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CHAPTER 1. INTRODUCTION 

Numerical grid generation distributes grid points over a physical field such that 

physical phenomena may be represented with sufficient accuracy. Numerical grid 

generation has applications in many areas where the solution of partial differential 

equations is of interest. The numerical solution of partial differential equations has 

reached a high state of development, however the ability to deal with complex ge­

ometries, like those found in most physical problems, is still under development. The 

pacing item in advancing numerical procedures for realistic problems is the develop­

ment of general techniques for numerically constructing mesh systems about complex 

configurations [1]. 

The most common type of grids generated are boundary-conforming. With a 

boundary-conforming curvilinear coordinate system, the boundary conditions can be 

represented on a coordinate line, or surface, rather than interpolated onto the bound­

ary [2]. In addition, general codes can be written with the boundary shape specified 

as input. The intersection of the coordinate lines defines the grid points, making 

identification of neighbors easy. This allows all computations to be done on a fixed 

rectangular grid in the computational field with the curvilinear coordinates as inde­

pendent variables. 

One of the most active areas of research in numerical grid generation is adaptive 
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grids. In an adaptive grid generation scheme the physics of the problem must direct 

the grid points to move. For two-dimensional and three-dimensional grids they move 

according to the solution variation so that the physical solution can be represented 

with sufficient accuracy. For three-dimensional grids they can also move in response 

to geometeric properties such as curvature. The grid points must be distributed 

over the field in an orderly fashion, yet be allowed to redistribute according to the 

adaption. To accomplish this, a means of communication between the points must 

exist and a way to sense the variations must be translated into the motion of the grid 

points. The grid should not become excessively skewed. It must be smooth and tend 

toward orthogonality to limit trucation errors introduced by nonuniform grids [3, 4]. 

This paper examines an adaptive grid generation scheme based on the variational 

method of Brackbill and Saltzman [5, 6]. The variational method produces elliptic 

partial differential equations resulting from an application of calculus of variations 

to an optimal mesh formulation. Both two-dimensional interior grids and three­

dimensional surfaces are used to show the adaptive generation. The two-dimensional 

grids demonstrate the solution adaptive capibilities, and the three-dimensional grids 

adapt to curvature. Before the adaptive grid generation scheme can be used, the 

surface must be accurately defined and an initial grid must be created on the surface 

or interior grid. B-splines are the tool used to model the surfaces and an algebraic 

grid generation scheme is chosen to create the initial grid. This part is taken from the 

work of Atwood [10]. The major effort of this paper is the adaptive grid generation 

scheme. 

Five test cases were formulated to validate this method. The first three cases 



3 

examine two-dimensional flow fields and the last two cases examine three-dimensional 

surfaces. The first two cases are simple square domains with high gradient regions 

created within the domain. The third case is an airfoil with a shock. The three­

dimensional cases are forebodies of the Boeing 747 and the McDonnel Douglas f-18. 

The B-spline surfaces and initial grid generation are described in Chapter Two. 

Chapter Three presents the adaptive method used and describes its implementation. 

Chapter Four discusses the results obtained with the test cases. Finally, Chapter Five 

gives the conclusions of this investigation and recomendations for further research. 
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CHAPTER 2. INITIAL SURFACE GRID GENERATION 

The surface grid generation scheme can be divided into two separate parts. The 

first part is to define the surface accurately. The second part is to create an initial 

grid. 

Surface Definition 

B-splines are used to define the surface. For this case, cubic B-splines are used 

to produce a curvature continuous surface. A characteristic polyhedron is determined 

such that the resulting B-spline surface passes through the data points specified by 

the user. Once the characteristic polyhedron is calculated the surface representation 

can be changed by shifting its vertices, also called control points. These changes are 

local, affecting only 16 points per vertex shifted as opposed to other surface-defining 

techniques, Bezier surfaces for example, where local changes are propagated though­

out the entire surface. This makes the method particularly useful for interactive 

design and locally changing surface details [7, 8]. 

The general matrix form for the B-spline surface that approximates an 

(m + 1)X(n + 1) rectangular array of points is 

p"t(u,v) = UkMkPk1MrV? (2.1) 
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s E [1 : m + 2 - k] 

t E [1 : n + 2 - 1] 

where k and I control the continuity of the surface, k = 1 = 4 for the cubic case, giving 

the C2 continuity; sand t indentify a particular patch in the surface. The quantity 

P8t( u, v) is the array of data points to be interpolated. U and V are the parametric 

variables. 

(2.2) 

Vi [ 1-1 1-2 1] I = V V ••• 

U, v E [0,1] 

Elements in the matrix of control points (the vertices of the characteristic polyhedron) 

depend on which patch is being evaluated. 

i E [s - 1 : s + k - 2] 

j E [t - 1 : t + 1 - 2] 

(2.3) 

M is the matrix of coefficients which are calculated from the blending functions 

and remain constant for each k and 1. 

M= 

-1 3 -3 1 

3 6 3 0 

-3 0 3 0 

141 0 

(2.4) 
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Grid Generation 

Once the characteristic polyhedron is calculated the parametric variables are 

used to produce the desired initial grid structure using an algebraic grid generator. 

Either a uniform or a two-sided clustering function can be used. The two-sided 

clustering function is very useful for clustering near a body. This method is devised 

from Vinokur's one-dimensional stretching functions [9]. The slopes are specified by 

the user who then controls the clustering. This provides the user with a method 

to discretize according to the flowfield variables if the characteristics of the solution 

are known beforehand. This will decrease the amount of movement necessary in the 

grid to reach the optimum level, thus decreasing the time for convergence of the 

grid relaxation process. Figure 2.1 shows several examples of clustering for various 

endpoint slope values. 

A uniform parametric grid is an evenly spaced set of parametric variables corre­

sponding to the input grid (Figure 2.2 and Figure 2.3). Note that the parameteric 

variables are uniform, not the actual physical grid which remains as specified. The 

uniform clustering is used to create the initial grid because it corresponds to an elliptic 

grid generator with no adaption. 

The entire grid (2-D or 3-D) is contained in the two-dimensional parametric 

variables. The characteristic polyhedron is the key to the transformation between 

the parametric variables and the cartesian coordinates. Once the initial grid and 

charateristic polyhdron are created and stored then the adaptive grid generation is 

used. 

A FORTRAN code called SURFGRID (Surface and Grid Representation with 
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Interactive Development) provides the surface and initial grid generation described 

in this chapter [10]. 
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CHAPTER 3. ADAPTIVE GRID GENERATION 

A variational approach by Brackbill and Saltzman is used to generate the two­

dimensional adaptive boundary fitted coordinates. The system is constructed with 

three parts, smoothness, orthogonality, and, adaptivity. Each of these criteria is 

represented by a term in an integral equation which is then minimized using the 

calculus of variations. 

The linear combination of these integral equations is 

(3.1) 

where Is, 1o, and Iv represent the integral equations for smoothness, orthogonality, 

and adaptivity respectively. Ao and Av are scalar factors which determine the weight 

of the orthogonal and adaptive contributions. 

Equation Development 

First, smoothness is needed to reduce the truncation error of the solution [11]. To 

maximize the smoothness of the grid the integral of the quantity (Ve· Ve + V'TJ· V'TJ) 

is minimized over the parametric domain. 
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(3.2) 

where (e,1]) are the computational coordinates and (u,v) are the parametric coordi­

nates. This corresponds to the elliptic grid generation system. 

(3.3) 

In the above equations (e,77) are the dependent variables. However, (u,v) are the 

preferred dependent variables. After interchanging them, equation 3.1 is written as 

III = j j (u~ + u~ + vi + v~) ~ de d77 (3.4) 

with integration over the computational domain. J, the Jacobian, is given by 

(3.5) 

With this variational formulation the expansion of the Lagrangian functions to 

include other factors is possible because of the linearity. The second factor Brackbill 

and Saltzman use is a measure of the orthogonality of the grid, which vanishes as the 

grid becomes more orthogonal. 

10 = j j('Ve· 'V77)2J dudv 

The equation with (e,77) as independent variables is 

(3.6) 

(3.7) 
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The * is there to maintain dimensional consistency between the two integrals. 

The Jacobian is used because it is always non-zero. However, only the (\7e . \7"1)2 is 

necessary to ensure the orthogonality constraint, J2 is completely arbitrary. Therefore 

Brackbill and Saltzman drop the J2 and absorb it into the scale factor Ao. This makes 

the Euler-Lagrange equations much less complicated [12], but by absorbing the J2 

into the constant Ao it is questionable whether the solution to the partial differential 

equation is actually a minimum to the original intergral. The equation used for the 

calculations is 

10 = J J (ueu7/ + VeV7/? de dTJ 

The third factor is the adaption term, 

Iv = J J w2(r)J du dv 

where w(r) is a specific forcing function. 

r= ( : ) 

After the change of variables the equation becomes 

Iv = J J w2(r)J2 de dTJ 

integrated over the computational domain. 

(3.8) 

(3.9) 

(3.10) 

The grid generating system is obtained by minimizing the linear combination of 

these three integrals. Equation 3.1 is shown again for convenience. 
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(3.11) 

The choices of .Ao and .Av will determine the influence of the orthogonality and adap­

tivity terms. For example, a large .Ao will produce a grid which is nearly orthogonal 

at the cost of smoothness and adaptivity. But, if .Ao and .Av are too large the grid 

becomes skewed and errors may increase. 

To minimize this equation, the Euler-Lagrange equations are applied to each of 

the Lagrangian functions yielding two partial differential equations whose solution 

minimizes the integral. These calculations are shown in the Appendix. The final 

results are written here. 

(3.12) 

This equation is a quasilinear second-order partial differential equation with coeffi­

cients which are quadratic functions of the first derivatives. This equation is then 

discretized with second order central differences for re, rf), ree, rf)f)' and ref). The 

resulting finite difference approximation is solved with a point relaxation scheme for 

the new grid. 

Boundary Points 

Since only the interior points are moved with the grid adaption scheme it is 

necessary to treat the boundary points separately. In order to have the influence of 

the weight function, the boundary points are calculated from the interior points. The 

calculations are in parametric space since one of the parametric values is known to be 
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o or 1 on all boundaries. The other parametric variable is calculated in one-dimension 

using the criteria of constant curvature near the boundary (Figure 3.1). 

(3.13) 

where q is either u or v along a constant parametric coordinate line. 

Figure 3.1: Boundary Point 

Weight Function 

The weight function plays a key role in adaptive grids. The most commonly used 

form of the weight function is a linear combination of functions given as 

(3.14) 

where Mi are non-negative functions and Ci are non-negative coefficients to indi­

cate the level of influence attached to them. The'l' guarantees the weight function 

will never be zero. Any function which produces a non-negative scalar field on the 
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domain is a possibility. For the two-dimensional cases examined in this paper, grad i-

ents of scalar quantities in the solution are used to force the adaptive process. The 

gradient is chosen for the weight function because this will put the most grid points 

where the solution is changing the most. With three-dimensional surfaces, the em-

phasis might be on geometric quantities such as curvature, which allows for a better 

representation of the surface [13]. Because these quantities are associated with the 

physical location, and not some auxiliary quantity, the weight function is taken to be 

a function of the physical space, r. 

Because the grid points are moving with each iteration it is necessary to interpo-

late the scalar field onto the new grid before the weight function is calculated. This 

assures that the scalar field remains fixed in physical space while the points move. 

The weight function used in this paper is 

w = 1 + ag (3.15) 

9 can be the magnitude of the gradient of the scalar quantities: velocity, density, or 

pressure. For surfaces, 9 is the mean curvature. 

g=H 
1 

- 2"(11:1 + 11:2) 

EN+GL-2FNI 
2(EG - F2) 

E = Pu . Pu L = puu . n 

F = Pu . Pv M = Puv . n 

G = Pv . Pv N = Pvv . n 

(3.16) 

(3.17) 
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p = p( u, v) the parametric surface patch 

n is the unit normal to the surface 

where 11':1 and 11':2 are the principle curvatures and E,F,G,L,M,and N are coefficients of 

the first and second fundemental forms. 

Alpha, in equation 3.15 is a positive scalar factor, which has the most influence 

on the movement of the grid. The scale factor should be small enough to ensure 

stability, and yet large enough to achieve the desired representation [14]. 

The values of the weight function drive the movement of the grid points. The 

points are attracted to the regions where the weight function is high. In these regions 

there will be a better representation of the solution, thus reducing truncation errors. 

The adaptive grid generation scheme described in this chapter is provided by a 

FORTRAN computer code called OptSGrid. 
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CHAPTER 4. NUMERICAL RESULTS 

The method described in the previous chapters was tested on five cases. The first 

two cases are two-dimensional rectangular domains on which high gradient regions 

were mathematically created. The third case is from actual data about an f-16. The 

forebodies of a f-18 and a 747 are examined in the last two cases, which demonstrates 

the three-dimensional capabilities of this method. 

An overview of the method used to create an adapted grid using SURFGRID 

and OptSGrid is shown in Figures 4.1 and 4.2. This was the method used for the 

following test cases. 

Test Cases I and II 

A two-dimensional square domain [-2,2] X [-2,2] was created for these test cases. 

Using SURFGRID (the program discussed in Chapter Two) each case was parameter­

ized and the characteristic polyhedron was calculated. Since a uniform parameteric 

grid corresponds to a smooth grid without adaption this initial grid generation tech­

nique is preferred. With this choice the grid points will move less during the adaption 

process therefore achieving convergence in fewer iterations. A 30 X 50 initial square 

grid was chosen and is shown in Figure 4.4. 

A high gradient region was created in the shape of a unit circle for the first case 
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Input Discrete Database 
(m+1) X (n+1) Array of Points 

( Does Database Need "\ No 
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Yes 

Choose Parametric Clustering 

L Input Slope Values I 

I Write Oul Surface Grid Geometry Files J 
[file 11 

t 
SURFGRID 

I 
I Input Dat8base from Ale 1 I 

I Choose Uniform Clustering 

I Wrile Out Surface Grid and Characteristic I 
Polyhedron (Initial Grid) 
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Figure 4.1: Overview of Method (SURFGRID) 
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Figure 4.2: Overview of Method (OptSGrid) 
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, 
and a parabola for the second case. The solution was generated using 

for the unit circle, and 

f(x, y) = tanh(y - 2X2 + 1) 

for the parabola, on the grid in Figure 4.4. 

2.0 

-

I 
I 
I 
I 
I I 

-----------~-----------~-----~-;---~--------
I I 
I I 
I I 
I I I x 

?E: 0.0 
___________ L ______________________ L __________ _ 

I I I 
c: I I I 

I I I 
I I I 

CO - I I I ______ ~ ____ = _______ L ___________ L __________ _ 

I I 
I I 
I I 
I I 
I I 

-2.0 
-6.0 0.0 6.0 

x 

Figure 4.3: Tanh(x) 

( 4.1) 

(4.2) 

The value of tanh changes rapidly near the origin and is nearly constant every-

where else. That makes the gradient large along the circle and the parabola. There-

fore, choosing the weight function to be the gradient of the solution causes points to 

be attracted to these regions. This leads to the clustering in the conic shapes. 

Figures 4.5-4.9 show grids from test cases one and two. Figure 4.5 was created 
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using the the grid in Figure 4.4 as the initial grid and the solution from equation 4.1 

as the initial solution. The parameters were Ao = 0, Av = 140, and a = 400. Figure 

4.6 was created using the results from Figure 4.5 as the initial grid and solution, and 

with parameters Ao = 0, Av = 150, and a = 600. Using the adapted grid as the initial 

grid for the second run allows the user to use an iterative process when designing a 

grid. It also allows the user to change the parameters and check the progress of the 

adaption. Sometimes it is necessary to keep the parameters low for better stabilty 

initially, then raise them later to get a more concentrated grid in the high gradient 

regions. This is the case for the grid in Figure 4.6 which is more tightly clustered 

than the grid in Figure 4.5. 

For this test case the boundary conditions don't playa large part because the 

adaption is away from the boundaries. But in test case two the high gradient region 

intersects the boundary so the movement of the boundary points is demonstrated. 

Figure 4.7 was created using the grid in Figure 4.4 as the initial grid and the 

solution calculated. in equation 4.2 as the initial solution. The parameters were Ao = 0, 

Av = 120, and a = 600. This was used as the initial grid and solution for Figure 

4.8. The parameters were increased to Ao = 0, Av = 200, and a = 800. As seen in 

the first test case the higher parameters produce the grid with a more concentrated 

high gradient region. The boundary points move according to the interior points. 

Constant curvature in parametric space means smooth curvature in physical space. 

In both these grids the bottom of the parabola is not well defined. Because the 

gradient of the weight function is much greater in the y-direction the movement in 

that direction is large compared with the x-direction. Near the high curvature region 
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the gradients are not as large along the parametric coordinate lines therefore the 

movement is small in comparison. Figure 4.9 shows the same solution on an initial 

grid of 30 X 30. With spacing the same in both directions the parabola looks similar 

so the spacing has little influence in this case. 

Test Case III 

The third test case examines an airfoil. This airfoil is a slice from a solution 

for a transonic flow about an f-16 [15]. The solution and grid are given on the top 

of the airfoil only. Using the boundaries of that grid, a simple uniform 5 X 10 grid 

was created in the region. This was input into SURGRID to create a parametrically 

clustered 16 X 30 grid. The slopes input were 80 = 200 and 81 = 2. Because of 

the transonic flow, the clustering is necessary to resolve the boundary layer near the 

surface. This grid is shown in Figure 4.10 and the corresponding parametric grid is 

shown in Figure 4.12. Because a uniform parametric grid is preferred for the grid 

adaption scheme, this grid is input into SURFGRID and the uniform grid generation 

option is used. This will be the initial grid and the characteristic polyhedron used 

in OptSGrid. This grid is 20 X 40 and is shown in Figure 4.11. The corresponding 

parametric grid is shown in Figure 4.13. The grids in Figures 4.10 and 4.11 are very 

similar, but the corresponding parametric variables are different. 

Figures 4.15-4.16 show the grids calculated with OptSGrid. For this test case the 

weight function is based on the gradient of density. The contours of density in Figure 

4.14 show the highest gradients to be near the leading edge. The grid in Figure 4.15 

was created with Ao = 0, Au = 100 and a = 500. The parameters for the grid in 
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Figure 4.16 were Ao = 0, Au = 150, and Q = 800 with the first grid as the input. 

Both these grids show movement towards the leading edge. As seen in the preceding 

section, the second grid has tighter clustering because of the higher parameters. There 

is also clustering toward the airfoil surface because of the high density gradients in 

the boundary layer. Without the initial clustering with SURFGRID this would not 

have been detected. 

Test Cases IV and V 

The fourth and fifth test cases demonstrate the three dimensional capabilities of 

this code. The weight function for these three dimensional surfaces is based on the 

mean surface curvature. The adapt ion is toward the high curvature regions. 

The first surface examined is the fore body of the 747. Because of the symetric 

nature only half the data were used. The nose portion was not resolved accurately 

therefore it was not used either. In order to have more grid points at the front, 

the data were preprocessed with SURFGRID. The parametric clustering option was 

used for the grid generation with one breakpoint in the i-direction at i = 10 [10]. The 

slopes were 80 = 2 and 81 = 2. To create the initial grid and characteristic polyhedron, 

SURFGRID was used with the uniform parametric grid generation option. Figure 4.17 

shows the initial grid with the uneven spacing while Figure 4.18 is the corresponding 

parametric grid. 

Once the initial grid is known and the characteristic polyhedron is calculated, 

OptSGrid is run. The parameters for the grid in Figure 4.19 are Ao = 0, Au = 100, 

and Q = 500. The area about the windshield provides the highest curvature therefore 
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the points have moved toward this region. Figure 4.20 was created from this grid 

with parameters Ao = 0, Av = 150, and (} = 800. 

The grids in Figures 4.19 and 4.20, as well as all the grids calculated with the 

uniform clustering option in SURFGRID, have larger spacing near the boundary. This 

comes from the formation of the characteristic polyhedron. Since all the calculations 

in OptS Grid are done in parametric space (which is uniform throughout) this doesn't 

affect them, only the final cartesian grid is affected. Unfortunately the boundary for 

this case falls in the middle of a high curvature region. The problem should be set 

up with the high curvature or high gradient regions away from the boundary. 

The fifth test case is the front section of the f-18. The data extend from the nose 

back to behind the cockpit. There are several high gradient regions in this area. 

For this test case the database was not ordered smoothly on the surface, therefore 

the leading edge of the wing was not explicitly defined. In order to have a sharp 

leading edge a straight line was put through the points at the edge of the data. This 

does not guarantee an accurate leading edge. A double line of data was input along 

this line, making the continuity C1 at these points. A uniform 20 X 40 grid was used 

as the initial grid (from SURFGRID). This grid is shown in Figure 4.21. Figure 4.22 

shows a cutaway of this initial grid, looking at the bottom half of the wing. This grid 

was taken from the data supplied, and therefore retained some of its characteristics 

making it less uniform than the 747 initial grid. The grid in Figure 4.23 was calculated 

from the initial grid with the parameters Ao = 0, Av = 150, and (} = 800. The same 

cutaway as before is shown. In this grid the points have slid towards the leading 

edge. There is also movement along the edge towards those areas with the highest 
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curvatures. These curvatures arise because some points slid off the leading edge when 

the initial grid was generated. Some may be above or below the edge, not on the edge 

as desired. This influenced the calculation of the curvatures and, therefore the weight 

function. Though there are several regions in the grid which have high gradients, 

the region near the leading edge of the wing seems to have the most activity. This 

is because the curvature here is the highest. The other high curvature areas, such 

as those near the nose and the cockpit, though small in comparison, also show some 

activity. 

In the solution of these five test cases the procedure has been robust. The adapted 

grids look smooth and adapt as expected. 
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Figure 4.4: The 30 X 50 initial grid 
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Figure 4.5: Grid adapted to unit circle with parameters Ao - 0, At! - 140, and 
a = 400 
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Figure 4.6: Grid adapted to unit circle with parameters Ao - 0, Av - 150, and 
a = 600 
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Figure 4.7: Grid adapted to parabola with parameters Ao = 0, Av = 120, and a = 
600 
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Figure 4.8: Grid adapted to parabola with parameters Ao = 0, Au = 200, and a = 
800 
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Figure 4.9: Grid adapted to parabola with parameters ..\0 = 0, Av = 120, and Q = 
600 (30 X 30 grid) 
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Figure 4.10: Parametrically clustered grid around the airfoil 

Figure 4.11: Initial grid for airfoil 
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Figure 4.12: Parametric variables corresponding to Figure 4.10 
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Figure 4.13: Uniform parametric variables corresponding to Figure 4.11 
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Figure 4.14: Density contours above the airfoil 

Figure 4.15: Grid adapted about the airfoil with parameters >'0 = 0, >'v = 100, and 
a = 500 
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Figure 4.16: Grid adapted about the airfoil with parameters >'0 = 0, >'u = 150, and 
Q = 800 
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Figure 4.18: Parametric variables corresponding to Figure 4.17 
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Figure 4.19: Grid adapted on a 747 surface with parameters .Ao = 0, .At) = 100, and 
a = 500 
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Figure 4.20: Grid adapted on a 747 surface with parameters Ao = 0, Au = 200, and 
a = 800 
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Figure 4.21: The f-16 initial grid, side view and front view 
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 

A procedure for adaptive grid generation using B-spline surfaces is presented. 

The Brackbill and Saltzman variational technique used with B-spline surfaces allows 

two-dimensional flows and three-dimensional surfaces to be treated similarly. The 

B-spline surfaces are used to obtain the parametric variables for the grid and the 

characteristic polyhedron. These are then input (along with the solution for two­

dimensional grids) into OptS Grid, a code developed to adapt the grid to the solution 

for a two-dimensional case, or curvature of the surface for a three-dimensional case. 

One of the major weaknesses of this technique is that the adjustments on the 

grid are ultimately limited by the basic parameters which are specified by the user 

[14]. This procedure calculates the optimum grid for the given parameters, but the 

user chooses the parameters. Further investigation into optimizing the parameters, 

as well as the grid is needed. In fact, further research in several directions is possible. 

In order to get a full three-dimensional grid the resulting surface grid is designed 

to be input as a boundary for 3DGRAPE [16]. A fully adaptive three-dimensional 

grid is the ultimate goal of this research. 

A short term goal is to localize the adapt ion. As seen in test case five, with large 

grids there may be more than one high curvature area. Only the highest weight func­

tion value significantly attracts the points. If the weight function could be localized, 
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allowing the points to be attracted to the highest weight function value in the area, 

then a large grid could be resolved without having to break it into zones. 

Another area of research is to develop a method to tell a 'good' grid from a 'bad' 

one. With so much research in the area of grid generation this would be a useful 

tool. For the generation method presented in this thesis a method for testing the 

grid is needed to verify that this is the optimum grid for the given parameters. This 

investigation needs to be interfaced with a flow solver to verify an improvement in 

the time and solution on one of the adapted grids as opposed to the base grids. 
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APPENDIX . CALCULUS OF VARIATIONS 

Calculus of variations is applied to equation 3.1 to produce equation 3.12, which 

is the basis for the adaptive grid generation scheme. The following equations show 

the manipulations in detail. 

The calculations begin with the smoothness, orthogonality, and adaptivity terms 

from Chapter 3 in their integral equations. 

18 /n[(\Je)2 + (\J7])2] dR = 0 (A.l) 

10 - /n(\Je· \J7]? J3 dR = 0 (A.2) 

111 - /n(w2 J)dR = 0 (A.3) 

(e,7]) Computational Space 

(u, v) Parametric Space 

In the above equations (e, TJ) are the independent variables. As stated in Chapter 3, 

(u, v) are the preferred dependent variables. The equations are converted using the 

metrics. 

c !:!1.. t _ -U'l 
I"u J 1,11 - J 

(AA) 
-11( ~ 

TJu = J TJ11 = J 
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where J is the Jacobian, 

(A.5) 

The converted equations are the same as equations 3.4, 3.8, and 3.10 from Chap-

ter Three. 

J (u2 + u2 + v2 + v2
) 

III - 17 e e 17 dedTj (A.6) 
J 

10 - J (ueul7 + vevl7? dedTj (A.7) 

Iv - J w2 
J2 dedTj (A.8) 

Because of the linearity, calculus of variations can be applied to each equation sepa-

rat ely, then the resulting equations are combined linearly. 

The Euler equations are 

8L 8 (8L) 8 (8L) 
- 8u + ae 8ue + 8Tj 8ue = 0 

(A.9) 

8L a (8L) 8 (8L) 
- 8v + ae aVe + 8Tj 8 Ve = 0 (A.10) 

where L is the Lagrangian. 

First, the contribution from the smoothness term is calculated. 

(A.ll) 

The Euler equation for u is 
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!... [2UeJ - (u~ + u~ + v~ + V~)V7/1 ae J2 

!... [2U7/J + (u~ + u~ + u~ + v~)ve 1 
+ a1] J2 

After the calculations the above equation can be written 

The Euler equation for v is 

After the calculations the above equation can be written 

where the Q, /3, " a, b, and c are given by 

b = v~ + v~ 

c = u~ + u~ 

/3 = ueu7/ + vev7/ 

,= u~ + v~ 
N ow the orthogonality term is calculated. 

o (A.12) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 
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(A.17) 

The Euler equation for u is 

(A. IS) 

(A.19) 

The Euler equation for v is 

(A.20) 

(A.2I ) 

Now, the adaptive term is calculated. 

(A.22) 

The Euler equation for u is 

(A.23) 
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(A.24) 

Since the e,1] are the independent variables Wu is converted using the metrics. 

(A.25) 

The Euler equation for v is 

2 8[ 2 ] 8[2 ] - 2wwv J + 8e -w 2Ju.,., + 81] w 2Jue = 0 (A.26) 

(A.27) 

Since the e,1] are the independent variables Wv is converted using the metrics. 

(A.28) 

All the equations are combined. Using matrix notation the final equation can be 

written: 

(A.29) 

with 



where 

b = vi + v~ 

c = ui + u; 
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f3 = Ue U 17 + Ve V 17 

,= ui + vl 

( 
b -a) 20 _ ( -2b 

J'S Bs-
-a c 2a 

2a ) 2{3 
J'S 

-2c 
Cs = ( b 

-a 

( v,:: 

2-y -a) J'S 
c 
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A - A,,+Ao+Av 

B - B,,+Bo+Bv 

C - C" + Co + Cv 

D - Dv 

E - Ev (A.3D) 


