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INTRODUCTION 

Porcine respiratory coronavirus (PRCV) is a member of the family 

Coronaviridae, and is closely related to transmissible gastroenteritis virus 

(TGEV) of swine. Coronaviruses are enveloped and have a positive-sense 

single-stranded RNA genome (Holmes, 1990). Transmissible gastroenteritis 

virus produces severe diarrhea in swine by infecting the villous enterocytes of 

the small intestine and causing them to slough off. This leads to malabsorption 

and dehydration. The mortality among piglets under 3 weeks of age has been 

shown to be 100% (Holmes, 1990; Saif and Bohl, 1986). 

PRCV is believed to be a variant of TGEV because they are antigenically 

related. PRCV was first isolated in Belgium in 1986 (Pensaert et al. , 1986) from 

a herd of pigs which tested positive for TGEV antibodies, but had never shown 

clinical signs of the disease. PRCV replicates in the respiratory tissue of swine 

with little clinical disease produced due to the virus itself, but it may predispose 

pigs to secondary infections (Halbur et al. , 1993; Laude et al. , 1993; Pensaert et 

al. , 1986). 

PRCV is now widespread in swine herds in Europe. It is interesting to 

note that w ith the emergence of PRCV in that region, the incidence of 

transmissible gastroenteritis has decreased (Pensaert et al. , 1993). This may be 

because TGEV and PRCV are closely related and there is some cross-

protection between the two viruses. The prevalence of PRCV in the United 

States is not known, but several researchers have isolated it in this country (Hill 

et al. 1989; Paul et al. , 1992; Vaughn et al. , 1995). TGEV and PRCV are 

genetical ly similar, and yet show differences in tissue tropism and pathogenicity. 

These characteristics make them good candidates for the study of coronavirus 

genes which are involved in tissue tropism and virulence (Vaughn et al. , 1995). 
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There are many similarities between TGEV and PRCV. They both have 

the same genomic organization consisting of a polymerase gene, spike gene, 

ORF's 3, 3-1 , 4, a matrix gene, a nucleocapsid gene and ORF 7 reading from 

the 5' to 3' end. PRCV has a deletion in the 5' end of the S gene when 

compared to TGEV which varies from 672 to 711 nucleotides depending upon 

the isolate (Britton et al. , 1991 ; Laude et al. , 1993; Rasschaert et al. , 1990; 

Vaughn et al. , 1995). The deletion in the S gene of PRCV is thought to play a 

role in the tissue tropism of the virus (Sanchez et al. , 1992). There is also 

variation from TGEV in ORF-3 and 3-1 in PRCV. The PRCV isolates all have 

the consensus leader sequence preceding ORF-3, CTAAAC, altered or partially 

deleted which causes the subgenomic mRNA 3 to not be made in PRCV infected 

cells(Laudeetal. , 1993; Page et al. , 1991 ; Wesley et al. , 1990b). The3and3-1 

genes have been hypothesized to be involved in the virulence and pathogenicity 

of TGEV (Vaughn et al. , 1995; Wesley et al. , 1991 ). The PRCV isolates 

sequenced so far have alterations in these regions and cause little clinical 

disease in swine. 

In our study we have obtained several isolates of PRCV and have 

characterized them to gain a better understanding of how they are related to 

TGEV, to examine the S, 3, and 3-1 gene deletions and alterations, and to 

determine if there are any differences between the isolates in vitro that may have 

in vivo significance. It has already been documented that isolates of PRCV from 

the United States have deletions in the S gene of varying sizes (Vaughn et al. , 

1995). In our study we have examined the S gene of four new isolates and 

mapped their deletions. The pathogenicity of the previous isolates has been 

explored (Halbur et al. , 1994) and it was found that they vary in pathogenicity. 

The 3, and 3-1 genes of these isolates have also been analyzed to determine if 

there was a correlation between an intact gene 3 and virus pathogenicity 

(Vaughn et al. , 1995). They found that the two PRCV strains that were the most 
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virulent had an intact gene 3 which was identical to the gene 3 of the virulent 

Miller strain of TGEV (Vaughn et al. , 1995). This indicates that gene 3 may be 

linked to virulence, with an intact gene 3 causing stronger virulence. 

We have analyzed the 3 and 3-1 genes of four new isolates to further 

confirm our previous observations. The biologic characteristics of these four 

new isolates, as well as four isolates that were used in previous studies, 

including plaque sizes, growth in two cell lines, and differences in the cytopathic 

effect of these viruses in the various cells were also examined to determine if 

there was potential correlation between genetic changes and in vitro 

characteristics. 
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LITERATURE REVIEW 

Coronavirus History 

The Coronaviridae family of viruses are large, enveloped, (+)strand RNA 

viruses containing only the genus Coronavirus. They have the largest genomes 

of all RNA viruses. Different species of coronaviruses have been implicated in 

many prevalent diseases of humans and animals, mainly causing respiratory or 

enteric illnesses (Holmes, 1°990). 

Avian infectious bronchitis was the first disease described that was 

caused by a coronavirus. It was first isolated in the laboratory by Beaudette and 

Hudson in 1937 (Beaudette and Hudson, 1937). The next coronavirus 

associated disease discovered was murine hepatitis virus in 1949 by Cheever et 

al (Cheever et al. , 1949). In 1965, the first coronavirus was isolated from a 

human. It was isolated from a young boy with a cold by Tyrell and Bynoe 

(1965). Upon examination by electron microscopy they found that the virus they 

isolated from the boy was morphologically similar to avian infectious bronchitis 

virus (IBV). The virus was named the B814 strain (Tyrell and Bynoe, 1965). 

Around the same time, another group of researchers, Hamre and Procknow 

isolated five other virus strains from humans and found them to be 

morphologically identical to 8814 and IBV as well (Hamre and Procknow, 1966). 

Mcintosh et al. (1967) recovered six other strains of coronavirus from humans 

and showed the antigenic and morphologic relationships of the human viruses to 

murine hepatitis virus (MHV). 

At this time, a new genus called Coronavirus was formed for these 

viruses based on their morphology. When viewed under an electron 

microscope, these viruses have a "corona", or crown-like appearance due to 

club-like projections of the surface of the virion (Tyrrel et al. , 1968). This was the 

main criterion for this classification for some time. It is now possible to 
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characterize these viruses by other properties such as; structural proteins, 

number and size of mRNAs, antigenic cross-reactivity, sequence analysis, and 

homology with other known coronaviruses. Several coronaviruses have been 

isolated from a wide variety of animals such as rats, chickens, turkeys, pigs, 

dogs, cats and cattle (reviewed by Mcintosh, 1990). It has recently been 

hypothesized that coronaviruses may potentially be important emerging 

pathogens due to their high rate of recombination, current species diversity, and 

unique replication strategy (Barie et al. , 1995). 

Coronaviruses 

Coronaviruses are the only genus of the family Coronaviridae. They are 

large, enveloped, positive(+) strand RNA viruses. The virions are generally 

round, but are moderately pleomorphic. They measure 80-1 60 nm in diameter 

and are covered with club shaped projections which are approximately 20 nm in 

length (Holmes, 1990). These club shaped projections, called peplomers are 

composed of the S protein and give the virions their distinctive appearance. 

Classification of these viruses was at one time based solely upon the 

appearance of these "spikes" which are visible when negatively stained 

specimens are viewed under an electron microscope, but now they can be 

identified by various other characteristics (Holmes, 1990). Several viruses have 

been extensively characterized at the molecular level. These include mouse 

hepatitis virus, avian infectious bronchitis virus, transmissible gastroenteritis 

virus, bovine coronavirus, human respiratory coronavirus, and feline infectious 

peritonitis virus(Lai, 1990). 

Coronaviruses exhibit strong species and tissue specificity, replication 

often being limited to epithelial cells of the respiratory and enteric tracts. Some 

replication has also been shown to occur in macrophages. The genome is 27-

30 kb in size, which is the largest genome of all RNA viruses (Boursnell et al. , 
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1987). The RNA is non-segmented, capped and polyadenylated. Like other 

RNA viruses, naked genomic RNA is infectious when introduced into susceptible 

cells. Sequence analysis reveals the presence of at least 10 ORFs in the 

genome, some of which correspond to specific mRNAs (Lai , 1990). Based on 

the number of mRNAs, coronaviruses have 6-8 genes which encode for various 

structural and non-structural proteins. Although all of the mRNAs are 

polycistronic in structure, they are monocistronic in function. 

There are several interesting features in the coronavirus genome. First, 

the gene order within the genome is comparable among different coronaviruses. 

MHV, BCV, and several other coronaviruses contain 2 addit ional genes which 

encode the hemagglutinin (HE) protein and a non-structural protein, p30. 

Neither of these genes are found in TGEV or IBV (Lai , 1990). 

In general, the coding region of each mRNA contains one ORF, but there 

are some exceptions. The mRNA 1 of IBV and MHV has two slightly overlapping 

ORFs in the 5' end. They are translated into a large protein by a mechanism of 

ribosomal frameshifting. This mechanism requires a pseudo-knot structure 

around the overlapping region. Gene 1, which encodes for the RNA dependent 

RNA polymerase accounts for more than two-thirds of the genome (Lai, 1990). 

In the 5' end of the genome there are 60-70 nucleotides termed the leader 

sequence. A portion of the same sequence is found at the 5' end of every 

mRNA. This sequence is believed to be important in the regulation and 

transcription of genomic RNA and sub-genomic mRNAs. At every intergenic 

region there is a small stretch of a consensus sequence of 8-10 nucleotides 

which is important for the transcription of downstream genes (Lai, 1990). The 

molar amounts of each mRNA produced are different. The smaller mRNAs 

generally are more abundant than the larger mRNAs. 

There are 3 or 4 structural proteins which make up the coronavirus virion; 

the N, or nucleocapsid protein, the M, or matrix protein, the S, or spike protein 



7 

and some coronaviruses contain the HE protein on the external membrane 

surface. Molecules of the N protein surround the genomic RNA and form a long, 

flexible nucleocapsid 6-8 nm in diameter, with a hel ical shape (Holmes, 1990). 

The nucleocapsid is surrounded by an envelope which is derived from the Golg i 

apparatus or the rough endoplasmic reticulum (RER) (Holmes, 1990). The 

envelope has a typical lipid bi layer structure, which contains the two other viral 

proteins, M and S. 

Another viral protein .. hemagglutinin, or HE, is found in the envelope of 

some coronaviruses (Callebaut et al, 1980). It binds to the neuraminic acid 

residues on cell membranes and causes hemagglutination (Holmes, 1990). 

The M protein is a transmembrane glycoprotein, 20-30 kDa in size which 

differs from the glycoproteins in other virus groups. It is deeply embedded in the 

envelope so only a small region is exposed to the outer membrane surface. The 

amino acid sequence of this protein suggests that it crosses the lipid bilayer 

three times and has a large domain which lies beneath the bilayer (Holmes, 

1990). It may bind the nucleocapsid to the viral envelope during assembly and 

this may be why the virion buds from the Golgi instead of the plasma membrane 

(Holmes, 1990). Antibodies to the M protein can neutralize the virus only with 

the help of complement. 

The S glycoprotein is 180-200 kDa and is the structural protein of the 

spikes on the viral envelope. It has a small anchor in the lipid bilayer, but most 

of the molecule lies outside of it. It is transported to the plasma membrane of 

infected cells. A comparison of the nucleotide sequence of the S genes of 

several coronaviruses reveals some interesting features. There is a short 

cytoplasmic domain at the carboxy terminus of the S gene which is rich in 

cystine residues. This region may have a complex tertiary structure which could 

play a role in the assembly of the virions. Considerable diversity has been found 

in both the length and nucleotide sequence of the amino-terminal ends of the S 
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proteins in different viruses. In some viruses, such as MHV, this protein ts 
cleaved into two 90 kDa proteins. This cleavage is necessary for the infectivity 

of these viruses (Sturman, 1980). These differences, along with insertions in the 

S gene coding region may result from the high frequency of recombination 

during replication among these viruses. The biological functions of the S protein 

are diverse. It is responsible for binding to the virus receptor on target cells, and 

has been shown to induce cell fusion (Sturman et al. , 1983). Antibodies to it can 

neutralize viral infectivity and it is believed to play an important role in 

coronavirus pathogenesis. 

The N protein is an internal component of the virion. It is a 

phosphoprotein of 50 kDa which binds to the genomic RNA and provides a 

structural basis for the helical nucleocapsid of the virion (Lai , 1990). It binds to a 

specific segment of the leader RNA and may provide not only a structural 

function, but also a regulatory function for RNA synthesis (Stahlman et al. , 

1988). 

Another coronavirus glycoprotein, HE is a hemagglutinin which has been 

found in BCV, HEV, HCV-OC43, TCV and some MHV strains, but has not been 

found among viruses in the antigenic groups 1 and 3 (Holmes, 1990). It is 

believed to make up the smaller spikes seen on some viruses under electron 

microscopy (Dea et al, 1988). 

There is some similarity in function between the HE protein and the HA 

protein of the influenza C virus. Monoclonal antibodies to the HE protein can 

inhibit virus induced hemagglutination and neutralize virus infectivity (Deregt et 

al. , 1987). 

There are four distinct antigenic groups of coronaviruses, as shown in 

Table 1 (Holmes, 1990). Viruses within groups show partial antigenic cross-

reactivity, but they are distinguishable by host specificity and clinical syndromes. 

For example, serum from an animal exposed to feline enteric coronavirus 
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Table 1. Coronaviruses: Antigenic Groupsa 

Antigenic Group Virus Host 

HCV-229E Human 

TGEV Pig 

CCV Dog 

FECV, FIPV Cat 

II MHV Mouse 

HEV Pig 

BCV Cow 

111 IBV Chicken 

IV TCV Turkey 

New group PEDV Pig 

a Adapted from Holmes (1990). 

(FECV) cross-reacts with TGEV, CCV, and FIPV (Ingersoll and Wylie, 1988). 

This cross-reactivity does not confer protective immunity, however. 

There are large numbers of serotypes among most coronaviruses due to 

the high rate of recombination and the general frequency of mutations among 

RNA viruses. Recombination, which is one cause of the high mutation rate, 

occurs in approximately 10% of the progeny virions (Barie et al. , 1995). There is 

also a rather high frequency of mutation among the virions due to the lack of 

proofreading ability in the RNA dependent RNA polymerase. This natural 

selection of virus variants in vivo may account for the large number of serotypes. 

Coronaviruses can cause either persistent or cytocidal infections of cells. 

The virus strain and the host-cell type determine the type of infection. Cytocidal 

infections cause the cells to either form multi-nucleated syncytia or cause direct 

cell lysis (Holmes, 1990). Persistent infections have been observed in cel l 
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culture, where the cells may produce virus for several weeks with no CPE or cell 

death (Holmes, 1990). Most viruses show a marked tissue tropism and only 

grow in cells from the host species, however in some studies the species border 

has been crossed with highly passaged strains of virus (Barie et al. , 1995). 

Coronavirus replication takes place in the cytoplasm of infected cells. 

The virions attach to specific receptors on the plasma m.embrane of the host cell 

by means of the S protein (Boyle et al. , 1987). In some viruses, HE also plays a 

role in this attachment. It is not yet clear how coronaviruses penetrate the cell 

membranes, but it is believed to involve the endosomes. Virus entry by cell 

fusion has also not been ruled out. 

The first event after penetration is the uncoating and attachment of the 

genomic RNA to the ribosomes where virus specific RNA dependent RNA 

polymerase is made. This is not normally present in the cell and must be 

synthesized by incoming viral genomic RNA. Inhibition of protein synthesis at 

any point in the replication cycle will interrupt viral RNA synthesis. The(+) 

strand genomic RNA is transcribed to make complementary, full length, minus (-) 

strand RNA which has a poly(U) sequence at the 5' end. This negative strand 

serves as a template for new genomic RNA and also 5-7 subgenomic mRNAs. 

These subgenomic mRNAs form a nested set of overlapping molecules with 

common 3' ends. Only the 5' sequence of the mRNA, that is not found in the 

next smaller mRNA, is translated. At the 5' end of the genomic RNA there is a 

leader sequence of about 60-70 bases. This same sequence is also found at 

the 5' end of the subgenomic mRNAs. 

There have been three models proposed for the transcription of the 

mRNAs. One model suggests a separate initiation site for each mRNA, but a 

common termination site. Another model suggests that the mRNAs are derived 

from the cleavage and splicing of a precursor full-length RNA product. It has 

also been hypothesized that the mRNAs are synthesized using subgenomic (-) 
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strand template RNA, all of which have the same 5' end but terminate at 

separate points. All of the proposed models utilize a discontinuous 

transcriptional process. This could occur through several mechanisms. The first 

model involves a "looping out" of the template RNA to allow the RNA 

polyr:nerases to jump from the leader region to an internal initiation site. The 

second model involves post-transcriptional processing, a method in which the 

leader is fused to the mRNAs by a splicing mechanism. This is thought to be 

highly unlikely, as there are no consensus spl icing sequences at the leader and 

mRNA junction sites. The leader primed transcription theory is thought to be the 

most likely. The leader mRNA is transcribed at one end of the template, 

disassociates, and then rejoins the template RNA downstream to serve as a 

primer for transcription. For all of the above models, template RNA is of 

genomic length, but subgenomic lengths of RNA have been found. A majority of 

the evidence supports the leader primed theory of transcription. Several small 

leader sequence RNAs have been detected in the cytoplasm of MHV infected 

cells. 

Only the 5' end of mRNA is translated, thus each mRNA yields only a 

single polypeptide. The gene order of arrangement in general is 5'-pol-(HE)-S-

M-N-3'. There are several additional open reading frames for small non-

structural proteins located in various places along the genome for different 

viruses. The biological significance of these ORF s and their products is not yet 

understood, but they may be linked to pathogenesis. The nucleocapsid protein 

and several of the non-structural proteins are synthesized on polysomes in the 

cytoplasm. The HE, S, and M proteins are synthesized on polysomes which are 

attached to the RER. The accumulation of viral structural proteins is a 

prerequisite for the assembly of virions. It may also signal the switch of the viral 

RNA from making mRNAs to genomic RNA synthesis for packaging into mature 

virions. The assembly of the S protein occurs in the RER, then it is transported 
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to the plasma membrane. The accumulation of these proteins on the membrane 

can make the cell susceptible to lysis by antibodies and complement. It is also 

required for cell fusion. The M protein is also synthesized on the ER. It has 

several hydrophobic domains which span the membrane three times. The 

insertion sequence can be either the first or the third transmembrane sequence. 

In TGEV, a signal peptide that has 17 amino acids is cleaved from the amino 

terminus of the M protein in the ER, then the M protein is transported to the 

golgi. 

Virion assembly mainly occurs in the cytoplasm. The helical nucleocapsid 

is formed in the cytoplasm by an interaction of genomic RNA with the N protein. 

Assembly by budding initially occurs at membranes between the RER and golgi, 

via the cytoplasmic domain of the M protein. Complete virions are able to 

assemble in the cel l before the S protein has accumulated at the plasma 

membrane and made the cell susceptible to attack. This may play an important 

role in coronavirus persistence. The virions are released from the cells in two 

ways. They can either cause the cells to lyse, releasing the virions or they can 

be released from intact cells by making use of cellular secretory pathways. 

It has been suggested by Barie et al. (1995) that coronaviruses could be 

potentially important emerging pathogens. The large genome size and unique 

repl ication strategy coupled with the high rate of recombination during mixed 

infections gives the coronaviruses a high capacity to evolve (Barie et al. , 1995). 

The majority of emerging RNA viruses are potential zoonotic pathogens, human 

immunodeficiency virus, hanta virus and influenza being prime examples. There 

is little known about the molecular mechanisms which mediate virus spread 

between species, but the high mutation rates in coronaviruses suggest a large 

quasispecies population. Barie et al. (1 995) conducted research that examined 

the polymerase error rates and RNA recombination frequencies in MHV. They 

found that there was a mutation rate of 103-105 per round of replication. The 
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most likely model to explain the high, progressively 5'-3' increased 

recombination rate in MHV is from the large genome size, the discontinuous 

method of transcription and the presence of transcriptionally active full and 

subgenomic length plus and minus strand RNAs which increase the amount of 

template for strand switching (Barie et al. , 1995). Barie et al. (1995) were also 

able to show that MHV can cross the species barrier by ~etting it to grow in 

hamster baby kidney cells in relatively few passages. There are newly 

recognized animal coronaviruses which incorporate parts of other viral genomes 

such as porcine epidemic diarrhea virus, which has a portion of its sequence 

that is similar to that of human coronavirus 229E. This is another example of the 

coronaviruses as important emerging pathogens. The above evidence shows 

the abil ity of coronaviruses to evolve rapidly and possibly bridge species 

barriers. 

Transmissible Gastroenteritis Virus 

TGEV belongs to the Coronaviridae family of viruses. It was first isolated 

in 1946 in Europe by Doyle and Hutchings. The virus causes transmissible 

gastroenteritis which is a highly contagious enteric disease of swine 

characterized by severe diarrhea, vomiting and dehydration in susceptible pigs. 

It is often fatal in young pigs, w ith a mortality rate near 100% in pigs under 2 

weeks old (Saif and Bohl, 1986). The disease is a problem in nurseries in the 

United States, with conservative estimates of annual economic losses to the 

pork industry between 25 to 75 million dollars (Miller et al. , 1982). 

There are currently no ideal methods for treatment, prevention or control 

of TGEV. Serological tests that identify antibodies to TGEV in the sera of 

infected animals have been problematic due to the emergence of PRCV. The 

antigenic cross-reaction among isolates of TGEV and PRCV has been 

discussed by many researchers (Callebaut et al. , 1988; Garwes et al. , 1988; 
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Wesley et al, 1990b; Vaughn and Paul, 1993). There is only one serotype of 

TGEV, but monoclonal antibodies have been used to detect variations among 

TGEV isolates (Laude et al. 1986, Vaughn and Paul, 1993; Zhu et al. , 1990). 

This may be one of the reasons commercial vaccines have failed to protect 

some herds. Autogenous vaccines have been shown to be effective in some 

cases (Paul, 1988). 

TGEV has several antigenic properties in common w ith other 

coronaviruses. There are two major antigenic groups of coronaviruses (Holmes, 

1990). TGEV , feline infectious peritonitis virus (FIPV) and canine coronavirus 

(CCV) have been shown to be closely antigenically related and are in the same 

group (Pensaert et al. 1991 ). Cross-reactivity has been shown among these 

viruses by serological tests ( Sanchez et al. 1989). PRCV is also in this group 

and is believed to be a respiratory variant of TGEV, and cannot be distinguished 

from TGEV accurately in serological tests. TGEV and PRCV are antigenically 

unrelated to another known porcine coronavirus, porcine epidemic diarrhea virus 

(PEDV). 

The genome of TGEV is similar to other coronaviruses. It has a positive-

sense RNA genome of 28.5 kb, which can be directly infectious when introduced 

to susceptible cells (Lai , 1990; Holmes, 1990). TGEV has three main structural 

proteins, the S, M, and N. The S, or spike protein forms the peplomers on the 

viral surface which are responsible for virus attachment. It has a molecular 

mass of approximately 200 kDa and is glycosylated (Garwes et al. , 1976). It is 

believed to be the main protein involved in antigenicity and tissue tropism 

(Laude et al., 1993; Rassachert et al. , 1990; Wesley et al. , 1990a). Antibodies to 

this protein neutralize the virus and prevent viral infection (Garwes et al. , 1978). 

The Mor matrix protein is found entwined in the viral envelope. It has a 

molecular mass of 25 to 30 kDa and is also glycosylated. Structure analysis 

shows that it passes through the membrane three times, w ith only a small 
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portion actually being exposed to the external surface. Antibodies to this protein 

do not neutralize virus infection. The N, or nucleocapsid protein complexes with 

the genomic RNA to form the nucleocapsid inside the viral envelope. 

Two main types of TGEV infections are seen in swine herds, the epizootic 

and the enzootic forms. An epizootic infection occurs when the TGEV virus is 

introduced to a susceptible herd. There is a rapid spread of the virus to pigs of 

al l ages. Many animals will lose their appetite, become lethargic, and develop 

vomiting and/or diarrhea (Bohl, 1989) Mortali ty can run as high as 100% in 

neonates, but the severity of the disease declines with age. The disease usually 

is self limiting, and terminates w ithin a few weeks if no new susceptible pigs are 

brought into the herd (Bohl , 1989). The enzootic form of TGE refers to the 

persistence of the infection and disease with in a herd. This usually occurs in 

herds where susceptible animals are continuously being brought in, as in a 

continuous farrowing operation (Bohl, 1989). The sows in these herds are 

commonly protected enough to not show severe clinical disease and also to 

provide some lactogenic immunity to their piglets, but at weaning, when 

maternal antibodies decline the piglets break out with the disease. Mortality at 

this stage is usually less than 20% due to the age of the piglets but weight gain 

suffers (Bohl, 1989). 

TGEV infects the enteric tract of swine, repl icating in the absorptive 

enterocytes (Sirinarumitr et al. , 1996). TGEV binds to the cell through two 

receptors, aminopeptidase-N (CD1 3) (Delmas et al. 1990) and another 200 kDa 

receptor (Weingart! and Derbyshire, 1993). By using in situ hybridization it has 

been shown that there is TGEV nucleic acid present in the crypt epithelial cells 

as well , although these cells do not have either of these receptors. It has been 

speculated that TGEV may bind non-specifically to the cel l membrane and then 

infect them (Weingart! and Derbyshire, 1993). It could also be that a TGEV 

infection in these cells is non-productive and that is why nucleic acid is seen, but 
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protein is not (Woods et al. , 1981 ; Sa if and Wesley, 1992). The infection of the 

villous enterocytes results in cell destruction and shedding, which causes villous 

atrophy within the small intestine (Bohl, 1989). This leads to the inability to 

absorb some nutrients and disturbs the chemical balance within the intestine 

causing diarrhea and digestive problems (Moon, 1978). The disease is not as 

fatal in older pigs in part for their ability to replenish the villous enterocytes 

rapidly, taking only 2-4 days in 3 week old pigs as opposed to 7-10 days in one 

day old pigs (Moon, 1978). 

Because of the high mortality rate in young piglets, one of the goals of 

researchers has been to develop a vaccine that provides lactogenic immunity. It 

has been shown that exposure of the sow to virulent virus provides lactogenic 

immunity to the piglets (Bohl and Saif, 1975). This immunity is not carried post 

weaning. There are vaccines available and licensed for TGEV which consist of 

either inactivated or live attenuated virus. They seem to provide variable 

protection (Moxley and Olson, 1989). 

A small plaque variant was developed which was derived from a 

persistently infected swine leukocyte cell line. This isolate was avirulent for 3 

day old piglets and pregnant gilts. The small plaque mutant could not be 

isolated from pigs after inoculation, but the pigs developed virus neutralizing 

antibodies against TGEV in serum, colostrum, and milk. Only 62% of the piglets 

were sick after challenge with the virulent Miller strain and 14% died (Woods, 

1978). This isolate was found to have a 462 nucleotide deletion in the 3 and 3-1 

region of the genome, but had an intact S gene. Researchers hypothesized that 

the 3 and 3-1 regions are important in the virulence and pathogenesis of TGEV 

(Westly et al. 1990a). 
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Porcine Respiratory Coronavirus 

PRCV is antigenically and genetically related to TGEV. It repl icates in the 

respiratory tract of swine, and causes little to no respiratory disease. It is found 

al l across Europe, and to a lesser extent the United States and Canada. 

PRCV was first isolated in Belgium in 1984, when it was discovered that 

there were exceptionally high numbers of swine which were seroconverting to 

TGEV without evidence of cl inical disease in the herd (Pensaert et al. , 1986). A 

coronavirus isolate designated TLM 83 was obtained from the respiratory tract of 

swine in which no enteric infection occurred, but seroconversion did (Pensaert 

et al. 1986). The virus was later renamed porcine respiratory coronavirus due to 

its tropism for the respiratory tract. PRCV was first isolated in the United States 

in 1989 by Hill et al. (1989). 

PRCV was initially isolated in primary pig kidney cells, but the CPE 

rapidly disappeared and the cells recovered. Other cell systems were utilized to 

optimize the growth of PRCV. It replicates well in porcine continuous cell lines 

ST and PD5, causing syncytia formation and destruction of the monolayer 

(Pensaert, 1989). 

PRCV spread quickly across Europe and has recently been found in the 

United States and Canada. PRCV was enzootic in Belgium in 1986 with 100% 

of swine farms having been infected (Pensaert, 1989). It has been suggested 

that it may spread aerogenically due to the infiltration of the virus into areas 

which had no incidence of TGEV such as Denmark. Infection has been known 

to occur in herds which are very isolated from other herds. Also, infection is 

more common in the autumn months in Europe, where the foggy and ra iny 

weather further facilitate aerosol spread (Laude et al. 1993). The possibility of 

other modes of transmission including fomite contamination and spread by stray 

animals are still under investigation. 
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The differentiation of TGEV and PRCV by traditional virus neutralization 

tests is not possible due to their common antigenicity. TGEV and PRCV are 

both neutralized by serum to each other. This has raised some concerns with 

the export of pigs from countries with PRCV to countries which require pigs to be 

TGE-free before being exported (Pensaert, 1989). Monoclonal antibodies have 

been developed which react to a non-neutralizing portion of the S gene which is 

present in TGEV, but not in PRCV. These monoclonal antibodies have been 

util ized in competitive ELISAs which differentiate between TGEV and PRCV 

antibodies in serum (Callebaut et al. ; 1989; Garwes et al. , 1988; Jabrane et al, 

1992). The presence or absence of blocking antibodies determines whether the 

animal has seroconverted to TGEV or PRCV (Callebaut et al. , 1989). 

Other tests have been developed for the differentiation of TGEV and 

PRCV as well. Complementary DNA probes have been used to differentiate 

TGEV and PRCV infection in tissue samples (Wesley et al, 1991 ). Recently, a 

test has been developed utilizing a radiolabeled probe and an in situ 

hybridization for the differentiation of TGEV and PRCV in paraffin embedded 

formalin fixed samples and tissue culture (Sirintumatr et al. , 1996). Further work 

is being done with this project to develop a similar test which uses a non-

radiolabeled probe instead to make the test safer and more practical in the 

diagnostic lab. These tests, with the exception of isolation from nasal swabs in 

tissue culture, are all postmortem tests. Accurate serological tests need to be 

developed. 

Piglets obtain maternal antibodies through colostrum shortly after birth, 

and the level of antibody rapidly declines. The amount of maternal protection to 

TGEV conferred to the piglets depends upon how long prior to birth the sow was 

infected with PRCV and the age of the piglet during challenge. Whatever the 

immunization procedure in experimentally infected pigs, no correlation was seen 

between the antibody level and the degree of passive protection transferred to 
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the piglets (Bernard et al. , 1989). In herds with endemic infections of PRCV, the 

antibody titers in the young pigs increase during suckling, decrease upon 

weaning and increase again after 4-8 weeks of age. This indicates that the 

piglets must become infected with PRCV sometime after weaning (Pensaert, 

1989). Natural infection with PRCV induces protective lactogenic immunity 

against TGEV, however protection is not complete. In a study by Bernard et al. 

only two of seven litters from sows infected with PRCV didn't show morbidity 

after challenge with TGEV. Five of seven litters had no mortality (Bernard et al. , 

1989). The age of the piglets at challenge may be a relevant factor as age 

related resistance to TGEV is well documented. Other researchers have found 

conflicting data showing that lactogenic immunity from sows infected with PRCV 

may not adequately protect their litters against a natural TGE challenge 

(Hooyberghs et al. , 1991 ). This may be due to the conditions used for 

evaluation of protective immunity (Bernard et al. , 1989). Cases of clinical TGE 

have decreased in Europe concurrent with the seroconversion to PRCV. This 

can be considered as an argument in favor of cross-protection (Bernard et al. 

1989). 

PRCV has been shown to replicate in the nasal mucosa, trachea, lungs, 

tonsils, bronchial and mesenteric lymph nodes and to a small extent in the small 

intestine. It replicates to high titers in the respiratory tract. Replication mainly 

occurs in alveolar cells, but also in epithelial cells of nasal mucosa, trachea, 

bronchi, bronchioli and in alveolar macrophages (Cox et al. , 1993). After the 

primary replication cycle, viremia occurs. The virus is sometimes able to reach 

the intestinal tract, possibly due to the swallowing of virus from the respiratory 

tract or from the viremia (Cox et al. , 1993). PRCV has been shown to have 

limited replication in the intestinal tract which is limited to a few cells (Cox et al. 

1993; Halbur et al. 1993; Sirinarumitr et al. , 1996). PRCV has experimentally 
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been isolated from the caudal small intestine when the virus was inoculated 

intravenously or directly into the intestinal tract (Cox et al. , 1993). 

Experimental infection of the respiratory tract do not always cause clin ical 

signs, but histological evidence is present (Halbur et al. , 1993). PRCV isolates 

in Europe caused a mild to moderate bronchiointersitial pneumonia in neonatal 

pigs, however the pigs were clinically normal (Cox et al. , 1990a; O'Toole et al. , 

1989). American isolate AR-310 was shown to be pneumopathogenic for 3 day 

old gnotobiotic pigs. However, there was no clin ical disease seen. It is thought 

that infection with PRCV may enhance disease signs when concurrently infected 

with other respiratory agents (Halbur et al. , 1993; Pensaert, 1989). The lesions 

which are seen in the lungs may predispose the pigs to secondary bacterial 

infections (Halbur et al. , 1993). Studies have been done which look at the 

pathogenicity of concurrent infections with PRCV and swine influenza virus 

(Lanza et al. , 1992; VanReeth and Pensaert, 1994). These studies found 

concurrent infections with PRCV and two strains of swine influenza virus did not 

enhance disease and indicated that there may be possible interference between 

the two viruses (Lanza et al. , 1992). Porcine reproductive and respiratory 

syndrome (PRRS) virus has also been isolated from herds with PRCV, and in 

many clinical cases of PRCV there was a mixture of bacteria isolated from the 

respiratory tract (Halbur et al. , 1993). 

The decrease in the incidence of TGEV in Europe concurrent with the 

spread of PRCV suggests that pigs infected with PRCV were immune to 

infection with TGEV. However, conflicting results have been obtained in 

different experimental studies by many investigators. Cox et al. (1993) showed 

that pigs infected with PRCV and challenged with TGEV show signs of diarrhea 

and TGEV was still shed in feces. They concluded that infection with PRCV 

does not induce intestinal immunity to TGEV, but does offer some protection 

(Cox et al. , 1993). There was a secondary immune response to TGEV in most of 
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the PRCV immune pigs, but they all showed evidence of TGEV replication, 

although clinical signs were not as severe as those in the control pigs (Cox et 

al. , 1993). It is posoble that a decrease in the incidence of TGEV is concurrent 

with changes in farming practices as well. Antigenic reactivity between TGEV 

and PRCV has been shown by immunoblots with monoclonal antibodies to the 

M, N and S proteins. Some of the non-neutralizing monoclonal antibodies to the 

S protein failed to react to PRCV, indicating a difference between the viruses in 

this region (Callebaut et al. .. 1988). 

It is unknown how PRCV originated. It has been speculated that it is an 

attenuated TGE virus from a vaccine strain. Studies have shown that upon 

repeated passage in continuous cell lines TGEV can become adapted to 

replicate in pulmonary cell lines. Sequence analysis shows that TGEV and 

PRCV are identical in most regions, substantiating the more widely held belief 

that PRCV is a TGEV variant (Pensaert, 1989). The genome of PRCV is 

organized similar to TGEV. It has a polymerase gene, S, M and N genes. The 

mRNAs 2 and 3 are smaller in PRCV. Researchers in Europe sequenced these 

regions in two Belgian PRCV isolates and one French isolate and found that 

there was a 672 nucleotide deletion which occurred 59 nucleotides downstream 

of the S gene initiation site when compared to TGEV ( Britton et al, 1991 ). 

Deletions in the S protein may be a way of altering the tropism and concurrently 

the pathogenicities of these viruses (Britton et al. , 1991 ). The mRNA 3 was 

smaller due to the presence of a new RNA-leader binding site upstream of the 

PRCV ORF-3 gene. Four other ORFs were identified and shown to be 98% 

similar to TGEV ORF-4, M, N and ORF-7. No other deletions or specific PRCV 

sequences were identified (Britton et al. , 1991 ). PRCV and TGEV genomes 

differ only by a few deletions and point mutations. A comparison of these 

sequences with TGEV showed that the leader RNA sequences involved in 

transcription were the same (Page et al. , 1991 ). It also showed that mRNA 2 
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and 3 were smaller due to the reasons outl ined above (Britton et al. , 1991; Page 

et al, 1991 ). Studies done on the mRNA 3 identified several small deletions in 

the region which resulted in a loss of the potential TGEV ORF-3a gene (Page et 

al. , 1991 ). The PRCV mRNA 3 is approximately 200 nucleotides smaller than 

the ~quivalent in TGEV. There are several small deletions, 84 nucleotides total 

in the PRCV genome which correspond to the 5' end of TGEV mRNA 3, two of 

these deletions being in the TGEV 3a gene region resulting in a loss of this 

potential gene in PRCV (Britton et al. , 1991 ). The exact mechanism for the 

deletion events is not known. The TGEV ORF-3a gene identified in three 

different strains of TGEV is present as a pseudogene in PRCV. The small 

plaque mutant of TGEV had a 462 nucleotide deletion which eliminated the 

ORF-3a in th is virus (Woods, 1978). These observations show that the protein 

encoded by ORF 3 is not needed for replication of TGEV, but its role in 

pathogenicity has yet to be determined (Britton et al. , 1991 ). It is believed that 

the 3 and 3-1 genes play a role in the pathogenesis because it is altered in all 

isolates of PRCV studied so far. Deletions from the US isolates differ from the 

European isolates, but they show the same general pattern; the S gene is 

truncated and ORF-3 is converted to a pseudogene (Laude et al. , 1993). 

Further characterization of the US isolates needs to be done to determine the 

possible roles that these mutations play in virulence. 
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Abstract 

Four new isolates of porcine respiratory coronavirus (PRCV) were 

isolated from various swine herds in the United States. Biological characteristics 

of these viruses, as well as four other PRCV isolates, were examined. Studies 

included growth properties in two cell lines, plaque sizes, and cytopathic effects. 

Growth curves showed a similar pattern of growth among the isolates within the 

swine testis and porcine intestinal cell lines. There is an initial peak at around 

24-30 hours post infection, then a slight decline with a second peak at 

approximately 48 hours post infection. Overall, the titer of viruses was higher in 

the intestinal cell line, however isolate IA 1894 had a lower titer than the others. 

It was also the only isolate which was non-cytopathic in this cel l line. Plaque 

sizes among the isolates varied. The PRCV isolate IA 1894 had the smallest 

plaque size, the average being 1.0 mm, while PRCV isolate 725 had the largest 

plaque size, the average being 5.2 mm. 

The nucleotide sequence of the 5' end of the S genes, the 3 genes 3, and 

3-1 of the four new PRCV isolates were analyzed and compared to other PRCV 

and TGEV isolates. All four of the PRCV had a large deletion in the 5' region of 

the S gene. The size of the deletion varied from 621 to 711 base pairs. The 

PRCV isolate 725 had a 621-nucleotide deletion starting 47 nucleotides after the 
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S gene start site similar to that for isolate LEPP and AR31 0. The PRCV isolate 

PON had a 681-nucleotide deletion starting 62 nucleotides after the S gene start 

site, identical to the previously characterized PRCV isolate ISU-1 . The PRCV 

isolate 306 had a 675-nucleotide deletion starting 54 nucleotides after the S 

gene start site, while the PRCV isolate NVSL 5170 had a 711-nucleotide 

deletion 27 nucleotides after the S gene start site. This i.s the largest deletion 

reported at this time. 

Analysis of the nucleotide sequence of gene 3 of the four isolates showed 

some differences among the isolates. All of the isolates had a CT AAAC leader 

RNA binding site and the ATG start codon for the gene 3. The gene 3 of 725 

and NVSL 5170 were predicted to yield a protein of 72 amino acids, which is the 

same size as PRCV isolates AR310 and LEPP and also the virulent Miller strain 

of TGEV. The PRCV isolate PON was predicted to yield a truncated protein of 

only 16 amino acids due to a change in sequence which coded for a stop site 48 

nucleotides from the start site. The PRCV isolate 306 was markedly different 

from the other isolates in that it had a deletion of 7 nucleotides, which caused a 

frameshift and an insertion of 29 nucleotides which coded for a stop codon. The 

predicted protein size was 66 amino acids. 

There was high variability in the gene 3-1 of all the isolates as well. The 

gene 3-1 of 725, NVSL 5170, and PON were all preceded by the CTAAAC 

leader binding sequence. The PRCV isolate 725 was predicted to yield a 

truncated (63 amino acids compared to 244 amino acids in the virulent Mil ler 

strain of TGEV) 3-1 protein due to a 1 nucleotide deletion. This is similar to that 

for isolates AR310 and LEPP. The PRCV isolate PON was predicted to yield an 

80 amino acid protein due to a deletion of two nucleotides. Isolate 306 was 

totally different from the other isolates. It had no CT AAAC leader binding 

sequence and no ATG start site due to a 52-nucleotide deletion which leads to 

the prediction that there is no 3-1 protein formed. The information gained from 
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these new PRCV isolates should be useful in gaining a better understanding of 

the pathogenesis of PRCV. 

Introduction 

Porcine respiratory coronavirus (PRCV) and transmissible gastroenteritis 

virus (TGEV) are members of the Coronaviridae family of viruses (Saif and Bohl, 

1986; Pensaert, 1989). Coronaviruses are enveloped and have a positive-

sense, single-stranded RNA genome (Holmes, 1990). Transmissible 

gastroenteritis virus (TGEV) of swine causes severe diarrhea with high mortality 

in piglets under 3 weeks of age (Holmes, 1990; Saif and Bohl , 1986). It infects 

the vil lous enterocytes of the small intestine and causes them to slough. This in 

turn leads to malabsorption and dehydration, signs characteristic of 

transmissible gastroenteritis (TGE) (Saif and Bohl, 1986). 

Porcine respiratory coronavirus (PRCV) is thought to be a respiratory 

variant of TGEV (Pensaert, 1989). It replicates in the respiratory tract of swine 

with little clinical disease, but some isolates have been found to cause lesions 

which may predispose the pig to secondary infections (Halbur et al. , 1993). 

PRCV was first discovered in Belgium in 1986, and has now become 

widespread in Europe (Pensaert et al. , 1986). The prevalence of PRCV in the 

United States is not known, but several researchers have isolated it from U.S. 

herds (Hill et al. , 1989; Paul et al. , 1992; Vaughn et al. , 1995). 

PRCV and TGEV have been shown to be antigenically and genetically 

related (Laude et al. , 1993). TGEV and PRCV are genetically similar, and yet 

show differences in tissue tropism and pathogenicity which make them good 

candidates for the study of coronavirus genes which are involved in tissue 

tropism and virulence (Vaughn et al. , 1995). 

Coronavirus replication is unique among RNA viruses. They form a 
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3'-terminal nested set of subgenomic mRNAs which are polycistronic in nature, 

but monocistronic in function because only the unique 5' end of each mRNA is 

translated (Spaan 1988). TGEV and PRCV form seven or eight mRNAs during 

replication (Wesley et al. , 1990). Their genome is similar to other 

coronaviruses. Prior to each ORF on the genome there is a conserved leader 

binding sequence CT AAAC which is believed to be used during the transcription 

of the mRNAs as a consensus leader binding site (Lai, 1990; Spaan, 1988). 

The mRNA 1 encodes for the RNA-dependent RNA polymerase which is 

necessary for viral replication (Lai , 1990). The mRNA 2 encodes for the spike 

(S) protein which is responsible for viral attachment and tissue tropism (Lai, 

1990). The mRNAs 3 and 3-1 encode for two nonstructural proteins, the fuct ion 

of which is unknown at this time. They have been hypothesized to be involved 

in pathogenicity (Wesley et al. , 1990). A small integral membrane protein (sM) 

is encoded for by mRNA 4 (Godet et al. , 1992). The membrane protein (M) and 

the nucleocapsid protein (N) are encoded by mRNAs 5 and 6 (Spaan, 1988). 

The last mRNA, mRNA 7, has been shown to encode for a small protein which 

has been implicated in binding DNA in infected cells (Garwes et al. , 1989). 

Studies which have compared the genomic sequences of PRCV to TGEV 

have shown two major differences between the two viruses. The S gene of 

PRCV, when compared to TGEV, has a large deletion which ranges from 621 - to 

681 - nucleotides in length (Britton et al. , 1991 ; Laude et al ., 1993; Rasschaert et 

al. , 1990; Vaughn et al. , 1994 ). This is thought to play a role in determining 

tissue specificity (Sanchez et al. , 1992). In all PRCV isolates there were 

alterations in the 3 and 3-1 genes either in the leader binding sequence or in the 

gene sequence itself. This leads to the mRNAs from these ORFs either not 

being produced, or producing mRNAs which code for truncated proteins (Laude 

et al. , 1993; Page et al. ,1991 ; Rasschaert et al. , 1990; Vaughn et al. , 1994). 

The 3 and 3-1 genes in TGEV have been hypothesized to be important in the 
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pathogenesis of TGEV (Wesley et al. , 1989). The U.S. PRCV isolates AR310 

and LEPP are the only ones which have been shown to have an intact 3 gene, 

all other isolates which have been characterized show an alteration or deletion 

in the 3 or 3-1 region (Vaughn et al. 1994 ). 

In this study, the molecular characteristics of four newly cultured PRCV 

isolates were analyzed. The size and location of the 5' ~ gene deletion was 

examined. Genes 3 and 3-1 were also sequenced. The sequence of these 

isolates were then compared to four isolates which were studied previously by 

Vaughn et al. (1994), as well as the virulent Miller strain of TGEV. 

The biological characteristics of all eight PRCV isolates used in th is study 

were also examined. Variations in plaque sizes, growth patterns in two cell 

lines, and CPE differences were all utilized to compare these isolates. Some of 

the strains that have been previously characterized vary in pathogenicity (Halbur 

et al. , 1994 ). By utilizing these isolates in our study we determined if there was 

a link between the differences seen in vitro and their relevance in vivo. 

Materials and Methods 

Cell Culture 

Two cell lines were used in this study. The swine testicular (ST) cell line 

was used to propagate and isolate PRCV (McClurkin and Norman, 1966; Zhu et 

al. , 1990). The ST cells were maintained in Eagle's minimum essential medium 

(MEM) (Gibco, Grand Island, NY) with 10 percent fetal bovine serum (FBS) 

(Gibco, Grand Island, NY), sodium bicarbonate (2.9 g/L) (Fisher Scientific, Fair 

Lawn, NJ) and lactalbumin enzymatic hydrolysate (5.0 g/L) (Sigma, St. Louis, 

MO). The ST cells were maintained in 75 cm2 tissue culture flasks (Costar, 

Cambridge, MA) with 3-4 days between subculturing. They were grown in a 

37°C incubator w ith 5% C02. The cells were subcultured by decanting off old 
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medium and washing three times with 10 ml of rinse saline. After decanting off 

the final wash, 3 ml of 0.2% trypsin was added and the flask was incubated at 

37°C for 5 minutes. The flask was then tapped gently to remove the cells from 

the flask surface. The cells were resuspended in 100 ml of medium and 

subcultured at a 1 :4 ratio. 

The second cell line that was used in the study was a porcine intestinal 

epithel ial cell line, IPEC-1 . This cell line is a continuous line of epithelial cells 

derived from the intestine of a 12 hour old piglet. The cell line was kindly 

provided by Dr. H.M. Berschneider of North Carol ina State University. The 

IPEC-1 cells were grown in DMEM/F1 2 medium (Gibco, Grand Island, NY) 

which was supplemented w ith epidermal growth factor (EGF) 

(1 µg/L)(Collaborative Biomedical Products, Bedford, MA), ITS premix 

(Collaborative Biomedical Products, Bedford, MA) which contained insulin 

(5mg/L) , transferrin (5mg/L) and selenium (5µg/L) and 5% fetal bovine serum 

(FBS) (Gibco, Grand Island, NY). The IPEC-1 cells were propagated in 75cm2 

flasks with 7-10 days between subcultures. They were maintained in a 37°C 

incubator with 5% C02 . These cells were subcultured in much the same way as 

the ST cells. The old medium was poured off when the cells began to detach 

sl ightly from the flask (7-10 days). The monolayer was then rinsed three times 

w ith 1 O ml of calcium-magnesium free phosphate buffered saline (CMF-PBS). 

The last rinse was decanted off and 3 ml of 0.1 % trypsin was added to the flask. 

The cells were placed back in the incubator for 10-20 minutes to allow the cells 

to detach from the monolayer. The cells were resuspended in 75 ml of medium 

and subcultured at a 1 :3 ratio. 

Viruses 

Eight PRCV isolates were used in this study. Four of the isolates; AR310, 

LEPP, IA 1894 and ISU-1, have been described in a in previous study in which 
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they looked at the S gene sequences and pathogenici ty (Vaughn et al. , 1994 ). 

AR310 was isolated from intestinal homogenates of a piglet with TGEV in a 

swine herd in Arkansas in 1989 (Halbur et al. , 1993). LEPP and IA1894 were 

isolated from nasal swabs which were collected from herds in Iowa with 

pneumonia in 1991 and 1992 (Vaughn et al . 1995). The isolate ISU-1 was 

obtained from Dr. Howard Hill of the Iowa State Veterinary Diagnostic Lab (Hill 

et al. , 1989). The four new isolates were isolated from various sources. NVSL 

5170 was isolated from a fecal sample received by the National Veterinary 

Services Laboratory in Ames, IA. The herd had a history of ongoing diarrhea, 

and 10% mortality among neonates. Low to moderate numbers of coronavirus 

like particles were visible in the sample when viewed under electron microscopy. 

Samples were found to be negative for TGEV by two diagnostic labs. The 

owner also had purchased pigs from the United Kingdom. Due to the difficulty in 

the detection of TGEV and history of the addition of pigs from Europe porcine 

epidemic diarrhea was suspected. However virus isolation and sequence 

analysis showed that it was not true. When tissues were examined using in situ 

hybridization, a weak positive signal for TGEV was seen and both TGEV and 

PRCV were isolated from a fecal sample (Halbur et al. , 1995). Isolate 725 was 

from a herd in Iowa in 1992 where the nursery pigs had a mortality rate of 

approximately 10%. The nursery pigs had some sneezing and some respiratory 

illness prior to necropsy. Upon necropsy pneumonia-type lesions were seen. 

The pigs had high titers to TGEV, but did not show any enteric disease signs. 

The isolate 306 was also from a herd in Iowa which had lung lesions and signs 

of pneumonia upon necropsy. This herd was also positive for porcine 

respiratory and reproductive syndrome (PRRSV). Isolate PON was obtained 

from a herd in Nebraska which had cl inical respiratory signs. Upon necropsy 

evidence of bronchopneumonia was present. They had high titers to TGEV with 
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no enteric disease symptoms which is indicative of PRCV infection. PRRSV was 

also isolated from these pigs. 

All of the viruses were isolated and propagated in ST cells. They were 

plaque purified three times before being used for further characterization. Stock 

virus was prepared from these isolates and titrated in ST cells then stored at -

70°C. The titer was expressed as tissue culture infectious dose (TCID50) . 

Growth Curve 

A two step growth curve was done to determine the growth rate and titer 

of each isolate in the ST cell line and compare it to an intestinal epithelial cell 

line, IPEC-1 . Twelve well plates (Costar, Cambridge, MA) containing 

monolayers of ST cells or IPEC-1 cells were inoculated with 0.1 MOI of each 

isolate in MEM or DMEM/F1 2 respectively. After one hour, the virus inoculum 

was removed and 2 ml of MEM with 2% FBS or DMEM/F1 2 with 2% FBS was 

added to each well. At various times post-infection the wells were scraped with 

a cell scraper, the fluid was removed and placed in a 1.5 ml microcentrifuge 

tube, then stored at -70°C. When samples at all of the time points had been 

collected they were subjected to three cycles of freezing and thawing. Serial 

dilutions of each isolate was made and 96 well plates of three-day-old ST cells 

were inoculated to determine the virus titer. All time points of 8 isolates were 

done in duplicate. 

Plaque Assay 

Six-well plates of confluent ST cells were inoculated with 0.5 ml of each 

virus isolate. After a one hour incubation period at 37°C, the virus inoculum was 

removed. A 2ml agarose overlay was then added to each well. The agarose 

was composed of 2x Basal Minimal Essential Medium (BME) and 1.8% 

SeaPlaque agarose (FMC Bioproducts) in equal amounts with 1.5ml/1 OOml of 
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7.5% sodium bicarbonate and 1.6ml/1 OOml of 0.1 % neutral red. The plates were 

allowed to sit for 15 minutes under the hood to allow the agarose to harden and 

they were then placed upside down in the incubator at 37°C and allowed to 

incubate for four days. The plaques were then observed on a light box and the 

diameter was measured. One hundred plaques were measured for each isolate. 

CPE Differences 

Monolayers of ST and IPEC-1 cells were grown in 25 cm2 t issue culture 

flasks. They were infected with 0.1 MOI of virus and observed every 24 hours 

for CPE. Differences were recorded and observations were carried out for 96 

hours post infection. This was done for each virus isolate. 

RNA Isolation 

ST cells were infected with 0.1 MOI with AR310, ISU-1 , IA 1894, LEPP, 

PON, 5170 NVSL, 306, or 725. At 48 hours post infection, the medium was 

removed and total RNA was isolated from the infected ST cells by using a micro 

RNA isolation kit (Stratagene, La Jolla, CA). The RNA was washed with 75% 

ethanol, dissolved in DEPC-treated water, and stored at -70°C. The 

concentration and quality of RNA was determined by OD at 260 and 280nm. 

cDNA Synthesis and PCR Amplification 

First strand cDNA synthesis was done on total RNA from infected ST 

cells, using the cDNA Cycle Kit (lnvitrogen, San Diego, CA) with random 

primers. We have found that for the 3 and 3-1 genes we get better results with 

specific primers 538 and 622 (Table 2) for cDNA synthesis, so we have used 

those for that portion of the experiment. 

The cDNA was amplified by PCR using TaqDNA polymerase (Boehringer 
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Table 2. Specific primers used for S gene and 3, 3-1 gene PCR 

Primer Sequence Orientation Gene 

Description 

184 GTAAAAACATTAGCCACATA Reverse s 
185 AGGGTAAGTTGCTCATTAG Forward s 
5383 CTATTGAAAAAGTGCACGTC Forward 3, 3-1 

6223 AATGATGCTAATGACCATTC Reverse 3, 3-1 

a from Vaughn et al. (1995). 

Mannheim, Indianapolis, IN) and by using specific primers (Table 2). The 5'-half 

of the S gene of the PRCV isolates was amplified with the primers 184 and 185 

using the following PCR conditions: 35 cycles of 30 seconds at 92°C, 30 

seconds at 49°C, and 45 seconds at 72°C in a DNA thermal cycler. 

The 3 and 3-1 region was amplified with the primers 538 and 622 using 

the following conditions: 1 cycle of 1 minute at 94°C, 1 minute at 49°C, and 5 

minutes at 72°C; 30 cycles of 1 minute at 94°C, 1 minute at 49°C, and 1.5 

minutes at 72°C; followed by 1 cycle of 1 minute at 94°, 1 minute at 49°C and 5 

minutes at 72°C in a DNA thermal cycler. 

PCR Product Purification 

One-tenth of the PCR product was run on a 1 % agarose gel to evaluate 

the success of the PCR. The rest of the product was purified directly from the 

PCR reaction by using the W izard PCR Preps DNA Purification System for rapid 

purification of DNA fragments (Promega, Madison, WI ). Two microliters of the 

purified product was run on a 1 % agarose gel to determine the product 

concentration. 
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Sequence Analysis 

The RT-PCR product for the S gene and the 3, 3-1 genes of each isolate 

was purified and sequenced directly with an automated DNA sequencer (Applied 

Biosystem) using virus-specific primers. The sequence of the S gene was 

determined with primers 184 (5' GTAAAAACATTAGCCACATA 3') and 185 (5' 

AGGGTAAGTTGCTCATTAG 3'). The sequence of the 3, and 3-1 genes were 

determined with primers 538 (5' CTATTGAAAAAGTGCACGTC 3') and 622 (5' 

AATGATGCTAATGACCATTC 3') and also internal primers 048 (5' 

GCATAGGTCCTAAAAGTGTCATTG 3') and 118 (5' 

TTTGTGTGTTT ACTTCTTCA 3'). Sequence alignment and analysis was done 

using the Gene Works and Mac Vector programs for Macintosh. 

Results 

Growth Curve 

The growth curves for all virus isolates were similar in the IPEC-1 cells. 

The peak tiers were in the range of 109 TCIDsolml (Table 3). Isolates AR310, 

LEPP, PON, 5170 NVSL, and 306 peaked at 24 hours post infection. IA 1894, 

ISU-1 , and 725 did not peak until 48 hours post infection. All isolates had an 

initial peak between 24 and 30 hours post infection, followed by a slight drop in 

titer, then a second peak between 42 and 48 hours post infection (Figure 1 ). 

The titers were lower in the ST cells (Figure 2). They all reached a titer between 

107 to 108 TCIDso/ml. The titers were at their peak when the CPE was 

approximately 30-50%, which was around 24-30 hours post infection. All 

isolates reached 100% CPE by 84 hours post infection. 

The titers reached their peak before CPE became extensive. The CPE 

took longer to develop in the IPEC-1 cells, not becoming extensive until 42 hours 

post infection. The isolate IA1894 never caused any CPE in the IPEC-1 cells, 
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Table 3. Maximum Titer (TCID50) for each PRCV isolate 

PRCV Isolate ST cells Hours Post IPEC-1 Cells Hours Post 

Infection Infection 

AR310 4.2x108 30 3.1x109 24 

LEPP 1.0x108 30 3.1x109 24 

IA1894 7.4x107 42 2.3x109 48 

ISU-1 5.6x108 24 3.1x109 48 

PON 7.4x107 30 3.1x109 24 

725 3.1x108 48 3.1x109 48 

5170 NVSL 3.1x107
- 48 3.1x109 24 

306 1.0x108 60 3.1x109 30 

but replicated to high titers, indicating that it may be capable of developing a 

persistent infection of the cell line. 

Plaque assay 

There was variation in the plaque sizes among all of the isolates. The 

isolate 725 developed the largest plaques with an average size of 5.255 mm 

(Table 4). IA1894 had the smallest plaque size of all the isolates with the 

average size being 1.04mm. There doesn't seem to be a correlation between 

virulence and plaque size, as both LEPP and AR310 are more virulent in swine 

than IA 1894, but LEPP has the second· smallest plaque size of all the isolates 

studied. Further studies could be done in this area to explore the possibility of a 

correlation between the plaque size and virulence. 
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Figure 1. This figure shows the titer of PRCV isolates in IPEC-1 cells at various timepoints. Titers were 
measured in TCIDso. All timepoints were done in duplicate. 
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Sequence analysis of the S, 3, and 3-1 genes 

Analysis of the sequences shows that there are differences in deletions 

observed amongst various isolates. The isolates IA1894, ISU-1 , AR310, and 

LEPP were sequenced previously (Vaughn et al., 1995). Isolate 725 had the 

same deletion as AR310 and LEPP of 621 base pairs located 44 base pairs from 

the S gene start site (see Figure 3). It also has an intact gene 3 and a 1 

nucleotide deletion in the gene 3-1 at the same place as AR31 O and LEPP. 

Isolate 306 has a 675 base pair deletion in the S gene which starts 54 base 

pairs from the start codon. This deletion is unique among the isolates 

sequenced so far. It has an intact leader binding region in the 3 gene, but an 

insertion of 29 base pairs codes for a stop site and causes the protein to be 

truncated. There is no leader binding sequence in the gene 3-1 and no start site 

(see figure 4). Instead there is a 52 bp deletion in this area, so the gene 3-1 is 

not transcribed. The isolate NVSL5170 has the longest deletion in the S gene 

sequenced so far. The deletion is 711 base pairs and begins only 27 base pairs 

from the start site. It has a normal gene 3, the same as AR31 0, LEPP and 725, 

but the gene 3-1 is truncated. The isolate PON has a 681 base pair deletion, 62 

base pairs from the S gene start site. Although the size is the same, it begins 3 

base pairs further downstream than the ISU-1 deletion. Both the genes 3 and 3-

1 are truncated in th is isolate. 

Discussion 

The results of our experiments show that there is a wide diversity among 

isolates of PRCV in the United States. By characterizing a few isolates from the 

Midwestern part of the US we have seen that there are large variat ions among 

the S, 3 and 3-1 genes of these isolates. All isolates characterized in Europe 

had similar deletions in both the S, 3, and 3-1 genes, while many of our isolates 
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had deletions specific for them. It has been speculated that the 3 and 3-1 genes 

are involved in the virulence of TGEV and PRCV. Further studies need to be 

done with these isolates to determine if this is a valid conclusion. We have 

found two new isolates with intact 3 genes, and one isolate with no leader 

binding sequence or start site in the 3-1 gene, so therefore it may make no 

product for that region. 

The fact that the isolates replicate to a higher titer in the IPEC-1 cells is 

interesting, because they are derived from intestinal epithel ial cells. It has been 

documented previously that there is little replication of PRCV in the gut (Cox et 

al. , 1990), yet they grow to a higher titer in this intestinal cell line than in the ST 

cells which are routinely used to propagate PRCV. This leads to the conclusion 

that some replication of PRCV can occur in the intestine, but it must be 

remembered that this is a continuous cell line, and may no longer have all the 

same qualities of the cells in vivo. It was interesting that the isolate IA 1894 

caused no CPE in the IPEC-1 cells. This aspect should be studied more closely 

to determine if there is some potential for vaccine development with this isolate. 

Our studies have confirmed the results of other researchers that PRCV 

isolates have a deletion in the S gene, and are highly variable in the 3 and 3-1 

genes. Further studies need to be done to determine the function of genes 3 

and 3-1 and to define the roles that they play in pathogenicity. 
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Table 4. Measurement of plaque size diameter for each isolatea 

Plague# IA1894 306 LEPP AR310 ISU-1 5170NVSL PON 725 

1 1.5 3.5 2.5 3.5 5.0 4.0 5.0 5.5 
2 1.2 4.0 2.0 3.0 4.5 3.5 4.0 5.5 
3 1.2 3.0 2.0 2.5 4.0 3.5 4.0 4.5 
4- 1.0 3.5 2.0 3.0 4.0 4.0 3.5 4.5 
5 1.2 4.0 1.0 3.5 4.5 3.5 4.0 4.5 
6 1.0 3.5 1.5 2.5 3.5 3.5 4.0 6.0 
7 1.5 3.0 2.5 4.0 5.0 4.0 4.0 5.5 
8 0.8 4.0 2.0 3.0 5.0 4.0 4.0 6.0 
9 1.5 3.0 1.5 3.0 4.5 4.5 3.5 6.0 
10 1.0 2.5 1.5 3.5 4.0 5.0 5.0 4.0 
11 1.5 4.0 2.0 4.5 5.0 4.0 4.5 5.0 
12 1.0 4.5 2.0 4.0 4.5 4.0 4.5 5.5 
13 0.8 3.0 1.5 4.0 4.0 4.0 3.0 4.0 
14 1.0 3.5 2.5 2.5 3.5 3.0 3.5 4.5 
15 0.8 2.5 1.0 3.0 4.0 4.5 4.0 6.0 
16 1.5 3.0 2.0 3.5 5.0 5.0 4.0 5.0 
17 2.0 2.5 2.0 3.0 5.0 4.0 4.5 5.5 
18 1.0 3.5 1.0 4.0 4.0 4.0 5.0 4.5 
19 0.8 4.0 1.5 3.0 4.5 5.0 5.0 4.5 
20 1.0 4.0 2.0 4.0 4.0 4.0 4.0 4.5 
21 0.5 3.0 2.5 3.0 5.5 5.0 4.0 6.0 
22 1.0 3.0 2.0 3.5 3.5 3.5 3.5 6.0 
23 1.0 3.5 1.0 2.5 4.0 4.5 3.0 5.0 
24 1.0 3.0 1.5 2.0 5.0 4.0 3.5 6.5 
25 1.0 2.5 1.5 3.0 5.0 4.0 4.0 5.5 
26 1.0 3.0 1.5 4.0 4.5 5.0 4.0 5.5 
27 1.0 3.5 2.0 3.0 5.5 4.5 4.5 4.0 
28 1.5 4.0 2.0 2.5 4.0 3.5 5.0 4.0 
29 1.0 4.5 2.5 4.0 4.5 4.0 4.5 4.5 
30 1.0 3.5 2.5 4.0 4.0 4.0 4.0 5.5 
31 1.0 3.0 1.0 3.0 4.0 4.0 3.5 6.0 
32 1.2 4.0 2.0 3.5 4.5 3.0 4.0 6.0 

"33 1.5 4.0 2.0 2.5 3.5 4.5 4.0 5.0 
34 1.0 2.S 2.5 2.5 3.0 4.0 3.5 5.0 
35 0.5 4.0 1.0 3.0 5.0 5.0 5.0 4.5 
36 1.0 4.5 1.5 3.0 3.5 5.0 5.0 5.0 
37 1.0 3.0 1.5 3.0 4.0 4.5 4.0 5.5 
38 0.8 3.5 1.0 4.0 5.0 3.5 4.5 4.0 
39 0.8 3.0 2.5 4.5 5.0 3.5 4.0 6.0 
40 0.5 4.0 2.0 3.0 4.0 4.5 4.5 6.0 
41 1.5 3.5 2.0 3.5 3.0 4.0 4.5 4.5 
42 0.5 4.0 1.5 3.5 3.5 3.5 4.0 4.5 
43 0.8 3.0 2.0 2.5 4.0 5.0 3.5 6.0 
44 1.5 3.0 2.5 2.5 4.5 4.0 5.0 5.5 

a Measurements were taken in mm 
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Table 4.(continued) 

Plague# IA1894 306 LEPP AR310 ISU-1 5170NVSL PON 725 

45 1.0 2.5 1.0 4.0 4.0 4.0 3.5 5.0 
46 1.0 2.5 1.5 4.0 5.5 4.5 4.0 5.0 
47 0.5 3.0 2.0 3.0 4.0 3.5 4.5 4.5 
48 0.8 3.5 2.0 3.5 4.5 3.0 4.0 6.0 
49 1.0 3.0 1.5 4.0 5.0 4.0 4.0 5.5 
50 1.5 2.5 1.5 4.5 5.0 3.5 5.0 6.0 
51 1.5 4.0 . 1.0 4.0 4.5 4.5 4.0 4.5 
52 1.0 3.5 2.5 3.0 4.0 4.0 4.5 4.0 
53 1.0 3.0 1.0 4.0 4.5 4.0 3.5 4.5 
54 1.0 3.0 1.5 2.5 3.5 5.0 4.0 6.0 
55 0.8 2.5 2.0 3.0 3.5 4.5 4.0 5.0 
56 1.0 2.5 2.0 3.0 5.0 4.0 5.0 6.0 
57 0.8 2.5 2.0 3.5 4.5 3.0 5.0 5.5 
58 1.2 3.0 1.8 2.5 4.0 4.5 4.0 5.0 
59 0.5 3.0 2.0 2.0 4.5 5.0 4.0 5.5 
60 0.8 3.5 2.0 3.0 5.0 4.0 5.0 5.0 
61 1.0 4.0 2.0 3.0 5.0 4.0 5.0 6.0 
62 1.2 4.5 2.0 3.5 4.5 5.0 3.5 5.5 
63 1.2 3.5 1.5 3.5 5.5 4.5 5.0 6.0 
64 1.5 3.0 2.5 3.0 4.0 3.5 5.0 5.0 
65 1.2 4.0 2.5 4.0 4.5 3.5 3.5 6.0 
66 1.0 3.0 1.5 4.0 4.0 4.0 3.5 5.5 
67 0.8 3.5 1.5 3.5 4.5 3.5 4.0 6.0 
68 1.0 3.0 1.5 2.5 5.0 4.5 4.0 5.0 
69 1.0 2.5 1.0 2.5 3.5 4.0 4.0 5.5 
70 1.2 3.0 2.0 3.0 3.5 5.0 4.0 6.0 
71 1.2 3.5 1.0 3.0 4.0 5.0 2.5 6.0 
72 1.0 4.0 2.5 3.5 4.5 4.0 4.0 5.0 
73 1.0 3.5 2.0 4.0 5.0 4.0 4.0 5.5 
74 1.0 3.0 2.0 3.5 3.0 4.5 4.0 5.0 
75 1.2 4.0 1.0 3.5 5.0 3.5 4.0 6.0 
76 1.0 4.0 1.5 3.0 4.0 3.0 5.0 5.5 
77 1.0 3.0 2.0 3.0 4.0 4.0 4.0 4.5 
78 1.0 2.1' 2.0 2.5 4.5 3.5 4.0 5.0 
79 1.0 3.0 2.0 4.0 5.0 4.5 3.5 6.0 
80 1.0 3.5 2.0 3.5 4.0 5.0 3.5 6.0 
81 1.0 3.0 1.5 4.0 4.0 4.0 4.0 4.5 
82 1.0 2.5 1.5 4.5 4.5 4.0 4.0 5.5 
83 1.0 3.5 2.0 4.0 4.0 4.0 3.5 5.0 
84 1.2 4.0 2.0 3.0 5.0 4.5 5.0 5.0 
85 1.2 4.0 2.0 3.0 5.0 3.5 3.0 6.0 
86 1.2 4.5 2.0 3.0 4.0 5.0 3.5 6.0 
87 1.0 2.5 2.5 2.5 3.5 4.0 4.0 6.0 
88 1.0 4.0 2.5 2.5 4.0 4.0 4.0 5.5 
89 0.8 3.0 2.5 3.0 4.5 4.0 5.0 4.0 
90 1.0 2.5 1.5 3.5 5.0 3.5 5.0 4.5 
91 1.0 2.5 1.0 3.0 3.0 4.5 3.0 5.0 
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Table 4.(continued) 

Plaque# IA1894 306 LEPP AR310 ISU-1 5170NVSL PON 725 

92 1.0 3.5 0.8 3.0 3.5 5.0 4.0 5.0 
93 0.8 4.0 1.0 4.0 4.0 4.0 4.0 5.5 
94 1.0 4.0 1.5 4.0 4.5 3.0 4.0 6.0 
95 0.8 4.5 1.5 3.0 4.0 4.5 4.0 5.0 
96 1.2 2.5 1.5 2.5 5.5 4.0 3.5 4.5 
97 1.5 4.0 1.5 4.0 3.5 4.0 4.0 4.0 
98 1.2 3.0 1.5 4.0 4.0 5.0 3.5 5.5 
99 0.8 3.0 2.0 3.0 4.5 4.5 3.0 6.0 
100 1.0 4.0 1.5 3.0 5.0 4.0 5.0 6.0 

Average 1.0 3.3 1.8 3.3 4.3 4.1 4.1 5.2 
Standard 0.3 0.6 0.5 0.6 0.6 0.6 0.6 0.7 
Deviation 



s Start 
+ 1-+ 

TGEV ATQAAAAAAT TATTTQTQgT TTTgGTTQTA AT QCkATTQA TTTATQQAQA 50 
I SU-1 ATGAAAACAT TATTTGTGGT TTTGGTTATA ATGCCATTGA TTTATG GAGA 47 
AR310 ATGAAAACAT TA.TTTGTGGT TTTGGTTATA ATGCCATTGA TTTATGG-- - 47 
LEPP ATGAAAACAT TATTTGTGGT TTTGGTTATA ATGCCATTGA TTTATG G-- - 47 
1894 ATGAAAACAT TATTTGTGGT TTTGGTTATA ATGCCATTGA TTTA--- - - - 44 
725 ATGAAAACAT TATTTGTGGT TTTGGTTAT A ATGCCATTGA TTTATGG --- 47 
306 ATGAAAAAAT TATTTGTGGT TTTGGTCTTA ATGCCATTGA TTTATGGAGA 50 
5170 ATGAAAACAC TATTTGTGGT TTTGGTT--- ---------- ---------- 27 
PON ATGAAACCAT TATTTGTGGT TTTGTTTATA ATGCCATTGA TTTATGGAGA 50 

Figure 3. This is the alignment of the nucleotide sequences from the 5'end of the S gene of PRCV isolates 
725, 306, 5170, and PON as compared to TGEV isolate CHV and PRCV isolates ISU-1, AR310, LEPP , and 1894. 
The PRCV isolate 725 has an identical deletion to isolates AR31 O and LEPP of 621 nucleotides. The isolate 306 
has a 675 nucleotide deletion which is unique to this isolate. Isolate 5170 has the largest deletion described so 
far with a size of 711 nucleotides. PON has a deletion of 681 nucleotides which is identical to isolate ISU-1. The 
start codon of the S gene is marked with + 1-+. The nucleotides which make up the predicted signal peptide 
region of the TGEV S gene as noted by Rasschaert and Laude (1987) are underlined. The nucleotide 
sequences of PRCV isolates 725, 306, 5170, and PON were determined in this study. The other nucleotide 
sequences were determined by Vaughn et al. , 1995. 
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TGEV CAATTTTCCT TGTTCTAAAT TGACTAATAG AACTATAGGT AACC ATTGGA 100 
ISU-1 TAATTTTCCT TG- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 62 
AR3 10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 47 
LEPP - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 47 
1894 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 44 
72 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 47 
3 0 6 CAATTTT- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 57 
5170 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 27 
PON TAATTTTCCT T~- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 62 

------ -----------------------------------------------------------------
TGEV AGCCGCTGGC ACGCTTGTAG ACCTTTGGTG GTTTAATCCT GTTTATGATG 700 
ISU-1 -- -- --- --- ---------- ---------- ---------- --- ----- -- 62 
AR310 ---- ------ --------AG ACCTTTGGTG GTTTAATCCT GTTTATGATG 79 
LEPP ---------- --------AG ACCTTTGGNG GTTTAATCCT GTTTATGATG 79 
1894 ---------- ---------- ------- -- - ---------- --- ---- --- 44 ~ w 725 ---------- --------AG ACCTTTGGTG GTTTAATCCT GTTTATGATG 79 
306 ---- ------ -- - ---- --- -- ------ -- ---------- ---------- 57 
5170 ---- - ----- ---------- ------- -- - ---------- ---------- 27 
PON -------- -- ---------- ---------- ---------- ---------- 62 

TGEV TCAGTTATTA TAGAGTTAAT AATAAAAATG GTACTACCGT AGTTTCCAAT 750 
ISU-1 ---------- ---------- --- ----- -- ---------- --- TTCCAAT 69 
AR310 TCAGTTATTA TAGAGTTAAT AATAAAAATG GTACTACCGT AGTTTCCAAT 129 
LEPP TCAGTTATTA TAGAGTTAAT AGTAAAAATG GTACTACCGG AGTTTCCAAT 129 
1894 ---- -- ---- -- --- ----- ----AAAATG GTACTACCGT AGT TTCCAAT 70 
725 TCAGTTATTA TAGAGTTAAT AATAAAAATG GTACTACCGT AGTTTCCAAT 129 
306 -- -- - ----- ---------- ----ACAATT TTACTACCGT AGTTTCCAAT 83 
5170 ---- ------ ---- ------ ---------- --------GT AGTTTCCAAT 39 
PON ---------- ---------- - ------- -- ---------- --- TTC CAAT 69 

Figure 3.(continued) 



Primer 538 s 
---------- ---------- Stop ---------- ----------

LEPP CTATTGAAAA AGTGCACGTC CATTAAATTT AAAATGTTAA TTTTATC--- 47 
AR310 CTATTGAAAA AGTGCACGTC CATTAAATTT AAAATGTTAA TTTTATC- -- 47 
ISU-1 CTATTGAAAA AGTGCACGTC CATTAAATTT AAAATGTTAG TTTTATC--- 47 
1894 CTATTGAAAA AGTGCACGTC CATTAAATTT AAAATGTTAA TTTTATC--- 47 
725 CTATTGAAAA AGTGCACGTC CATTAAATTT AAAATGTTAA TTTTATC--- 47 
306 CTATTGAAAA AGTGCACGTC CATTAAATTT AAAATGTTAA TTCTATCATC 50 
5170 CTATTGAAAA AGTGCACGTC CATTAAATTT AAAATGTTAA TTTTATC--- 47 
PON CTATTGAAAA AGTGCACGTC CATTAAATTT AAAATGTTAA TTTTATC--- 47 
CHV CTATTGAAAA AGTGCACGTC CATTAAATTT AAAATGTTAA TTTTATTATC 50 

A/'\A/\.AA/'\/'\/'\A /'\/\/'\/\./\A/\/\/\./\ /'\/\.AAA/\/\.AA/\ A/\./\./'\/\./\/\./'\/\ "" " " " 

Figure 4. This figure shows the comparison of the nucleotide sequence of gene 3 and 3-1 regions of the 
PRCV isolates with each other and the TGEV isolate CHV. Positions of the leader binding regions are marked 
with (*****). The positions of the primers 538, 118, 048, and 622 are marked with (=====). The start codons of 
the genes are marked with + 1-+, and the stop codons are underlined. Positions having identical nucleotides are 
marked with (" ), and positions of deleted nucleotides are marked with (-----). The nucleotide sequences of the 
PRCV isolates 725 , 306, 5170, and PON were determined in this study. The nucleotide sequence of other PRCV 
and the TGEV isolate CHV was determined previously by Vaughn et al. , 1995. 
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LEPP TGCTATAATA GCATTTGTT- ---------- -A-----TTA AGGATGATGA 80 
AR310 TGCTATAATA GCATTTGTT- ---------- -A-----TTA AGGATGATGA 80 
ISU-1 CGCTAT---- ---------- ---------- ---------- ---------- 53 
1894 TGCTATAATA GCATTTGTT- ---------- -A-----TTA AGGATGATGA 80 
725 TGCTATAATA GCATTTGTT- ---------- -A-----TTA AGGATGATGA 80 
306 TGCTATAATA GCAGTTGTTT CTGCTAGAAG AATTTTGTTA AGGATGATGA 100 
5170 TGCTATAATA GCATTTGTT- ---------- -A-----TTA AGGATGATGA 80 
PON TGCTATAATA GCATTTGTT- ---------- -A-----TTA AGGATGATGA 80 
CHV TGCTATAATA GCATTTGTT- ---------- ------GTTA AGGATGATGA 83 

A I'\/'\/\/'\ 

.fl. 
(J1 

*** *** * 
LEPP ATAAAGTCC- TTAAGAACTA AACTTTCTGG TCATTACAG- ---------- 118 
AR310 ATAAAGTCC- TTAAGAACTA AACTTTCAGG TCATTACAG- ---------- 118 
ISU-1 ----- - ---- ---------- ---------- ---------- ---------- 53 
1894 ATAAAGTCC- TTAAGAACTA AACTTTCAGG TCATTACAG- ---------- 118 
725 ATAAAGTCC- TTAAGAACTA AACTTTCAGG TCATTACAG- ---------- 118 
306 ATAAAGTCT- TTAAGAACTA AACTTACGAG TCATTACAGC AAAGCAAGGT 149 
5170 ATAAAGTCC- TTAAGAACTA AACTTTCAGG TCATTACAG- ---------- 118 
PON ATAAAGTCCA ACTCGAACTA AACTTTCAGG TCATTACAG- ---------- 119 
CHV ATAAAGTCC- TTAAGAACTA AACTTTCGAG TCATTACAG- --- --- - --- 121 

Figure 4. (continued) 



ORF 3 
+1-+ 

LEPP -GTCCTGTAT GGACATTGTC AAATCTATTA ATACATCCGT GGATGCTGTA 167 
AR310 -GTCCTGTAT GGACATTGTC AAATCTATTA ATACATCCGT GGATGCTGTA 167 
ISU-1 ---------- ---------- ---------- ---------- ---------- 53 
1894 -GTCCTGTAT GGACATTGGC AAATCCATTA TTACATCCGT GGATGCTGTA 167 
725 -GTCCTGTAT GGACATTGTC AAATCTATTA ATACATCCGT GGATGCTGTA 167 
306 TGTCCTGTAT GGACATTGTC AAGTCCATTT ACACATCCGT AGATGCTGTA 199 
5170 -GTCCTGTAT GGACATTGTC AAATCCATTA ATACATCCGT GGATGCTGTA 167 
PON -GTCCTTTAT GGACATTGTC AAATCCATTA ATACATCCTT GGATGCTGTA 168 
CHV -GTCCTGTAT GGACATTGTC AAATCCATTA ATACATCCGT AGATGCTGTA 170 

.t>. 
(j) 

LEPP CTTGACGAAC TTGATTGTGC ATACTTCGCT GTTACTCTTA AAGTAGAATT 2 17 
AR310 CTTGACGAAC TTGATTGTGC ATACTTCGCT GTTACTCTTA AAGTAGAATT 217 
ISU-1 ----- - - --- ---------- ---------- ---------- ------- --- 53 
1894 CTTGACGAAC TTGATTGTGC ATACTTCGCT GTAACTCTTA AAGTAGAATT 217 
725 CTTGACGAAC TTGATTGTGC ATACTTCGCT GTTACTCTTA AAGTAGAATT 217 
306 CTTGACGAAC TTGATTGTGC ATACTTTGCT GTAACTCTTA AAGTAGAATT 249 
5170 CTTGACGAAC TTGATTGTGC ATACTTCGCT GTTACTCTTA AAGTAGAATT 217 
PON CTTGACTGAC TTGATTGTGC ATACTTCGCT GTAACTCTTA AGGTAGAATT 218 
CHV CTTGACGAAC TTGATTGTGC ATACTTTGCT GTAACTCTTA AAGTAGAATT 220 

Figure 4.(continued) 



LEPP TAAGACTGGT AAATTACTTG TGTGTATAGG TTTTGGTGAC ACACTTCTTG 267 
AR310 TAAGACTGGT AAATTACTTG TGTGTATAGG TTTTGGTGAC ACACTTCTTG 267 
725 TAAGACTGGT AAATTACTTG TGTGTATAGG TTTTGGTGAC ACACTTCTTG 267 
ISU-1 ----ACTGGT AAATTACTTG TGTGTATAGG TTTTGGTGAC ACACTTCTTG 99 
18 94 TAAGACTGGT AAATTACTTG TGTGTATAGG TTTTGGTGAC ACACTTCTTG 267 
306 TAAGACTGGT AAATTACTTG TGTGTATAGG TTTTGGTTAC ACACTTCTTG 299 
5170 TAAGACTGGT AGATTACTTG TGTGTATAGG TTTTGGTGAC ACACTTCTTG 267 
PON TAAGACTGAT AAATTACTTG TGTGTATAGG TTTTGGTGAC ACACTTCTTG 268 
CHV TAAGACTGGT AAATTACTTG TGTGTATAGG TTTTGGTGAC ACACTTCTTG 270 

/'\/'\/\A /\ /'\ A/'\/'\/\/\/'\/'\/\ /\/'\A/\l"\A/'\/'\A/\ /\/\/\/'\AAA /\/'\ /\A/\/\/'\/\A/'\/'\/\ 

Primer 118 ~ 
-..J --------------

LEPP CGGCTAGGGA TAAAGCATAT GCTAAGCTTG GTCTCGCCAC TATTGAAGAA 317 
AR310 CGGCTAGGGA TAAAGCATAT GCTAAGCTTG GTCTCGCCAC TATTGAAGAA 317 
ISU- 1 CGGCTAGGGA TAAAGCA--- --TAAGCTTG GTCTCGCCAC TATTGAAGAA 144 
1894 CGGCTAGGGG TA-------- ---AAG---- -------CA- TATTGAAGAA 294 
725 CGGCTAGGGA TAAAGCATAT GCTAAGCTTG GTCTCGCCAC TATTGAAGAA 317 
306 CTGCTAAGGA TA-------T GCTAAGCTTG GTCTCTCCAT TATTGAAGAA 342 
5170 CGGCTAGGGA TAAAGCATAT GCTAAGCTTG GTCTCGCCAC TATTGAAGAA 317 
PON ATGCTAGGGA TAAAGCATA- ----AGCTTG GTCTCGCCAC TATTGAAGAA 313 
CHV CGGCTAGGGA TAAAGCATAT GCTAAGCTTG GTCTCTCCAT TATTGAAGAA 320 

/\ /'\ /'\ /'\ "" "" "" "" /'\"/"\/'\/"\I'\/'\/\/'\ /'\ 
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Primer 118 
============= 

LEPP G--------- ---------- ---------- TAAACACACA AAATCCAAAG 338 
AR310 G--------- ---------- ---------- TAAACACACA AAATCCAAAG 338 
ISU-1 G--------- ---------- ---------- TAAACACACA AAATCCAAAG 165 
1894 G--------- ---------- ---------- TAAACACACA AAATCCAAAG 315 
725 G--------- ---------- ---------- TAAACACACA AAATCCAAAG 338 
306 GTCAATAGTC ATATAGTTGT TTAATATCAT TAAACACACA AAACCCAAAG 392 
5170 G--------- ---------- ---------- TAAACACACA AAATCCAAAG 338 
PON G--------- ---------- ---------- TAAACACACA AAATCCAAAG 334 
CHV GT-------- ---------- --------- - -AAACACACA AAATCCAAAG 341 

" A/'\AA/\A/'\A/\ " " " AA/'\ AAA 

~ 
CX> 

LEPP CATTAAGTGT TACAAAACAA TTAAAGAGAG ATTATAGAAA AACTGTCATT 388 
AR310 CATTAAGTGT TACAAAACAA TTAAAGAGAG ATTATAGAAA AACTGTCATT 388 
ISU-1 CATTAAGTGT TACAAAACAA TTAAAGAGAG ATTATAGAAA AACTGTCATT 215 
1894 CATTAAGTGT TACAAAACAA TTAAAGAGAG ATTGTAGAAA AACTGTCATT 365 
725 CATTAAGTGT TACAAAACAA TTAAAGAGAG ATTATAGAAA AACTGTCGAA 388 
306 TGTTAAGTGT TACAAAACAA TTAAA-- --- ---------- ---------- 417 
5170 CATTAAGTGT TACAAAACAA TTAAAGAGAG ATTATAGAAA AACTGTCATT 388 
PON CATTAAGTGT TACAAAACAA TTAAAGAGAG ATTATAGAAA AACTGTCATT 384 
CHV CATTAAGTGT TACAAAACAA TTAAAGAGAG ATTATAGAAA AACTGTCATT 391 

AAAA/'\/\/'\A AA/'\A/\/'\/'\A/'\/'\ /\/\/'\/'\A 
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ORF 3-1 
***** * +1-+ 

LEPP CTAAACTTTG TGTGAAAATG ATTGGTGGAC TTTTTCTTAA TACTCTGAGT 4 38 
AR3 10 CTAAACTTTG TGTGAAAATG ATTGGTGGAC TTTTTCTTAA TACTCTGAGT 4 38 
ISU-1 CTAAACTTTG TGTGAAAATG ATTGGTGGAC TTTTTCTTAA TACTCTGAGT 265 
1 894 CTAA - -- - - G TGTTAAAATG ATTGGTGGAC TTTTTCTTAA TACTCTGAGT 41 0 
725 CTAAACTTTG TGTGAAAATG ATTGGTGGAC TTTTTCTTAA TACTCTGAGT 4 38 
306 --- ----- -- -------- - - - ------GAC TTTTTCTTAG TACTCTGAGT 44 0 
5170 CTAAACTTTG TGTGAAAATG ATTGGTGGAC TTTTTCTTAA TACTCTGAGT 4 38 
PON CTAAACTT-- TGTGAAAATG ATTGGTGGAC TTTTTCTTAA T ACTCTGAGT. 432 
CHV CTAAACTTCA TGCGAAAATG ATTGGTGGAC TTTTTCTTAA TACTCTGAGT 441 

" " " A/'\.Al"\/'\.AAAI"\ /'\./\/\A/\AAAAA 

~ 
<.D 

LEPP TTGGTAATTG TTAGTAACCA TTCTATTGTT AATAACACAG CAAATGTGCA 488 
AR310 TTGGTAATTG TTAGTAACCA TTCTATTGTT AATAACACAG CAAATGTGCA 48 8 
I SU-1 TTTGTAATTG TTAGTAACCA TTCTATTGTT AATAACACAG CAAATGTGCA 315 
1894 TTTGTAATTG TTAGTAACCA TTCTATTGTT AATAATACAG CAAATGTGCA 460 
725 TTTGTAATTG TTAGTAACCA TTCTATTGTT AATAACACAG CAAATGTGCA 488 
306 TTTGTAATTG TTAGTAACCA TTCTATTGTT AATAACACAG CAAATGTGCA 490 
5170 TTTGTAATTG TTAGTAACCA TTCTATTGTT AATAACACAG CAAATGTGCA 488 
PON TTTGTAATTG TTAGTAACCA TTCTATTGTT AATAACACAG CAAATGTGCA 482 
CHV TTTGTAATTG TTAGTAACCA TTCTATTGTT AATAACACAG CAAATGTGCA 491 

A/\ /'\/\/\/\AAA A/\l"\/\./\l"\l"\l"\/'\I"\ /'\.A/'\./\/\./\./'\A/\A A/'\/'\/'\./'\ AA/'\/\. /\A/\/\/'\./'\./'\.A/\A 
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LEPP TCATACACAA CAAGACCGTG TTATAGTACA ACAGCATCAG GTTGTTAGTG 538 
AR310 TCATACACAA CAAGACCGTG TTATAGTACA ACAGCATCAG GTTGTTAGTG 538 
ISU-1 TCATACACAA CAAG-- ---- ---------- ---------- ---------- 329 
1894 TCATACACAA CAAGACCGTG TTATAGTACA ACATCATCAG GTTATTAGTG 510 
725 TCATACACAA CAAGACCGTG TTATAGTACA ACAGCATCAG GTTGTTAGTG 538 
306 TCATATACAA CAAAAACGTG TTATAGTACA ACAGCATCAG GTTGTTAGTG 540 
5170 CCACACACAA CAAGACCGTG TTATAGTATA ACAGCATCAG GTTGTTAGTG 538 
PON TCATACACAA CAAGACCGTG TTATAGTACA ACAGCATCAG GTTGTTAGTG 532 
CHV TCATATAAAA CAAGAACGTG TTATAGTACA ACAGCATCAG GTTGTTAGTG 541 

A/'\ /'\ A /'\/'\ AAA 

(J1 
0 

LEPP CTAGAACACA AAATTATTAC CCAGAGTTCA GCATCGCTGT AC-TTTTGTA 587 
AR310 CTAGAACACA AAATTATTAC CCAGAGTTCA GCATCGCTGT AC-TTTTGTA 587 
ISU- 1 ---------- ----- ----- ---------- ---------- ---------- 329 
1894 CTAGAGCACA AAATTATTAT CCAGAGTTCA GCATCGCTGT ACTTTTTGTA 560 
725 CTAGAACACA AAATTATTAC CCAGAGTTCA GCATCGCTGT AC-TTTTGTA 587 
306 CTAGAACACA AAACTATTAC CCAGAGTTCA GCATCGCTGT ACTCTTTGTA 590 
5170 CTAGAACACA AAATTATTAC CCAGAGTTCA GCATCGCTGT ACTTTTTGTA 588 
PON CTAGAACACA AAATTATTAC CCAGAGTTCA GCATCGCTGT ACTTTTTGTA 582 
CHV CTAGAACACA AAATTATTAC CCAGAGTTCA GCATCGCTGT ACTTTTTGTA 59 1 

Figure 4.(continued) 



LEPP TCTTTCCTAG CTTTGTACCG TAGTACAAAC TTTAAGACGT GTGTCGGTAT 637 
AR310 TCTTTCCTAG CTTTGTACCG TAGTACAAAC TTTAAGACGT GTGTCGGTAT 637 
ISU- 1 ---- ----- - ------- --- ---------- -TTAAGACGT GTGTCGGTAT 3 48 
1894 TCTTTTCTAG CTTTGTACCG CAGTCCAAAC TTTAAGACGT GTGTCGGTAT 610 
725 TCTTTCCTAG CTTTGTACCG TAGTACAAAC TTTAAGACGT GTGTCGGTAT 637 
306 TCTTTTCTAG CTTTGTACCG TAGTACAAAC TTTAAGACGT GTGTCGGTAT 64 0 
517 0 TCTTTCTTAG CTTTTTACCG TAGTACAAAC TTTAAGACGT GTGTCGGTAT 638 
PON TCTTTCCTAG CTTTGTACCG TAGTACAAAC TT --AGACGT GTGTCGGTAT 630 
CHV TCTTTTCTAG CTTTGTACCG TAGTACAAAC TTTAAGACGT GTGTCGGCAT 641 

/\/'\./'\./'\I\/'\ AA/\ A/\ AA /\A 

Primer 048 c.n __.. 
---------- ---- ------ ---- ----------- ---------- -----

LEPP CTTAATGTTT AAGATTTTAT CAATGACACT TTTAGGACCT ATGCTTATAG 687 
AR310 CTTAATGTTT AAGATTTTAT CAATGACACT TTTAGGACCT ATGCTTATAG 687 
ISU-1 CTTAATGTTT AAGATTTTAT CAATGACACT TTTAGGACCT ATGCTTATAG 398 
1894 CTTAATGTTT AAGATTTTAT CAATGACACT TTTAGGACCT ATGCTTATAG 660 
725 CTTAATGTTT AAGATTTTAT CAATGACACT TTTAGGACCT ATGCTTATAG 687 
306 CTTAATGTTT AAGATTTTAT CAATGACACT TTTAGGACCT ATGCTTATAG 690 
5170 CTTAATGTTT AAGATTTTAT CAATGACACT TTTAGGACCT ATGCTTATAG 688 
PON CTTAATGTTT AAGATTTTAT CAATGACACT TTTAGGACCT ATGCTTATAG 680 
CHV CTTAATGTTT AAGATTTTAT CAATGACACT TTTAGGACCT ATGCTTATAG 691 

/\/'\/\/\A/\/\A A /'\ /\/'\./\/\/\/'\./'\/\/\A /\/'\/'\AA/\/\/\/\/'\ AA/'\A/"\/'\.AAA/\ /\A/\/\/"\/\A/\AA 
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LEPP TATATGGTTA CTACATTGAT GGCATTGTTA CAACAACTGT CTTATCTTTA 737 
AR310 TATATGGTTA CTACATTGAT GGCATTGTTA CAACAACTGT CTTATCTTTA 737 
ISU-1 TATATGGTTA CTACATTGAT GGCATTGTTA CAACAACTTT CTTATCTTTA 44 8 
1894 TATATGGTTA CTACATTGAT GGCATTGTTA CAACAACTGT CTTATCTTTA 710 
725 TATATGGTTA CTACATTGAT GGCATTGTTA CAACAACTGT CTTATCTTTA 737 
306 CATATGGTTA CTACATTGAT GGCATTGTTA CAACAACTGT CTTATCTTTA 740 
5170 TATATGGTTA CTACATTGAT GGCATTGTTA CAACAACTGT CTTATCTTTA 738 
PON TATATGGTTA CTACATTGAT GGCATTATTA CAACAACTGT CTTATCTTTA 730 
CHV CATATGGTTA CTACATTGAT GGCATTGTTA CAACAACTGT CTTATCTTTA 741 

/'\l"\/'\A/"\/'\A/"\/'\ /'\/'\/"\/'\/"\/'\/"\/"\A/'\ /'\/'\l"\/"\/"\l"\/"\/'\l'\I"\ AA/'\/"\/"\AA/"\ /"\ /'\A/"\/"\l"\/"\/"\/'\A/'\ 

(l1 
l'V 

LEPP AGATTCGCCT ACTTAGCATA CTTTTGGTAT GTTAATAGTA GGTTTGAATT 787 
AR310 AGATTCGCCT ACTTAGCATA CTTTTGGTAT GTTAATAGTA GGTTTGAATT 787 
ISU-1 AGATTCGCCT ACTTAGCATA CTTTTGGTAT GTTAATAGTA GGTTTGAATT 498 
18 9 4 AGATTCGCCT ACTTAGCATA CTTTTGGTAT GTTAATAGTA GGTTTGAATT 760 
725 AGATTCGCCT ACTTAGCATA CTTTTGGTAT GTTAATAGTA GGTTTGAATT 787 
306 AGATTTGTCT ACTTAGCATA CTTTTGGTAT GTTAATAGTA GGTTTGAATT 790 
5170 AGATTCGCCT ACTTAGCATA CTTTTGGTAT GTTAACAGTA GGTTTGAATT 788" 
PON AGATTTGCCT ACTTAGCATA CTTTTGGTAT GTTAATAGTA GGTTTGAATT 780 
CHV AGATTTGCCT ACTTAGCATA CTTTTGGTAT GTTAATAGTA GGTTTGAAGT 791 

/'\Al"\A/"\ A Al'\ /'\/"\/'\A/"\A/"\/"\/"\A Al"\/"\/'\A/"\/"\/"\/'\A /'\/'\AAA /"\/"\/'\/'\. /'\/'\/'\/'\/"\/"\AA A 
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LEPP TATTTTATAC AACACAACGA CACTCATGTT TGTACATGGC AGAGCTGCAC 837 
AR310 TATTTTATAC AACACAACGA CACTCATGTT TGTACATGGC AGAGCTGCAC 837 
ISU-1 TATTTTATAC AACACAACGA CACTCATGTT TGTACATGGC AGAGCTGCAC 548 
18 94 TATTTTATAC AACACAACGA CACTCATGTT TGTACATGGC AGAGCTGCAC 810 
725 TATTTTATAC AACACAACGA CACTCATGTT TGTACATGGC AGAGCTGCAC 837 
306 TATTTTATAC AATACAACGA CACTCATGTT TGTACATGGC AGAGCTGTAC 840 
5170 TATTTTATAC AACACAACGA CACTCATGTT TGTACATGGC AGAGCTGCAC 838 
PON TATTTTATAC AACACAACGA CACTCATGTT TGTACATGGC AGAGCTGCAC 830 
CHV TATTTTATAC AATACAACGA CACTCATGTT TGTACATGGC AGAGCTGCAC 841 

AAAAA/'\/"\A/'\/'\ AA AAA/"\/'\AA l'\l'\l"\A/'\AA/'\AA A/'\/'\AA/'\Al"\AI'\ I'\ I'\ A I'\/'\ A I'\ /'\I'\ 

c.n w 
LEPP CGTTTAAGAG AAGTTCTCAC AGCTCTATTT ATGTCACATT ATATGGTGGC 887 
AR310 CGTTTAAGAG AAGTTCTCAC AGCTCTATTT ATGTCACATT ATATGGTGGC 887 
ISU-1 CGTTTAAGAG AAGTTCTCAC AGCTCTATTT ATGTCACATT ATATGGTGGC 598 
1894 CGTTTAAGAG AAGTTCTCAC AGCTCTATTT ATGTCACATT GTATGGTGGC 860 
725 CGTTTAAGAG AAGTTCTCAC AGCTCTATTT ATGTCACATT ATATGGTGGC 887 
306 CGTTTATGAG AAGTTCTCAC AGCTCTATTT ATGTCACATT GTATGGTGGC 890 
5170 CGTTTAAGAG AAGTTCTCAC AGCTCTATTT ATGTCACATT ATATGGTGGC 888 
PON CGTTTAAGAG AAGTTCTCAC AGCTTTATTT ATGTCACATT ATATGGTGGC 880 
CHV CGTTTAAGAG AAGTTCTCAC AGCTCTATTT ATGTCACATT GTATGGTGGC 891 

AAAA/'\A /'\AA Al'\A/"\/'\l"\AAAA /"\AAA AA AAA AAAAAAA/'\A/'\ A/'\AA/'\AAAA 
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LEPP ATAAATTATA TGTTTGTGAA TGACCTCACG TTGCATTTTG TAGACCCTAT 937 
AR310' ATAAATTATA TGTTTGTGAA TGACCTCACG TTGCATTTTG TAGACCCTAT 937 
ISU-1 ATAAATTATA TGTTTGTGAA TGACTTCATG TTGCATTTTG TAGACCCTAT 648 
1894 ATAAATTATA TGTTTGTGAA TGACCTCACG TTGCATTTTG TAGACCCTAT 910 
725 ATAAATTATA TGTTTGTGAA TGACCTCACG TTGCATTTTG TAGACCCTAT 937 
306 ATAAATTATA TGTTTGTGAA TGACCTCACG TTGCATTTTG TAAACCCTAT 940 
5170 ATAAATTATA TGTTTGTGAA TGACCTCACG TTGCATTTTG TAGACCCTAT 938 
PON ATAAATTATA TGTTTGTGAA TGACTTCACG TTGCATTTTG TAGACCCTAT 930 
CHV ATAAATTATA TGTTTGTGAA TGACCTCACG TTGCATTTTG TAGACCCTAT 94 1 

/\/\A/\/\/\/'\/\/\/\ /\/\/\l'\/\/\/\/\/'\A /'\/\A/\ /\A/'\ A /'\/\/'\A/\AA/\/\/\ AA /\/\/\AAA/\. 

(Jl 
~ 

LEPP GCTTGTAAGC ATAGCAATAC GTGGCTTAAC TCATGCTGAT CTAACTGTAG 987 
AR310 GCTTGTAAGC ATAGCAATAC GTGGCTTAAC TCATGCTGAT CTAACTGTAG 987 
ISU-1 GCTTGTAAGC ATAGCAATAC GTGGCTTAAC TCATGCTGAT CTAACTGTAG 698 
1894 GCTTGTAAGC ATAGCAATAC GTGGCTTAGC TCATGCTGAT CTAACTGTAG 960 
725 GCTTGTAAGC ATAGCAATAC GTGGCTTAAC TCATGCTGAT CTAACTGTAG 987 
306 GCTTGTAAGC ATAGCAATAC GTGGCTTAGC TCATGCTGAT CTAACTGTAG 990 
51 70 GCTTGTAAGC ATAGCAATAC GTGGCTTAAA TCATGCTGAT CTAACTGTAG 988 
PON GCTTGTAAGC ATAGCAATAC GTGGCTTAAC TCATGCTGAT CTAACTGTAG 980 
CHV GCTTGTAAGC ATAGCAATAC GTGGCTTAGC TCATGCTGAT CTAACTGTAG 991 

/\AA/\/\AA/\A/\ AAA/\./\/\/\/\/\" A/\./\A/\A/\/\ /\A/\/\A/\/'\/\A/\ /\/\/\/\/\/\/\/'\/\/\ 
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LEPP TTAGAGCAGT TGAACTTCTC AATGGTGATT TTATTTATAT ATTTTCACAG 1037 
AR310 TTAGAGCAGT TGAACTTCTC AATGGTGATT TTATTTATAT ATTTTCACAG 1037 
ISU-1 TTAGAGCAGT TGAACTTCTC AATGGTGATT TTATTTATAT ATTTTCACAG 748 
1894 TTAGAGCAGT TGAACTTCTC AATGGTGATT TTATTTATAT ATTTTCACAG 1010 
725 TTAGAGCAGT TGAACTTCTC AATGGTGATT TTATTTATAT ATTTTCACAG 1037 
306 TTAGAGCAGT TGAACTTCTC AATGGTGATT TTATTTATGT ATTTTCACAG 1040 
5170 TTAGAGCAGT TGAACTTCTC AATGGTGATT TTATTTATAT ATTTTCACAG 1038 
PON TTAGAGCAGT TGAACTTCTC AATGGTGATT TTATTTATAT ATTTTCACAG 1030 
CHV TTAGAGCAGT TGAACTTCTC AATGGTGATT TTATTTATGT ATTTTCACAG 104 1 

A/\./\ AAA /'\/\AA /'\/\/\./\/\/\A/'\/'\/'\ /\/\/\/'\/\/'\/\/\./\/\. /\A/\/'\/\.AAA /\. /'\/\/\/\/\/\/\./\A/'\ 
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***** 
LEPP GAGCCCGTAG TCGGTGTTTA CAATGCAGCC TTTTCTCAGG CGGTTCTAAA 1087 
AR310 GAGCCCGTAG TCGGTGTTTA CAATGCAGCC TTTTCTCAGG CGGTTCTAAA 1087 
ISU-1 GAGCCCGTAG TCGGTGTTTA CAATGCAGCC TTTTCTCAGG CGGTTCTAAA 798 
1894 GATTCTGTAG TTGGTGTTTA CAATGCAGCC TTTTCTCAGG CAGTTCTAAA 1060 
725 GAGCCCGTAG TCGGTGTTTA CAATGCAGCC TTTTCTCAGG CGGTTCTAAA 1087 
306 GAGCCCGTAG TCGGTGTTTA CAATGCAGCC TTTTCTCAGG CGGTTCTAAA 1090 
5170 GAGCCCGTAG TCGGTGTTTA CAATGCAGCC TTTTCTCAGG CGGTTCTAAA 1088 
PON GAGCCCGTAG TCGGTGTTTA CAATGCAGCC TTTTCTCAGG CGGTTCTAAA 1080 
CHV GAGCCCGTAG TCGGTGTTTA CAATGCAGCC TTTTCTCAGG CGGTTCTAAA 1091 

AA AA.AA A /\.A/\./'\/\/\.A/\. AA/\ AA/\ A/\./\/\ /\AA/\.AA/\/\A/\ /\. A/\A/\AA/\.A 
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ORF 4 
** +1-+ 

LEPP CGAAATTGAC TTAAAAGAAG AAGAGGGAGA CCGTACCTAT GACGTTTCCT 1137 
AR310 CGAAATTGAC TTAAAAGAAG AAGAGGGAGA CCGTACCTAT GACGTTTCCT 1137 
ISU-1 CGAAATTGAC TTAAAAGAAG AAGAGGGAGA CCGTACCTAT GACGTTTCCT 8 48 
1894 CGAAATTGAC TTAAAAGAAG AAGAGGGAGA CCGTACCTAT GACGTTTCC.T. 1110 
725 CGAAATTGAC TTAAAAGAAG AAGAGGGAGA CCGTACCTAT GACGTTTCC.T. 1137 
306 CGAAATTGAC TTAAAAGAAG AAGAAGAAGA CCATTCCTAT GACGTTTCCT 1140 
5170 CGAAATTGAC TTAAAAGAAG AAAAGGGAGA CCGTACCTAT GACGTTTCCT 1138 
PON CGAAATTGAC TTAAAAGAAG AAGAGGGAGA CCGTACCTAT GACGTTTCCT 1130 
CHV CGAAATTGAC TTAAAAGAAG AAGAAGAAGA CCGTACCTAT GACGTTTCC.T. 1141 

/'\/\l"\/'\/'\./\/'\l'\./\A /'\/'\/\/\/\/\/\/\./'\/'\ /\A /'\ I"\ """ /\/\ /\ AAA.AA AA/\A/\/'\/\l"\A/'\ 

<.n 
ORF 3-1 Primer 622 m 
Stop ===== ======== 

LEPP AGGGCATTGA CTGTCATAGA TGACAATGGA ATGGTCATT 1185 
AR310 AGGGCATTGA CTGTCATAGA TGACAATGGA ATGGTCATT 1185 
ISU-1 8QGGCATTGA CTGTCATAGA TGATAATGGA ATGGTCATT 896 
1894 AGGGCATTGA CTGTCATAGA TGACAATGGA ATGGTCATT 1158 
725 AGGGCATTGA CTGTCATAGA TGACAATGGA ATGGTCATT 117 6 
306 AGGGCATTGA CTGTCATAGA TGACAATGGA ATGGTCATT 1179 
5 170 AGGGCATTGA CTGTCATAGA CGACAATGGA ATGGTCATT 1177 
PON AGGGCATTGA CTGTCATAGA TGATAATGGA ATGGTCATT 1169 
CHV 8QGGCATTGA CTGTCATAGA TGACAATGGA ATGGTCATT 1189 

/\/"\/\l'\/\/\/\/\l'\I"\ /\/\l"\/\l'\l"\/\/\/'\A "" A/'\A/\/\/\ l"\/\/'\A/\AA/\/'\. 
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CONCLUSION 

In our study we characterized four new isolates of PRCV, 725, 306, PON, 

and 5170 NVSL. Al l of these isolates were procured from respiratory extracts 

except for isolate 5170 NVSL, which was isolated from a fecal sample along with 

TGEV. PCR amplification of the 5' end of the S gene of these isolates yielded 

an approximately 200 base pair product which is indicative of PRCV. Upon 

sequencing, large deletions in this region characteristic of PRCV were seen. 

These four new isolates were shown to vary in the size of the S gene deletion. 

These new isolates will be helpful in understanding coronavirus pathogenicity 

mechanisms. 

In another portion of our experiment the nucleotide sequences of genes 

S, 3 and 3-1 were determined and compared to other PRCV isolates and TGEV 

isolate CHV. All of the isolates had a large, inframe deletion in the 5' end of the 

S gene. PRCV isolate 725 had an identical deletion to isolates AR310 and 

LEPP of 621 nucleotides which started 47 nucleotides after the S gene start site. 

According to previous studies, these are the smallest deletions that have been 

recorded in this region. The deletion in other US and European isolates 

characterised to date range from 672 to 681 nucleotides in length. PON also 

had a deletion which was the same as a previously characterized isolate, ISU-1 . 

They both had a deletion which is 681 nucleotides in length and begins 62 

nucleotides after the start site. Isolates 306 and 5170 NVSL both had deletions 

which are specific to those isolates. Isolate 306 has a 675 nucleotide deletion in 

the 5' end of the S gene which starts 57 nucleotides after the S gene start site. 
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Isolate 5170 NVSL is very unique as it has a 711 nucleotide deletion which 

begins only 27 nucleotides after the S gene start site. This is the largest 

deletion which has been characterized so far and also starts the closest to the S 

gene start site. It is possible, due to the location of this deletion that the virus 

may be missing a good portion of the signal peptide. This may be important in 

the tissue tropsim of this isolate. The herd that 5170 NVSL was isolated from 

showed chronic diarrhea and the virus itself was isolated from a fecal sample. 

TGEV was also isolated from this sample. Further studies should be done to 

determine the relevance of this deletion in tissue tropism and pathogenicity. 

Sequence analysis of the gene 3 of the four PRCV isolates showed some 

commonality with previously studied isolates, but also some unique diversity. 

The gene 3 of all of the new isolates contained the CT AAAC leader binding site. 

The isolates 725 and 5170 NVSL were predicted to yield a protein of 72 amino 

acids which is the same as PRCV isolates AR31 O and LEPP as well as the 

virulent Miller strain of TGEV. The PRCV isolate PON has the CTAAAC leader 

binding site, but is predicted to yield a truncated protein 3 of only 17 amino acids 

due to a 1 nucleotide change which codes for a stop site. Isolate 306 has 

several changes from the others in this region. It has a deletion of 7 nucleotides 

in this region which causes a frameshift and it also has a 28 nucleotide insertion 

which codes for a stop site. The predicted protein from this region is expected to 

be only 67 amino acids. 

Analysis of the 3-1 genes of the four PRCV isolates showed that there 

was a large amount of variation in this region among the isolates. The gene 3-1 

of the PRCV isolates 725, PON, and 5170 NVSL were all preceded by the 

CTAAAC leader RNA binding site. Isolate 306 had no leader binding site and no 



59 

3-1 start site due to a 52 nucleotide deletion in this region. It is predicted that 

protein 3-1 is not made by this isolate. This is a unique feature of this isolate. It 

has been theorized that the gene 3 codes for a non-structural protein which is 

important in pathogenesis. The variations seen among these isolates in this 

region may yield answers to the mechanism of pathogenesis. 

In looking at the biological characteristics of these isolates it is possible to 

see that they have several factors in common. They all replicate in the ST cell 

line, as well as the IPEC-1 cell line. It is interesting to note that all isolates 

except 1894 caused a cytopathic infection. The unique feature of this virus is its 

small deletion in the S gene and also its 23 nucleotide deletion in the 3 gene. It 

is possible that this small deletion can influence the pathogenicity of this virus, 

as previous studies have shown to not be very virulent. This isolate also 

showed the smallest average plaque size. 

Additional studies should be done to clarify the role that the genes 3 and 

3-1 play in the virulence of PRCV and TGEV. With the new isolates that we 

have characterized, we now have constructs with several varying deletions and 

additions in these regions of their genomes. Animal studies could be done to 

see if there is any correlation between the changes in these regions and the 

pathogenicity of these viruses. 
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