been with me. Additional th anks to Afshin for

teaching me the tricks of using AutoCad.

I want to extend my appreciation to my fellow graduate students U ner <;olak,

\Tiyazi Sokmen \ Iark \"utt, Dave Roth. Lance Christianson, Zekeriya Altac;. and

Russ Bywater, working with whom made late night and 1 or ear ly morning hours

pleasant. I specially want to thank . iyazi and U ner for t heir help with LATEX,

and their suggestions. Also , I thank my former fellow graduate students, Dr. Jordi

Roglans Ribas , :VIike vVinters , Dr. Okan Zabunoglu, and Dr. John Sankoorikal for

the bull sessions and valuable suggestions. Special thanks to Jordi for leaving the

cassette tape of the violin concert of J. S. Bach , performed by Paganini ; I could not

Vlll

have stayed awake without this screeching music during long nights at ~uc. E Lab.

I have been very fortunate to work with this group.

For my little three and one year old friends , Deniz and Arda. I have special

thanks . W ith their smiles and innocence, they cleared and refreshed my mind when

I was frustrated and ti red. Also I thank my other little friends . my cats. Sasha.

Bach. Ike. and Peeshi. who stayed up with me and kept me awake by demanding

pets.

Very special thanks to my friend Linda Lamb for her advice, help. and tolerance.

Linda, who has been with me in every step of the way for the past five years, made

the time spent on this project more meaningful. I deeply appreciate her partnership

by dedicating this work to her.

1

1 INTRODUCTION

1.1 Proble m Statement

The task of assessing the risks to the public from potential accident scenarios

involving commercial nuclear power plants achie\'ed prominence during the early

1970s with the (.. Reactor afety tudy \. Ini tially sponsored by the l". . ~u­

clear Regulatory Commission (~RC), this study, which was based on probabilistic

methods introduced the use of fault trees and event trees which are needed to per-

form such comprehensive risk assessments '. !].

A probabilistic risk assessment (PRA) is used to determine the failure prob-

ability of important systems of a power plant. o far. all PRA studies haYe been

carried out by developing fault trees. A fau lt tree is a graphic model of the various

parallel and sequential combinations of fau lts that will result in the occurrence of

a pre-defined undesired event. _..\ fault tree depicts the logical interrelationships of

basic events that lead to an undesired event, which is called the top event of the

fault tree ·1]. The end products of fault tree analysis are lists of components whose

fail ures cause t he top event. These li sts are called cutsets.

The reactor safety study, which was conducted under the direction of Professor

~orman Rassmussen. is called \YA H-1..J:OO :2 . The main task of this study was

to estimate the risk to the public using PR...\ methods, mainly fault tree analysis.

2

for two types of then-modern nuclear reactors: the urry 1 78 -:..I\\' (e) Pressurized

Water Reactor (P\VR) and the Peach Bottom 2 1065-).I\\" (e) Boiling \Yater Reactor

(B\VR) [3J. Although the scope of WASH-1-100 was only the analysis of these two

reactors, the report has been used extensively as a benchmark for the safety analysis

of nuclear power plants ever since. eventeen contractors and national laboratories

were required 3 for comple ting \V:\SH-1400: therefore. it is apparent t hat a PRA

analysis requires a great deal of effort.

In an attempt to automate fault tree analysis, computer codes have been de-

veloped. These codes a re restricted by the memory size and speed of the computer

that is used .). lode rn main frame computers have large memory and high execution

speed capabilities, so the use of these codes is possible but very expensive:. they

are also error- prone for analysis of large systems such as a re encountered in nuclear

power plants [l 1 .

Fo r this thesis, we developed an expert system called . Expert ystem for Ana-

lyzing Systems (ESAS), to find the cutsets without performing fault tree analysis.

This is accomplished by simply tracing through the system. The method first fo rms

lists of components which consist of all possible combinations of components in t he

system. Then. assuming t he fai lure of components in each lis t, ESAS tries to find

paths from the input to the out put components. Depending on the type of accident .

which can be an existence of a path between the inpu t and the output component.

ESAS decides whether the li s t o f components (assumed failed) is a cutset.

This method is analogous to finding paths in a road map when certain roads

have been closed due to bad weather , for example. lf our desire is to reach the

destination (e.g .. going home) and we cannot reach it t hen we call the list of roads

3

closed a cutset. On the other hand, if we have no desire to reach the destination

(e.g. going to the dentist) and there is a path possible then the list of roads open is

a cutset. Al though this idea is simple. application of it to the complex systems in

a nuclear power plant is very tedious if performed manually. This implies that de-

veloping an expert system to per form this task is most appropriate: expert systems

lend themselves to problem areas where the expertise is well defined, but tedious if

resolved by humans.

Cutsets found for a top event 10 a system are stored in a database and used

for two purposes: to calculate the probability of occurrence of a top event, and

to diagnose a system. Given the failure probability rates for each component in

the system. E .-\S is capable of finding the total failure probability of the system.

assurrung a cons tant failure rate.

known and t he causes are desired.

[n diagnosing a system, the consequences are

Another way of defining cutsets is that the

components in the cutsets are possible causes of the top event (consequence). Given

the consequence (top event) of an accident . ESA carries out a diagnosis by listing

the components in the cutset that we re previously fou nd. Another diagnostic feature

of ESAS is providing "what if" scenarios . The path-finding procedure could be

used in the case where the importance of success of components in the system is

examined by trying to find paths through the system, assuming the failure of those

components. Thus, E .-\S could be applied to assist in conducting P RA studies or

to advise the operator or staff who are diagnosing an omalies.

4

1.2 S co p e o f Thesis

For describing the development and implementation of ESA , some background

information in three areas , namely expert systems, fault t ree analysis, and Prolog,

is required.

In Chapter 1, ection 1.3 . a brief history of a rt ifi cial intelligence (AI) and t he

evolutionary stages which lead to the development of expert systems are described.

A more formal definition and descriptions of expert systems in use today are pre-

sented in Section 1.4 with emphasis on two major components of an expert system,

the inference engine and knowledge base.

In Chapter 2, the literature review is chosen to serve three purposes, namely to

give the reader an overview of the problem areas in t he nuclear indust ry fo r which

the implementation of expert systems has been considered, to demonst rate the need

for a method other than fault t ree analysis which could be used to find cutsets. and

to summarize the methods used in exper t systems, which are also used in ESAS.

for knowledge representat ion and diagnostics. A brief history of AI in the nuclear

industry, a review of computer programs for fault tree analysis, and a summary of

exper t systems for diagnostics is also presented.

In Chapter 3 a brief descri p t ion of fault t ree analysis is given. The basic steps

followed in fault tree const ruction and evaluatio n a re described. The scope of this

thesis did not allow for an elaborate description of fault t ree an alysis methods, but

the terms commonly used in faul t tree analysis and methods used to develop ESAS

are defined .

In Chapter 4, to give non-P rolog-programmers proper background information

fo r understanding the parts of ES..\ presented in the later chap ters. a short manual

5

on Prolog is presented. Knovvledge representation and iterative techniques are the

topics cO\·ered. Also. the Prolog software used to develop ESAS is bri efl y described.

In Chapter 5, the information acquired by E A for performing its tasks,

namely find ing paths and cutsets and performing diagnostics, is described. The

representation o f this information, encoding facts into Prolog. is t hen explained. To

completely present the knowledge base of ESA , which is comprised of facts and

rules, the methods used for developing the rules which enables ESA to perform its

various tasks, are described. F inal ly, the interfacing featu res of ESAS wit h the user

are described.

In Chapter 6, the cutsets found. usmg E A , for four nuclear power plant

systems are reported and compared to the ones obtai ned by performing fault tree

analysis . Also , some diagnostics features of ESAS are demonstrated by use of these

system.

In Chapter 7 , conclusions and the restrictions on the systems that can be

analyzed by ESAS are reviewed. followed by suggestions for future work.

1.3 A Short His tory o f Arti fi cia l Intellig ence

It is difficult to pinpoint an exact star ting date for the introduction of the term

commonly called artificial intelligence (AI) . However, the term artificial intelligence

is credited to \ Iarvin \!Iinsky at the \ Iassachusetts Inst itute of Technology (\IIT),

who in 1961 wrote a paper entitled "Steps Toward Artificial Intelligence" 4 .. The

1960s were a period of intense optimi sm over the possibility of making a computer

think. During that decade, the first compu ter ized mathematical t heorem-proving

program. ~ I AC Y\IA , and the famous program that acted like a psychoanalyst.

6

ELIZA, were developed. The development of these pioneer programs in AI was

possible due to the creation of LISP, which is claimed to be the first AI language.

It was created by John ~1cCarthy at ~IIT ,4].

Even before the 1960s it was well known that computers could do numerical

calculations with an unbelievable speed. but ~IIT's ~IACSYMA went one step fur-

ther by performing symbolic processing of mathematical fo rmulas using knowledge

required for matrix multiplication , integration, differentiation , etc. The develop-

ment of ~IACSY~IA has been continued to this date [5: . ELIZA was programmed

to act like a Rogerian psychoanalyst. In this style of analysis, the psychiatrist takes

a passive role, by simply echoing the patient's own remarks. Development of ELIZA

raised the question, ·'Should computers be used in this way?" Even vVeizenbaum,

ELIZA 's creator, in one of his books discredited his own program :4J. Schildt [4]

blames the pessimism about the AI methods, which existed in the 1960s , on the

fear of automation.

Never theless, one can not deny the successes of the researchers in the AI field

in the 1960s. As a matter of fact. in the beginning of the 1970s, it was believed

that the capability to produce a program which has human-like intelligence com-

patibili ties was just imminent :5J. But difficulties were encountered in generalizing

these successes into flexible, intelligent programs. Even with the 1970s computers,

which had larger memory and much increased computer speed. it was soon found

that AI programs exhausted computer memory or the execution time became too

long. This directed the AI field to produce more efficient methods for solving AI

problems, which in turn led to the introduction of the first commercial product. the

expert system. An expert system is defined as a program that contains knowledge

7

about a certain field and, when interrogated, responds much like a human expert

[4]. :\ new era in AI history began. augmented by the development of ~IYCL ,

one of the first expert systems. l\IYCL was developed at Stanford university to

help physicians diagnose illnesses [51
• Mostly due to the success of MYCIN, the

possibilities of developing expert systems in many other fields of technology have

been or are being explored.

Another language, called Prolog (Programming in Logic), was created in 1972

by Alain Celmerauer in Marseilles, France, in an attempt to create an Al language

that was more efficient for represent ing knowledge and drawing inferences [4]. Like

LISP, Prolog is a language designed to solve ...\.I -related problems; but unlike LISP,

it has several special features, such as a built-in database and a rather simple syntax

[4]. Before 1981 , LISP was the language prominently used by the :\I field in the

United States and Prolog was used in Europe. This situation was altered in 1981

with the announcement by the Japanese that Prolog wi ll be used as the language

for the "fifth-generation" computers '-(

vVi th all the research done to this day, the ...\.I field still has not yet accomplished

its stated task of creating programs that exhibit reasoning and learning processes

similar to humans. However , it must be noted that the shortcomings of the AI field

a re mostly blamed on the lack of understanding of how the human brain actually

works. To this day, AI researchers have had to guess how a human brain works . It

has been stated [6],

"Although the AI field has been an active one for more than 25 years ,
AI researchers still have no idea how to create a truly intelligent com-
puter. . o existing programs can recall facts, solve problems. reason,
learn, or process language with anything approximating human facility.
This lack of success has occurred not because computers are inferior to

8

human brains but because we do not yet know how human intelligence
is organized."'

On the other hand, it is ironic t hat the psychology field has actually taken some

o f the AI concepts to develop psychological theo ries, as is a lso stat ed in Anderson

·' obsen·ing how we could analyze the intelligent behavior of a machine
has largely liberated us from our inhibitions and misconceptions about
analyzing our own intelligence."

T he field of Artificial Intelligence today is separated into four areas. natural-

language processing . vision and pattern recognition , robotics . and expert systems .

The source fo r the description of these areas is Schildt '1J. Development of natural-

language p rocessing is claimed to be t he most important task in t he AI field, since

if this is full y accomplished then a direc t human-computer communication link is

possible. ~atural - language processing is not fully developed due to the sheer size

and complexity of the human language.

Along with natural-language processing, for a computer to be ab le to com-

pletely unders ta nd the world around it , some sort of vision capability is required .

Often the term .. image processing" is used to describe the fairly broad field of vision

and pattern recognition. and enh ancement. The reason for t his fie ld being so large

is that it encompasses two major subdivisions: two-dimensional processing and the

three-dimensional processing (sometimes called real-world processing).

T he roboti cs field is basically a combination of ot her fields of AI. ~atural-

language processing is used, so a robot can communicate with humans in a human

language. Vision and pattern recognition enables a robot to visuali ze and to have

10

between algorithms and heuristics. Algorithms are procedures guaranteed to resuJt

in the correct solution of problems. For example. the procedure for multiplication

is an algorithm. By following the same procedure, one would obtain the correct

solution for any two numbers. However , concluding that it will rain because it

is cloudy is a heuristic. In other words, algorithms are a brute fo rce method of

sol\'ing problems which if follo\\'ed exactly will result in the correct ans\\'er. whereas

heuristics are short cuts for solving problems but do not always result in the correct

solution (sometimes it does not rain on a cloudy day). Then why use heuristics

and not algorithms? The answer lies in the fact t hat the re is not an algorithm for

every problem. For example, there is not a systematic way of predicting rain which

always gives the correct forecast.

Human experts rely on heuristics 10 their decision making, and in order to

be able to mimic them, expert systems contain a knowledge base which can hold

information in the form of heuristics, or other fo rms of knowledge used by humans.

Furthermore, expert systems contain an inference mechanism ·which controls the

execution and draws inferences from the the knowledge base [7:. Some of t he most

important features of an expert system that are cited : indicate that an expert

system should:

• cover a limited domain of expertise,

• explain its train of reasoning ,

• detach facts and inference mechanism,

• allow modularity,

HUMAN EXPERT

MACHINE LEARNING
INDUCTION STRATEGIE

REPR ESENTATION OF
KNOWLEDGE

METHOD OF
PLAUSIBLE REASONING

s

11

DATABASE
I I
AQU I SIT ION
MODULE

I
KNOWLEDGE
BASE

I THE HUMAN WINO
INFERENCE EXPLANATORY
ENG I NE - INFERENCE

F igure 1.1: Expert system framework

• incorporate rules of thumb that human experts use,

• deliver advice as its output,

• and most importantly, make money.

ow

_..\ typical block st ructure of an expert system is presented in F igure 1.1 :6J.
As depicted in this figure, the kernels or core components of an expert system are

the knowledge base and the inference engine. However , the component "the .human

window" should not be overlooked. r-. Iost expert system languages contain excellent

graphics capabilities and window systems. Since expert systems are competing with

the human experts' interact ive capabilities, full exploration of this aspect is crucial.

12

1.4 .1 Knowledge B ase

The knowledge base stores information about the subject domain. Common

difficulties encountered while building a knowledge base are knowledge represen-

tation (how to encode informatio n so the computer can use it), and knowledge

acquisition 71• Knowledge representation in an expert system must contain : 1.

• domain terms , the jargon used by experts in t he field

• structural relationships, the interconnection of component entities

• causal relationships, the cause-effect relations between components

Knowledge acquisition consists of two parts: acquiring the knO\\·ledge which the

human expert uses in solving a problem, and collecting the data the human expert

needs to solve a problem. Acquiring the knowledge poses a problem, since in most

cases the human expert 's knowledge on how to solve a problem (e.g., heuristics) is

ill-defined and not well understood even by the expert. In general, the re are four

main methods of storing knowledge symbolically [:

• Production rules which have an IF (.-\) THE, (B) format . where the condi-

tion (.-\) specifies some pattern and the conclusion (B) may be an action or

assertion. Production rules are used for representing heuristics o r other rules

in the form of (IF condition T HE:\ conclusion).

• Semanti c domains, which are knowledge linked together in the form of a tree

or graph. The human brain also stores information in the form of a semantic

domain. For example , when one thinks about rain, the brain immediately

links it with snow cloud. etc.

13

• Frames, which are generalized record structures that may have default values

and may ha\·e actions coded as the \·alue of certain fields or slots.

• Horn clauses, which are a form of predicate logic on which Prolog is based.

1.4.2 Infe rence Engine

The inference engine is used to reach conclusions and to control the reasoning

process :1J. In simpler words , it is the part of the expert system which thinks through

the knowledge it has acquired. Inference engines are of either a deterministic or a

probabilistic type. \\'hen one deals with a knowledge area where assertions are

certain. deterministic inference engines are used. On the other hand. probabilistic

inference engines deal with the type of knowledge such that an assertion is associated

with an assigned probability. The majority of knowledge areas are probabilistic,

but for many of these areas . the uncertainty is stat istically insignificant, so the

determinis tic inference engine is mostly used 7'. Probabilistic or deterministic

inference engines use either forward or backward-chaining methods.

Forward-chaining is the term used to describe the process of working forward

from the evidence to the conclusions. Forward-chaining is sometimes called data-

driven because the inference engine uses information that is provided by the user

to mo\·e through a network of logical A~Ds and ORs until it reaches a terminal

point. which is the object. If the inference engine cannot find an object by using

the existing information. then it requests additional data. In summary. a forward-

chaining inference engine moves through the rules that define the object and creates

a path that leads to the next rule; therefore, the only way to reach the object is to

satisfy all of it rules "7' .

1-!

Backward-chaining is working from hypothesis to evidence. the reverse of forward-

chaining. It starts ·with an object and requests information to confirm or deny it.

T hus, it is somet imes called object-driven because the system begins with an object

and t ries to ve ri fy it .

15

2 LITERATU RE REVIEW

The main purpose of this review ts to demonstrate the differences between

ESAS and other programs which perform fault tree analysis and to give a descrip-

tion of some expert systems used for diagnosing systems in nuclear power plants.

However , to give an overall picture of the use of AI in the nuclear industry, a sum-

mary of a paper titled " Application of Artificial Intelligence in the C.S. Nuclear

Industry" [9] is presented.

2.1 AI in the Nuclear Indus try

In the publication titled , "Artificial Intelligence and Other Innovative Com-

puter Applications in the ~ uclear Industry" [10:, a broad collection of papers on

the application of AI programs to the nuclear industry' s problem areas is presented.

In the summary article in the publication, hrig :9J cites the problem areas where

implementation of expert systems have been successful.

According to Chrig, the development of expert systems in the nuclear industry

in the United States is conducted by a broad list of organizations, including nuclear

equipment vendors. architect-engineer firms, universities. national laboratories, fed-

eral agencies, the electric power utility industry, and small entrepreneurial groups.

However, the largest effort is the program undertaken in 1983 by the Electric Power

16

Research Institute (EPRI). Special interests are in the areas of fault recognition

and diagnosis, fault recovery, task planning, intelligent operator interfaces , and in-

telligent systems control.

Uhrig pays special attention to the use of expert system in operator assistance.

He argues that the use of expert systems in assisting reactor operation is most ap-

propriate, since great quantities of numeric , symbolic, and quant itative information

are handled by the reactor operators even during routine operation. Processing

large amounts of information in an abnormal situation is even more difficult and

at the same time crucial. Also, the performance of operators at a nuclear power

plant is affected by the stress caused in handling such large amounts of informa-

tion. This causes a great deal of guesswork on the part of the operators. Expert

systems can avoid this problem by providing expert advice and rapid access to a

large information base. Uhrig states:

"The application of AI technologies , particularly expert systems. to the
control room activities can reduce operator error and enhance plant
safety and reliability. Furthermore, a large number of non-operating
activities (e .g. testing, routine maintenance, outage planning, equip-
ment diagnostics, fuel management, etc.) exist where expert systems
can increase the efficiency and effectiveness of overall plant operation."

In regards to the computers used in the control rooms, he notes that micro-

computers are preferred by the operators, since they are easy to work with. Expert

systems can be developed for the special AI computers, such as LISP machines, and

the executable version of the programs can be transferred to the microcomputers in

the control room. The major problem with implementing expert systems for assist-

ing in operation of nuclear power plants is the reluctance of utilities to introduce to

regulatory review , a new technology that involves a great deal of uncertainty. Cntil

17

they are convinced that the benefits gained warrant the effort involved, any further

development of these expert systems will be slowed down.

uhrig then cites some expert systems typical of the ones being developed in

the U.S. which are ac tually in use at nuclear power plants today. They a re briefly

itemized here '9],

• Reactor Emergency Alarm Level \ Ionitor (REAL\I), deYeloped by Technology

Applications, Inc., implemented to assist in deciding the response to each level

of emergency (i.e., unusual event. an alert, a site area emergency, o r a general

emergency).

• An EPRI-developed tracking system for emergency operating procedure. It

is an on-li ne exp ert system that requires no input from the operator, an d can

explain the conclusions reached upon the request of the operator.

• An expert system called CLEO, developed by \\'estinghouse Hanford Com-

pany, and used for refueling the fast flux test facility (FFTF). It is able to

generate a list of necessary refueling moves in less than 30 seconds, given the

present and t he future core configurations of FFTF.

• An expert system, developed by the Oak Ridge ~ational Laboratory (OR\iL),

used for advising operators of the ORNL 's 100 ~IWt high flux isotope reactor.

• An expert system developed at ldaho ~ ational Engineering Laboratory for

reactor safety assessment. Its main task is to aid an NRC reactor safety team

to maintain a '·big picture" of a transient-in- progress.

• Trip Buffer Expert System (TRIBES), developed by :\Iiddle South Ctilities for

18

trip analysis caused by the core protection calculator and the control element

assembly calculator . The calculators form a group of six digi tal computers

that monitor nuclear power plant parameters and control parameter posi tions.

These core protection systems initiate a trip to prevent violation of fuel design

limits. After a t rip , the analysis of the output of these calculato rs is required

before t he plant can be restar ted.

• An expert system, developed by Stone and Webster , used for analyzing the

limiting conditions of operation (LCO) and technical specificat io ns in a nuclear

power plant.

• PLEXSYS (plant expert system), for presenting piping and instrumentation

drawings , and electri cal on-line schematics. PLEXSYS is integrated with a

conventional program called T AGS (Tagout Administration and Generation

System) . This integrated system can recommend a "safety tagout boundary"

which allows the maintenance to be performed without danger of t ripping

the plant . TAGS was developed by Southern California Edison for their San

Onofre Nuclear Power Plant .

• GenAID , an on-line generator diagnostic system, to diagnose 15 conditions

with damage potential to the generator and to recommend corrective action

for each conilition. Develo pers were Texas Utili ties and Westinghouse.

• Generic Diagnostic System (GDS) software shell of Combust ion Engineering ,

which is used for developing expert system for power plant diagnostics.

• At Ohio State university. an exper t system to diagnose operational problems

19

in nuclear power plants even in the presence of some incorrect and / or conflict-

ing data is being developed. It uses classification techniques that can diagnose

a large percentage of anomalies found in most mechanical systems.

It is difficult to pinpoint the problem areas where the development of expert

systems have been mostly emphasized. The areas which the Department of En-

ergy (DOE) has supported through the Small Business Innovation Research (SBIR)

program are the following [9],

• "An expert system operator aid for nuclear power plant maneuvers," Applied

Research Associated , Inc.

• "An expert system decision aid for reactor trip reduction and post trip anal-

ysis ," Expert-EASE Systems, Inc.

• "Signal validation by combining model-based and evidential reasornng ap-

proaches,'' Expert-EASE Systems, Inc.

• "The design of a reliable fuzzy fault-tolerant automatic control," Technology

International, Inc.

• "A bayesian diagnostic system: an expert system to aid reactor operation,"

Pickard , Lowe and Garrick, Inc.

• "Residual heat removal advisor,'' Odetics, Inc.

Uhrig concludes his report by forecasting an inevitable demand for automation

of most functions of the nuclear power plants due to demands for increased safety

20

margins. lower environmental impacts , increased performance, and greater invest-

ment protection. Also, he recognizes the fact that AI and expert systems must

play a major role in assuring the regulators and the public of plants being properly

designed , built, operated, and maintained.

2 .2 R eview of Com puter Progra m s Used for Fault Tree Ana lys is

In this section. a brief description of some expert systems and conventional

programs that we re developed to perform or to assist in performing fault tree anal-

ysis is presented. Readers, not familiar wit h the method of fault tree analysis. may

\.Yish to refer to Chapter 3 for a better understanding of the programs described

next.

An expert system was developed by Forgner to assist in the construction of

fault trees [11:. This expert system can help a fault tree analyst to produce a high

quality fault tree by alleviating the fou r major difficulties associated with fault tree

construction. namely , 11::

• The drawing and input of the initial set of fault trees is time-consuming.

• As the risk analysis proceeds, more and more effort is required to update the

fault trees and to ascertain that they remain consistent.

• There is a problem of coordination when more than one person is inrnlved in

the drawing and updating of the fault trees .

• As fault trees for subsystems are assembled into an overall plant fault tree .

logical loops frequently occur. These loops must be broken before the trees

can be analyzed by conventional fault tree codes.

21

The use of work-s tations promotes the success of this exper t system in improving

conti nuity in the thought process of the fault tree de\·elopment. The key cont ribu-

tion of this expert sys tem is the ability to very effecti\'ely resolve logical loops in

the fault trees. Knowledge Engineering Environment (KEE) was the expert sys tem

shell used fo r developing t hi s expert system. KEE is a product of IntelliCorp.

Another exper t system in the area of PR.A. called EX.PRES , is used for the

automation of reliabili ty studies ·12: . Automation was fi rst applied to the con-

st ruction of t he fault t rees used to assess the reliability of static thermal hyd raulic

systems. The term "static thermal hydraulic system" suggests that t here are not

any changes in the system configuration du ring the accident. For example. valves

which a re open in itially, remain open . In the second phase of automation, a fault

tree fo r elect ri c power systems was built by trying to maintain the same approach

(knowledge and reasoning) as the approach used fo r the thermal hydraulic systems .

The knowledge representati on of EXPRESS is based on its two inference en-

gines. ALO GETTE and LRC developed by Direction des Etudes et Recherches at

EDF. ALO UETTE is a n infe rence engine which utilizes forward chaining with a

knowledge representation based on production rules (if.. .t hen ...) and facts which

a re represented as triplets (ob ject. relation, object). L RC is a language used to

represent knowledge in prepositional zero order logic. [n zero o rder logic, clauses

contain at most one conclusion. In EXPRESS. the backward chaining inference

capability of LRC is used for building a fault t ree start ing from undes irable events .

The methods implemented by EXPRESS are based on the basic observat ion

that failures relati ng to the components of a the rmal h,·draulic sntem can always be . . .
grouped under a few large categories, for example, fluid flow interruption (blockage) ,

22

and loss of fluid (external leak). Based on this observation, EXPRESS , in the first

phase, reduces t he number of components of t he system by grouping them into

larger component categories (macro-components), according to the consequences of

their failures (blockage or leakage) . In the second phase the failure consequences

are deduced for each component in terms of path losses, according to the macro-

component(s) to which the component studied belongs. The result of these two

phases is a rule based program in the LRC language. By adding a hand wri tten

rule base for undesirable events and boundary condi t ions, the LRC program can

then be used to build a fault tree for the system studied. EXPRESS has successfully

been used to study some static thermal hydraulic systems in the PAL uEL nuclear

power plant.

In summary, EXPRESS must have access to both backward and forward-

chaining inferen ce mechanisms. The former is required for cons t ructing fault trees

and the latter for resolving t hem. T his is typical of most exper t systems developed

for fault tree analysis , which unfortunately causes complexities.

In Vessely [l], conventional computer codes for performing fault tree analysis

are categorized into qualitative and quantitative analysis. Qualitati ve analysis in-

cludes computation of cutsets which only depends on the structure of the fault tree.

In contrast , probabilistic assessment is called the quant itative evaluation of the fault

tree . The division between qualitative and quantitati ve aspec ts developed naturally

because probabilistic an alysis often involves repeated evaluation of the t ree [l]. The

major difficulty with quali tati ve analys is. using computer codes. is computer storage

and time requiremen ts, even for analyses of medium size fault t rees. This problem

is partially handled by limiting the maximum number of components in a cutset.

23

For example. in \VASH-1-100 '2] only t he single and double cutsets were considered,

since cutsets containing more than two components become insignificant due to

thei r low probability of occurrence.

The Efficient Logic Reduction of Fault Trees EL RAFT , written in Fortran IV

for the CDC 6600, is capable of finding cutsets for up to six basic events for the

top event and other specified intermediate events. It uses the unique factorization

property of the natural numbers to find the cutsets of a fault tree. It assigns a unique

prime number to each basic event. A bottom-up algorithm is used to process the

tree. Cutsets, for the gates at successively higher levels. are represented by the

product of the numbers associated with thei r input events. The major drawback of

ELRAFT is that, for large trees, the product of the prime factors can soon exceed

the capacity of the machine.

Another code for finding cutsets is ALLCUTS 1' developed by the Atlantic

Richfield Company. It is written in Fortran IV and CO\lPASS (assembly language)

for t he CDC 6600 computer. ALLCGTS can compute the top event probability, sort

and print up to 1000 cutsets in descending order of probability, and select cutsets in

a specified probability range. It handles up to 175 basic events and '"125 gate events.

ALLCUTS is coupled with a graphics program which produces a plot of the fault

tree based on the fault tree input description . Also, t here is another program which

can be used to check the input and cross reference the gates and input e\·ents used

in ALLCt.;T . ALLCGTS uses a top-down algorithm. In a top-down algorithm,

cutsets are calculated by successive substitution into the gate equations beginning

with the top even t and working down the t ree until a ll gates have been replaced by

basic events. For an elaborate description of top-down and bottom-up algorithms

refer to Chapter YII of Vessely [l].

Programs which conduct a qualitative analysis are given the manually con-

structed fault tree as an input. The . uclear Technology Systems Division (NTSD)

of Westinghouse Electric Corporation [13], developed an interactive graphic fault

tree editor called GRAPHER which could convert fault tree data into the appro-

priate computer code input file. With the aid of a computer-aided design (CAD)

system, L TSO developed an approach for representing fluid systems within a CAD

database using associated software capable of converting the database information

into a fault tree model. This fault tree model is then supplied to the automated

fault tree (AFT) software, which is provided with Individual P lant Evaluation (IPE)

rules. The IPE consists of detailed fault tree guideline for PvVRs. By using these

guidelines and the fault tree model, AFT is then able to construct the fault tree.

The input for computer codes which perform quantitative evaluations of fault

trees consist of two parts: (1) cutsets , and (2) failure rates. Given the above in-

puts , several types of quantitative results may be computed including: numerical

probabilities (probabilities of system and component failures) , quantitative impor-

tance (quantitative ratings of contributions to the system failure), and sensitivity

evaluations (effects of changes in models and data, error bounding).

2 .3 E x p e rt Sys t em s D evelo p ed for Diagnos tics

In general , expert systems developed for diagnostics either use event-oriented,

or a function-oriented knowledge base, or both. The event-oriented knowledge base

is based on a fault model which requires some relationship between cause and symp-

tom. The function-oriented knowledge base includes an understanding of the func-

25

tion of each component in the system being diagnosed. In the event-oriented knowl-

edge base a component is considered either failed or operable. on t he other hand,

in the function-oriented knowledge base, the input and output parameters of each

component is studied to decide whether a component is functioning properly or not.

ln the following descriptions of the expert systems. some of the forms of these two

types of knowledge bases are illustrated.

A knowledge based system for plant diagnosis, has been deYeloped by Kiguchi

et al. 14. . This expert system basically performs three tasks, suspect pick up,

suspect discrimination and , if necessary, test generation and evaluation. First the

event-oriented knowledge. the causality relationships , is used to identify t he cause

or possible suspects. [f the cause is found then the expert system turns to the guid-

ance phase. Otherwise, it looks for function-oriented knowledge, wh ich describes

structure, behavior and status of the plant, to further discriminate between the

suspects. Thus, two types of knowledge are used . a causality descrip t ion which is

a cause and consequence relationship. and a system description which includes an

intended structure and expected behavior of the system. The former uses knowl-

edge of anomalous situations and thus is event-oriented , whereas. the lat te r uses

the knowledge of normal situations and is function-oriented. In comparison. the

former is more efficient because it is direct, but requires all anomalous si tuations to

be covered . The latter is less efficient because it is indirect. but it is more p owerful.

since it is much easier to describe how the system should wo rk.

The function-oriented knowledge is represented in the form of frame structures

corresponding to real plant schematics and event-oriented knowledge is embedded

around these frames. This expert system is written in LISP and Fortran, on an

26

.(improved" LISP interpreter which has a fast memory management capability. Fast

data transfer between two languages, LISP and Fortran , is required. since time is

an important factor in diagnos tics. \' umerical calculations are done by Fortran

programs and LISP is used for writing the programs which perform the sy mbolic

manipulations. The function and event-oriented knowledge bases require forward

and backward-chaining inference engines respectively which are provided by this

expert system.

Kiguchi et al. 14] describe an application study for diagnosis of a BWR by

numerical simulat ions and show that it is possible to diagnose multiple events in

the time sequence of their occurrence. Appropriate guidance can be given well

in advance due to the good predication capability. When something unexpected

happens that cannot be explained by its knowledge, the method tells what cannot

be explained, which would support human decision making.

A unique expert system which uses a model -based display. is being developed

by Beltracchi 15. . In this expert system a model-based display is identified. dis-

cussed. and illustrated . The model used in the display is based on the Rankine

Cycle, a heat engine cycle. The individual control panels within a control room

of a nuclear power plant contain meters. indicators , gauges. control stations. and

switches, etc . The processing o f the data of a heat engine cycle acquired from the

panel could be presented in a Rankine cycle. which is depicted in a temperature

versus entropy plot. In this plot the entropy values are not significant to the opera-

tor ; howeve r . the temperatures are useful. The data required for the Rankine cycles

of all anomalies possible, depicted on a temperature ve rs us entropy plot. could be

obtained by assimilating anomalies in a thermal hydrauli c system and storing them.

27

During operation, the anomaly is identified by matching the current Rankine cycle

with the already stored ones, using different pattern matching techniques. Beltrac-

chi claims that the Rankine cycle of each anomaly is unique , so that this method

is feasible for diagnostics. In developing ESAS, methods such as the one used by

Belt racchi could have been employed in order to decrease the number of suspects.

However, the primary objective was to not specialize the analysis to a system or

system type.

A part of the ESAS's knowledge base is t he semantic network representation

of the system being analyzed. The benefits of this type of knowledge representation

is demonstrated in the expert system developed by Kitamura et al. [16]. In this

knowledge representation the physical connections of components in a system are

known. Also as its knowledge base, this expert sys tem is provided with a list of

causes of all possible malfunctions (primal events). The failure diagnosis consis ts of

two stages: a signal processing stage for anomaly detection and an inference stage

or primal events identification. The signal processing stage analyzes the differences

between predicted and measured values of process signals to detect subtle changes

in the signals induced by an anomaly. After verifying the signals, the causes of an

anomaly are found by scanning through the knowledge database to determine the

reasonable hypothesis consistent with observations.

Kitamura et al. [16] state that this exhaustive search might seem tedious and

impractical, but that the search is performed quite rapidly, owing to the simple

structure of the semantic network. They note that the applicability of the semantic

network representation of plant architecture as a basic technique for failure diagnosis

was confirmed through simulation studies of a PWR reactor. This expert system

28

1s written in Prolog and implemented on an ACS-1000 computer ("'.'J"EC Co.) of

Tohoku University Computer Center and utilizes an upgraded Prolog Processor

named SHAPEuP.

The knowledge contained in PRA models can aid in emergen cy res ponse deci-

sion making, as noted by Dixon and Ferns [17] who state,

"PRA techniques are used by the nuclear industry to model the potential
response of a reactor subjected to unusual conditions. The knowledge
contained in these models can aid in emergency response decision mak-
ing."

PRA models can assist the operations personnel in both short and long term decision

making. Given the current plant conditions an on-line PRA could identify quickly

which cooling sources and flow paths are available or unavailable. This would permit

the oper ator to identify quickl y which resources to use based on the priority list. In

addition to the identification of current success paths, a PRA model can effectively

identify the weak links in those paths, thus predicting the occurrence of a possible

accident in the longer term [l 7].

Long term accident planning is useful for two main reasons [17]: (1) the current

status of a component may degrade over a period of t ime (e.g., if ventilation sys-

terns are currently failed, components of other systems will o\·erheat and fail over

time) and fo reseeing such failures without consult ing PRA models can be easily

overlooked , and (2) the identification of any single failure conditions supports com-

prehension of sudden changes in plant trends; namely, due to failure of a component

or components, all success paths may depend on a single component . Identifying

this component is crucial.

Dixon and Ferns [17] are developing an integrated set of computer programs

29

which utilizes AI techniques to develop, cultivate, and harvest information from

PRA models composed of interrelated fault trees, event t rees , response trees, and

other forms. The integrated system is called FORESTER. Existing components

of FORESTER include the Integrated Fault / event TRee Engineering (IFTREE),

the SeQUence Il\IPortance calculator (S QUL\IP) and System Un-.\Iaintainability

Assessment Code (SUYIAC). IFTREE supports the graphical construction and as-

sessment of fault trees and event trees cou pled to fault trees. SQUIYIP is a spe-

cialized code partially integrated with IFTREE. SQUIMP supports development

and assessment of large event tree networks. SUMAC is a post processor which ac-

cepts cutsets and event probability and repair time distributions as input. SC'.\IAC

then produces event, cutset, and un-maintainabilities and un-maintainabili ty impor-

tances for indicated repair periods. Un-maintainability is defined as the probability

that the system, subsystem, or component of interest cannot be repaired in time T

given that it is currently failed. The most recent de velopment in FORESTER, is

a specialized analysis capability being integrated into IFTREE called "subset as-

sessment". A subset assessment of a model involves the specification of the events

of interest and any cutoff parameters. The assessment results obtained from the

model are those which meet the cutoff criteria and involve one or more of the events

of interest . The cutoff criterion is basically a set ting of a minimum probability for

the event or events which could occur. This capabili ty locates specialized groups of

cutsets in an efficient and potentially real-time manner. Acco rding to Dixon and

Ferns [17],

"There are many applications for subset assessment, including identifica-
tion of risk associated with localized fires , terrorist attacks, maintenance
errors, and any other problem involving a small group of components

30

in a large, complex faci li ty. I n the area o f emergency response, sub-
set assessment can identi fy the particular failure modes associated with
equipment which is confirmed unavailable. It can a lso support (what if)
activities."

ES.AS, even tho ugh the cutsets are obtajned using a different method, uses a method

siwlar to su bset assessment in providing the user a .. ,,,hat if' reso urce.

31

3 A DESCRIPTION OF FAU LT TREE ANALYSIS

As \Vas mentioned earlier, ESAS calculates cutsets without performing the fault

tree analysis. However, for the purpose of defining some terms used for describing

ESAS's method of finding cutsets, a brief description of faul t tree analysis 1s re-

quired. The description of fault tree analysis given here is taken from the Fault

Tree Handbook [l ,. The Fault Tree Handbook was written to ser ve as a text for

the system safety and reliability course, given to over 200 nuclear regulatory com-

mission personal and contractors and to make available to others a set of otherwise

undocumented material on fault tree const ruction and evaluation .

3.1 Construction of a Fa ult Tree

In a fault t ree analysis, one must properly define the system, decide which

component failure causes an accident in the system (select the top event), form

the fault tree for the top event selected, and resolve the fault tree for finding the

cutsets corresponding to the chosen top event. Cutsets of a system are one o r a

combination of components whose failure results in the failure of the system.

To define a system, first the purpose of the sys tem analys is must be deter-

mined. For example, the analyses of whether a system fails in a hazardous way,

or whether the system will prove more costly than originally anticipated, require

32

different system descriptions. For the purpose of fault tree analysis , a system is

defined as, "a deterministic entity comprising an interacting collection of discrete

elements [l]." The term deterministic suggests that the system is identifiable. For

example, the solar system is an identifiable system, but the entire universe is not.

Furthermore, to define the interacting collection of discrete elements of a system

properly, one must decide upon the boundary and resolution of the system. In

deciding on boundaries of a system, one determines the comprehensiveness of the

fault tree analysis, whereas the determination of resolution limits the detail of the

analysis. Also, the interaction of elements in the systems of a nuclear power plants

usually consists of a fl.ow of electrical current. steam water , etc. through all the

components of a system. For the sake of simplicity, we will refer to the term . "ho-

mogeneous fl.ow" for describing a system with is a A.ow of only one type through the

components of a system.

A fault tree depicts the logical interrelationships of basic events that lead to the

undesired event , which is the top event of the fault tree. Table IV-1 in \'essely)]

contains the main components of a fault tree. Primary events are those events \••hich

are chosen not to be developed any further in a fault tree. Four types of primary

events are , (1) basic events, (2) undeveloped events , (3) conditional events, and(-!)

external events. An intermediate event is a fault event which occurs because one or

more primary or intermediate events cause it; in the representation , it propagates

through the logic gates . In other \\·ords, a combination of intermediate events ,

combined and propagated by the usage of gates , result in another intermediate

event or the top event. The logical relationship between the input events of a gate

is decided by the gate type. Namely, an occurrence of the output event of an AND-

33

gate, requires occurrence of all its input events, whereas, in the case of an OR-gate

the occurrence of the output event depends on the occurrence of any of the input

events.

To better understand what primary and intermediate events are, let us distin-

guish between faults and failures. Faults and failures of components have different

meanings in fault tree analysis . A failure is used when a component fails completely,

whereas, a fault is used when a component does not function properly. Thus, all

failures are faults but not all faults are failures. In forming a fault tree, one chooses

a top event, and determines the events leading to it through a logic gate. The

faults which lead to the top event become top events themselves. This procedure

is repeated until the top event becomes the fault corresponding to the failure of a

component. The failure of a component is referred to as a primary event. There-

fore, the top event and all intermediate events are faults and the primary events

are failures . It must be noted that a component can fail in different ways . T hese

are called failure modes. The rules for constructing fault trees are '. l]:

• Write the statements that are entered in the event boxes as faults ; state

precisely what that fault is and when it occurs.

• If this component fault consist of a component failure, classify the event as a

"state-of-component". otherwise, as "state-of-system".

• If "state-of-component", is the event add an OR-gate below the event. If

"state-of-system" is the fault event , it may require a n OR-gate, AND-gate , or

no gate at all.

• If the normal functioning of a component propagates a fault sequence, then

3-l

it is assumed that the component functions normally (no miracle rule) .

• All inputs to a par ticular gate should be completely defined before further

analysis of any one of them is under undertaken.

• Gate inputs should be properly defined fault events. amely, gates should

not be connected with other gates directly. and similarly events should not be

connected with other events directly.

In summary, in a fault tree the events are termed " faults" if they are initiated

by other events and are termed .. failures"' if they are the failure of a component.

The gate output is the .. higher·· fault event under consideration and the gate inputs

are the more basic "10\ver·' fault or failure events. o, in constructing a fault tree,

one p roceeds from "higher" faul ts to the more basic or "lower" faults.

3 .2 Evaluat ion of a Fault Tree

For resolving fault trees, it is assumed that the reader has a background in

Boolean algebra. Readers wishing more information on Boolean algebra can refer

to \'essely): or other common sources. Because gates relate events in exactly the

same way as the Boolean operations. there is a one-to-one correspondence between

the Boolean algebra representation and the fault tree rep resentation. This process

results in a Boolean expression. To find the list of cutsets, one could simplify

this expression into sets of primary events related by OR-operators, and primary

events within the sets a re related by ANO-operato rs. The simplification is done by

following the rules of Boolean algebra depicted in Table \'11-2 of Vessely '.11•

35

In Figure 3.1 , a typical pumping system is presented. The following construc-

tion and evaluation of t he fault t ree for this system, is ob tained from Vessely [l].

The fault t ree constructed for this system is presented in F igure 3.2. The sym-

bols for t he primary events of this system are shown in Figure 3.2. The Boolean

expression derived from this fault tree is,

T = (.-\ - B --- C) . (C - A . B)

(Note: ANDs are represented by(.) and ORs by (..L))

By following the Boolean algebra rules , one could simplify this expression into

a list of cutsets, as is suggested in the following steps .

T = (A - B - C) .(C ..L .-\.B)
= A.C + A.A.B - B. C+ B.A.B + C .C + C.A .B
= A.C + A.B + B. C - A.B +- C - .-\.B.C
= C ..L (A .B)

Note that (C) and (A . B) are the cutsets. The cu tsets found imply, in order to

not have any flow to the reactor from the tank, either valve C or pumps A and B

must fail.

In a PRA study of a system , one is interested in the actual probability of

occurrence of a top event. After obtaining the cutsets , the failure probability of

the system or probability of occurrence of the top event, could be calculated by

simply replacing A~Ds and ORs with multiplication and addition respectively and

assigning a failure probabili ty to each primary event . For example, assuming that

t he probability of the failure of the tank and pump are 0.0001 and 0.02 respectively,

then the failure probability of the pumping system depicted in Figure 3. 1 is 0.0005.

36

Pu,.,p a

Purip b

Cootan t taN.c

Figure 3.1: Configuration of a pumping system

no Flow to
the core

Fo·lur-e of
punps o ond b

Figure 3.2: The fault tree for the pumprng system

37

4 BASICS OF PROLOG

:'Prolog (P rogramming in Logic) is a computer programming language
that is used for solving problems t hat involve objects and relationships
between objects" : 18 ~ .

Prolog is based on Horn clauses. Horn clauses are developed to convey logic-

based ideas in a written form. For many ap plications of logic, it is sufficient to

restrict t he form of clauses to those containing at most one conclusion. Clauses

containing a t most one conclusion are called Horn clauses, because they were fi rst

investigated by logician Alfred Horn [18]. Horn clauses are a subset of a formal

system called predicate logic . Horn clauses a re said to be of order zero, since at

most one conclusion is allowed in them [19]. The reader can refer to Stanat and

:VIcAllister [20], for more on predicate logic and Horn clauses. It can be shown

t hat any problem in logic can be expressed in a Horn clause form or as stated by

Kowalski [19],

"The majority of formalisms for computer programming bear greater
resemblance to Horn clauses than they do to " non-Horn" clauses. In
addition most of the models of problems which have been developed in
a r tificial intelligence can be regarded as models for problems expressed
by means of Horn clauses .. ,

In Section 4.1 , knowledge representation (facts and rules) in Prolog, which are

represented in the form of Horn clauses is descri bed. Iterati ve techniques in P rolog

3

are discussed in Section -L2. Turbo Prolog 21 is the software used to deYelop E AS.

This software has some added features which are described in Section 4.3. There

are many topics about P rolog which could be covered; but unfortunately the scope

of thi s paper does not allow it. However, the materi al given here contains enough

background information to help the reader understand the development of ESAS.

T he reader can also refer to Schildt [-1], Shafer 221, :-. Ia rcus '.23:, :-.l alpas '24], and

Clockst in and l\Iellish)] for a more elaborate discussion on P rolog. The source for

the the following is the Turbo Prolog 2.0 l;se r 's Guide ·21:. Before beginning the

d iscuss ion on P rolog it should be noted that example programs in Prolog ap pear in

italics.

4.1 Knowledge R epresentation in Prolog

Knowledge re presentat ion in P rolog consists of declaring some facts about ob-

jects and their relationships , and defining some rules about objects and thei r rela-

tionships. These facts and rules a re in the form of Horn clauses.

Facts consist of a predicate and its a rguments. A predicate could be an at-

tribute of or a relationship bet,Yeen arguments. For example. the following predi-

cates are att ributes of their arguments:

English
Gold is valuable.
A fast car is fun.
Valve a is open.

Prolog
valuable{ gold).
fun(fastcar).
open(valvea).

In the valuab le(gold}, valuab le is t he predicate and gold is its argument. Examples

of some Prolog predicates which describe relationships of their arguments are illus-

t rated:

39

1
English Prolog

Bill likes Jane. likes (bill,jane) .
Bill likes Ann. likes (bill,ann).
Bill likes John. lik es(bill,john).
Tom is Jack 's brother. I brother(tom,jack).

I Pipe a is connected to pump b. I connected(pipea,pumpb) .

Prolog provides a concise notation to combine several objects into one. In the

example above the predicates likes, which are in the form of Prolog facts, can be

written in the form, like(bill,fjane, ann,johnj). Square brackets are used to represent

a list. Each item in the list is known as an element. The firs t element of the list is

called the head and the tail is a list comprising all the subsequent elements.

Rules are the other form of knowledge representation. In the above examples,

assertion of the facts is unconditional. Rules enable predicates to be conditional by

usage of an "if" clause. For example, the Prolog rule for "Bill likes wine if the wine

is white" is, likes (bi ll.wine) if wine(white). In other words, a rule is a conclusion

that is known to be true if one or more other conclusions or facts are found to be

true.

A brief discussion of Prolog 's syntax will lead to a formal procedure for <level-

oping facts and rules in Prolog. All predicates and their arguments are a continuous

string of characters. Also , there are no size limitations on the length of predicates or

arguments. Prolog was developed to easily convert logic-based ideas into a written

form. The procedure commonly used in forming facts and rules is, (1) eliminate all

unnecessary words from sentences, (2) transform the sentence, placing the relation-

ship or attribute first, and (3) group the objects after the relationship .

Rules and facts can be generalized by using variables. They are represented by

arguments which have an uppercase letter as their first character. For example,

valuable(gold) .
valuable(diamond).

40

costsalot(Someth ing) if valuable(Something)

implies that in order to prove that something costs a lot , first prove that it is

valuable. Prolog operates by t rying to match all predicates with a given predicate

(the goal). goal: cos tsalot(What).
Prolog 's response: What = gold.

What = diamond.
Tru e.

To prove costsalot{ What) is true, first t he valuable(What) has to be proven to be

true. In other words , valuable(What) becomes the new goal. In the a t tempt to

match the variable What with the argument found in each predicate valuable, P rolog

will search from the top of the program to the bottom. When it finds a predicate

that matches the goal, it binds the value to the variable so that the goal and the

predicate are identical; the goal is said to unify with the predicate. This matching

operation is called unification. After a unification, Prolog continues to search for

more unifications, until there are no predicates to match, this is called backtracking.

As can be seen. Prolog found two values for the variable What, since two valuable

predicates were declared as facts. The relentless search for all solutions in Prolog is

due to its backtracking capability.

Now that variables and unification in Prolog have been introduced, we will

re-examine lists to review in more detail the terms head and tail of a list. Instead

of separating elements with commas. one can separate the head and tail with a (I).

For example, (a,b .cj is equivalent to (a (b,c}j. T he following examples demonstrate

how Prolog performs list matching (list unification),

List 1
fX, 1·,zj
fear/
fl ,2,:J,4/
fa, b,c}

List 2
fjane,ann,john/
fX Y/
fX 1·1

f Importantl-J

41

Unification of lists 1 and 2
X = jane, }' = ann, Z = john
X = car, 1· = f/
x = 1, r = f2,3,f
Important = a

To conclude the discussion on knowledge representation, we must note that for

proving rules, the value of some arguments of a predicate is not needed. Prolog

allows this by use of the character (_) . Suppose in the predicate letters(f a,b,c/) , we

are only interested in the head of the list. T his is performed by attempting to unify

letters(flmportant l-JJ with letters(f a,b.c/). Prolog replies with Important = a and

assumes that any element in the tail satisfies this unification.

4.2 Ite rative Techniques in Prolog

:. lost conven tional programrrung languages allow repet ition by using FOR,

·wHILE , and REPEAT statements . Prolog does not contain iteration capabilit ies

in these conventional forms . T his discourages some P ascal: C, Basic and Fortran

programmers from usi ng Prolog. Even though there is not a direct way of express-

ing iteration in Prolog, the power of this language is not restri cted. Prolog has two

kinds of repeti tion tools: backtracking, in which it searches for multiple solu tions

in a single query, and recursion , in which a procedure calls itself. Recursion is of-

ten said to be a "memory eater". P rolog's solution to this problem is to provide

a special type of recursion called tail recursion which is compiled into an iterative

loop in machine language. This means that although the program logic is exp ressed

recursively, the complied code is as efficient as it would be in Pascal or Basic. It

has been stated in Reference [21].

42

" rec ursion is, in most cases, clearer. more logical, and less error-prone
than the loops that conYentional languages use.""

In what fo llows, some techniques fo r conducting repetitive processes by back-

t racking, recursion , and tail recursion are described.

4. 2 .1 B acktracking

As was mentioned, a procedure backtracks when it looks for another solution

to a goal that has already been sat isfied. One can force backt racking by using the

built-in predicate fai l, which causes the rules containing it to always fail. It seems,

in any logic problem, the objecti,·e is always to satisfy premises in order to be able

to reach a conclusion . vVhy have rules which always fail ? The following example

explains the reason for this. Suppose facts are declared:

comput er language(basic) .
comput erlanguage(pascal) .
comput erlanguage(prolog) .
comput erlanguage{lisp) .
comput erlanguage(fortran) .

The rule printlanguages utilizes the p redicate fa il to create a loop which prints all

languages declared as facts a bove.

printlanguages if
computer language{X) and
writ e(.\) and
fail.

printlanguages.

If the goal printlanguages is given to Prolog, it first looks for a solution for comput-

erlanguage{X) . in other words , it tries to find a value for X by unifying the predicate

comput erlanguage with the availab le facts, then it writes t he value for X and fails.

43

Since write(X) does not have any other solutions. it backtracks to computerlan-

guag e(X) . This is repeated five times since fi\'e computer languages are declared as

facts. After all the al ternati ves fo r computerlanguage(X) have been explored. t he

first printlanguages will fail. At this time prolog tries again and finds the second

clause which is u nconditionally true. In summary, the role of fa il in t his procedure

is to tell Prolog to assume that a solution to the original goal has not been reached ,

and thus force it to backtrack and look for an alternative.

Another built -in predicate is cut , which has a funct ion opposite of fa il. T his

predicate is used extensively in recursive procedure. Whe re fail is used to promote

backtracking, cut is used to stop it. Its value is always true, so it has no effect on

the logic of the procedure. It acts like a diode in an electrical circuit . It allows flow

of logic from top to bottom, however , if there is a predicate in a clause which is

not t rue, it stops backtracking from bottom to top. 'When it is a waste of t ime and

storage to look fo r alternative solutions or when the logic of the program requires

the prevention of the considerat ion of alternative sub-goals . cut is used. For example

in the rule, rule if a and b and cut and c, we are tell ing Prolog t hat we are satisfied

with the solu t ion it finds to the sub-goals a and b. Although Prolog is able to fi nd

multi ple solutions to the call c through backtracking, it is not allowed to backtrack

across the cut to find an alternative solution to the call s a and b. Also, it is not

allowed to backtrack to another clause that defines the predicate rule.

4. 2 .2 R ecu rs io n

The other way of expressing repet it ion is through recursion. This procedure

lends itself to solving problems where a more complicated case of the input argu-

-15

The same procedure is followed until the problem is reduced to fact oria l{I ,Fact l).

Now the unification with the initial condition is successful and the variable Factl

gets the value of 1. The last clause ·which multiplies the Factl and 2 is reached which

returns a value for Fact2. This is continued until a value for Fact5 is obtained and

therefore Answer is unified with a value. This procedure is possible because Prolog

allocates memory to each argument of factorial in all intermediate steps.

As illustrated above, the logic of recursion is easy to follow if one is not con-

cerned with how the computer works. Prolog is so different from other languages

that ignorance of what computers actually do to solve a problem is often an asset

to the Prolog programmer. There is one drawback in using recursion: it is very

memory intensive. The use of tail recursion eliminates this memory restriction.

In the example given above , the reason P rolog allocates memory to arguments

of factorial is to be able to conduct the last multiplication clause. If somehow the

recursive call was made at the end (tail) of the procedure , there would be no reason

for keeping track of intermediate steps. In tail recursion the procedure calls itself at

its last step. In other words, the call is made in the very last sub-goal of the clause,

and there are no backtracking points earlier in the clause. Following is a procedure

for factorial, written using tail recursion.

factorial{N,FactN) if
factorialaux(N,FactN, 1, 1) .

I
factorialaux(.1V,Fact ,l,P) if

I < = N and N ewP = P x I and
J N ew! = I ...J.. 1 and cut and

I
factorialaux (N,FactN,.VewI.NewP) .

factorialaux (N ,FactN,1,FactN) if
I > .V.

Suppose t he goal, fa ctorial(5, A nswer) is given. In order to satisfy factorial(5, Answer),

first Prolog must satisfy factorialaux {S, FactN,1,1 }. The values for the factorial of I

is P when the rule factorialaux is called fo r the first time. In other words, facto rial

of I is P, is the init ial condition. In this case I and P are one. Then the call to

factori alaux fo r the first t ime first calculates the factorial of one N ew P = P * I ,

increments I by one, and finally calls itself. The second time factorialaux is called

t he factori al of two is calculated. This process is repeated until I is incremented to

6. When the new goal becomes fact orialaux{S, Fact ,6,120}, I which is six becomes

larger than N which is five and the fi r st clause for factorialaux fails. However, the

second factorialaux {S.Fa cLV,6, 120) succeeds and FactN gets the value of 12 0. The

use of cut insures no backtracking after the sub-goal I < = .V fails thus the fi rst

clause fo r factorialaux fails. The advantage of this factorial is that the rule calls

itself as its las t sub-goal , therefore , there is not a need to store the information

obtained in the intermediate step of the recursion.

4.3 Turbo Pro log

Prolog software used to develop ESAS is Turbo P rolog 2.0 developed by Borland

International, Inc. :21]. 1\Iinimum hard ware requirements for this software a re:

• IB:\I PC, X.T, AT. P S 2 or true compatible

• 284k RA [internal memory minimum, though 6-!0k is recommended

• P C-DO or :\IS-DO operating systems. \·ersion 2.0 or later

T his software has some added features which make it more attractive than

many other expert system tools. ome of these features used in developing ES A

are:

47

• External database system, with over 30 built-in predicates for developing and

maintaining large databases

• Window management tools, with several built-in predicates which create and

manage vi r tual or normal windows

• High resolution video support

• Turbo linker which makes module programming possible

• Turbo Prolog Toolbox which is a collection of already written modules in

Prolog and C language used fo r some common tasks

• Ylost importantly low cost

..J:8

5 DEVELOPMEN T OF ES A S

The acquisition and representation of knowledge and methods used for con-

structing the rules ESAS uses to perform its tasks are discussed in this chapter.

Tasks ESAS is capable of accomplishing are as follows. Given the input and output

components, ESAS is capable of finding paths through a system. In a search for

paths, components could be specified as failed and thus bypassed in the search. This

feature of ESAS enables it to accomplish its most important task. which is finding

the cutsets of a system. As previously mentioned, cutsets are a combination of

components whose failure causes the failure of the system. Given the failure rate of

each component and knowing the cutsets, ESAS is then able to calculate the failure

probability of the system. Also, by use of the cutsets found and stored. ESAS is

able to diagnose a system by forming a failure menu tree. The failure menu tree

contains the components whose failure causes the accident depicted in the root of

the tree. Finally, as part of system diagnostics, "what if" scenarios are provided,

where the user can ask whether there is a path through the system if components

or a group of components have failed given the input and output components.

The acquisition and representation of the information about a system stored

as the database is described in the Section 5.1. Facts used and rules developed

for finding paths through a system, finding cutsets , and diagnosing a system are

49

described in Sections 5.2, 5.3, and 5.4, respectively. Finally, m Section 5.5, the

interactive features of ESAS with the user are discussed.

5 .1 Acquisition and R epresentation of Information

The knowledge acquired by ESAS for performing its tasks is encoded into

Prolog predicates in the form of facts. Knowledge of programming in Prolog is not

required for using ESAS. Information is acquired in a user friendly fashion and the

database is developed and saved in the data files. Editing the database stored in t he

data files is also made available to the user by ESAS. It is strongly recommended

t hat the user avoid editing the database directly and only edit the database by using

ESAS, since files storing the database can easily become invalid if not manipulated

by ESAS . .A description of the information acquired and its representation, encoding

facts into Prolog predicates, are discussed in this section.

5.1.1 S emantic Network R epresentation of a System

The major component of the knowledge acquired by ESAS 1s the semantic

network representation of a system. In such a network objects are represented as

nodes and the relation between them as links. A semantic network is in the form

of a tree or a graph . Trees are formed from nodes connected to one another in a

fashion such that the branches cannot be connected, whereas in graphs any node

can be connected to any other nodes or to itself. Graphs and trees can be either

directed or non-directed. In the directed case, a link specifies the direction of the

relationship between the nodes it connects, whereas in the non-directed graph or

tree a link relates nodes in both possible directions.

50

In general, systems in a nuclear power plant could be represented in a directed

graph fo rm. where nodes are components and links are the physical connections

between the components where there is a flow of some type. For example. in a

pumping system a pump a nd a pipe could be specified as nodes related by a flow

of coolant in the direction. pump to pipe. Therefore. E AS when presented the

semantic network representation of a system, makes two assumption. It assumes.

all the links of the semantic network representation of a system constitute a flow

of some type. For example. in a thermal hydraulic system the fl.ow of steam water

and in an electr ical system a flow of electrical cu rrent must be present throughout

all the links of the semantic network representation. Also , it assumes t hat one and

only one type of flow is allowed in a system.

However, by making these two assumptions. components such as sensors and

relays, which are not linked to the system by a ·'flow connection 1
•• can not be

included in the semantic network representation of a system. To incorporate the

components which can not be linked to t he system by the fl.ow connection, ··non-

flow connection" links a re introduced. Even though, components linked by non-flow

connections do not directly influence a flow path through a system. they manipulate

other components, linked by flow connect ions, which do influence the flow path of

a system. In ot her words , it is crucial to included the components linked to the

system with non-flow connection. since they play an important role in the function

of a system. The generic term ·activator·' is used for components which are linked

by non-flow connections in this thesis and in developing ESA.S.

The following examples will hopefully clarify the concept of using the non-flow

con nect ions. If a pump is funct ioning properly and is activated by a sensor, there

51

could not be any flow t hrough the pump if the sensor has failed. ln other words.

there is a need for non-flow connection links for properly representing systems con-

taining a sensor. Another example for activator components is the relays which are

used in electrical systems. The funct ion of relays , which is changing the operational

mode of the switches in the ystem. can be simulated by use of non-flow connection

links. We will address the mode of operation of switches and vah·es in ection 5.1.2.

For properly representing a system in a semantic network form. some consid-

e rations must be made on deciding on the boundaries a nd limit of resolution of

the system. Inside the boundaries of the system a ll components must be linked

to the system by either flow or non-flow connections. l\loreover , as was previously

mentioned, flow of one and only one type through all components linked by flow

connections must exist. Systems in nuclear power plants .. vhich have more than one

type of flow can be represented by deciding on the boundaries of sub-systems where

there is one and only one type of flow. For example, a system which is a combi-

nation of a thermal hydraulic and an electric systems (i.e., the semantic network

representation requires specifying links describing the flo\v of both (steam,water)

and electrical current), could be presented as two separate sub-systems and ana-

lyzed by simply deciding on the boundaries of the two sub-systems. For finding the

cutset of a system, sometimes there is a need for including an output node which

physically does not represent a component in a system. The rules for scenarios

where such an output node is required are discussed in the Section 5.3 .

Components in a system are represented by nodes. C sually. a component

of a system itself consists of sub-components which in turn consist of sub-parts.

Therefore. nodes in a semantic network actually represent macro-components which

52

consist of components which in tu rn consist of sub-compo nents. In an analysis of

a system, by deciding on the limit o f resolution , the size of the macro-components

are determined. If t he limit of resolution is high, the analysis can be done with

high specificity; however , the analysis is more time consuming and tedio us. On

the ot her hand, if t he limit of resolution is low , the analysis can be done faster

but less accurately. By studying the importance of t he components in a system.

one can compromise between the specificity of the analysis and t he time it takes to

perform an analysis. For example, in a t hermal hydraulic system, o ne can reduce

the number of components in a sys tem by excluding the pipes from the semantic

network representation or by considering them as a par t of the components whom

are connected to. Even though this measure is justifiable, due to the low failure

probability of pipes relative to ot her components, t he analysis can not account for

the accidents caused by failure of pipes. Therefore. in deciding o n the limit of

resolution , o ne must consider t he desired specificity o f the analysis of the system .

Readers wishing fo r a more elaborate description on the limit of resolution can refer

to \'essely [l].

In summary, to represent a semantic networ k representation of a system, one

must decide on the boundaries of the system. and this decision must be made con-

sidering that flow of one and only one type must exist t hrough all components linked

by flow connection. Also. those components in t he system which a re not linked to

the system by a flow can be linked to the system with the non-flow connections.

Finally, considering the specifici ty of the analysis and time required to conduct an

analysis, one must decide on the limit of resolution. The resulting semantic net-

work representation o f a sys tem then sho uld be a deterministic entity compnsmg

53

an interacting collection of discrete elements : 1].

5.1.2 Othe r System Informat io n

Other than the semant ic net work representation of the system, additional in-

fo rmation acquired by ESA includes the mode of operat ion of the .. gate type'·

components (e.g. , valves and switches), t he failure modes and failu re rates, and the

advisory text for diagnostic purposes.

In a semanti c network representa ti on of a system, a component could either

fail o r succeed. This implies that in a search for paths they are a,·oided if failed or

passed if not failed . However, components such as switches in electrical sys tems a nd

valves in the rmal hydraulic systems, if failed could still allow flow. For example, if

a failed switch is closed prior to the system operation , it would st ill a llow flow of

elect ri cal current. since it is "failed-closed"'. Therefore. in order to properly take

the failure of gate type components into account, ES AS acquires the two modes for

each gate type component. A mode spec ifies whether or not flow is allowed through

a gate type component. For example, specifying an open mode o f a switch implies

that the flow is not allowed. whereas specifying a closed mode implies that t he flow

is allowed through the switch.

Two modes are acqui red for each gate type component, initial and operat ional .

The ini t ial and operational mode specify t he mode of t he gate type component prior

to and during the operat ion of the system respectively. The rule used fo r deciding

whi ch specified mode to use is: if the gate type component is assumed failed then

the initial mode is used else the o perat ional mode shall be used where each mode

can be specified either allowing flow or not allowing flow. In the case where the

54

modes of operation of the switches are alte red by relays. the initial and operational

modes correspond to the mode enforced by relays when they are energized and de-

energized , are used, respectively. For example. in the case \\'here a manual switch

is closed to begin the operation of the system it is connected to, the initial and

operational mode of the switch can be specified as open and closed. respectively.

The semantic network rep resentation and the gate type component specifica-

tions are used for the analyses, including finding paths. searching for cutsets, and

diagnostics. Therefore, it is crucial to provide them to ESAS for it to be able to

perform any tasks. The failure modes, and standby and operational failure rates .

described next, are only used for calculating the failure probabili ty of the system;

thus if not presented to ESA . the analyses, finding paths and cutsets and perform-

ing diagnostics can still be conducted.

The standby and operational failure rates are defined as rates at which a compo-

nent can fail when the system is not operating and operating respectively) j. These

rates are used for calculating the failure probability of a component. The method

used for calculating the failure probability of a system is described in Section 5.3.

In Chapter 3 , we defined t he failure modes of a component. Failure modes

are the different ways a component can fail. For each failure mode, an operational

fai lure probability rate must be specified. A table containing different failure modes

and their corresponding operational failure rates for most common components in

a nuclear power plant is provided to the user by ESAS. The data for this table

are obtained from \VASH-1-100 2·. Data required to calculate the failure rate of a

system for components not included in this table could be entered separately.

The information described to this point is acquired from the user and stored in

55

the database. After finding the cutsets. ES...\ stores them in the form of facts for

diagnosing the system and calculating the probability of occurrence of an accident

as part of the system database. Also, for diagnostic purposes. a text explaining the

corrective actions of each component can be entered, and is stored in the database.

ESAS then provides the text entered fo r a component when that component is found

to be the cause of an accident in the diagnostic mode. Turbo Prolog's text editor

is used for entering the advisory text.

5.1.3 R e prese ntat io n o f Facts in ESAS

The predicates used for storing the information ESAS acquires. mentioned in

the pre\rious two sections. are listed below.

component(component name,component lyp e, list of failure modes,
List of operating failure probability rat es,
standby failure probability rat e, component number)

connected(input component, output component)
activator(component name, list of components whom the activator

manipulates , input component for the activator, output
component for the activator}

gate(component name, initial mode, operational mode)
advisory(component name, failure mode, text)
cuts et(type, List of output components , list of input components ,

cuts et)
found(type, list of output components. list of input components,

maximum number of components in a cuts et search for)

For all of the components in a system, the predicate component is stored in

the knowledge base. The first argument of the predicate component , component

name is a string used as the key for searching the database. In order to be able to

properly search the database, in acquiring the component names. ES...\ does not

allow multiple uses of the same name (i .e ., each name must be unique). Also, there

56

is a limit on the number of characters of the argument component name, namely

20. to reduce the database search time.

The argument, component type could be used to describe the component type

or other informat ion. This argument is also specified as a st ring; however, the

limit on the number of bytes this string could haYe is 6-!K . which is the maximum

allowable size of a string type arguments specified by the Turbo Prolog compiler

[21]. The argument , fai lure modes is a list of st rings which contains the failure

modes of the component. For each failure mode, the corresponding operational

failure rates are stored in the argument operat ional failure probability ra te, specified

as a list of real numbers. The standby failure probability rate is then used to store

the standby failure probability rate, declared as a real number. The argument

component number is an integer which is used fo r sorting the component prec:licates

in the database.

The predicate connected is used to represent the fl ow connect ion links. Its first

argument is the component name of the input of the link and the second argument

the output. The prec:licate activator is used for specifying components which are

linked to the system by non-flow con nections. The third and four th arguments

of this predicate are used for representing relays and they contain the name of

components which are the power source and the ground for the relay. respectively.

Gate type components a re represented by the prec:licate gat e which stores the initial

and operational mode as its arguments. The text used after diagnosing a system

for advisory purposes is stored in the predicate advisory. This text is sto red as the

third argument of the prec:licate adi·isory. which is declared as string and thus has

a maximum size limit of 64K bytes.

57

The cutsets found are sto red in the predicate cu ts et. The predicate found

is stored in the database for informing ESAS that a search for cutsets has been

performed and therefo re pre\'enting a redundant search even if no cutsets were found

in t he search . T he information contained in the arguments of these components is

described in Section 5.3.

The pumping system depicted in Figure 5.1 is identical to the one in Figure

3.1: however, to demonstrate the representation of an activator and a gate type

component, components s ensor which activates pump a and pump band valve which

is connected to t he outpu t o f pump a and pump band the input of the core, specified

to be closed in the initial mode and open in operational mode, are included. In

presenting the information for the pumping system, the failure rates were not given ,

thus , the value of zero is assigned by ESAS. The predicates developed for storing the

information entered for the pumping system depicted in Figure 5 .1 are presented

belo•v .

component(tank,storage tank. flank is empty,'.[O '. 0 .1)
component(pump a,pump ,fpump failure.failure du e t o no power ',{0,0 1, 0.2)
component(pump b,pump,/pump failure,failure du e to no power/ ,{0,0 1,0,J)
component(valve, manual valve ,[Jailed clos edj ,f 0 J, 0, 4)
component(output, core ,{1,f I, 0, 5)
component(sensor,low leve l sensor,/sensor failure ',/ 0 /,0,6)
connected(tank,pump a)
connec t ed(tank.pump b)
connec t ed(pump a. valve)
connec t ed(pump b, valve)
connec l ed(valve, output)
activat or(sensor, fpump a,pump bj ,non e, none}
gate(valve , clos ed, open)

Pu"p o

Pvr-ip b

Coolof\t tonl-c

58

P'-"'D"'O
sy s t•,..
srnso,..

Corr

Figure 5.1: The configuration of the modified pumping system

5.2 R ules for Find ing Pnt hs Throug h a System

As was mentioned in the previous section, we represented the semantic network

of a system in the form of a directed graph. In defining a graph, branches could

be connected. This suggests that there is a possibility of the existence of a loop in

a graph. A loop is <le fined as a path in which a no de is visited more than once.

Therefore, tracing a graph as it is represented will not be successful in the cases

where a loop exists. Howeve r, in trees, no loops are atlowed by definitio n. srnce

branches cannot be connected. Thus, by transforming a graph representation into

a tree representation of a system, the search for a path could be done without

the fear o f encountering loops. This transformation is demonstrated in Figure .5.2.

Kowalski [19], could be referred to for the topic of graph transformati on .

There arc several techniques used for tracing through a tree, one of which is

callee..! depth-first search. The essence of this technique is to pick some alte rnative

a t ever.'· node \'i sited and to work forward from that alternative. Other altern a ti\'es

59

start o F t he
depth-First

search

end oF thE'
depth- Fi1·s t

s earch

Figure 5.2 : A l ree rep resenta tion of a g r a ph

al the same le vel are ignored completely as long as there is a hope of reaching the

destination by use of the original choice. The start ing point for t his search is t he root

o f the tree o r the top node and going fo rward constit u tes moving do\\'n and left as

far as possible. For example , i n finding a pat h between nodes (a) and (g) of the t ree

d epicted in Figure 5.2, this method searches through the t ree, as is demonstrated.

Paths . in the order di scovered , a re (a, b,c,f,g), (a,d,e ,f.g), an<l (a,h ,i,g).

-
The task of transforming the graph into a t ree could be accomplished by avoid-

ing re- visitatio n o f a compo nent in a search for a path. Thi s simple rule of thumb .

to not al low the revisiting of a compone nt in exploring a path , could ea~ily be pro-

gramrncd into a P rolog rule whi ch conducts a depth -first search. This ru le uses

60

the directed graph representation of a system and finds paths without falling in

the traps of loops which can exist in graphs. ESAS's Prolog procedure for tracing

through a directed graph is,

findpath (_, Dest,(Dest1 Tail/,(Destl Tail/).
findpath(Start,Dest,(Last l Tail /,List) if

connected(Last,.\.) and
not(m ember(X. Tail)} and
opengate(X) and
findpath(Star t,Des t , .\.Las t TaiZ,1,List) .

m ember(X. (X l-/J .
m ember(.\.(_ } J if member(.\ . r).

The rule findpath is written in a tail recursi\·e form; thus , it is not memory

intensive. Csing a tail recursive procedure for finding paths is essential. since sys-

terns wit h a large number of components and connections soon exhaust the stack

memory storage required for ordinary recursiYe procedures . Refer to Chapter 4 for

a description of tail recursive procedures.

The first and second arguments o f the predicate findpa th are the start and the

destination nodes , respect ively. T he third a rgument is a list of nodes already visited

in the path being explored and other nodes specified to be avoided in the search

for a path. By searching the database for connected predicates , the next node to

be visited .\ is found. The existence o f the node .\ in the path is then examined

by using the procedure member. The procedure member is also tail recursive. Its

task is basically to see if the node .\ specified in its first argument is a member of

the list in it s second argument which contains the li st o f nodes already visited. By

doing so, circling in loops of a graph in a search for a path is avoided.

The procedure opengate is not lis ted here si nce it is rather lengthy. The task

of this procedure is to check whether t he node specified as its argument is a gate

61

type. This is accomplished by checking the database fo r predicates gate . If .\ is

not a gate type component then opengate automatically succeeds. However. if it

is a gate type component then opengate decides whether t he gate type component

is in the mode which allows flow or vice versa. The opengate proced ure is written

to cover various scenarios possible concerning their con nections with the system.

In develo ping ESAS , it was intended to not specialize on a type of system. For

accomplishing this. all possible forms a gate type component functions had to be

considered. However, it is impossible to cover all scenarios, which in t urn resulted

in restricting the use of ESAS to systems that contain gate ty pe components which

are considered in opengate procedure . The scenarios CO\'e red concerning gate type

components are valves or switches, valves which are connected to sensors. switches

which are connected to relays, and switches whose mode of operation is a ltered by

activator components other than relays.

The path finding procedure calls itself until t he boundary condi tion displayed

in the first predicate of this p rocedure succeeds. This predicate simply checks

whether the destination is reached . If the destination is reached then it retu rns

the path found by it s fourth arguments. If the destination is not reached , the

second predicate is called again. The backtracking feature of Prolog enables the

path fi nding proced ure to explore all the possibilities fo r ex.istence of a path in a

depth-first search manner.

5.3 Rules for Finding Cutsets and Failure Pro bability of a Syste m

In this section the methods used for developing the rules fo r finding the cutsets

a re discussed. Two methods are proposed for finding the cutsets of a system. The

62

two methods are deri ved from the simple observation that systems in nuclear power

plants fail in two ways. In the first case, no flow from input component(s) to the

output component constitutes an accident, and in the second case the opposite

constitutes an accident. Finding the cutsets in the first case is called the "no-fl.ow

analysis'· and the second case " fl.ow analysis."

Generally, the no-flow analysis is performed for t hermal hydraulic systems

where no flow to the outpu t component causes an accident and fl.ow analysis is

performed for electrical systems, consisting of a combination of relays and switches,

designed to block t he fl.ow of electricity to the ou tput component to stop its oper-

ation. Also, an analysis which performs both A.ow and no-fl.ow analyses could be

performed for thermal hyd rauli c systems which have a test loop. Thus, in normal

operation a fl. ow to the normal outpu t component wit h no flow to the output com-

ponent of the test loop are desired. These analyses for finding cutsets cover most

accident scenarios possible in nuclear power plant systems. The use of ESAS for

finding cutsets is restricted to the above analyses, even though it was intended to

make the use as general as possible.

\.Vhen the type o f analysis is acquired from the user, ESAS asks for the output

component of the system. For performing either A.ow o r no-fl.ow analysis, specifi-

cation of one and only one output component is allowed by ESAS. In the analysis

where the combination of both A.ow and no-fl.ow is desired. specification of two out-

put components are allowed (i.e., one and only one output component to which fl.ow

and another to which no flow is desired). As is commonly known . most systems in

nuclear p ower plants have more than one output component. However , the seman-

t ic network representation of those system wit h more than one ou t pu t component

63

can be manipulated to have only one output component. by considering the type

of analysis desired. Only four cases emerge. In the case where no flow to all of

the output components of a system causes an accident, no-flow analysis could be

performed by specifying each output component separately and performing the no-

flow analysis for all of the outputs component individually. Then the accumulated

cutsets obtained from the no-flow analysis for each output component is the list

of cutsets desi red. In the second case, where no flov.: to any of the output compo-

nents of a system causes an accident, a node which physically does not represent

any component in the system can be specified as the outpu t node by linking it as

an output of all the actual output components. The third case, where flow to all

output components of a system causes an accident , is analogous to the second case

a nd therefore the same manipulation of the semantic network could be applied.

And finally, the fourth case where flow to any of the output components causes an

accident is analogous to the first case. Thus, the same procedure could be followed.

The task of specifying the input components to the system is less complex.

For no-flow analysis, normally all the components which are not an output of any

other components are the input components of the system. For performing flow

analysis of electrical systems, normally, power sources can be specified as the input

components of the system.

In specifying the input and output component(s), a great deal of care must be

used since it could affect the result of the analysis performed for finding cutsets.

Afterwards, acquiring the type of analysis desired, the output component, and input

components ESAS begins the actual search for finding the cutsets.

First. E A examines the type of analysis selected to be performed. If no-

flow or flow analyses are selected, assurrung all the components are functioning

properly. there must be a path o r no paths between the specified input components

and the output component of the system. If these conditions are not met then

ESAS terminates the search for cutsets immediately; otherwise it continues with

the analysis.

Cutsets are a list of components whose failure causes the failure of the system.

This definition is used to introduce a rule of thumb by which ESA finds cutsets.

In the case o f p erforming no-flow analysis, assuming an arbitrary list of components

have failed in the system: if there are no paths between the input components and

the output component. then by definition, this arbitrary list of components is a

cutset. On the ot her hand. in performing flow analysis, if there is a path. then

t he list of the arbitrary compo nents is a cutset. This rule of thumb. although very

elementary, is extremely successful for finding the cutsets as will be demonstrated

in the next chapter where four systems which are similar to most systems in nuclear

power plants are analyzed.

When the pat h finding procedure is called to explore the possibility of the ex-

istence of a path , the list of assumed failed components , except the gate type and

the activator type components, are transferred by use of the third argument into

t he findpath procedure. As was mentioned in the previous sect ion, in a search for a

path the components included in this list are avoided. ln Section 5.1, the activator

components were defined to be components which do not directly influence the flow

path of a system, however , they manipulate other components which do. To simu-

late the failure of an activator component, the list of components, excluding the gate

type components, which are manipulated by the activator component are included

65

in the list of components to be avoided in a search for a path. In transferring the

list of components assumed failed. we include all components . except the gate type

components, since failure of gate type components require a different treatment .

Namely, to simulate the failure of t he gate type com ponents, the specified initial

mode is used to decide whether there could be a flow through this component as

was explained in ection 5.1.

ESAS is capable of finding cutsets containing up to six components. It first

begins by searching fo r cutsets containing only one component. If there are~ com-

ponents in the system t hen there a re ~-1 suspects containing only one component,

since the output component is not considered as a possib le cutset. By calling the

path finding routine :\-1 times. ESAS can then find all the cutsets contain ing one

component. Then, in the search for culsets consist ing of two components, there are

(N-1)!, factorial of (T-1), lis ts of components as suspects. However, the number of

suspec ts are reduced by eliminating all those on the list which are a super set of

the cutsets containing only one component previously found . The definition of the

super set is that set A is the super set of set B if all of the elements in set B are a

member o f set A. The elimination of these lists are obvious since, if component A

is found to be a cutset then the failure of the combination of component A and any

other components in the system can also cause the failure of the system; however,

this combination is not a proper cutset. Also, lists containing a component twice

are eliminated, since they are the same as the list with only one component which

has already been considered as a poss ible cutset. Thus, after forming the lists con-

taining two components and eliminating the improper ones, the path finding routine

is called to find the actual cutsets.

66

In forming lists composed of components in the system as suspects for being a

possible cutset. all of the components (except the output component) are included

for no flow analysis. Ho\vever, in flow analysis where a flow to the output component

consti tu tes as accident, only the activator and gate type components are included

in the list of suspects. This becomes apparent by realizing that when a flow to

the output component constitutes an accident. components such as a wire which

should allow flow at all times can not be assumed failed. This is referred to as the

"no-miracle rule'" in Vessely ' l . Thus, only the components which can enforce no

flow under normal operation can be considered to fail in t he flow analysis.

The same procedure is followed for finding lists containing three to six compo-

nents as proper suspects. The path finding routine is called and the actual cutsets

are found. As can be seen, the number of suspects increases factorially, as the num-

ber of components in the system or in the li st of suspects increases. In order to

decrease the analysis time, it is imperative to properly decides on the limit o f reso-

lution. which in turn determines the number of components in the system. Also, for

reducing the analysis time, in most analyses the failure probability of components

in the cutsets with more than two components becomes insignificant; thus ES AS

enables user to specify the the maximum number of components in a cutset desired

in order to avoid searching for cutsets containing higher number of components.

The cutsets found are then stored. Thus a search for cu tsets is only performed

once and t he user can search for cutsets containing a higher number of components

without repeating the search for the cutsets previo usly fo und and stored. Cutsets

must also be stored for diagnostic purposes where the response time becomes a

major factor.

67

A no-fl.ow analysis was performed on the pumping system depicted in Figure

5.1, specifying components tank and core as the input and output components of

the system, res pectively. In this analysis, ESAS was asked to search for lists of

component(s) whose failure cause no A.ow from the storage tank to the core. That

the failure of the components. tank or valve or sensor or (pump a and pump b),

causes the system to fail was concluded from this analysis. The Predicates used to

store the Prolog facts representing the cutsets fo und are:

cuts et(no-fiow,f outputj, tank,(tank/}
cuts et(no-flow.(output/, tank, (valve J}
cuts et(no-fiow,(outputj, tank,{sensorj}
cutset(no -fiow,f outputj, tank,{pump a,pump bj}

I f ound(no- fiow,(outputj,tank,2}

After finding the cutsets. the failure of the system can be calculated. ESAS

acquires the operational and standby t ime of the system. Then the product of the

sum of the operational failure rates and the operational time added to the product

of the standby failure rate and standby time of the components in a cutset is the

failure probability of the components in the cutset. By adding the probabili t ies

obtained for all cutsets, the failure probability of the system is obtained. Even

though , in developing ESAS, the major task was to develop rules fo r finding cutsets,

developing a procedure for finding th e failure probability of the system turned out

to be more challenging. This is due to the fact that problem areas where symbolic

manipulations are required lend themselves to programming in Prolog but not to

numerical manipulations. This is the major factor for making the quantitative

analysis as simple as possible.

68

5.4 Rules D evelo p ed for Diagnostics

As was cited in Chapter 2. cutsets found could be used for systems diagnosis.

By definition, cutsets are a list of components whose failure causes an accident .

,,Vhen an accident occurs, the user is interested in knowi ng the possible causes,

which in turn are the cutsets. E ,\ provides the cutsets in the form of a menu tree

with items displaying the cutsets which contain one and two components. The user

then can select an item to be displayed. and will be shown the failure modes and the

text entered for explaining the suggested corrective actions. This could be used as

an on line tool for quick reference to technical specificat ions for corrective actions in

the case of a failure of a component (pro,·ided this information is pre,·iously entered

into ESAS).

Also as part of diagnostics , to examine the importance of successfu l operation

of component(s) in the system, the path finding procedure could be directly called

by the user. ESAS acquires the input and output components. and the components

which are assumed failed , and displays the paths found (if any). The components

assumed failed are treated as was mentioned in the previous section. This featu re

becomes attractive for studying complex and la rge systems. For example, the large

drawings of reactor trip systems which depict hundreds of components such as

relays , switches, diodes, etc. could be used once to enter the semantic network

representation of the system. Then ESAS could be used to t race through the system

searching for pat hs from any component to any other component with the option

of bypassing component(s).

69

5.5 Interacting with ESAS

A useful expert system must possess a non-intimidating and user friendly in-

teractive capability. As a matter of fact, in theory, there should not be a need for

a user 's manual when employing an expert system. All actions taken by an expert

system must be explained . warnings must be given to the user when necessary, while

the expert system is in use. In other word. the manual for using an expert system

must be provided by the expert system itself. so that the expert system is compa-

rable to human experts in interacting with the user. In this section , a description

of how ESAS can interact with the user is provided. However. by no means can

this brief description be used as a manual. since E A is developed to display the

explanatory texts, warnings, and other necessary information while being used.

In order to make ESAS user friendl y, it is developed to be menu driven. The

diagram depicting the various options of ESAS is presented in Figure 5.3. vVhen

scanning the menu. a text explaining tasks performed by selecting t he option under

consideration is presented to the user. The actions of ESA are partitioned into ma-

nipulating the database, finding cutsets, and performing diagnostics. :Vlanipulating

the database consists of tasks, CO~Sl'LTing, CREA.Ting, EDITing, DELETing,

and VIE,Ving the database. ~eedless to say. before editing or viewing a database.

finding cutsets, or performing diagnostics, the database of the system must be cre-

ated, or if already created , it must be consulted .

When creating a new database, the first information acq uired by ESA is the

system name. The system name is used as the title of the files created by E AS for

storing the database. Thus, the database of a system is referred to by the assigned

70

nonf

conponf nt
oper"'c t~nal

nodr
c o nsult

advisory
t~xt

cr•at•

rto ..

do tobose t dlt conn • c t ion

non - rlo •

vi• •

5 t ond'oy

d rlr tr prob nb ft lty
r"D ti'

OO l'r"O t 'On'll

consult

no •
onnlys1<

ESAS cutstb r ind
cut~o ts

no-no.
onnl ys1s

vlp w

con -.ul t

d 10 9no s t ics fo tlur e
Mf nv

• ho t 1r

Fig ure 5 .3: The menu sys tem of ES .A S

71

system name. ESAS acqmres information by use of vi rtual windows . where page

editing is provided. or by use of menus. For example. in acquiring t he component

names, ESAS creates a virtual wi ndow which contains :.J' fields, where ~ is the

specified number of components in the system. The user edits the en tire window

when entering the component names. After all component names have been entered ,

ESAS searches for improper entries (e .g., a component name entered twice) . Then.

ESAS encodes the component name into the corresponding predicates to be stored

in the database. in the form of Prolog facts. The component names need to be

entered only once. since a menu containing the component names is created to be

used fo r acquiring other information such as specifying gate type components or

connections.

In general , when using ESAS , the user ra rely needs to enter info rmation with-

o u t use of menus and when menus are not provided page editing capabi li ties are

provided. In addition to displaying the database on screen, ESAS is able to wri te

the database into data files or produce printed copies of it. ESAS always asks for

information from and replies to the user in English sentences, not P rolog predicates .

The tasks performed by choosing the second or thi rd option (i.e., finding cutsets

o r performing diagnostics). discussed in pre\·ious sections, are systematic and self

explanatory.

72

6 ANALYSIS OF N UCLEAR PLANT SYSTEMS

Four systems were chosen to demonstrate the features of ESAS and to illustrate

the success of ESAS in finding cutsets.

6.1 An Emergen cy Core Cooling System

A simplified emergency core cooling System (ECCS), depicted in Figure 6.1 ,

obtained from Lewis [25], was analyzed by ESAS. The pipes in this system were

excluded from the analysis for simplifying this demonstration. As can be seen, the

semantic network representation of this system includes nine components, with the

coolant tank and core as the input and output components of the system and the

valves a, b. c and d as gate type components which are specified as closed prior

to and open dur ing the operation of the system. The protection system sensor

is specified as an activator type which activates pumps a and b. Considering the

accident of having no flow to the core from the coolant tank, ESAS was asked to

find cutsets containing a maximum of four components and found the cutsets to be,

(coolant tank) or (protection system sensor) or (pump a and pump b) or (pump a

and valve c and valved) or (pump band valve a and valve b) or (valve a and rnlve

b and valve c and valve cl). These cutsets can easily be verified by inspecting the

ECCS. Also, they were verified by performing a fault tree analysis for the top event,

Coolant tonk

73

Prot•c t1on
sys t r"
Sf'nSor

Figure 6.1: The configuration of ECCS

Corr

no flow to the core. The fault tree constructed for ECCS, obtained form Reference

[26j, is depicted in Figure 6.2.

To demonstrate the diagnostics features of ESAS, a search for paths between

the components coolant tank and core was done, assuming the failure of vah·es a

and d . Paths found were (coolant tank, pump a, valve b, core) and (coolant tank,

pump b , valve c, and core).

To perform diagnostics for the accident, no flow to the core, ESAS formed the

failure menu tree depicted in Figure 6.3. From this menu, the user can choose the

failure of a single component and will be presented with the failure modes of that

component previously entered in the database. For each failure mode, an advisory

text can be put in the database; by consulting this, the user can take corrective

actions. For example, this text can contain the technical specifications related to

the failure of a component.

SY MBOLS :

A "OR" GATE

0 "ANO" GATE

NO COOLANT
AVAILABLE SINCE
PPOTECTION SYSTEM
SIGNAL NOT
DELIVERED

p
ps

NO COOLANT
AVAILABLE

74

NO COOLANT AVAILABLE
BECAUSE NO FLOW
FROM BRANCH A OR
B DUE TO SYSTEM
HAL FUNCTION

NO COOLANT
AVAILABLE SINCE
RESERVOIR EMPTY

NO FLOW FROM 2 p + p NO FLOW FROM 2
BRANCH B Pb+ pv BRANCH A p v

DUE TO SYST EM
MAL FlltlCT I ON

SAME f\S
SYSTEM R

DUE TO SYSTEM
HALFUNCT ION

Pp NO FLOW BECAUSE
PUMP B FAILS

NO FLOW BECAUSE P2
BO TH VALVE C v
ANO VALVE 0 FAIL

p VALVE C
v FAILS

VALVE D
FAILS

Figure 6.2: The fault tree constructed fo r ECCS

p
y

consequence I
~

f-
l causes

75

senso,..

cootont tQnk

punp o o.nd
P<"'P b

PU"P 0. and
1'0 flo• to tht> co,.." f--+--l or- ~-+---1 volve c ond'

volvf' d

punp b and
valve n ond
Yolv~ b

volv~ o and

>-----<and i------<

::::: ~ :~: f----land t-------11----f;Oi-;;;:"C]
volvf' d

Figure 6.3: The failure menu t ree for ECCS

6.2 A Press ure Tank System

Figure 6.4 shows a pressure tank system (PTS), obtained from Vessely [1]. The

function of this system is to regulate the operation of the pump. This pumping sys-

tern provides coolant from an infinite reservoi r to the pressurized tank. The pressure

switch has contacts which are closed when the tank is empty. When the th res hold

pressure has been reached, the pressure switch contacts open, de-energizing the coil

of relay K2 so that relay K2 contacts open, removing power from the pump.

Initially, switch S 1 contacts are open, relay Kl contacts are open. and relay

K2 contacts are open; i.e. the control system is de-energized. In this de-energized

state the contacts of the timer relay are closed.

System operation is started by momentarily depressing switch Sl. This applies

r----------~
I

l
l•t{:

S"ITCH
SI

76

FROM A£HRVOIA

rnnsu~E

SWITCH S

PRESSURE
TANK

Figure 6.4: The configuration of the pressure tank system

power to the coil of relay Kl, thus closing relay Kl contacts. Relay K 1 is now

elect rically self-latched. The closure of relay Kl contacts allows power to be applied

to the coil of relay K2, whose contacts close to start up the pump motor.

The timer relay has been provided to allow emergency shut-down in the e\·ent

that the pressure switch fails closed. Initially the timer relay contacts are closed

and the timer relay coil is de-energized. Power is applied to the timer coil as soon as

relay Kl contacts are closed. This starts a clock in the timer. If the clock registers

60 seco nds of continuous power application to the timer relay coil, the timer relay

contacts open, breaking the circuit to the Kl relay coil and thus producing system

shut-down.

The undesired event chosen is rupture of pressure tank after the start of pump-

mg. The fault tree developed for this undesired event is presented in \"essely)) .

In the fault tree analysis performed in Vessely, the failure of switches connected to

77

relays are not taken into account, o r their failure are included with the failure of

the relays they are connected to.

The semantic network representation of this system includes. batteries 1 and

2, switches (S, Sl, SKl , SK2 , and SK3) , relays (t ime relay (TR), Kl , and K2) , and

motor, where SKl , SK2. and SK3 are the names assigned to switches connected to

relays Kl , K2 , and TR, respectively. As can be seen, the pressure tank is excluded

from the analysis, since the undesired event can be translated to energizing the

motor after the start of pumping. This measure has to be taken since the pressure

tank is not connected to the system by a fl.ow of electrical current, nor can it be

linked to t he system by non-Row connections . The switches specified as gate type

components are specified as closed in the initial mode (or the energized mo.de if

connected to a relay) and open in the operational mode (or de-energized mode if

connected to a relay). By doing so, a no-Row analysis can be performed where the

battery 2 and motor are the input and t he output components, respectively. The

cutsets found by performing the fault tree analysis are ~ l], (pressure tank) or (K2)

or (Sand Kl) or (S and T R) or (S and Sl) . ESAS , in finding the cutsets. could

not find the failure of the pressure tank, since it was not included in the semantic

network representation of the system. However, since the failure of switches are

included in the no-flow analysis performed by ESAS, t hey appear in the list of

cutsets found. The cutsets found by ESAS are , (K2) or (SK2) or (S and K l) or (S

and SKl) or (S and TR) or (S and SK3) or (Sand Sl).

The cutsets found by performing fault tree analys is are included in the list

of cutsets found by ESAS, excep t the failure of the pressure tank. The analys is

performed by ESAS is a more accurate one, since the failure of switches connected

7

to the relays are also fo und.

6 .3 The PWR Co ntain m e nt Spray I nject io n System

T he PWR containment spray injection system (PWRCSIS), obtained from

WASH-1400 [2], is chosen to demonstrate the need for performing a flow and no-

flow analysis for finding all of the lis ts of components whose failure can cause an

accident. This system is depicted in Figure 6.5. The function of this system during

normal operation is to supply a flow to header nozzles in either subsystems A or

B. However, at the same time, no flow through the feedback loops, back to the

refueling water storage tank is desired. Thus. flow to the header nozzle sub-systems

and no flow to the storage tank are desired.

T he components included in the semantic network representation of the system

are: manual valves (V4A , V4B), motor operated valves (CSlOOA , CSlOOB, CSlOlA,

CSlOlB , CSlOlC, CSlOlD), check valves (VCS-15x(1A), VCW-15x(1 B)) . These

gate type components are ini t ially specified to be closed and during system operation

specified to be open. Valves (V2A, V2B, V2C), and check valves (V3A, V3B) are

also included in the semantic network representation, but a re specified to be open

and closed during the initial and operational mode of the system, respectively, since

they are a part of the feedback loops. Other components included in the semantic

network representation are: refueling water storage tank, filters (1-CS-FL-lA , 1-CS-

F L- lB), pumps (1-CS-P-l A, 1-CS-P-lB), and header nozzle subsystems A and B.

Finally a node, called out put , which does not represent a component in the system,

is required to properly represent the ou tput components of the system. See Section

5.3 for a m ore elaborate description of the need for including t his component in the

1-CS-TK- I
Ra fue ling
Water
Stonoe
hnk

Manu.11
Vil~
VGW-ISX
V.CA

MOV
CSIOOB

MOV
(,"5\l)()A

1-CS-Fl-10

1-CS-FL- lA

V3B
VCW-ISX

1-CS-P-18/
Pump

V3A
VCW-15X

1-CS-P- IAJ
Pump

MOV
CS101D

MOV
CS101C

MOV
CS101B

MOV
CS 10 1A

1---- Inside Containment

1
I

Riser
IOCS-4-153

I VCW- 15xl1BI
I Check
I Valve

I
I
I
I
I
I
I

I

Rise<
I OCS-3-153

I VCS-15x(1Al
Check

l_~alve_

Subsystem 13
Header Nozzle-s

Subsystem A
Header Nozzles

Figure 6.5: The configuration of the PWRCS IS

0

semantic network representation .

By performing a flow analys is , two cutsets containing three components are

found, namely (\'3A and V2A and V2C) or (\'3B and V2B and V2C). This is

apparent, since if all of the valves in each of the cutsets fail t hen they remain in

the initial mode which is specified as open , thus allowing flow back through the

feedback loop to the refueling water storage tank.

By performing a no- flow analysis. only one cutset containing one component

was found, namely (storage tank). It is readily apparent that two parallel paths

to the outpu t components are present: one of which start s with component V 4A.

and ends at subsystem A and the other which starts V 4B and ends at subsystem

B (called paths A and B , respectively) . In each path, t wo motor operated valves

(MOV) are put in parallel. Excluding these MOV s in both paths , t here are six

components in each path . By searching for cutsets containing two components , 36

cutsets were found , namely, all t he non- redundant combinations of all components of

path A with path B. For example, cutsets (A and B) and (B and A) are redundant.

T he search for cutsets containing three components resulted in 12 cutsets ,

namely, the combination of parallel :VlOVs in pat h A with the six components

in path B and parallel :\IOVs in path B with the six components in path A. Finally,

one cutset containing four components was found namely, parallel MOVs in paths

A and B. The cutsets found were identi cal to the ones obtained in WASH-HOO [2].

6.4 A Power Distribution Box

The power distribution box system, depicted in Figure 6.6, obtained from Ves-

sely [1:, is analogous to PTS since it is de vised to cutoff the power supply to the

+ ''
l.&fTUl 'I' I

81

UHllQH &l

.
...L.f:' II

~ ..
1U1 C.fl llfl

I .
I
I

.-1+-~.-~------0....:.._:. ~:··
14ff(llllY 1 C. r

I

Figure 6 .6: The configuration of the power dist ribution box

outp ut components, motors 1, 2, and 3. However, it is more complex.

With contacts KTl, KT2, and KT3 normally closed, a momentary dep ression

of push-button Sl applies power from battery 1 to the coils of relays Kl and K2.

Then the relays Kl and K2 close and remain electrically latched. Next, a 60-second

test signal is impressed through K3, the purpose being to check prope r ope ration of

mo tors 1, 2, and 3. Once K3 has closed, power from battery 1 is app lied to the coils

o f relays K-1 and K5. The closure o f K4 starts motor 1. Th·e closure o f KS applies

power form battery 2 to the coil o f K6 and also starts motor 2. Finally. the closure

o f K6 applies power from battery 1 to the coil of K7 . Closure of K7 star:s moto r 3.

After an interval o f 60 seconds K3 is supposed to open, shut ti ng down the

operation of all th ree motors . Should K3 fail closed after the expirat ion of 60

seconds , all t hree t imers (KTl, KT2 , KT3) open, de-energizing t he coil o f Kl ,

thus shutti ng down system operatio n. Suppose K3 opens properly at the end of 60

seconds, but K4 fai ls closed. In that case, KT l opens to de-energize K l and moto r

82

1 stops. KT2 and KT3 act similarly to stop motor 2 or motor 3 should either K5

or K 7 fail closed.

The undesired event is the overrun of any motor after test is initiated. The

cutsets found in Vessely [l], by performing fault tree analysis for overrun of motor

1 are, (Kl and K4) o r (K4 and Sl) or (K4 and KTl) or (Kl and K3) or (K3 and

Sl) or (K3 and KTl and KT2 and KT3). The cutsets found for overrun of motor

2 are, (K5 and K2) or (K5 and Kl) or (K5 and KT2) or (K5 and Sl) or (K3 and

Kl) or (K3 and Sl) or (K3 and KTl and KT2 and KT3). The cutsets found for

overrun of motor 3 are, (Kl and K7) or (K2 and k7) or (K7 and KT3) or (K7 and

Sl) or (Kl and K3) or (K3 and Sl) or (K3 and KTl and KT2 and KT3).

The semantic network representation of this system includes all relays . and

switches depicted in Figure 6.6, in addition to all switches connected to the relays.

By inspecting the cutsets found by performing the fault tree analysis, one can see

that Vessely combined the failure of the switches connected to the relays with the

failure of t he relays t hey a re connect to. Thus, failure of a relay can be due to the

failure of the relay or the failure of the switches it is connected to. In the analysis

performed by ESAS, the failure of these switches were also taken into account .

Similar to the semantic network representation of the P TS , all switches in this

system are specified to be initially closed. They then open during the operation of

the system. To analyze this accident with ES.AS , flow analysis was performed three

times where in the first analysis, the battery 1 and motor 1, in the second analysis,

the battery 2 and motor 2, and in the third analysis, the battery 2 and motor 3 are

chosen to be the input and output components, respectively.

The cutsets found by ESA.S included all cutsets found by Vessely, which were

3

obtained by performing fault tree analysis. Additional cutsets found were composed

of switches connected to relays which were excluded from the analysis performed in

\iessely. For example, in addition to the cutset (Kl and K4), the cutsets (SKl and

K4) , (SK l and SK4), and (Kl and SK4) were found by ESAS, where SKl and SK4

are the names assigned to switches connected to relays Kl and K-± , respectively. Or

in addition to the cutset (K4 and 1), the cutset (K4 and Sl) were also found by

E AS. Thus the result of the analysis performed by ES..\S is more accurate than

the one reported in Vessely.

\Vhen we state the analysis performed by ESA is more accurate than the one

obtained by performing fault tree analysis. we do not imply that the same accuracy

can not be achieved with fault tree analysis. However we do imply that if the

accuracy is increased the fault tree analysis will become even more complex and

tedious.

7 CONCLUSIONS

7.1 R estriction on T y p es of Sys t em s Analy zed by ESAS

In Chapter-!, the advantages of programming in Tur bo Prolog '21] were cited .

One of the most useful advantages was being able to program in modules. This

feature of Turbo Prolog allowed us to develop ESAS in stages. The evolving stages

were formed by at tempting to analyze new types of nuclear power plant systems

in the order they were encountered , based on the fact t hat the components of

these systems have to be related to one another by a flow type. The systems

which were used in developing ESAS in the order they were encountered are the

systems included in Chapter 6, in Sections 6.1, 6.2 and 6.3, respectively. By studying

the functions of these systems and their components, we modified the knowledge

base of ESAS (i.e., rules for finding paths and cutsets) so that the function of

these systems and thei r components can be simulated and analyzed by ES AS. This

resulted in including new definitions such as "non-flow connections" to incorporate

relationships other than "flow" between components etc. in the knowledge base of

ESAS as was described in Chapter 5.

Originally, we intended to make the use of ESAS as general as possible. How-

ever , we recognize that it is impossible to simulate the function of all of the com-

ponents in a nuclear p ower plants with only being a ble to simulate the function

85

of components contained in the three systems described in the first three sections

of Chapter 6. At the same time, we hope the reader recognizes that these three

systems are typical of most systems in nuclear power plants. In conclusion, use of

ESAS for finding paths in a system is restricted to those systems where flow of one

and only one type is present through all components of the system. Also, the use

of ESAS for finding cutsets is restricted to those systems which can be analyzed

in terms of flow or no-flow and whose components have functions which can be

simulated by the rules in the knowledge base of ESAS.

7 .2 Suggestio ns for Future Work

It was reasoned in the previous section that the use of ESAS can be generalized

by incorporating function of the components which are not now included in the rules

used by ESAS. By including analyses other than flow and no-flow, use of ESAS can

be broadened to a larger variety of systems. However, by expanding ESAS, a

memory management problem can arise.

ESAS is written in modules which are compiled and linked to an executable

program by the Turbo Prolog compiler [21]. The executable program of ESAS can

be run on an IBM XT, AT, or compatible. The size of the operating memory of

these computers is 640K bytes minus the memory required for the operating system

program DOS itself which requires approximately 75K bytes. The executable ver-

sion of ESAS requires approximately ..J:OOK bytes just for the rules of the knowledge

base. When analyzing a system, the memory required for consulting the database

of a system must be added to the 400K bytes. Therefore, this constitutes a size

limitation on the memory required for the database of a system which in turn trans-

86

lates to a size limitation on the number of components a system can contain. This

size limitation can be increased by overlaying ESAS. T hose modules of ESAS which

perform a task (e.g ., finding paths) can be compiled to an executable program.

Then, ESAS will be comprised of several smaller executable programs which can

be run by using a main program. By doing so, the executable programs, which are

activated by the main program, will be smaller in size thus allowing more space

for the consulted database of a system. Also, by overlaying ESAS, we alleviate the

problem of memory limitation when expanding it to include rules which incorporate

additional component and system functions .

The diagnostics features of ESAS can also be improved by simulating the func_:

ti on of more component types. As was described earlier, the function of gate and

activator type components a re the only ones simulated by ESAS. Other than the

function of these types of components, components either succeed which implies

that a flow is allowed through them or vise versa if they fail. Therefore, only

a qualitative analysis of components are possible. For example , if a pump fails

we can not simulate the coast down period where partial fl.ow is available, or if a

pipe ruptures flow is completely cut-off, even though there can be a partial flow

through the pipe . The function of different components can be simulated by use

of FORTRAN programs which solve equations corresponding to the components.

The input of these programs can be the condition of t he components and then the

output can be the degree of success of the components in allowing flow.

Another diagnostic feature which can be added to improve ESAS is mcorpo-

rating time dependencies. For example , in electrical systems where time relays are

used, even though the relay is energized it does not immediately alter the mode of

87

the gate type component it is connected to. Enabling ES AS to perform an analysis

at each time the system configuration is altered can make it possible to perform

these types of analysis.

To improve the interfacing capabilities , graphics programs can be included in

ESAS which allow the user to enter a graphic representation of the system when

enter ing the database. Then ESAS can use this graphic representation to point out

the cutsets found or, in diagnostics mode, to point out the component s found as

possible causes of an accident.

In introducing the purpose of this project 1 we stated that the end product

of fault tree analysis are the cutsets and we proposed a method by use of which

cutsets can be found without performing fault tree analysis. However . fault trees are

sometimes u sed by the operators of nuclear power plants for diagnostics purposes

and for operating assistance. ES AS can be programmed to work backward form

the cutsets and form the fault tree which if resolved will result in the cutsets found.

This is an involved task which would requi re a great deal of effort.

In conclusion, ESAS can successfully accomplish the tasks it was or iginally

programmed to perform. However 1 as is demonst rated in this section, the develop-

ment of ESAS can not be considered to be completed. It is commonly known, most

projects are never completed, since as a goal is reached others are created.

88

8 BIBLIOGRAPHY

[l] Vessely, W. E. Fault Tree Handbook. Springfield, Va.: National Technical In-
formation Service, 1981.

[2] "Reactor Safety Study: An Assessment of Accident Risks in U.S. Commer-
cial Nuclear Power Plants". U.S. Nuclear Regulatory Commission, WASH-1400
('L"REG-74 01-1).

[3] Knief, R. A. uclear Energy Technology. Washington: Hemisphere Publishing
Corporat ion , 1981.

[4] Schildt, H. Advanced Turbo Prolog. Berkeley, Calif.: McGraw-Hill, 19 7.

[5] Winston, P. H. Artificial Intelligence. New York: Addison-·wesley, 1979.

[6] Anderson, J . R. Cognitive Psychology and I ts Implications. 2nd ed. ~ew York:
W. H. Freeman and Company, 1985.

:1J P. Harmon and D. King. Exp ert Systems. Artificial Int ellig en ce in Business.
~ew York: J ohn "Wiley and Sons, 1985.

[8] Forsyth, R. Expert Systems. Principles and case studies. London: Chapman
and Hall, 1984.

[9] uhrig , R. E . "Applications of Artificial Intelligence in t he U.S. _ ·uclear Indus-
try" . p. 11 in Artificial Int elligen ce and Other Inno vative Computer Applica-
tions in the Nuclear Industry. (Majumdar, r-..I. C. , Majumdar, D., and Sackett
J. I. , eds .). New York: Plenum Press, 1987.

[10] ~Iajumdar , :\I. C. , :\-Iajumdar, Debu, and Sackett , J. I.
gence and Oth er Inno vat ive Computer A pplications in th e
r'-iew York: Plenum Press, 1987.

Artificial Int elli-
Nuclear Industry .

[11] Forgner, B. "An Expert System for Fault Tree Analysis". p. 747 in Artific ial
Intelligence and Other Innovative Comput er Applications in th e Nuclear In-
dustry. (Majumdar, YI. C .. ~Iajumdar, D .. and Sackett J. I. , eds.). ~ew York:
Plenum Press, 1987.

9

12 Ancelin. C .. Le. P., De Saint-Quentin, and \"illatte, \ ... EXPRESS: An Expert
ystem to perform System Safety tudies". p. 761 in Artificial Intelligence and

Other Inn ovative Computer Applications in th e Nuclear Industry. (~Iajumdar ,

M. C., >.Iajumdar. D .. and Sackett J. I., eds.). :\'ew York: Plenum Press, 19 7.

[13] Kelly, R. D., and K. J.
t ion." ~uclear Plant Journal

Vavrek. "A utomated Fault Tree
J anuary-February (1988): 46 ,48.

Genera-

[14] Kiguchi , T., :\Iotoda, H. , Yamada, , ., and K. Yoshida. '·A Knowledge Based
ystem for Plant Diagnosis". p. 635 in A .VS Int ernational Topi cal M eeting

on Computer Applications for uclear Power Plan t Operation and Control.
(American \uclear Society, La Grange Park. IL, 19 5).

'15 Beltracchi . L. " ...\ :\ Iodel-Based Display'·. p. 337 in Artificial Intellig ence and
Other Inn ovative Computer Applications in th e .Vue/ear Industry. (:\ Iajumdar ,
:VI. C ., :\Iajumdar. D. , and Sackett J. I. , eds .). ~ew York: Plenum Press, 19 7.

16] Kitamura, :\I.. Baba. T .. \Vashio, T., Sugiyama, K .. and K. Katajuma. " e-
mantic ~etwork Approach to Automated Failure Diagnosis in :'foclear Power
Plant " . p. 654 in ANS Int ernational Topical M ee ting on Computer Appli-
cations for .Vuclear P ower Plant Ope1·ation and Con trol. (American . uclear
Society, La Grange Park, IL, 1985).

[17] Dixon , B. W .. and K. G. Ferns. " sing Risk Based Tools in Emergency Re-
sponse' . p. 799 in Artificial Intelligence and Other Inno vative Computer
Applicat ions in the .Vuclear Industry. (:V1ajumdar, ~ I. C. , ~Iajumdar , D. , and
Sackett J. I.. eds.), New York: Plenum Press. 19 7.

1 Clockstin, W. F., and C. S. :\Iell.ish. Programming in Prolog. 2nd ed. \ ew York:
pringer-Verlag, 1984.

19 Kowalski, R. Logic for Problem oh·ing. :\'ew York: Elsevier cience Publish-
ing Co., 1979.

20 tanat, D. F .. and D. F. :\-Ic...\llister. ·'Discrete :Vlathematics in Computer Sci-
ence". Englewood Cliffs . \. J.: Prentice-Hall, 1977.

r21] T urbo Prolog. Scottsville, Calif.: Borland Internat ional Inc .. 19 6.

:22] hafer , H. Advanced Turbo Prolog. Berkeley, Calif.: McGraw-Hill , 19 7.

r23 :\Iarcus. C. Prolog Programming. Reading , :\Iassachusetts: ...\ddison-V\'esley,
19 6.

90

[24] ~Ialpas, J. Prolog: A Relational Language and Its Applications. Englewood
Cliffs, . J.: Prentice-Hall Inc., 1986.

[25] Lewis , E. E. Nuclear Power Reacto r Safety._ ew York: J ohn Wiley and Sons,
1977.

[26] Danofsk y, R. A. uclear Engineering 441 Class Notes. Iowa State University,
Ames , 1982.

