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1 INTRODUCTION 

The North American interconnected power system is the largest machine ever devised. It 

is truly amazing that such a system has operated with a high degree of reliability for over a 

century. 

People in the power industry have always been trying to make full use of the interconnected 

system for economy and security. For instance, it is always desired to transfer power between 

different parties in the system for economic reasons. However, there are limitations on this 

transfer. Some of these limitations are listed below: 

• Thermal loading capacity of transmission lines 

• Bus voltage levels 

• Stability constraints 

- Transient stability 

- Small signal (dynamic) stability 

* Oscillatory stability 

* Aperiodic stability 

In the operation of power systems, stability has always been, and will remain a challenge 

for a foreseeable future and, indeed, is likely to increase in importance. 

Power system stability [1] may be generally defined as that property of a power system 

that enables it to remain in a stable operating equilibrium under normal operating conditions 

and regain an acceptable state of equilibrium after being subjected to a disturbance. 
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Power transmission capability has traditionally been limited either by rotor angle (syn­

chronous) stability or by thermal loading capacities. The blackout problem has been associ­

ated with transient stability; fortunately this problem is now diminished by fast short circuit 

clearing, powerful excitation systems, and various special stability controls. 

Voltage (load) stability, however, is now a major concern in planning and operating electric 

power systems. The main factor causing instability is the inability of the power system to meet 

the demand for reactive power. The heart of the issue is usually the voltage drop that occurs 

when active power and reactive power flow through the inductive reactances associated with 

the transmission network. Many electric utilities are facing voltage-imposed limits. One reason 

is the need for more intensive use of available transmission facilities as a consequence of load 

growth coupled with the economies of long distance energy exchange. This usually leads to 

a typical scenario of voltage collapse. Things became even more critical with the advent of 

power industry deregulation. 

During 1993, the electric power industry in the US started a series of unprecedented changes 

as a result of the Energy Policy Act of 1992. It promotes wholesale competition through open 

access and encourages non-discriminatory transmission services by public utilities. As a conse­

quence, the transmission systems are being required to accommodate flow patterns for which 

they were not originally designed. The resultant increased use of existing transmission is made 

possible in part, by reactive power compensation which is inherently less robust than "wire­

in-the-air" [2]. Therefore, this newly formed competitive environment may lead to frequent 

violations of transfer capability limits. The two recent western blackouts [3] in late 1996 have 

been recognized as voltage related. The blackouts revealed the importance of incorporating 

dynamic voltage stability constraints in operation and planning studies. 

With these considerations, this thesis concentrates on the aspect of small signal (dynamic) 

stability constraints on the transfer capability of transmission systems, particularly, from a 

voltage stability (collapse type) point of view. 
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1.1 Solution of Nonlinear Equations 

A power system is a typical nonlinear dynamic system which can be described by a set of 

differential and !!lgebraic ~quations(DAEs). The steady state description, therefore, is typically 

a set of nonlinear algebraic equations. In power system analysis, one often needs to solve these 

equations. Part of this set of nonlinear algebraic equations usually come in the form of power 

flow. Providing a robust numerical solver for these nonlinear power flow equations is crucial. 

The existence of a complete steady state solution of the DAE model essentially rests upon the 

existence of a power flow solution. Power system optimization is yet another example which 

often leads to the problem of solving some nonlinear algebraic equations. 

The most frequently used algorithms in solving nonlinear algebraic equations are those of 

the Newton type. The fast (quadratic) convergence of Newton's method is the reason for its 

unchallengeable popularity. However, though an unquestionable powerful tool, it needs a good 

starting point. The initial guess of the solution to start the iteration needs to be within the 

so-called radius of convergence. Sometimes, looking for a good initial guess is not a trivial 

task. A second problem is the ill-conditioning of the iterative Jacobian for a heavily loaded 

network. This often leads to poor convergence of the method since the Jacobian may become 

nearly singular. 

Fortunately, these problems, as will be addressed in chapter 2, can be overcome by some 

advanced numerical techniques, namely, the homotopy and continuation methods. 

1.2 Detection of Voltage Collapse 

A brief qualitative description of voltage collapse phenomena is given in section 1.1. How­

ever, a robust quantitative measure to identify voltage collapse in planning and operation 

studies is needed. Before going into a discussion about voltage collapse detection, let us first 

review some of the definitions related to voltage stability as developed by the IEEE and the 

CIGRE [4, 5, 2]: 

• Small disturbance voltage stable 

A power system at a given operating state is small-disturbance voltage stable if, following 
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any small disturbance, voltages near loads are identical or close to the pre-disturbance 

values. (Small-disturbance voltage stability corresponds to a related linearized dynamic 

model with eigenvalues having negative real parts. This dynamic model will be intro­

duced in chapter 3.) 

• Voltage collapse 

A power system enters a state of voltage collapse when a disturbance, increase in load 

demand, or change in system condition causes a progressive and uncontrollable drop in 

voltage. Voltage collapse may be total (blackout) or partial. 

With these definitions in mind, we will briefly touch upon the different techniques used in 

recent years for voltage collapse identification. As mentioned earlier, a power system, as a 

typical nonlinear dynamic system, is described by a set of DAEs. The different methods for 

stability analysis, based on how the DAE model is treated, can be classified into the following 

three groups. 

1.2.1 Power Flow Based Approach 

In this approach, the dynamic part of the DAE model is ignored. The point of the singular­

ity of the power flow Jacobian is deemed the point of voltage collapse. There are unreasonable 

(slack bus and PV bus) assumptions used in representing the system by the power flow model. 

In general, the singularity of the power flow Jacobian does not indicate instability. This will 

be further explained in chapter 3. 

1.2.2 Nonlinear Large Disturbance Analysis 

When the power system is subjected to large perturbations such as short circuits, nonlinear 

analysis with the DAE model is needed. Time domain simulation has to be applied to capture 

the true picture of the phenomenon. The first step in this approach is to find the numerical 

solutions for the state variables after the system is subjected to certain disturbances. The 

initial conditions usually come from the power flow, which is a part of the complete steady 

state description of the whole system. The second phase in time domain simulation involves 
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extensive output analysis using the data generated from the simulation programs. Important 

quantities such as voltages at critical buses or system frequency are displayed. By observing 

the selected system states evolution curves, one can identify the area of voltage problems. 

Information like stability margin is determined at the end of simulation. 

Time domain simulation, in which appropriate modeling is included, captures the events 

and their chronology leading to instability and, thus, is useful for detailed study of specific 

voltage collapse situations, coordination of protection and controls, and testing of remedial 

measures. However it is very time consuming and requires extensive output analysis. It also 

does not readily provide sensitivity information and the degree of instability. 

1.2.3 Small Signal (Dynamic) Voltage Stability Analysis 

When the system is under small disturbances, such as gradual increase of load, the original 

nonlinear DAE model can be linerized around the specified operating point. When the algebraic 

constraints are incorporated into the differential part of the model, dynamic stability can be 

analyzed by checking the eigenvalues of the system state matrix (to be defined in chapter 3). 

The problems with this approach is that eigenvalue computation is very expensive and thus is 

very demanding for large power system studies. 

1.2.4 Need for Alternatives 

The power flow based approach often masks some important dynamics associated with volt­

age instability. Nonlinear time domain simulation or eigenvalue computation based dynamic 

analysis is too cost intensive. Even if the computational burden would not be of concern, there 

is still another problem with either the time domain simulation or the eigen-analysis approach. 

It is that the power flow is used to generate the steady state solution of the complete DAE 

system. As will be shown later, the power flow description of the system is very different from 

that in dynamic analysis. This inconsistent description may give wrong results. Therefore, 

it is of great interest to develop a methodology in which the system dynamics is reasonably 

represented and the associated analysis does not require too much computational burden, and 



6 

the problem of inconsistent description of the system can be rectified. A new approach has 

been developed to overcome these shortcomings. It is addressed in chapter 3. 

1.3 Sensitivity Analysis and Thansfer Margin Estimation 

In power system planning and operation studies, the detection of voltage collapse is only 

part of the work facing the engineers. To avoid voltage collapse, it is necessary to investigate 

the contributing factors that lead to instability. Effective controls need to be designed to 

prevent the system from collapsing. Information about what controls are effective and where 

to locate them is very useful. Sensitivity based approaches are very useful in addressing the 

above problem. 

Sometimes sensitivity is defined for evaluating general system performance, such as para­

metric sensitivity. It indirectly relates to stability since system degradation eventually will 

lead to collapse if no preventive measures are applied. More often the sensitivity is defined 

with respect to certain stability indices which are intended for determining the degree of stabil­

ity. The stability index can be given state based, requiring only information from the current 

operating point, or large deviation based, which also requires a knowledge about the critical 

point. The latter accounts for nonlinearities caused by larger disturbances or load increases. 

A link between a given state index and a large deviation based index is needed if it is desired 

that the sensitivity can be used quantitatively to predict the effectiveness of the particular 

controls applied. Using this kind of quantitative sensitivity measure, one will then be able 

to further apply the methodology to estimate transfer margin as limited by voltage collapse, 

without actually re-computing the P-V curves. Further, if system dynamics are of concern, 

the sensitivity of a stability index should be defined with respect to the DAE model of the 

power system. In chapter 4, these issues are addressed in detail. A new sensitivity measure is 

developed and used to estimate the transfer margin as limited by dynamic voltage collapse. 
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1.4 Scope of The Work and Thesis Outline 

An effective approach to identify dynamic voltage collapse is developed here. It is called 

the simultaneous equilibria tracing technique. Eigenvalue computation is avoided while a full 

dynamic analysis is conducted on the DAE model of the power system. The inconsistency of 

the power flow description of the dynamic part of the system when producing the equilibria for 

nonlinear or small signal stability analysis is resolved in the new approach. An effective way 

of incorporating system limits is introduced and it is shown that the total system Jacobian is 

valid for both Newton-Raphson iteration and voltage collapse identification. 

The invariant subspace parametric sensitivity (ISPS) is a general sensitivity measure which 

can be applied to identify the critical components of the system that most affect voltage 

stability. A sparse formulation is derived for computing the measure of ISPS. A quantitative 

sensitivity index is further derived from the measure of ISPS. It is used to estimate the transfer 

margin. This index makes it possible to quantify the effectiveness of controls in terms of real 

power transfer margin increase. 

The outline of the thesis is as follows. In chapter 2, a critical review of the application of 

two robust numerical methods for solving nonlinear algebraic equations, namely, homotopy and 

continuation, is given. Clarification of conceptual differences is made to give a clear picture 

of potential applications of the methods to power system analysis. In chapter 3, a further 

extension of the continuation technique is given to detect dynamic voltage collapse. This 

methodology does not require the formation of the system state matrix and the computation 

of its eigenvalues. In chapter 4, a quantitative sensitivity index is derived and applied to 

voltage stability margin estimation. Conclusions and suggestions for future work are given in 

chapter 5. 
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2 NUMERICAL METHODS FOR NONLINEAR EQUATIONS 

As mentioned in chapter 1, many problems in power system analysis involve the solution 

of nonlinear algebraic equations. Examples are those from power flow related or optimization 

problems. A robust numerical solver is indispensable and sometimes determines the success 

of the whole solution to the problem. To this end, we may apply some advanced numerical 

techniques, namely, homotopy and continuation, with which the drawbacks of conventional 

methods can be overcome. This chapter first briefly presents the basic concepts, principles, 

and methods of homotopy and continuation. Their interplay is also clearly described so that 

one can understand and grasp the essence of both the methods. Then a critical review of the 

application of these methods to the power system problems is given. 

2.1 Problem Statement 

The problem of determining the roots of nonlinear equations is of frequent occurrence in 

scientific work. Such equations typically arise in connection with equilibrium problems. When 

describing a real life problem, the nonlinear equations usually involve one or more parameters. 

Denoting one such parameter by 0, the nonlinear equations read: 

f{y,o) = 0 (2.1) 

where f: Rn x R ~ Rn is a mapping which is assumed to be smooth. In equation 2.1, 0 = 0 

usually corresponds to the base case solution. If a priori knowledge concerning zero points of f 

is available, it is advisable to calculate y via a Newton type algorithm defined by an iteration 

formula such as: 

(2.2) 
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where Ai is some reasonable approximation of the Jacobian fy(Yi, 0). However, if an adequate 

starting value for a Newton type iteration method is not available, we must seek other remedies. 

In section 2.2, we will introduce how this lack of knowledge for an initial guess can be tackled 

by the homotopy method. 

Because the systems described by 2.1 depend on a, we speak of a family of nonlinear 

equations. Solutions now depend on the parameter a, i.e., y(a). Upon varying the parameter 

a, we will get a series of solutions. This is often called a solution curve. At each point 

corresponding to a certain ak, if we keep solving 2.1 via the conventional Newton type iteration, 

i.e., by formula 2.2, we may run into difficulty due to the singularity of the Jacobian fy(Y, ak). 

The singularity occurs at a so-called turning point when the equation is parameterized with 

respect to a. In the subsequent sections, we will discuss the interesting topic of curve tracing 

via the continuation method. We will show how the problem of singularity of the Jacobian 

can be resolved, namely, by switching the continuation parameter. Section 2.4 will give an 

illustration of how the principles discussed in section 2.2 and 2.3 can be applied to power 

system analysis. 

2.2 Homotopy Method 

We center our discussion on obtaining a solution to a system of n nonlinear equations in 

n variables described by equation 2.1 when a is a fixed value. The homotopy method first 

defines an easy problem for which a solution is known. Then it defines a path between this 

easy problem and the problem we actually want to solve. This easy problem, with which 

the homotopy method starts, is gradually transformed to the solution of the hard problem. 

Mathematically, this means that one has to define a homotopy or deformation: Rn x R -7 Rn 

such that 

H(y,O) = g(y) H(y,1) = f(y) (2.3) 

where 9 is a trivial smooth map having known zero points and H is also smooth. Typically 

one may choose a convex homotopy such as 
\ 

\ 

H(y, t} = (1 - t}g(y) + tf(y) \0 ~ t ~ 1 (2.4) 
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The problem H(y, t) = 0 is then solved for values t between 0 and 1. This is equivalent to 

tracing an implicitly defined curve ( i.e. H(y(t)) = 0 ) from a starting point (yO, 0) to a solution 

point (yn,l). Under certain conditions, yet) can be defined as (see Fig. 2.1): 

yet) = -(Hy(t, y(t)))-l Ht(t, yet)) (2.5) 

If this succeeds, then a zero point of f is obtained, i.e. H(y, 1) = fey). However, one may 

suspect that this is an unnatural approach, since 2.5 seems to be a more complicated problem 

to solve than H(y(t)) = O. But we should not lose sight of the fact that the solution curve yet) 

consists of zero points of H, and as such it enjoys the powerful local contractive properties with 

respect to iterative methods such as those of Newton type. Hence, one is led to numerically 

integrate 2.5 very coarsely, and then locally use an iterative method for solving H(y(t)) = 0 

as a stabilizer. This is the general idea in the continuation methods with a predictor and 

corrector tracing scheme. 

The relationship 2.4, which embeds the original problem in a family of problems, gives an 

/ 
g(y)=O 

H(y, 1)= 0 

f(y)=O 

1=0 1=1 

Figure 2.1 Homotopy curve 

example of a homotopy that connects the two functions f and g. In general a homotopy 

can be any continuous connection between f and g. If such a map H exists, we say that 

f is homotopic to g. A good introduction to homotopy methods can be found in references 

[6, 7, 8, 9]. A simple two-dimensional nonlinear probl~m is given in Appendix A to illustrate 

how the homotopy method works. 

Whether or not the tracing of a curve can succeed·. depends on the continuation strategy 
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\ 
employed. Whenever a homotopy is introduced, one will then need to to trace the homotopy 

\ 

curve from the easy start ahd arrive at the solution to the original problem. Figure 2.2 shows 
\ 

the relationship between ho~otopy and continuation. If the curve can be parameterized with 

respect to the parameter t, ~hen the classical embedding algorithm [6] can be applied. In the 
I 

following sections, we will diS\USS how a parameterization is done and how vital this procedure 

is to the continuation, or say \0 the curve tracing process. Particularly, we will show how the 

continuation is carried on even \hen the curve is not parameterizable with respect to a certain 

parameter. 

y 
\ 
g(\)=O ______ Homotopy curve 

\ H(y.t)=O 

\ <f 

\' ' 
_....-;'\:--__ ~f(y.O )=0 

I I 

I i 
I I Curveo! 
1 \ f1 
'. \ 

Apply ~ontinuation ' 
\ 

meth~d 

Figure 2.2 

\ fir. u<)=O 

\ 

a 
rnotopy vs. continuation 

2.3 Continuation Methods 

A general description of the different aspects of continuation methods in curve tracing is 

given below. [6, 10, 8, 11, 12] are good references for a detailed explanation of these methods. 

Brief but more pertinent exploration of applying the methodology to power system studies is 

given in section 2.4. The system of nonlinear equations in the form of equation 2.1 serves as a 

basis for discussion. One note is that, for the tracing of a curve defined by 2.4, the discussion 

is the same as for the curve defined by 2.1. Here, y denotes an n-dimensional vector. 

Continuation methods usually consist of the following [12]: predictor, parameterization 

strategy, corrector, and step length control. Assume that at least one solution of equation 
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2.1 (for a particular a) has been calculated, for instance, by the homotopy method. For the 

tracing of a curve defined by 2.4, this corresponds to the assumption that 9 has a known zero 

point. The jth continuation step starts from a solution (Yj,aj) of equation 2.1 and attempts 

to calculate the next solution (Yj+b aj+d for the next a, namely, aj+l. With a predictor­

corrector method, the step j to step j + 1 is split into two parts, with Wj , 'Cij) produced 

in between by the prediction. In general, the predictor merely provides an initial guess for 

the corrector iterations that home in a solution of equation 2.1. The distance between two 

consecutive solutions is called the step size. In addition to equation 2.1, a relation that identifies 

the location of a solution on the branch is needed. This identification is closely related to the 

kind of parameterization strategy chosen to trace the curve. 

In the curve tracing process, at some critical points (e.g. turning points), the singularity of 

the Jacobian matrix fy often causes trouble either in the prediction or in the correction process. 

This means that the current continuation parameter has become ill-suited for parameterizing 

the curve. One way of overcoming this difficulty at turning points is to parameterize the curve 

by arclength. The augmented Jacobian can be nonsingular throughout the tracing process. 

However, in practical power system analysis, we always want to get as much useful information 

as possible during the continuation process. The arclength usually has a geometrical rather 

than a physical meaning, therefore we are often more interested in another important ODE­

based predictor, i.e., the tangent predictor and the corresponding corrector with the curve 

locally parameterized at each step. This is deferred to section 2.4 with the power system 

example. 

The efficiency in curve tracing is closely related to the step length control strategy. It is 

not difficult to choose a workable step size in practice, though some trial and error work is 

often required before the appropriate step size can be found. Step control often can be based 

on the estimates of the convergence quality of the corrector iteration. Reference [464] in [13] 

selects step size according to the number of corrector iterations. In general, the step length 

control scheme is problem dependent. 

In a practical situation, such as in power systems, saddle node bifurcations, to which our 
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attention will mainly be given, are generic with the collapse type voltage problems. However, 

in some other situations, other bifurcations might occur more frequently and thus will be of 

greater interest. For instance, the type of bifurcation that connects equilibria with periodic 

motion, i.e., hopfbifurcation, is also generic. Problems, such as how to locate a hopfbifurcation 

point on the traced branch and the related topics are thoroughly treated in reference [13]. 

2.4 Applications to Power Systems 

The first paper applying the curve tracing technique based on Davidenko's method [14] to 

power system analysis appeared in 1971 [15]. The authors in that reference used the ordinary 

differential equations method to trace the curve via the following formula: 

dy = -f-lf 
da y Q 

(2.6) 

However, here, the singularity of /y creates numerical problem. Continuation methods can well 

alleviate this problem. In recent years, many papers were published that applied the homotopy 

and continuation methods to power systems. To name a few, [16,17,18,19,20,21], [22], [23], 

[24, 25, 26], [27, 28], [29, 30], [31, 32, 33, 34, 35], [36], [37], [38, 39], [40], [41], [42], [43], [15], 

[44]. The following section concentrates on the main aspects of these papers. 

2.4.1 The Continuation Power Flow for Static Voltage Stability Analysis 

The purpose of the continuation power flow is to find a continuum of power flow solutions for 

a given load change scenario. The CPF [19] is based on reference [11]. In order to incorporate 

the load and generation variation parameter a, the power flow equations are reformulated as 

follows: 

(2.7) 

(2.8) 

where quantities with subscript 0 denote the base case generation and load. KGpi, Klpi , and 

K lqi , are multipliers corresponding to the rate of load change and generation following scenario. 

They usually vary with different load models and generation sharing schemes. 
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If f in 2.1 is used to denote the complete set of power flow equations, then to solve the 

problem, the continuation algorithm in CPF starts from a known solution and uses a predictor-

corrector scheme to find the subsequent solutions at different loading levels. 

Predictor: Once a base solution has been found (a = 0), a prediction of the next solution 

can be made by taking appropriately sized steps in a direction tangential to the solution path. 

The tangent T is the solution of the linear system: 

(2.9) 

Provided the full rank condition rank(fy'/oJ = n holds along the whole branch, the above 

equation has a unique solution at any point on the branch (k may have to be changed to 

select a different continuation parameter at a particular step, especially at or near the turning 

point). It is known from [19] that a stability index and identification of weak buses can also 

be obtained from the tangent vector. Once the tangent vector has been found, the prediction 

can be easily made as: 

(2.10) 

where aj designates the step size. 

Parameterization and the corrector: Now that a prediction has been made, a method 

of correcting the approximate solution is needed. Actually the best way to present this corrector 

is to expand on parameterization, which is vital to the process. Local parameterization looks 

promising here and thus is employed. In local parameterization, the local original set of 

equations is augmented by one equation that specifies the value of one of the state variables. 

In the case of the power system example, this means specifying either a bus voltage magnitude, 

a bus voltage angle, or the load parameter a as shown by the following equations: 

[ 
f(B,v,O') 1 = 0 

Yk -1} 

and 
[ 

fy fa 1 
er 

.6.v (2.11) 

where Y = (B, v, a), y = (B, v) and k is locally selected to make the continuation algorithm 

flexible. In the CPF, selection of the continuation parameter corresponds to the state variable 
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that has the largest tangent vector component. More simply put, this means to choose the 

state variable that has the greatest rate of change near a given solution as the next continuation 

parameter. Accordingly, a slightly modified Newton-Raphson iterative process can be used to 

solve the corrector equations. The corrector Jacobian can be seen to have the same form as 

the predictor Jacobian. This continuation parameter switching strategy can solve the singular 

Jacobian problem appearing at the critical points on the traced curve. The CPF is a powerful 

tool in static voltage stability studies. It has the ability to find a set of solutions from a 

base case up to the critical point in a single program run. Unlike conventional power flow 

programs, it can compute the power flow solution at or near the critical loading point where 

traditional programs often fail to converge or take longer times to find a solution. It also 

provides intermediate results which provide valuable insights into the voltage stability of the 

system and the areas prone to voltage collapse. Different variations of the continuation methods 

applied to the power system problems can be found in references [24, 28]. A one dimensional 

nonlinear problem is used in Appendix A to show the basic steps involved in continuation. 

2.4.2 Homotopy Rel~ted Continuation in Voltage Stability Analysis 

In section 2.2, we have given the basic ideas on when homotopy is needed, how it can 

be employed, and how it is related to continuation. Next we will discuss the application of 

homotopy related continuation in power flow curve tracing. 

In power system analysis, specifically, in power flow studies, one could find a homotopy 
\ 

[40J which relates the power flow s~lutions to the variation of load and generation scenario 
\ 

parameters. The load and generation s~enario from a base case condition is defined as: 
\ 

where 

¥So 

t 

¥S(t) = ¥So + tYd 
\ 

\ , 
\ 
\ 
\ 
\ , 

\, 
\ 

specijied'zase load 

\ 
load/ generation pattern 

\ 
homotopy sedlar parameter 

\ 

(2.12) 
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By substituting equa~ion 2.12 into the load flow equation, the homotopy equation is defined 
\ 

as: 

H{x, t) = Y{x) - Ys{t) 

= Y{x) - Yso - tYd = 0 

(2.13) 

(2.14) 

The solution of H{x, t) = 0 also provides a load flow solution for specified value Ys{t). To 

estimate a solution (xo + !:lx, to + D.t) that adjoins a known solution (xo, to), the linearized 

relations between !:lx and D.t should satisfy equation 2.16, where JLF means the Jacobian 

matrix used in conventional power flow problem. 

H{xo + !:lx, to + D.t) = H{xo, to) + HxD.x + HtD.t = 0 (2.15) 

(2.16) 

The intention here is to trace the curve of solutions from a base load condition at t = 0 to 

a critical load condition at t = t max . As noted by the discusser of [40], however, in order 

to overcome the numerical difficulties at the turning point, one must rely on the different 

parameterizations of the nose curve to avoid small step sizes near the critical point and to 

allow the drawing of the nose curve to continue around the critical point. Here the homotopy 

function, which incorporates a load/generation parameter, is built in such a way that it corre­

sponds to the original power flow equations at different load/generation levels. So the tracing 

of H{x, t) will yield the PV or QV curve, which is the solution curve being sought. As stated 

in section 2.2, homotopy itself does not relate to any particular continuation method, rather, it 

leads to the problem of continuation or parameter study of the introduced homotopy function. 

Whether the homotopy function corresponds to the curve of original interest depends on how 

one formulates the problem. In most cases, unlike the above example, the homotopy continua­

tion is led from a known solution of an easy problem not of original interest to the solution of 

the more difficult problem being studied. Therefore, a homotopy continuation process usually 

yields only one solution on the solution path of the o~iginal problem (see Fig. 2.2). 
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2.4.3 Direct Method in Computing the Saddle Node Bifurcation Point: A 
\ 

One Step Qontinuation 
\ 

In section 2.3, disc~ssion has been given to show that the tracing of a curve can be done via 
'. 
\ 

continuation. In subsection 2.4.1, we've shown how this is related to voltage stability studies, 

also there, we've noticed that, on the traced curve, a particular point, namely, the critical 

point, or sometimes called the saddle node bifurcation point, is often of greater interest. If we 

are only interested in locating this point with respect to a c , or say, we are interested in the 

maximum allowable variation of a where the corresponding linearization (Jacobian) is singular, 

we have yet another approach available, i.e., the direct method [18, 21, 24, 25, 26, 27]. 

Saddle node bifurcations, as opposed to other kind of bifurcations, are typical in practice, 

and are mathematically characterized by the steady state Jacobian fy having a simple and 

unique zero eigenvalue, with nonzero right eigenvector u and left eigenvector w. This condition 

can be summarized by the set of vector equations 2.17 for the right and left eigenvectors. 

f(y,a) 

fy(Y, a)u = 0 

f(y,a) 

wfy(y,a) = 0 (2.17) 

In 2.17, the original system of equations is augmented in such a way that for the enlarged 

system, the turning point becomes regular. Solving for 2.17 will yield the desired turning 

point. 

Advantages: The direct method can find the critical point where the Jacobian is singular 

by solving the enlarged system of power flow equations in one step. The left and right eigen­

vectors produced in the direct approach carry very important information. For instance, it 

was shown that, at saddle node bifurcations, the right eigenvector corresponding to the zero 

eigenvalue gives the trajectory of the system state variables [35]. The left eigenvector can be 

used to construct a normal vector [31, 32, 33, 34] on the bifurcation hypersurface. This will 

be discussed in the next subsection. 

Limitations: In the direct approach, for a successful convergence, a good initial guess is 

needed. This method basically doubles the number of equations to be solved. However, some 
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of these shortcomings can be ove come by following the approach proposed in reference [45]. In 

that paper, the authors explored e structure of equation 2.17. It was shown that the whole 

system can be resolved into four I ear subsystems, each with the same coefficient matrix. 

Reference [21] applied this method power system voltage stability studies. Reference [24] 

gives a comparison of the continuation method with the direct method. 

2.4.4 Continuation Towards a Closest Saddle Node Bifurcation 

f'\ 
In subsections 2.4.1 and 2.4~2,\ we have shown how to trace a PV curve. For instance, 

starting from a known solution, employing the CPF algorithm, we may trace the entire PV 

curve without any numerical difficulty. We may also choose the direct method to locate the 

critical point if we don't need the entire curve. However, one might have found that the 

produced PV curve must correspond to a particular load increase and generation sharing 

scheme. But in practical power system operations, the load increase and generation sharing 

scheme may change at will, and thus it's often more preferable to find a closest saddle node 

bifurcation point [31, 32, 33, 34, 23, 42, 44] at which the critical loading is met without the 

need for specifying the scenario. It is even so when transmission systems become more open, 

resulting an increase in potentially harmful third party transactions of which the operator may 

have little knowledge or control. 

In computing the closest saddle node bifurcati,on point, an iterative method [31, 32, 33] can 

be used. The iteration to compute a closest saddl,e node bifurcation has two main steps (see 
\ 

Fig. 2.3): In the first step, the standard methoqs for finding the saddle node bifurcations 

along a given ray of operation direction, e.g., by tihe CPF method, direct method, or the 
\ 

homotopy method can be used. In the second step, t4e direction of the ray is updated, which 
\ 

is parallel to the normal vector n defined as [31]: \ 
i 

n=wh \ , (2.18) 

\ 
where w is the left eigenvector corresponding to the zero eigenvalue at the bifurcation point and 

h the Jacobian of f with respect to L, the loading vector. Based on the information gathered 

at the ith iteration, ni is updated to ni+l so that a closer saddle node bifurcation point can be 
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Figure 2.3 Closest bifurcation 
\ 

\ 

found. Hopefully the iteration ~ill succeed, and the ray will converge to a direction in which 

a locally closest saddle node bifur~ation will be met. The way to update the ray direction is 

not unique, which leads to different\algorithms. Some methods use the normal vector to the 

hypersurface I: of saddle node bifurcation points at L(nj) as the new ray direction ni+l [31], 

while others use quasi-Newton approach to update nj [42]. It is shown in [42] that the former 

approach may result in slow convergence. This is because only the first order derivatives of the 

function denoting the distance between the operating point at Lo and a saddle node bifurcation 

point at L(n) along nj are used. In the latter method, a quadratic function sj(n) denoting 

the distance is constructed. Finding the local closest saddle node bifurcation will correspond 

to a constrained optimization problem of minimizing sj(n). Because the latter approach in 
\ 

updating the direction of the ray is based on the \?pproximations to the second order as well 
\ 

as the first order derivatives of the distance function sj(n), it may give better convergence. 

In reference [44], the authors used the multiple p~\er flow method to approximate a closest 
\ 

loadability limit. \ 

Advantages: The normal vector to the bifurcation surface in the parameter space provides 

very valuable information for designing preventive and corrective controls. There have been 

reports about its applications to power systems [29, 30]. ""When the current operating point 

is close to the instability boundary, the above mentioned iteration usually can well converge 

to the closest saddle node bifurcation points. And with this information, the system operator 
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can then take appropriate measures to prevent the system from approaching the possible worst 

case voltage collapse. 

Limitations: In practical operations, the system topological structure will change during 

system contingencies that will change the security boundary greatly. For successful convergence 

of the iterative method, it is often required that it starts from a point close to the instability 

boundary. And the boundary should not be too curved, otherwise divergence may occur. 

Also, the worst case load/generation scenario might be the one which would not be chosen 

by the system operator for economical or other secure operation considerations. The optimal 

corrective control direction [33], related to the closest bifurcation, might still be impractical. 

This is because it often involves changes in power injections at a large percentage of system 

buses, and further, in implementing such preventive control, neither cost nor the availability of 

such control measures has been considered. In other words, it almost always involves the load 

shedding at junction buses with no actual load, or requires reactive power support at buses 

with no reactive compensation devices available. However, one can consider these constraints, 

but in that case the solution may be sub-optimal but still very meaningful for system analysis 

and operations. 

2.4.5 The Optimal Continuation Power Flow: Continuation in OPF Studies 

An optimal power flow (OPF) solution gives the optimal active and reactive power dispatch, 

and the optimal settings of all controllable variables for astatic power system loading condition. 

The OCPF method [16, 17) uses the systematic approach of the continuation technique to 

provide a series of solutions for the increased transfer or load level. The OCPF starts at the 

given base load using a gradient based optimization technique. It consists of the following 

two parts: the continuation process and the optimization process, the first of which is nearly 

the same as in the CPF and its corrected output is fed into the optimization process. During 

the optimization process, the corrected solution is iteratively optimized in steps via a gradient 

based optimization technique. Once the optimal solution is obtained, the output is fed back 

into the continuation process so that the next solution can be predicted. This procedure 
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continues until a critical point corresponding to voltage collapse is obtained. 

\ 
2.4.6 Hom~~opy Related Continuation in Optimal Power Flow (OPF) Studies 

\ 
As a mathematic~l tool, homotopy related continuation methods can also be applied to the 

\ 

optimal power flow problems. As already indicated, a homotopy usually leads one to the study 

of curve tracing. The tex~ here is given only to show how one links the homotopy continuation 

method to the OPF proble~s [22, 36, 38, 39, 43]. 

The essential idea of homotopy continuation applied in any particular situation is to con­

struct a series (the discrete version) or a continuum of infinitely many (the continuous version, 

e.g., the differential homotopy continuation) equations during which the complexity of the 

problems is increased gradually. ' And in most cases, the ultimate solution of the difficult 

problem is of original interest, and the usefulness of intermediate results are dependent upon 

how one formulates the problem. In sQlving OPF problems, one would be led to reconstruct 

the problem and build a ladder of complexity to approach the original problem. This can 

be done as follows: deform the complete OPF problem by constructing a sub-problem first. 

This sub-problem can be constructed by ignoring some functional constraints in the original 

problem. Then deform the sub-problem such that at a value of the continuation parameter 

t = 0, the solution to the resulting deformed sub-problem is trivially found. This will mark 

the beginning of a tracing process, which, when '~uccessful, will provide the solution to the 

sub-problem. If at the solution to the sub-problem'; functional constraints previously ignored 
\ 

in its construction prove to be within bounds, the "solution to the sub-problem will be the 
\ ., 

solution to the complete OPF problem. If not, a furthbr sub-problem should be created. That 
\ 

is, incorporate the violated functional variables as activ~,constraints into the new sub-problem, , 

and solve the problem as above. This procedure is repeii.,~ed until all functional violations at 
'. 

hand are removed at which time the solution at hand wi~l be the solution to the complete 

OPF problem. In the continuation process, a sequence of cl?sely spaced loads is fed into the 

nonlinear optimization. This produces a discrete OPF soluifon strategy as an output. The 

initial guess for each new optimal solution is the optimal solution of the previous load. Once 
\ 



22 

this load tracing procedure is initiated, the solution times for the individual OPF solutions 

are greatly reduced, because this kind of algorithms execute quickly when presented with good 

initial guesses. 
\ 

\ 
By recalling why\ one introduces homotopy, it would be easy to observe the property of 

'. 
\ 

the homotopy continuation method that it does not require a feasible starting point. As 
\ 

discussed in subsection 2A.2, in tracing the homotopy function curve, numerical difficulties 

due to singularity of the Jacobian may arise. In homotopy based OPF, if the formulation still 

involves the solution of the original set of load flow equations, it will give rise to numerical 

problems at certain critical points. 

2.4.7 Some Remarks About Applications 

When one is beset with the lack of good starting points for the Newton type iterative 

methods in solving nonlinear equations, or when one needs to lead a parameter study of 

nonlinear system equilibrium problems, it would probably be advisable to turn to homotopy 

and continuation methods. Applications in recent years have manifested the great potential of 

the techniques to engineering problems. This chapter does not present an exhaustive survey 

but a compact text on continuation and its application to power system analysis. Continuation, 

bifurcation, and related numerical methods are very well addressed in [6, 10, 13]. 
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3 SIMULTANEOUS EQUILIBRIA TRACING AND DYNAMIC 

VOLTAGE COLLAPSE DETECTION 

In power system analysis, it is frequently of interest to find solutions of the system at an 

equilibrium point. For instance, the solution of the power flow equations are needed in system 

planning and static security analysis. In stability analysis, a power flow is used to calculate 

the voltages and angles at all buses, and then the dynamic state variables are evaluated using 

the device equations. This procedure causes some problems as will be shown in the following 

sections. To overcome these problems, we will further extend the continuation technique 

to simultaneously trace the total system equilibria of the structure preserving power system 

model, which is described by a set of nonlinear gifferential and ~lgebraic ~quations (DAEs). 

Physical interpretations of the new approach will give insights into some issues which are 

important to a good understanding of the power system. An immediate application of the new 

strategy is the identification of dynamic voltage collapse without eigenvalue computations. 

3.1 Equilibria Tracing in Power System Analysis 

Unlike in power flow analysis, a detailed dynamic representation of the power system is 

required to analyze the system's stability behavior. As a typical nonlinear dynamic system, 

with the multiple time-scale property, a set of nonlinear DAEs can be employed to describe 

the behavior of the power system, i.e., 

X F(X,Y,P) 

o - G(X,Y,P) 

(3.1) 

(3.2) 
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where X includes the dynamic states, Y includes the algebraic state variables, and P consists 

of all parameters explicitly appearing in F or G. Some of these parameters can be control 

input settings. 

3.1.1 Total Solution at Equilibrium 

A system equilibrium solution is needed for the evaluation of the stability, the solution Xo 

and Yo of equations 3.1 and 3.2 at steady state, i.e., when X = 0, constitute the equilibrium 

point. Setting the differential to zero indicates a state of equilibrium of the system. In small 

signal stability analysis, the right hand side of the DAEs is first linearized, and then the system 

state matrix Asys (see Equation 3.26) is evaluated at (Xo, Yo). Its eigenvalues give dynamic 

stability information of the current equilibrium point. In nonlinear time domain analysis, the 

equilibrium solution (Xo, Yo) gives the initial conditions to start numerical integration. In 

direct Lyapunov type stability analysis, this solution is also required. 

3.1.2 Traditional Approach 

In equation 3.2, G corresponds to the power balance equations at all buses in the system. 

Therefore its dimension is larger than that of the power flow. In power flow, it is assumed that 

the voltages at PV buses and voltage and angle at the slack bus(es) are known and constant. 

Consequently, for a network of N buses, if there are NG generators, Ns of which are designated 

as slack, then the number of equations in the power flow formulation will be 2N - NG - Ns 

(for polar coordinates). For a constant generator terminal voltage, it is assumed that the 

static gain of the excitation system is infinite. No limitations on the slack bus generation 

can be enforced during the solution process. Once a power flow is solved, together with the 

pre-specified generation and voltages for PV and slack buses, the Xo values will be updated 

using equation 3.1 at steady state. The control parameter settings in P corresponding to this 

Xo are then computed. This procedure of solving for (Xo, Yo, Po) is termed as the two-step 

approach. With this total system equilibrium solution, further stability analysis can then be 

conducted. 
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The above procedure has some drawbacks. Firstly, if control limits are enforced, a solution 

(Xo, Yo, Po) satisfying these limits may not exist. The slack bus generation might also exceed 

limits after the power flow. In this case, the state which is limited would need to be fixed at 

its limiting value and a corresponding new steady state equilibrium solution would have to be 

found. This would require a new power flow, for each specified value of PV bus generation 

or terminal voltage, or possibly generator reactive power injection. For the last case, the 

generator voltage becomes part of the power flow solution. For a heavily loaded system, this 

trial and error procedure may have to be repeated several times, each time requiring a new 

power flow solution. Secondly, even after a set of (Xo, Yo, Po) values satisfying all limits are 

found, there still exists another problem which is inevitable in using the power flow based 

two-step approach to produce equilibria solution for stability analysis. That is, the description 

of the generators in the power flow is very different from that in the dynamic response. How 

the generators behave in a dynamic process depends on the dynamic characteristics of the 

synchronous machines and the control systems associated with them. These controls are not 

represented for the PV bus generators and the slack bus generators are simply left out in the 

power flow. Therefore, it may not be unusual that this discrepancy in representation leads to 

erroneous results. 

3.2 Power Flow Methodology and Assumptions 

Before introducing the simultaneous equilibria tracing technique, let us first have a closer 

look at the assumptions used in the power flow, particularly the reasons why they are needed. 

With a clearer understanding of these assumptions, we will then be able to devise a procedure 

in which the problems encountered in the traditional approach can be avoided. 

3.2.1 Nonlinearity in Power Flow 

In normal electrical network analysis, the voltages and/or currents of power sources are 

given as known quantities. In order to find the voltages at various nodes and currents in all 

branches, one simply needs to solve the network nodal equations which are linear. Corre-



26 

spondingly, for power network, this refers to the nodal representation, given in phaser notation 

as 

yv=I (3.3) 

where Y is the network admittance matrix, V is the vector of phaser voltages at all buses, 

and I is the nodal phaser injection currents. The conditions for 3.3 to have a solution with a 

specified set of injection currents I are 

• Y is nonsingular 

• rank(YII) = rank(Y) if Y is singular 

Were the injection currents known, the power flow would have involved no nonlinear equations. 

However, in power system analysis, the nodal voltages and injection currents are both unknown 

before a power flow is solved. Instead, the generation and load powers are given as the known 

quantities. They are related to the nodal voltages and injection currents as shown below. 

SGi - SLi 

V-I 
(PGi - PLd + j(QGi - QLd 

V-I 

The '*' sign indicates the complex conjugate. With the real and imaginary parts separated, 

equation 3.3 is transformed into the following form: 

where 

o - PEi - PLi - PTi i = 1, ... , N 

o - Q Ei - Q Li - QTi i = 1, ... , N 

N 

PTi = Vi L VkYikCOS(Oi - Ok~ 'Yik) 
k=l 
N 

QTi = Vi L VkYiksin(Oi - Ok - 'Yik) 
k=l 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

The two nonlinear equations 3.4 and 3.5 correspond to the algebraic part of the DAE formu­

lation given in 3.2. With the powers specified at the terminal buses, X variables are not of 

concern in the power flow equations. 
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3.2.2 Slack Bus Assumption 

The unknowns in equations 3.4 and 3.5 are (V,fl), the number of which is 2N. The underline 

sign is used to denote vectors. If we want to solve these unknowns directly using the Newton's 

method, we have to specify the generations and load powers at all buses. And most probably, 

with a starting point (Vo, flo) close to normal operating conditions, this approach will lead to 

divergence. A closer look of the structure of the power balance equations will give more insight 

into the problem. Designating the generator at the Nth bus as the slack, summing up the 

first N - 1 equations in 3.4 and 3.5 and then adding them to the Nth and 2Nth equations 

respectively will yield 

since we know that 

N N-l 

PCs - L PLi + ~oss (V, fl) - L PEi 
i=l i=l 
N N-l 

Qcs LQLi + Qloss{V,fl) - L QEi 
i=l 

N 

LPTi 
i=l 

N 

L QTi = Qloss{V,fl) 
i=l 

i=l 

(3.8) 

{3.9} 

These two equations can be put together with the first N - 1 equations from 3.4 and 3.5 

respectively to represent the complete network. Equations 3.8 and 3.9 show that, if a solution 

(V*, fl*) exists, for a possible successful convergence, we must specify the generations subject 

to the constraints given in 3.8 and 3.9. Since the losses as a function of the network solution 

are unknown before the power flow is solved, it is practically impossible to do so. Therefore, 

it is very likely that, if we have to specify the power generations for all generators, constraints 

3.8 and 3.9 may be greatly violated, and correspondingly the starting point (Vo, flo) might be 

well out of the radius of convergence of the Newton's method. Also, there is a possibility that 

a real solution simply does not exist corresponding to this set of specified generations. (From 

algebraic equations theory, we know that a solution always exists if we also consider complex 

roots.) If one can devise a scheme so that there is freedom of adjusting the generation during 
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the course of iteratively solving the power flow equations, then convergence performance might 

be much better. Referring to this, an immediate thought would be to eliminate equations 3.8 

and 3.9 altogether from the power flow iteration. Consequently, the slack bus generation need 

not be specified. To do so, we must remove two unknowns from (V,~). This is no difficulty at 

all. Because the goal of a power flow is to give a dispatch of the generation so that the system 

load can be served with the bus voltages being close to normal operating conditions, usually 

close to 1.0 per unit, we can reasonably assign 1.0 to lis and 0° to Os, the latter of which is 

simply to set a reference for the angle measurement, and thus it is arbitrary. After the power 

flow converges, we then calculate the losses and assign all of them to the slack generators. 

This procedure makes sure that the loss-generation imbalance does not cause convergence 

trouble during iteration. And this imbalance is fixed only after the power flow is solved. 

The above discussion shows that the slack bus assumption is a mathematical requirement for 

possible/good convergence of the Newton's iterative algorithm. 

3.2.3 PV Bus Assumption 

In order to maintain the system voltage levels, the generators are equipped with automatic 

voltage regulators (AVR) so that terminal voltages are within limits during system load increase 

or other disturbances. With the power flow description of the system, the only way to reflect 

this fact is to force the terminal voltages at the generator buses as constant since AVR is not 

represented. To achieve this, the reactive power balance equations for generator buses must 

be removed. As a consequence, QEi no longer needs to be specified as input, it is released 

as a variable. Physically, this means that reactive support from generators helps maintain a 

relatively high and steady terminal voltage. Numerically, this possibly also leads to better 

convergence characteristics of the Newton-Raphson power flow algorithm. 

After the above discussion, we are now ready to devise a new strategy that eliminates the 

unreasonable assumptions used in the power flow. It solves for a reasonable set of (X, Y) values 

with control limits automatically implemented. This leads us to the topic of simultaneous 

equilibria tracing technique. 
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3.3 Total Power System Equilibria Solutions 

From the discussion given in section 3.2, we can make two conclusions about the assump­

tions used in the power flow: 

• Slack bus methodology provides a means of "automatically" adjusting real and reactive 

power generations" during" the iterations, not at all buses, but only for the slack, so that 

at any iteration the losses are not causing the point to be too far away from the true 

solution, therefore making Newton's iterative method possible to converge . 

• The PV bus assumption is used to reflect the need of maintaining the system voltage 

levels by AVRs and it also possibly helps improve the convergence rate of the Newton-

Raphson algorithm. 

In the following sections, we will study how these assumptions, which cause the problems 

mentioned in subsection 3.1.2, can be removed, while the goals they are made to achieve are 

not sacrificed. 

Before we introduce the simultaneous equilibria tracing technique, let us first give a detailed 

representation of the structure-preserving power system model. 

3.3.1 System Modeling 

The dynamic models adopted from reference [46] include a two-axis synchronous machine 

with the IEEE type DC-I exciter and a simplified boiler-governor model (first order model each 

for boiler and governor). 

• The 2-axis synchronous machine model: 

Wi 

. , 
Eqi 

E' di 

~ 

-

-

= 

= 

T~ (Efdi - E~i - (Xdi - X~i)Idi) 
dOi 

T~ (-E~i + (Xqi - X~i)Iqi) 
qOi 

1,···,Nc 

(3.10) 

(3.12) 

(3.13) 
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Ws is the system frequency, and WB is the base value frequency (377.0 rad/s). 

• Interface voltage equations to the network 

This gives the generator injection currents as 

Idi 

Iqi 

di 

= 

= 

dil(RsiE~i + E~iX~i - RsiVisin(t5i - Oi) - X~iVicos(t5i - Oi)) 

dil(RsiE~i - E~iX~i - RsiVicos(t5i - Oi) + X~iVisin(t5i - Oi)) 

In order to get a minimum representation of the system, the rotor angle differential equation 

from 3.10 for the reference machine is first subtracted from the equations for the remaining 

N G - 1 generators and eliminated afterwards. This reference machine is chosen solely for the 

sake of angle reference, so it is arbitrary. The bus voltage angles are then measured with 

respect to the rotor axis of this selected reference machine. 

• Excitation system 

The IEEE type DC-I exciter is shown in Figure 3.1 and the dynamic model is 

(3.14) 

(3.15) 

(3.16) 

where V::
Fi 

is the exciter reference voltage. VRi and RFi are the outputs of AVR and 

exciter soft feedback respectively. Efdi is the excitation field winding voltage. 

• Prime mover and speed governor 

Figure 3.2 shows the block diagram of the prime mover and speed governor model used 

in this work. 

(3.17) 

(3.18) 
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Figure 3.1 The IEEE type DC-I excitation system 

PGsi is the governor real power setting for generator i. The speed-droop characteristics 

(see Fig. 3.3) determines the ultimate contribution of each machine to a change in the 

load and fixes the resulting system frequency . 

• Network description 

The network is basically described by equations 3.4 and 3.5. However, unlike in power 

flow, PEi's and QEi's are no longer specified as constant inputs, but a function of system 

states X and Y, i.e., 

(3.19) 

(3.20) 

PGs 

-.J. -~ -1 + -11..._1 _+_TG_S_:-J.l=--~30~I'--_1 +_TC_H_S----'I----P.~r.;~ 
Figure 3.2 The prime mover and governor 
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Figure 3.3 The governor speed-droop characteristic 

Equations 3.10 - 3.18 together with 3.4 and 3.5 form the DAE description of the system, 

the abstract form of which is given in equations 3.1 and 3.2. 

3.3.2 Simultaneously Solving for Total System Equilibria 

Simultaneously solving for X and Y will enable us to avoid the assumptions used in power 

flow. This leads us to the question whether it is possible to solve for X and Y directly and 

simultaneously from equations 3.1 and 3.2 at equilibrium, i.e., 

o = F(X, Y,P) 

o = G(X, Y,P) 

(3.21) 

(3.22) 

The immediate concern is whether the Newton's method would work with as good convergence 

as that in the power flow. 

As mentioned earlier, the release of slack bus generation is used in power flow so that 

network losses corresponding to a set of system voltages are not causing convergence trouble 

during iterations. In the complete description of the system at equilibrium state, this com­

pensation becomes possible without the necessity of removing the slack bus power balance 

equations. With the description of the system at steady state by 3.21 and 3.22, generation at 

terminal interface to the network is now a function of system states (see equations 3.19 and 

3.20). The governor frequency regulation together with the boiler valve control, as described 

by equations 3.18 and 3.17, interacts with the network real power balance constraints, through 
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mechanical power PMi (equations 3.11 and 3.17), to adjust the interface generation PEi so that 

real power losses are automatically compensated by regulating the system frequency. Similarly, 

the automatic voltage regulator (described by equations 3.14 to 3.16) interacts with the net­

work reactive power balance constraints, through Efdi to adjust QEi so that reactive power 

losses are compensated by regulating terminal bus voltage Vi. In regard to PV bus assumption, 

it is not needed any more since AVR is actually represented. 

Based on the above analysis, we claim that it is possible to solve for X and Y simultaneously 

by directly applying Newton's method to equations 3.21 and 3.22. Further, in the following 

section, we will show how we can incorporate this into continuation and apply the resultant 

simultaneous equilibria tracing technique to dynamic voltage collapse identification. Overall 

solution methodology is given in the sequel and the discussion of its numerical performance is 

reported in section 3.5. 

3.4 Detection of Dynamic Voltage Collapse 

As briefly introduced in chapter 1, the power flow has traditionally been the primary cal­

culation to find the equilibrium and, thus, determine static voltage stability. This is because 

the power flow has always been considered the steady state description of the power system. 

As already shown that the existence of a total steady state/equilibrium solution X and Y 

rests essentially on the existence of a standard power flow solution if the two step approach 

is adopted. However, small signal/dynamic stability of the equilibrium solution is defined by 

a set of differential equations subject to the network algebraic constraints. In static voltage 

stability analysis, one is often led to find the maximum loading point, and this point has been 

historically deemed important for the assessment of voltage stability. At this point, the power 

flow Jacobian becomes singular, and it was once believed that the singularity of the power 

flow Jacobian signified voltage instability. But as shown in [46] that, only under very special 

circumstances, the power flow Jacobian has an explicit relationship with the system dynamic 

state matrix Asys which will be defined shortly. The power flow singularity usually does not 

indicate instability. Hence, a power system operating state should be called steady state fea-
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sible if it satisfies the full nonlinear AC power flow equations while meeting some operational 

constraints. This does not necessarily imply that the candidate operating point is stable in a 

dynamic sense. Voltage phenomena by itself are dynamic. The reason why the static power 

flow based analysis prevailed is due to the computational limitations and the slow properties 

of those dynamics influencing voltage stability. Based on the above discussion, we conclude 

that a power flow model is not adequate for assessing stability. 

3.4.1 Eigenvalue-analysis Based Dynamic Voltage Stability Analysis 

A strict dynamic voltage stability analysis will then require a full DAE formulation and 

eigenvalue analysis of the corresponding system state matrix at the interested equilibrium. In 

this thesis, dynamic stability means the system is stable under small disturbances. Therefore 

we can expand equations 3.1 and 3.2 into a Taylor series around the current equilibrium state. 

That is, 

which leads to 

And we then have 

aF aF 
- F(Xo, Yo) + ax 10 l:l.X + ay 10 l:l.Y 

o aG aG 
G(Xo, Yo) + ax 10 l:l.X + ay 10 l:l.Y 

[~n = [;: ;:][::] 

- J[::] 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

Eigenvalue analysis of Asys , which is termed the system (dynamic) state matrix, will give 

dynamic stability information of the current equilibrium point under small disturbances. At 

voltage collapse, the system loses the ability to supply enough power to a heavily loaded 
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network. At this point, the so-called saddle node bifurcation occurs which is described by 

the movement of one eigenvalue of Asys on the real axis crossing the origin from the left 

half complex plane. Therefore an eigenvalue computation will help detect this movement, 

participation factor studies will show how bus voltages participate in this collapse mode, and 

sensitivity analysis will show the parameter influence on this critical eigenvalue. However, the 

above procedure is cost intensive since eigenvalue the computation is involved. Furthermore, 

the formation of Asys also destroys sparsity of J. 

3.4.2 Detection of Voltage Collapse Via Simultaneous Equilibria Tracing 

At saddle node bifurcation which leads to voltage collapse, one of the eigenvalues of Asys 

is zero. Equivalently, the determinant of Asys is zero. From matrix theory, we know that, 

det(J) ( Fx 
Fy ) = det (3.27) 

Gx Gy 

= det(Fx - FyG1;IGx)det(Gy) 

det(Asys )det( Gy) 

So if Gy is nonsingular, the determinant of Asys becomes zero if and only if the determinant 

of J is zero. The latter of which is the total system Jacobian which we are proposing to use 

for the simultaneous equilibria tracing. J is very sparse and thus allows efficient handling 

using sparsity techniques. Therefore the detection of the singularity of Asys can be made 

while working on J. In the following section, we will show a simple procedure to detect the 

singularity of J. It does not need calculation of either eigenvalues or the determinant of J. 

3.4.3 Solution Methodology 

In the review given in chapter 2, we have shown how the continuation technique can be 

used for curve tracing in general, and detecting network loadability in particular. This method 

is now further extended to trace the total power system equilibria from the base case up to 

the point where dynamic voltage collapse occurs. That is, we apply the continuation method 
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to trace the curve defined by 

o = F(X, Y,a) 

o - G(X, Y,a) 

(3.28) 

(3.29) 

where a is the bifurcation parameter. a denotes the system load/generation level and also can 

be used to parameterize the curve. 

3.4.3.1 Continuation applied to simultaneous equilibria tracing 

The bifurcation parameter a is incorporated into F and G to parameterize the curve. Since 

we are interested in tracing the equilibrium states when the system generation and load are 

increased, we parameterize the governor generation setting and system loads as 

N N 
PGsi(a) - PGsiO + Kopi(2: PLi(a) - 2: PLiO) 

i=l i=l 

PLi(a) - PLiO + aKLpiPLiO 

(3.30) 

(3.31) 

(3.32) 

Equations 3.31 and 3.32 designate the load increase scenario. Eq. 3.30 gives the load increase 

sharing scheme for each generator selected from the system. PGsi is the generation setting point 

for the governor. As illustrated in chapter 2, the solution process is divided into prediction 

and correction. In the predictor step, the tangent vector is solved from 

Fx Fy Fa dX 

dY 

da 

o 

o 
±1 

(3.33) 

Once the prediction is made, the corrector is then computed to get back from the predicted 

point to the solution curve. The corrector is computed from equation 3.34. 

Fx Fy Fa 

Gx Gy Go 

F 

G 

o 

(3.34) 
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3.4.3.2 Detection of voltage collapse 

The point where the Jacobian J becomes singular can be identified during the course of 

continuation. This is explained below. 

Because 0 corresponds to the system generation and load level, it increases monotonically 

to the maximum value, at which voltage collapses. Therefore the tangent component do is 

positive before the saddle node bifurcation, and negative afterwards. If we could exactly 

capture the point when do: is zero, then it is trivial to show the exact singularity of J. When 

do: = 0, equation 3.33 reduces to 

- [FX FY] [ dX ]_ [ 0 ] 

Gx Gy dY 0 
(3.35) 

Since one of the components from dX or dY is ±1, {dX, dy)T is not a null vector, equation 

3.35 therefore denotes singularity of J. 

This technique captures the saddle node bifurcation by detecting the sign change of do:, 

which is automatically done in the continuation process. Since J is very sparse, it is advanta­

geous to apply a sparsity programming technique for solving 3.33 and 3.34. We thus achieve our 

aim of detecting dynamic voltage collapse without forming Asys and computing its eigenvalues, 

neither do we need to compute the determinant of J. 

3.4.4 Limits Implementation 

It is very important to reasonably represent the system limits when studying voltage stabil-

ity. In fact, voltage collapse occurs more than often as a consequence of limited local reactive 

power supply. When the system loses the ability to further meet the load demand in a heavily 

stressed network, the cascaded hitting of limits usually leads to system collapse. There are 

basically two types of limits to be considered. One is the governor limit, and the other is the 

AVR output limit. For voltage stability, the latter usually plays a more important role. 
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3.4.4.1 Governor limits 

The governor limits are implemented by regulating the real power generation/load settings. 

Those generators which hit PGs~x will then be forced to stay at maximum, and no longer allowed 

to further pick up the system load increase. 

3.4.4.2 AVR limits 

The automatic voltage regulator (AVR) controls the terminal voltage of the synchronous 

machine. It indirectly controls the reactive power output by regulating the AVR output voltage 

VR. In the new formulation, we are able to directly implement the limits which are usually 

given to restrict the output of the voltage regulator. Forcing the A VR output voltage at a 

particular value will directly control the rotor current to stay below limits and indirectly control 

the reactive generation. This can be proven as follows. At an equilibrium state, the AVR 

output voltage is related to the synchronous machine rotor current as 

{KEi + SEi)Efdi 

{KEi + SEi)Eqi 

(3.36) 

(3.37) 

(3.38) 

where Eqi is the generator's internal induced quadrature axis voltage [47]. So if we ignore the 

saturation effect, the rotor current is proportional to VRi, which proves the first half of the 

above statement. A machine's reactive power output can be written as 

(3.39) 

When VRi is fixed at a certain value, the reactive power will then be limited indirectly, at least 

not increase exponentially when approaching voltage collapse. This proves the second half of 

the previous statement. 

Once the AVR of a generator hits the limit, it loses the ability to adjust VRi and thus 

QEi to meet the load increase. The AVR has to be set so that VRi stays at the limiting 

value. Referring to equation 3.15, the dynamic differential equation will be dropped and will 
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not be included for stability analysis. This is obvious if one recalls the definition of stability 

from control theory. That is, the limited dynamic state will stay as a constant, and it no 

longer participates in the dynamic response of the system. If we solve the remaining equations 

which provide the DAE description of the system with the same control inputs, we may not 

be able to find a solution. This is because, when the system load further increases, in order 

to continuously keep VRi at the limiting value, the corresponding excitation reference voltage 

v IfFi may have to be reduced. The decrease of the exciter reference voltage reflects the 

inability of the generator to keep pace with the load increase. In the conventional two-step 

based equilibria tracing approach, this would require a new power flow solution with a different 

set of generation and/or voltage specifications for the PV buses. After this, the X variables 

are then calculated and the control inputs including the exciter reference voltage will then be 

updated to a new smaller value in this case. As mentioned in the first section of this chapter, 

this causes the problem of inconsistent description of the generators. In the new formulation, 

when some new limits are hit, this update of control settings can be done automatically during 

continuation. To do so, we include the following equation, which is nothing but the right hand 

side of 3.15 with VRi at its maximum. 

1 (max (. ) ~ AVR+ O=--VR· +KA·VEX -V;-Rr=J. TAi I I REFi I I I 
(3.40) 

If a new limit is found to be violated at the end of the current correction, the following Jacobian 

will then be used in the immediate correction to update the input exciter reference voltage. 

FX Fy 0 Fa 6.X F 

GXi Gy 0 Go 6.Y G 
(3.41) 

I AVR
+ jAVR+ AVR+ 

0 EX ItVR
+ 

iX iY liVre! 6.V
REFi 

eT 
k 6.0' 0 
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new limits are violated, the following equation will then be used for subsequent correctors: 

F-X Fy 0 Fa t::.X F 

Gx Gy 0 Ga t::.Y G 
(3.42) 

jAVR+ jAVR+ 1015 0 t::. VRi 0 
iX iY 

eT 
k t::.a 0 

Once the limit is hit, the predictor equation from then on is changed to 

Fx Fy 0 Fa dX 0 

G- Gy 0 Ga dY 0 X (3.43) = 
jAVR+ jAVR+ 1015 0 dVRi 0 

iX iY 

eT 
k da ±1 

The large number is used to keep the size of the matrix unchanged which provides programming 

ease. And by using this Jacobian, we observe that neither the AVR output voltage nor the 

input exciter reference voltage is updated during the prediction process. This makes sure that 

we get the tangent of the equilibrium curve corresponding to the current input settings while 

satisfying the limits already encountered. The above analysis is illustrated in Figure 3.4. 

When da is zero, from equation 3.43, 

det =0 (3.44) 

And we have 

Fx Fy 0 

( F- Fy ) det G- Gy 0 = det X det (10 151) 
X 

Gx Gy 
jAVR+ f¢VR+ 10151 x 

(3.45) 

Thus we observe that da = 0 again signifies saddle node bifurcation of the DAE model. 

The above derivation proves the validity of using the iterative continuation Jacobian (in 

Eq. 3.43) in simultaneous equilibria tracing to identify dynamic voltage collapse, both before 

and after hitting AVR limits. In chapter 4, we will see that the continuation Jacobian can also 

be used for studying the sensitivity of the saddle node bifurcation of the DAE model. 
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Figure 3.4 Limits implementation during continuation 

3.4.4.3 Overall Procedure 

The flow chart given in Figure 3.5 shows the overall solution strategy for identifying dynamic 

voltage collapse via simultaneous equilibria tracing. 

3.5 Test System Studies 

The proposed method was applied to the IEEE New England 39-Bus system and the Iowa 

162-bus network. They include 10 and 17 generators respectively. Both governor limits and 

AVR output voltage limits were considered, the latter of which indirectly controls the reactive 

output. 

3.5.1 The New England System 

The system consists of 10 generators (at buses 31, 30 and 32-39), 17 load nodes (at buses 

3, 4, 7, 8, 15, 16, 18, 20-21, 23-29, 39), and the remaining junction buses. The generation/load 

increase scenario is defined as: the real and reactive loads are increased at constant power 

factor and at the same rate among all load buses. Each generator is assigned a portion of the 

system load pick-up according to the base case generation (see Appendix E). 
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Figure 3.5 The overall flowchart 
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3.5.1.1 General description of test results 

As explained in the previous sections, the automatic voltage regulator regulates the gen­

erator terminal voltage and its reactive power output to the network. The speed governor 

adjusts the real power generation and system frequency to meet load increase. Because all 

these devices are modeled in detail, we are able to observe how the synchronous machines 

interact with the network, both before and after hitting the limits. The inability of indefinitely 

supplying power through the network to the load centers, as a consequence of control system 

or machine capacity limitations and network loadability restrictions, will ultimately lead to 

system voltage collapse as will be shown in the sequel. 

The system experiences voltage collapse (saddle node bifurcation) at a loading level of 8776 

MW. All governors hit limits before reaching voltage instability. The generators at buses 30, 

32 and 35 hit their AVR limits. The buses which experience lowest voltages at various loading 

levels are nodes 8, 12, and 15. 

3.5.1.2 Automatic voltage regulator responses 

We observed that, for all the generators which hit their AVR output voltage limits, the 

terminal voltage, AVR output voltage, reactive power generation, and exciter reference voltage 

have similar response profiles. Therefore we take the generator at bus 30 as the example for 

analysis. 

Figure 3.6 shows that, before hitting its AVR output limit, the voltage regulator can 

maintain a fairly high and steady terminal voltage. When the system total load exceeds 

8223 MW, AVR output voltage (Figure 3.8) hits the maximum value of 1.45 p.u. and the 

terminal voltage exper1ences a noticeable drop. 

Figure 3.7 shows the profile of reactive generation at bus 30. A sudden slowing down of the 

increase in the reactive generation occurs when the AVR output limit is hit. From this point 

on, fixing the AVR output voltage makes the terminal reactive power generation to increase 

at a much slower speed. 

Figures 3.8 and 3.9 are the AVR output and exciter reference voltages of generator at bus 
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30. The saturation of VR30 and drop of V::
F30 

correspond to the hitting of the AVR limit. 

3.5.1.3 Speed governor responses 

The governor associated with generator at bus 35 is the first to reach its limit when the 

system loading level is 7621.0 MW. The dotted line (Fig. 3.10) shows the governor setting value 

and the solid line depicts the terminal real power generation. The terminal generation stays at 

an almost constant value after the governor hits the limit. However, at a system loading level 

of 7898.0 MW, when most of the governors hit their limits, the system frequency experiences 

a much larger sag (Fig. 3.11). This causes the terminal real power generation of generator at 
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bus 35 to increase further and eventually exceed the governor setting value. 

3.5.2 The Iowa System 

The system consists of 17 generators. The generation/load increase scenario is defined as: 

The real and reactive loads are increased at constant power factor and at the same rate at 

eleven load buses (at nodes 18, 20, 22, 30, 32, 52, 59, 80, 82, 87 and 89). Each generator 

is assigned a portion of the system load pick-up according to the base case generation (see 

Appendix E). 
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3.5.2.1 General description of test results 

The system experiences a voltage collapse (saddle node bifurcation) at a loading level of 

18500.0 MW. The governor of the generator at bus 125 hits its limit before reaching voltage 

instability. Generators at buses 76, 101, 108 and 126 hit their AVR limits. 

3.5.2.2 Automatic voltage regulator responses 

The first nonsmooth change of the terminal voltage at bus 126 (Figure 3.12) occurs when 

the AVR outputs of generators at buses 101 and 108 hit the maximum. When the system load 
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Figure 3.13 AVR output voltage VR at bus 126 

exceeds 18368.0 MW, VRl26 itself hits the limit. From this point on, the terminal voltage at 

bus 126 experiences a much more abrupt decrease. 

Figures 3.13 and 3.14 are the AVR output and exciter reference voltages of generator at 

bus 30. The saturation of VRl26 and drop of V::F126 correspond to the hitting of the AVR 

limit. 

Figure 3.15 shows the profile of reactive generation at bus 76. A sudden decrease of the 

reactive generation occurs when its own AVR output limit is hit near the voltage collapse 

point. 
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Figure 3.15 Reactive power generation at bus 76 

3.5.2.3 Speed governor responses 

The governor associated with the generator at bus 125 reaches its limit when the system 

loading level is 18064.0 MW. The dotted line shows the governor setting value and the solid 

line depicts the terminal real power generation (Fig. 3.16). After PGs126 hits its maximum, the 

system frequency experiences a relatively faster drop (Fig. 3.17). This causes the terminal real 

power generation of generator at bus 125 to increase further and exceed the governor setting 

value. 
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Figure 3.17 System frequency response 

3.5.3 Conclusions 

Traditional approaches for voltage stability analysis have concentrated mainly on using 

the power flow model, or the DAE model with eigenvalue analysis or time domain simulation 

studies. These methods either overly simplify the system or require too much computation. 

Further, even if computational costs were not of concern, in eigenvalue based or time domain 

simulation analysis, the inconsistent description of the synchronous machines between the 

power flow model and the dynamic model can lead to very different equilibrium solutions. This 

may give wrong stability results even though a strict dynamic model is used in time domain 
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simulation or small signal stability eigenvalue analysis. This is so because, from stability theory 

we know that, the initial equilibrium conditions determine the free motion of the system. This 

inherent problem with the conventional approach is avoided in the new framework. 

Numerical results with the New England and the Iowa systems show that the proposed 

framework is well suited for dynamic voltage collapse identification. Modeling of the AVR 

and speed governor systems is indispensable in capturing the dynamic responses of the syn­

chronous machines and identifying the mechanisms which lead to voltage collapse. Because 

the mid-term and long term dynamics are mainly dominated by the system quasi-steady state 

characteristics [48], i.e., equilibrium state characteristics, the new framework can replace the 

tedious time domain simulation for dynamic voltage stability analysis. Meanwhile, because 

system frequency is determined during continuation, a comprehensive synthetic system pre­

ventive control strategy can be developed, with due consideration given to both voltage and 

frequency regulations. The convergence rate of the continuation method applied to the total 

DAE system of equations is similar to the case when the system is described by the simple 

power flow model. 
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4 VOLTAGE STABILITY SENSITIVITY AND TRANSFER 

MARGIN ESTIMATION 

In power system analysis, it is not enough to merely obtain the stability information. 

It is important to know the stability sensitivities. They provide the information related to 

parameters and controls that may influence the system stability. Since sensitivity is usually 

defined for some index relating to system performance, a review of some voltage stability indices 

is offered in section 4.1. Then a general description of sensitivity analysis follows in section 

4.2. Providing a unified approach to combine stability results with sensitivity analysis is the 

subject of section 4.3, where the concept of invariant subspace parametric sensitivity (ISPS) 

is re-visited. An efficient computational procedure of the measure of ISPS through sparse 

formulation is proposed. Comparison of ISPS with eigenvalue sensitivity, and the a p vector 

which is the measure of ISPS, with the normal vector leads to further insights about parameter 

space and state space. In section 4.4, it is shown that the measure ofISPS can be further applied 

to estimate transfer margin as limited by dynamic voltage collapse. Numerical studies with 

the New England and Iowa systems show the effectiveness of the proposed sensitivity index. 

4.1 Voltage Stability Indices 

The intention of all indices is to give a measure of the margin between the current point of 

operation and the point where the system becomes unstable, thereby providing early warning 

of a potentially critical condition. The attributes of the indices in use are very different and it 

is convenient to classify the indices into two main classes (given-state based and large deviation 

based indices) as suggested by [49]. The following discussion about these indices should be '/ 

thought of as independent of the model used in determining stability. The DAE model together 
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with the corresponding system state matrix Asys provides true dynamic stability information. 

A static power flow based analysis does not directly give true stability information. Keeping 

this in mind, one should be clear that, for instance, the minimum eigenvalue can be that of 

Asys or JLF • 

4.1.1 Given State Based Indices 

These indices only use the information available at the current operating point. The oper­

ating point could be simulated for a desired power transfer condition. From this information, 

the system characteristic is calculated and system operation is classified. 

• Reactive power reserve 

Automatically activated reactive power reserve at effective locations can serve as a simple, 

yet sensitive, voltage security index. And in addition to being a given state index, it can 

also serve as a large deviation index (MVAR distance to voltage collapse), with the 

assumption that instability occurs when the field current of a key generator reaches its 

limit or when a SVC reaches its boost limit. 

• Voltage drop 

These indices are based on the principle that the voltage drops as the system is loaded. 

However this is sometimes masked by the effect of reactive power compensation devices 

and off-nominal tap setting of transformers. 

• MW /MVAR losses 

The losses increase exponentially when a system approaches voltage collapse. The ap­

plication of these losses used as indicators of voltage instability has been given in the 

literature. 

• Incremental values 

These indices give information about the system state in the close vicinity of an operating 

point. Incremental values can provide a quantitative insight of weakness of a node. 

AQ / AV, for example, is sometimes used for assessing areas prone to voltage collapse. 
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• Incremental steady state margin (ISSM) 

This is an indicator calculated from a determinant of a special formulation of the system 

power flow Jacobian. After normalization, the maximum index value will be 1.0 and will 

reach 0.0 at critical load conditions. The earliest form of this index was proposed by 

Venikov [50]. 
I \,: 

• Minimum singular value or minimum eigenvalue 

Singular values have been employed in power systems because of the useful orthogonal 

decomposition of the Jacobian matrices. The singular value decomposition is typically 

used to determine the rank of a matrix, which is equal to the number of non-zero singular 

values of the matrix. Hence, its application to static voltage collapse analysis focuses on 

monitoring the smallest singular value up to the point where it becomes zero. Therefore 

it has been proposed as an index measuring stability. Similarly, the minimum eigenvalue 

could also be used as an index because it also becomes zero at the same time as the 

minimum singular value does. 

When given state based indices are plotted against system load, most of their trajectories 

assume an exponential curvature. This makes it difficult to effectively predict voltage collapse 

using these indices [51]. \/ 

4.1.2 Large Deviation Based Indices 

Large deviation based indices account for nonlinearities caused by larger disturbances or 

load increases. These indices are normally more computationally demanding than the given 

state indices, but are more reliable. The margin is usually given in terms of the maximum 

increase in MW or MVAR load, and can either be based on a smooth increase in load from 

the normal operating conditions, or the load increase can be combined with contingencies in 

the system. 

Methods based on large deviation indices in principle apply the same measure. However, 

the approach for calculation is very different. Some main classes are: 

• Repeated power flows [49] 
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• Continuation methods [19] 

• Optimization-based methods [52] 

• Point-of-collapse methods [21, 25] 

• Closest distance to maximum transfer boundary [23] 

• Energy function methods [53] 

4.2 Stability Studies Via Sensitivity Analysis 

As introduced in ~the dynamic properties of the power system are characterized / 

by the eigenproperties of the system state matrix Asys. In practical situations, obtaining sta-

bility results is only part of the work. It is important to identify the key factors which affect 

stability, either beneficially or detrimentally. These factors can be described by the parameter 

influence on system performance and stability. The parameters can be operational or non­

operational. A common approach in doing sensitivity analysis is to define a stability index 

and then study how the different parameters affect this index. By using sensitivity techniques, 

useful information about the relationships between state, control, and dependent variables can 

be established. These sensitivity signals are valid in the vicinity of the point of linearization. 

Sometimes the sensitivity might not be directly defined with respect to a certain stability in-

dex, and i~eferred to as parametric sensitivity. Since system performance degradation ~~:l' 

often leads to loss of stability, parametric sensitivity is also used in sensitivity-based stability 

analysis. At a normal operating state, sensitivity analysis provides information about how 

different parameters influence stability. Certain control measures can be designed in order 

to prevent the system from instability. Should the system be in an emergency state under 

disturbances, effective controls must be applied to pull the system hack to a normal state. 

Sensitivity analysis is well suited for evaluating the effectiveness of the controls. 
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4.2.1 Parametric Sensitivities 

Near a given equilibrium solution (Xo' Yo) of the structure preserving power system model 

as given in chapter 3 (equations 3.1 and 3.2), the derivatives ax/ap and ay/ap at Po give a V 
----.-~--- -'­

'"""~~-- ------
natural measure of the sensitivity of the solution. Here, P is a vector which includes all pa-

rameters explicitly appearing in F or G. From these derivatives, sensitivities of the dependent 

variables can be easily found. For instance, bus voltage sensitivity with respect to reactive 

power injections, transmission line loss sensitivity, or generator output sensitivity with respect 

to system load, can all be computed from ax/ap and ay/ap. From such sensitivities, a 

proper direction for adjusting the system control variables can be found. 

4.2.2 Eigenvalue Sensitivity 

As explained in section 3.4, eigenvalue analysis gives information about dynamic stability of 
~ -------- .. _.-. 

the current operating point. Therefore the sensitivity of the critical eigenvalue(s) with respect 

to system parameters is often needed to design coordinated controls to prevent instability. 

Suppose Ai is the critical eigenvalue of interest, its sensitivity with respect to any parameter p 

is [54]: 
ToA. y • . 

aAi Vi op U 1 

ap = VTUi 
(4.1) 

where Ui and Vi are the right and left eigenvectors of Asys corresponding to Ai respectively. 

Eigenvalue sensitivity can be applied to any eigenvalue of critical interest, therefore oscillatory 

as well as collapse type instability can all be addressed by this approach. For voltage collapse 

analysis, one can apply this to the minimum zero crossing eigenvalue Amin. 

\ 
4;2;3 Invariant Subspace Parametric Sensitivity 
/ , 

A systematic sensitivity analysis procedure was developed at Iowa State University by Lee 

and Ajjarapu [41], which is called the invariant subspace parametric sensitivity (ISPS). It is 

obtained by properly projecting the parametric sensitivity onto the eigensubspaces correspond­

ing to each eigenvalue. Even though it looks similar to eigenvalue sensitivity, it is different 

in the sense that one can derive a transfer margin sensitivity from the measure of ISPS. This 
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makes it possible to get sensitivity of a large deviation based index (MW /MVar distance to 

voltage collapse) from ISPS and utilize it to quantitatively predict the voltage collapse. 

4.2.4 Qualitative Vs. Quantitative Sensitivities 

Qualitative sensitivity refers to the fact that it only gives direction and relative magnitude 

of change of stability indices under parameter variations. Quantitative sensitivity can be used 

for the quantification of change of the stability index with respect to a change of some pa-

rameter. A good example of qualitative sensitivity is eigenvalue sensitivity. At an operating 

point, 8>"d 8p gives qualitative information about the parameter's influence on the eigenvalue. 

Because the eigenvalue is a highly nonlinear function of system parameters, it is practically 

impossible to q-,!~ntitatively estimate the change in the eigenvalue due to variations of some 
/_ C '\ 

parameter{ Recent work [95] made an attempt to predict eigenvalues using eigenvalue sensi-
"~- .-----------~-.---.-

tivity (sensitivity of a given state index) computed at the current operating point. The results 

of the one machine against an infinite bus system are quite satisfactory when the parameters 

are varied by only 1 % from nominal values. (The motivation is clear, since often the operators 

need to know how much control has to be applied to move the eigenvalue to the desired value in 

either preventive or corrective actions.) However, for a larger system, the proposed sensitivity 

could not predict the eigenvalues. 

As mentioned in section 4.1.2, large deviation based indices account for the nonlinearities 

caused by larger disturbances. Since these indices are usually defined in the load power space, 

they characterize the critical operating condition from a parameter space point of view. On 

the other hand, the ISPS provides the parameter influence on the eigensubspaces in which 

the system dynamics is invariant. The measure of ISPS is further extended to derive transfer 

margin sensitivity. This sensitivity measure can be used for the quantitative prediction of 

voltage collapse. 
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4.3 The Invariant Subspace Parametric Sensitivity 

Near a given state of equilibrium, the parametric sensitivity can be derived by taking the 

partial derivative of F = 0 and G = 0 with respect to the parameter vector P, i.e., 

8X 
8P 

8Y 

8P 

-1 [8F [8G] -1 8G 8F] 
= Asys 8Y 8Y 8P - 8P 

= _ [~~] -1 [~~ ~~ + ~~] 

(4.2) 

(4.3) 

These derivatives give a natural measure of the sensitivity of the solution (X(P), Y(P)) at the 

current operating point. However they do not necessarily directly relate to stability. This is 

explained in the sequel. 

4.3.1 Eigenvalues, Eigenvectors and Modes of System Free Response 

As shown in subsection 3.4.1, the dynamic behavior of the power system near an equilibrium 

point can be described by equation 3.26. The essential dynamic characteristics of the system 

are expressed in terms of the eigenproperties of the system state matrix Asys. 

The eigenvalues and associated left and right eigenvectors of Asys can be computed from 

the following equations: 

vT Asys 

In the absence of an external input, the free motion of the system is 

n 

LlX(t) = 2:)eAit]ui{vT LlXo) 
i=1 

(4.4) 

(4.5) 

(4.6) 

If we use Ci to denote the scalar product vT LlXo, the time response of the kth state variable 

is given by 

(4.7) 

with the notation for the right and left eigenvectors as 
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Thus the free response (activated soly by initial conditions) is given by a linear combination of 

n dynamic modes corresponding to the n eigenvalues of Asys. The scalar product Cj = vT ~XO 
represents the magnitude of the excitation of the ith mode resulting from the initial conditions. 

If the initial conditions lie on the jth eigenvector, the scalar product vT ~XO for all i =1= j 

are identically zero. Therefore only the jth mode is excited. If the vector representing the 

initial conditions is not an eigenvector, it can be represented by a linear combination of the n 

linearly independent eigenvectors of A sys , which span the n dimensional Euclidean space and 

form a basis. The response of the entire system will be the sum of these n individual responses. 

If a component along an eigenvector of the initial condition is zero, the corresponding mode 

will not be excited. When the system is in a state of instability, one or more eigenvalues of 

Asys will not be on the left half complex plane. Consequently, the modes associated with these 

eigenvalues are critical. 

From the above discussion, we can see that in order to directly study how the parameters 

influence the critical modes, or any particular mode in general, a link between parametric 

sensitivity and the eigen-basis needs to be set up. The parametric sensitivity itself gives only 

scattered information about the parameter influence on all of the modes and can not filter out 

those critical ones affecting stability. 

4.3.2 The Definition of ISPS 

The aforementioned link can be built by projecting the total parametric sensitivity onto 

the particular eigensubspace of critical interest [41], thus producing the so-called invariant 

subspace parametric sensitivity (ISPS). The motivation of ISPS is to combine the stability 

and sensitivity information and to get a better understanding of the factors that contribute 

to instability. The invariance properties of the eigenbasis is exploited for linking the stability 

and sensitivity aspects of the system. In a small disturbance analysis, each eigenvalue belongs 

a particular eigenbasis. If a critical eigenbasis refers to a critical eigenvalue, then according to 

the invariance property of the eigenbasis, the system instabilities are governed by the dynamics 

on the critical eigenbasis. This is achieved by collapsing the entire state space onto the critical 
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eigenbasis. The parametric sensitivity is therefore projected onto the subspace (which is the 

span of the eigenbasis) corresponding to each eigenvalue. The link between the eigenvalues 

and the parameters is achieved through the projected parametric sensitivity (or ISPS). Before 

defining ISPS, let us first review some concepts from linear algebra. In the following discussion, 

for the sake of simplicity, we assume that the system state matrix has n distinct eigenvalues. 

From matrix theory, it is known that on the reciprocal eigenbasis [56], the system state 

matrix can be written as 

Asys = UAV 
n 

= LAiMi 
i=l 

where 

Mi = T UiVi 

U = [UI,···, un] = V-I 

Ui = (Uli··· unif 

V = [VI,···, vnf = U- l 

Vi = (VIi··· vndT 

A diag(AI ... An) 

And the inverse of Asys can be similarly decomposed as 

A-I = [UAVr l 
sys 

= V-IA-IU- l 

UA-IV 

= t Mi 

i=l Ai 

(4.8) 

(4.9) 

(4.1O) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

Applying the above matrix decomposition technique, we can rewrite the parametric sensitivity 

in equation 4.2 as 

ax 
ap = {4.16} 

= 
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with S defined as 

S 8F [8G] -1 8G 8F -- ---
8Y 8Y 8P 8P 

(4.17) 

(Sl,···, Sm) 

where m is the number of parameters of interest in the DAE model. S contains the the 

sensitivities of functions F and G with respect to the parameters in P. The inverse matrix 

A';-y1s operating on S results in parametric sensitivity. 

Premultiplying both sides of equation 4.16 by Mi, 

Mi
8X 

= Mi([fMi]S) 
8P i=l Ai 

(4.18) 

Since MiMj = 0 if i i= j and MiMj = Mi if i = j, Eq 4.18 becomes 

(4.19) 

In the above equation (Eq 4.19), the vector Sj is the column of the sensitivity matrix S. Each 

term MiSj / Ai represents the projection of parametric sensitivity onto the ith eigensubspace. 

This projected parametric sensitivity is defined as the ISPS. Then, the most sensitive parameter 

on a particular subspace can be obtained by taking the maximum of MiSj/Ai, j = 1,··· ,m. 

In order to study the parameter influence on the eigensubspace associated with Ai, we 

do not need to calculate the entire product of ¥fS. This is explained by the following two 

equations. 

where 

(4.20) 

(4.21) 

( 4.22) 

On a particular eigensubspace, ud Ai is the same for all the parameters. Therefore the up 

vector gives complete information about the parameter influence on the eigensubspace. For 

this reason, up is defined as the measure of ISPS. 
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4.3.3 Sparse Formulation of ISPS 

With the above formulation, we need the inverse of 8G / 8Y. This procedure is neither 

numerically efficient nor stable. To overcome this, we work directly with Eqs 3.1 and 3.2, thus 

avoiding the use of Asys and GyI
. Consequently, sparsity will be restored. To this end, we 

compute the eigenvectors of Asys from the total system Jacobian J. That is, 

Equivalently, 

This leads to 

v~Fx + v'{;G x 

v~Fy + v'{;Gy o 

T TF G-I 
Vc = -vF Y Y 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

( 4.27) 

Eqs 4.4 and 4.27 show that VF thus computed is the left eigenvector of Asys corresponding to 

>'i' The measure of ISPS in Eq 4.22 can then be computed as: 

a p = vTS , 

= vT [FyGyIGp - Fp] 

= v~ [FyGyIG p - Fp] 

= V~FyGyIGp - v~Fp 

= -v~Fp - v'{;G p 

= - [ v~ v'{; ] [:: 1 (4.28) 

Here, no matrix inverse is involved. Details about how to compute the eigenvector from 

the total system Jacobian J by solving equation 4.23 can be found in [57, 58]. A brief 

introduction of this is given in Appendix B. We see that the intermediate result vc, produced 
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while computing the eigenvector VF from J, becomes meaningful. It can be interpreted as the 

weight which weighs the sensitivity of the algebraic equations. The above procedure can be 

applied to compute ISPS corresponding to any eigenvalue at any operating point. However, 

at the critical point, where Asys becomes singular, we can further speed up the computation. 

This is explained in the following sections and appendix B. 

4.3.4 ISPS Vs. Eigenvalue Sensitivity 

It is numerically verified in [59] that ISPS gives an indirect relation between the eigenvalues 

and the parameters under consideration. This relation is verified numerically with a well-known 

eigenvalue sensitivity. The measure of ISPS, namely, the Gp vector also provides the cluster of 

parameters that are most sensitive to the corresponding eigenvalue. 

However, the following discussion between the Gp vector and the normal vector leads to fur­

ther insights about ISPS. Transfer margin estimation becomes possible by further manipulating 

the information from ISPS. 

4.3.5 The G p Vector at Saddle Node Bifurcation Vs. the Normal Vector 

In power systems, variation of various parameters will often drive the system to bifurcation. 

The generic bifurcating phenomenon associated with voltage collapse is the so-called saddle 

node bifurcation {SNB}. At a saddle node bifurcation, a stable operating equilibrium disappears 

and the consequence is that system states dynamically collapse. This explains the dynamic 

fall of voltage magnitudes in voltage collapse. All the saddle node bifurcation points form 

the voltage collapse boundary which is a hypersurface in the multi-dimensional parameter 

space. On this hypersurface, the system state matrix Asys of the following differential system, 

derived from 3.1 and 3.2 and repeated here for continuity and clarity, has a simple unique zero 

eigenvalue. It was shown in chapter 3, that the complete system Jacobian J associated with 

the DAE model becomes singular at the same time when the differential system experiences 

saddle node bifurcation. 

{4.29} 
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This shows that voltage collapse boundary can be equivalently characterized by the singular­

ity of the complete DAE model. For convenience, let us denote the saddle node bifurcation 

boundary in the R m parameter space by E. Suppose that the system parameters are such that 

P* E E. P is a vector containing all relevant parameters in the DAE model. ,*, means evalua-

tion at the current saddle node bifurcation point on E. Under standard generic assumptions, 

E is a smooth hypersurface near P* and a normal vector to the hypersurface at P* is [34] 

N{P*) = wHp (4.30) 

where w is the left eigenvector corresponding to the trivial eigenvalue of the total system 

Jacobian J, and Hp is the Jacobian of F and G with respect to the parameter vector P. In 

the parameter space, at a particular voltage collapse point on the E surface, the normal vector 

is perpendicular to the tangent plane at that point. This is conceptually illustrated in figure 

4.1 when m = 2. 

collapse boundary 

Parameter I 

Figure 4.1 The normal vector in the parameter space 

Reviewing equations 4.23 to 4.27 and noting the definition of w, one immediately notices 

that at saddle node bifurcation, (v~, vb), computed from 4.23 for the zero eigenvalue of A sys , 

is nothing but w in equation 4.30. Thus the normal vector can be written as 

N(P.) ~ [v~ vb 1 [ ;: 1 {4.31} 

Consequently, we observe that the normal vector defined with the DAE model is nothing but 

the a p vector corresponding to the zero eigenvalue of the system state matrix Asys at saddle 
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node bifurcation. The negative sign in 4.28 makes no difference since in the definition of normal 

vector, the sign of it is chosen such that an increase of the load in the direction of N(P.) leads 

to disappearance of the operating equilibrium. 

4.4 Transfer Margin Estimation 

From the discussion in subsect~ns 4.3.4 and 4.3.5.L ~e get more insights about the measure 

of ISPS, namely the a p vector corresponding to the trivial eigenvalue of Asys. At voltage 

collapse, it acts as a link between the eigensubspace in which system dynamics is invariant, 

and the parameter space in which saddle node bifurcation sensitivity can be defined. As such, 

the measure of ISPS has the potential of giving voltage stability margin sensitivity. 

Next it will be shown that the transfer margin sensitivity can be easily obtained by further 

manipulating the information from ISPS. Referring to section 4.1, we are now trying to derive 

the sensitivity of a large deviation based index of voltage stability from ISPS. 

4.4.1 From ISPS to Bifurcation Parameter Sensitivity 

As introduced in section 3.4, a scalar a denoting the system load/generation level is called \. 

the bifurcation parameter. The system reaches a state of voltage collapse, when a hits its 

maximum value (the turning point). For this reason, the system DAE model at equilibrium 

states is parameterized by this bifurcation parameter a as shown in equations 3.30 to 3.32. 

When system parameters are changed, the total transfer capability will probably increase or 

decrease. The change of transfer margin can be determined if the change of a between two 

bifurcation points on the voltage collapse boundary E is known. Since we are interested in 

estimating the loading margin when some arbitrary parameters are varied, we rewrite the DAE 

as follows to denote the parameter dependence of the system solution. 

x = F(X(a(P),P),Y(a(P),P),a(P),P) 

o G(X(a(P),P), Y(a(P),P),a(P),P) 

(4.32) 

(4.33) 



65 

At a saddle node bifurcation, which is also an equilibrium point (though not asymptotically 

stable), we take the partial differentiation of the above two equations with respect to the 

parameter vector P; then 

(4.34) 

(4.35) 

Simplifying the above expressions gives 

(4.36) 

Premultiplying the above equation by (v~, vb) corresponding to the zero eigenvalue of Asys as 

computed from equation 4.23, the first item will become zero and we get 

( 4.37) 

Therefore, the bifurcation parameter sensitivity is: 

( v~ 
aa 

= ap (4.38) 

( v~ 

From equations 3.30 to 3.32, using vector notation (the underline sign), we can write the 

generation and load parameterization equations as 

( ... PLi(a) ... QLi(a) ... ) T 

= Lo+aK 

(4.39) 

(4.40) 
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where 

K (4.41) 

(4.42) 

denotes the loading pattern. At saddle node bifurcation, the set of real powers form the voltage 

instability boundary in the load power space. Using these notations and noting that only L 

contains a (equations 3.30 to 3.32), by the chain rule, the derivatives of F and G with respect 

to a can be written as 

(4.43) 

From the above discussion, we observe that the bifurcation parameter sensitivity given in 

equation 4.38 basically comes from the measure of ISPS, namely the a p and a L vectors corre­

sponding to the zero eigenvalue of Asys. Or equivalently, from the normal vector to the voltage 

collapse boundary E in the extended parameter space (including the load power parameters). 

This is illustrated by the following equations. 

00' 
( v~ vb ) ( ;: ) 

= oP 

(;: ) ( v~ v~ ) 

( v~ Vb ) ( ;: ) 
-

( v~ v~ ) (;: )K 
- _!!.L (4.44) 

aLK 

This margin sensitivity gives the first order partial derivative in the Taylor series expansion of 

a as a nonlinear function of P, which describes the hypersurface E. 
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The bifurcation parameter sensitivity will allow us to know, when some parameters are 

varied, how the system will move along the hypersurface E in the vicinity of the current 

instability point denoted by a •. 

4.4.2 Transfer Margin Estimation 

Once oa/oP is computed, we will first get the bifurcation parameter estimation as 

oa 
Aa = opAP (4.45) 

where P contains all the parameters explicitly appearing in the DAE model including the 

load scenario parameters. If we are only interested in the real power transfer capability, then 

we define P LM (a.) as the total power of all the buses at voltage collapse before a parameter 

variation, and P LM (a~) as the total power of all the buses at voltage collapse after a parameter 

variation. In the case of a non-real-power-load related parameter, we will get the margin change 

estimate as 

APLM = PLM(a:) - PLM(a.) 
N 

- LAPL;(a) 
i=l 

And, the new critical powers at all the buses, in vector notation, can be estimated as 

The above discussion is concept~ally illustrated in Figure 4.2 and Figure 4.3. 

(4.46) 

(4.47) 

In the case of a real power load related parameter (KLpi and PLiO) variation, the loading 

margin estimation for bus i will be: 

(4.48) 

where 

OPL; I. _ P a. LiO 
OKLpi 

(4.49) 

OPL; I. _ K 1 + a. Lpi 
OPLiO 

(4.50) 
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v 

a. (p) a'• (p + /1p) 

Figure 4.2 Transfer margin as shown on a PV curve 

Transfer margin 

PLM(ct. ) 

PLM(a.)----

parameter 

p p+/1p 

Figure 4.3 Transfer margin estimation 

The total margin change estimation will then be modified to include two more terms 

(4.51) 

where I ch denotes the set which includes all the buses under load parameter variations. When 

reactive power load parameters (KLqi and QLiO) are varied, the real power transfer margin 

estimation can still be calculated by using equations 4.46 and 4.47. The reactive power transfer 

margin estimation, however, should be made by using equations similar to 4.48 and 4.51 for 

bus i and the total. 
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4.4.3 Multi-parameter Margin Sensitivity 

In modern power system operation, coordinated controls are often used to optimize certain 

performance indices, for instance, to maximize the transfer on a specified transmission interface 

if possible. Since a first order estimation can be linearly superimposed, we can study the 

combined parameter influence on stability margin variation by using 

( 4.52) 

However, when more than one parameter is varied, the mixed partial derivative term of higher 

orders also contributes to the margin variation. For instance, when both Pi and Pi are varied, 

the mixed second order term a:i28pj tl.pitl.Pj is also nonzero. Inaccuracy will result from ignoring 

this term in addition to ba
2Q b..pr. 
Pi 

4.4.4 Sensitivity Formulas 

This subsection will derive the sensitivity formulas with respect to all the parameters stud-

ied in this work. 

• Sensitivity matrices ~~ and ~~ 

Excitation system parameters 

• Exciter gain KAi: 

where !g8i is the right hand side of equation 3.15 . 

• Self excitation parameter KEi: 

_ Efdi 

TEi 

KFiEfdi 

TEiTFi 

(4.53) 

( 4.54) 

(4.55) 

where !g7i and !g9i are the right hand sides of equation 3.14 and 3.16 respectively. 
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• Exciter reference voltage V::Fi : 

a!g8i KAi 

aV::Fi TAi 
(4.56) 

Governor parameters 

• Governor base case setting PCsiO: 

a!g6i 1 
apCsiO = TCi 

(4.57) 

where !g6i is the right hand side of equation 3.18. 

Network parameters 

• Line susceptance Bij: 

aBij aBij 

a N 

= - aB .. (Vi L VkYikCOS(Oi - Ok - 'Yik)) 
'J k=l 

- ViVjsin(-Oi+Oj) (4.58) 

aBij aBij 

a N 
- - aB .. (Vi L VkYiksin(Oi - Ok - 'Yik)) 

'J k=l 

= ViVjcos(Oi - OJ) (4.59) 

where D.Pi and D.Qi are from the real and reactive power mismatch equations as given 

in 3.4 and 3.5. 

• Shunt capacitance BiG: 

Tl:2 
- Vi (4.60) 
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Load (scenario) parameters 

• Real power load increase speed parameter K Lpi: 

ajg6i = 
aKLpj 
aAPi 

aKLpi 

• Reactive power load increase speed parameter KLqi: 

• Base case real power load PLiO: 

ajg6i 
aPLjO 
aAPi 

aPLiO 

• Base case reactive power load QLiO: 

(4.61) 

(4.62) 

(4.63) 

( 4.64) 

(4.65) 

( 4.66) 

The above formulas are used to construct the sensitivity matrices aFlap and aGlap. 

• Sensitivity matrices ~f and ~~ 

ajg6i 
= KCpi 

aPLj{a) TCi 
(4.67) 

ab.Pi 
-1.0 = aPLi{a) 

(4.68) 

ab.Qi 
-1.0 = aQLi{a) 

(4.69) 

4.4.5 Computational Issues in Margin Estimation 

As we have seen in the last subsection, the bifurcation parameter sensitivity basically 

comes from the measure of ISPS. Once the measure of ISPS is computed, essentially no further 

computational cost is needed in getting aajap. 
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In computing the measure of ISPS corresponding to the zero eigenvalue of A sys , we first 

need to obtain the left eigenvector as computed from equation 4.23. The sensitivity matri­

ces 8Fj8P, 8Gj8P, 8Fj8L and 8Gj8L, are extremely sparse and therefore imposes very 

limited computational burden. Once the bifurcation parameter sensitivity becomes available, 

margin estimation is simply an evaluation process involving literally no noticeable increase in 

computing cost. 

4.5 Test System Studies 

In this section, the proposed sensitivity measure calculated at saddle node bifurcation is 

applied to estimate the voltage stability margin under system parameter variations. Physical 

interpretations are given following the test results. The method is tested on the IEEE New 

England 39-bus system and the reduced Iowa 162-bus network. A large set of parameters are 

selected to analyze their influence on the voltage stability limited transfer capability. 

4.5.1 Parameters of Interest 

With the DAE formulation of the power system, we can directly estimate the voltage 

collapse limited transfer margin with respect to all parameters which explicitly appear in F or 

G from Eqs.3.1 and 3.2. The parameters studied include: 

• Exciter parameters: KAi, KEi, and V:E: i 

• Governor parameter and settings: RGi and PGsiO 

• Network parametrs: Bio and Bij 

• Load (scenario) parameters: KLpi, PLiO, KLqi and QLiO 

4.5.2 The New England System 

The same scenario as in chapter 3 was used to locate the saddle node bifurcation point. 

With the nominal parameter settings, the total real power transfer margin between the base 

case and the critical point is approximately 2466 MW. 
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4.5.2.1 Exciter parameters 

The automatic voltage regulator gain (Fig. 4.4) of the generator at bus 31 affects the 

voltage collapse limited transfer the most. Obviously, in calibration (parameter estimation), 

KA31 should be given first priority for better accuracy. Otherwise the voltage stability limited 

transfer evaluation might be in great error. 

~~.---~-----r----~----~----r---~ 

2500 

2410 . 

~ 
.E 

~ :J 24GO ..... 

f 
2040 

2420 

- I" LN.e ...... 

Figure 4.4 Loading margin vs. exciter gain 

The parameter KEi (Fig. 4.5) is related to the exciter self excitation. It is interesting to 

observe that, in all our test studies, an increase in KEi results in a reduced voltage stability 

margin. And we observe that a 20% variation in KE32, with a nominal value 1.0, could give 

a difference of up to 1000 MW in transfer margin. This shows that it is very important to 

accurately calibrate KEi'S. 

The exciter reference voltage (Fig. 4.6) is one of the control settings traditionally applied 

by system operators to control generator terminal voltages. From Fig. 4.6, we can see that 

VllF31 is very effective for the increase of the transfer. A 20% increase in v11F31 , with the 

nominal setting at 1.0467 pu, makes the system able to transfer an approximately additional 

700 MW before causing voltage collapse. 
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Figure 4.6 Margin vs. exciter refe~e;lce voltage 

4.5.2.2 Governor parameters 

Because all the governors hit their limits, the sensitivity of the loading margin with respect 

to the governor base case settings can not be used to predict the voltage collapse point. In 

the test case for the Iowa system (next section), where not all governors hit their limits, these 

sensitivities are valid and thus used. 

The steady state governor regulation characteristic, described by RGi'S, (Figs. 4.7 and 4.8) 

determines the ultimate contribution of each machine to a change in the load and fixes the 

resulting system frequency. It gives the slope of the droop characteristic curve of the governor. 
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The value of RGi is inversely proportional to the capacity of the generator. From the 

current test study, we observe that, when we increase RGi, we get an increase or decrease in 

total transfer capability. 

4.5.2.3 Network parameters 

One of the reasons for voltage instability is the lack of reactive power support at critical 

locations [2]. Supplying enough Vars (Fig. 4.9) locally at or near heavily loaded buses, or at 

an intermediate point between generation and load centers usually increases the real power 
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transfer capability. In this test case, the measure of ISPS indicates that bus 10 is one of the 

best places to put some reactive power support. Bus 10 is linked to the generator bus 32 where 

this generator is at its limit. Quantitatively, it is shown in Figure 4.9 that a one pu shunt 

capacitance installation will lead to an increase of approximately 110 MW in total real power 

transfer. The linear estimate is very accurate over a wide range of shunt values. Selecting the 

best location for installation of SVC can be analyzed using the same information. 
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Figure 4.9 Loading margin vs. shunt capacitance 
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Figure 4.10 Loading margin vs. line susceptance 
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Line susceptance (Fig. 4.10) is also a critical parameter in transfer capability evaluation. 

One of the most sensitive line indicated by ISPS is line 6-31. Since the generator at bus 31 is one 

of the remaining generation sources not hitting the limits, transfer capability can be increased 

by reducing the reactance of that line. This will enable the network to receive more reactive 

power from the generator at bus 31. The margin curve becomes nonlinear when ~B6-31 

exceeds 10 pu (over 25 percent of its nominal value). Quantitative study of the influence of 

line susceptances on transmission capability can be extended to analyze the effectiveness of 

FACTs devices, such as that ofTCSC (thyrister controlled series capacitors). Line contingency 

could also be simulated through this. 

4.5.2.4 Load (scenario) parameters 

The parameters KLpi and KLqi designate the rate ofload increase at bus i. If they are zero, 

the loads will remain at the base case value. By changing these load scenario parameters, the 

power factors will be varied. At the nominal case, we give 1.0 to both KLpi'S and KLqi'S. This 

will force the load to increase at a constant power factor. For the current scenario, margin 

sensitivity (Fig. 4.11) indicates that KLp39 is the most sensitive. Forcing the load at bus 39 

to remain unchanged (giving 0 to KLp39) will increase the loading margin of the remaining 

buses. However, since the load at bus 39 is the largest, the overall margin will decrease by 

about 100 MW. For the same reason, when we increase the load at this bus at a faster rate by 

giving KLp39 a value larger than 1.0, the total margin does not increase significantly, rather 

saturation occurs. Therefore, the linear sensitivity does not work well in this case. 

The reactive power load at bus 4 is varied to see how a different load component (power 

factor) at this bus affects the total transfer margin. From Figure 4.12, we observe that the 

closer the power factor (lag) is to unity, the more increase of transfer capability will result. 

This is well predicted by the sensitivity. 
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Figure 4.11 Loading margin vs. load parameter KLpi 

2520 " 

2500 

~ 
"&2480 " 
1I 
~ 

{2460 ". 
!l 

2440 ....... . 

2420 

2400 " 

Figure 4.12 Loading margin vs. load parameter KLqi 

-------
The base case real and reactive power loads at bus 3 are 322 MW and 122 MVAR respec­

tively. If we shed up to 3.0 pu load at a constant power factor, the resultant transfer margin 

(the difference between the base case and the critical point) will increase almost linearly to 

about 2825 MW. The linear estimate (Fig. 4.13) again works quite well. 

4.5.2.5 Multipale-parameter variations 

Two parameters (shunt capacitance at bus 10 and exciter reference voltage at bus 31) are 

changed simultaneously. Equation 4.52 was used to predict the margin. In Figures 4.14 and 
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4.15, the transfer margin is plotted against each of the two parameters respectively. The linear 

prediction is very accurate over the range of parameter variations. 

4.5.3 The Iowa System 

The same scenario as in chapter 3 was used to locate the nominal case saddle node bifurca-

tion point. With the nominal parameter settings, the total real power transfer margin between 

the base case and the critical point is approximately 1223 MW. 
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4.5.3.1 Exciter parameters 

For the current test case, KA27 is the most sensitive excitation gain (Fig. 4.16) in affecting 

the loading margin. Within 15% change of the parameter, the margin changes almost linearly. 

For this test case, the loading margin changes linearly (Fig. 4.17) when the exciter self 

excitation parameter of generator at bus 27 is varied by ±20%. This makes the sensitivity able 

to predict with good accuracy. 
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Figure 4.16 Loading margin vs. exciter gain 
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Figure 4.18 Margin vs. exciter reference voltage 

From Figure 4.18, we can see that a 20% increase in vl1F21 , with the nominal setting 

at 1.0951 pu, makes the system able to transfer an approximately additional 150 MW before 

voltage collapse occurs. 

4.5.3.2 Governor parameters 

The governor generation/load setting PGsiO determines the steady state contribution of the 

machine to the load increase in the system. Changing PGsi will shift the governor's droop 

characteristic curve in a parallel direction. From Figure 4.19, we observe that, by increasing 
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of the governor's setting at generator bus 118, we can get a surplus of transfer margin. This 

reflects the dependence of the transfer margin on generation sharing scenario. The governor 

on the generator at bus 125 hits its limit, so like in the New England system, the sensitivity 

with respect to PGs0125 should not be used for prediction. 

'245.---...,-----r---~--_,__--___, 

1240 . 

'235 

'230 . 

~ 
2'225 .s 

'tl220 
2 
~ 
] 1215 ...... . 

1210 

'205 

'200 

. : . ........... ~ •••..•......•..... ~ .. 

.. , .................. ., ................. ··;· ... I ___ t;:..,_"""_E ___ • --'ol 

11't·7-.5 ----!,:-----:':'.5:----~2 -----:2.~5----!. 
_ a....... Soaftg"pu (PGSO).,Gon ... ". 

Figure 4.19 Margin vs. governor load settings 

4.5.3.3 Network parameters 

Bus 30 has lowest voltage when approaching voltage collapse. Margin sensitivity indicates 

that adding one pu shunt capacitance will lead to an increase of around 90 MW in total real 

power transfer margin. This is verified as shown in Figure 4.20. The linear estimate is very 

accurate over the entire range of shunts changes. 

The most sensitive line indicated by the margin sensitivity (Fig. 4.21) is line 29-30. Increas­

ing its susceptance will increase the voltage collapse limited transfer, because it will enable the 

load at bus 30 (the most critical bus) to further receive real power from the generators. 

4.5.4 Conclusions 

ISPS identifies the cluster of parameters which are responsible for voltage instability. At 

operating points other than at voltage collapse, with the newly derived sparse formulation 

of ISPS, we can get the a p vector with moderate computing cost. At the critical point, the 
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Figure 4.21 Loading margin vs. line susceptance 

computation can be further reduced by directly applying the inverse power method on J to 

compute the left eigenvector and a p' With literally no further cost, we can get the margin 

sensitivity from the measure of ISPS. With the total system equilibria tracing technique intro­

duced in chapter 3, one can identify dynamic voltage collapse without eigenvalue computations. 

Once the critical point is identified, the voltage collapse limited transfer margin sensitivity can 

easily be obtained. The DAE formulation also makes it possible to study a wide range of 

parameters that affect the dynamic voltage collapse limited power transfer. Another approach 

for margin sensitivity with the power flow model was reported by Dobson in reference [60]. The 
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methodology given here can be applied to the evaluation of multiarea available transfer capa­

bility (ATe) as limited by dynamic voltage collapse. The present competitive power industry 

environment may lead to frequent violation of transfer capability limits. Voltage security plays 

an important role in these studies. 



85 

5 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

The review given in chapter 2 shows the potential application of homotopy and continua­

tion methods to a wide range of power system problems. Simultaneously solving for the total 

power system equilibria makes it possible to resolve the problems encountered in the traditional 

approach. System limits are automatically handled without iterating between the power flow 

and device equations. Synchronous machines are represented in a consistent manner which is 

very important in dynamic stability analysis, since we know that the different initial conditions 

of a dynamic system will result in different stability results. Dynamic voltage collapse identifi­

cation via simultaneous equilibria tracing, as proposed in this work, helps to avoid forming the 

system state matrix Asys and computing its eigenvalues, while a complete DAE model makes 

it possible to capture system dynamics of concern. The AVR and governor limits are explicitly 

handled. The AVR limits directly control the rotor current and indirectly limit the reactive 

output of the generator to the network. These system limits have an important impact on 

the dynamic voltage collapse limited transfer capability. The invariant properties of eigensub­

spaces are thoroughly exploited by which stability and sensitivity information is combined in 

a coherent fashion. Further development of ISPS leads to more insights concerning state space 

and parameter space. Margin sensitivity is derived by intelligently manipulating the informa­

tion from the measure of ISPS. Test studies with two power systems show the applicability of 

the methodologies developed in this work. 

5.1 Suggestions for Future Work 

The limits considered in this work are those of the governor and AVR limits. They are 

the limits of the synchronous machine control systems. Though they obviously control the 
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output of the generators, machine capability as affected by the stator current is not explicitly 

reflected. Only first order sensitivity is considered in this work. Quadratic sensitivity can 

further be developed for better accuracy. How to alleviate the nonlinear effect caused by the 

different limits is important in order to more effectively use the margin sensitivity to predict 

voltage collapse. To this end, one might consider studying the sensitivity of the loading margin 

with respect to the limits. Further investigation in this aspect is worthwhile. Besides this, 

implementation of voltage level and other constraints would make the program an even more 

practical tool in small disturbance voltage stability analysis. Exploiting the capability of 

quantitative estimation of transfer margin, one could apply the technique to evaluate multi­

area power transactions as limited by voltage collapse. Future work can perhaps further 

extend the simultaneous equilibria tracing technique to identify oscillatory voltage instability 

problems as caused by Hopi bifurcation. Within this framework, it might be possible to still 

use the sparse total system Jacobian J, escaping the cumbersome eigenvalue computations. 

Similarly, characterizing the Hopf bifurcation from a parameter space point of view would 

perhaps produce a sensitivity of voltage stability margin with respect to oscillatory instability. 
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APPENDIX A NUMERICAL EXAMPLES FOR HOMOTOPY 

AND CONTINUATION 

• Numerical example 1 for homotopy [60] 

[ 
fr(y) 1 [Yr-~2+3 f(y) = = 
h(Y) YIY2 + 6 

Define the homotopy function as: 

H(y, t) = tf(y) + (1 - t)g(y) 

- tf(y) + (1 - t)(f(y) - f(yo)) 

- f(y) + (t - l)f(yo) ------------------
Then we get a curve (from equation 2.5 in chapter 2) defined by: 

-

(A.l) 

(A.2) 

where !J. = 2yr + 6y~, with Yo = (1,1). After tracing theimplicitly-defined curve via some 

continuation method, we arrive at a solution when t = 1: y* = (-2.961,1.978). A real root 

of f is (-3,2). Reasonably we can expect that Newton's method would work well with y* as 

the initial guess. After one step of Newton-Raphson iteration, we get Yl = (-3.0003,2.0003). 

However, if we start the Newton's method directly with the initial guess Yo = (1,1), it takes 

more than 5 iterations to get the answer Yl. For a more complicated practical nonlinear 

problem, the conventional Newton's method might not work at all due to the poor selection 

of the initial values. 
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• Numerical example 2 for continuation 

f (y, 0) = y2 - 3y + 0 = 0 

with base case known: (Yo, (0)=(3, 0) and 0 as the first continuation parameter. 

step 1: 

Predictor: 

Predictor 

Yt-==_......L __ 

1.5 

o 2.25 

Figure A.l Continuation process 

_ [ ; ~o][;:] = [ ; ] 

[ :: ] = [ : ] + q [ ;: 1 
The correctors iterations then begin with nit, ad, 

Corrector: 

a 

(A.3) 

(A A) 

(A.5) 

(A.6) 

(A.7) 

At the critical point, fy becomes singular (with a value of 0 in the one-dimensional case). 

At this point, the continuation parameter should be switched from to y for continuing the 

curve tracing process beyond the critical point (or sometimes termed as the turning point, or 
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saddle node bifurcation point) (1.5,2.25). The augmented Jacobian at this point changes as 

the continuation parameter is switched from to y: 

(A.8) 

which helps the continuation of the predictor-corrector process. 
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APPENDIX B EIGENVALUE COMPUTATION USING SPARSITY 

TECHNIQUES 

At any operating point, the following equation (repeated from chapter 4 for clarity and 

continuity) can be used to compute the eigenvalues of the system state matrix Asys. 

(8.1) 

The following procedure proposed in [61] is used to illustrate how one may use the sparse 

formulation to compute selected eigenvalues of Asys sequentially. Selective eigenvalue-analysis 

also consists of another branch in which the selected eigenvalues are computed in a group. It 

deals with subspaces. We shall concentrate on the former technique here. 

The iteration algorithm involves solving the following linear system: 

(8.2) 

where vG would not be of direct interest if one is not intended to do sensitivity analysis (chapter 

4 and reference [54]). >"k is the estimate of the eigenvalue at iteration k. We normalize VF k+l 

to have unity as its largest element to prevent overflow during the iterations. For the right 

eigenvector, the linear system of equations to be solved at each iteration can be put in a general 

form as 

(8.3) 

where Zl is the right eigenvector of Asys corresponding to the its eigenvalue >... Again, Zz is not 

of direct interest if only eigenvalue and eigenvector are of concern. wand u are the intermediate 

results from previous iterations. Semlyn [61] proposed the following procedure to obtain Zl 

and Z2. 
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• Calculate 

(BA) 

We note that (Fx - AI) is block diagonal and very sparse; 

• Solve for Z2 from 

(B.5) 

• Solve for Zl from 

(Fx - AI)Zl = W - FyZ2 (B.6) 

At the saddle node bifurcation point, if we are only interested in the zero crossing eigenvalue 

and the corresponding left eigenvector, we can directly apply the inverse power method on the 

total system Jacobian J. 

• step 0 Initialize Vk, k = O. Set tolerance E; 

• step 1 Perform LV decomposition on J; 

• step 2 Solve for Vk+l from 

(B.7) 

• step 3 Estimate the eigenvalue 

(B.8) 

where el is a unit column vector with 1 on the lth position and 0 elsewhere; 

• step 4 If IIAk+l - Akll ::; E done; else go to step 2. 

When the solution converges, Vk+1 = (v F, vc) will be the vector used for margin sensitivity 

(4.28). VF is the left eigenvector of Asys corresponding to its minimum eigenvalue at saddle 

node bifurcation, i.e. the zero crossing eigenvalue. Since the total Jacobian J is already LV 

decomposed for the tangent vector calculation at the end of the continuation, step 1 can be 

saved. 
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APPENDIX C GENERATOR CAPABILITY 

The capability diagram for a synchronous generator describes the allowed region of oper-

ation under steady state conditions. When the armature resistance and saliency are ignored, 

the following two equations can be used to construct the so-called capability diagram for the 

generator. 

p1 + Q1 = V2I~ 

2 (Q V2)2 Xad 2 
PE + E + Xs = (V lId Xs ) 

which lead to the following diagram plotted in Figure C.l. 

Qc 

7 
Rotor curr~nt lId 

limits 

2 
V 

x, 
, , , 

. 
/'" , Stator curr~nt /a 

limits 

Figure C.l Generator capability diagram 

C.l Reactive Power Limits Vs. AVR limits 

(C.l) 

(C.2) 

In the new framework, the rotor current is directly limited by imposing AVR limits. The 

stator current limit is not directly limited by this. However, as usually done in power flow 

studies, an approximation of the actual (voltage dependent) capability digram can be made 

by setting fixed reactive power limits. In chapter 3, we stated that the automatic voltage 
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regulator (AVR) indirectly controls the reactive power output by regulating the AVR output 

voltage VR' Therefore, at each loading level, we may use the following equations (from section 

3.4) to calculate another limit VRm which may be imposed on the AVR output voltage in order 

to control the machine's reactive power generation to stay below the constant maximum. 

Q 
_ VEqmax (1: _ 0) _ V2(cos

2(8 - 0) sin
2(8 - 0)) 

Emax - Xd cos U Xd + Xq (C.3) 

From Q Emax we get Eqmax from the above equation, then 

(C.4) 

If the current VR value is larger than this, we then set it to this limit. Then the machine's 

reactive power output will stay below this constant limit QEmax. The above procedure was 

also implemented and tested using the New England system. The scenario is the same as that 

used in section 3.5. 

C.l.! General description of test results 

The system experiences a voltage collapse (saddle node bifurcation) at a loading level of 

8683 MW. All governors hit limits before reaching voltage instability. Generators at buses 30 

and 35 hit their Q limits, generators at buses 33 and 39 hit their AVR limits, while the gener­

ator at bus 32 first reached its reactive power generation limit, and then at a higher loading 

level hit its AVR voltage limit. The buses which experienced lowest voltages at various loading 

levels are nodes 8, 12, and 15. 

C.l.2 Automatic voltage regulator responses 

We observed that, for all the generators which hit the reactive power limits or AVR output 

voltage limits, the terminal voltage, the AVR output voltage, reactive power generation, and 

exciter reference voltage have similar response profiles. Therefore we take generator at bus 

30 as the example for analysis. Figure C.2 shows that, before hitting its reactive power 

limit, the voltage regulator can maintain a fairly high and steady terminal voltage. When the 

system total load exceeds 8201 MW, QE30 hits the maximum 380 MVAR capacity, the AVR 
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Figure C.2 Voltage at bus 30 

output voltage is fixed then to make the generator stay within this reactive capacity. The 

terminal voltage experiences a noticeable voltage drop there. When the system approaches 

voltage collapse, other generators also hit their limits which cause some more abrupt changes 

of the terminal voltage at generator bus 30. 
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Figure C.3 Reactive power generation at bus 30 

Figure C.3 shows the profile of reactive generation at bus 30. There are two abrupt changes. 

The first one occurs at a system load level of 8201 MW. From this point on, fixing the AVR 

output voltage can well control the terminal reactive power generation to stay within capacity 

with a tolerable deviation (less than 2 percent). When the system approaches instability, the 
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generator at bus 30 exceeds this tolerable maximum again. Then AVR output voltage is reset 

again to reduce reactive generation. 

Figures CA and C.5 are the AVR output and exciter reference voltages of the generator 

at bus 30. The two drops correspond to the twice hitting of the machine's reactive power 

capability. 
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Figure CA AVR output voltage VR at bus 30 
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Figure C.5 Exciter reference voltage V::
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at bus 30 
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APPENDIX D REDUCED FORMULATION FOR TOTAL POWER 

SYSTEM EQUILIBRIA TRACING 

At steady state, some of the device equations from F = 0 can be eliminated without 

changing the solution. This is shown below. At an equilibrium state, we have 

0 = (Wi - Ws)WB 

0 = Mal (PMi - DGi(Wi - ws) - (E~i - X~ildi)Iqi - (E~i + X~ilqi)Idd 

0 = T~ (E/di - E~i - (Xdi - X~dldd 
dOi 

0 1 ( I ( I = T' -Edi + x qi - Xqi)Iqd 
qOi 
1 

0 = T(VRi - (KEi + SEi(E/di))E/dd 
Ei 

0 -
1 

-(-VR' + Kk(VEX - V; - Rr) TAi Z Z REFi % Z , vpss = 0 

1 
0 = T(-RFi - (KEi + SEi(E/di))KFiE/ddTEi + KFiVRdTEd 

Fi 
1 

0 = --(J.Li - PMi) 
TCHi 

1 
0 = r:-(PGSi - (Wi - wre/)/ RGi - Pi) 

Gi 

2 = l,···,Na 

Substituting equations D.l, D.2 and D.8 into equation D.9 leads to 

0= Tal (PGsi - R~i (ws - wo) - (E~i - X~ildi)Iqi - (E~i + X~ilqi)Idd 

Substituting equations D.S and D.7 into equation D.6 gives 

(D.l) 

(D.2) 

(D.3) 

(D.4) 

(D.S) 

(D.6) 

(D.7) 

(D.8) 

(D.9) 

(D.lO) 

(D.ll) 

These two equations together with Eqs. D.3 and D.4 constitute the reduced formulation of 

the system. The variables Wi, PUi , J.Li, VRi and RFi then are eliminated. Reviewing the 
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above procedure, we observe that, as far as the linearized Jacobian (for Newton iterative 

solutions) is concerned, it is equivalent to the elementary row operations on the original total 

system Jacobian J. From matrix theory, we know that this will not affect the determinant of 

the Jacobian matrix. Corresponding to this reduced system of equations we have a reduced 

Jacobian denoted here as Jred. 

(D.12) 

The above analysis is illustrated as follows. 

8F) 8F) !ill. 8F) 8F) !ill. 
8X) 8X2 8Y 8X) 8X 2 8Y 

8F) 0 !ill. 
8X! ay 

8F2 aF2 fill. => aF2 aF2 fill. -ax) 8X2 ay ax) 8X2 ay 
8F2 aF2 fill. 
ax! aX2 ay 

8G aG aG 8G 8G aG 
ax) 8X2 8Y ax! 8X2 8Y 

8G 0 8G 
ax! ay 

where the right arrow denotes elementary row operations. FI denotes equations D.3, D.4, 

D.9 and D.6. F2 corresponds to equations D.1, D.2, D.S, D.5 and D.7. FI gives all four 

equations (for one generator) in the reduced formulation. Xl variables are those left in the 

reduced formulation, and X2 variables are those eliminated. Therefore, it is obvious that the 

singularity of J indicates the singularity of Jred and vice versa, since 8F2/8X2 is a square 

nonsingular matrix. 

The reduced formulation is also implemented (limits not considered). Because there is a 

reduction of 5 equations for each generator, it may be more efficient in simultaneous equilibria 

tracing when there is a large number of generators with detailed modeling. We tested the 

reduced and the complete formulation using the New England test system. (A description of 

the system and scenario is given in chapter 3). With the same scenario, they produced two 

identical solution trajectories and transfer margins. This verifies our previous statement about 

their equivalence in detecting the saddle node bifurcation (see figure D.1). Because the tangent 

vectors are different, the same step size will result in different total steps in continuation and 

also different intermediate solution points. For the test case, the CPU time for the complete 

formulation is 3.4 seconds {16 steps, step size is 1.8} while 1.4 seconds (15 steps, step size is 

0.6) for the reduced formulation. 
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In regard to margin sensitivity, those parameters which do not appear in the reduced 

formulation, such as the machine inertia constant MG, damping DG and the excitation system 

soft feedback gain Kpi obviously will have zero sensitivity. 
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APPENDIX E DATA OF SAMPLE TEST SYSTEMS 

E.! Data Files of the New England System 

• The IEEE format base case power flow data of the New England System 
BUS DATA FOLLOWS 39 ITEMS 

1 BUS31 1 1 2 0.9820 0.00 9.20 4.60 732.00 280.66 0.00 0.9820 900.000-9999.00 0.0000 0.0000 0 1 

2 BUS2 1 1 0 1.0376 -11.22 0.00 0.00 0.00 0.00 0.000.00000.00000.00000.00000.000002 

3 BUS3 1 1 0 1.0050 -13.88322.00 122.<100.00 0.000.000.00000.00000.00000.00000.000003 

4 BUS4 1 1 0 0.9858 -14.02 500.00 184.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 4 

5 BUSS 1 1 0 0.9920 -12.25 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 5 

6 BUS6 1 1 0 0.9952 -11.41 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 06 

7 BUS7 1 1 00.9847 -13.76 233.80 84.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 7 

8 BUS8 1 1 0 0.9839 -14.33 522.00 176.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 8 

9 BUS9 1 1 0 1.0232 -14.60 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 9 

10 BUSI0 1 1 0 1.0056 -9.42 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 10 

11 BUS11 1 1 0 1.0009 -10.10 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 11 

12 BUS12 1 1 00.9872 -10.24 8.50 88.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 12 

13 BUS13 1 1 0 1.0009 -10.23 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 13 

14 BUSH 1 1 0 0.9940 -12.19 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 14 

15 BUS15 1 1 00.9896 -13.34 320.00 153.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.00000 15 

16 BUS16 1 1 0 1.0028 -12.16 329.40 132.300.000.000.000.00000.00000.00000.00000.00000 16 

17 BUS17 1 101.0065 -13.12 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 17 

18 BUS18 1 1 0 1.0045 -13.86 158.00 30.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 18 

19 BUS19 1 1 0 1.0395 -7.87 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 19 

20 BUS20 1 1 00.9853 -9.48 680.00 103.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 20 

21 BUS21 1 1 0 1.0112 -9.83 274.00 115.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 21 

22 BUS22 1 1 0 1.0381 -5.44 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 22 

23 BUS23 1 1 0 1.0316 -5.65 247.50 84.60 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 23 

24 BUS24 1 1 0 1.0015 -12.07 308.60 92.20 0.000.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 24 

25 BUS25 1 1 0 1.0458 -10.02 224.00 47.20 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 25 

26 BUS26 1 1 0 1.0294 -11.40 139.00 41.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 26 

27 BUS27 1 1 0 1.0128 -13.40 281.00 15.500.000.000.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 21 

28 BUS28 1 1 0 1.0305 -8.01 206.00 27.60 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 28 

29 BUS29 1 1 0 1.0316 -5.23 283.50 126.90 0.000.000.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 29 

30 BUS30 1 1 2 1.0475 -8.97 20.00 20.00 250.00 228.51 0.00 1.0475 380.00 -100.00 0.0000 0.0000 0 30 

31 BUSI 1 1 0 1.0435 -13.41 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 31 

32 BUS32 1 1 2 0.9831 -1.58 20.00 20.00 650.00 275.85 0.000.9831 500.00 -300.00 0.0000 0.0000 0 32 

33 BUS33 1 1 2 0.9972 -2.80 20.00 20.00 632.00 191.36 0.000.9912 500.00 -300.00 0.0000 0.0000 0 33 

34 BUS34 1 1 2 1.0123 -4.49 20.00 20.00 508.00 211.74 0.00 1.0123 450.00 -250.00 0.00000.0000034 

35 BUS35 1 1 2 1.0493 -0.58 20.00 20.00 650.00 314.70 0.00 1.0493 600.00 -250.00 0.00000.0000035 

36 BUS36 1 1 2 1.0635 2.01 20.00 20.00 560.00 170.64 0.00 1.0635 500.00 -220.00 0.0000 0.0000 0 36 

31 BUS37 1 1 2 1.0218 -3.43 20.00 20.00 540.00 69.56 0.00 1.0278 500.00 -220.00 0.0000 0.0000 0 37 

38 BUS38 1 1 2 1.0265 1.13 20.00 20.00 830.00 159.600.00 1.0265 500.00 -300.00 0.00000.0000038 

39 BUS39 1 1 3 1.0300 -14.69 1104.00 250.00 1000.00 124.37 0.00 1.0300 900.00 -800.00 0.0000 0.0000 0 39 
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-999 

BRANCH DATA FOLLOWS 48 ITEMS 

31 2 1 1 1 0 0.003500 0.041100 0.69870 O. O. O. 0 0 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 1 

31 39 1 1 1 0 0.002000 0.050000 0.37500 O. O. O. 0 0 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 2 -31 39 1 1 2 0 0.002000 0.050000 0.37500 O. O. O. a 0 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 3 

2 3 1 1 1 0 0.001300 0.015100 0.25720 o. O. O. 00 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 4 

2 25 1 1 1 00.007000 0.008600 0.14600 o. O. O. 0 0 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 5 

3 4 1 1 1 0 0.001300 0.021300 0.22140 o. o. o. 0 0 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 6 

3 18 1 1 1 0 0.001100 0.013300 0.21380 o. O. o. a 0 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 7 

4 5 1 1 1 0 0.000800 0.012800 0.13420 O. O. O. 00 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 8 

4 14 1 1 1 0 0.000800 0.012900 0.13820 O. O. O. 0 a 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 9 

5 6 1 1 1 0 0.000200 0.002600 0.04340 O. o. O. a a 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 10 

5 8 1 1 1 0 0.000800 0.011200 0.14760 O. O. O. 00 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 11 

67 1 1 1 00.0006000.0092000.11300 O. O. O. 000.0000 0.000.00000.00000.00000 0.0000 0.0000 12 

6 11 1 1 1 00.000700 0.008200 0.13890 O. O. o. 000.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 13 

7 8 1 1 1 0 0.000400 0.004600 0.07800 o. o. O. a a 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 14 

8 9 1 1 1 00.002300 0.036300 0.38040 o. O. O. 0 a 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 15 

9 39 1 1 1 0 0.001000 0.025000 1.20000 O. O. O. 0 a 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 16 

10 11 1 1 1 0 0.000400 0.004300 0.07290 o. O. O. a 0 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 17 

10 13 1 1 1 0 0.000400 0.004300 0.07290 o. O. O. 0 0 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 18 

13141 1 100.0009000.0101000.17230 o. O. O. 000.00000.00 0.0000 0.00000.00000 0.0000 0.0000 19 

14 15 1 1 1 0 0.001800 0.021700 0.36600 O. O. O. 0 0 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 20 

15 16 1 1 1 00.000900 0.009400 0.17100 O. O. O. 000.00000.00 0.0000 0.00000.00000 0.0000 0.0000 21 

16 17 1 1 1 00.000700 0.008900 0.13420 O. O. o. 00 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 22 

16 19 1 1 1 0 0.001600 0.019500 0.30400 o. O. O. 00 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 23 

16-21 1 1 1 0 0.000800 0.013500 0.25480 O. O. O. 0 0 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 24 

16 24 1 1 1 0 0.000300 0.005900 0.06800 O. o. O. 0 0 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 25 

17 18 1 1 1 0 0.000700 0.008200 0.13190 O. O. O. 0 0 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 26 

17 27 1 1 1 00.001300 0.017300 0.32160 O. O. O. 0 0 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 27 

21 22 1 1 1 0 0.000800 0.014000 0.25650 O. O. O. 00 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 28 

22 23 1 1 1 0 0.000600 0.009600 0.18460 o. o. O. 0 0 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 29 

23 24 1 1 1 0 0.002200 0.035000 0.36100 o. O. O. 0 a 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 30 

25 26 1 1 1 00.003200 0.032300 0.51300 O. O. O. 00 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 31 

26 27 1 1 1 0 0.001400 0.014700 0.23960 O. O. O. 000.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 32 

2628 1 1 1 00.004300 0.047400 0.78020 O. O. O. 000.00000.00 0.0000 0.00000.00000 0.0000 0.0000 33 

26 29 1 1 1 0 0.005700 0.062500 1.02900 o. o. o. 0 0 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 34 

28 29 1 1 1 0 0.001400 0.015100 0.24900 O. O. O. 00 0.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 35 

2 30 1 1 1 1 0.000000 0.0l8100 0.00000 O. O. o. 00 1.0250 0.00 0.0000 0.00000.00000 0.0000 0.0000 36 

6 1 1 1 1 1 0.000000 0.050000 0.00000 o. o. o. 0 0 1.0700 0.00 0.0000 0.00000.00000 0.0000 0.0000 37 

6 f 1 2 1 0.000000 0.050000 0.00000 O. O. O. 0 0 1.0700 0.00 0.0000 0.00000.00000 0.0000 0.0000 38 

10 32 1 1 1 1 0.000000 0.020000 0.00000 o. O. O. 0 0 1.0700 0.00 0.0000 0.00000.00000 0.0000 0.0000 39 

12 11 1 1 1 1 0.001600 0.043500 0.00000 O. O. o. 0 0 1.0060 0.00 0.0000 0.00000.00000 0.0000 0.0000 40 

12 13 1 1 1 1 0.001600 0.043500 0.00000 O. O. O. 0 0 1.0060 0.00 0.0000 0.00000.00000 0.0000 0.0000 41 

19 20 1 1 1 1 0.000700 0.013800 0.00000 o. O. O. 00 1.0600 0.00 0.0000 0.00000.00000 0.0000 0.0000 42 

19 33 1 1 1 1 0.000700 0.014200 0.00000 O. O. O. 0 0 1.0700 0.00 0.0000 0.00000.00000 0.0000 0.0000 43 

20 34 1 1 1 1 0.000900 0.018000 0.00000 o. O. O. 0 0 1.0090 0.00 0.0000 0.00000.00000 0.0000 0.0000 44 

22 35 1 1 1 1 0.000000 0.014300 0.00000 O. O. O. 0 0 1.0250 0.00 0.0000 0.00000.00000 0.0000 0.0000 45 

23 36 1 1 1 1 0.000500 0.027200 0.00000 O. O. o. 0 0 1.0000 0.00 0.0000 0.00000.00000 0.0000 0.0000 46 

25 37 1 1 1 1 0.000600 0.023200 0.00000 O. O. O. 00 1.0250 0.00 0.0000 0.00000.00000 0.0000 0.0000 47 

29 38 1 1 1 1 0.000800 0.015600 0.00000 O. O. O. 00 1.0250 0.00 0.0000 0.00000.00000 0.0000 0.0000 48 

-999 

LOSS ZONES FOLLOWS 2 ITEMS 

-99 

INTERCHANGE DATA FOLLOWS 1 ITEMS 
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TIE LINES FOLLOW 0 ITEMS 

-999 
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• The ISU format of the dynamic data of the New England System 
Generator transient parameter follows 

Num Gen..name Xd Xq X'd X'q Rs T'do T'qo Mg Dg 

1 BUS31 0.2590 0.2820 0.0700 0.1700 0.0002 6.5600 1.5000 60.600 5.000 

30 BUS30 0.1000 0.0690 0.0310 0.0690 0.0002 10.2000 0.0010 84.000 5.000 

32 BUS32 0.2500 0.2370 0.0530 0.0880 0.0002 5.7000 1.5000 71.6005.000 

33 BUS33 0.2620 0.25800.04400.16600.0002 5.6900 1.5000 57.200 5.000 

34 BUS34 0.6700 0.6200 0.1320 0.1660 0.0002 5.4000 0.4400 52.000 5.000 

35 BUS35 0.2540 0.2410 0.0500 0.0810 0.0060 7.3000 0.4000 69.600 5.000 

36 BUS36 0.2950 0.2920 0.0490 0.1860 0.0002 5.6600 1.5000 52.800 5.000 

37 BUS37 0.2900 0.2800 0.0570 0.0910 0.0010 6.7000 0.4100 48.600 5.000 

38 BUS38 0.2110 0.2050 0.0570 0.0590 0.0002 4.7900 1.9600 69.000 5.000 

39 BUS39 0.0200 0.0190 0.0060 0.0080 0.00027.00000.70001000.000 10.000 

-999 

Generator control system ( exciter + AVR + governor) parameter follows 

Num Gen..name Ke Te Se Ka Ta Kf Tf Tch Tg Rg 

1 BUS31 1.0000 0.4100 0.0000 40.0000 0.0500 0.0600 0.5000 54.1000 0.4500 0.0500 

30 BUS30 1.0000 0.2500 0.0000 20.0000 0.0600 0.0400 1.0000 1.6000 0.2000 0.0500 

32 BUS32 1.0000 0.5000 0.0000 40.0000 0.0600 0.0800 1.0000 10.0000 3.0000 0.0500 

33 BUS33 1.0000 0.50000.0000 40.0000 0.0600 0.0800 1.0000 10.1800 0.2400 0.0500 

34 BUS34 1.00000.79000.0000 30.0000 0.0200 0.0300 1.00009.79000.1200 0.0500 

35 BUS35 1.0000 0.47000.0000 40.0000 0.0200 0.0800 1.2500 10.00003.00000.0500 

36 BUS36 1.0000 0.7300 0.0000 30.0000 0.0200 0.0300 1.0000 7.6800 0.2000 0.0500 

37 BUS37 1.0000 0.5300 0.0000 40.0000 0.0200 0.0900 1.2600 7.0000 3.0000 0.0500 

38 BUS38 1.0000 1.4000 0.0000 20.0000 0.0200 0.0300 1.0000 6.1000 0.3800 0.0500 

39 BUS39 1.0000 1.0000 0.0000 20.0000 0.0200 0.0300 1.0000 10.0000 2.0000 0.0500 

-999 

Dynamic loads data follows 

Num Bus..name TpL TqL ALd BLd ALph Beta 

-999 

Static var compensator data follows 

Num Bus-name Kavs Tsvs Vsvsr 

-999 

On load tap-changer data follows 

S.N Secondary_Bus P.N Prime..Bus Tr Vrr 

-999 

• The ISU format of the governor and AVR limits data file for the New England System 
IEEE NEW ENGLAND 39 BUS SYSTEM 

THE AVR VOLTAGE LIMITS-FIELD CURRENT 

1 4.9000 

30 1.4500 

323.2500 

334.2500 

348.2300 

353.4000 

363.6500 



373.7500 

383.4500 

39 1.5000 

-999 

THE GOVERNOR LIMITS-PGSMAX 

1 9.1500 

30 3.1250 

32 8.1250 

33 7.9000 

346.3500 

35 8.1250 

36 7.0000 

376.7500 

38 10.3750 

39 12.5000 

-999 

102 

• The ISU format of the scenario control file for the New England System 
TOTAL POWER SYSTEM EQUILIBRIA TRACING - VOLTAGE STABILITY ANALYSIS 

BO LONG AND V. AJJARAPU 

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 

IOWA STATE UNIVERSITY 

COMPANY: ISU 

BASE CASE: NEW ENGLAND 39 BUS 10 MACHINE TEST SYSTEM 

OUTAGES: none 

-999 

LINE RATING TO USE IN ANALYSIS (1,2, OR 3) 

2 

c····················································· ........ . 
LOCATION OF LOAD INCREASE FOR LOAD/GENERATION INCREASE SCENARIO 

INITIAL LOAD 

BUS NAME P(MW) Q(MVAR) 

C······KLp···KLQ······································ ............ . 
BUS NUMBERS WHERE LOAD IS TO BE INCREASED 

3 1.0 1.0 

4 1.0 1.0 

7 1.0 1.0 

8 1.0 1.0 

15 1.0 1.0 

16 1.0 1.0 

18 1.0 1.0 

20 1.0 1.0 

21 1.0 1.0 

23 1.0 1.0 

24 1.0 1.0 

25 1.0 1.0 

26 1.0 1.0 

27 1.0 1.0 

28 1.0 1.0 

29 1.0 1.0 

39 1.0 1.0 
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-999 

c····················································· .............. . 
LOCATION OF GENERATION INCREASE FOR LOAD/GENERATION INCREASE SCENARIO 

BUS NAME AREA OUTPUT(MW) + - --- - --- -----
c····················································· ..•............ 
BUS NUMBER, SCALING FACTOR 

30 

32 

33 

34 

35 

36 

37 

38 

39 

-999 

c····················································· .. 
LOCATION OF INCREASE FOR REACTIVE LOAD INCREASE SCENARIO 

INITIAL LOAD 

BUS NAME P(MW) Q(MVAR) 

c····················································· •. 
BUS NUMBERS WHERE REACTIVE LOAD IS TO BE ADDED 

-999 

c····················································· •. 
LOCATION OF EXPORTING UNITS FOR IMPORT/EXPORT SCENARIO 

BUS NAME AREA OUTPUT(MW) + -- --- -- ---- -----

c····················································· •• 
BUS NUMBER, SCALING FACTOR 

-999 

c····················································· .. 
LOCATION OF IMPORTING UNITS FOR IMPORT/EXPORT SCENARIO 

BUS NAME AREA OUTPUT(MW) - -- --- -- --- -----

c····················································· .. 
BUS NUMBER, SCALING FACTOR 

-999 

c····················································· •..•.•••..• 
LOCATION OF LOAD INCREASE FOR LOAD/IMPORT SCENARIO 

INITIAL LOAD 

BUS NAME P(MW) Q{MVAR) 

c····················································· .......... . 
BUS NUMBERS WHERE LOAD IS TO BE INCREASED AND SERVED FROM OUTSIDE 

-999 

c····················································· .. 
LOCATION OF GENERATION INCREASE FOR LOAD/IMPORT SCENARIO 

BUS NAME AREA OUTPUT(MW) + - --- - --- -----
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c····················································· .. 
BUS NUMBER, SCALING FACTOR 

-9990 

c······················· 
BUSES TO MONITER 

BUS NAME AREA 

c······················· 
BUS NUMBERS 

30 

32 

33 

34 

35 

36 

37 

38 

39 

-999 

CONVERGENCE TOLERANCE FOR POWER FLOW 

0.00001 

MAXIMUM NUMBER OF ITERATIONS ALLOWED 

30 

NUMBER OF WEAK BUSES TO MONITER 

10 

• The load participation factors of the generators 
1 .115239 

30 .039358 

32 .102330 

33 .099496 

34 .079975 

35 .102330 

36 .088161 

37 .085013 

38 .130668 

39 .157430 

E.2 Data Files of the Iowa System 

• The IEEE format bas~ ase power flow data of the Iowa System 
100.0 1980 S MODIFIED IOWA 

BUS DATA FOLLOWS 162 ITE 

1 COOPR 3 1 12 0 1.0327 -25.33 000 0.00 0.00 0.00 3.00 0.0000 0.0000 0.0000 0.0000 -1.0000 0 1 

2 MOOR 3 1 12 0 1.0226 -29.99 0.0 0.00 0.00 0.00 3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 2 

3 STJO 712 1 52 1.0000 -32.49 23700096.902000.000.00712.00 0.0000 800.00 0.0000 0.0000 0.0000 0 3 

4 BOONIL 3 1 601.0191 -33.740.00 .000.000.003.000.00000.0000 0.0000 0.0000 0.0000 0 4 

5 NEBCY 3 1 11 0 1.0340 -24.51 0.00 .00 0.00 0.00 3.00 0.0000 0.0000 0.0000 0.0000 -0.5000 0 5 

6 COOPRIG 100 1 122 1.0000 -19.15 000 0.00 794.00 180.78 100.00 1.0000 400.00 -200.00 0.0000 0.0000 0 6 

7 LINCLN 3 1 12 0 1.0188 -30.38 0.00 O. 0 0.00 0.00 3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 7 
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8 WAGEER 7 1 5 0 1.0346 -33.81 398/00 19.200.000.00 7.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 8 
I 

9 S345 403 1 11 0 1.0264 -27.76 0.00 0.00 0.00 0.00403.000.00000.00000.00000.00000.000009 

10 TWINCH 4 1 5 0 0.9931 -35.68 226.00 11.50 0.00 0.00 4.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 10 

11 SX CY 4 1 1 0 0.9998 -31.83 0.00 0.00 0.00 0.00 4.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 11 

12 SHELON 7 1 5 0 1.0380 -33.65 193.00 5.90 0.00 0.00 7.00 0.0000 0.0000 0.0000 0.00000.0000 0 12 

13 GR ILD 3 1 5 0 1.0149 -30.67 204.00 37.30 0.00 0.00 3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 13 

14 S12 605 1 5 0 1.0282 -31.03 381.00 56.30 0.000.00 605.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 14 

15 FTRAD 4 1 5 2 1.0188 -24.52 1420.00 0.00 1500.00 5.90 4.00 0.0000 800.00 0.0000 0.0000 0.0000 0 15 

16 ROCHTR 5 1 50 1.0143 -29.58 -54.20 26.700 .00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 16 

17 HARMNY 51501.0061 -28.80 -116.50 44.700.000.005.000.00000.00000.0000 0.0000 0.0000 017 

18 ADAM 5 1 90 1.0354 -33.75 34.40 11.670.000.00 5.000.00000.00000.00000.00000.00000 18 

19 DUBUUE 5 1 50 1.0000 -38.06 64.40 3.12 0.00 0.00 5.00 1.00009.79 -66.20 0.0000 0.0000 0 19 

20 HINTON 8 1 1 0 0.9796 -32.69 37.90 12.50 0.00 0.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 20 

21 POSTIL 5 1 50 1.0083 -30.42 -69.80 23.20 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 21 

22 HAZLON 5 1 9 0 1.0338 -37.63 17.3? 5.27 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 22 

23 HRN K 5 1 5 0 0.9884 -34.85 63.50 0.00 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 23 

24 LAKFD 5 1 9 0 1.0095 -33.32 0.00 0.00 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 24 

25 LAKFD 3 1 9 0 1.0013 -29.37 0.00 0.00 0.00 0.00 3.00 0.0000 0.0000 0.0000 0.0000 -0.5000 0 25 

26 RAUN 3 1 2 0 1.0324 -21.49 0.00 0.00 0.00 0.00 3.00 0.0000 0.0000 0.0000 0.0000 -0.5000 0 26 

27 WILMRT 3 1 5 2 0.9980 -30.39 1824.00 57.90 1500.00 0.003.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 27 

28 FOX K 5 1 900.9885 -36.13 38.47 13.170.000.005.000.00000.00000.00000.00000.0000028 

29 WINBGO 5 1 9 0 0.9882 -37.93 28.31 9.03 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 29 

30 HAYWD 5 1 9 0 0.9981 -39.80 101.20 32.52 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.1500 0 30 

31 RAPIAN 5 1 5 0 0.9904 -37.07 72.50 -3.100 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 31 

32 LIMECK 5 1 9 0 1.0049 -41.08 52.70 15.060.000.00 5.00 0.0000 0.0000 0.0000 0.0000 0.2000 0 32 

33 MASNTY 5 1 9 0 0.9983 -43.01 45.17 15.16 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.2000 0 33 , 
34 FRANKN 5 1 2 0 0.9986 -42.99 14.18 5.25 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0320 0 34 

35 FLOY 5 1 2 0 0.9894 -44.44 54.48 14.63 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0500 0 35 

36 GARNR 5 1 4 0 0.9960 -43.16 31.96 8.68 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0300 0 36 

37 ADAM 3 1 3 0 0.9870 -30.58 0.00 0.00 0.00 0.00 3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 37 

38 DUNDE 5 1 40 1.0188 -38.15 14.764.080.000.005.000.0000 0.0000 0.0000 0.0000 0.0150 0 38 

39 HAZLON 3 1 9 0 0.9875 -33.22 0.00 0.00 0.00 0.00 3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 39 

40 BLKHK 51200.9999 -42.06 52.8817.600.000.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 040 

41 WSHBN 5 1 20 1.0076 -40.21 39.20 12.800.000.005.000.00000.0000 0.0000 0.0000 0.0000 0 41 

42 ARNOD 31 401.0036 -33.020.000.00·0.00 0.00 3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 42 

43 CLiNON 5 1 5 0 1.0120 -35.64 41.50 -1 ~.20 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 43 

44 CALUS 5 1 4 01.0072 -36.16 16.32 3.71:.0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 44 

45 TRIBJI 5 1 400.9958 -36.21 20.02 5.41'0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0190 0 45 

46 DEN IN 5 1 1 0 0.9991 -38.96 65.31 22.30 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.2620 0.46 

47 ANITTP 5 1 4 0 0.9910 -41.68 4.82 1.56 :0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 47 

48 CRESN 5 1 1 0 1.0000 -40.59 33.76 -8.00,0.00 0.005.00 1.0000 40.00 -20.00 0.0000 0.0000 0 48 

49 ANIT 5 1 4 0 0.9889 -41.99 6.82 1.78 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 49 

50 MARY 12 1 500.9963 -39.50 99.70 -23.4~ 0.00 0.00 12.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 50 

51 CLRNA 51600.9917 -38.23 0.00 0.00 0:00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 51 

52 D.MON 5 1 6 0 1.0150 -39.33 218.20 42.81, 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 52 
i 

53 SX CY 5 1 1 0 0.9957 -30.68 0.00 0.00 0.0\> 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 53 , 
54 WISDM 5 1 1 0 0.9889 -37.87 70.34 20.570.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 54 

i 

55 PLYMH 5 1 200.9963 -30.39 0.00 0.00 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 55 

56 OSGOD 5 1 1000.9917 -40.50 25.29 7.26 ?oo 0.00 5.00 0.00000.0000 0.0000 0.0000 0.0320056 

57 SAC 5 1 2 0 0.9978 -37.54 48.48 -4.39 0.00 ;0.00 5.00 1.0000 20.00 -0.100.0000 0.0000 0 57 

58 UTICJC 4 1 1 0 1.0088 -28.69 0.00 0.00 0·00 0.00 4.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 58 
\ 

59 EAGL 4 1 1 0 0.9846 -33.03 84.43 27.05 0.00 0.00 4.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 59 
I 

60 SX FLL 7 1 5 00.9924 -34.01 244.00 26.00 (1.00 0.00 7.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 60 

61 SIOXLS 4 1 1 0 0.9837 -31.43 0.00 0.00 O.~ 0.00 4.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 61 
I 
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62 FTTHMP 4 1 50 1.0238 -18.48 -865.60 -70.800.000.004.000.00000.00000.00000.00000.0000062 

63 HANLN 4 1 500.9886 -29.77 59.10 -2.90 0.00 0.00 4.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 63 

64 SIOXLS 100 1 1 0 1.0155 -28.89 0.00 0.00 0.00 0.00 100.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 64 

65 WTRTWN 3 1 5 0 0.9968 -25.33 -26.30 116.00 0.00 0.00 3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 65 

66 SX CY 3 1 1 0 1.0007 -31.12 0.00 0.00 0.00 0.00 3.00 0.0000 0.0000 0.0000 0.0000 -0.50000 66 

67 BURT 5 1 100 1.0001 -41.74 22.54 7.030.000.005.000.00000.00000.0000 0.00000.0600067 

68 HOPE 5 1 10 0 1.0137 -40.24 40.42 12.68 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.1200 0 68 

69 HOPET 5 1 2 0 1.0205 -38.92 0.00 0.00 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 69 

70 NEAL 5 1 2 0 1.0264 -23.58 0.00 0.00 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 70 

71 MONOA 5 1 200.9925 -31.78 29.87 11.930.000.005.000.00000.00000.00000.00000.1200071 

72 S12 905 1 5 0 1.0168 -30.78 427.00 110.000.000.00905.000.00000.00000.00000.00000.0000072 

73 NEAL12G 100 1 2 2 1.0000 -18.46 0.00 0.00 447.00 86.14 100.00 1.0000 267.00 -72.000.00000.0000073 

74 LEHIH 3 1 80 1.0117 -33.57 0.00 0.00 0.00 0.00 3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 74 

75 FT.CL 3 1 11 0 1.0301 -25.43 0.00 0.00 0.00 0.00 3.00 0.0000 0.0000 0.0000 0.0000 -0.5000 0 75 

76 NEAL34G 100 1 2 2 1.0000 -16.49 0.00 0.00 1055.00 135.45 100.00 1.0000 605.00 -170.00 0.0000 0.0000 0 76 

77 WRIGT 5 1 20 1.0114 -40.49 26.41 8.88 0.00 0.00 5.000.0000 0.0000 0.0000 0.0000 0.0470 0 77 

78 FT.DDG 5 1 8 0 1.0232 -38.24 79.12 0.00 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 78 

79 LEHIH 5 1 8 0 1.0320 -36.190.00 0.00 0.00 0.00 5.000.0000 0.0000 0.0000 0.0000 0.0000 0 79 

80 POMEOY 5 1 20 1.0101 -38.36 15.76 5.25 0.00 0.00 5.000.00000.00000.00000.00000.0280080 

81 WATELO 8 1 2 0 1.0011 -46.42 50.88 16.80 0.00 0.00 8.00 0.0000 0.0000 0.0000 0.0000 0.2210 0 81 

82 WATELO 5 1 2 0 0.9990 -42.03 62.28 20.26 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.1040 0 82 

83 WTR OGT 100 1 2 0 1.0033 -41.13 0.00 0.00 0.00 0.00 100.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 83 

84 DYSAT 5 1 40 1.0098 -37.77 37.90 9.49 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0260 084 

85 CARRLL 5 1 2 0 0.9709 -41.07 40.52 11.36 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.1200 0 85 

86 GR JT 5 1 4 0 0.9699 -44.99 50.73 13.35 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.1200 0 86 

87 GUTHIE 7 1 4 0 0.9802 -43.54 16.91 4.23 0.000.00 7.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 87 

88 JASPR 8 1 700.9892 -44.76 60.60 4.44 0.00 0.00 8.000.00000.00000.00000.00000.0000088 

89 GR JT 7 1 4 0 0.9911 -46.16 0.00 0.00 0.00 0.00 7.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 89 

90 BOON 7 1 4 0 0.9613 -48.65 50.21 16.76 0.00 0.00 7.00 0.0000 0.0000 0.0000 0.0000 0.1000 0 90 

91 CDRPS 5 1 4 0 1.0122 -36.55 51.24 12.83 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 91 

92 WYOMG 5 1 4 0 1.0024 -37.52 36.12 9.05 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 92 

93 ARNOD 5 1 4 0 1.0290 -32.66 103.80 34.56 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 93 

94 HILL 5 1 8 0 1.0264 -36.94 164.00 6.49 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 94 

95 PRARCK 7 1 4 0 1.0301 -36.55 117.20 39.01 0.00 0.00 7.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 95 

96 MTOW 7 1 4 0 1.0014 -45.07 119.20 0.000.00 0.00 7.00 0.0000 0.0000 0.0000 0.00000.0000 0 96 

97 CALUS 7 1 40 1.0266 -37.22 22.84 5.71 0.00 0.00 7.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 97 

98 SIX T 7 1 4 0 1.0441 -35.31 151.10 20.35 0.000.00 7.00 1.04S0 30.00 -0.10 0.0000 0.0000 0 98 

99 PRARK4G 100 1 4 2 1.0000 -31.41 0.000.00 130.90 5.69 100.00 1.0000 7S.60 -60.60 0.0000 0.0000 0 99 

100 WELSRG 7 1 4 0 0.9874 -45.83 23.21 6.900.00 0.00 7.00 0.0000 0.0000 0.0000 0.0000 0.0300 0 100 

101 MTOW 3G 100 1 4 2 1.0000 -40.09 0.00 0.00 82.00 30.47 100.00 1.0000 38.60 -24.40 0.0000 0.0000 0 101 

102 MQOKTA 5 1 4 0 1.0034 -37.02 16.S4 4.08 0.000.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 102 

103 DAVNRT 5 1 5 0 1.0151 -34.68 322.00 -4~.80 0.00 0.00 5.000.0000 0.0000 0.0000 0.0000 0.0000 0 103 

104 IA FS 7 1 4 0 0.9930 -44.63 31.52 10.56 0.'00 0.00 7.000.0000 0.0000 0.0000 0.0000 0.OS60 0 104 
\ 

lOS DUN DE 7 1 4 0 1.0339 -38.59 24.84 6.23 0:00 0.00 7.00 0.0000 0.0000 0.0000 0.0000 0.0170 0 lOS 

106 MONRE 5 1 7 0 0.9948 -43.01 0.00 0.00 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 106 , 
107 POWAHK 5 1 70 0.9911 -43.89 35.41 5.41 ?OO 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 107 

108 AROL IG 100 1 43 1.0000 -27.69 0.00 0.00':5S1.05 154.08 100.00 1.00009999.00-9999.000.0000 0.0000 0 108 

109 HILL 3 1 8 0 1.0134 -33.05 0.00 0.00 0.00 0.00 3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 109 

110 CBLUFS 5 1 60 1.0275 -29.52 0.00 0.00 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 110 

III AVOC 5 1 60 1.0055 -33.93 65.41 16.720.00'0.005.000.00000.0000 0.0000 0.0000 0.0000 0 111 

112 CBLUFS 3 1 60 1.0274 -27.01 0.00 0.00 0.00'0.00 3.00 0.0000 0.0000 0.0000 0.0000 -0.5000 0112 

113 S121 105 1 5 0 1.0253 -30.95 32.70 -95.20 0.00 0.00 105.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 113 

114 C.BLI2G 100 1 6 2 1.0000 -23.67 0.00 0.00 131.00 22.39 100.00 1.0000 33.00 -25.00 0.0000 0.0000 0 114 

115 BOONIL 5 1 6 0 1.0176 -36.0S 17.32 3.34 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 115 
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116 SYCAOR 5 1 601.0243 -37.29 56.08 11.200.000.005.000.00000.00000.00000.00000.00000 116 

117 ASHAA 5 1 60 1.0142 -37.95 101.90 20.06 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 117 

118 DPS 57G 100 1 6 2 1.0000 .34.03 0.00 0.00 173.00 59.61 100.00 1.0000 100.00 -44.00 0.0000 0.0000 0 118 

119 SYCAOR 3 1 60 1.0098 -35.25 0.00 0.00 0.00 0.00 3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 119 

120 S345 603 1 11 0 1.0239 -27.37 0.00 0.00 0.00 0.00 603.00 0.0000 0.00000.0000 0.00000.00000 120 

121 C.BL 3G 100 1 6 2 1.0000 -20.10 0.00 0.00 620.00 150.96 100.00 1.0000 250.00 -120.00 0.0000 0.0000 0 121 

122 OSKLOS 5 1 6 0 0.9888 -45.83 47.28 9.360.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 122 

123 WAPELO 5 1 50 1.0000 -46.19 165.00 -54.89 0.00 0.00 5.00 1.000066.596.490.00000.00000 123 

124 DVNPT 3 1 5 2 1.0090 -31.02 2000.00 90.90 2571.00 0.00 3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 124 

125 PALM 710 1 5 2 1.0200 -29.34 2000.00 0.00 2388.00 -23.48 710.00 1.0200 9900.00-1099.00 0.0000 0.0000 0 125 

126 PR ILD 3 1 5 2 1.0111 -26.59 2000.00 0.00 2467.00 63.80 3.00 0.0000 9900.00 0.0000 0.0000 0.0000 0 126 

127 LACRSS 3 1 500.9851 -29.54 -52.60 65.00 0.00 0.00 3.000.00000.00000.00000.00000.00000 127 

128 S345 903 1 11 0 1.0240 -27.27 0.00 0.00 0.00 0.00 903.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 128 

129 S345 503 1 11 0 1.0244 -27.49 0.00 0.00 0.00 0.00 503.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 129 

130 FT.CLIG 100 1 11 2 1.0300 -19.35 0.00 0.00 455.00 123.23 100.00 1.0300 288.00 -144.00 0.0000 0.0000 0 130 

131 NEBCY1G 100 1 11 2 1.0180 -20.43 0.00 0.00 575.00 94.26 100.00 1.0180 320.00 -265.00 0.0000 0.0000 0 131 

132 S125 505 1 5 0 1.0200 -30.36 159.00 36.10 0.00 0.00 505.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 132 

133 S701 8 1 6 0 1.0354 -32.19 30.10 6.02 0.00 0.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 133 

134 S701 5 1 6 0 1.0232 -30.86 17.46 3.34 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 134 

135 S702 8 1 6 0 1.0322 -32.23 20.06 4.01 0.00 0.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 135 

136 S703 8 1 6 0 1.0256 -32.50 20.06 4.01 0.000.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 136 

137 S704 8 1 6 0 1.0292 -32.46 20.06 4.01 0.00 0.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 137 

138 CBLUFS 8 1 6 0 1.0317 -31.28 0.00 0.00 0.00 0.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 138 

139 S706 8 1 6 0 1.0267 -32.05 10.10 2.01 0.00 0.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 139 

140 S705 8 1 6 0 1.0287 -32.38 13.58 2.68 0.000.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 140 

141 HSTNGS 5 1 6 0 1.0028 -33.91 0.00 0.00 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 141 

142 CLRNDA 8 1 6 0 1.0278 -40.63 27.09 5.35 0.00 0.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 142 

143 R.OAK 8 1 6 0 1.0058 -39.42 21.07 4.01 0.00 0.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 143 

144 HSTNGS 8 1 6 0 1.0222 -36.16 12.37 2.01 0.000.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 144 

145 GWOOD 8 1 6 0 1.0191 -34.40 10.83 2.21 0.00 0.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 145 

146 SHENDO 8 1 6 0 1.0101 -39.89 21.33 4.01 0.00 0.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 146 

147 WABASH 5 1 6 0 1.0104 -38.98 216.40 42.80 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 147 

148 SYCAOR 8 1 60 1.0134 -40.01 '120.0024.000.000.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 148 

149 RAUN 5 1 20 1.0259 -23.76 0.00 0.00 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 149 

150 NEAL 405 1 2 0 1.0234 -24.41 4~.80 1.60 0.00 0.00 405.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 150 

151 INTRCG 5 1 20 1.0100 -26.70 2?00 8.00 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 151 

152 TEKAMA 5 1 501.0234 -26.79 6.00 -2.80 0.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 152 
I 

153 NEAL 8 1 2 0 1.0178 -25.80 4.00 ~.60 0.00 0.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 153 

154 KELLOG 8 1 200.9751 -32.1028\009.600.000.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0600 0 154 
! 

155 M SIDE 8 1 2 0 0.9855 -30.27 12.00 4.00 0.00 0.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 155 . 
156 E SIDE 8 1 200.9788 -31.79 8.00 2.40 0.00 0.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 156 

157 PLYMTH 8 1 2 0 0.9803 -32.55 32.00 10.40 0.00 0.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 157 

158 LOGANP 8 1 2 0 0.9683 -33.49 16.00 5.600.00 0.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0300 0 158 

159 MCCOOK 8 1 2 0 0.9687 -33.32 8.00 2.40 0.00 0.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 159 

160 SC WST 8 1 200.9715 -32.76 14.404.800.000.00 8.00 0.0000 0.0000 0.0000 0.0000 0.0300 0 160 

161 KELOG 5 1 201.0040 -28.10 32.00 10.400.00 0.00 5.00 0.00000.00000.00000.0000 0.0000 0 161 

162 LEEDS 5 1 2 0 1.0004 -28.97 20.00 6.400.00 0.00 5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 162 

-999 

BRANCH DATA FOLLOWS 284 ITEMS (HEADER) 

1 2 1 12 1 00.003500 0.032100 0.54372 52. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 1 

1 3 1 12 1 0 0.003400 0.032600 0.72240 52. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 2 

1 4 1 12 1 0 0.006400 0.062100 0.98700 52. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 3 

1 5 1 12 1 0 0.001100 0.011900 0.20120 52. O. O. 000.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 4 

1 6 1 12 1 1 0.000000 0.013300 0.00000 900. O. O. 00 1.0520 0.00 0.0000 0.0000 .00000 0.0000 0.0000 5 
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2 7 1 12 1 a 0.001400 0.012500 0.21210 52. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 6 

2131 12 1 00.004600 0.041700 0.7058652. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 7 

3 14 1 5 1 0 0.236100 1.012200 0.00000 O. o. O. 0 a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 8 

3 50 1 5 1 a 0.038900 0.169900 0.00000 O. o. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 9 

3 103 1 5 1 a 0.107400 1.802300 0.00000 O. O. O. 0 a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 10 

3 123 1 5 1 00.288300 1.671900 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 11 

3 124 1 5 1 00.014000 0.648300 0.00000 O. O. O. 0 a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 12 

3 125 1 5 1 0 0.008400 0.113900 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 13 

4 112 1 6 1 a 0.005900 0.056800 0.92500 52. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 14 

4 115 1 6 1 1 0.000000 0.018500 0.00000 500. O. O. a a 1.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 15 

4 119 1 6 1 a 0.001400 0.011900 0.20500 52. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 16 

5 120 1 11 1 a 0.002200 0.022400 0.37930 52. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 17 

5 129 1 11 1 00.002200 0.026800 0.46120 52. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 18 

5 131 1 11 1 1 0.000000 0.012700 0.00000 710. O. O. a a 1.0250 0.00 0.0000 0.0000 .00000 0.0000 0.0000 19 

7 8 1 12 1 1 0.000400 0.018900 0.00000 672. O. O. a a 0.9750 0.00 0.0000 0.0000 .00000 0.0000 0.0000 20 

7 9 1 12 1 00.001700 0.016900 0.28726 52. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 21 

8 10 1 5 1 0 0.459100 1.070300 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 22 

8 12 1 5 1 00.010600 0.057400 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 23 

8 13 1 5 1 00.127400 0.478400 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 24 

8 14 1 5 1 00.047300 0.395600 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 25 

8 15 1 5 1 00.503500 1.743300 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 26 

8 132 1 5 1 a 0.025200 0.288000 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 27 

9 75 1 11 1 a 0.001300 0.015000 0.26828 717. o. o. a 00.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 28 

10 11 1 5 1 a 0.005100 0.037000 0.07160 69. o. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 29 

10 13 1 5 1 a 0.129900 0.622000 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 30 

10 15 1 5 1 a 0.127500 0.703300 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 31 

10 60 1 5 1 a 0.252500 1.224200 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 32 

11 15 1 1 1 00.028500 0.179300 0.34840 O. O. O. 0 a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 33 

11 46 1 1 1 00.014200 0.122500 0.18760 69. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 34 

11 58 1 1 1 00.017000 0.107000 0.20740 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 35 

11 59 1 1 1 a 0.007100 0.047100 0.08520 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 36 

12 2 1 5 1 1 0.000800 0.037700 0.00000 336. O. O. a a 1.0250 0.00 0.0000 0.0000 .00000 0.0000 0.0000 37 

12 13 1 5 1 a 0.103800 0.313700 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 38 

12 14 1 5 1 a 0.159800 0.641500 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 39 

12 132 1 5 1 00.448600 1.577300 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 40 

13 15 1 5 1 00.044000 0.322700 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 41 

13 62 1 5 1 a 0.009800 0.122100 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 42 

14 72 1 5 1 00.010700 0.082800 0.00000 O. O. O. 0 a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 43 

14 113 1 5 1 a 0.006300 0.038200 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 44 

14 132 1 5 1 a 0.005700 0.037400 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 45 

15 58 1 5 1 a 0.011500 0.073200 0.14200 O. O. O. 0 a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 46 

15 60 1 5 1 a 0.390700 1.675300 0.00000 O. O. O. 0 a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 47 

15 62 1 5 1 a 0.008400 0.058800 0.00000 O. O. O. 0 a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 48 

15 63 1 5 1 a 0.170400 1.455500 0.00000 O. O. O. 0 a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 49 

16 17 1 5 1 a 0.601700 1.437300 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 50 

16 18 1 5 1 00.029700 0.107000 0.05460 87. O. o. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 51 

16 27 1 5 1 00.157400 0.887100 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 52 

16 126 1 5 1 a 0.105300 0.513200 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 53 

16 127 1 5 1 a 0.095800 0.527600 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 54 

17 18 1 5 1 a 0.021300 0.101300 0.06410 87. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 55 

17 19 1 5 1 00.231400 0.767800 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 56 

17 21 1 5 1 00.047100 0.266500 0.00000 O. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 57 

17 127 1 5 1 a 0.028700 0.263700 0.00000 o. o. o. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 58 

1830 1 9 1 00.020700 0.108800 0.05200 87. O. O. a a 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 59 



109 

18 32 1 9 1 0 0.023400 0.122000 0.05830 87. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 60 

1837 1 9 1 10.0000000.0456000.00000225. O. O. 001.11900.000.0000 0.0000 .000000.00000.000061 

19 21 1 5 1 00.386700 1.900500 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 62 

19 38 1 5 1 00.023900 0.125000 0.05960 87. O. O. 00 0.0000 0.000.0000 0.0000 .00000 0.0000 0.0000 63 

19 43 1 5 1 00.060300 0.257200 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 64 

19 127 1 5 1 0 0.107400 0.680900 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 65 

20 53 1 1 1 1 0.000000 0.114000 0.00000 75. O. O. 00 1.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 66 

20 157 1 1 1 0 0.011300 0.027900 0.00050 64. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 67 

21 22 1 5 1 00.031200 0.162900 0.07780 87. O. O. 0 0 0.0000 0.000.0000 0.0000 .00000 0.0000 0.0000 68 

21 127 1 5 1 0 0.010500 0.641400 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 69 

22 38 1 9 1 0 0.014000 0.054000 0.02500 87. O. O. 0 0 0.0000 0.000.0000 0.0000 .00000 0.0000 0.0000 70 

22 39 1 9 1 1 0.000000 0.049300 0.00000 225. O. O. 0 0 1.1080 0.00 0.0000 0.0000 .00000 0.0000 0.0000 71 

22 40 1 9 1 0 0.018800 0.071700 0.03280 87. O. O. 000.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 72 

22 41 1 9 1 00.017200 0.085000 0.04046 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 73 

23 24 1 5 1 0 0.017400 0.051100 0.02300 87. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 74 

23 60 1 5 1 0 0.066000 0.309300 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 75 

24 25 1 9 1 1 0.000000 0.034000 0.00000 225. O. O. 0 0 1.0220 0.00 0.0000 0.0000 .00000 0.0000 0.0000 76 

24 28 1 9 1 00.024900 0.072500 0.02020 87. O. O. 0 0 0.0000 0.000.0000 0.0000 .00000 0.0000 0.0000 77 

24 45 1 9 1 0 0.013700 0.072500 0.03400 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 78 

25 26 1 9 1 0 0.005900 0.058300 0.93016 52. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 79 

25 27 1 9 1 0 0.004400 0.041000 0.83840 52. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 80 

26 74 1 2 1 00.006300 0.060700 0.93000 52. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 81 

26 75 1 2 1 0 0.003000 0.032200 0.50388 52. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 82 

26 76 1 2 1 1 0.000000 0.008200 0.00000 1250. O. O. 0 0 1.0400 0.00 0.0000 0.0000 .00000 0.0000 0.0000 83 

27 31 1 5 1 0 0.010100 0.127300 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 84 

27 62 1 5 1 0 0.017300 0.581000 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 85 

27 65 1 5 1 0 0.010500 0.276400 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 86 

27 125 1 5 1 0 0.035000 1.684500 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 87 

27 126 1 5 1 0 0.002200 0.022500 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 88 

27 127 1 5 1 0 0.150600 1.435500 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 89 

28 29 1 9 1 0 0.024000 0.096500 0.04440 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 90 

29 30 1 9 1 0 0.038000 0.150000 0.06960 87. O. O. 000.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 91 

29 31 1 9 1 0 0.020600 0.083300 0.03850 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 92 

30 32 1 9 1 0 0.024900 0.100500 0.04580 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 93 

32 33 1 9 1 0 0.011400 0.044800 0.02078 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 94 

33 34 1 9 1 0 0.028000 0.114000 0.05200 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 95 

3335 1 9 1 00.0216000.1070000.05100 87. O. O. 000.0000 0.00 0.00000.0000 .00000 0.0000 0.0000 96 

33 36 1 9 1 0 0.010200 0.053600 0.02550 87. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 97 

34 40 1 2 1 00.039700 0.151700 0.06898 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 98 

34 77 1 2 1 00.023500 0.089600 0.04072 87. O. O. 000.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 99 

35 40 1 2 1 00.027100 0.134100 0.06382 87. O. O. 000.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 100 

36 67 1 4 1 00.017600 0.092400 0.04400 87. O. O. 000.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 101 

37 39 1 3 1 0 0.003900 0.037900 0.67000 52. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 102 

37 126 1 3 1 0 0.004000 0.038100 0.67000 52. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 103 

37 127 1 3 1 0 0.004000 0.040300 0.68320 52. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 104 

39 42 1 9 1 0 0.002000 0.018600 0.32000 52. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 105 

40 81 1 2 1 0 0.030000 0.345000 0.00390 50. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 106 

40 82 1 2 1 0 0.004000 0.019000 0.01080 87. O. O. 000.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 107 

41 81 1 2 1 0 0.037000 0.372000 0.00580 50. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 108 

41 83 1 2 1 0 0.005200 0.025600 0.01234 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 109 

41 84 1 2 1 0 0.005700 0.058000 0.02910 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 110 

42 109 1 4 1 00.0019000.019600 0.33300 52. O. O. 000.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 111 

43 44 1 5 1 00.018800 0.075100 0.03490 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 112 

43 103 1 5 1 0 0.032400 0.170200 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 113 
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43 124 1 5 1 0 0.029300 0.176600 0.00000 o. o. o. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 114 

43 125 1 5 1 0 0.144900 0.650900 0.00000 o. o. o. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 115 

44 102 1 4 1 0 0.013000 0.050000 0.02370 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 116 

44 103 1 4 1 0 0.012700 0.051000 0.02450 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 117 

45 54 1 4 1 0 0.010800 0.057000 0.02720 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 118 

46 47 1 1 1 0 0.031000 0.137800 0.06220 87. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 119 

4748 1 4 1 00.0251000.1114000.0502087. O. O. 000.0000 0.00 0.0000 0.0000 .000000.00000.0000 120 

4749 1 4 1 00.0030000.0120000.00540 O. O. O. 000.00000.000.00000.0000 .000000.00000.0000 121 

48 50 1 1 1 00.0336000.1660000.07800 O. O. O. 000.00000.000.00000.0000 .000000.00000.0000 122 

48 51 1 1 1 00.042000 0.130000 0.05700 O. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 123 

48521 1 100.0540000.1680000.0740087. O. O. 000.0000 0.00 0.0000 0.0000.000000.00000.0000 124 

49 87 1 4 1 0 0.014000 0.068000 0.02660 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 125 

50 51 1 5 1 0 0.030000 0.090000 0.04100 o. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .000000.0000 0.0000 126 

50 123 1 5 1 0 0.407100 1.854300 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 127 

50 125 1 5 1 00.1337000.603100 0.00000 O. O. O. 000.00000.000.00000.0000 .00000 0.0000 0.0000 128 

51 141 1 6 1 0 0.032300 0.100000 0.04428 87. O. O. 0 00.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 129 

52 79 1 6 1 0 0.062300 0.212600 0.09400 87. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 130 

52 10616100.0231000.0717000.0315087. O. O. 000.00000.000.00000.0000.000000.00000.0000 131 

52 116 1 6 1 0 0.006000 0.048700 0.02570 87. O. O. 0 00.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 132 

52 117 1 6 1 00.0117000.0493000.0230087. O. O. 000.00000.000.00000.0000 .000000.00000.0000 133 

52 118 1 6 1 1 0.000000 0.052000 0.00000 200. O. O. 0 0 1.0430 0.00 0.0000 0.0000 .00000 0.0000 0.0000 134 

53 11 1 1 1 1 0.000500 0.020000 0.00000 375. O. O. 0 0 1.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 135 

53 54 1 1 1 00.027500 0.196100 0.09560 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 136 

53 55 1 1 1 00.000500 0.002600 0.00230 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 137 

54 56 1 1 1 0 0.017400 0.091000 0.04300 87. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 138 

54 57 1 1 1 0 0.025000 0.123700 0.05886 87. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 139 

55 57 1 2 1 0 0.046200 0.176300 0.08012 87. O. O. 00 0.0000 0.000.0000 0.0000 .00000 0.0000 0.0000 140 

55 149 1 2 1 0 0.015300 0.067100 0.03126 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 141 

55 162 1 2 1 0 0.004000 0.018900 0.00976 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 142 

56 67 1 10 1 0 0.017000 0.089400 0.04250 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 143 

57 80 1 2 1 0 0.027200 0.103700 0.04714 87. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 144 

58 61 1 1 1 0 0.013300 0.101800 0.18420 69. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 145 

59 61 1 1 1 0 0.010600 0.070600 0.12100 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .000000.0000 0.0000 146 

60 61 1 5 1 1 0.002700 0.065300 -0.00220 100. O. O. 0 0 1.0250 0.00 0.0000 0.0000 .00000 0.0000 0.0000 147 

60 61 1 5 2 1 0.002000 0.039300 0.00000 200. O. O. 0 0 1.0250 0.00 0.0000 0.0000 .00000 0.0000 0.0000 148 

60 62 1 5 1 0 0.367400 0.964000 0.00000 O. O. O. 000.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 149 

60 65 1 5 1 00.104100 0.414400 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .000000.0000 0.0000 150 

60 126 1 5 1 00.536700 1.829500 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 151 

61 62 1 1 1 00.029600 0.227500 0.39960 69. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 152 

61 63 1 1 1 0 0.004300 0.042200 0.07640 69. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 153 

62 63 1 5 1 0 0.015800 0.170200 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 154 

62 65 1 5 1 0 0.004000 0.074000 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 155 

62 126 1 5 1 00.004400 0.296900 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 156 

63 65 1 5 1 0 0.240900 1.960000 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 157 

64 65 1 1 1 00.005000 0.057100 0.90984 1200. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 158 

64 66 1 1 1 00.003300 0.038100 0.60656 1200. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 159 

65 126 1 5 1 00.003100 0.153600 0.00000 o. o. o. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 160 

66 11 1 1 1 1 0.000000 0.011800 0.00000 500. O. O. 0 0 1.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 161 

67 68 1 10 1 00.019300 0.101300 0.04820 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 162 

68 69 1 10 1 0 0.006800 0.035300 0.01690 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 163 

69 77 1 2 1 00.009800 0.037400 0.01698 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 164 

69 78 1 2 1 0 0.011400 0.043400 0.01970 87. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 165 

69 79 1 2 1 0 0.005200 0.043300 0.02206 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 166 

70 73 1 2 1 1 0.000000 0.019700 0.00000 495. O. o. 0 0 1.0400 0.00 0.0000 0.0000 .00000 0.0000 0.0000 167 
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70 149 1 2 1 0 0.000200 0.001800 0.00090 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 168 

70 149 1 2 2 0 0.000200 0.001800 0.00090 87. O. O. 0 00.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 169 

71 85 1 2 1 00.030400 0.150600 0.07166 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 170 

71 150 1 2 1 0 0.019600 0.097000 0.04616 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 171 

72 113 1 5 1 0 0.002200 0.013000 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 172 

72 132 1 5 1 0 0.002800 0.016800 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 173 

72 152 1 5 1 0 0.038500 0.180000 0.00000 O. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 174 

74 119 1 8 1 00.0031000.0310000.4821052. O. O. 000.00000.000.00000.0000 .000000.00000.0000 175 

75 128 1 11 1 00.000800 0.008700 0.16592 52. o. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 176 

75 130 1 11 1 1 0.000400 0.024200 0.00000 578. O. O. 00 1.0250 0.00 0.0000 0.0000 .00000 0.0000 0.0000 177 

78 79 1 8 1 0 0.005100 0.033600 0.01824 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 178 

78 80 1 8 1 00.024400 0.093000 0.04228 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 179 

79 74 1 8 1 1 0.000000 0.018000 0.00000 500. o. O. 0 0 1.0250 0.00 0.0000 0.0000 .00000 0.0000 0.0000 180 

82 83 1 2 1 0 0.005300 0.024900 0.01300 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 181 

84 93 1 4 1 00.012500 0.082600 0.04150 87. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 182 

85 86 1 2 1 00.021100 0.104600 0.04978 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 183 

8687 1 4 1 00.028000 0.112000 0.05370 87. O. O. 000.00000.000.00000.0000 .000000.00000.0000 184 

86 88 1 4 1 00.044000 0.228000 0.10902 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 185 

88 96 1 7 1 0 0.074000 0.250000 0.01428 69. o. o. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 186 

88 106 1 7 1 00.007900 0.046800 0.02314 139. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 187 

89 86 1 4 1 1 0.000000 0.057000 0.00000 90. O. O. 0 0 1.0250 0.00 0.0000 0.0000 .00000 0.0000 0.0000 188 

89 90 1 4 1 00.069000 0.134000 0.01400 60. o. o. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 189 

9096 1 4 1 00.1837000.3590000.03700 80. O. O. 000.00000.000.00000.0000 .00000 0.0000 0.0000 190 

91 92 1 4 1 0 0.015600 0.081900 0.03760 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 191 

91 93 1 4 1 00.014300 0.0895000.0449687. O. O. 000.00000.000.00000.0000 .000000.00000.0000 192 

91 94 1 4 1 0 0.014500 0.095700 0.04800 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 193 

92 102 1 4 1 00.0150000.0610000.0292087. O. O. 000.00000.000.0000 0.0000 .000000.0000 0.0000 194 

93 42 1 4 1 1 0.000000 0.026000 0.00000 400. O. O. 0 0 1.0250 0.00 0.0000 0.0000 .00000 0.0000 0.0000 195 

93 108 1 4 1 1 0.000000 0.015400 0.00000 600. o. o. 00 1.0500 0.00 0.0000 0.0000 .00000 0.0000 0.0000 196 

94 103 1 8 1 0 0.022700 0.133300 0.06600 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 197 

94 107 1 8 1 00.0613000.1891000.0836687. O. O. 000.00000.000.0000 0.0000 .00000 0.0000 0.0000 198 

94 109 1 8 1 1 0.000000 0.035000 0.00000 300. O. O. 00 1.0250 0.00 0.0000 0.0000 .00000 0.0000 0.0000 199 

95 91 1 4 1 1 0.005400 0.045800 -0.00360 250. O. O. 0 0 1.0200 0.00 0.0000 0.0000 .00000 0.0000 0.0000 200 

95 96 1 4 1 0 0.087000 0.212000 0.08600 118. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 201 

95 97 1 4 1 0 0.128900 0.280900 0.03348 50. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 202 

95 98 1 4 1 0 0.007100 0.043000 0.02246 121. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 203 

95 99 1 4 1 1 0.000000 0.068500 0.00000 150. O. O. 0 0 1.0300 0.00 0.0000 0.0000 .00000 0.0000 0.0000 204 

96 100 1 4 1 00.069000 0.161000 0.01850 60. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 205 

96 101 1 4 1 1 0.000000 0.103100 0.00000 96. O. O. 0 0 1.0300 0.00 0.0000 0.0000 .00000 0.0000 0.0000 206 

97 44 1 4 1 1 0.005100 0.100700 -0.00251 84. O. O. 00 1.0250 0.00 0.0000 0.0000 .00000 0.0000 0.0000 207 

98 93 1 4 1 1 0.000600 0.021400 -0.03406 504. O. O. 0 0 1.0250 0.00 0.0000 0.0000 .00000 0.0000 0.0000 208 

98 105 1 4 1 00.148500 0.293000 0.03100 60. O. o. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 209 

100 104 1 4 1 00.062000 0.145000 0.01660 60. O. O. 000.00000.000.00000.0000 .000000.00000.0000210 

103 123 1 5 1 00.182000 0.751000 0.00000 O. O. O. 000.00000.000.00000.0000 .000000.00000.0000211 

103 124 1 5 1 0 0.000200 0.016700 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 212 

103 125 1 5 1 0 0.027900 0.197200 0.00000 O. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 213 

104 34 1 4 1 1 0.008000 0.063700 -0.00330 106. O. O. 0 0 1.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 214 

105 38 1 4 1 1 0.000000 0.116000 0.00000 45. O. o. 00 1.0250 0.00 0.0000 0.0000 .00000 0.0000 0.0000 215 

106 107 1 7 1 00.019600 0.061100 0.02684 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 216 

107 122 1 7 1 0 0.013000 0.062100 0.02960 87. O. O. 000.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 217 

109 119 1 8 1 0 0.006000 0.057700 0.92900 52. O. O. 000.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 218 

109124 1 8 1 00.002000 0.022200 0.37820 52. o. O. 000.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 219 

109 125 1 8 1 0 0.007000 0.062000 1.00000 52. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 220 

110 111 1 6 1 0 0.023000 0.099000 0.04600 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 221 
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110 112 1 6 1 1 0.000000 0.018500 0.00000 500. O. O. 00 1.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 222 

110 114 1 6 1 1 0.000000 0.076800 0.00000 ISO. O. O. 00 1.0400 0.00 0.0000 0.0000 .00000 0.0000 0.0000 223 

110 134 1 6 1 0 0.003200 0.025600 0.01346 87. o. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 224 

110 141 1 6 1 0 0.021000 0.064900 0.02872 87. o. o. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 225 

111 115 1 6 1 00.0527000.2215000.1030087. O. O. 000.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 226 

112 120 1 6 1 0 0.000500 0.004400 0.07200 52. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 227 

112 121 1 6 1 1 0.000000 0.019000 0.00000 720. O. O. 00 1.0500 0.00 0.0000 0.0000 .00000 0.0000 0.0000 228 

113 132 1 5 1 00.045900 0.291100 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 229 

113 134 1 5 1 0 0.000800 0.007200 0.00380 323. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 230 

115 117 1 6 1 00.0019000.0154000.0330087. O. O. 000.00000.000.00000.0000 .000000.0000 0.0000 231 

116 117 1 6 1 0 0.004800 0.039100 0.02144 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 232 

116 119 1 6 1 1 0.000000 0.009000 0.00000 1000. O. O. 0 0 1.0250 0.00 0.0000 0.0000 .00000 0.0000 0.0000 233 

116 147 1 6 1 0 0.003500 0.028600 0.01558 87. o. o. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 234 

117 147 1 6 1 0 0.002200 0.017500 0.01006 87. o. o. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 235 

120 14 1 11 1 1 0.000300 0.018800 0.00000 500. O. O. 00 0.9750 0.00 0.0000 0.0000 .00000 0.0000 0.0000 236 

120 128 1 11 1 00.0004000.0051000.10008 718. o. o. 000.00000.000.00000.0000.000000.00000.0000 237 

120 129 1 11 1 0 0.000300 0.003800 0.06518 718. o. o. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 238 

122 123 1 6 1 0 0.017500 0.083500 0.03970 87. o. o. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 239 

123 125 1 5 1 0 0.042300 0.244100 0.00000 O. o. o. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 240 

124 125 1 5 1 00.011300 0.158500 0.00000 O. O. O. 000.00000.000.00000.0000 .00000 0.0000 0.0000 241 

124 126 1 5 1 0 0.057700 0.825600 0.00000 O. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 242 

125 126 1 5 1 0 0.020100 0.591500 0.00000 O. O. O. 0 00.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 243 

126 127 1 5 1 0 0.087700 0.704900 0.00000 O. O. O. 000.00000.000.00000.0000 .000000.00000.0000 244 

128 72 1 11 1 1 0.0004000.0180000.00000 500. O. O. 00 1.0000 0.00 0.0000 0.0000 .000000.00000.0000245 

129 132 1 11 1 1 0.000400 0.019800 0.00000 500. O. O. 00 1.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 246 

133 134 1 6 1 1 0.000000 0.041000 0.00000 160. O. O. 0 0 1.0250 0.00 0.0000 0.0000 .00000 0.0000 0.0000 247 

133 135 1 6 1 0 0.010900 0.025900 0.00048 63. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 248 

133 136 1 6 1 0 0.039000 0.099000 0.00164 57. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 249 

133 137 1 6 1 0 0.013400 0.050400 0.00100 87. o. o. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 250 

135 138 1 6 1 00.0466000.1182000.00196 57. O. O. 000.00000.000.00000.0000 .000000.00000.0000 251 

136 139 1 6 1 0 0.026000 0.065000 0.00110 57. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 252 

137 140 1 6 1 0 0.004100 0.015600 0.00032 87. o. o. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 253 

138 110 1 6 1 1 0.000000 0.041000 0.00000 160. O. O. 0 0 1.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 254 

138 139 1 6 1 0 0.026000 0.065000 0.00110 57. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 255 

138 140 1 6 1 0 0.025100 0.094100 0.00184 87. o. o. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 256 

138 145 1 6 1 0 0.092300 0.233800 0.00386 57. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 257 

14251 1 6 1 1 0.000000 0.172800 0.00000 83. O. O. 00 1.07000.00 0.0000 0.0000 .000000.00000.0000 258 

142 143 1 6 1 00.1582000.391900 0.00674 63. O. O. 000.0000 0.00 0.0000 0.0000 .000000.00000.0000 259 

142 146 1 6 1 00.161800 0.386100 0.00696 63. O. O. 000.00000.000.0000 0.0000 .000000.00000.0000 260 

143 144 1 6 1 0 0.092700 0.232200 0.00210 63. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 261 

144 141 1 6 1 1 0.000000 0.082000 0.00000 80. o. o. 0 0 1.0250 0.00 0.0000 0.0000 .00000 0.0000 0.0000 262 

144 145 1 6 1 0 0.089000 0.221000 0.00314 57. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 263 

144 146 1 6 1 0 0.068000 0.290600 0.00584 87. o. o. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 264 

148 116 1 6 1 1 0.000000 0.041000 0.00000 160. O. O. 0 0 1.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 265 

149 26 1 2 1 1 0.000000 0.038600 0.00000 300. O. O. 0 0 1.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 266 

149 26 1 2 2 1 0.000000 0.038600 0.00000 300. O. O. 0 0 1.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 267 

149 150 1 2 1 0 0.001000 0.008500 0.00198 87. o. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 268 

149 151 1 2 1 0 0.003900 0.026200 0.01384 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 269 

149 152 1 2 1 0 0.025300 0.116800 0.05444 87. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 270 

151 161 1 2 1 0 0.002100 0.013800 0.00750 87. o. O. 000.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 271 

153 70 1 2 1 1 0.000000 0.091600 0.00000 93. O. O. 0 0 1.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 272 

153 70 1 2 2 1 0.000000 0.091600 0.00000 93. o. O. 0 0 1.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 273 

153 154 1 2 1 0 0.071000 0.284100 0.00536 72. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 274 

153 155 1 2 1 0 0.043000 0.185600 0.00388 96. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 275 
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154 156 1 2 1 0 0.015500 0.037900 0.00072 72. O. O. 00 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 276 

154 160 1 2 1 00.010200 0.042900 0.00094 72. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 277 

155 156 1 2 1 0 0.017600 0.082200 0.00150 96. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 278 

156 157 1 2 1 0 0.053000 0.127300 0.00218 48. O. O. 0 0 0.0000 0.000.0000 0.0000 .00000 0.0000 0.0000 279 

157 55 1 2 1 1 0.000000 0.082700 0.00000 150. O. O. 0 0 1.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 280 

157 158 1 2 1 0 0.048900 0.140400 0.00282 72. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 281 

158 159 1 2 1 0 0.033900 0.066400 0.00120 72. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 282 

159 160 1 2 1 0 0.019000 0.081100 0.01200 72. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 283 

161 162 1 2 1 0 0.002200 0.010300 0.00534 87. O. O. 0 0 0.0000 0.00 0.0000 0.0000 .00000 0.0000 0.0000 284 

-999 

LOSS ZONES FOLLOWS 12 ITEMS 

-99 

INTERCHANGE DATA FOLLOWS 0 ITEMS (HEADER) 

-9 

TIE LINES FOLLOW 0 ITEMS (HEADER) 

-999 

• The ISU format of the dynamic data of the Iowa System 
MODIFIED IOWA SYSTEM STABILITY RELATED PARAMETERS OF GENERATOR 

& EXCITATION & GOVERNOR & svc & OLTC & DYNAMIC LOADS 

Generator transient parameter follows 

1 2 3 4 5 6 7 8 9 10 11 

Num Gen-11ame Xd Xq X'd X'q Rs T'do T'qo Mg Dg 

3 STJO 712 0.1000 0.0690 0.0040 0.0690 0.0002 10.20000.010 1000.000 5.000 

6 COOPRIG 1000.25900.28200.04370.17000.00026.5600 1.500069.120 5.000 

15 FTRAD 4 0.2590 0.2820 0.0100 0.1700 0.0002 6.5600 1.5000 800.000 5.000 

27 WILMRT 3 0.2500 0.2370 0.0050 0.0880 0.0002 5.7000 1.5000800.000 5.000 

73 NEAL12G 100 0.2540 0.2410 0.0507 0.0810 0.0060 7.3000 0.4000 33.580 5.000 

76 NEAL34G 100 0.2950 0.2920 0.0206 0.1860 0.0002 5.6600 1.5000 64.980 5.000 

99 PRARK4G 1000.29000.28000.1131 0.09100.0010 6.7000 0.4100 13.3005.000 

101 MTOW 3G 1000.21100.20500.31150.05900.00024.7900 1.96005.3205.000 

108 AROL IG 1000.02000.01900.0535 0.00800.0002 7.00000.700059.200 10.000 

114 C.BL12G 1000.02000.01900.17700.00800.00027.00000.700010.00010.000 

118 DPS 57G 1000.02000.01900.10490.00800.0002 7.0000 0.7000 22.620 10.000 

121 C.BL 3G 1000.02000.01900.02970.00800.0002 7.00000.700039.580 10.000 

124 DVNPT 3 0.0200 0.0190 0.0020 0.0080 0.0002 7.0000 0.7000 2000.000 10.000 

125 PALM 7100.02000.01900.00200.00800.0002 7.00000.70002000.000 10.000 

126 PR ILD 3 0.0200 0.01900.00400.00800.0002 7.0000 0.7000 1000.000 10.000 

130 FT.CLIG 1000.02000.01900.05590.00800.0002 7.00000.7000 57.200 10.000 

131 NEBCYIG 1000.02000.01900.05440.00800.00027.00000.700041.32010.000 

-999 

Generator control system ( exciter + AVR + governor) parameter follows 

Num Gen-11ame Ke Te Se Ka Ta Kf Tf Tch Tg Rg 

3 STJO 712 1.00000.25000.0000 20.0000 0.0600 0.0400 1.0000 1.6000 0.2000 0.0500 

6 COOPRIG 100 1.0000 0.4100 0.0000 40.0000 0.0500 0.0600 0.5000 54.1000 0.4500 0.0500 

15 FTRAD 4 1.0000 0.5000 0.0000 40.0000 0.0600 0.0800 1.0000 10.0000 3.0000 0.0500 

27 WILMRT 3 1.0000 0.5000 0.0000 40.0000 0.0600 0.0800 1.0000 10.1800 0.2400 0.0500 

73 NEAL12G 100 1.00000.79000.000030.00000.02000.0300 1.00009.79000.1200 0.0500 

76 NEAL34G 100 1.0000 0.4700 0.0000 40.0000 0.0200 0.0800 1.2500 10.0000 3.0000 0.0500 

99 PRARK4G 100 1.00000.73000.000030.0000 0.0200 0.0300 1.00007.68000.20000.0500 

101 MTOW 3G 100 1.0000 0.5300 0.0000 40.0000 0.0200 0.0900 1.2600 7.0000 3.0000 0.0500 

108 AROL IG 100 1.0000 1.4000 0.0000 20.0000 0.0200 0.0300 1.0000 6.1000 0.3800 0.0500 

114 C.BL12G 100 1.0000 1.0000 0.0000 20.0000 0.0200 0.0300 1.0000 10.0000 2.0000 0.0500 

118 DPS 57G 100 1.0000 1.0000 0.0000 20.0000 0.0200 0.0300 1.0000 10.0000 2.0000 0.0500 
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121 C.BL 3G 100 1.0000 1.0000 0.0000 20.0000 0.0200 0.0300 1.0000 10.0000 2.0000 0.0500 

124 DVNPT 3 1.0000 1.0000 0.0000 20.0000 0.0200 0.0300 1.0000 10.0000 2.0000 0.0500 

125 PALM 710 1.0000 1.0000 0.0000 20.0000 0.0200 0.0300 1.0000 10.0000 2.0000 0.0500 

126 PR ILD 3 1.0000 1.0000 0.0000 20.0000 0.0200 0.0300 1.0000 10.0000 2.0000 0.0500 

130 FT.CLIG 100 1.0000 1.0000 0.0000 20.0000 0.0200 0.0300 1.0000 10.0000 2.0000 0.0500 

131 NEBCYIG 100 1.0000 1.0000 0.0000 20.0000 0.0200 0.0300 1.0000 10.0000 2.0000 0.0500 

-999 

Dynamic loads data follows 

Num Bus.name TpL TqL ALd BLd ALph Beta 

-999 

Static var compensator data follows 

Num Bus-Ilame Ksvs Tsvs Vsvsr 

-999 

On load tap-changer data follows 

S-N SecondaryJJus P-N PrimeJJus Tr Vrr 

-999 

• The ISU format of the governor and AVR limits data file for the Iowa System 
IOWA SYSTEM 

THE AVR VOLTAGE LIMITS-FIELD CURRENT 

34.9000 

64.9000 

156.4500 

278.2500 

738.2300 

763.9000 

993.7500 

101 1.1400 

108 1.0600 

114 3.4500 

118 1.0500 

121 3.4000 

124 3.6500 

1253.7500 

126 1.2000 

1303.4500 

131 3.2500 

-999 

THE GOVERNOR LIMITS-PGSMAX 

325.0000 

6 10.0000 

15 18.0000 

27 18.0000 

736.0000 

76 13.5000 

992.0000 

101 2.0000 

1087.0000 

114 1.7000 

1183.2000 



121 7.8000 

12433.0000 

125 25.0000 

12631.0000 

1306.0000 

131 7.2500 

-999 
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• The ISU format of the scenario control file for the Iowa System 
POWER SYSTEM EQUILIBRIA TRACING - VOLTAGE STABILITY ANALYSIS 

BO LONG AND V. AJJARAPU 

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 

IOWA STATE UNIVERSITY 

COMPANY: IOWA STATE UNIVERSITY 

BASE CASE: IOWA SYSTEM 

OUTAGES: none 

-999 

LINE RATING TO USE IN ANALYSIS (1,2, OR 3) 

2 

c····················································· ......•.. 
LOCATION OF LOAD INCREASE FOR LOAD/GENERATION INCREASE SCENARIO 

INITIAL LOAD 

BUS NAME P(MW) Q(MVAR) 

c····················································· ••....••. 
BUS NUMBERS WHERE LOAD IS TO BE INCREASED 

18 1.0 1.0 

20 1.0 1.0 

22 1.0 1.0 

30 1.0 1.0 

32 1.0 1.0 

52 1.0 1.0 

59 1.0 1.0 

80 1.0 1.0 

82 1.0 1.0 

87 1.0 1.0 

89 1.0 1.0 

-999 

c····················································· ......•.•••..•. 
LOCATION OF GENERATION INCREASE FOR LOAD/GENERATION INCREASE SCENARIO 

BUS NAME AREA OUTPUT(MW) + -- --- - --- -----
c····················································· ....••.....••.. 
BUS NUMBER, SCALING FACTOR 

3 

6 

15 

27 

73 

76 

99 

101 

108 



114 

118 

121 

124 

125 

126 

130 

131 

-999 

116 

c····················································· .. 
LOCATION OF INCREASE FOR REACTIVE LOAD INCREASE SCENARIO 

INITIAL LOAD 

BUS NAME P(MW) Q(MVAR) 

c····················································· .. 
BUS NUMBERS WHERE REACTIVE LOAD IS TO BE ADDED 

-999 

c····················································· .. 
LOCATION OF EXPORTING UNITS FOR IMPORT/EXPORT SCENARIO 

BUS NAME AREA OUTPUT(MW) + -- ---- -- ---- -----

c····················································· .. 
BUS NUMBER, SCALING FACTOR 

-999 

c····················································· .. 
LOCATION OF IMPORTING UNITS FOR IMPORT/EXPORT SCENARIO 

BUS NAME AREA OUTPUT(MW) - -- ---- -- ---- -----

c····················································· .. 
BUS NUMBER, SCALING FACTOR 

-999 

c····················································· .......... . 
LOCATION OF LOAD INCREASE FOR LOAD/IMPORT SCENARIO 

INITIAL LOAD 

BUS NAME P(MW) Q(MVAR) 

c····················································· •..•..•.•.. 
BUS NUMBERS WHERE LOAD IS TO BE INCREASED AND SERVED FROM OUTSIDE 

-999 

c····················································· .. 
LOCATION OF GENERATION INCREASE FOR LOAD/IMPORT SCENARIO 

BUS NAME AREA OUTPUT(MW) + -- --- -- --- -----
c····················································· .. 
BUS NUMBER, SCALING FACTOR 

-9990 

c······················· 
BUSES TO MONITER 

BUS NAME AREA 

c······················· 



BUS NUMBERS 

6 

19 

48 

57 

73 

76 

98 

99 

191 

114 

118 

121 

123 

125 

130 

131 

-999 

CONVERGENCE TOLERANCE FOR POWER FLOW 

0.001000 

MAXIMUM NUMBER OF ITERATIONS ALLOWED 

30 

NUMBER OF WEAK BUSES TO MONITER 

10 
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• The load participation factors of the generators 
3 .114679 

6 .045527 

15 .086009 

27 .086009 

73 .025631 

76 .060493 

99 .007506 

101 .004702 

108 .031601 

114 .007511 

118 .009920 

121 .035550 

124 .147420 

125 .136926 

126 .141456 

130.026089 

131 .032970 
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