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ABSTRACT

Dissolved gas data were collected downstream from a moderately-sized
midwestern reservoir over a period of nine years. From 255 observations the
average total gas pressure was 116% of saturation under an average discharge
of 222.9 m¥s (7,870 ft¥/s). Periodic examinations of live fish and fish collected
from fish kills documented the occurrence of chronic and acute gas bubble
trauma in aquatic organisms downstream from the dam. The occurrence of
periodic gas supersaturation-induced fish kills was tied to continued high gas
pressures during periods when the discharge from the reservoir was substan-
tially decreased. Less discharge decreased river depth and lowered compen-
sating hydrostatic pressure leaving uncompensated gas pressure in excess of
atmospheric pressure. The occurrence of gas supersaturation at this reservoir
is of interest because of the potential for gas supersaturation at other moder-

ately-sized reservoirs where gas supersaturation might not be predicted.



INTRODUCTION

Gas supersaturation and it's effects on aquatic organisms inhabiting
waters supersaturated with atmospheric gases have been studied off and on for
nearly ninety years. Marsh and Gorham (1905) first described the occurrence
of waters supersaturated with atmospheric gases and the effects of this excess
pressure on aquatic organisms were termed "gas bubble disease". [Recently,
this phenomenon has been termed "gas bubble trauma" because it is the result
of a physical process not an infectious disease.] The greatest interest in re-
searching gas supersaturation and its effects on aquatic animals occurred in the
late 1960's and 1970's when the occurrence of gas supersaturation was docu-
mented downstream from large dams on the Columbia and Snake rivers (Ebel
1969; Meekin 1971). Meekin and Allen (1974) estimated that 6% to 60% of
the adult salmonids in the middle region of the Columbia River died between
1965 and 1970. Carcasses of adult salmon were found when nitrogen gas
supersaturation reached 120% of saturation or higher. May (1973) found that
along the upper reaches of the Columbia River most fish showed signs of gas
bubble trauma in an area where the total gas pressure was 130% of saturation,
whereas, fish collected downstream where the total gas pressure was 105% to

118% of saturation, showed no signs of gas bubble trauma. Levels of gas
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supersaturation in the Des Moines River, as described herein, are equally as
great in magnitude and duration as levels reported in the Columbia and Snake

rivers.

The physics of gas supersaturation

The circumstances that result in gas bubble trauma can be described by
the physical conditions that determine gas concentrations in water. Dissolved
gas data, as percent of saturation, are the measurements of a gas in solution
with respect to its solubility in air-equilibrated water at the test temperature and
barometric pressure (Harvey 1975). A recent trend to standardize data report-
ing has been to report the gas pressure that is in excess of barometric pres-
sure, which is then reported as AP. This parameter has the advantage of being
independent of barometric pressure and elevation and so it is easier to com-
pare data from different locations. Colt (1983) contributed to the field by
publishing standardized formulae and terminology to quantify and describe gas
supersaturated conditions.

The solubility of a gas in solution depends on the nature of the gas and
liquid and on the pressure and temperature. The two most important environ-
mental factors affecting solubility of atmospheric gases are pressure and
temperature. As the pressure on a volume of water increases, the capacity of
that water to hold dissolved gas also increases. Pressure is the most important

factor affecting gas solubility, as stated in Henry's Law: "the mass of gas dis-
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solved by a given volume of solvent, for a constant temperature, is proportional
to the pressure of the gas with which it is in equilibrium" (Harvey 1975).
Hydrostatic pressure increases rapidly with depth, greatly increasing the ability
of deeper water to hold gases in solution.

Temperature also affects the solubility of gases in water. For nitrogen
and oxygen, gas solubilities decrease with increased water temperature.
Therefore, it is possible for water that is saturated to become supersaturated
upon heating (APHA et al. 1989).

The partial pressure of a gas is defined as the pressure of each gas in a
mixture of gases as if it alone occupied the total volume. [The pressure of a
single gas is commonly called tension when in the liquid phase and partial
pressure when in the gas phase.] According to Dalton's Law the total gas
pressure is equal to the sum of the individual gas pressures. For air in water,
the total gas pressure is equal to the sum of the partial pressures of the
constituent gases plus the vapor pressure at that particular temperature. In the
past many researchers had failed to include water vapor pressure.

For dry air at one atmosphere the fractional composition of the major
gases are, according to Colt (1984):

Nitrogen 0.78084
Oxygen 0.20946
Argon 0.00934

Cco, 0.00032
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The concentration of a gas in solution is related to it's partial pressure
and it's solubility. Each gas has a unique solubility in water so the number of
molecules of different gases in water at the same equilibrium pressure is
different and depends on the Bunsen solubility coefficient. The Bunsen coeffi-
cient is the volume of gas, reduced to standard temperature and pressure
(STP), which is absorbed by a unit volume of solvent at the temperature of
measurement and a gas pressure of 1 atmosphere (Macdonald and Wong
1975). The relationship of a gas at equilibrium is described by the following
equation (D'Aoust and Clark 1980):

C=PxB

where C equals the concentration of the gas

P equals the partial pressure of the gas
and B equals the bunsen coefficient

Therefore, oxygen, which is only % as plentiful as nitrogen in the atmosphere
becomes V2 as plentiful in water because it is twice as soluble (Harvey 1975).
Generally, in gas supersaturation research, nitrogen and argon gases are
combined as atmospheric nitrogen for simplicity. The ratio of nitrogen to
oxygen gas appears to play a role in tolerance to gas supersaturation. In water
in equilibrium with the air, the ratio of the partial pressure of nitrogen gas to the
partial pressure of oxygen gas is 3.77 (APHA et al. 1989).

There has been much confusion over the effect of depth on gas solubili-

ty. According to Bouck (1980) the hydrostatic pressure at a specific depth must



5

be considered as a compensating pressure. Thus, gas bubbles can only form
in a fish if the difference between the total gas pressure and the compensating
gas pressures is positive. Since hydrostatic pressure increases with depth, the
capacity of deeper water to hold gas in solution increases. This is described in
Boyle's Law which states that a volume of gas changes inversely with pressure.
Thus, if you halve the pressure the volume doubles. So at a greater depth the
hydrostatic pressure (due to the weight of the water) keeps gases in solution,
however, when the fish surfaces to a lower pressure the excess gases come
out of solution and form gas bubbles. This is why the river depth, or the
capacity of the fish to sound to a depth deeper than the compensation depth, is
so important. The compensation depth is the depth where the compensating
pressures (barometric plus hydrostatic pressure) equal the cavitation pressures
(sum of the dissolved gas pressures). Gas bubble trauma can only occur when
the cavitation pressure exceeds the compensation pressure (Bouck 1980).
Water that is supersaturated with dissolved gases, in the absence of
vigorous surface turbulence, requires a long time to re-equilibrate to the normal
saturation level (Knittel et al. 1980). The upward diffusion of the excess gases
is generally small and does not warrant attention unless anaerobic systems are

involved or an extended time frame, as in mass transport studies (Klots 1961).



Computation of gas pressure data

In membrane-diffusion methods the differential pressure between
barometric pressure and total dissolved gas pressure is directly measured and
is equal to AP in mmHg. This value will be negative in undersaturated condi-
tions and positive in supersaturated conditions. A total gas meter reading in air
should equal zero, therefore, a AP of zero in water indicates that it is in equilib-
rium with the atmosphere. Dissolved gas levels are conventionally computed
as % of saturation rather than % supersaturation. For example, 112% of
saturation is only 20% supersaturated. The recommended formula for deter-
mining total gas pressure as a percent of saturation includes water vapor
pressure. It is calculated as the sum of the barometric pressure and AP divided
by the barometric pressure, multiplied by 100 to result in a percent (Colt 1983).
Total gas pressure is normally computed relative to the surface barometric
pressure. However, to assess exposure in natural systems it is desirable to
compute gas pressures at depth. The total gas pressure at equilibrium at a
given depth is equal to the barometric pressure plus the density of water, the
acceleration due to gravity and the depth (Colt 1983). This is often referred to
as the ambient barometric pressure. Percent total dissolved gas pressure at
depth can be determined by substituting ambient barometric pressure for the
denominator. This is referred to as the uncompensated total gas pressure. For
example, a AP of 76 mmHg corresponds to a percentage total gas pressure of

110% of saturation with respect to the surface. At a depth of 1 meter the
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uncompensated total gas pressure is 100.4% of saturation. In calculating
uncompensated gas pressure the assumption is made that the temperature and
dissolved oxygen levels are uniform with depth. This assumption is probably
valid for streams but would not be in lakes and reservoirs. The preferable
method of reporting total gas pressure is in terms of AP because initial bubble
formation is dependent on it (Colt 1983; APHA et al. 1989). At the surface the
total dissolved gas pressure equals AP plus the barometric pressure. Assuming
that the water column is uniformly mixed the uncompensated AP decreases
about 73 mmHg for each meter of depth (Colt 1983).

Generally, only the component gases nitrogen, oxygen and argon are
considered in gas pressure research. The partial pressure of carbon dioxide is
usually small enough to be neglected because high concentrations on a mg/l
basis represent small pressures (Colt 1983). Supersaturation of a component
gas will not cause gas bubble trauma unless the total gas pressure exceeds
100%. Nitrogen and argon gases are measured together in membrane-diffusion
methods. The conventional computation of oxygen saturation is with respect to
moist air. Thus, it is preferable to determine nitrogen plus argon saturation in
the same manner. The reporting of component gas pressure as a percent of
saturation is misleading because a given percentage can represent significantly
different pressures and changes with barometric pressure and elevation (Colt
1983). The preferable method of reporting component gases is in terms of

partial pressures or excess pressures (ie. AP N, is the part of the AP that is a
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result of nitrogen gas, it is the excess pressure as a result of nitrogen gas pres-

sure).

Causes of gas supersaturation

Four mechanisms by which water may be supersaturated were discussed
by Lindroth (1957). These processes either cause an increase in the amount of
air dissolved or they reduce the amount of air that water will hold. First, water
containing dissolved gas from a gas mixture containing more of that gas than
found in air. This mechanism is probably found only experimentally. Second,
water may contain a dissolved gas at a temperature that is lower than ambient
temperature. This mechanism can occur as water is heated for aquaculture
(Embody 1934), as water is cooled at power plants (Adair and Hains 1974,
DeMont and Miller 1972), and as a result of natural geothermal heating (Bouck
1976). Third, two bodies of water at different temperatures are hixed. This
may cause supersaturation but probably at only low levels. And fourth, water
may contain gas that was dissolved under a pressure higher than atmospheric
pressure. This mechanism is probably the most common cause of gas super-
saturated waters. It occurs at some dams (Ebel 1969; Blahm 1974). When
bubbles are carried down into the water or gas and water are present together
at elevated pressures, gas supersaturation can be produced. [For example, at
20°C the equilibrium concentration of oxygen at 4.0 meters is 12.67 mg/l, com-

pared to 9.08 mg/l at the surface. If the ambient concentration of dissolved
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oxygen is less than 12.67 mg/l at 4.0 m, oxygen will be transferred into the
water from the bubble (Colt 1984).] The dissolved gas concentration resulting
from bubble entrainment depends on the depth of submergence, the amount of
air entrained and the degree of mixing and turbulence (Colt 1985). Also, this
mechanism is possible at air injector locations in aquaculture (Harvey and
Smith 1961) and in lakes with artificial aeration (Fast 1979). It can also occur
at natural springs (Marsh 1910), rapids (Jarnefelt 1948) and waterfalls (Harvey
and Cooper 1962). In addition, it can occur with air injection to prevent "water
hammer" in turbines and sluiceways (Bouck et al. 1976). [Water hammer is a
term for vibration caused by pressure differences occurring in plumbing and
artificial water systems.] White et al. (1986) found sluice gate openings were
closely correlated with total gas pressure and gas bubble trauma in fish.

In addition to these four mechanisms discussed by Lindroth, photosyn-
thesis may generate oxygen gas to a pressure higher than atmospheric pres-
sure (Woodbury 1941; Renfro 1963; and Supplee and Lightner 1976). Howev-
er, this mechanism results in temporal gas supersaturation and may not be as
significant.

Several approaches have been demonstrated to reduce gas supersatura-
tion in laboratory and hatchery situations. Embody (1934) was able to pass
water over a series of baffles at the head of a trough to reduce supersaturation.
Harvey and Coopgr (1962) used a splash tower with 12 sets of baffles.

‘a

Recently, research has focused on using packed columns (Bouck et al. 1984,
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Colt and Bouck 1984), vacuum systems (Marking et al. 1983; Fuss 1983) or

screen decks (Hartman 1983) to lower gas supersaturation.

Pathology of gas bubble trauma

Descriptions of the acute and chronic gas bubble trauma and clarification
of the situations that must occur to result in gas bubble trauma were well de-
scribed by Bouck (1980). Stroud et al. (1975) presented an excellent discus-
sion of the pathology of acute and chronic gas bubble trauma. Gas bubble
disease is defined as a non-infectious, physically-induced process caused by
uncompensated, hyperbaric total dissolved gas pressure, which produces
primary lesions in the blood (emboli) and in tissues (emphysema) and subse-
quent physiological dysfunctions (Bouck 1980). [Please note that this phenom-
ena will be described here as gas bubble trauma rather than disease as it is the
result of a physical occurrence not an infectious disease.] The pathology of
gas bubble trauma in fish has been described by several researchers as the
external appearance of emphysema under the skin, between fin rays, in scale
pockets, along the lateral line, and on the head (Meekin and Turner 1974,
Stroud et al. 1975; Sneisko and Axelrod 1976; Weitkamp 1976). These gas
bubbles increase in size as the time of exposure to supersaturated water
increases (Marsh and Gorham 1905). Also, petechial hemorrhages, small,
round, non-raised hemorrhages in the skin or membrane, frequently accompany

emphysema in chronic gas bubble trauma. The petechial hemorrhages usually
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occur following the appearance of external emphysema and seem to indicate
an advanced stage of the phenomenon (Weitkamp and Katz 1980).
Exophthalmia (pop-eye), which is a protrusion of the eyeball from the orbit, is a
sign commonly associated with gas bubble trauma (Marsh and Gorham 1905;
Harvey 1975), but exophthalmia may be present or absent in only a few fish
suffering from gas bubble trauma (Meekin and Turner 1974). It is believed that
exophthalmia is more closely related to chronic gas bubble trauma (Weitkamp
and Katz 1980). Also, exophthalmia can have other causes such as kidney
disease or physical damage (Weitkamp 1976). Research has shown that not
all fish will show external signs of gas bubble trauma but that external signs are
pathognomonic, diagnostically specific (Bouck 1980). Evidence of former
external lesions appear as circular depressions, for example on the skin, on fins
and in the buccal cavity (Crunkilton et al. 1980).

Internal signs of gas bubble trauma has been documented as emphyse-
ma in the buccal cavity, in the gut, in gill arches and gas emboli in the circulato-
ry system (D'Aoust and Smith 1974; Stroud et al. 1975; Beyer et al. 1976;
Smith 1988). Bubbles along the lateral line can occur, reducing the ability of
the sensory units to respond to stimuli (Schiewe and Weber 1976). The most
conclusive sign of gas bubble trauma is the appearance of gas emboli in gill
blood vessels and in the rest of the vascular system. The cause of death due
to gas bubble trauma has been established as the occurrence of gas emboli in

the bloodstream that prevents the movement of oxygenated blood in the organ-
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ism and results in death by anoxia (Stroud et al. 1975; Pauley and Nakatani
1967). Marsh and Gorham (1905) found gas completely filled and distended
the bulbus of the heart, preventing movement of the blood even though the
heart continued to beat. Lesser amounts of gas may form emboli only in the
gills leading to blood stasis in the gill arterioles (Dawiley et al. 1976). Bouck
(1980) describes three stages in acute gas bubble trauma induced in a labora-
tory setting. During the first stage the fish's body gains dissolved gas pressure
toward the AP, hyperbaric pressure, of the water. This process is aided by the
blood-water countercurrent flow arrangement in the gills. [Efficient exchange of
dissolved gases in fish with gills depends on bringing the blood and water into
close apposition on either side of a thin membrane through which the dissolved
gases can diffuse. This works best if the blood and water flow opposite to one
another. The structure of the gills of bony fish maximizes the surface area
exposed by having hundreds of gill filaments, each filament carries an abun-
dance of lamellae at right angles. The lamellae are held so that the water must
pass through the lamellae channels not just over the gill filaments. Coordinated
muscular action of the buccal cavity (mouth) and operculum (gill cover) produc-
es a continuous flow of water across the gills (Bond 1979).] When the expo-
sure persists and compensatory pressures are inadequate, small bubbles form
in the blood. Affected fish often become restless or erratic and may jump out of
the water. Emphysema may begin in organs, muscle or skin. The second

stage begins with mortality caused by hemostasis. Mortality is linear until the
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‘median mortality. In stage three, after half of the fish have died, the remaining
fish are increasingly more tolerant, thus, 100% mortality is not observed without
long exposure. Protracted exposure to AP allows the development of
emphysemas. Thus, in gas bubble trauma there appears to be a latent stage
where gas equilibrium occurs and gas emboli form before mortality occurs.

In addition, substantial research continues to yield information on the
causes of gas supersaturation and the effects of both chronic and acute levels
of gas supersaturation on many different species of aquatic organisms: fish,
crustaceans, amphibians, zooplankton and other invertebrates. Daphnia spp.
were shown to develop massive air bubbles in the gut and under the carapace
in the brood pouch (Nebeker et al. 1976). Crayfish became immobilized
(Nebeker et al. 1976). Stoneflies developed bubbles at the base of legs and in
gills (Nebeker et al. 1976). The lethal thresholds for the zooplankton Daphnia
magna and the crayfish Pascifastacus leniusculus were reported as 111% and
127% of saturation, respectively (Nebeker 1976). In general, with the exception
of daphnia, most freshwater invertebrates appear to be less sensitive to gas
supersaturation than fish, although they will succumb if the pressure is great
enough. This greater tolerance may be a result of the more open, simpler
circulatory system of invertebrates (Nebeker et al. 1976). Exposure of tadpoles
to supersaturation exhibited similar signs with accumulation of gas in the gut
and positively buoyant animals (Colt et al. 1984). Maulof et al. (1972) observed

gas bubble trauma in adult oysters and clams. The clams exhibited gas-filled
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conchiolin blisters. Bubbles of gas were observed in the gill filaments of the
oysters and clams and in the mantle tissue of the oysters.

Differing effects on different life stages are also apparent. In larval fish
the phenomena appears differently than in juvenile and aduit fish. Larval fish
often develop gas bubbles in the digestive system, or on the surface of the fry
and cause them to rise to the water surface (Henly 1952; Stroud et al 1975).
Death of larvae and fry often occurs when the yolk membrane ruptures.
Cornacchia and Colt (1984) found clinical signs of gas bubble trauma in 10-day
old larval striped bass, Morone saxatilis, exposed to APs as low as 22 mmHg

(103% of saturation). Commonly the larvae floated belly-up at the surface.

Behavior

Behavior may prove to be an important factor in the occurrence of gas
bubble trauma. Several researchers (Gray et al. 1983; Bouck et al. 1976) have
found increased vulnerability to gas supersaturation in more active fish. Gray et
al. (1983) found that black bullhead (/ctalurus melas) were more susceptible to
gas bubble trauma under lotic (flowing water, forced swimming) conditions
versus lentic (still water, nonforced swimming) conditions. Testing under
conditions of flowing water would be more representative of riverine environ-
ments. It has been shown that muscle contractions during swimming can
contribute to the formation of gas emboli in the bloodstream (McDonough and

Hemmingsen 1985). Crunkilton et al. (1980) hypothesized that pelagic fish and
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those associated with shallow, near shore waters were most adversely affected
by gas bubble trauma. These fish would include gizzard shad (Dorosoma
cepedianum), white bass (Morone chrysops), crappie (Pomoxis spp.), bluegill
(Lepomis macrochirus), green sunfish (Lepomis cyanellus) and largemouth bass
(Micropterus salmoides). Abnormal behavior is an obvious but nonspecific sign
of gas bubble trauma. Wyatt and Beiningen (1971) described behavior in fish
exposed to rapidly lethal level of supersaturation (150%) as fish suddenly lost
the ability to swim against a current, were unable to avoid obstacles, soon lost
equilibrium, moved to the surface without an apparent sense of direction and
then exhibited violent writhing movements interspersed with inactivity. Stroud et
al. (1975) reported that prior to death in juvenile fish signs included loss of
equilibrium, abnormal buoyancy, violent head shaking, terminal convulsions and
finally death. Decreased response to external stimuli was observed probably as
a result of gas accumulation in the lateral line. Fish were frequently observed
to die with mouth open and gills and opercula flared, a sign frequently observed
in fish dying of anoxia. Dawley and Ebel (1975) reported behavioral changes
and reduced growth in juvenile chinook salmon (Oncorhynchus tschawytscha)
exposed to 115% total gas pressure. Bouck et al (1976) found adult chinook
salmon swam aimlessly, were unresponsive and exhibited coughing as they ap-
proached death. In addition, some fish species seem to be able to sense the
presence of gas supersaturated water and avoid these conditions by swimming

at greater depths where hydrostatic pressure would compensate for the excess
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gas pressure (Bentley et al. 1976; Meekin and Turner 1974; and Weitkamp

1976). This may allow periodically sounding fish to spend a portion of the day
near the surface without producing substantial effects of gas bubble trauma.
However, as the fish do not eliminate the gas when they sound, the tissues will
again be supersaturated on return to the surface. In addition, not all fish
appear able to sense supersaturated conditions. Gray et al. (1983) found that
the common carp (Cyprinus carpio) and the black bulihead avoided excessively
high gas saturations (>140% of saturation) but did not avoid saturation levels
near the threshold levels as measured by their 96-hr LC, values of 122% of
saturation and 114% of saturation, respectively. Chamberlain et al. (1980)
found gas supersaturation caused swim bladders of Atlantic croakers
(Micropogon undulatus), an estuarine physoclist, to inflate, resulting in first an
upward drift and then downward swimming to restore neutral buoyancy.
Inflation of the swim bladder may provide physoclistous fishes a direct mecha-
nism for avoiding gas bubble trauma by stimulating the fish to descend to a
compensation depth. Bouck et al. (1976) found that one of the greatest factors
influencing tolerance to gas bubble trauma was the difference in tolerance be-
tween fish families. It was found that trout and salmon, which are
physostomous, were generally more sensitive to gas supersaturation than bass,
which are physoclistous. [Physostomous fish have an gas bladder that con-
nects with the alimentary canal allowing some direct elimination of gas;

physoclistous fish have a closed gas bladder and rely solely on special struc-
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tures that can secrete or absorb gas (Bond 1979).] Bouck hypothesized that
the physoclistous bass were more tolerant because of concurrent and compen-
satory increase of intrabody pressure. Evidence of high intrabody pressure was
indicated in necropsy examinations. When punctured, the heart and swim
bladder emitted an audible release. High intrabody pressure would keep gases
in solution within vital organs of the area adjacent to the body cavity and thus
protect the fish. However, sudden release of gas (from physostomous fish)
would tend to sharply diminish intrabody pressure and promote cavitation of gas
and the growth of emboli. Physostomus fish include catfish, carp, salmonids
(salmon and trout), herrings (gizzard shad) and suckers. Physoclistous fish
include bass, perch and crappie. Bowser et al. (1983) found that exposure of
juvenile channel catfish, Ictalurus punctatus, to gas supersaturation resulted in
abdominal distention presumably due to the accumulation of intrabody gas.
Cornacchia and Colt (1984) found that larval striped bass exposed to gas
supersaturation exhibited over-inflation of the gas bladder and accumulation of

gas in the gut.

Recovery

Since the earliest research it has been known that fish can recover from
gas bubble trauma. Several researchers have found that fish can rapidly
recover from sublethal signs of gas bubble trauma, such as emphysema and

exophthalmia, when the gas level is decreased, some after only two hours.
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The rate of equilibrium between a fish's blood and the surrounding water is very
rapid (Harvey 1975). This explains why fish can move relatively rapidly through
waters of varying gas saturation without developing signs of gas bubble trauma
and why intermittent exposure increases the level of supersaturation that fish
are able to tolerate. [This also illustrates the difference between gas bubble
trauma in fish and the bends in humans.] Intermittent exposure may increase
the level of gas pressure that fish can tolerate because the time over which a
specific exposure accumulates increases and there is some recovery occurring
between exposures (Weitkamp and Katz 1980). Beyer et al. (1976) and Bouck
(1980) have reported that the equilibrium of fish tissues to any saturation is fast,
thus, the time lag often seen with chronic gas supersaturation is caused by
other factors. Research has shown that recovery of fish from gas bubble
trauma is possible using equilibrated water, hydrostatic pressure and artificially
produced pressure. Henly (1952) and Weitkamp (1976) used hydrostatic
pressure to alleviate signs of gas bubble trauma. Temperature also influences
tolerance to gas bubble trauma and some species are inherently more suscepti-

ble than are others.

Ratio of oxygen to nitrogen gas
The ratio of oxygen gas to nitrogen gas pressure has been shown to
affect the occurrence of gas bubble trauma. Bubbles formed in water have

nitrogen gas and oxygen gas present in the same ratio as found in air. Thus,
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gas bubble trauma has been found to be caused by supersaturation of atmo-
spheric gases and not by nitrogen gas alone as was earlier thought. Earlier it
was assumed that nitrogen, being biologically inert, was the causative agent, as
oxygen supersaturation would be regulated or reduced by biological processes.
Nebeker et al. (1976) found a significant decrease in mortality when the ratio of
oxygen to nitrogen gas was increased while holding the total percent of satura-
tion constant. Rucker (1976) also reported an increased tolerance to supersat-
uration when the ratio of oxygen to nitrogen gas was increased. Lower gas
pressure levels may be encountered during parts of the day since dissolved
oxygen concentrations, and thus oxygen gas pressure, vary diurnally as a result
of photosynthetic production of oxygen and biological respiratory depletion of

oxygen (Nebeker et al. 1979).

Secondary effects

Sublethal, secondary effects of gas bubble trauma include blindness,
stress, and decreased lateral line sensitivity. These sublethal effects can
indirectly led to death. Gas bubble trauma can increase susceptibility to other
diseases. Weitkamp (1976) found that fish that were not able to recover from
gas bubble trauma under saturated conditions apparently died as a resuit of
secondary fungal infections. Jensen (1974) found that white bass showed a
high incidence of fungal infections that may have secondarily invaded lesions

from gas bubble trauma. Large gas bubbles in the buccal cavity (mouth) can
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lead to the inability to feed. In addition, chronic gases may decrease peristaltic
movement of food in the intestinal tract leading to a buildup of gas, toxic
products, bacteria and heat (Stroud and Nebeker 1976). Several researchers
reported that fish recovering from exophthalmia suffered permanent eye
damage (Miller 1974; Marsh 1903). In addition, Crunkilton et al. (1980) report-
ed that they observed progressive degeneration of tissue between the fin
margins, particularly the caudal fin, caused by the trauma of gas bubble
formation and subsequent infection, which resulted in the complete loss of fin
structure and of the entire fin of fishes observed from a major fish kill at the

Lake of the Ozarks.

Ecological significance

The ecological significance of the effects of gas supersaturation induced
gas bubble trauma on naturally occurring populations is one area that requires
additional study. Egusa (1959) stated that lethal nitrogen limits varied consider-
ably among species. He found a median tolerance limit of 120% for adult
common carp and felt that most fish could survive indefinitely below 115%.
Bouck et al. (1976) found that at 10°C and at a gas pressure of 130% the
median time to death for adult largemouth bass was 130 hours (or over five
days). Although they exhibited external signs of gas bubble trauma largemouth
bass survived prolonged exposure, at 120% of saturation (157 mmHg) which

killed salmon and trout. Fickeisen et al. (1973) found that bluegill and common
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carp were more tolerant than smallmouth bass (Micropterus dolomieui) at 130%
saturation. Thus, it appears that nonsalmonid fish may be able to tolerate
higher gas supersaturation or (more accurately) tolerate positive hyperbaric
pressures for a longer period of time. In addition, if the exposure is intermittent
(the degree of saturation or hyperbaric pressure changes or the fish sounds)
then the fish may be able to tolerate high levels even longer. Crunkilton et al.
(1980) found that optimum conditions for supersaturation did not necessarily
coincide with massive fish mortality but that mortality was more likely a result of
a combination of physical conditions and fish behavior. Fickeisen et al. (1973)
reported a narrow range between lethal and nonlethal saturation levels. Colt et
al. (1985) found that the mortality of juvenile channel catfish varied from one
percent to 54 percent at uncompensated hyperbaric gas pressures of 76 mmHg
(110% of saturation) and 117 mmHg (115% of saturation), respectively. At 117
mmHg initial mortality was followed by a period of steady mortality. Bouck et
al. (1976) reported that tolerance to gas bubble trauma appears to involve
different biological factors at high versus low levels of supersaturation. In
acutely lethal conditions survival may be influenced by the ability of a fish to
tolerate changes in vascular dynamics. But survival at long-term subacute
levels may be more dependent on complex alterations of physiological functions
such as immune responses, infectious agents or adaptive behavior.

All of these factors illustrate the complex nature of gas bubble trauma in

aquatic organisms. So what level of gas pressure is hazardous or ecologically
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significant in the real world, in natural systems? The answer to this question is
difficult because the effects of gas supersaturation-induced gas bubble trauma
vary according to fish species, size, age, and condition, as well as varying with
temperature, depth distribution and gas ratios as discussed above. A few early
studies indicated that 110% total gas saturation was the critical level for young
salmonids held in shallow water. Thus, this value was adopted as a water
quality standard by several states and the National Academy of Sciences and it
is the maximum level recommended by the Environmental Protection Agency
(EPA 1986). Other studies (Bouck 1980; Rulifson and Pine 1976) suggest that
this is just the minimum level that can be safely tolerated by fish. However,
Alderice and Jensen (1985) deduced from the literature that the initial lower
level of chronic gas trauma begins at a hyperbaric pressure of only 28 mmHg to
35 mmHg (104% to 105% of saturation) and that acute gas bubble trauma
begins at 60 mmHg to 76 mmHg (108% to 110% of saturation) above ambient
pressure. Jensen et al. (1986) used a multivariate dose-response model to
examine the response of salmonids to gas supersaturation and reported the
safe levels of total gas pressure ranged from 104% to 115% of saturation
depending on water depth and fish size. Alderice and Jensen (1985) concluded
that total gas pressure should be maintained below 104% - 105% to prevent
gas bubble trauma in streams. The EPA guideline for total gas pressure of
110% saturation equals an excess pressure of 76 mmHg and is viewed as too

high to protect hatchery fish from chronic effects of gas bubble trauma (Krise
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and Mead 1988). So what pressure produces gas bubble trauma that is

ecologically significant in natural systems? There is no clear consensus.

The following work will illustrate that gas supersaturation is not only
associated with large dams having deep plunge basins but that substantially
high levels of gas supersaturation can exist below a moderately-sized midwest-
ern reservoir under both crest Tainter gate and sluice-gate release operations.
In addition, field studies through collection of live fish and examination of fish
kills provide evidence of both chronic and acute trauma to several species of

fish.
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STUDY AREA

This study took place at Red Rock Reservoir - a moderately-sized
reservoir in south-central lowa on the Des Moines River (Figure 1). It is located
230 kilometers (142.9 miles) above its junction with the Mississippi River and
has a drainage basin of 31,916 square kilometers (12,323 square miles) (U.S.
Army Corps of Engineers 1988). This research was conducted as part of a
larger more generalized water quality monitoring effort that was conducted by
lowa State University's Engineering Research Institute under contract with the
U.S. Army Corps of Engineers, Rock Island District.

Red Rock Reservoir became operational in March 1969 and is primarily
operated for the purposes of flood control and low flow augmentation with
secondary conservation and recreational benefits. The fishery below the dam is
a popular natural resource.

Red Rock Dam is a rolled earthfill dam with a total length of 1,730
meters (5,676 feet) and height of 33.5 meters (110 feet) with a concrete spill-
way. There are two release works - a gated spillway and outlet structures. The
gated spillway consists of a series of five Tainter crest gates. The Tainter crest
gates measure 12.5 meters by 13.7 meters (41 feet by 45 feet) on a concrete
ogee crest at 224.3 meters (736 feet) above National Geodetic Vertical Datum

(NGVD). The outlet structure consists of a series of 14 sluice gates. The 14
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sluice outlets measure 1.5 meters by 2.7 meters (5 feet by 9 feet) and extend
through the concrete ogee spillway section into the stilling basin. The exit
portals are completely below minimum tailwater. The inlet invert elevation is at
210.3 meters (690 feet) NVGD. The stilling basin is approximately 73.4 meters
by 54.9 meters (241 feet by 180 feet) with a floor elevation at 199.3 meters
(654 feet) NGVD. The basin is a hydraulic jump in which the jump height curve
is below the tailwater rating curve at low discharges and above at high dis-
charges. Baffle piers are in two rows, staggered, each 3.6 meters (12 feet)
high, 4.8 meters (16 feet) long and 2.4 meters (8 feet) wide, spaced 3.0 meters
(10 feet) apart in each row (Army Corps of Engineers 1988). The end sill is 3.0
meters (10 feet) high with top elevation at 202.4 meters (664 feet) NVGD. The
tailwater elevation ranges from an elevation of 209.0 meters (685.6 feet) NVGD
at a discharge of 8.5 m®s (300 ft¥/s) to an elevation of 213.4 meters (700.0
feet) NGVD at a discharge of 1,132.8 m®/s (40,000 ft*/s). Thus, the depths in
the stilling basin would range from 9.6 meters (31.6 feet) to 14.0 meters (46.0
feet) under these flow regimes. At the average discharge of 223.1 m%/s (7,879
ft°/s) during this study the average depth of water in the stilling basin would be
11.1 meters (36.4 feet). Figures 2 and 3 illustrate the release structures at Red
Rock Dam.

The reservoir is currently operated at a conservation pool level of 226.1
meters (742 feet) NVGD. Since the beginning of this study the conservation

pool level has been raised periodically to offset sedimentation, with the
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conservation pool rising from 221.9 meters (728 feet) NVGD to 223.7 meters
(734 feet) NVGD in December 1988, and rising to 226.1 meters (742 feet)
NVGD in April 1992,

At its current conservation pool level the reservoir covers 77.3 square
kilometers (19,100 acres) and its storage capacity is 327 million cubic meters
(265,500 acre-feet). The maximum flood control pool is at 237.7 meters
(780 feet) NVGD covering 265 square kilometers (65,500 acres), with a storage
capacity of 2,208 million cubic meters (1,790,000 acre-feet). Normal release
from the reservoir is constrained to a minimum of 8.5 m*/s (300 ft*/s) and a
maximum release of 849.6 m*/s (30,000 ft*/s) during the nongrowing season.
The maximum discharge recorded during the study period was 1,133 m’/s
(40,000 ft*/s) which occurred in June 1984.

Water samples were collected and gas pressure readings were con-
ducted at the same location, approximately 1,067 meters (3,500 feet) down-
stream from the dam. Samples were collected off of a fishing jetty on the
northeastern river bank. Electrofish collection and examination of fish generally
occurred within 2.4 kilometers (1.5 miles) of the dam. Examinations of dead
fish from fish kills were conducted on fish observed within 305 meters (1,000
feet) of the sampling location.

Beginning in April 1988 and continuing through October 1992 gas
pressure readings and water samples for Winkler determination of dissolved

oxygen content were also collected in the main basin area of Red Rock Reser-
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voir. Beginning in December 1990 total gas pressure readings and Winkler
determination of dissolved oxygen content were also collected below Saylorville
Reservoir which is located approximately 114 kilometers (71 miles) upstream

from Red Rock Reservoir on the Des Maoines River.
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METHODS

Gas pressure in the river below Red Rock Dam was determined by the
use of a saturometer and a dissolved gas meter. These instruments were con-
structed from gas permeable Silastic® tubing (dimethyl silicone rubber tubing)
connected to a pressure gauge. Both instruments measure AP directly, the
difference in the pressure of dissolved gases in the river as compared to
atmospheric pressure. All pressure readings were taken about one half meter
below the river surface.

Gas pressure data were taken from August 3, 1983 through August 1,
1989 with a Weiss saturometer (model ES) that was periodically checked for
positive and negative pressure leaks. No leaks were ever found. The pressure
gauge ranged from -100 to +400 mmHg with an accuracy of +/- 1%. Time to
equilibration was approximately 20 minutes, varying with the degree of super-
saturation. Care was taken to be assured that the saturometer had reached
equilibration with the water. A final reading was not recorded until there had
been no change in pressure over a two minute time period. An assurance
check with a Common Sensing total gas meter on March 14, 1989, yielded
similar results (Total gas pressure as percent of saturation: Weiss saturometer
99.2% versus Common Sensing total gas meter 100.0%). From August 3,

1983 through August 1, 1989, barometric pressure was determined from the
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barometric pressure at a meteorological station at the Des Moines International
Airport correcting for the elevation difference between the two sites.

Gas pressure readings beginning in October 1989 were conducted using
a Common Sensing gas meter model TB-L. With the Common Sensing gas
meter the time to equilibration ranged from 10 to 15 minutes, depending on the
level of supersaturation. Care was taken to be assured that the Common
Sensing gas meter had reached equilibration with the water. A final reading
was not recorded until there had been no change in pressure over a two minute
time period. Patency checks of the Common Sensing gas meter were per-
formed periodically according to the manufacturers instructions with no prob-
lems ever detected. From October 1989 barometric pressure was recorded
from the barometer contained in the Common Sensing gas meter which was
frequently checked against a mercury barometer.

Dissolved oxygen content of the water was determined in replicate
samples collected in a sewage sampler by the azide modification of the
idometric Winkler method according to Standard Methods for the Examination
of Water and Wastewater, 17th edition (1989). The average absolute difference
between replicates was 0.01 mg/l and the average absolute percent difference
was 0.1%. The standard deviation of the difference between replicates was
0.18 mg/i.

Temperature readings were taken with two models of Fisher Scientific

digital thermometers with thermistor sensors having accuracies of 0.2°C and
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resolution to 0.1°C. These thermometers were certified traceable to National
Institute of Standards and Technology standards. Periodically the ice point was
checked.

Nearly all gas pressure readings and water sample collections from the
locations in the main basin of Red Rock Reservoir and below Red Rock Dam
were collected between 1500 and 1700 Central Standard Time/Central Daylight
Savings Time (CST/CDT). Gas pressure readings and water sample collections
below Saylorville Reservoir were collected about 1100 CST/CDT.

Total gas meter readings were taken from the main basin of Red Rock
Reservoir from a motorboat. These readings were taken just below the surface.
Total gas meter readings were taken in the river reach just below Red Rock
Dam off the fishing jetty on the northeast bank. This location is about 1.1
kilometers (0.7 mile) downstream from the dam. Several investigations showed
that the total gas pressure at this bank location was equivalent to total gas
pressure in the mid-channel of the river (accessed by motorboat). Due to time
constraints total gas pressure below the dam was determined from the jetty
location. The location below Saylorville Reservoir was about 2.4 kilometers
(1.5 miles) downstream from the dam.

Total gas pressure (TGP) equals the sum of the partial pressures of the
dissolved gases plus water vapor pressure. Total gas pressure data were
calculated and expressed in two ways. First, as a percent of local barometric

pressure (% of saturation) and second, as AP, the difference between total gas
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pressure in mmHg and local barometric pressure (mmHg). Nitrogen gas and
oxygen gas pressure were expressed as a percentage of saturation defined as
a percent of the partial pressure of the respective gas in air (N,P % of satura-
tion; O,P % of saturation). Also, AP values for nitrogen and oxygen were
calculated as the difference in partial pressure between air and water for the
respective gas (AP N,; AP 0,). The actual pressure that an aquatic organism
experiences at a particular depth is called uncompensated gas pressure. The
effect of changing river depth was evaluated by calculating the uncompensated
total gas pressure as a percent of saturation at the maximum river depth at the
time of the pressure reading. Likewise, uncompensated AP was calculated as
the AP that aquatic organisms would encounter at the maximum river depth at
the time of the pressure reading. Compensation depth was calculated as the
depth necessary for hydrostatic pressure to equal barometric pressure plus
water vapor pressure. These depth calculations assume that both AP and
temperature are uniform with depth, assumptions that may not be valid for other
studies in lakes or reservoirs. All calculations were done as recommended by

Colt (1984). The equations used in these calculations are listed in Table 1.
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Table 1. Equations used in the calculation of dissolved gas pressure data.

Based on Colt (1974).

Equation 1: Total gas pressure (TGP), in percent of saturation

Py, + AP

X 100
Pbat

Total gas pressure (%) =

Equation 2: Nitrogen gas pressure (N,P), in percent of saturation

(Ppoy + AP) - (_[OE_]"' x 0.532] - Puo

Nitrogen gas pressure (%) = P =P (0.7502) x 100
bar Hy,0 .

Equation 3: Oxygen gas pressure (O,P), in percent of saturation

(_[—Oﬁ x 0.532]

x 100
(Ppar — PH,o) {0.2095)

Oxygen gas pressure (%) =

Equation 4 (a, b, c): Delta P pressure, in mmHg

(a) AP (Wg) = Pmeter

(0,)
B

(b) AP, (mmHG) = (P, + AP) -( xa.ssz) = Pyo = [(Poar = Puo) X 0.7909]
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[0,]
p

(c) AP, =( x 0.532] = [Prar = Pyo) X 0.2095]

Equation 5 (a,b): Uncompensated pressure, the effect of depth

(a) APunconpensated = AP - pgz

Py, + AP
(b) TGPuncompensat:ed = [ P:I + ng] x 100
r

Poar = barometric pressure (mmHg)

P20 = water vapor pressure {mmHg)

AP = Saturometer or total gas meter reading (mmHg)

[0, = dissolved oxygen concentration by Winkler method

B = Bunsen coefficient of oxygen solubility

0.532 = a correction factor, to convert § to mg/|

0.7902 = the fractional composition of nitrogen (plus argon) in air
0.2095 = the fractional composition of oxygen in air

p = density of water

g = acceleration due to gravity, 9.80665 m/s?

Z = depth, m
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RESULTS

Evidence of the occurrence of gas supersaturation and associated gas
bubble trauma in fish in the Des Moines River below Red Rock Dam has
accumulated from over nine years of gas pressure data, 14 fish kill reports and
several examinations of recently expired and live fish (Baumann et al. 1985;
Baumann and Lutz 1986; Baumann and Lutz 1987; Baumann et al. 1988;
Baumann et al. 1989; Lutz et al. 1990; Lutz and Baumann 1991; Lutz 1992;
Lutz 1983). The evidence of gas supersaturation and associated gas bubble
trauma at this location can be summarized in four arguments. These consist of:

= the occurrence of unusual fish Kills,

m the phenomenon of elevated gas pressure,

® the confirmation of chronic gas bubble trauma in live fish and acute

gas bubble trauma in dead fish from fish kill events

m comparison of dissolved gas pressure below the dam with dissolved

gas pressure in the main basin of the reservoir

Unusual fish kills
Prior to this study, several fish kills were noted below the dam in which
no known cause was established. These fish kills did not seem to have a

sudden onset and many different species and size ranges were affected.
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Thermal stress, dissolved oxygen depletion and point-source pollution were
eliminated as possible causes. [Thermal stress-related fish kills of yearling
gizzard shad were not uncommon in the fall, however these kills were easily
distinguishable. Shad are susceptible to temperature fluctuations in the 4°C to
6°C range and to rapid temperature changes (Chittenden 1972).] Reports of
fish kill events listed time, air and water temperature, river flow, dissolved
oxygen content, severity of kill (how many fish floating downstream per minute
as well as a tally of fish present on river banks), species of fish, approximate
range in fish lengths per species and any observations of live fish. An example
of a fish kill report is shown in Appendix A. The 14 fish kill events are summa-

rized in Appendix B.

High total gas pressure

Gas pressure data indicated that the river below the dam was consis-
tently supersaturated with dissolved atmospheric gases. Total gas pressure
data are given as both a percent of local barometric pressure (% of saturation)
and as AP (the difference in pressure between total gas pressure and local
barometric pressure). Positive values of AP are often referred to as hyperbaric
pressure. Of 255 gas meter readings taken over more than a nine year period,
only one indicated an undersaturated condition. Values of total gas pressure
ranged from 99% of saturation to 132% of saturation with a mean of 116% of

saturation and a standard deviation of 7%. Expressed as AP, values ranged
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from -10 mmHg to 237 mmHg with a mean pressure of 120 mmHg and a
standard deviation of 50 mmHg. From these 255 pressure readings, 79 percent
equalled or exceeded the EPA criteria for dissolved gases of 110% of satura-
tion, 40 percent equalled or exceeded 115% of saturation, 32 percent equalled
or exceeded 120% of saturation and 10 percent of the readings equalled or
exceeded 125% of saturation. Figure 4 illustrates the total gas pressure results
in a time series. The dark horizontal line in this figure represents the EPA
criterion value of 110% of saturation. Thus, the EPA criterion of 110% was
exceeded during most of the study period. Expressed as AP, 68 percent of the
readings equalled or exceeded 100 mmHg, 31 percent equalled or exceeded
150 mmHg and four percent of the readings exceeded 200 mmHg. The EPA
criterion expressed as AP equals 76 mmHg and 78 percent of the readings
equalled or exceeded this value. Figure 5 illustrates the AP results in a time
series. Summary statistics of the 255 dissolved gas values and related param-
eters from below Red Rock Dam are listed in Table 2. The complete gas
pressure data set is contained in Appendix C.

The gas pressures exerted by nitrogen gas and oxygen gas were also
calculated as a percent of saturation and as the hyperbaric pressure contributed
by these respective gases. The nitrogen gas pressure ranged from 100% of
saturation to 138% of saturation, with an average of 119% of saturation and a

standard deviation of 7%. The oxygen gas pressure ranged from 71% of
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Table 2. Summary statistics of dissolved gas data and related parameters
downstream from Red Rock Reservoir, lowa. This data set includes
255 observations.

Standard
Parameter Minimum  Maximum Mean deviation
Discharge (m*/s ) 8.5 1133 222.9 228.4
Discharge (ft*/s) 300 40000 7870 8065
Temperature (°C) 0.0 314 16.4 9.1
Dissolved oxygen 5.6 17.5 10.8 27
(mgf)
Barometric pressure 727.6 755.0 742.9 4.6
(mmHg)
Total gas pressure 98.7 132.1 116.1 6.6
(%)
Nitrogen gas pres- 99.9 1384 118.6 71
sure (%)
Oxygen gas pressure 70.6 184.8 108.8 16.7
(%)
AP (mmHg) -10 237 120 49.2
AP N, (mmHg) -0.5 217.2 106.5 40.2
AP O, (mmHg) -44.2 125.7 13.4 254
Maximum depth (m) 0.5 4.2 2.0 1.1
Compensation depth -0.1 3.2 1.6 0.7
(m)
Uncompensated total 74.7 120.3 97.9 11.6

gas pressure at the
maximum depth (%)

Uncompensated AP -262.1 158.4 -27.4 106.5
at the maximum
depth (mmHg)
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saturation to 185% of saturation, with a mean of 109% of saturation and a
standard deviation of 17%. The ratio of nitrogen gas pressure as a percent of
saturation versus oxygen gas pressure as a percent of saturation ranged from
0.6 to 1.7, with a mean value of 1.1 and a standard deviation of 0.2. The AP
contributed by nitrogen gas ranged from 0.5 mmHg to 217.2 mmHg, with a
mean of 106.5 mmHg and a standard deviation of 7.1. The AP contributed by
oxygen gas ranged from -44.2 mmHg to 125.7 mmHg, with a mean of 13.4
mmHg and a standard deviation of 25.4. Figures 6 and 7 illustrate the time
series of nitrogen gas pressure (% of saturation) and oxygen gas pressure (%
of saturation), respectively. It should be noted that there was more variance in
oxygen gas pressure data as a result of oxygen demand and diurnal fluctua-
tions of oxygen production by algae. The highest maximum values (as % of
saturation) were also of oxygen gas, however, the average nitrogen gas pres-

sure was greater.

Visual evidence of gas bubble trauma in fish

Visual external evidence of gas bubble trauma, mainly emphysema (gas
bubbles in organs or tissue), exophthalmia (pop-eye) and petechial hemorrhag-
es (just under the epidermis), was observed in recently expired fish and in live

fish collected by electrofishing or found hugging the river bank. Often, these
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visual indications were not present in dead fish that were discovered after the
fish kill event was over, as gas bubbles present in tissues of dead organisms or
in organisms removed from supersaturated conditions disappear over time.
Thus, visual indications of gas bubble trauma would not be expected in fish
from fish Kills that occurred several days before they were discovered either
floating or washed up on the river bank. Both emboli and emphysema disap-
pear because the heart has stopped supplying hyperbaric gases for continued
inflation (Bouck 1980). Coutant and Genoway (1968) reported that external
signs of gas bubble trauma disappeared rapidly after death, nearly all signs

were lost after 24 hours.

Acute gas bubble trauma

The first visual confirmation of the occurrence of gas bubble trauma in
fish below Red Rock Dam came during a fish kill on September 6, 1983. Since
then, 14 other fish kill events were studied in which gas supersaturation
appeared be the causative agent. Table 3 lists gas pressure data and related
parameters during these 14 fish Kills believed to be related to gas bubble
trauma. Table 4 summarizes the gas pressure data and tallies fish kill events
by water year. Each fish kill event is summarized in Appendix B.

The first fish kill event in which recently expired fish could be examined

came on September 16, 1986. Thirty dead fish were collected at



47

Table 3. Summary statistics of dissolved gas data and related parameters
during 14 fish kill events downstream from Red Rock Reservaoir,

lowa.
Standard

Parameter Minimum  Maximum Mean deviation
Discharge (m%/s) 8.5 104.8 45.8 37.3
Discharge (ft%/s) 300 3700 1618 1317
Temperature (°C) 1.8 29.0 20.7 11.1
Dissolved oxygen 7.9 12.4 9.9 1.9
(mgal)
Barometric pressure 739.2 748.9 742.7 3.5
(mmHg)
Total gas pressure 109.0 126.2 120.2 6.5
(%)
Nitrogen gas pressure 107.2 130.3 123.2 7.9
(%)
Oxygen gas pressure 89.7 169.3 111.8 20.8
(%)
AP (mmHg) 67 195 150 48
AP N, (mmHg) 40.7 171.9 132.2 44.8
AP O, (mmHg) -16.1 88.7 17.6 31.4
Maximum depth (m) 0.5 1.9 1.1 0.5
Compensation depth 0.9 2.7 2.0 0.7
(m)
Uncompensated total 97.8 120.3 108.9 8.1

gas pressure at the
maximum depth (%)

Uncompensated AP at -19.0 168.4 711 64.1
the maximum depth
(mmHg)
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random from fish floating downstream. Of the 30 fish, 18 were freshwater
drum, Aplodinotus grunniens, six were black crappies, Pomoxis nigromaculatus,
four were white crappies, Pomoxis annularis, and two were channel catfish.
More than 70% of the freshwater drum showed obvious signs of gas bubble
trauma (emphysema and/or exophthalmia), whereas only half of the crappie
exhibited any signs of gas bubble trauma and the two channel catfish showed
no external signs of gas bubble trauma. Many of the gas blisters (which
occurred in the buccal cavity, between fin rays or in the orbitals) were 0.5 cm
and larger, and many fish had numerous (five to 20) gas blisters.

Table 3 lists the summary statistics of dissolved gas data and related
parameters during these 14 fish kill events. The total gas pressure during these
fish kills ranged from 109% of saturation to 126% of saturation with a mean of
120% of saturation. From the data set excluding the fish kill events (see
Table 5) the total gas pressure ranged from 99% of saturation to 132% of
saturation with a mean of 116% of saturation. Thus, it is obvious that the event
of the highest total gas pressure observed, 132% of saturation, did not result in
a fish kill. As will be discussed again later, this was because of the effect of
river depth. During the period of maximum total gas pressure observed, the
release from the reservoir was 623 m®/s (22,000 ft*/s) which resulted in a river
depth of 3.6 meters, a depth greater than the required compensation depth of

3.2 meters. Thus, although the total gas pressure was extreme there was still
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Table 5. Summary statistics of dissolved gas data and related parameters
downstream from Red Rock Reservoir, lowa. Data from fish Kill
events has been excised from the data set. This data set includes
240 observations.

Standard
Parameter Minimum  Maximum Mean deviation
Discharge (m%/s) 8.5 1133 234.0 230.8
Discharge (ft*/s) 300 40000 8264 8148
Temperature (°C) 0.0 30.9 16.0 9.1
Dissolved oxygen 5.6 17.5 10.8 27
(mgfl)
Barometric pressure 727.6 755.0 742.9 4.7
(mmHg)
Total gas pressure 98.7 1321 115.8 6.6
(%)
Nitrogen gas pres- 99.9 138.4 118.3 7.0
sure (%)
Oxygen gas pressure 70.6 169.1 108.2 15.9
(%)
AP (mmHg) -10 237 118 49.0
AP N, (mmHg) -0.5 217.2 105.1 39.8
AP O, (mmHg) -44.2 102.5 12.6 24.2
Maximum depth (m) 0.5 42 2.1 1.1
Compensation depth -0.1 3.2 1.6 0.7
(m)
Uncompensated total 74.7 120.0 97.2 11.4

gas pressure at the
maximum depth (%)

Uncompensated AP -262.1 168.3 -34.1 105.3
at the maximum
depth (mmHgQ)
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11% of the water column in which the uncompensated total gas pressure was
below 100% of saturation.

In fact, the greatest differences between the fish kill data set and the
data set without fish kill events was in parameters related to flow and river
depth. During the fish kill events, the average river flow was only 45.8 m?/s
(1,618 ft’/s), as compared to 234.0 m®/s (8,264 ft*/s) for the rest of the data set.
Thus, the maximum river depth was much less during fish kill events. The
maximum river depth during fish kill events ranged from 0.5 meter to 1.9 meters
with a mean of 1.1 meters. For all but one event, the compensation depth re-
quired to offset the total gas pressure exceeded the maximum river depth
observed. Thus, during these events, aquatic organisms would be continually
subjected to hyperbaric pressures at any depth. The uncompensated total gas
pressure at the maximum river depth averaged 109% of saturation during the
fish Kill events and 97% of saturation for the rest of the data set. The uncom-
pensated AP at the maximum river depth averaged 71.1 mmHg during the fish
kill events and -34.1 mmHg for the rest of the data set. Studies in hyperbaric
physiology have shown that initial gas bubble formation is dependent on AP
(D'Aoust and Clark 1980; Bouck 1980). Gas bubble trauma can only exist
when the sum of the dissolved gas pressures (barometric pressure plus AP)
exceeds the sum of the hydrostatic pressure. During 13 of the 14 fish kills
attributed to gas bubble trauma, the uncompensated AP at the maximum river

depth was not only positive but in half of the cases it was over 100 mmHg.
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Examinations of fish during another fish kill event resulted in positive
confirmation that gas bubble trauma was indeed the cause of death. Positive
confirmation of acute gas bubble trauma requires both the confirmation of
hyperbaric dissolved gas pressure, the cause, and confirmation of emboli in the
vascular system, the effect (Bouck 1980).

On December 13, 1990, an ongoing fish kill event was discovered. The
fish kill included gizzard shad, freshwater drum and white bass. All observed
freshwater drum exhibited external emphysema on their heads in the occiput
region (Figure 8) and between fin rays. Many exhibited exophthalmia with gas
bubbles visually apparent (Figure 9). Half of the white bass observed were still
alive but had lost equilibrium, were oriented upside down, and were hugging the
river bank. Both the dead and live white bass exhibited no obvious external
signs of gas bubble trauma. Dissection of a few freshwater drum specimens
showed that there were gas emboli in the vascular system, including the heart,
indicating that gas bubble trauma was in fact the cause of death (Figure 10). In
the two white bass specimens dissected, emphysema were noted in the mesen-
teries (Figure 11) and in the lateral line (Figure 12). In addition, the body cavity
seemed to be pressurized with excess gas, which escaped when the body
cavity was opened. This excess gas could account for the upside down
orientation of the fish as their bellies became more buoyant. There did not

appear to be any gas bubbles in the vascular system of the white bass.
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Figure 8. Microphotograph of the head region of a freshwater drum
(Aplodinotus grunniens) with many emphysema (gas bubbles).
Collected from a fish kill downstream from Red Rock Dam on
December 13, 1990.
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Figure 9. Microphotograph of the eye of a freshwater drum (Aplodinotus
grunniens) exhibiting exophthalmia. Gas bubbles are clearly evident.
Collected from a fish kill downstream from Red Rock Dam on
December 13, 1990.
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Figure 10. Microphotograph of gas emboli present in the heart of a white bass
(Morone chrysops) confirming that the cause of death was acute gas
bubble trauma. Collected from a fish kill downstream from Red
Rock Dam on December 13, 1990.
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Figure 11. Microphotograph of gas bubbles present in the mesenteries of a
white bass (Morone chrysops). Collected from a fish kill down
stream from Red Rock Dam on December 13, 1990.
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Figure 12. Microphotograph of gas bubbles present in the lateral line of a white
bass (Morone chrysops). Collected from a fish kill downstream
from Red Rock Dam on December 13, 1990.
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The largest fish kill that occurred during this nine year study period
appeared to occur between August 27 and August 29, 1991. Unfortunately, this
researcher was not notified of the fish kill. The first observation was made on a
routine monitoring trip on September 3, 1991. However, the lowa State
Conservation Commission did investigate and estimated the number of dead
fish at 5,000. On September 3, 1991, it was observed that there were still
about 10 dead fish floating downstream per minute, with 10 dead fish seen per
30 meters (100 feet) of river bank. Approximately 60% of the observed dead
fish were white bass, 10% channel catfish, 10% freshwater drum, 5%
largemouth bass, 5% bluegill, 5% gizzard shad, and a few walleye (Stizostedion
vitreum). One dead paddlefish (Polyodon spathula) was observed. Many live
fish were also observed. There were several green sunfish that were alive but
were hugginé the river bank. Upon closer examination it was noticed that these
fish exhibited severe exophthalmia and emphysema were present in their fin
tissue (Figure 13). Most of the dead fish that were examined (many were too
decayed to reveal much) exhibited some sign of gas bubble trauma. On this
date, September 3, 1991, the total gas pressure was 109% of saturation (AP of
67 mmHg) with nitrogen gas and oxygen gas pressures of 107% of saturation
(AP of 41 mmHg) and 117% of saturation (AP of 26 mmHg), respectively. The
uncompensated gas pressure at the maximum river depth was 101% of satura-

tion while the uncompensated AP at the maximum river depth was 8 mmHg.
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Figure 13. Photograph of a live green sunfish (Lepomis cyanellus) with ex-
treme exophthalmia and difficulty maintaining orientation. Collected
downstream from Red Rock Reservoir on September 3, 1991.
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This was the first time since February 13, 1991 (which also triggered a fish Kill)

that the uncompensated AP at the maximum river depth was positive. Previous
to the September 3 fish kill, the outflow from Red Rock Reservoir was de-
creased substantially. The last previous monitoring event was on August 20,
1991, when the outflow was 365.3 m*/s (12,900 ft*/s), the total gas pressure
was 105% of saturation (AP of 40 mmHg), and the uncompensated gas pres-
sure at the maximum river depth was 98% of saturation (AP of -19 mmHg). By
September 3 the outflow had decreased to 28.6 m®/s (1,010 ft¥/s). This de-
crease in river flow, which decreased the river depth, triggered a fish kill as
uncompensated dissolved gas pressures became hyperbaric throughout the

water column.

Chronic gas bubble trauma

Live fish exhibited signs of chronic gas bubble trauma. The occurrence
of elevated gas pressure and occasional fish mortality, along with the casual
observation of gas blisters in live fish coliected during electrofishing activities for
a related project in May 1988, led to attempts to externally examine live fish
collected in May 1989. Common carp were collected from four locations in
central lowa in May 1989. These locations corresponded to the main baéin of
Saylorville Reservoir [which is located about 114 kilometers (71 miles) upstream
from Red Rock Dam on the Des Moines River], just downstream from

Saylorville Reservoir, the main basin area of Red Rock Reservoir and just



61

downstream from Red Rock Dam. Common carp were collected by electro-
fishing until twenty-plus fish were obtained at each location in the target length
range. Common carp obtained from Saylorville Reservoir and below Saylorville
Dam were casually examined during fish processing (which took place within
hours of collection). Closer examinations were conducted on fish collected at
Red Rock Reservoir with records kept of any abnormal external signs. During
the electrofishing collection trip below Red Rock Dam additional fish species
were collected for examination for external signs of gas bubble trauma. In the
beginning, all catchable shocked fish were examined. When this became
cumbersome, only additional (so far unsampled) species or those considered
gamefish were collected. Very few gamefish were seen during the coliection
trip below Red Rock Dam. Fish were identified, measured, and examined for
external signs of gas bubble trauma. A log sheet, detailing the presence or
absence of emphysema, exophthalmia, and secondary infections, was complet-
ed for each fish. (A completed examination sheet is contained in Appendix D).
The general degree of external chronic gas bubble trauma observed for each
fish was classified:

® minimal - if only a few small to moderate (pinpoint to 2 mm) sized

gas blisters were present
® moderate - if medium to large (2 mm to 5§ mm) gas blisters were
present in several locations; secondary infection and/or

fin erosion may have been present
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m severe -  if large to extremely large (>5 mm) gas bubbles were
present at several locations and fin erosion and/or
secondary infection was present, or bubbles appeared to
interfere with function (ie., swimming, feeding)

In total 47 fish were examined from nine species groups in addition to the 26
common carp collected below Red Rock Dam on May 25, 1989. It must be
noted that this was an incidental survey and was not intended to be a popula-
tion study. However, it was estimated that 90% of the fish observed while
electrofishing below Red Rock Dam were either common carp, carpsuckers
(Carpiodes spp.), buffalo (Ictiobus spp.), or freshwater drum. The release from
the reservoir on May 25, 1989, was relatively low at 83.5 m®s (2,950 ft¥/s). The
total gas pressure at 1030 CDT, just before electrofishing was initiated below
Red Rock Dam, was 114% of saturation (AP of 103 mmHg). Total gas pres-
sure for the previous three weeks averaged 123% of saturation (average AP of
173 mmHg) at about 1530 CDT at this location. In addition, late afternoon total
gas pressure in the main basin of Red Rock Reservoir was 97% of saturation
(AP of -20 mmHg) on May 9, 1989, and 98% of saturation (AP of -11 mmHg)
on May 30, 1989. Electrofishing took place in Red Rock Reservoir on May 24,
1989.

The twenty common carp collected in the main basin of Saylorville

Reservoir were examined during processing for external signs of gas bubble

trauma. The fish were examined within six hours of capture and had been kept
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on ice. No gas bubbles were present and there were no incidences of
exophthalmia. Seventy percent (14 of 20) of the common carp appeared
completely healthy. The remaining 30% (6 of 20) exhibited some minor
secondary infection of the fin or minor fin erosion.

Common carp results from below Red Rock Dam will be discussed first
so that they may be compared to results from fish coliected in the reservoir.
Twenty-six common carp were examined in the field, of which 85% (22 of 26)
exhibited some external sign of gas bubble trauma, typically numerous emphy-
sema in fin tissue or between scale pockets. In addition, 73% (19 of 26) of the
common carp exhibited some degree of secondary infection of the fins and/or
fin erosion. Furthermore, of the fish that exhibited no direct external sign of gas
bubble trauma, the majority (3 of 4) exhibited secondary infections. Of the carp
examined, 35% (9 of 26) were classified as minimally affected, 31% (8 of 26)
as moderately affected and 19% (5 of 26) as severely affected by chronic
external gas bubble trauma. The most common external signs of gas bubble
trauma in common carp were emphysema in fin tissue; 73% (19 of 26) of the
common carp examined had emphysema present in one or more fins. The
incidence of gas bubbles was greatest in the pelvic fins. The incidence of
emphysema in the dorsal, caudal, anal, pelvic, and pectoral fins was 35%, 35%,
46%, 54%, and 46%, respectively. Emphysema of the body, usually present in
the scale pockets, was present in eight of the common carp, normally with

those most severely affected. Several fish were referred to as "popping” in the



64
field notes as the fish's body, when handled, felt like the plastic-bubble-inflated

packing material often used to ship fragile parcels. Exophthalmia was dis-
played in 27% (7 of 26) of the common carp although no gas accumulation was
visible from unaided observation.

The opportunity was taken to examine other species. In all, 47 fish of
nine species groups were examined with 35 fish (or 74%) showing some direct
external sign of gas bubble trauma. Overall, 21% (10 of 47) of the fish dis-
played external signs that were classified as minimal, 38% (18 of 47) as
moderate, and 15% (7 of 47) as severe (Table 6). Fish from six of the nine
species groups were classified as displaying moderate to severe external signs
of gas bubble trauma. Three species groups - green sunfish, walleye, and
crappie - were not found to exhibit substantial external signs of gas bubble
trauma, however, only a few fish were collected in each group and they were all
small fish (<250 mm). It is believed by several researchers that gas bubble
trauma affects larger, fattier fish to a greater extent (Weitkamp and Katz 1980;
Crunkilton et al. 1980; DeMont and Miller 1972; Egusa 1959; Marsh and
Gorham 1905). No ictalurids (bullhead, catfish) were seen while electrofishing,
so, unfortunately, none could be examined. [Earlier in May a fish kill comprised
of mainly channel catfish and flathead catfish (Pylodictis olivaris) was reported
by the public. It was also reported that some catfish were exhibiting unusual

behavior by jumping up and skimming the water surface with their sides.]



65

ewneJ} sjqqng seb - 189 ,

- — I - ! r4 0S2-222 ahajiepm
- - — - r4 r4 052-502 adder
- - - - r4 4 ZSi-vLlL ysyuns usal9
b } - - L € 0L2-01S 1e9
- I 4 - r4 S Z9L-€Ll) Inbanig
4 € € - - 8 0Z¥-042 wnip
lajemysal
I Z r4 r4 b 8 055-582 oleyng
€ b r4 b - L 8L$-062 Joxansdied
g 8 6 € b T4 85€-€82 diea uowwod
weqg 300y pay mojaq wod4
- - - 9 vl 0z 65€-91€ dieod uowwo)
(uiseq wew) JIOA18S8Y YI0Y pPay wol4
199 199 1g9 uoy
EVET T a)esapo N Joulin uonoaju) 2  -o9u] ZON  pauexy (ww)
189 oN 189 ON "ON pbua satvadg ysi4

‘ewnel} a|qqnq seb jo subis

10} 6861 ‘¥Z ABIN UO WeQ %00y pay Mojaq Pajdal|0d sl BAll JO SUOHBUILIEXS |BUISIXS Jo AlBwWNS "9 8|geL



66

The most common signs of gas bubble trauma in the various species were
emphysema in fin tissue, emphysema in the head region (which included the
occiput, nuchal region, buccal cavity and operculum), emphysema in the body
or scale pockets, exophthalmia, edema, petechial hemorrhages, and evidence
of former lesions. Indirect indications of stress, probably enhanced by chronic
gas bubble trauma, included secondary infections, fin erosion, and the presence
of ectoparasites. Rates of incidence of various signs of gas bubble trauma
varied by species, is seen in Table 7. River carpsuckers, Carpiodes carpio, of
which 14 were examined, experienced emphysema primarily in the head region
(43%) and the body area (79%), generally in the scale pockets, and characteris-
tically on the belly between the pelvic fins. Petechial hemorrhages were
present in 71% of the river carpsuckers, with secondary infection or fin erosion
apparent to some degree in all the river carpsuckers examined. Exophthalmia
was evident in 43% of the river carpsuckers with many exhibiting visible gas
bubbles in orbital cavities. Quillback carpsuckers, Carpiodes cyprinus, of which
only three were examined, exhibited similar emphysema on the belly and in
scale pockets, as well as other signs. Buffalo, of which eight were examined,
generally exhibited emphysema in the body region or scale pockets (560%) and
in fin tissue (38%). Several affected buffalo suffered from innumerable gas
blisters which covered the entire fish, as well as extensive petechial hemorrhag-

ing and secondary infection (Figure 14). Buffalo did not appear to develop the
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Figure 14. Photograph of a large buffalo (/ctiobus spp.) exhibiting innumerable
emphysema directly under the epidermis with petechial hemorrhag

ing and secondary infection. Collected downstream from Red Rock
Reservoir on September 3, 1991.
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bulging scale pockets exhibited in some other species, rather, emphysema
appeared to be just under the epidermis and filling but not extending the scale
pockets. Freshwater drum, of which eight were examined, exhibited emphyse-
ma in the fins of all fish, while 62% had emphysema present in the head region
and 50% on the body or in scale pockets. In the more affected fish, scale
pockets bulged as was described earlier as "popping" (Figure 15).

Casual observations of fish collected during electrofishing in May 1990
and June 1992, and closer observations in May 1990, did not detect substantial
external signs of gas bubble trauma. (It can be seen from Table 4 that exami-
nations in 1989 were conducted during the lowest flow water year of the study
period.) However, many fish below Red Rock Dam exhibited secondary
infections, body scars and lesions that were not noticed to such a degree at the
other three locations where electrofishing activities were conducted. On May
21, 1991, 35 fish of nine species groups (ten fish were common carp) were
collected during electrofishing activities and examined according to the proce-
dures followed in 1989. These collections occurred under high reservoir
releases of 574.9 m*/s (20,300 ft*/s). The total gas pressure below Red Rock
Dam on May 13, 1991 and May 28, 1991 was 125% of saturation (AP of 185
mmHg) and 115% of saturation (AP of 111 mmHg), respectively. During the
time of the fish collection, the maximum river depth was nearly twice the

required compensation depth. Only three of the fish exhibited any direct
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Figure 15. Photograph of a freshwater drum (Aplodinotus grunniens) exhibiting
severe exophthalmia. Note the bulging scale pockets along the
belly and midsection; there is some involvement of the lateral line.

This fish was described as "popping". Collected downstream from
Red Rock Reservoir on September 3, 1991.
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external signs of gas bubble trauma. These fish (a largemouth bass, a buffalo,
and a bluegill) exhibited minimal gas bubble trauma (few small gas bubbles in
fin tissue). However, there was evidence of stress in many of the fish. Fifty-
one percent (18 of 35) of the fish exhibited some degree of fin erosion, 31% (11
of 35) of the fish had external lesions and/or secondary infections and 23% (8
of 35) of the fish had some degree of petechial hemorrhaging. In addition,
three fish displayed patches of missing scales and three fish had ectoparasites.
Table 8 summarizes the examinations of live fish collected below Red Rock

Dam in May 1991.

Effect of the dam

The fourth argument for a causal relationship between the gas super-
saturated conditions in the river below the dam and the dam itself comes from
comparing total gas pressure in the reservoir with total gas pressure in the river
below. Also, the effect of different felease operations (ie., Tainter gate versus

sluice-gate release) was examined.

TGP in the river below versus the reservoir
In order to confirm that elevated dissolved gas pressure in the river
below Red Rock Dam was actually an artifact of the dam itself, either the dam

structure, its outlet or operations, total gas pressure readings were taken in the
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main basin of Red Rock Reservoir. Since readings were initiated in April
1988, a total of 74 readings of gas pressure have been made in the main
basin of Red Rock Reservoir. Interestingly, there have been periods of
high gas pressure in the reservoir itself. The maximum total gas pres-
sure in the main basin (132% of saturation) equalled the maximum total
gas pressure recorded below the dam (132% of saturation) for the entire
period of record. In fact, when looking at the pressure data as AP, the
highest AP was recorded in the main basin (241 mmHg versus 237
mmHg). However, when comparing readings below Red Rock Dam for
the same 74 dates it is obvious that chronic gas supersaturation is only a
problem below the dam. From these 74 events, total gas pressure in the
main basin averaged 103% of saturation while the total gas pressure
below the dam averaged 116% of saturation. The main basin total gas
pressure equalled or exceeded 110% on ten occasions (14% of read-
ings) as compared to total gas pressure below the dam which equalled
or exceeded 110% on 56 occasions (76% of the readings). Readings
equalled or exceeded 120% of saturation on only two occasions in the
main basin of the reservoir and on 33 occasions (44% of the readings) in
the river below the dam. In fact, in the main basin the periods of elevat-
ed gas pressure were short-term events that could be correlated to
intense primary productivity. The chlorophyll a (corrected for pheophytin)

concentrations during the two peak gas pressure events (124% of
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saturation and 132% of saturation) in the main basin on July 31, 1990
and August 13, 1991 were 103 mg/m® and 114 mg/m®, respectively,
which is extreme for this location. The impact of primary productivity
(diel fluctuations) can be seen in oxygen gas pressure data at the
reservoir. In the main basin the oxygen gas pressure ranged from 52%
of saturation to 238% of saturation with a mean of 101% of saturation.
Below the dam the oxygen gas pressure ranged from 71% of saturation
to 185% of saturation with a mean of 111% of saturation. Interestingly,
there were a few events in the reservoir where nitrogen gas pressure
exceeded 110%. These events occurred when oxygen gas pressure was
well below saturation. Thus, it seems, that as oxygen was utilized and
the gas tension reduced, atmospheric gases were entering the water
and, since the atmospheric gases are about 80% nitrogen, the nitrogen
concentration increased above saturation. Table 9 lists the total gas
pressure, as well as nitrogen and oxygen gas pressure, in percent of
saturation, for both locations. Figure 16 illustrates the total gas pressure

at the main basin as compared to the river downstream from the dam.

Effect of Tainter gate operation
Early in the study period the effect of Tainter gate operations was
monitored. It was suspected that operation of the Tainter gates could

entrain air as the water cascaded over the dam and plunged into the



Table 9. Total gas pressure, as well as nitrogen and oxygen gas
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pressure, in percent of saturation, in the main basin of Red
Rock Reservoir and below Red Rock Dam.

Red Rock Reservoir
Main Basin Below Red Rock Dam
Date] TGP N2P o2P TGP N2P o2P
(%) (%) (%) (%) (%) (%)

05Apr88 106 105 111 121 123 117
19Aprés8 101 102 99 123 124 123
03May88 108 101 133 119 120 120
17May88 104 104 105 122 124 117
31May88 103 101 112 124 128 114
14Jun88 101 101 101 124 130 101
21Jun88 104 103 108 124 129 108
05Jul88 97 109 52 114 111 130
12Jul88 101 105 85 116 110 139
19Jul88 107 99 141 121 125 109
26Jul88 118 107 166 126 119 159
02Aug88 101 100 105 125 115 169
09Aug88 95 102 67 121 122 122
16Aug88 101 102 101 123 108 185
06Sep88 101 103 92 125 122 140
13Sep8s8 102 102 104 126 122 144
20Sep88 98 101 87 119 119 123
27Sep88 97 102 79 125 122 136
110ct88 98 102 86 119 117 129
08Nov8s 101 103 92 122 118 141
09May89 97 102 79 125 125 126
30May89 98 105 74 123 128 107
06Jun8d9 101 106 83 120 127 100
13Jun89 98 105 79 123 127 110
20Jun89 97 105 67 122 126 112
27Jungg 100 105 83 121 128 97
11Jul89 118 101 187 123 125 120
18Jul89 97 107 59 119 124 104
25Jul89 96 103 71 117 116 122
01Aug89 107 100 137 120 120 125
240ct89 106 99 130 124 119 146
07Nov89 99 102 89 118 115 131
27Mar90 100 102 89 112 115 102
10Apro0 101 102 96 117 116 123
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Red Rock Reservoir
Main Basin Below Red Rock Dam
Date| TGP N2P Oo2pP TGP N2P O2P
(%) (%) (%) (%) (%) (%)
24Apro0 106 105 109 125 127 120
01May90 99 101 92 122 124 114
08May90 104 104 107 124 125 122
15May90 102 103 100 119 122 110
29May90 119 106 168 114 122 86
05Jun90 98 102 84 112 115 103
12Jun90 104 105 101 105 105 105
19Jun90 96 105 58 110 120 74
26Jun90 102 108 80 118 124 98
10Jul90 100 107 79 123 133 89
24Jul90 105 103 117 121 130 91
31Jul90 124 96 237 117 120 106
07Aug90 105 105 106 112 119 90
21Aug90 100 104 85 104 111 81
11Sep90 95 101 71 115 125 81
24Sep90 103 104 99 129 131 129
01Apro1 103 104 97 106 109 96
15Apro1 101 103 93 115 120 96
05Jun91 100 105 82 114 124 80
18Jun91 112 103 148 122 131 93
09Jul91 103 102 107 111 122 71
16Jui9 102 105 94 113 123 78
30Jul91 118 123 105 117 125 92
06Aug91 94 102 64 120 129 88
13Aug91 132 106 238 121 122 124
20Aug91 102 107 83 105 111 86
03Sep91 104 110 80 109 107 117
17Sep91 102 109 77 107 103 123
080ct91 102 106 91 106 100 130
17Mar92 105 105 106 106 106 109
14Apro2 104 106 94 108 109 103
05May92 102 104 98 106 105 113
09Jun92 104 104 103 106 114 74
23Jun92 104 111 80 105 111 83
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Red Rock Reservoir

Main Basin Below Red Rock Dam

Date{ TGP N2P Q2P TGP N2P o2pP

(%) % (%) (%) (%) (%)
30Jun92 110 117 86 106 110 92
07Jul92 102 112 66 105 109 91
21Jul92 110 116 90 107 113 85
28Jul92 113 104 152 107 111 96
130ct92 103 107 108 105
COUNT 73 72 72 73 73 73
MINIMUM 94 96 52 104 100 71
MAXIMU 132 123 238 129 133 185
MEAN 103 104 101 117 119 111
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Figure 16. Total gas pressure, in percent of saturation, in the main basin
of Red Rock Reservoir and below Red Rock Dam.
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stilling basin. At the depth conditions in the stilling basin, the entrained
air could be dissolved. As discussed before, this is the mechanism in
which gas supersaturation has been shown to occur at other larger
dams. However, because of the size of Red Rock Dam and the depth of
the tailwater, gas supersaturation was not believed to be of concern at
Red Rock Reservoir. Before September 1984, the Tainter gates were
operated under conditions which required large releases (>425 m®/s or
15,000 ft*/s) and during a local tourist attraction in May (Pelta Tulip
Festival). As a result of the preliminary results of this study, which
showed a substantial increase in total gas pressure during Tainter gate
operation, the Tainter gates have not been operated at Red Rock Reser-
voir since August 1984, except when the gates needed to be opened for
higher releases or for maintenance (in August 1991). During this study
period (August 3, 1983-October 1992) the Tainter gates were only in use
on August 3, 1983 (and for several months previous) and from May 14,
1984 to August 18, 1984. Also, one of the five tainter gates was in
operation from May 6, 1986 to June 10, 1986. Fish kilis were observed
on September 13, 1983, October 3, 1984, and August 26, 1986, as dam
discharges were substantially dropped, allowing the uncompensated AP
at the maximum river depth to become positive.

During the study period two attempts were made to define the

effects that Tainter gate operation had on total gas pressure below Red
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Rock Dam. The first study took place on May 8, 1984 when total dis-

solved gas readings were taken just before the Tainter gates were
opened and several times over the next 22 hours. The total gas pres-
sure just before the Tainter gates were opened was 103% of saturation
at 1045 CDT. Immediately following this reading the Tainter gates were
opened. The reservoir outflow, both before and after the Tainter gates
were operated, was about 453 m*/s (16,000 ft*/s). A reading taken at
1330 CDT showed that the total gas pressure had jumped to 125% of
saturation. Thus, there was a substantial increase under Tainter gate
operation and the effect was relatively rapid. Readings continued to be
taken at 1600 CDT and 1830 CDT on May 8, 1984, and 0840 CDT on
May 9, 1984, with the maximum pressure obtained being 126% of
saturation. In addition, a reading was taken at 1115 CDT on May 9,
1984, about 19.3 kilometers (12 miles) below the dam at Highway 92.
Even at this location, the total gas pressure was elevated (123% of
saturation). (Another longitudinal study was conducted that will be
discussed below.)

The second study was on August 9, 1991 when for the first time in
over four years the Tainter gates were utilized as part of a planned
maintenance operation. On August 9, the Tainter gates were opened in
succession. It was expected that the total gas pressure would increase,

but it was unknown to what degree and how rapidly. For comparison,



81

dissolved gas readings were taken in the late afternoon of August 8 and
in the early morning of August 9 before the gates were operated. At this
time the outflow was 509.8 m*/s (18,000 ft%/s) ,as it had been since the
middle of May. The initial total gas pressure was 117% of saturation (AP
of 127 mmHg) at 1735 CDT August 8 and 119% of saturation (AP of 45
mmHg) at 0710 CDT on August 9. Tainter gate operation was expected
to continue for an extended time, however, a malfunction (which was
later found to be unrelated to the Tainter gates) prompted the Tainter
gates to be closed at 1830 on August 9. Thus, the Tainter gates were in
operation for a total of only 10 hours.

The first gate, the second gate from the left looking upstream,
opened at 0830 CDT and a gas reading at 0846 CDT showed the total
gas pressure had increased to 121% of saturation. A further increase of
2% total gas pressure was accomplished in only two minutes. At 0900
CDT the gate third from the left was operated, with the fourth and fifth
gates being opened at 0910 and 0920, respectively. The river level fell
0.6 to 0.9 meter (two to three feet) during this time as a resuit of gate
changes. (Also, a large amount of debris passed through with the first
gate openings. Removal of floating debris was one of the benefits of
using the Tainter gates.) A total gas meter reading at 0930 CDT showed
that the pressure had increased 10% or 71 mmHg as a result of Tainter

gate operation. The last gate (farthest left) was operated at 0955 and
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the gate settings appeared final at 1020. At this time the total gas

pressure was 132% of saturation or 237 mmHg. A check of total gas
pressure nearer the dam (next to the end of the stilling basin wall)
showed a slightly higher total gas pressure of 134% of saturation (257
mmHg). Dissolved gas pressure stabilized quickly after the final gate
settings with little difference in the pressure readings taken at 1143 CDT
and 1410 CDT.

In all, the total gas pressure increased from 119% of saturation to
133% of saturation, or, as AP, from 145 mmHg to 244 mmHg, as a result
of Tainter gate operation. Nitrogen gas pressure increased from 128%
of saturation (AP of 168 mmHg) to 139% of saturation (AP of 225 mmHg)
under Tainter gate operation. [This nitrogen gas pressure exceeds the
maximum nitrogen gas pressure (138% of saturation or AP of 217
mmHg) seen during the 255 routine monitoring events downstream from
the dam.] Oxygen gas pressure increased from 91% of saturation (AP of
-13 mmHg) to 112% of saturation (AP of 19 mmHg) as a result of using
the Tainter gates. As a result of the relatively high outflow of 509.8 m?s
(18,000 ft¥/s), the uncompensated total gas pressure at the maximum
river depth never exceeded 100% of saturation or 0 mmHg because of
the compensating effects of hydrostatic pressure. However, the total gas
pressure calculated for the maximum depth did increase from 86% to

97% as a result of Tainter gate operation. A few dead fish were ob-
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served, however, no significant adverse effects on fish were obvious
from casual observation. According to hyperbaric theory a fish kill would
not be expected until the outflow decreased, decreasing river depth. [In
fact, this is what happened as a fish kill was observed on September 3,
1991 as the flow decreased to only 28.6 m*/s (1,010 ft*/s) and the
uncompensated gas pressure as AP became positive for the first time
since February 13, 1991, when a previous fish kill had occurred.]

The conclusion drawn from the Tainter gate studies was that the
Tainter gates should not be used unless necessary because their use
increases total gas pressure. However, it was obvious that elevated total
dissolved gas pressures also occurred under sluice-gate release opera-
tions. The total gas pressure under sluice-gate operation may not be as
extreme as it is under Tainter gate operation, but it is of sufficient magni-
tude to cause chronic and acute gas bubble trauma, especially at lower

outflows, as was discussed above.
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DISCUSSION

Predictable occurrence of acute gas bubble trauma
In general, gas bubble trauma-induced fatalities in fish from gas
supersaturated waters downstream from Red Rock Dam seem rather
predictable from gas pressure data. In the nine-year study period high
gas pressures have triggered gas bubble trauma-associated fish Kills
when:
® high total gas pressure levels (>120% of saturation) occurred
that steadily increased over several weeks
® uncompensated total gas pressures as AP became positive at
the maximum river depth
m outflow from the reservoir decreased substantially over a
relatively short period of time
In fact, the effect of decreasing reservoir outflow and the related occur-
rence of positive uncompensated pressure at the river bottom appears to
explain the occurrence of most of the fish kill events. Figure 17 illus-
trates the total gas pressure as a percent of saturation (TGP at the
surface) and the uncompensated total gas pressure at the maximum

depth (TGP at the bottom). As illustrated all 14 fish kill events occurred
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when the uncompensated total gas pressure neared or exceeded 110%
of saturation. Figure 18 illustrates AP or hyperbaric pressure at the
surface and at the maximum river depth. As illustrated, fish kill events
occurred during the periods of greatest hyperbaric pressure at the
maximum depth. In these instances aquatic organisms would be contin-
ually subjected to hyperbaric pressures and could not sound (inhabit
deeper waters) to avoid high gas pressure. The effect of discharge and
river depth is illustrated in Figures 19 and 20. In Figure 19 it is obvious
that the fish kill events were associated with relatively rapid decreases in
river flow as a result of decreases in discharge from the reservoir. The
most extensive fish kills (September 1983, October 1984 and September
1991) appeared to be related to the greatest decreases in discharge,
especially as Tainter gates were closed (September 1983 and October
1984). Figure 20 illustrates the maximum river depth observed versus
the required compensation depth at the existing total gas pressure. In all
but one case, the fish kills occurred when the compensation depth
required in to offset total gas pressure was greater than the existing
maximum depth. The one fish kill on December 13, 1990, probably
occurred earlier. No routine monitoring was conducted during a three
month period between September 25 and December 13, 1990. Thus,
the first time the dead fish were observed was December 13 but the fish

had actually succumbed earlier.
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Mitigating factors

Interestingly, there were also several instances when pressure
data indicated that a fish kill event was probable and no such event was
recorded. It appears that the reason for this lies in the rather complex
nature of gas bubble trauma. There were at least five such occasions as
shown by arrows in Figures 21 and 22. Basically, there appear to be
three factors that mitigated gas pressure effects on fish during these
occasions. First, as shown by the first and last arrows, there were
occasions when the total gas pressure was extreme (approximately
130% of saturation) and yet no fish kill events occurred. This is easily
explained by the mitigating effects of large flows which allowed com-
pensation depths to be realized. Second, there was a period of time
where uncompensated total gas pressure was excessive and yet no
mortality occurred. The mitigating effect during this period may have
been the ratio of nitrogen gas pressure to oxygen gas pressure. During
these periods the ratio of nitrogen gas pressure (as % of saturation) to
oxygen gas pressure (as % of saturation) was less than 1.0. In fact, the
lowest ratio observed (0.6) was observed during this first period. In
addition, since dissolved oxygen concentrations fluctuate during the day,
lower gas pressure levels may have been encountered during parts of

the day, decreasing periods of exposure to extreme levels. Intermittent
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exposure to elevated gas pressure has been shown to increase resis-
tance to gas bubble trauma (Meekin and Turner 1974; Blahm et al.
1976). In nature, intermittent exposure is probably the rule thus permit-
ting higher tolerance than indicated by laboratory data (Bouck et al.
1976). Fluctuations in oxygen gas pressure would be greatest under

conditions of intense primary productivity (Nebeker et al.1979).

Occurrence of chronic gas bubble trauma

The occurrence of chronic gas bubble trauma was much harder to
observe. Casual examinations of fish during yearly electroshocking
activities had documented the occurrence of chronic gas bubble trauma,
however, on many occasions only secondary effects were observable.
Obviously there were many more periods of chronic gas bubble trauma
that were not directly observable. Recurring chronic gas bubble trauma
may have an adverse effect on the fishery downstream from Red Rock

Dam.

Ecosystem effects

It is possible that chronic gas bubble trauma may not lead to
substantial mortality unless a lethal threshold is reached but there may
be consequences of ecological significance with even sublethal condi-

tions. Many fish food organisms - mollusks, shrimp, crayfish, stoneflies
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and daphnids - are adversely affected by gas bubble trauma (Marsh and
Gorham 1905; Maulof et al. 1972; Nebeker 1976). Some research has
found that zooplankton, in particular Daphnia magna, are more sensitive
to gas supersaturation than are many fishes. The lethal threshold for
Daphnia magna in a laboratory setting has been reported as a total gas
pressure of 111% of saturation (Nebeker 1976). Also, early life stages
of fishes (larvae, and fry) are more susceptible to gas bubble trauma
than are later life stages. Cornacchia and Colt (1984) found increased
mortality of larval striped bass at a total gas pressure of 103% of satura-
tion. Besides the primary affect of mortality, gas bubbles can buoy
fishes at younger life stages to the surface where they would be easy
prey to predators. A similar problem has been shown to occur in zoo-
plankton and other invertebrates (Nebeker 1976). Also, the degree of
detrimental effects at a given pressure differs widely among species, with
many popular gamefish being the most sensitive. Gray et al. (1982)
found the acute threshold (96hr LC,,) was between 107% of saturation
and 117% of saturation for black bullhead, and between 123% of satura-
tion and 128% of saturation for common carp. Behavioral effects of
chronic gas bubble trauma may increase mortality indirectly because of
adverse effects on feeding (ie., by slowing digestion, emphysema ob-
structing the esophagus), predation (by affecting swimming ability or the

ability to maintain orientation), and social behavior.
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The overall ecosystem effect of the stress associated with gas
bubble trauma may be to restrict the area to more tolerant species, thus
decreasing species diversity. There is evidence to suggest that elevated
gas pressure could extend quite a distance downstream of Red Rock
Dam. Similar results were reported by D'Aoust and Clark (1980).
Relatively slow dissipation of supersaturation was observed along the
Columbia River. Data indicated that total gas pressure decreased only
1% of saturation between a distance of 50 kilometers. Additionally, the
Columbia River dams when taken in series successively increased gas
supersaturation. Crunkilton et al. (1980) stated that free water spillage
over dams can adversely affect aquatic faunas over great distances in
near-lentic (standing water) systems.

Two attempts were made to assess the downstream reach of
elevated gas supersaturation. The first study was discussed earlier
under the section about Tainter gate operation. From this study (per-
formed on May 9, 1984, under high outflows through the Tainter gates) it
was determined that the total gas pressure about 10 miles downstream
from the dam (at Highway 92) was 123% of saturation as compared to
126% of saturation just below the dam. Thus, it would appear that gas
supersaturation could persist for quite a distance downstream.

A second study took place on August 3, 1989, under low flow (400

ft’/s) releases through the sluice gates. At this time the total gas pres-
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sure just below the dam was 120% of saturation, while the total gas
pressure at downstream locations 4.8 kilometers (3 miles), 19.3 kilome-
ters (12 miles) and 32.1 kilometers (20 miles) below the dam were 114%
of saturation, 109% of saturation and 108% of saturation, respectively.
Low flow conditions dominated this period and this led to increases in
lotic (running water) algal populations. As a result of intense primary
productivity the oxygen gas pressure at locations 19.3 kilometers and
32.1 kilometers downstream were 123% of saturation and 140% of
saturation, as compared to 102% of saturation just below the dam.
There may have been some diel effect as the readings directly below the
dam were taken at 1145 CDT and the readings taken 4.8 kilometers,
19.3 kilometers and 32.1 kilometers downstream were taken at 1220
CDT, 1300 CDT and 1410 CDT, respectively. From this study it appears
that under low flow conditions gas supersaturation may not extend as far
downstream as under high outflow conditions. However, because the
downstream reach of gas supersaturation can be substantial, the extent

of area affected may be of concern.

Fish kills earlier in study
Although total gas pressure data below Red Rock Dam are not
available prior to August 1983, dissolved oxygen pressure data are avail-

able from observed concentrations of dissolved oxygen, water tempera-
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ture and solubility tables. These data, along with written accounts of ob-
served fish kills, leads to the conclusion that gas supersaturation and
associated fish kills have been a prevailing fact since the reservoir began
to operate. Prior to August 1983, there were six other written accounts
of fish kills in which gas bubble trauma is now suspected to have played
a major role. Tainter gate use or reductions in flow were involved with
all of them. Thus, the occurrence of gas supersaturation and associated

fish kills is not of recent origin.

Gas supersaturation at other moderately-sized reservoirs

Recent monitoring of dissolved gas pressure downstream of
Saylorville Reservoir, which is located about 114.2 kilometers (71 miles)
upstream from Red Rock Reservoir on the Des Moines River, has shown
that gas supersaturation may also be of some concern at this location.
From 35 readings of total gas pressure taken approximately 2.4 kilome-
ters (1.5 miles) downstream from Saylorville Reservoir, all equalled or
exceeded saturation. Total gas pressure below Saylorville Reservoir
ranged from 100% of saturation to 121% of saturation with an average of
110% of saturation. However, evidence of acute or chronic gas bubble
trauma is not as abundant at this location. There was only one fish Kill
event below Saylorville Reservoir over the nine years of this study in

which gas bubble trauma was suspected to have played a role. The
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total gas pressure during this event, which occurred on July 16, 1991,
was 111% of saturation. Of greatest interest is the fact that during the
previous two weeks the river flow had been decreased from about 424.8
m®/s (15,000 ft*/s) to a flow of 115.0 m®/s (4,060 ft*/s). Thus, other
moderately-sized reservoirs may have similar problems with gas super-

saturation below their dams.
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CONCLUSION AND RECOMMENDATION

It is apparent from this study that gas supersaturation and associ-
ated gas bubble trauma-induced fish kills do indeed occur below Red
Rock Reservoir. In addition, gas supersaturation may be occurring
below Saylorville Reservoir. Thus, there may be potential for gas super-
saturation below other moderately-sized reservoirs where it was previ-
ously believed that gas supersaturation could not occur. The source of
excess atmospheric gases is unknown, however, from this study gas
supersaturation below Red Rock Dam has been shown to be directly
related to the release of water from Red Rock Reservoir.

It is strongly advised that the Corps of Engineers monitor total gas
pressure at other moderately-sized reservoirs to determine how wide-
spread is the problem of gas supersaturation. In addition, attention
needs to be directed at: identifying the source and mechanism that
results in the observed gas supersaturation below Red Rock Dam; evalu-
ating whether similar circumstances exist elsewhere; and contriving
design or operation alternatives to mitigate the gas supersaturation
problem.

At Red Rock Dam, it is strongly recommended that river depth

and its affect on uncompensated gas pressure at the predicted maximum
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depth be used to make decisions regarding reservoir releases. More
gradual changes in lowering reservoir outflows may help to mitigate the
problems associated with acute gas bubble trauma. Identification of the
source and mechanism that results in the observed gas supersaturation
is greatly needed. Only then can steps be taken to mitigate chronic
effects from gas bubble trauma.

Additional information is needed to assess the impact of gas
supersaturation on the aquatic ecosystem below Red Rock Dam and
possibly below other moderately-sized reservoirs. At Red Rock, fish kil
investigations should be continued with a monetary valuation of the fish
lost. Examinations of live fish should be expanded. Documentation of
diurnal trends in total gas pressure is needed. Comparison of species
density and composition below Red Rock Dam and another similar reach
would be essential to determining the effects on the ecosystem. Addi-
tionally, for comparative purpases, dissolved gas pressure data should

also be collected from an uncontrolled location on the Des Moines River.
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SUMMARIES OF THE 14 FISH KILL EVENTS

Event 1: September 6, 1983

A moderate fish kill was discovered on this day with approximately 40
dead fish floating downstream per minute. There were about six to 10 dead
fish per 4.5 meters (15 feet) of bank. Most (80%) of the fish were freshwater
drum (Aplodinotus grunniens), 7 cm to 30 cm in length. Crappie (Pomoxis
spp.) 7 cm to 18 cm in length, made up about 15% of the kill. The other 5%
was mostly made up of black bullhead (/ctalurus melas), 7 cm to 10 cm in
length. Fish were examined by Dr. Nickum, lowa State University Professor of
Animal Ecology. Preliminary examination determined there were some signs of
gas bubble trauma, mostly as exophthalmia. There were no other distinguish-
able diseases or damage.

Air temperature on this date was 24°C (75°F) and the water temperature
was 25.5°C (77.9°F). There had been extremely hot weather but there was a
cooling trend recently. The total gas pressure was 122% of saturation with
nitrogen gas and oxygen gas pressures at 127% of saturation and 105% of
saturation, respectively. The AP was 160 mmHg. From April to August 1983
reservoir water release had been through the Tainter gates and the outflow was
as high as 556.4 m?s (20,000 ft/s). However, the release had recently been

through the sluice gates and the outflow on September 3 was 107.6 m®s (3,800
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ft’/s). The uncompensated AP at the maximum depth was 43 mmHg. During
the most recent monitoring on August 3, the uncompensated AP at the maxi-

mum depth had been -126 mmHag.

Event 2: September 13, 1983

This event was a continuance of the first event. The fish kill was classi-
fied as minor at this time with about 28 dead fish floating downstream per
minute. There were many dead fish on the river banks but most appeared to
have been there over a week. Species involved included freshwater drum,
crappie and gizzard shad (Dorosoma cepedianum) of various sizes. Observa-
tions noted were of a freshwater drum with gaping mouth and flared gills, and
crappie with internal hemorrhaging around caudal peduncle. Also observed
large school of live bullheads (about 9 cm in length).

Total gas pressure was 123% of saturation, with nitrogen gas and
oxygen gas pressures of 125% of saturation and 115% of saturation, respec-
tively. The AP observed was 174 mmHg. The outflow had to declined to
35.4 m¥s (1,250 ft¥/s). The uncompensated AP at the maximum depth was

108 mmHg.

Event 3: October 3, 1984

There was a scattering of dead fish along the bank. There were no fish

floating downstream. On this day the total gas pressure was 125% of satura-
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tion (AP of 188 mmHg). The uncompensated total gas pressure was 118% of
saturation (AP of 144 mmHg). The reservoir outflow was extremely low at only
11.3 m¥s (400 ft¥/s). Dissolved oxygen concentrations were more than ade-
quate as the oxygen gas pressure was 130% of saturation. The most recent
monitoring event was August 28 when the total gas pressure was 115% of
saturation (AP of 108 mmHg) and the uncompensated total gas pressure was
92% of saturation (AP of -72 mmHg). On August 28 the outflow had been

226.6 m®/s (8,000 ft¥/s).

Event 4: July 16, 1985

This fish Kill was classified as moderate. There were no fish floating
downstream but there were about 300 dead fish per 30 meters (about 100 feet)
of bank. It was estimated that 95% or more of the kill consisted of channel
catfish (Ictalurus punctatus), 13 cm to 25 cm, although some large catfish were
also observed. Also observed were largemouth bass (Micropterus salmoides),
crappie, walleye (Stizostedion vitreum), buffalo (Ictiobus spp.) and freshwater
drum. The dead fish were at least a few days old and had begun to decay.
Exophthalmia was observed in some of the dead fish. Live common carp
(Cyprinus carpio) and channel catfish were observed near the surface.

Weather conditions had been hot and humid. The high air temperature
on this day was 27°C (81°F). The river flow has diminished over the last

month. The total gas pressure was 124% of saturation with nitrogen gas and
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oxygen gas pressures of 130% of saturation and 105% of saturation, respec-
tively. The AP was 180 mmHg with an estimated AP at the maximum depth of
103 mmHg. The uncompensated AP at the maximum depth for the last two
monitoring events on July 9 and July 2 were 62 mmHg and 0 mmHg, respec-

tively.

Event 5: August 6, 1985

There were several dead fish reported. Species composition not record-
ed. The total gas pressure was 123% of saturation, with nitrogen gas and
oxygen gas pressures of 123% of saturation and 126% of saturation. The
uncompensated AP at the maximum depth was 111 mmHg, as compared to

5 mmHg on July 30, 1985. The outflow was only 24.3 m%/s (860 ft*/s).

Event 6: August 26, 1986

This fish kill was classified as small. There were about 100 dead fish
per 45 meters (about 150 feet) of bank. There were no fish observed floating
downstream. A majority (85%) of the fish were small (<8 cm) freshwater drum
and small channel catfish (<15 cm). There were also a few larger specimens
observed. The rest of the kill consisted of crappie of various sizes and a few
large common carp. There were many live fish observed in the shallows. No

other unusual conditions were noted.
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The outflow at this time was 102.0 m¥/s (3,600 ft¥/s), down from
283.2 m®'s (10,000 ft*/s) on the previous monitoring event on August 19. This
was the first time since February 1986 that the outflow had been below
283.2 m%s. One of the Tainter gates had been in operation from early May to
mid-June. The total gas pressure on August 26 was 117% of saturation. The
uncompensated AP at the maximum depth was 13 mmHg as compared to -109

mmHg on the previous monitoring day.

Event 7: September 15, 1986

This minor fish kill event occurred during a planned decrease in outflow
for maintenance reasons. There were just a few fish observed floating down-
stream per minute with a scattering of fish along the banks. Most of the kill
(80%) consisted of small freshwater drum, with small crappie and various sizes
of channel catfish also observed. There were several severely exophthalmic
fish along the waters edge but they were still able to swim.

The water temperature was 20°C (68°F). The total gas pressure at 1245
CDT was 123% of saturation (AP of 170) when the outflow was 36.8 m®/s
(1,300 ft¥/s). The uncompensated gas pressure at the maximum river depth
was 112% of saturation (AP of 97 mmHg). At 1430 CDT, after the outflow was

dropped to 8.5 m®/s (300 ft¥/s), the total gas pressure was 124% of saturation
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(AP of 183 mmHg). The total gas pressure at the lower maximum river depth

was 118% of saturation (AP of 139 mmHg).

Event 8: July 7. 1987

A minor fish kill. There was six dead fish floating downstream per
minute and about 100 dead fish washed up along 30 meters (about 100 feet) of
river bank. Most (95%) of the.ﬂsh were channel catfish of various sizes (7 cm
to 50 cm) with the rest of the kill comprised of various sizes of freshwater drum.
The weather had been hot and humid. There was a recent decrease in river
flow. There were many common carp observed at the surface. The water
temperature was 26°C (79°F) and the dissolved oxygen content was 8.4 mgl/i.

The outflow at this time was 38.5 m*/s (1,360 ft*/s). The total gas pres-
sure was 124% of saturation (AP of 176 mmHg) with nitrogen and oxygen gas
pressures of 129% of saturation and 108% of saturation, respectively. The
uncompensated gas pressure at the maximum depth was 104% of saturation
(AP of 37 mmHg). Thus, aquatic organisms were continually exposed to
excess gas pressures between 37 mmHg and 176 mmHg. The uncompensated
gas pressure was also positive (AP of 67 mmHg) during the previous monitoring

on June 30, 1987.



121
Event 9: June 28, 1988

On this day a small fish kill was discovered. Bait shop owners reported
that the kill had been off and on for about two weeks. There were about 100
dead fish observed on the river bank (10 to 20 dead fish per 30 meters). There
were no dead fish observed floating downstream. Most of the kill was com-
prised of freshwater drum (80%), with catfish (15%) and common carp (5%).
Most of the fish ranged from 15 cm to 60 cm in length.

Weather conditions had been hot and dry. River flow had dropped over
the last two weeks from 72.5 m¥/s to 19.0 m*/s (2,560 ft%/s to 670 ft*/s). The
total gas pressure exceeded 120% of saturation for the last six weeks. The
total gas pressure on this day was 125% of saturation (AP of 185 mmHg) with
an uncompensated gas pressure at the maximum depth of 117% of saturation

(AP of 134 mmHg).

Event 10: July 26, 1988

A minor Kill was discovered on this day. There was only four or five fish
floating downstream per minute and there were about five dead fish per 30
meters (about 100 feet) of river bank. One-half of the fish were common carp
(25 cm length) and the rest were various sizes of freshwater drum. Weather

conditions were clear and hot (90°F).
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Some externally examined fish exhibited emphysema in the head region
and exophthalmia. The total gas pressure was 126% of saturation (AP of
195 mmHg). The uncompensated gas pressure was 120% of saturation (AP of
168 mmHg), which was the maximum uncompensated gas pressure observed

in this study.

Event 11: May 16, 1989

This fish kill was reported by private citizens who voiced concern. No
evidence of the kill was noted at the time of the gas monitoring as river flow
had increased and washed carcasses downstream. The kill was reported to be
comprised of various sizes of catfish and was reported to extend downstream to
the town of Harvey. The event was reported to have occurred over several
weeks. The severity and species composition could not be confirmed.

The total gas pressure had exceeded 119% of saturation (AP of
140 mmHg) for the last month. The uncompensated gas pressure as AP at the
maximum depth exceeded 100 mmHg for the last two weeks when the river

flow was approximately 34.0 m®s (1,200 ft¥/s).

Event 12: December 13, 1990

There were fish floating downstream but an estimation of how many was

not recorded. The kill was classified as moderate with about 50 fish observed
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per 4.5 meters (15 feet) of river bank. There were hundreds of eight to 10 cm
gizzard shad, with 12 to 30 cm freshwater drum and 20 to 25 cm white bass
(Morone chrysops) also observed. Weather conditions had been moderately
cold. The water temperature was 2.8°C (37°F). A gizzard shad kill was also
noted below Saylorville Reservoir on this day. The gizzard shad probably
succumbed to thermal stress.

All observed freshwater drum had many emphysema in the head region
and in fin tissue. About half the white bass observed were still alive but were
swimming upside down. Some of the white bass exhibited small whitish dots
scattered over their bodies that appeared to be a bacterial or fungal infection.
Dissection of a few freshwater drum exhibited gas bubbles in the vascular
system. Microphotographs were taken.

The total gas pressure at this time was 113% of saturation (AP of
99 mmHg) and nitrogen and oxygen gas pressure was 120% of saturation and
90% of saturation. The uncompensated gas pressure at the maximum depth
was negative. This is baffling since gas bubbles were present in the vascular
system. It is possible that gas pressures were fluctuating as the water ap-
peared visibly green indicating intense primary productivity. The totai gas
pressure during the previous monitoring event on September 25, 1990 was

129% of saturation (AP of 217 mmHg) with a uncompensated total gas pres-
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sure of 120% of saturation (AP of 158 mmHg). There had been a break in

monitoring events due to contractual lapses.

Event 13: February 13, 1991

A small fish kill was observed downstream from Red Rock Dam on this
day. There were about 17 fish floating downstream per minute. The majority of
the fish (90%) were white bass with gizzard shad (5%) and crappie (5%) also
present. There were many white bass that were still alive but were oriented
upside down. Fishermen indicated that these conditions had existed for at least
a few days. Air temperatures were moderate at -1.1°C (30°F). The water
temperature was 1.8°C (35°F). The total gas pressure was 119% of saturation
(AP of 140 mmHg) and an uncompensated gas pressure of 104% of saturation
(AP of 33 mmHg).

Dissection of a few white bass showed that their body cavity was
pressurized. No gas bubbles were observed in the vascular system. The

stomachs of all dissected fish were empty.

Event 14: September 3, 1991

The largest fish kill during this nine-year study period occurred between
August 27 and August 29, 1991. Unfortunately, this researcher was not notified

of the fish kill. The first observation was made on a routine monitoring trip on
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September 3, 1991. However, the lowa State Conservation Commission did
investigate and estimated the number of dead fish at 5,000. On September 3,
1991, it was observed that there were still about 10 dead fish floating down-
stream per minute, with 10 dead fish seen per 30 meters (about 100 feet) of
river bank. Approximately 60% of the observed dead fish were white bass,
10% channel catfish, 10% freshwater drum, 5% largemouth bass, 5% blueqill
(Lepomis macrochirus), 5% gizzard shad, and a few were walleye. One dead
paddiefish (Polyodon spathula) was observed. Many live fish were also ob-
served. There were several green sunfish that were alive but were hugging the
river bank. Upon closer examination it was noticed that these fish exhibited
severe exophthalmia and emphysema were present in their fin tissue (Figure
13). Most of the dead fish that were examined (many were too decayed to
reveal much) exhibited some sign of gas bubble trauma. On this date, Septem-
ber 3, 1991, the total gas pressure was 109% of saturation (AP of 67 mmHg)
with nitrogen gas and oxygen gas pressures of 107% of saturation (AP of 41
mmHg) and 117% of saturation (AP of 26 mmHg), respectively. The uncom-
pensated gas pressure at the maximum river depth was 101% of saturation
while the uncompensated AP at the maximum river depth was 8 mmHg. This
was the first time since February 13, 1991 (which also triggered a fish kill) that
the uncompensated AP at the maximum river depth was positive. Outflow from

Red Rock Reservoir had decreased substantially prior to the September 3 fish
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kill. The previous monitoring event was on August 20, 1991, when the outflow
was 365.3 m®/s (12,900 ft¥/s), the total gas pressure was 105% of saturation
(AP of 40 mmHg), and the uncompensated gas pressure at the maximum river
depth was 98% of saturation (AP of -19 mmHg). By September 3 the outflow
had decreased to 28.6 m®'s (1,010 ft¥/s). This decrease in river flow which de-
creased the river depth triggered a fish kill as uncompensated dissolved gas

pressures became hyperbaric throughout the water column.
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APPENDIX C: GAS PRESSURE DATA FROM BELOW RED ROCK DAM
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APPENDIX D: AN EXAMPLE OF A COMPLETED EXAMINATION
DATA SHEET USED TO COLLECT INFORMATION
ON CHRONIC GAS BUBBLE TRAUMA
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INDIVIDUAL FISH EXAMINATION FOR EVIDENCE OF CAS BUBBLE DISEASE

Station q Fish Number 3 Date Collected &5 Mo, 53 Inititals ML.

where

if yes, how many

YES NO

5b. Presence of ectoparasites:

Location collected Tine Time examined

Fish species Rl oo 40p.
U 1 N
1. Total length 3SA2D rarn C'Q(Dl

2. Presence of emphysema (gas blisters in tissue) and petechial hemarrhages

Severity
a. Emphysema: NO Hemorrhages: YES NO mild moderate severe
b. Location, size -tw*=A;0-0:B8350-0=C; > O=D, and number

;é buccal cavity (mouth) hanicinloe roof of mouth -

-~ premaxilla (upper lip) mandible (lower 1ip)

— isthmus : preopercule

X operculum JOAB mb gmaﬂm! 1. Cheek nuchal region

X— head \ﬁ LAY g, snout occiput

X fins : )éaudal :SA dorsal Y onaarnlwases
erlvic 28 &xal 1OA \pectoral A

-— scale pockets lateral line

-- caudal peduncle

% body BCD  beturrn welute Jiua : oS ; breast
~= belly

between pectoral fins
—-— other describe

3. XExoph thalmia ("pop-eye")

a. none apparent
b. right both

c. missing eye blind or damaged

d. gas blisters present _MO

4. XGecondary infection
a. fin erosion \3_55 what fin (9 ucdag Mr donsa L

TN ‘
b. degree of degeneration: lfl/ modera {.q severe

Sa-ﬁvidence of former lesions _\Ato (pocked appearance)
a. location @ audaX 2*..4/-7
b. degree of severity - @moder&te or severe

6 General degree of extermal signs of gas bubble disease
a.minor - only a few small to moderate bubbles

‘bymoderate > moderate to large bubbles in several locations, secondary
ifnrection or fin erosion may be present

c.severe -~ large to extremely large bubbles are present at several locations,
fin erosion and/or secondary infection is present, bubbles may be interfering
with fish function (ie. equilbrium, feeding, fin function, etc.)



137

APPENDIX E: GAS SUPERSATURATION AND GAS BUBBLE
TRAUMA LITERATURE
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