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ABSTRACT 

As part of an effort to develop an ocular insert controlled drug 

release system to treat Bovine Infectious Keratoconjunctivitis, tests 

were performed on hydrogel disks containing the antibiotic, tylosin 

tartrate. Thin layer chromatography was utilized to characterize the 

rates of release, and microstructural information from scanning electron 

microscopy was of use in determining ways to improve the release 

characteristics. 

Disk-shaped laminates of 90:10 methyl methacrylate/2-hydroxyethyl 

methacrylate which contained tylosin tartrate were studied for release 

characteristics by a five-day in vitro (in mammalian Ringer's solution 

at 37°C) experiment. Three different drug loading configurations were 

compared in quintuplicate: poly (lactic acid)-tylosin tartrate matrix 

containing 4.8 mg of antibiotic in the center of the disk, S.O mg of 

tylosin tartrate powder in the center of the disk, and so.a mg of 

tylosin tartrate powder in the center of the disk. On the basis of 

known minimum inhibitory concentration levels for the bacteria of 

interest and known tear flow rates, a minimum release rate range of 

1. 2-2. S ug/hr of tylosin tartrate was required. Release rates of 

approximately 20-30 ug/hr were observed for the controlled-release disks 

containing SO.a mg of tylosin tartrate. Release rates for the other two 

systems were lower than. 1.2 ug/hr. 

Thin layer chromatography and direct densitometric scanning were 

utilized to quantitate the amount of tylosin tartrate in release-

experiment samples. The variability of the quantitative analysis and 



2 

the linearity of the relationship between average weight of peak and 

tylosin tartrate amount were determined by a statistical analysis of 

type-one aqueous and saline solution standards with tylosin tartrate 

concentrations of 0.1-10.0 ug/10.0 ul. A sensitivity of 0.2 ug of 

tylosin tartrate was achieved. Type-one aqueous solutions produced 

coefficients of variance from 10.0-28.6 percent for 0.2-0.8 ug amounts 

and 5.6-10.5 percent for 0.9-10.0 ug amounts. Coefficient of 

determination calculations indicated a good linear relationship between 

average weight of peak and tylosin tartrate amount. The reduced 

viscosity of saline solutions resulted in coefficients of variance that 

were inversely related to the saline concentration, and larger than the 

values for type-one aqueous solutions. 
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INTRODUCTION 

Statement of the Problem 

Bovine Infectious Keratoconjunctivitis (BIK) is an acute contagious 

ophthalmia characterized by lacrimation, photophobia, corneal ulcers, 

and corneal opacities. BIK affects cattle worldwide. The disease is 

rarely fatal, but infected cattle refuse food. Consequently, major 

economic loss may occur as milk production, body weight, and growth 

diminish. 

The principal treatment method consists of topical applications of 

antibiotic and sulfonamide eyedrops, sprays, powders, or ointments for a 

period of five to seven days. Lachrymal fluid rapidly removes drug from 

the eye; therefore, trea'tment is effective when medication is applied 

two or three times daily. This repetitious reg.imen is timecconsuming 

and costly; therefore, developing a more efficient method of drug 

administration is of interest. 

To address the BIK treatment problem, a controlled drug release 

system was developed and characterized for its suitability for this 

application. Controlled-release systems may utilize biocompatible 

polymers to regulate the duration and rate of drug release for extended 

periods of time. An ocular controlled-release system that maintains a 

therapeutic level of a drug currently employed to treat BIK would 

eliminate the repetitious regimen. In this study, hydrogels were 

selected as the polymer for the ocular controlled-release system. 
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Certain hydrogel formulations are widely utilized as soft-contact lenses 

and have controllable water-imbibing characteristics. Tylosin tartrate, 

an agricultural antibiotic that effectively eradicates causative and 

contributory organisms of BIK, was chosen as the treatment drug. 

An acceptable ocular controlled-release system of hydrogel and 

tylosin tartrate would release sufficient (microgram) quantities of drug 

per hour into low volumes of lachrymal fluid in the animal's eyes. An 

important part of the research to be reported was to develop a method to 

characterize samples representing amounts of tylosin tartrate released 

into artificial lachrymal fluid. A method based on thin layer 

chromatography was developed and applied to quantitate tylosin tartrate 

release as a function of time from three types of hydrogel-drug disks. 

The hydrogel-drug disk experiments were used to examine effects of 

differences in drug loading and the potential usefulness of a poly 

(lactic acid) matrix containing the drug as a type of reservoir within 

the hydrogel disk. These experiments were directed at evaluating the 

feasibility of using hydrogel ocular inserts to release a suitable 

antibiotic for treatment of BIK. 

Literature Review 

Nomenclature 

BIK is commonly called pinkeye. The disease is also referred to as 

Infectious Bovine Keratoconjunctivitis IBK (Hughes and Pugh, 1970; 

Hughes and Pugh, 1975; Hughes, 1981), Infectious Bovine Kerato-

Conjunctivitis (Thrift and Overfield, 1974), Bovine Infectious 
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Keratoconjunctivitis BIK (Pugh and Hughes, 1975; Jensen and Mackey, 

1979; Blogg, 1980), and Bovine Infectious Keratitis (Baldwin, 1945). 

Other synonyms are infectious ophthalmia, and keratitis solaris (Hughes, 

1981). 

Etiology and modes of transmission 

Moraxella bovis, a common agricultural bacteria (Hughes and Pugh, 

1975), is capable of living through the winter (Blogg, 1980). Various 

strains have been identified, and the characteristics of Moraxella bovis 

strains associated with BIK are listed in Table 1. 

TABLE 1. Characteristics of Moraxella bovis strains associated with 
Bovine Infectious Keratoconjunctivitis. (Pugh, 19&9). 

A. Gram-negative, nonmotile diplobacillus. 
B. Usually hemolytic, smooth, circular colonies with an entire edge 

convex to umbonate, grayish white and slightly indented into the 
medium., 

c. Does not reduce nitrates to nitrites or, ferment carbohydrates. 
D. Are proteolytic, oxidase positive, and produce a typical three-

zone reaction when grown in litmus milk. 
E. Produce no surface growth in liquid medium but develop a coarse, 

flocculent sediment with little turbidity. 
F. Do not grow in Herellea agar. 
G. Produce firm easily fragmented colonies which autoagglutinate when 

placed in most liquid mediums. 

Moraxella bovis dissociates into various forms. The rough colony 

type is avirulent, while the smooth colony (typical type) of Moraxella 

bovis induces Bovine Infectious Keratoconjunctivitis (Jackson, 1953). 
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Moraxela bovis interconverts between its hemolytic and nonhemolytic 

forms with exposure to ultraviolet light (Pugh, 1969; Pugh and Hughes, 

1968). The virulent form is the primary infectious agent of BIK (Pugh 

and Hughes, 1968; Hughes and Pugh, 1970). 

Mycoplasma bovoculi is the primary causative agent of Mycoplasmal 

Conjunctivitis, a different disease than BIK; however, Mycoplasma 

bovoculi may create a more suitable environment for Moraxella bovis 

(Rosenbusch and Knudtson, 1980; Rosenbusch, 1983). The Bovine 

Infectious Rhinotracheitis virus causes conjunctivitis, but not 

keratitis; the inflammed membranes are conducive to the growth of 

Moraxella bovis {Blogg, 1980; Blood and Henderson, 1979). 

Symptoms of the naturally occurring disease are more severe than 

those of the experimentally induced disease; therefore, environmental 

conditions are a factor. BIK is most prevalent during summer and , 

autumn, but severe outbreaks occur in winter when cattle are confined in 

barns and feedlots. Ultraviolet light from the sun induces the 

conversion of nonhemolytic forms of Moraxella bovis to hemolytic forms. 

Face flies (Musca autumnalis and Musca domestica), dust, and temperature 

extremes increase the severity of the disease by irritating the eye 

(Blood and Henderson, 1979; Jensen and Mackey, 1965). 

The exact method of natural transmission has not been determined, 

but the disease can be produced by transferring Moraxella bovis into the 

conjunctiva of the eye (Pugh and Hughes, 1975). A cow may carry 

Moraxella bovis in tear and nasal secretions for one year after having 
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BIK without displaying visible signs of the disease (Blood and 

Henderson, 1979; Blogg, 1980). Tear and nasal secretions are 

transferred by direct contact between cattle, or by intermediaries such 

as wind-blown dust, animal handlers, and face flies (Blogg, 1980). 

Handlers pass Moraxella bovis, but do not contract pinkeye. Face 

flies harbor Moraxella bovis for up to three days after contact with an 

infected eye. A high density of cattle in feedlots facilitates the 

transmission process (Blood and Henderson, 1979). 

Nature of Bovine Infectious Keratoconjunctivitis 

BIK occurs as a unilateral or bilateral infection. After an 

incubation period of one to twenty days, the conjunctiva of the infected 

eye begins to swell and excess tearing occurs. Muscular spasms of the 

eyelid.and an elevated temperature are common. Ambient light causes 

pain; therefore, the animal seeks out dark areas, closes the eye, and 

refrains from eating (Blogg, 1980). Range cattle have died from 

starvation, drowning, and falling from high places due to impaired sight 

(Baldwin, 1945). 

Three to four days after the initial clinical signs, the eye 

remains tightly closed. A pus discharge mats the fur and causes dirt to 

adhere to the eye region. When the eye is forced open, an opaque 

covering of the cornea is· visible. At this stage, some mild cases of 

BIK begin to recover spontaneously; however, if secondary bacteria enter 

the conjunctiva, corneal ulcers develop. The ulcers invade the interior 

of the eye and cause temporary or permanent blindness. In rare cases, 

ulcers cause fatal meningitis (Jensen and Mackey, 1965). 
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With treatment, cattle that have not developed corneal ulcers 

recover in two to three weeks (Blogg, 1980). Cases that involve severe 

ulceration require five to six weeks for recovery, and permanent corneal 

scars are common (Jensen and Mackey, 1965). Cattle that contract BIR 

seem to develop an immunity against reinfection. A severe case imparts 

greater immunity than a mild case (Blood and Henderson, 1979; Blogg, 

1980). 

The effect of BIR is breed dependent. Cattle with non-pigmented 

eyelids are more susceptible and experience more serious reactions than 

those with pigmented eyelids (Blogg, 1980; Jensen and Mackey, 1965). 

Figure 1 illustrates the relationship between body-color pattern and BIR 

occurrence in the calves of a purbred Hereford herd and a mixed-bree.d 

herd. 

In any particular breed, cattle under two years of age have the 

highest rate of infection and disease. A five-year study conducted at 

the Iowa State University Beef Nutrition Farm found that calves had an 

average annual Moraxella bovis infection rate of seventy-five percent 

and an average annual BIR rate of fifty-eight percent, while cows had an 

average annual Moraxella bovis infection rate of sixty-three percent and 

an average annual BIR rate of sixteen percent (Hughes and Pugh, 1970). 

In a similar study, 158 Hereford calves were observed from birth 

until one year of age. Thir~y-six percent of the bulls and twelve 

percent of the heifers developed BIR. At 205 days of age, the bulls 

that contracted BIR were an average of thirty-six pounds lighter than 

those without BIR. Since the bulls experienced a greater percentage of 
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FIGURE 1. The relationship between body-color and Infectious Bovine 
Keratoconjunctivitis in the calves of a purebred Hereford 
herd and a mixed-breed herd. (Pugh et al., 1982) 

BIK than the heifers, the bulls may be more susceptible to the disease 

or they may simply have an increased chance of being infected due to 

their tendency to roam throughout the herd. At one year of age, the 

calves were reevaluated to determine prolonged effects. The bulls that 

contracted BIK weighed an average of seventy pounds less than those 
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without BIK; however, the heifers had no significant weight difference 

(Thrift and Overfield, 1974). 

A study with dairy cows found that milk production dropped an 

average of twenty-five percent during the course of the disease 

(Baldwin, 1945). 

There is a general lack of information concerning BIK's effect on 

adult bulls because a number of bulls are not routinely maintained in a 

herd. Current research indicates that a bull's libido may be reduced 

while infected with BIK (Thrift and Overfield, 19~4). 

Present methods of treatment 

Early cases of BIK are treated with antibiotic solutions and 

ophthalmic ointments containing chloramphenicol, oxytetracycline, 

penicillin-streptomycin (Jensen and Mackey, 1979; Blood and Henderson, 

1979), or tylosin (Burger, 1970; Rossoff, 1974). Eyedrops are the 

prevalent form of ocular delivery and generally the least expensive. 

Most eyedrops have an aqueous medium; however, poly (ethylene glycol), 

poly (vinyl alcohol), hydroxypropylmethylcellulose, and poly (vinyl-

pyrrolidone) are frequently added to increase viscosity (Chiou and 

Watanabe, 1982). Eighty percent of an eyedrop is lost from the 

preocular film immediately after instillation (Gelatt et al., 1979). 

Ointments that contain a lanolin, petrolatum, or vegetable oil base are 

utilized with drugs such as the tetracyclines. The base increases the 

pentration of drug through the corneal"membrane by improving retention" 

time (Chiou and Watanabe, 1982). Applications to both the upper and 
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lower conjunctival sac, three times daily, for five to seven days 

provides optimum results (Blood and Henderson, 1979; Jensen and Mackey, 

1965),. 

al., 1968), applied twice daily as a 50 mg/ml aqueous spray, eliminated 

clinical signs of BIK and Moraxella bovis from the eyes of cattle after 

five days (Ellis and Barnes, 1961). Sprays have retention times 

comparable to eyedrops. The delivery device increases unit price; 

however, a spray is less irritating than a drop, and less manual 

dexterity is required for proper application (Chiou and Watanabe, 1982). 
® Sampson and Gregory (1974) have shown Tylan plus neomyc.in eye 

powderl to be effective in the treatment of BIK when applied once or 

twice daily for a duration of one to three days. Aronson et al. (1983) 

recommend daily applications of Tylan® plus neomycin eye powder for a 

seven day period to treat BIK. Retention time is similar to the other 

methods. 

Parenteral treatment using sulphadimidine (100 mg/kg body weight) 

provides a therapeutic level in the tears for twelve to twenty-four 

hours (Blood and Henderson, 1979). Oxytetracycline and tylosin used in 

the same manner have also eliminated Moraxella bovis ocular infections 

(Hughes, 1981). Since systemically administered drugs must cross the 

blood-eye barrier, topical instillation is prefe'rred in most situations 

(Chiou and Watanabe, 1982). 

1 Elanco Products Co., Indianapolis, Indiana. 
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When corneal swelling of blood vessels is severe, sub-bulbar 

·conj.unctival injections of corticosteroids and antibiotics together with 

topical anesthetics and atropine improve drug absorption, reduce 

muscular spasms, and minimize drug loss (Blogg, 1980). Blood and 

Henderson (1979) recommend a 1 mg dexamethasone/2 ml mixture of 

penicillin-streptomycin injection; one injection is usually sufficient, 

but some cases'require daily injections for three days. Injections are 

recommended only for antimicrobial drugs such as penicillins, 

cephalosporins, and aminoglycosides, or for application to the eye's 

posterior region. Topically administered drugs diffuse into the 

circulation and Schlemm's Canal before reaching the posterior region 

(Chiou and Watanabe, 1982). Sewing the third eyelid across the globe 

promotes healing and protects against dirt and insects (Jensen and 

Mackey, 1965; Blood and Henderson, 1979; Blogg, 1980). 

Once ulceration occurs, corticosteriods and cortisone drugs are 

replaced by anticollogenases (Blogg, 1980). 

Researchers have tried to develop a BIK vaccine since 1975. A 

vaccine has been developed for protection against a homologous infection 

of Moraxella bovis; however, several strains of Moraxella bovis are 
'' --- ---
present in any infection. Until a vaccine is developed that provides 

protection against the heterologous challenge, other types of treatment 

must be utilized (Pugh et al., 1978; Pugh et al., 1982). 

Theodorakis et al. (1983) developed a poly (lactic acid)-

chloramphenicol sodium succinate ocular insert matrix designed to.treat 

BIK. The insert was attached to the outer side of the third eyelid by 
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sutures or a spear, and released a therapeutic level of chloramphenicol 

sodium succinate for two days at an irregular decreasing rate that did 

not follow the square root of time law (rate proportional tot-~). 

Ocular drug delivery methods 

Present methods of ocular drug delivery are summarized in Table 2. 

A brief comparison of eyedrops, ointments, sprays, powders, oral 

administrations, injections, and inserts was presented in the previous 

section. This section will provide more specific details for contact 

lenses and ocular inserts which bear on the projected application. 

TABLE 2. Methods of ocular drug delivery. (Chiou and Watanabe, 198Z) 

Eye drops 
Ointments 

Sprays 
Powders 

Oral Administrations 
Injections 

Soft Contact Lenses 
Perfusion Systems 

Inserts 

Soft contact lenses, .Bionite2 (soaked in a drug solution), improve 

retention time significantly compared with previous methods and are 

currently utilized in human medicine (Podos et al., 1972). A 

hydrophilic contact lens soaked in a four percent pilocarpine nitrate 

2 Griffin Laboratories Inc., Buffalo, New York. 
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solution releases approximately two-thirds of the drug in five minutes 
' (Richardson, 1975). Although the drug concentration rapidly decreases 

and the release mechanism is considered uncontrolled, the effects of 

pilocarpine (Gelatt et al., 1979} and tetracycline (Maichuk, 1975b} are 

seen twenty-four hours after application. In addition to not 

maintaining therapeutic levels for the duration necessary for BIK 

treatment, Hughes and Pugh (1975) found that the nictitating membrane 

removed such devices from the bovine eye within two hours. 

The perfusion system pumps a continuous and constant flow of drug· 

solution to the eye through a poly (ethylene) tube inserted into the 

conjunctiva! sac. Due to its cumbersome nature and expense, it is not 

widely utilized (Chiou and Watanabe, 1982). 

Ocular inserts for use in human medicine are fabricated from 

insoluble or soluble polymers and placed in the.upper or lower 

conjunctiva! sac. The inserts are generally eight to ten millimeter 

diameter circular flat disks, or eight by four millimeter oyal flat 

disks (Refojo, 1974).- Three types of inserts have been studied and are 

currently utilized. 

Soluble inserts of methylcellulose, hydroxypropylcellulose, poly 

(vinyl alcohol), poly (vinyl pyrrolidone), and poly (ethylene glycol) 

deliver a flow of polymer to thicken and stablize the precorneal tear 

film for the treatment of keratoconjunctivitis sicca (Refojo, 1974). 

Bloomfield et al. (1977) found that sixty to ninety percent of the 

insert dissolved within five hours. The total dissolution time of.these 

devices ranges from eight to twelve hours (Gelatt et al., 1979). This 



15 

type of insert does not release a drug; therefore, it is not applicable· 

to the treatment of BIK. 

Maichuk (1975a) ·produced a soluble ophthalmic drug insert composed 

of poly (acrylamide), ethylacetate, and vinylpyrrolidone that dissolved 

in thirty minutes. Various ophthalmic drugs (such as neomycin, 

kanomycin, atrophine, pilocarpine, idoxuridine, and methasone mixed with 

the polymer) are released at the dissolution rate, prolonging the 

availability of active substances in conjunctiva! and corneal tissue for 

thirty-four to seventy-two hours. Clinical testing with more than 500 

patients showed good tolerance of the insert and therapeutic efficacy in 

various forms of glaucoma, keratitis, cornea ulceration, trachoma, 

conjunctivitis, adenovirus, and herpesvirus. This type of device is 

unable to maintain a therapeutic level of drug for the duration needed-

to treat BIK. 

Ocusert3 , an ocular insert that provides control of intraocular 

p_ressure for one week on a twenty-four hour basis, consists of 0.074 mm 

thick outer membranes of poly (ethylene-vinyl acetate) and a pilocarpine 

core. A titanium dioxide annular-ring surrounds the pilocarpine core to 

prevent drug escape from the edges. There are two systems current.ly in 

use. Pilo-20 contains 5 mg of pilocarpine and maintains a release rate 

of 20 ug/hr for seven days. Its exterior dimensions are 5.7 x 13.4 mm 

on its axis and 0.33 mm in thickness (Figure 2). Pilo-40 contains 11 mg 

of pilocarpine and maintains a release of 40 ug/hr for seven days. Its 

3 Alza Pharmaceuticals, Palo Alto, California. 
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Exterior of polymer-~~~~~~~~~~--

Dru<?-~-t--t-

Ti tanium dioxide ring--"<~:-----~~~~----

FIGURE 2. Ocusert® exterior (Top-view). (Chien, 1982) 

exterior dimensions are 5.5 x 13 mm on its axis and 0.5 mm in thickness 

(Figure 2) (Chien, 1982). Figure 3 illustrates the release 

characteristics for the Pilo-20.' The average release rate for the first 

eight hours is 64 ug/hr. After this period, a 20 ug/hr release rate is 

maintained for seven days. At seven days the core is no longer 

saturated; consequently, first order release occurs (Cowsar, 1974; 

Richardson, 1975). 

Macoul and Pavan-Langston (1975) utilized a questionnaire format to 

examine the experiences of twenty-nine patients utilizing Ocusert®. The 

questionnaire was completed at specific times throughout a one yea.r 

period. Eighty-nine percent of the responses preferred the Ocusert® 

system to eyedrops. None of the responses indicated a problem with 

insertion, 0.3 percent of the responses expressed a frequent awareness 

of the insert in the eye, and 6.7 percent of the responses indicated 

that the device dislodged from the eye. 
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FIGURE 3. Pilo-20 release rate characteristics. (from Macoul and 
Pavan-Langston, 1975) 

Proposed treatment method 

·The controlled-release system is the only method of ocular drug 

delivery that is capable of maintaining a therapeutic leve1 in the eye 

for seven days. Controlled-release delivery.systems are classified by 

the release rate mechanism, and diffusion-controlled systems are the 

most prevalent. The two types of diffusion-controlled systems are 

reservoir and monolithic. A nonporous or microporous polymer film 

surrounds the drug in the reservoir system. Zero-order release occurs 

when the design maintains unit thermodynamic activity immediately inside 

the rate-limiting membrane (Hophenberg and Hsu, 1978). Reservoir 

systems are not biodegradable and leaks may develop. The drug is 

uniform.ly mixed throughout the solid nonbiodegradable polymer in the 

monolithic system. With excess dispersed drug, release is proportional 
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to the square root of drug loading·, and the rate slowly decreases in 

accordance with the square root of time rate law· ( Cowsar, 1974; Langer 

et al., 1980). 

An acceptable treatment drug must effectively eradicate BIK 

causative and contributory organisms. Two commonly utilized drugs are 

penicillin and streptomycin; however, in actual practice they are hot as 

effective as several other choices. Drugs that are effective against 

Moraxella bovis and Mycoplasma bovoculi are tetracycline, erythromycin, 

and tylosin-. Of these three, the minimum inhibitory concentration (0.63 

ug/ml), is lowest for tylosin. (R. F. Rosenbusch, personal 

communication.)4 Thus, treatment could be accomplished with a smaller 

amount of tylosin within the controlled-release system than if 

tetracycline or erythromycin were utilized. 

Tylosin (see Figure 4 for the structure), a macrolide antibiotic 

isolated from a strain of Streptomycetes fradiae in a soil sample from 

Thailand (McGuire et al., 1961; Hamill et al., 1961), is a weak base 

that forms soluble salts and ester compounds such as tylosin 

hydrochloride, tylosin tartrate, acetyltylosin, and propionyltylosin. 

The tylosin salts produced by the isolation and extraction process are 

pure enough to be utilized in that form (Korzybski et al. , 1967), and 

tylosin tartrate is commercially available for agricultural use (Burger, 

1970). Tylosin tartrate is soluble in water at concentrations greater 

than 300 mg/ml and is stable at room temperature in aqueous solutions 

4 Veterinary Medical Research Institute, Iowa State University, 
Ames, Iowa. 



19 

a 

FIGURE 4. Structure of tylosin. (from Windholz et al., 1976) 

(pH 4.0 - 9.0) for a least one month (Ose and Barnes, 1960). Trade 

names for the tylosin base are Tylan® and Tylocine® (Charles et al., 

1979) • 

The structure of the corneal membrane consists of an aqueous layer 

(stroma) covered by lipid layers (epithelium and endothelium). Drugs 

that are both hydrophobic and hydrophilic easily penetrate corneal 

tissue; however, pure polar or pure nonpolar drugs do not effectively 

penetrate the cornea (Chiou and Watanabe, 1982). Tylosin is soluble in 

lower alcohols, esters, ketones, chloronated hydrocarbons, benzene and 

ether; therefore, it is an amphipathic compound (Windholz et al., 1976). 

The antibiotic is essentially nontoxic and nonirritating to the eye and 

conjuctival sac (Ellis and Barnes, 1961; Johnston, 1982). 

An ocular controlled-release system of.biodegradable material would 

be particularly useful since subsequent system removal would not be 

required. 
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Biodegradable materials suitable for drug delivery systems are poly 

(lactic acid}, poly (glycolic acid), poly (£-caprolactone) and poly 

(amino acids) (Bruck, 1981; Langer and Peppas, 1981). 

Schindler et al. (1977) utilized in vitro methods to study the 

release of the steriods norgestrel, norethindrone, testosterone, 

progesterone, and ethynyl estradoil 1 from homo and copolymers of 

glycolide, dilactide, and £-caprolactone cylinders 1-2 cm in length with 

a 0.4-2.3 mm wall thickness. These configurations produced a release 

rate characterized by a rapid decline in rate during the first twenty 

days followed by a slow decline for the next 130 days. They found that 

copolymers of £-caprolactone and racemic dilactide were more permeable 

than poly (£-caprolactone) and are appropriate for devices with a 

lifespan of less than one year. Utilizing the same steriods, Pitt et 

al. (1979) showed that poly (lactic acid) films were 10 4 times less 

permeable than poly (£-caprolactone) films. The aqueous solubilities of 

the steroids at 37°c is, norgestrel 3.0 ug/ml, ,norethindrone 9.8 ug/ml, 

testosterone 30.6 ug/ml, progesterone 14.1 ug/ml and ethynyl estradiol 

12.1 ug/ml (Pitt et al., 1979). 

Schindler et al. (1977) found that it takes an average of eighty 

days for poly (dilactide) films implanted in rabbits to degrade to half 

of their original molecular weight. This degradation rate is 2.8 times 

greater than the degradation rate of poly (£-caprolactone) measured 

under the same conditions (Pitt et al., 1981). Copolymers of dilactide 

and £-caprolactone degrade more rapidly than either homopolymer. Figure 
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5 illustrates the fractional change in viscosity for the three materials 

versus time. 
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FIGURE 5. Fractional changes in the intrinsic viscosity of (a) poly , 
(e-caprolactone), (b) poly (dilactide), (c) poly 
(e-caprolactone-co-dilactide) with time. (from Pitt et al•,. 
1981) 

The release of sulfadiazine, an antimalarial drug, from a 1.5 mm 

diameter spherical matrix system of poly (lactic acid) implanted 

subdermally in rats decreased in accordance with the square root of time 

law (Wise et al., 1979). The aqueous solubility of sulfadiazine is 0.13 

mg/ml (Windholz et al., 1976). 

Poly (amino acids) are too weak for utilization as sutures and 

solubilize in a few days; however, the materials may be effective in 
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short duration, low strength drug release applications (Kronenthal, 

1975). 

These references illustrate that biodegradable polymers are capable 

of providing near zero-order release from reservoir devices and square 

root of time law release from matrix devices for relatively low water-

soluble drugs with molecular weights around 300. Therefore, it may be 

possible to release tylosin tartrate with its greater water solubility 

and higher molecular weight from similar devices. The literature search 

revealed no ocular applications of the biodegradable materials, and 

showed that the most common ophthalmic materials were silicon r.ubber, 

poly (methyl methacrylate) [poly (MMA)], and hydrogels (Reifojo, 19?4) .. 

Silicon rubber has been utilized extensively. for surgical . 

procedures within the globe of the ·eye. As a contact lens or ocular·, .,. 

insert, its high oxygen permeability permits the cornea t,0 obt'ain 
·;'.- ;:' ': 

required oxygen from the atmosphere; however, its hydrophobiC: nature , . 

causes eye irritation. Manufacturing difficulties are also a limitation· 

to the production of silicone rubber contact lenses (Refojo, i974). 

Poly (MMA) (Figure 6) is a high optical quality, light weigh:t,-

nonirritating material with excellent molding and machining ;o.;, •." 

''. '"'-

characteristics. Contact lenses of poly (MMA) are relatively · 

hydrophobic, absorbing 1. 5 percent water by weight (Refojo., 1974). The 

methyl methacrylate·monomer content should not exceed 0.~5 percent 

(Estevey and Ridley, 1966), since it is moderately toxic when absorbed· 

into the body; however, a 2-HEMA/MMA copolymer hydrogel stored in an 

. 
'· ,. 

.··-:,, ·, 
" t'. 

. ,•' 
' ~-~ .. ~_ ··~ ~' 
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FIGURE 6. Structure of 2-hydroxyethyl methacrylate (2-HEMA) and methyl 
methacrylate (MMA). (from Langer and Peppas, 1981) 

aqueous medium for a period of time is likely to consist only of polymer 

' network and the swelling medium (Refojo, 1969). 

Hydrogels are water-swollen, water-insoluble, polymeric materials 

with an equilibrium water content of up to ninety percent (Ratner and 

Hoffman, 1976; Pedley et al., 1980). Poly (2-hydroxyethyl methacrylate) 

[poly (2-HEMA)] is the most frequently utilized material due its 

stability under varying pH, temperature and toxicity conditions. It has 

an equilibrium water content of forty percent that can be reduced by 

copolymerization with methyl methacrylate [(MMA)] or increased by 

copolymerization with N-vinyl py'rrolidone [ (NVP)], methacrylic acid 

[(MA)]. or poly (vinyl pyrrolidone) [poly {VP)] (Pedley et al., 1980). 

Figure 7 illustrates equilibrium water content variation of MMA/2-HEMA 

copolymers. Hydrogel drug delivery systems are effective for. antibiotic 

release into areas with primary or secondary infection since they permit 

protracted drug release at optimum concentration to the immediate 

environment (Pedley et al.,· 1980). 
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FIGURE 7. Equilibrium water content of MMA/2-HEMA copolymers, (from 
Cowsar et al., 1976) 

Poly (2-HEMA) (Figure G) has an equilibrium water content of forty· 

percent (Pedley et al., 1980). It is extensively utilized by the soft-

contact lens industry due to its biocompatibility, and excellent 

machining and molding characteristics (Refojo, 1974). Poly (2-HEMA) 

disks produced no reaction when implanted within the corneal stroma for 

two months (Langer et al., 1981). 

Several reported drug release systems have poly (2-HEMA) or poly 

(2-HEMA)/poly (MMA) copolymers as the control membrane. Poly (2-HEMA) 

tubes {3 mm inside diameter, 5 mm outside diameter and 2.54 cm long) 

were filled with a cyclazocine polymer blend containing 140.G gm of 

cyclazocine (M.W. 271.39). Zero-order release of the highly water-

soluble narcotic antagonist into' an agitated, 37°C, phosphate buffer 
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solution of pH 7.4 at a rate of 1 mg/day for five months was achieved 

(Abrahams and Ronel, 1975). Cardinal et al. (1980) studied the release 

of a 100 mg progesterone (M.W. 314.45) silicone oil blend from poly 

(2-HEMA) tubes (2.85 cm long, 1.2 mm wall thickness) into agitated, 

23°C, deionized water. ·The release rate dropped from 0.15-0.04 mg/day 

for the first twenty days and remained zero-order at 0.04 mg/day until 

experiment termination thirty days later. Ebert et al. (1980) produced 

monolithic devices of poly (2-HEMA), prostaglandin E1 , and heparin that 

provided a release rate capable of reducing surface thrombosis for a 

period of seventy-two hours. The release characteristics followed the 

square root of time rate law. 

Various sized 50:50 MMA/2-HEMA copolymer rectangular slabs with a 

.sixty-two or eighty weight percent load of sodium fluoride were dip-

coated with a 70:30 MMA/2-HEMA copolymer to provide a coating with a 

thickness ranging from 0.11-0.28 mm. A synthetic-saliva, constant-

temperature flow system apparatus was utilized for the diffusion 

·experiment. Zero-order release rates of 0.02-1.0 mg/day for sixty days 

were obtained. The copolymer-sodium fluoride core provides a medium of 

fixed geometry and water content in which the fluoride salt dissolves 

before passing through the outer membrane. This maintains unit 

thermodynamic activity and prevents rapid release should the system fail 

(Cowsar et al., 1976). 

Olanoff and Anderson (1979) utilized 15 mm diameter trilaminar 

devices consisting of a tetracycline--63:37 MMA/2-HEMA matrix core 
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covered with 98:2 MMA/2-HEMA coatings of 0.053-0.14 mm thickness to 

release tetracycline (M.W. 444.43; water solubility 1.7 mg/ml). The 

zero-order release rate of tetracycline into Ringer's solution was found 

to be a function of general device geometry, coating membrane thickness, 

disk surface area, level of core reservoir drug .loading and membrane 

coating copolymer composition. Zero-order release rates.in the range of 

0.54-28.9 ug/day were reported. The outer coating was more hydrophobic 

than the inner core and controlled drug diffusion. The more hydrophilic 

core maintained the constant thermodynamic activity of the drug at the 

core-coating material junction as ·required for zero-order release. 

The desired ocular controlled-release system is required to 

maintain a minimum tylosin concentration of 0.63 ug/ml for seven days. 

The instantaneous volume of lachrymal fluid in the bovine may be 

approximated as 500 ul. (R. F. Rosenbusch, personal communication.)5 

Utilizing a catherization method of collecting lachrymal flui.d from 

cattle, Hoffman and Spadbrow (1978) obtained mean flow rates with a 

range of 0.18-1.86 ml/hr; Slatter and Edwards (1982) obtained mean flow 

rates of 1.96 ± 1.84 ml/hr (± s.d.). The ocular insert release rate 

requirements will vary due to different possible lachrymal fluid flow 

rates. However, the range of interest is known. 

The hydrogel reservoir and monolithic/reservoir systems described 

above have achieved zero-order release characteristics and are composed 

of acceptable ophthalmic materials. The wide range of zero-order 

5 Veterinary Medical Research Institute, Iowa State University, 
Ames, Iowa. 
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tetracycline (M.W. 444.43; water solubility 1.7 mg/ml) release 

(0.54-28.9 ug/day) obtained by Olanoff and Anderson (1979) indicates 

that reservoir and monolithic/reservoir systems with a 98:2 MMA/2-HEMA· 

control membrane may be utilized to provide zero-order release of 

tylosin tartrate (M.W. 1066.14; water solubility 300 mg/ml). Olanoff 

and Anderson (1979) and Olanoff et al. (1979) produced the 98:2 

MMA/2-HEMA copolymer by polymerizing a 90:10 MMA/2-HEMA molar feed ratio 

of monomers. The composition of the copolymer was determined by nuclear 

magnetic resonance analysis. This study duplicated the copolymerization 

procedures utilized by Olanoff and Anderson (1979); therefore, a similar 

copolymer product is expected. 

Quantitative analysis methods for tylosin tartrate 

The absorbancy (absorbancy=absorbance x 10000/concentration 

(ug/ml)) of a one percent solution of tylosin tartrate in a cell with a 

one centimeter.path is 255 at a wavelength of 290 nm. (B. Goodlow, 

personal communication.)6 Therefore, spectrophotometry may be used to 

determine tylosin tartrate concentration in an otherwise unvarying 

solvent. Hoffman and Spadbrow (1978) found that the protein 

concentration in lacrymal fluid varied inversely with the flow rate and 

had a range of 2.94-12.35 mg/ml. Thus, spectrophotometry is not an 

acceptable method of measuring tylosin tartrate concentration in 

lacrymal fluid. 

6 Sigma Chemical Company, Technical Service Representative, St. 
Louis, Missouri. 
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Thin layer chromatography (TLC) eliminates interference by other 

similarly acting agents since it is based on chemical and physical 

properties and not pharmacological properties; therefore, it is of 

possible interest. Debackere and Baeten (1971) utilized Silica Gel 254 

TLC plates? and the developing and visualization process shown in Figure 

8 to detect tylosin tartrate at concentrations of 2-4 ppm in water, 

blood plasma, urine, milk, tissue homogenates, and feed. The 

quantitative analysis of tylosin tartrate was performed by eluting ·the 

spots from the plate and conducting a spectrophotometric analysis of the 

eluted sample. This method of TLC analysis is time consuming, and 

technological advances since this study may permit a more sensitive, 

less time consuming analysis .. 

Commercially manufactured TLC plates have uniformly dispersed 

stationary phases of r.eproducible thickness. This development, and the 

simultaneous improvements in densitometer instrumentation permit 

quantitative analysis of samples directly on TLC plates. The relative 

standard deviation due to instrument variation is less than one percent, 

and quantitative determinations can achieve reproducibility of ± 2 

percent (Touchstone and Dobbins, 1978). A densitometer trace of zones 

with increasing sample weight, constant volume, and constant zone 

diameter results in a linear relationship between peak area and weight 

(Stahl and Jork, 1968). Table 3 summarizes the various peak area 

measurement techniques. The first four methods were available in 

7 Merck and Company Inc., Rahway, New Jersey. 
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Sample homogenization, 
. deproteinization and 

extraction 

i 
Alkaloid spotting 

and developing 

/"\ 
Samples from 

water, milk, blood plasma 
Samples from 

urine, feeds, tissues 

One-dimensional developing 
60:40 chloroform-acetone 

Two dimensional developing 
60:40 chloroform-acetone, 
85:15 ethyl acetate-methanol 

/ 
Identify tylosin 

with UV at 
254 nm 

Consecutive application of 
visualizing sprays, 
acid iodoplatinate, 

Dragendorff's reagent, 
saturated silver sulphate 

in 10% sulfuric acid 

a(Debackere and Laruelle, 1964) 

FIGURE 8. Thin layer chromatography developing and visualizing 
procedure for detecting tylosin tartrate. (Debackere and 
Baeten, 1971) 
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performing the work to be reported; selection of the "cut and weigh" 

method permitted good relative precision and provided a method of coping. 

with irregularly shaped peaks. Touchstone and Dobbins {1978) found that 

peak height to width at half-height ratios of 1-10, and Rf values in the 

range of o. 3-0. 7 improved the accuracy of the "cut and weigh" method. Rf 

is, defined as 

center-of-sample distance from zero reference 
developing-solvent-front distance from the zero reference 

where the preadsorbent layer-stationary phase interface is the zero 

reference. Within the 0.3-0.7 Rf range, the sample area per unit of 

solute is most uniform; therefore, the densitometric analysis is most 

accurate. 

·TABLE 3. Relative precision of peak-area measurement techniques. (fiom 
Snyder and Kirland, 1974) 

Method 

Planimeter 
Triangulation 
Cut and Weigh 

. Height x 1/2 width 
Bail and' disk integrator 
Electronic digital integrator 
Computer 

Relative precision 
1 s.d. (%) 

3 
3 
2 
2 
1 

0.5 
0.25 
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Early TLC work utilized a stationary phase that was more polar than 

the mobile phase (normal phase); however, a nonpolar, hydrocarbonaceous 
i 

stationary phase and relatively more polar mobile phase (reverse phase) 

is useful for the separation of nonpolar compounds such as hydrocarbons, 

lipids, fatty acids, carotenoids, steroids, triglycerides, vitamins, and 

cholesterol esters (Sherma, 1981). The reversed phase plate is 

therefore of interest to provide a separation of tylosin from the other 

components of lachrymal fluid. (H. M. Stahr, personal communication.) 8 

.The hydrophobic stationary phase of the reversed phase plate limits the 

choice of spotting solvent to those that will produce small initial 

zones; unfortunately, these solvents may not solubilize the sample. An 

inert preadsorbent layer comprising the first two or three centimeters 

of the TLC plate acts as. a blotter and reduces unfavorable spotting 

solvents to strong acids and bases (Sherma, 1982). Table 4 summarizes 

addit·ional advantages of preadsorbent TLC plates compared with 

conventional plates. The preadsorbent layer is of particular import.ance 

to this study because it permits direct spotting of aqueous tylosin-

saline solutions, eliminating the extraction process. 

The improved resolution and sensitivity of detection permit more 

precise direct quantitative analysis with a densitometer, and the 

improved reproducibility of Rf values reduces scanning time. 

8 Veterinary Diagnostic Laboratory, Iowa State University, Ames, 
Iowa. 
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TABLE 4. Advantages of preadsorbent TLC compared with conventional TLC. 
(from Sherma, 1982) 

Rapid application of high volumes and dilute solutions 

Automatic formation of uniform, narrow streaks at the layer 
interface 

Improved resolution 

Improved sensitivity of detection 

Improved reproducibility of Rf values 

Improved precision of quantitation by scanning 

Less required sample cleanup because of retention of salts and 
certain insoluble interfering organic compo.unds in the 
preadsorbent 

Analytes that may become irreversibly sorbed on active silica gel 
during drying of applied spots can be successfully chromatographed 
since substances do not contact the silica gel until they have 
passed through the preadsorbent, and then only in dissolved form 

Very dilute solutions can be applied by immersion of the 
preadsorbent in the sample solution 

The preadsorbent reversed phase TLC plate chosen for this 

application is the Whatman LKC 18 F9, The union of the preadsorbent layer 

and octadecy.lsilane reversed phase TLC has resulted in a ten to thirty 

percent increase of resolving power over normal phase conventional 

plates (Sherma, 1982). 

9 Whatman Chemical Separation Inc., Clifton New Sersey. 
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Whatman LKC 18 F TLC plates are coated with a silicon oil powder 

during the manufacturing process, and this powder produces a random 

pattern of brown and black spots when the TLC plate is visualized with 

sulfuric acid--methanol spray and heat. Full development of the TLC 

plates in methanol, before spotting, washes the silicon oil powder from 

the surface; consequently, a uniform, white-background is achieved on a 

visualized TLC plate. (H. M. Stahr, personal communication.) 10 

Whatman Chemical Sepa~ation Inc. (1981) recommends an 80:20 

methanol/water solution as a starting point for the selection of a 

developing solution. 

Charring, spraying a developed, preheated (110°C) silica gel TLC 

plate with concentrated sulfuric acid, is a common method of visualizing 

antibiotics. This process produces dark zones against a white 

background (Wagman and Weinstein, 1973). However, Whatman LKC 18 F TLC 

plates have octadecylsilane chemically bonded to the silica gel; 

consequently, charring techniques produce background discoloration 

(Sherma, 1981). Sherma (1981) recommends a uniform 90:10 

methanol/sulfuric acid spray followed by 110-170°C heat for two to five 

minutes as a visualization method. He found spraying preferable to 

dipping as the former produced a lighter background. 

10 Veterinary Diagnostic Laboratory, Iowa State University, Ames, 
Iowa. 
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PROCEDURES AND MATERIALS 

Production of 90:10 1111A/2-HEl1A Copolymer Films 

The following materials were added in the order listed to the one-

liter Erlenmeyer flask of the experimental apparatus shown in Figure 9: 

570.0 ml of ethanol, 380.0 ml of type-one waterl, 6.1 ml of 2-HE11A2 , 

46.6 ml of MMAa, 0.2507 gm of sodium persulfate 4 , and 0.1253 gm of 

potassium persulfates. 

The flask was sealed with a rubber stopper and the liquid contents 

were bubbled with nitrogen for thirty minutes. After thirty minutes, 

slight positive nitrogen pressure was maintained on the system for the 

ten day copolymer.ization reaction carried out at room temperature 

(21-23°C). On day ten, the white copolymer precipitate and solvent were 

added to a four-liter beaker containing three liters of type-one water. 

Suction filtration of the copolymer was completed with a Buchner funnel 

and 7 .0 cm, I-qualitative filter paper• .. After the initial filtration, 

1 American Society for Testing Materials definition; 0.1 mg/l 
maximum total matter, 0.06 micromho/cm maximum electrical conductivity 
at 25°C, 16.67 megaohm.cm minimum electrical resistivity at 25°C, 60 
minutes minimum color retention time of potassium permanganate, no 
detectable soluble silica. 

2 Polysciences Inc., Lot #2-2405, Ophthalmic Grade, Warrington, 
Pennsylvania. 

3 Adlrich Chemical Company Inc., Lot #041557, Milwaukee, Wisconsin. 

4 Aldrich Chemical Company Inc., Lot #060BHK, Milwaukee, Wisconsin. 

5 Fisher Scientific Company, Lot #714237, Fair Lawn, New Jersey. 

6 ward R. Balston Limited, London, England. 
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the copolymer in the funnel was washed four times with 25 ml amounts of 

type-one water before being placed into a 190 x 100 mm Pyrex glass 

container for drying. The storage container was covered with a filter 

paper1 top which prevented contaminants from entering during the five 

day drying period (drying temperature of 50°cB 25 in Hg vacuum 9 ). 

Copolymer films (90:10 MMA/2-HEMA) were produced by the following 

process. Two grams of 90:10 MMA/2-HEMA copolymer, 12.0 ml of acetone, 

and 8.0 ml of dimethylformamidelO were added to a 50 ml Erlenmeyer flask 

in the.order listed. The flask was covered with a weighted watch glass 

(75 gm) and placed onto a preheated magnetic stirrer. Mixing and 

heating rates were adjusted to produce 200 rpm and 33-35°C values, 

respectively. After ten hours of mixing and heating, the solution was 

dispersed in approximately equal amounts onto three, siliconizedll, 75 x 

50 mm plain-glass microscope slides. The films were produced by slowly 

pouring the solution from the Erlenmeyer flask in the pattern shown in 

Figure 10. Solution did not cover the entire slide; therefore, it could 

seek its own level. The poured films were immediately covered with a 

petri dish top, and were kept at room temperature (21-23°C) for the 

1 Whatman Limited, Type !-qualitative, London, England. 

B Chicago Apparatus, Model 524 A, Chicago, Illinois. 

9 The Welch Scientific Company, Duo Seal® Vacuum Pump, Model 1402, 
Skokie, Illinois. 

10 J. T. Baker Chemical Company, Lot #35107, Phillipsburg, New 
Jersey. 

11 PCR Research Chemicals, Inc. Prosil-28, Gainesville, Florida. 
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END 

/------,~/ 

FIGURE 10. Pouring pattern for 90:10 MMA/2-HEMA films 

evaporation process. Forty-eight hours after pouring, the cured films 

were separated from their glass slide by immersion into type-one water. 

The films floated free of the glass slide within five minutes. The 

separated films were soaked for ninety-six hours in a 600 ml glass 

beaker containing that same amount of type-one water. At twenty-four 

hour intervals, the type-one water was changed. 

After the four-day soaking period, the films were removed from the: 

beaker and immediately cut with a corkborer into 17.9 mm diameter disks. 

The disks were stored at room temperature {21-23°C) in a glass petri 

dish. After twenty-four hours, the disks were dry. The thickness of 

the dry disks was directly measured with a micrometer12 and scanning 

electron microscopy13 was utilized to obtain microstructural 

12 L. S. Starrett Company, Model EDP 50940, Athol, Massachusetts. 

13 Japanese Electron Optics, Limited, Model U3, Tokoyo, Japan •. 



38 

information. The disks were stored at room temperature in 15 x 10 cm 

polyethylene storage bags until needed. 

Fabrication of Poly (Lactic Acid)-Tylosin Tartrate Matrix by the 

Cold Process 

Rhine et al. (1980) produced a poly (ethylene/vinyl acetate)-

protein matrix with uniform particle dispersion. Their fabrication 

procedures were adapted to produce a poly (lactic acid)-tylosin tartrate 

matrix. 

One hundred milligrams of poly (lactic acid)14, 100 mg of tylosin 

tartratels and 5.0 ml of methylene chloride16 were added in the order 

listed to a 25 ml Erlenmeyer flask. The flask was covered·with a 

weighted watch glass (75 gm) and placed onto a magnetic stirrer. Mixing 

for five minutes at 100 rpm produced a solution. A 100 x 15 mm dispos-

able petri dish was packed with granulated dry ice, and a siliconized, 

75 x 50 mm plain-glass microscope slide was precooled for five minutes 

by placing it on top of the sealed petri dish. During precooling, the 

slide was covered with a second slide to prevent frost formation. 

When the five minute mixing and precooling period elapsed, 4.4 ml 

of solution were pipetted onto the precooled, siliconized, glass slide 

by the pattern shown in Figure 11. The slide remained on the petri dish 

14 Polysciences Inc., Lot #23062, Warrington, Pennsylvania. 

15 Sigma Chemical Company, Lot #89C-0315, St. Louis, Missouri. 

16 Fisher Scientific Company, Lot #721513, Fair Lawn, New.Jersey. 
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FIGURE 11. Pouring pattern for poly (lactic acid)-tylosin tartrate. 
matrix 

for ten minutes; the first three minutes it remained uncovered, and the 

last seven minutes it was covered with a disposable petri dish top. 

After ten minutes, the slide was transferred to a freezer (-20°C) for 

forty-eight hours. Upon removal from the freezer, forceps were utilized 

to pull the poly (lactic acid)-tylosin tartrate matrix from the 

siliconized glass slide. The matrix was transferred to a 160 x 255 mm 

glass desiccator and kept at room temperature (21-23°C). under a 1 mm Hg 

water-flow vacuum for forty-eight hours. 

After forty-eight hours in the desiccator, the matrix was removed 

and immediately cut with a corkborer into eight 16.2 mm diameter-disks. 

Each disk was weighed17, and its thickness was determined by placing a 

disk between two 3 x 1 inch plain-glass microscope slides of known 

thickness and measuring the change of thickness with a micrometer. 

17 Mettler Instrumente AG, Model H31AR, Zurich, Switzerland. 
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Microstructural information was obtained by scanning electron 

microscopy. The disks were kept at room temperature in 15 x 10 cm 

polyethylene storage bags until needed. 

Fabrication of Poly (Lactic Acid)-Tylosin Tartrate Matrix by the Roam 

Temperature Process 
I ' 

One hundred milligrams of,tylosin tartrate, 0.1 gm of poly (lactic 

acid) and 9 ml of methylene chloride were added in the order listed to a 

25 ml Erlenmeyer flask. The flask was covered with a weighted watch 

glass (75 gm) and placed onto a magnetic stirrer. A solution was 

produced after mixing at 100 rpm for five minutes. 

When the five minute mixing period elapsed, 4.4 ml of the solution 

were pipetted onto a siliconized, 75 x 50 mm plain-glass microscope 

slide by the pattern shown in Figure 11. The slide was covered with a 

petri dish top for the twenty minute room temperature (21°C) evaporation 

process. The dry film was pulled from the.slide with forceps and was 

kept at room temperature in 15 x 10 cm polyethylene storage bags until 

needed. 

Fabrication of Controlled-Release Systems 

Three types of trilaminar systems were produced in quintuplicate. 

Table 5 indicates the composition of e~ch layer. The following 

procedure was utilized to join the outer layers together. One gram of 

90:10 MMA/2-HEMA copolymer, 6.0 ml of acetone, and 4.0 ml of 
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TABLE 5. Composition of trilaminar controlled-release systems 

Controlled-release 
system sample 
number 

32A 
328 
32C 
320 
32E 

33A 
338 
33C 
330· 
33E 

34A 
348 

·34c 
340 
34E 

Composition of 
inner layer 

16.2 mm diameter 
poly (lactic acid)-
tylosin tartratea 
matrix containing 
approximately 4.84 mg 
of tylosin tartratea 

Tylosin tartratea 
(5 mg loading) 

Tylosin tartratea 
(50 mg loading) 

Composition of 
outer layer 

17.9 mm diameter 
disk of 90:10 
MMA/2-HEMA 

17.9 mm diameter 
disk of 90: 10 
MMA/2-HEMA 

17.9 mm diameter 
disk of 90:10 
MMA/2-HEMA 

aSigma Chemical Company, Lot #89C-0315, St. Louis, Missouri. 

dimethylformamide were added in the order listed to a 50 m.l Erlenmeyer 

flask. The flask was covered with a weighted watch glass (75 gm) and 

placed onto a preheated magnetic stirrer. Mixing and heating rates were 

adjusted to produce 200 rpm and 33-35°C values, respectively. A cloudy 

solution formed in six hours. 

Figure 12 illustrates the assembly process. The·· bottom 90: 10 

MMA/2-HEMA disk was placed glass side down on a 75 x 50 mm plain-glass 
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FIGURE 12. Controlled-release system assembly diagram 

microscope slide. Tylosin tartrate was weighed directly onto the 90:10 

MMA/2-HEMA disk for controlled-release system samples 33A-E and 34A-E. 

By comparison, a 16.2 mm diameter disk of the poly (lactic acid)-

tylosin tartrate matrix (from the cold process) was placed on top of the 

90:10 MMA/2-HEMA disk for controlled-release system samples 32A-E. The 

90:10 MMA/2-HEMA solution produced above was dispersed along the outer 

perimeter of the 90:10 MMA/2-HEMA disk using a disposable lee syringe 

and 20G-l needle. A second 90:10 MMA/2-HEMA disk was applied glass side 

up, and a weighted 7S x SO mm plain-glass microscope slide (SS gm) 

covered the trilaminar system. Solvent evaporation at room temperature 

'· 
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(21-23°c) was completed in twenty-four hours. The edges of the 

completed controlled-release systems were examined for perforations at 

40X with a stereomicroscopelB, and completed disks were stored in glass 

petri .dishes at room temperature until utilized in the tylosin t.artrate 

release-experiment forty-eight hours later. 

Tylosin Tartrate Release-Experiment 

Each of the fifteen controlled-release systems was placed into a 20 

ml scintillation vial containing 2.0 ml of mammalian Ringer's 

solutionl9. The lids were lined with aluminum foil to prevent 

contamination of the samples from the glue used on the conventional cap 

liners, and the tightly sealed vials were placed into a shaking water 

bath2D operating at 60 rpm and 37°C. At the time intervals shown in 

Table 6, the 2.0 ml of mammalian Ringer's solution was removed from each 

vial using a 3 ml disposable syringe and 22G-l needle, and placed into a 

one-dram glass vial. A fresh 2.0 ml amount of mammalian Ringer's 

solution was added to each 20 ml scintillation vial by directing the 

flow into the bottom corner of the vial away from the insert. Each 20 

ml scintillation vial had a separate syringe for collection; however, a 

single syringe was utilized for addition of mammalian Ringer's solution. 

18 Nikon, Model 90783, Tokoyo, Japan. 

' 19 8.60 gm sodium chloride, 0.30 gm potassium chloride, 0.33 gm 
calcium chloride, combined in one-liter volumetric flask and filled with 
type-one water. 

2 ·° Fisher Scientific Company, Model 127, Pittsburgh, Pennsylvani'a'. 

. ·-. 

' '' , . 
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TABLE 6. Collection times for the tylosin tartrate release-experiment 

Sample number Time of collection Sample.number Time of collection 
from beginning of from beginning of 
experiment (hrs) experiment (hrs) 

1 4 11 60 
2 8 12 72 
3 12 13 76 
4 24 14 80 
5 28 15 84 
6 32 16 96 
7 36 17 100 
8 48 18 104 
9 52 19 108 

10 56 20 120 

The one-dram glass vials containing the collected samples were, placed 

into ari oven21 at 50°C and the liquid was totally evaporated. 

TLC Spotting, Developing, Visualizing, and Quantitative Procedures 

Whatman LKC 18 F, 20 x 20 cm, TLC plates22 were fully developed in a 

standard developing chamber23 containing methanol24. The developed 

21 GCA/Precision Scientific, Model 28, Chicago, Illinois. 

22 Whatman Chemical Separation Inc., Lot #002513, 002360, 002061, 
002280, Clifton, New Jersey. 

23 Whatman Chemical Separation Inc., Type CDC-12, Clifton, New 
Jersey. 

24 Fisher Scientific Company, Lot #734176, Fair Lawn, New Jersey. 
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plates were air-dried at room temperature for a period of at least four 

days. 

Ten microliter aqueous or saline solutions of tylosin tartrate were 

applied to the TLC plate with a Drummond 0-10 ul micropipette. Spotting 

was accomplished by depressing the plunger until an approximately 3 ul 

drop formed at the end of the glass dispenser tube. By touching the 

edge of the drop to the preadsorbent layer of the TLC plate, the drop 

was transferred to the plate. 

Room temperature air which was passed through a drying tube of 

Drierite® was subsequently blown across the TLC plate's surface to 

facilitate the evaporation process. 

When the spots were completely dried, each TLC plate was 

individually developed a distance of 8 cm in a standard developing 

chamber containing an eighty-five percent methanol and fifteen percent 

type-one water solution. Fresh solution was produced in 100 ml amounts 

and was utilized for each developing session. The chamber was 

equilibrated for one hour before developing TLC plates, and one side of 

the chamber was lined with filter paper25 to maintain chamber 

equilibrium. TLC plates were developed with the gel side facing the 

liner. Developed plates were air-dried at room temperature before 

beginning the visualization procedure. 

25 Whatman Chemical Separation Inc., Type 3MM-0,3 millimeter 
thickness, Clifton, New Jersey. 
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Visualization of the developed plate was accomplished by spraying26 

ten percent (by volume) sulfuric acid27 in methanol2 8 at a rate of 15 

ml/min for fifteen seconds, and placing the sprayed plate into a 100°C 

oven for ten minutes. After ten minutes of heating, the plate was kept 

at room temperature for fifteen minutes as fading of the tylosin 

tartrate sample occurred. After the initial fading, the tylosin 

tartrate samples maintained their intensity for several hours. 

Quantitative analysis was conducted during the 15-120 minute period 

following heating. 

A Kontes fiber optic scanner, model 8002 9 , was utilized to directly 

measure tylosin tartrate dark-spot intensity by cross scanning the TLC 

plate (perpendicular to the development direction). The output signal 

of the densitometer was transmitted to a linear plotter3° which produced 

a trace of peaks for subsequent evaluation of areas. The lower limit of 

a peak area was determined by connecting the baseline on either side of 

the peak with a straight line. Each TLC plate was analyzed twice; 

consequently, there were two peaks for each tylosin tartrate spot. The 

26 Kontes, Model K-422550, Vineland, New Jersey. 

27 Fisher Scientific Company, Lot #732068, Fair Lawn, New Jersey. 

28 Fisher Scientific Company, Lot #734176, Fair Lawn, New Jersey. 

2 ~ Kontes Scientific Instrument Group, Vineland, New Jersey. scan 
rate 2cm/min; du~l-~eam reflectance mode; phosphor coated disk #9660750 
(red filter), emission peak 615nm, bandwidth lOnm; attenuator adjusted 
to produce peak height to half-height width ratios of one to ten. 

30 Linear Instruments Corporation, Model 255/MM, Irvine, California. 
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peaks were cut-out and weighed. The arithmetic mean of the two weights 

was utilized in the computer analysis. 

Upon complet·ion of the densitometric analysis, Rf was determined. · 

Evaluation of TLC Quantitative Analysis of Tylosin Tartrate 

A• melting point determination for tylosin tartrate was conducted. 

Tylosin tartrate/type one water standards were produced by the followin9 

procedure. One hundred milligrams of tylosin tartrate and 10 ml of 

type-one water were added to a 15 ml ground glass test tube. The 

contents were initially mixed for three minutes with the Vortex-Genie 

Mixer3 1 (setting 5) to_ form a solution and were then placed into a dry, 

shaking water bath unit (setting B) for three hours to ensure uniform 

dispersion. Subsequently, a 1:100 dilution was performed, and this 

solutio'n was mixed in ·the same manner. The solution concentration was 

verified by a UV spectrophotometric analysis32. This analysis was 

conducted by measuring the absorbance (at 290 nm) of the tylosin 

tartrate type-one aqueous solution against a reference of pure type-one 

water. 

The original solution and the 1: 100 dilution wer·e utilized to 

.Prepare the tylosin tartrate standards.listed in Table 7. All dilutions 

were subjected to the mixing procedure outlined above, before subsequent 

dilutions were conducted. 

31 Scientific Industries Inc., Bohemia, New York. 

32 Varian/Instrument Division, Model 219, Palo Alto, California. 
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TABLE 7. Tylosin .tartrate standard concentrations (ug per 10 ui. of 
solution). 

0.10 
0.20 
0.30 
0.40 

0. so 
O.GO 
0.70 
0.80 

0.90 
1.0 
2.0 
3.0 

4.0 
5.0 
G.O 
7.0 

8.0 
9.0 

10.0 

Two separate experimental procedures were conducted. Seven, 10 ul-

amounts of a single standard were applied to a TLC plate at 2.0 cm 

intervals. This was repeated for each standard listed in Table 7. The 

method utilized to obtain the average weight of peak from a tylosin 

tartrate standard applied to a TLC plate may be found in the section 

entitled, TLC Spotting, Developing, Visualizing, and Quantitative 

Procedures. The average weight of peak for each of the seven standards· 

on a TLC plate was analyzed with a computer statistical analysis program 

(SPSS Inc., 1983). Maximum, minimum, mean, standard deviation, range 

and scattergram data were calculated. 

Standards were separated into three groups, 0.10-0.70, 0.80-5.0, 

and 4.0-10.0 for the second experiment. Ten microliters from each of 

the seven standards in a group was spotted onto a TLC plate at 2 cm 

intervals. Five TLC plates of each group were produced. The method 

utilized to obtain the average weight of peak from a tylosin tartrate 

standard applied to a TLC plate may be found in the section entitled, 

TLC Spotting, Developing, Visualizing, and Quantitative Procedures. The 
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average weight of peak for each of the seven standards on a TLC plate 

was analyzed with a computer statistical analysis program (SPSS Inc., 

1983). The coefficient of determination (r2), standard error, 

·regression line equation, and scatterplot data were calculated. 

Determination of the Tylosin Tartrate Concentration in the Release-

Experiment Samples 

The release-experiment samples were dried and sealed in one-dram 

glass vials with teflon screw caps at the beginning of this procedure. 

An Eppendorf pipette was utilized to add type-one water in 100 ul 

amounts until a solution was formed. Ten microliters from each sample 

were spotted onto a TLC plate at 1 cm intervals; thus, nineteen samples 

were on a single TLC plate. The spotting, developing, and visualizing 

process are outlined in the section entitled, TLC Spotting, Developing, 

Visualizing, and Quantitative Procedures. The sample spots of tylosin 

tartrate were visually compared with a TLC plate of tylosin tartrate 

standards to determine the need for subsequent dilutions. The dilution 

process was repeated until a tylosin tartrate concentration below 5.0 

ug/10 ul was obtained for each release-experiment sample. This dilution 

process utilized 100 ul, 500 ul, and 1000 ul Eppendorf pipettes. 

Quantitative analysis of the samples was conducted by applying a 10 

ul amount of five samples and five standards to a TLC plate at 1.5 cm 

intervals. Tylosin tartrate standards were selected to correspond with 

the visually determined sample concentration. The method utilized to 

obtain average weight of peak from the tylosin tartrate spots on a· TLC 

I 

I 
I 
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plate may be found in the section entitled, TLC Spotting, Developing,' 

Visualizing, and Quantitative Procedures. The average weight of peak 

for each of the five standards on a TLC plate was analyzed with a 

computer statistical analysis program (SPSS Inc., 1983). The 

coefficient of determination (r2), standard error, regression line 

equation, and scatterplot data were calculated. The average weight of 

peak for each of the five release-experiment samples was substituted 

into the regression line equation to calculate tylosin tartrate 

concentration. 

The above procedure utilized known concentrations of tylosin 

tartrate in a type-one aqueous solution to calculate the regression line 

equation. However, the average weight of peak substituted into the 

regression line equation to determine the amount of tylosin tartrate 

released was based on saline solutions of varyi~g concentration. The 

following procedures were utilized to determine the effect of saline 

concentration on the TLC quantitative analysis method. Tylosi~ tartrate· 

concentrations of 1.0, 2.0, 3.0, 4.0, and 5.0 ug/10 ul were produced 

utilizing type-one water and mammalian Ringer's solutions. Ten 

microliters from each of the ten solutions were applied to a Whatman 

LKC 18F TLC plate at 1.5 cm intervals, and the TLC plate was developed 

and visualized by the method previously described. A densitometer 

analysis was conducted to determine pattern intensity variation due to 

differences in saline concentration of the application solvent. 

. . 
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The variability of Rt and of spot diffusion due to different salt 

concentrations in the application solvents was examined by applying 10 

ul samples with varying saline concentrations, but identical tylosin 

tartrate amounts, to a Whatman LKC 18 F TLC plate. The saline 

concentrations were produced by the following procedure. Two milliliter 

mammalian Ringer's solutions (with the tylosin tartrate concentrations 

shown in Table 8) were placed into one-dram vials and totally evaporated 

at 50°C. The salts and tylosin tartrate were resolubilized by adding 

type-one water in the amounts shown in Table 8. Ten microliters of the 

three saline concentrations and a type-one water solution containing the 

same concentration of tylosin were applied in duplicate to a Whatman 

LKC 18 F TLC plate at 1.5 cm intervals, and the TLC plate was developed, 

visualized, and analyzed by the method previously described. 

The average weight of peak for each of the eight samples on a TLC 

plate was analyzed using a computer statistical analysis program (SPSS 

Inc., 1983). Maximum, minimum, mean, standard deviation, range and 

scattergram values were calculated. 
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TABLE 8. Preparation of application solvents with various salt 
concentrations 

Vial Tylosin tartrate Amount of type-one Amount of tylosin 
number in mammalian water added to dry ta:rtrate on a TLC 

Ringer's solution vial plate 
(ug/ml) (ul) (ug) 

1 10 100 2, 
2 30 300 2:·' 
3 50 500 2 
4 15 100 3 
5 45 300 3 
6 75 500 3 
7 20 100 4 
8 60 300 4 
9 100 500 ·4 

" ' ' ' ' 
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RESULTS 

Before thin layer chromatography could be utilized to detect the 

amount of tylosin tartrate in controlled-release experiment samples, the 

suitability and reliability of the process had to be established. 

Therefore, the first topics to be discussed are the TLC process and the· 

justification for the utilization of particular solutions and 

operational parameters. Next, the spot patterns of tylosin tartrate 

aqueous and saline solutions are compared and contrasted by examining 

spot shape, spot size, and Rf. 

This report utilized direct densitometric scanning of the TLC plate 

to quantify the amount of tylosin tartrate in a controlled-release 

experiment sample. In order to conduct such a procedure, the 

variability and linearity of the peak weight to tylosin tartrate 

relationship for aqueous solutions and the variability for saline 

solutions must be known. The results of the three experiments utilized 

to determine these values are discussed. 

The second area of emphasis in this report is the production of a 

controlled-release system that may be utilized for the treatment of BIK. 

Three types of devices were studied in quintuplicate. The discussion 

begins with the production of the control membrane and inner drug layer, 

and details scanning electron microscopy results of microstructural 

properties. Next, the controlled-release system assembly procedure is 

reviewed, and results of a pre-experiment examination of the systems 

with a stereomicroscope are given. 
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Finally, the details of the controlled-release experiment are 

reviewed, and the tylosin tartrate summary release profiles are 

presented in graphic and tabular form (complete data utilized to produce 

the profiles are located in the Appendices). The release profiles are . 

evaluated in relation to the appropriate lachrymal flow rate and the 

results of a post-experiment stereomicroscopic examination. 

TLC Spotting, Developing, Visualizing, and Quantitative Analysis Process 

for Tylosin Tartrate 

Full development (based on methanol) of 20 x 20 cm Whatman LKC 18 F 

TLC plates took approximately one hour, and provided a uniform, white-

background upon visualization. 

Ten microliter amounts of application solution were utilized for 

all cases. The 10 ul solution was applied in approximately 3 ul amounts 

because the drop remained at the end of the micropipette glass dispenser 

and could be transferred completely to the TLC plate. Larger drops 

tended to form along the side of the micropipette glass dispenser and 

would not transfer completely to the TLC plate. The room temperature 

air flow permitted the 10 ul amount to be applied in approximately three 

minutes. 

Developing solution of eighty-five percent methanol, fifteen 

percent type-one water produced Rf values in the 0.3-0.7 range. The~ 

results will be discussed in a subsequent section. 
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The ten percent (by volume) sulfuric acid in methanol visualization 

spray produced a white background and a brown tylosin tartrate pattern. 

Increased spraying or heating periods caused the background to darken. 

Conversely, the lower concentrations of tylosin tartrate were not 

visible with shorter spraying .and heating periods. 

The densitometer was operated in the dual-beam, reflectance mode. 

Figure 13 shows densitometer traces of the same three samples on a 

,Whatman LKC 18F TLC plate for the transmission, reflectance, and 

reflectance/transmission modes. The transmission mode consistently 

produced a more erratic baseline than the other two modes. The 

reflectance and reflectance/transmission modes both produced smooth 

baselines; however, the reflectance mode provided additional damping of 

inflection points on the peaks. Therefore, the dual-beam r~flectance 

mode was selected for densitometric analysis. 

The densitometer attenuator-control and the plotter input-control 

were adjusted to provide a smooth baseline and to be within a ratio of 

peak height to width at half-height of one to ten. Figures 14 - l& 

illustrate the peak traces for 0.2-0.8 ug, l.0-4.0 ug, and 5.0-10.0 ug 

of tylosin tartrate applied as a type-one aqueous solution. The peaks 

are uniformly shaped and the baselines are smooth. 

On some TLC plates, the visualized pattern for tylosin tartrate 

amounts near 0.2 ug lacked intensity. Thus, it was not always possible 

to maintain a smooth baseline and the desired ratio. In these cases, 

the smooth baseline was compromised somewhat in order to obtain a trace 
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(a) 

(b) 

(c) 

FIGURE. 13. Densitometer trace characteristics of {a) transmiss:lon mode, 
{b) transmission/reflectance mode, {c) reflectance mode 



0.2 ug 0.4 ug 0.6 ug 0.8 ug 

FIGURE 14. Densitometer trace for 0.2-0.8 ug of tylosin tartrate 
applied as a type-one aqueous solution. Densitometer 
attenuator-control 8, plotter input-control lOOmV 



1.0 ug 2.0 ug 3.0 ug 4.0 ug 

FIGURE 15. Densitometer trace for 1.0-4.0 ug of tylosin tartrate 
applied as a type-one aqueous solution. Densitometer 
attenuator-control 8, plotter input-control lOOmV 



5.0 ug 6.0 ug 7.0 ug 8.0 ug 9.0 ug 

FIGURE 16. Densitometer trace for 5.0-10.0 ug of tylosin tartrate 
applied as a type-one aqueous solution. Densitometer 
attenuator-control 16, plotter input-control lOOmV. 
Baseline distances reduced to accommodate peaks. 

10.0 ug 
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near the desired peak height to width at half-height ratio. Figure 17 

shows a densitometer trace for this type of sample. The peaks have 

irregular shapes, and baseline fluctuations introduce uncertainty in the 

selection of the peak lower limit. Figure 18 illustrates the baseline 

location for these types of samples. The location results in 

approximately equal areas of fiuctuation above and below the baseline.· 

Fluctuations resulting from visible imperfections on the plate were 

discounted from this process. 

Densitometer scan-speed and plotter paper-speed were adjusted to 

conserve paper, yet produce a stable baseline recording between peaks. 

The peak width was also affected by these settings. 

Densitometric analysis of all plates was performed in duplicate to 

reduce errors from densitometer variation, chart paper differences, and 

the "cut and weigh" process. 

Tylosin Tartrate Type-One Aqueous Solution TLC Pattern 

Tylosin tartrate in a type-one aqueous solution on Whatman LKC18F 

TLC plates produced the pattern (brown) shown in Figure 19. A 0.1 ug 

quantity of tylosin tartrate was visible one of the twelve times that it 

was applied to six different TLC plates; however, 0.2-10.0 ug quantities 

were always visible. 

Figure 19 illustrates that each amount of tylosin tartrate in the 

range of 0.2-0.7 ug was visualized as a dark spot and a less intense 

band at greater Rf; 0.8-10.0 ug amounts were visualized in order of 



0.1 ug 0.2 q 0.3 ug 

FIGURE 17. Densitometer trace of tylosin tartrate in type-one aqueous 
solution for visualized patterns of low intensity. 
Densitometer attenuator-control 32, plotter input-control 
lOmV 



0.1 ug 0.2 ug 0.3 ug 

FIGURE 18. Baseline location for visualized patterns of low intensity. 
Densitometer attenuator-control 32, plotter input-control 
lOmV 

"' N 
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.2us .4us .&us .Sus 2us 4us &us Sus 10 us 

FIGURE 19. Tylosin tartrate pattern on a Whatman LKC 18 F TLC plate, 
applied as a type-one aqueous solution. 

increasing Rf, as a dark spot, a light, diffuse spot, and a band of 

medium intensity. Tailing of the dark spot occurs at 5.0-10.0 ug 

quantities of tylosin tartrate. The formation of a comet-like trail 

(tailing) will occur with any sample if sufficient material is applied 

to the TLC plate. 

Tylosin Tartrate Saline Solution TLC Pattern 

The saline concentration of the application solution influences 

spot diameter. Figure 20 is a photograph of a Whatman LKC 18 F TLC plate 

with 1.0-5.0 ug tylosin tartrate samples applied as 10 ul amounts of 

type-one aqueous solutions (left) and 10 ul amounts of mammalian 

Ri nger's solutions (right). The tylosin tartrate samples applied with 

the mammalian Ringer's solution produce diffuse, (brown) spot-patterns. 

The distance between the dark spot and light , diffuse spot and the 

light, diffuse spot and band of medium intensity are reduced for the 

mammalian Ringer's solution samples. 
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lug 2ug 3uc 4us Sus lus 2us 3us 4us Sus 

FIGURE 20. Variation of tylosin tartrate pattern with application 
solution. Type-one aqueous solution (left) and mammalian 
Ringer's solution (right) 

Tylosin Tartrate Type-One Aqueous Solution Rf 

Table 9 contains the Rf values for seven identical amounts of 

tylosin tartrate in a type-one aqueous solution, applied to a Whatman 

LKC 18 F TLC plate. Rf values of the tylosin tartrate groups on Whatman 

LKC 18 F TLC plates are listed in Table 10. The data indicate that the ~ 

values are quite reproducible. This reproducibility expedites the 

densitometric scanning process since it permits an entire plate to be 

cross-scanned without intermediate alignment. 

In all cases, the dark spot Rt's are within the 0.~-0.7 range 

suggested by Touchstone and Dobbins (1978). 

Tylosin Tartate Saline Solution Rf 

The variation of Rf due to different application solution saline 

concentrations was examined by applying various saline concentrations 
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TABLE·9. Rf values of seven identical amounts of tylosin tartrate on a 
Whatman LKC 18 F TLC plate, applied as a type-one aqueous 
solution 

Amount of 
TLC plate tylosin tartrate Dark spot Diffuse spot Band 

(ug) (Rf) (Rf) (Rf) 

1 0.2 0. 57 0.86 

2 0.3 0.56 0.66 

3 0.4 0.54 0.69 
~ 

4 0.5 0.57 0.93 

5 0.6 0.57 0.90 

6 0.7 0.56 0.63 

7 0.6 0.57 0. 71 0.86 

6 . 0. 9 0.57 0.71 0.86 

9 LO 0.57 0.73 0.86 

10 2.0 0.56 0.72 0.84 

11 3.0 o. 57 0.71 0.85 

12 4.0 o.58 0.69 0.85 

13 5.0 0.57 0.71 0.86 

14 6.0 0.58 0.72 0.85 

15 7.0 0.58 0.73 0.87 

16 8.0 0.58 0.72 0.87 

17 9.0 0.57 o. 71 0.88 

18 10.0 0.57 0.70 0.85 
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TABLE 10. ~ values of tylosin tartrate groups on Whatman LKC 18 F TLC 
plates, applied as a type-one aqueous solution 

Range of 
TLC plate tylosin tartrate Dark spot Diffuse spot Band 

(ug) (Rf) (Rf) (Rf) 

1 0.1-0.7 0.56 0.79 

2 0.1-0.7 0.59 0.88 

3 0.1-0.7 0.58 0.87 

4 0.1-0.7 0. 56 0.88 

5 0.1-0.7 0. 57 0.86 

6 0.8-5.0 0.57 0.72 0.88 

7 0.8-5.0 0.54 0.70 0.88 

8 0.8-5.0 0.55 0.72 0.87 

9 0.8-5.0 0.54 0.72 0.86 

10 0.8-5.0 0.56 0.71 0.87 

11 4.0-10.0 0.56 0.72 0.85 

12 4.0-10.0 0.57 0. 71 0.87 

13 4.0-10.0 0.57 0. 71 0.86 

14 4.0-10.0 0.56 0.72 0.87 

15 4.0-10.0 o. 56 0.72 0.87 



67 

with an identical tylosin tartrate amount to a Whatman LKC 18 F TLC plate. 

The Rf values obtained from this procedure are listed in Table 11. 

TABLE 11. Rf variation due to saline concentration differences of the 
application solution 

Amount of type-
TLC plate Amount of one water added Dark spot Diffuse Band 

tylosin to the salts of (Rf) spot (Rf) 
tartrate 2 ml of Ringer's (Rf) 

(ug) solution 
(ul) 

l 2.0 100% type-one 0.56 0.70 0.91 
water 

l 2.0 100.0 0.55 0.66 0.85 
1 2.0 300.0 0.69 0.83 0.94 
1 2.0 500.0 0.73 0.85 0.94 
2 3.0 100% type-one 0. 59 0.70 0.89 

water 
2 3.0 100.0 0.61 0.72 0.87 
2 3.0 300.0 0.70 0.83 0.95 
2 3.0 500.0 0.74 0.87 0.98 
3 4.0 100% type-one 0.56 0.70 0.88 

water 
3 4.0 100.0 0.54 0.66 0.78 
3 4.0 300.0 0.64 0.78 0.90 
3 4.0 500.0 0.68 0.80 0.94 

There are no significant differences in Rf between the one hundred 

percent type-one water and 100.0 ul saline solutions. However, the Rf's 

of the 300.0 ul and 500.0 ul saline solutions are consistantly greater 

than those of the corresponding one hundred percent type-one water 

solutions. The ~·s of the 500.0 ul solutions are greatest in all. 
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cases. In order to complete a densitometer cross-scan of these plates, 

realignment was necessary at the 300.0 ul and 500.0 ul saline solutions. 

The dark spot Rf's are above the 0.3-0.7 range for two of the 500.0 ul 

saline solutions. 

Tylosin Tartrate Saline Solution Spot Diffusion 

Saline concentration of the application solution influences the 

tylosin tartrate spot diameter. This phenomenon was examined by 

applying various saline concentrations with an identical tylosin 

tartrate amount ta a Whatman LKC 18 F TLC plate. Table 12 is a summary of 

the dark spot diameters. The spat diameters tend to increase as the 

viscosity of the resultant solution decreases. 

The one hundred percent type-one water and 100.0 ul saline 

·Solutions have comparable spot diameters. Spot diameters increase for 

the 300.0 ul saline solutions and are greatest for 500.0 ul saline 

solutions. The spot diameters of the mammalian Ringer's solution 

samples in Figure 20 are comparable to the values of the 500.0 ul saline· 

' solutions in Table 12. In Figure 20, an amount of drug is present in 10 

ul of type-one water at five different concentrations, and these are 

spotted on the TLC plate (left side). Also, the same levels of drug are 

present in 10 ul of Ringer's solution which are spotted on the TLC plate 

(right side). In Table 12, the solutions are dried down in a one-dram 

vial, and then specific amounts of type-one water are added to the salts 

and drug deposH. For the 500. 0 ul cases in Table 12, spot diamet.ers 
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TABLE 12. Variation of dark spot diameter due to saline concentration 
differences of the application solution. 

TLC plate 

1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
3 

Amount of tylosin 
tartrate 

(ug) 

2.0 
2.0 
2.0 
2.0 
3.0 
3.0 
3.0 
3.0 
4.0 
4.0 
4.0 
4.0 

Amount of type-one 
water added to the 
salts of 2 ml of 
Ringer's solution 

(ul) 

100% type-one water 
100.0 
300.0 
500.0 

100% type-one water 
100.0 
300.0 
500.0 

100% type-one water 
100.0 
300.0 
500.0 

Dark spot 
diameter, 

(mm) 

2.5 
3.0 
3.5 
5.0 
2.5 
3.0 
4.0 
4.5 
2.5 
3.0 
3.5 
4.5 

are recorded and are similar to those for the Ringer's solution cases in 

Figure 20. Thus, the saline concentrations for the Ringer's solution 

samples spotted and indicated in Figure 20 were lower (by 1/4) than that 

of the 500.0 ul cases of Table 12, and the spot diameters were about the 

same (approximately 4.8 mm compared to 4.5 to 5.0 mm from Table 12). 

Therefore, dilution experiments greater than 500.0 ul were not conducted 

or reported for the series listed in Table 12. 
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Statistical Evaluation of the TLC Quantitative Analysis of Tylosin 

Tartrate 

Variability and reliability of the TLC quantitative analysis of tylosin 

tartrate type-one aqueous solutions 

The variability and reliability of the TLC quantitative analysis of 

tylosin tartrate were evaluated by the application of seven identical 

amounts of tylosiri tartrate, in a type-one aqueous solution, to a 

Whatman LKC 18 F TLC plate and subsequent characterization. The average 

weight of peak data obtained from the TLC quantitative analysis are 

contained in Appendix A. 

A statistical analysis of the data contained in Appendix A is shown . 

in Table 13. Due to variations among the TLC plates, the results from 

different plates may be compared only if the data are normalized. The 

coefficient of variance (standard deviation/mean) is a normalized value. 

An examination of the coefficient of variance (Table 13) indicates that 

there is less variability for the 0.9-10.0 ug range than the 0.2-0.8 ug 

range. '£his pattern is expected since a steady reduction in contrast 

between sample-spot and background occurs as the amount of tylosin 

tartrate decreases. 

Linearity of the relationship between average weight of peak and tylosih 

tartrate amount for type-one aqueous solutions 

TLC quantitative analysis relies upon the linear relationship 

between average weight of peak and tylosin tartrate amount for the 

quantitation of unknown amounts of tylosin tartrate. The linearity of 



71 

TABLE 13. Variability and reliability of the TLC quantitative analysis 
of tylosin.tartrate. 

I 

I 

Standard 
Maximum Minimum Mean deviation 

TLC Amount of average average average of average Coefficient 
plate tylosin weight weight weight weight of 

tartrate of peak of peak of peak of peak Variance 
(ug) (gm) (gm) (gm} (gm} 

1 0.2 0.011 0.004 0.007 0.002 0.286 
2 0.3 0.011 0.008 0.010 0.001 0.100 
3 0.4 0.024 0.013 0.018 0.004 0.222 
4 0.5 0.024 0.017 0.021 0.003 0.143 
5 0.6 0.033 0.019 0.027 0.005 0.185 
6 0.7 0.023 0.013 0.017 0.003 0.176 
7 0.8 0.014 0.009 0.011 0.002 0.182 
8 0.9 0.023 0.017 0.019 0.002 0.105 
9 LO 0.015 0.010 0.013 0.001 0.077 

10 2.0 0.019 0.017 0.018 0.001 0.056 
11 3.0 0.056 0.049 0.052 0.003 0.058 
12 4.0 0.016 0.012 0.014 0.001 0.071 
13 5.0 0.031 0.022 0.028 0.003 0.105 
14 6.0 0.036 0.030 0.033 0.002 0.061 
15 7.0 0.037 0.030 0.035 0.003 0.086 
16 8.0 0.049 0.037 0.044 0.004 0.091 
17 9.0 0.071 0.060 0.067 0.004 0.060 
18 10.0 0.095 0.073 0.087 0.007 0.080 

the relationship was evaluated by dividing the tylosin tartrate type-one 

aqueous solution standards into three groups. Each group of standards 

was applied to five Whatman LKC 18 F TLC plates. The average weight of 

peak data obtained from the TLC quantitative analysis are contained in 

Appendix B. 
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Regression line calculations were conducted utilizing the data in 

Appendix B. The statistical summary in Table 14 shows the linearity of 

the experimental data in Appendix B. 

TABLE 14. Linearity of the relationship between average weight of peak 
and tylosin tartrate amount. 

Range of tylosin Coefficient of Standard 
TLC plate tartrate determination error x 

(ug) (r2) 10-3 

l 0.1 - 0.7 0.984 0.915 
2 0.1 - 0.7 0.673 2.014 
3 0.1 - 0.7 0.898 1.007 
4 0.1 - 0.7 0. 726 2.614 
5 0.1 - 0.7 0.707 2.165 
6 0.8 - 5.0 0.%7 7.288 
7 0.8 - 5.0 0.995 2.577 
8 0.8 - 5.0 0.991 2.161 
9 0.8 - 5.0 0.981 2.311 

10 0.8 - 5.0 0.985 6.034 
11 4.0 - 10.0 0.992 1.121 
12 4.0 - 10.0 0.951 3.052 
13 4.0 - 10.0 0.986 1.122 
14 4.0 - 10.0 0.931 2.606 
15 4.0 - 10.0 0.997 0.627 

The coefficient of determination (r2) in Table 14 indicates how 

well the data fit a linear regression calculation. An r2 value of one 

denotes a perfect linear relationship, and an r2 value of zero means 

that no linear relationship exists. The data in Table 14 indicate 

greater deviation from a linear relationship for the 0.1-0.7 ug group 
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than for the other two groups. This correlates well with the results of 

the variability and reliability study discussed above. 

Variability and reliability of the TLC quantitative analysis of tylosin 

tartrate saline solutions 

The saline concentration of the application solution affects spot 

diameter and Rf, which in turn influence the densitometric analysis. 

The variability and reliability of the TLC quantitative analysis of 

tylosin tartrate due to different saline concentrations were examined by 

applying various saline concentrations with an identical tylosin 

tartrate amount to a Whatman LKC 18 F TLC plate. The average weight of 

peak data obtained from the TLC quantitative analysis are in Appendix C. 

A statistical analysis of the data in Appendix C is shown in Table 

15. The coefficients of variance in Table 15 are greater than the 

coefficients of variance for identical amounts of tylosin tartrate in 

Table 13. 

The coefficients of variance in Table 15 indicate the maximum 

variability of a dry release-experiment sample solubilized with 500.0 ul 

of type-one water. The data in Appendix C indicate a direct 

relationship between peak weight variability and amount of type-one 

water. Therefore, less variability is expected for release experiment 

samples resolubilized with smaller amounts of type-one water. 
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TABLE 15. Variability and reliability of the TLC quantitative analysis 
of tylosin tartrate for 500. 0 ul saline solutions .. 

Standard 
Maximum Minimum Mean deviation 

TLC Amount of average average average of average Coefficient 
plate tylosin weight weight weight weight of 

tartrate of peak of peak of peak of peak Variance 
(ug) (gm) (gm) (gm) (gm) 

1 2.0 0.014 0.008 0.011 0.002 0.182 
2 3.0 0.019 0.014 0.017 0.002 0.118 
3 4.0 0.024 0.016 0.019 0.002 0.105 

Tylosin Tartrate·Release-Experiment 

Production of the 90:10 MMA/2-HEMA copolymer films 

After the ten hour mixing and heating period, a cloudy solution 

that occasionally contained gel material formed. The dried films were 

clear, with some regions of small air bubbles. Although flexible, the 

films broke abruptly when bent to an angle of approximately ninety 

degrees. Films soaked in water became cloudy and were easily cut into 

disks with a corkborer; by comparison, dry films broke when cut. A 

total of 17'5 disks were produced from film regions without air bubbles. 

Disk thickness ranged from 0.097-0.419 mm. Thirty disks of minimum 

thickness, but within a ± 10% tolerance, were required for the release-

experiment. Thirty-one disks with a 0.223 ± 10% mm thickness were 

available; therefore, they were selected as the control membranes. 
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Figure 21 shows the film surface cast in contact with glass. The 

surface is smooth with no visible pores. The film surface cast in 

contact with air is also smooth with no visible pores (Figure 22). 

Production of the poly (lactic acid)-tylosin tartrate matrix 

.,A poly (lactic acid)-tylosin tartrate matrix was utilized for the 

inner layer of controlled-release systems 32A-E. Scanning electron 

microscopy revealed that tylosin tartrate formed a layer between the 

poly (lactic acid) film and the siliconized, plain-glass slide (room 

temperature production). Figure 23 shows the surface cast in contact 

with glass of the matrix that was prepared at room temperature, and the 

micrograph in Figure 24 is the corresponding surface of a poly (lactic 

acid) film produced in the identical manner, but without tylosin 

'tartrate. Immersion of the poly (lactic acid)-tylosin tartrate matrix, 

in a 37°C mammalian Ringer's solution for thirty hours, removed the 

tylosin tartrate layer (Figure 25). The cold production method appears 

to keep the tylosin tartrate within the matrix. Figure 26 shows the 

surface cast in contact with glass of a poly (lactic acid)-tylosin 

tartrate matrix produced by the cold method, and Figure 27 is the same 

surface after a thirty-hour immersion in 37°C mammalian Ringer's 

solution. 

This SEM analysis indicated that the cold production poly (lactic 

acid)-tylosin tartrate matrix would be the more favorable drug 

reservoir; therefore, it was utilized in controlled-release systems 32A-

E. 
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FIGURE 21. 90:10 MMA/2-HEMA cast film. Surface in contact with glass 
(scale bar=40 um). 25 keV. 



77 

FIGURE 22. 90:10 MMA/2-HEMA cast film. Surface in contact with air 
(scale bar=40 um). 25 keV. 
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FIGURE 23. Poly (lactic acid)-tylosin tartrate matrix cast at room 
temperature. Surface in contact with glass (scale 
bar=lOOum). 25 keV. 
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FIGURE 24. Poly (lactic acid) film cast at room temperature. Surface 
in contact with glass (scale bar=lOO um). 25 keV. 
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FIGURE 25. Poly (lactic acid}-tylosin tartrate cast matrix (prepared at 
room temperature) after immersion in a Ringer's solution at 
37°C for thirty hours. Surface cast in contact with glass 
(scale bar=lOO um). 25 keV. 
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FIGURE 26. Poly (lactic acid)-tylosin tartrate cast matrix (cold 
p~oduction method). Surface in contact with glass (scale 
bar=lOO um). 25 keV. 
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FIGURE 27. Poly (lactic acid)-tylosin tartrate cast matrix (cold 
production method) after immersion in a Ringer's solution at 
37°C for thirty hours. Surface cast in contact with glass 
(scale bar=lOO um). 25 keV. 
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The white films were highly flexible. They were cut into disks 

with a corkborer, and with care, they did not tear. The eight disks 

were ·0.127 ± 10% mm thick, and the weight of the five utilized for 

controlled-release systems 32A-E were 0.0084, 0.0082, 0.0081, 0.0084, 

and 0.0082 gm, respectively. 

Production of the controlled-release systems 

·The 90:10 MMA/2-HEMA copolymer solution· effectively joined the 

systems together since no perforations were found during the 40X 

stereomicroscopic examination. The fifty-five gram weight applied to 

the top slide held the edges of the 90: IO MMA/2-HEMA· films together 

during productfon. In some cases the joining solution flowed· into the 

system, and in 0°thers the solution ·flowed out. Table 16 summarizes the 

post-production system characteristics. Controlled-release systems 32A-

E and 33C were flat while the remaining systems were saucer-shaped due 

to the mass of tylosin tartrate ·1ocated in the center of the device. 

Tylosin tartrate mixed to varying degrees with the joining solution of 

systems 34A-E due-to the physical size limitation of the device. 

Tylosin tartrate release-experiment 

The experimental process was conducted as explained in the 

procedures section. At the beginning of the experiment, the'controlled-

release systems were totally dry; however, at the first collection 

period and throughout the remainder of the experiment, mammalian· 

Ringer's solution filled the bubbles of 33A-B, D-E, and 34A-E. Fluid 
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TABLE 16. Characteristics of the controlled-release systems after 
production. 

Controlled-release system 

32 A-E 

33 A-B, D-E 

33 c 

34 A-E 

Characteristics 

Systems are flat with a total thickness 
equal to the thickness of the three 
layers. 

Systems are flat with the exception of 
a 5.0 mm diameter bubble in the center 
of the devices containing tylosin 
tartrate. The bubble creates a saucer-
shape with approximately 1.0· mm center 
thickness and 0.5 mm edge thickness. 

System is flat with a total thickness 
of approximately 0.8 mm. The tylosin 
tartrate is mixed with the joining 
solution. 

systems are flat with the exception of a 
9.0 mm bubble in the center of the device 
containing tylosin tartrate. The bubble 
creates a saucer-shape with approximately 
2.0 mm center thickness and 1.0 mm edge 
thickness. Tylosin tartrate mixed with 
the joining solution. 

was not visible in 32A-E and 33C. The controlled-release systems did 

not appear to swell; rather, fluid filled the available space within the 

devices. 

Samples collected in accordance with the procedure were totally 

evaporated in approximately seventy-two hours. Thin layer 

chromatography was utilized to detect and quantify the amount of tylosin 
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tartrate in each sample. The dark spot of the tylosin tartrate pattern 

was utilized for the densitometer scan. Due to dark spot tailing at 

5.0-10.0 ug quantities of tylosin tartrate, all samples from the tylosin 

tartrate release-experiment were diluted to a tylosin tartrate 

concentration below 5 ug/10 ul before scanning. Appendices D-R contain' 

data from controlled-release systems 32A-34E, respectively. The data 

include regression line data number, total volume of release-experiment 

sample, weight of peak #1, weight of peak #2, average weight of peak, 

amount of tylosin tartrate in the 10' ul volume applied to the TLC plate, 

and the amount of tylosin tartrate in the total sample volume. In the 

release-experiment analysis, known concentrations of tylosin tartrate in 

type-one aqueous solution were utilized to calculate the regression line 

equation. These data are contained in Appendix S, and are related to 

the data in Appendices D-R by the regression line data number. 

The cumulative tylosin tartrate release data are plotted in Figures 

28-42 and the results are summarized in Table 17. A period of zero-

order release occurred for most of the controlled-release systems. This 

region is shown in Figures 28-31 and 33-42 by a straight line. Data 

points are not plotted for those samples that failed to produce spots on 

the TLC plate although lines are shown for ranges including these 

samples. Some of these sampling periods are too close to provide 

samples with detectable amounts of drug. The figures where this 

situation occurs exhibit a low slope, and it is likely that the variance 

on any particular sampling may yield a case where the drug is not able 
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FIGURE 28. Cumulative tylosin tartrate released versus time for system 
32A. No spot developed on the TLC plate for the samples 
collected at 32 and 36 hours 
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FIGURE 29. Cumulative tylosin tartrate released versus time for system 
32B. No spot developed on the TLC plate for the samples 
collected at 80, 84, 96, 100, 104, and 108 hours 
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FIGURE 30. Cumulative tylosin tartrate released versus time for system 
32C. No 'spot developed on the TLC plate for the samples 
collected at 56, 60, 72, 76, 80, 84, 100, 104, 108, and 120 
hours 
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FIGURE 31. Cumulative tylosin tartrate released versus time for system 
320. No spot developed on the TLC plate for the samples 
collected at 24, 28, 32, 36, 48, 52, 56, 60, 72, 80, 84, 96, 
100, 104, 108, and 120 hours 
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FIGURE 32. Cumulative tylosin tartrate released versus time for system 
32E. No spot developed on the TLC plate for the samples 
collected at 36, 52, 56, 60, 72, 76., 80, 84, 96, 100, 104, 
108, and 120 hours . 
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FIGURE 33. cumulative tylosin tartrate released versus time for system 
33A 



480 

~ 

~ 
~ 360 

i z 240 G 
H 

"' 0 

~ 

es 

20 40 

92 

0 eoG 

60 80 100 120 

TIME (hours) 

FIGURE 34. Cumulative tylosin tartrate released versus time for system 
33B. No spot developed on the TLC plate for the sample 
collected at B hours 
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FIGURE 35. Cumulative tylosin tartrate released versus time for system 
33C. No spot developed on the TLC plate for the sample 
collected at 80 hours 
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FIGURE 36. ·Cumulative tylosin tartrate released versus time for system 
330. No spot developed on the TLC plate for the sample 
collected at 60 hours 
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FIGURE 37. Cumulative tylosin tartrate released versus time for system 
33E. No spot developed on the TLC plate for the samples 
collected at 32 and 36 hours 
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FIGURE 38. Cumulative tylosin tartrate releas~d versus time for system 
34A 
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FIGURE 39. Cumulative tylosin tartrate released versus time for system 
34B 
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FIGURE 40. Cumulative tylosin tartrate release versus time for system 
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·FIGURE 41. Cumulative tylosin tartrate release versus time for system 
340 
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FIGURE 42. Cumulative tylosin tartrate released versus time for system 
34E 
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TABLE 17. Results of the tylosin tartrate release-experiment. 

Sample Number Linear Time of Release Rate Release over Total 
of release linear over linear total time original 

data rate release range drug 
points range rate loading 

(hr) (hr) (ug/hr) (ug) (ug) 

32A 11 48-104 56 0.9 611.8 4840 
32B 7 48-120 72 0.4 576.1 4840 
32C 4 32-96 64 0.1 362.2 4840 
320 2 12-76 64 0.1 495.1 4840 
32E 870.l 4840 
33A 16 28-120 92 0.6 347.0 5000 
33B 15 32-120 88 0.7 408.8 5000 
33C 12 48-120 72 0.3 283.6 5000 
330 16 24-120 96 0.2 136.8 5000 
33E 15 24-120 96 0.8 736.7 5000 
34A 14 36-120 84 6.0 31729.8 50000 
34B 14 36-120 84 33.3 32619.0 50000 
34C 12 12-80 68 1.0 991.8 50000 
340 8 48-84 36 10.0 1316.7 50000 
34E 15 32-120 88 20.3 25927.4 50000 

to be detected. However, an overall trend in these figures has been 

indicated. These samples contained less than 2.0 ug of tylosin 

tartrate, and the collection times are noted in the figure caption. The 

duration, rate of tylosin tartrate release, and number of data points 

for the zero-order release period are tabulated in Table 17. 

The tylosin tartrate release rate required for an ocular 

controlled-release system varies in accordance with the lachrymal flow 

rate. Hoffman and Spadbrow (1978) and Slatter and Edwards (1982) 

.. ·· determined bovine lachrymal flow rates, and Table 18 contains the 



101 

TABLE 18. Tylosin release rate required with lacryrnal flow variation. 

Lacryrnal flow 
(ml/hr) 

0.1 
0.3 
0.5 
0.7 
0.9 
1.1 
1.3 
1. 5 
1. 7 
1.9 
2.1 
2.3 
2.5 
2.7 
2.9 
3.1 
3.3 
3.5 
3.7 
3.9 

Time required to 
produce a 0.5 ml 

tear volume 
(min) 

300.0 
100.0 
60.0 
42.9 
33.3 
27 .3 
23.l 
20.0 
17.7 
15.8 
14.3 
13.0 
12.0 
11.l 
10.3 
9.7 
9.1 
8.6 
8.1 
7.7 

Tylosin release rate 
required 

(ug/hr) 

0.063 
0.189 
0.315 
0.441 
0.568 
0.692 
0.818 
0.945 
1.068 
1.196 
1.322 
1.454 
1.575 
1. 703 
1.835 
1.948 
2.077 
2.198 
2.333 
2.455 

required tylosin tartrate release rate over the range of their reported 

data. The calculations utilized to produce Table 18 are explained by 

the following example. A lachrymal flow rate of 0.5 ml/hr will produce 

the 0.5 ml tear volume in sixty minutes. The minimum inhibitory 

concentration to suppress bacterial colonization for the bacterial 

strains of interest when studied for tylosin tartrate is 0.63 ug/ml. 
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(R. F. Rosenbusch, personal comrnunication.)1 Therefore, 0.315 ug of 

tylosin tartrate must be contained in the eye. Since the tear volume 

is replaced every hour, the release rate must be 0.315 ug/hr. 

The required tylosin tartrate release rate ranges from 0.063-2.455 

ug/hr (Figure 18). Controlled-release systems 32A-E, 33A-E, and 34C 

produced release rates ranging from 0.1-0.9 ug/hr, and controlled-

release systems 34A, 34B, 340, and 34E produced tylosin tartrate release 

rates in excess of 2.455 ug/hr. 

There are wide variations in the release rate of similar 

controlled-release systems. The results of a post-experiment 

examination (at 40X) of the controlled-release systems (Table 19) 

obtained by using a stereomicroscope may account for these differences. 

Each controlled-release system was first examined for external security, 

and then the device was broken open to examine the interior 

characteristics. 

A comparison of the data in Table 17 and Table 19 indicate that the 

release rates of the tylosin tartrate release-experiments correlate well. 

with the post-experiment characteristics. This relationship will be 

examined in the discussion. 

1 Veterinary Medical Research Institute, Iowa State University, 
Ames, Iowaa 
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TABLE 19. Post-experiment characteristics of the controlled-release 
systems 

Controlled-release system 

32A 
320 

32B 

32C 

32E 

33A 
338 

33C 

330 

Characteristics 

Systems are sealed around the edges, 
center of the devices are open, and the 
release area may be approximated as a 
10.0 mm diameter circle. No evidence 
of residual tylosin tartrate. 

System is sealed around the edges, 
center of the device is open, and the 
release area may be approximated as a 
12.0 mm diameter circle. No evidence 
of residual tylosin tartrate. 

System is totally sealed by the joining 
solution. The inward movement of the 
joining solution has thickened the 
release membranes. No evidence of 
residual tylosin tartrate. 

System is sealed around the edges, 
center of the device is open, and the 
release area may be approximated as a 
14.0 mm diameter circle. No evidence 
of residual tylosin tartrate. 

Systems are totally sealed by the 
joining solution except for the 5.0 mm 
diameter bubble that contained tylosin 
tartrate. No evidence of residual 
tylosin tartrate. 

System is totally sealed by the joining 
solution. No evidence of residual 
tylosin tartrate. 

System is totally sealed by the joining 
solution except for the 2.0 mm diameter 
bubble that contained tylosin tartrate. 
The bubble is surrounded by the faint 
yellow color of tylosin tartrate residue. 



Table 19 (Continued) 

Controlled-release system 

33E 

34A 
348 

34C 

340 

34E 

104 

Characteristics 

system is totally sealed by the joining ' . solution except for the 4.0 mm diameter 
bubble that contained tylosin tartrate. 
No evidence of residual tylosin tartrate. 

Systems are totally sealed by the joining 
solution except for the 10.0 mm diameter 
bubble that contained tylosin tartrate. 
The bubble is surrounded by the faint 
yellow color of tylosin tartrate residue. 

System is totally sealed by the joining 
solution except for the 6.0 mm diameter 
bubble that contained tylosin tartrate. 
The bubble is surrounded by the faint 
yellow color of tylosin tartrate, and 
yellow particulate matter is dispersed 
in the joining solution. 

System is totally sealed by the joining 
solution except for the 9.0 mm diameter 
bubble that contained tylosin tartrate. 
The bubble is surrounded by the faint 
yellow color of tylosin tartrate, 
and yellow particulate matter is 
dispersed in the joining solution. 

System is totally sealed by the joining 
solution except for the 6.0 mm diameter 
bubble that contained tylosin tartrate. 
The bubble is surrounded by the faint 
yellow color of tylosin tartrate, and a 
small amount of yellow particulate 
matter is dispersed in the joining 
solution. 
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DISCUSSION 

TLC Quantitative Analysis of Tylosin Tartrate 

Touchstone and Dobbins (1978) reported that most densitometric 

methods resulted in sensitivities from 0.1 ng to 10.0 ug and 

coefficients of variance from one to five percent. Only one literature 

reference was found for a study that utilized TLC to detect tylosin 

tartrate (a sensitivity in the range of 2.0-4.0 ug was reported); 

however, direct quantitative analysis was not conducted in that study 

(Debackere and Baeten, 1971). 

In the current study, a sensitivity of 0.2 ug of tylosin tartrate 

was achieved. Samples in the range of 0.2-0.8 ug produced coefficients 

of variance from 10.0-28.6 percent when applied as a type-one aqueous 

solution. Samples from 0.9-10.0 ug had coefficients of variance from 

5.6-10.5 percent when applied as a type-one aqueous solution. There is 

an inverse relationship between spot intensity and variability. 

Faint spots produce higher coefficients of variance than intense 

spots. The spot-intensity produced by a particular amount of tylosin 

tartrate varies from plate to plate; consequently, the co~fficient of 

variance would be affected accordingly. For example, the 0.3 ug and the 

0.9 ug tylosin tartrate samples in Table 13 have similar spot 

intensities, and their coefficients of variance differ by 0.5 percent. 

The application process is potentially a large source of error. 

This study utilized a single-spot apparatus; however, multi-spot devices 

are commercially available. With a multi-spot apparatus, all of the 
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samples on a TLC plate are applied simultaneously under identical 

environmental conditions. 

The saline concentration of· the application solution affects its 

viscosity, and the viscosity of the application solution influences spot 

diameter and Rf. In this study, the 10.0 ul amounts applied to the TLC 

plate were applied in approximately 3.0 ul increments. A low 

concentation saline solution has less viscosity than a high 

concentration saline solution; therefore, the 3.0 ul amount 

(approximate) of low saline concentration will spread more when applied 

to the TLC plate. The low concentration saline solution spreads the 

tylosin tartrate over a greater area compared with the high 

concentration saline solution. This results in greater Rf values since· 

the developing solution acts over the larger spot area, facilitating 

sample movement. Larger spots are more diffuse; consequently, the 

coefficients of variance are greater. The results of this study 

indicate that a 500.0 ul amount of type-one water containing the salts 

from 2.0 ml of mammalian Ringer's solution yielded coefficients of 

variance twice as large as those for pure type-one water. It was also 

found that a 100.0 ul amount of type-one water containing the salts from 

2.0 ml of mammalian Ringer's solution produced spot diameters and Rf 
values comparable to those for pure type-one water. The salts in an 

application solution are retained by the preadsorbent layer of the 

Whatman LKC 18 F TLC plate (Sherma, 1982); therefore, aqueous saline 

solutions may be applied directly to the plate without extraction. To 

reduce spot diameter and stabalize Rf' the saline concentration of all 



107 

application solutions could be increased to the concentration of the 

100.0 ul saline solution. This would reduce the saline solution 

coefficients of variance values to those of the pure type-one water 

solutions and the extraction process would still be unnecessary. 

Thin layer chromatography utilizes physical and chemical properties 

to separate a sample into components. The TLC process produced a two-

spot pattern for 0.2-0.7 ug amounts of tylosin tartrate and a three-spot 

pattern for 0.8-10.0 ug amounts of tylosin tartrate. The visualization 

spray (ten percent by volume sulfuric acid in methanol) reacts with 

organic materials to produce a dark area. In aqueous solution, tylosin 

tartrate separates into its component ions. Tylosin is amphipathic. 

The tartrate group is polar. The developing solution is polar relative 

to the Whatman LKC 18F TLC plate; therefore, the tartrate favors the 

developing solution and moves easily with the developing solution. For 

this reason, it is hypothesized that the top band of greatest R is due 

to the tartrate. The dark spot utilized for the densitometric analysis 

of tylosin appears at an R value indicative of an amphipathic compound. 

Polar regions permit movement by the developing solution, but nonpolar 

regions cause tylosin to be retained by the TLC plate. The composition 

of the light, diffuse spot visible for 0.8-10.0 ug amounts of tylosin 

tartrate may be due to fragmentation of the tylosin molecule or other 

organic impurities. (H. M. Stahr, personal communication.)1 Subsequent 

controlled-release studies will utilize lachrymal fluid as the medium. 

1 Veterinary Diagnostic Laboratory, Iowa State University, Ames, 
Iowa. 



108 

It is anticipated that the TLC process will separate tylosin from the 

proteins, enzymes, and other contaminants within lachrymal fluid. This 

capability is a definite advantage of the TLC process. 

The TLC quantitative analysis procedure utilized in this study was 

time-consuming, but a multi-spotting apparatus would significantly 

reduce sample application times and an electronic digital integrator 

would eliminate the "cut and weigh" method of peak-area measurement. 

Additionally, these two modifications are expected to reduce the 

coefficient of variance. 

TLC quantitative analysis relies upon the linear relationship 

between average weight of peak and tylosin tartrate amount for the 

quantitation of unknown amounts of tylosin tartrate. The experimentally 

determined coefficient of determination values (r2) were close to 1.0. 

This indicates that a high degree of linearity was achieved. 

Production of the Controlled-Release Systems 

The control membrane thickness affects the rate of drug release 

from a system (Olanoff and Anderson, 1979). A large number of 90:10 

MMA/2-HEMA films were produced in order to obtain the thirty disks 

needed for the controlled-release systems. The 0.223 ± 10% mm thickness 

utilized for this report was the minimum thickness available that 

provided thirty disks. The viscosity of the 90:10 MMA/2-HEMA solution 

limited the production of thinner films; and larger amounts of acetone 

and dimethylformamide resulted in films with a significant increase in 

the number and the size of entrapped air bubbles. olanoff and Anderson 
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(1979) utilized acetone and dioxane solvents to produce a trilaminar 

insert, and this choice of solvent might offer somewhat improved 

fabrication results (a preliminary study indicated that good films can 

be made). 

The post-experiment examination of the controlled-release systems 

indicated the need for better quality control of the assembly process. 

The 55.0 gm weight on the top glass-slide ensured that the.edges of the 

two 90:10 MMA/2-HEMA disks remained in contact with the joining solution 

during fabrication. This was necessary because the disks were not 

always perfectly flat. The weight also caused the joining solution to. 

flow from its location on the disk perimeter to the interior or exterior 

of the system. A possible method of producing flat disks is to place 

water soaked disks between two, weighted, glass slides that hold the 

disks flat. When the room temperature evaporation process is complete, 

the disks should be flat and rigid. The 20G-1 needle utilized for 

joining solution application was the smallest gauge needle that 

permitted passage of the 90:10 MMA/2-HEMA solution. A less viscous 

joining solution would pass through a narrower bore needle and permit 

closer regulation of the joining solution quantity applied to the 

perimeter of the 90:10 MMA/2-HEMA disk. 

The poly (lactic acid)-tylosin tartrate matrix (32A-E) and the 5.0 

mg of tylosin tartrate within systems (33A-E) were easily retained by 

the devices. Controlled-release systems 34A-E contained 50.0 mg of 

tylosin tartrate. This amount of drug filled the system and resulted in 
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extensive intermixing of the drug and joining solution in some devices. 

Therefore, smaller amounts of drug loading are recommended for devices 

of this size. 

Tylosin Tartrate Release-Experiment 

The dark spot diameters reported in Table 12 and the diameters of 

the dark spots from tylosin tartrate mammalian Ringer's solutions in 

Figure 20 indicate that spot diameter increases with decreased saline 

concentration between the pure type-one water and 500.0 ul saline 

solution; however, there is no significant difference in spot diameter 

due to saline concentration between 500.0 ul saline solutions and 

mammalian Ringer's solutions. Three hundred samples were collected 

during the release-experiment and dried. Forty-five samples were 

resolubilized with 500.0 ul or more of type-one water, 191 samples were 

resolubilized with 100.0 ul of type-one water, and sixty-four samples 

were resolubilized with intermediate amounts of type-one water. The 

maximum expected coefficient of variance occurs for samples 

resolubilized with 500.0 ul or more of type-one water. The samples 

diluted with 500.0 ul or more of type-one water produced tylosin 

tartrate spots in the range of 0.9-5.0 ug. These samples represent 

dried salts and drug to which type-one water is added. Aqueous 

solutions in this range produced coefficients of variance of 5.6-10.5 

percent (Table 13); therefore, coefficients of variance of 11.2-21.0 

percent are expected for these release samples (based on the 
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coefficients of variance in Table 15 being approximately double those in 

Table 13). The samples diluted with 100.0 ul of type-one water have 

coefficients of variance similar to those for the aqueous solutions in 

Table 13 (0.2-0.8 ug, 10.0-28.6 percent; 0.9-5.0 ug, 5.6-10.5 percent). 

The samples diluted with intermediate amounts of type-one water have 

coefficients of variance between these two extremes. 

These coefficients of variance are greater than the one to five 

percent values reported in most densitometic methods (Touchstone and 

Dobbins, 1978). However, the approximate release rates of the 

controlled-release systems can be determined. These release rates can 

be compared with the release rates required to maintain the minimum 

inhibitory concentration of tylosin tartrate, and this comparison can be 

utilized as a basis both for improving release systems and for 

developing prototype units for animal trials. 

Olanoff and Anderson (1979) found that the tetracycline release 

rate from a 63:37 MMA/2-HEMA matrix covered with a 98:2 MMA/2-HEMA 

coating was a function of general device geometry, control membrane 

thickness, disk surface area, level of core reservoir drug loading, and 

copolymer composition of the membrane coating. All of the controlled-

release systems in this study have the same general geometry and control 

membrane composition; therefore, these contributory factors were not 

examined. The influence of the control membrane thickness, disk surface 

area, and level of core reservoir drug loading can be examined from the 

experimental results of this study. 
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An overall view of the systems indicates that controlled-release 

systems 32A-E and 33A-E produced zero-order release rates covering the 

lower portion of the required release rate range, and controlled-release 

systems 34A-E produced zero-order release rates exceeding the required 

release rate range. The highest zero-order release rate of ~3.3 ug/hr 

was achieved with system 34B. This amount is far below the 30 mg 

tylosin tartrate dose currently sprayed into the eye in a single 

application. Controlled-release systems, that are stored for a period 

of time before use, exhibit an initially high rate of release called the 

burst effect. This occurs because the drug has time to saturate the 

control membrane of the device (Cowsar, 1974). This phenomenon occurred 

iri all of the systems. The largest rate of drug release (2244.2 ug/hr) 

during the burst effect was from system 34B. The concentration of 

tylosin tartrate in the eye during the burst effect is gre~ter than the 

concentration in the eye during the zero-order release period; however, 

the concentration is still below the single application spray dosage 

currently utilized. Therefore, the burst effect is not a problem. In 

fact, the high release rate may be of benefit by eradicating 

contributory organisms of BIK. 

The following discussion combines the results of the post-

experiment stereomicroscopic examination and the factors outHned by. 

Olanoff and Anderson (1979) in order to develop an explanation of the 

range of release rates and release characteristics observed. 
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Controlled-release systems 32A-E contained a poly (lactic 

acid)-tylosin tartrate matrix between two 90:10 MMA/2-HEMA control 

membranes. The thickness of the control membrane and the thickness and 

weight of the inner layer were carefully regulated so similar release 

characteristics were expected. However, the release rates were 

different, and most of the variance may be attributed to the assembly 

process. After the initial burst effect, system 32A provided zero-order 

release for fifty-six hours followed by a rapid increase in the release 

rate and a return to the initial zero-order release rate. It is 

believed that the rapid increase in the release rate was due to an 

increase in the concentration of tylosin tartrate within the device. 

The drug core is a matrix device and uneven distribution of tylosin 

tartrate within the matrix could cause this phenomenon. System 328 

released a similar cumulative amount of tylosin tartrate as 32A; 

however, the zero-order release occurred at a slower rate for seventy-

two hours. Six samples during the zero-order release period did not 

contain enough tylosin tartrate for detection. The open area of system 

328 is approximated by a 12.0 mm diameter circle and that of 32A is 

approximated by a 10.0 mm diameter circle. Since 328 has the greater 

effective area of release, it would be expected to have the higher 

release rate. This apparent discrepancy may be explained by the level 

of drug loading in the core. If the concentration gradient across the 

control membrane is less, the release rate will also be less. System 

32C was completely sealed with joining solution; therefore, the 

thickness of the control membrane was greatest for this device. The 
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thicker control membrane is expected to slow the release rate, and 32C 

has one of the slowest release rates in the series (0.1 ug/hr). The 

rate of release was so low that eleven of the samples did not contain a 

sufficient quantity, of tylosin tartrate for detection. The post-

experiment characteristics of systems 32A and 320 are identical; thus, 

similar release characteristics are expected. Unfortunately, the 

release rate from 320 is nine times slower than the release rate of 32A. 

Both systems had similar control membrane thickness and effective area 

of release; thus, the variation must be associated with the level of 

drug loading in the core. System 32E released 870.l ug of tylosin 

tartrate in a forty-eight hour burst, the largest cumulative release in 

this series. System 32E was the only device that did not produce a 

per~od of zero-order release. The 14.0 mm diameter effective release 

area is the largest area in this series; thus, an increased rate of 

release would be expected, but that rate should be lower than the 

experimental values. The release pattern of 32E is indicative of a 

matrix system, not a reservoir, since there is a rapid decrease in the 

release rate versus time. Although no perforations were located in the 

sys.tern during the post-experiment analysis, a break in the control 

membrane would permit this type of release. 

Controlled-release systems 33A-E contained 5.0 mg of tylosin 

tartrate between two 90:10 MMA/2-HEMA control membranes. The thickness 

of the control membrane and the weight of tylosin were carefully 

regulated; therefore, similar release characteristics were expected. 
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However, the release rates were different, and the variance may be 

attributed to the assembly process. System 33A produced a O.G ug/hr 

zero-order release rate for ninety-two hours and released a total 

cumulative tylosin tartrate amount of 347.0 ug. The effective release 

area has a 5.0 mm diameter. Tylosin tartrate remained inside of this 

area during the assembly process, and did not intermix with the joining 

solution. The post-experiment characteristics of systems 33A and 338 

are identical; thus, similar release characteristics are expected and do 

occur. System 338 produced a 0.7 ug/hr zero-order release rate for 

eighty-eight hours and released a total cumulative tylosin. tartrate 

amount of 408.8 ug. System 33C was completely sealed, and the tylosin 

tartrate was dispersed within the joining solution. After the 

experiment, there was no evidence of tylosin residue. The thicker 

control membrane is expected to slow the release rate, and an 

experimental value of 0.3 ug/hr was obtained. System 330 contained a 

2.0 mm diameter effective release area, and the remainder of the device 

was sealed. The tylosin tartrate intermixed with the joining solution, 

and the device retained the yellow color of tylosin tartrate after the 

experiment. The intermixing of the tylosin tartrate and the joining 

solution coated the drug·particles, effectively prohibiting that drug 

amount from contributing to the concentration gradient. The 0.2 ug/hr 

zero-order release rate and the 136.8 ug amount of tylosin tartrate were 

the lowest values in this series. System 33E contained a 4.0 mm 

diameter effective release area, and the remainder of the device was 
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sealed. These physical characteristics are similar to those of 33A and 

33a; therefore, similar release characteristics are expected. The burst 

effect of system 33E released more drug than systems 33A or 338 so the 

739.0 ug cumulative release is greater. However, the ninety-six hour, 

0.8 ug/hr zero-order release rate correlates well with the values 

obtained for systems 33A and 338. 

Controlled-release systems 34A-E contained 50.0 mg of tylosin 

tartrate between two 90:10 MMA/2-HEMA control membranes. The thickness 

of the control membrane and the weight of tylosin were carefully 

regulated; thus, similar release characteristics were expected. 

However, the release rates were quite variable, and these differences 

may be attributed to the assembly process. Due to the physical size 

limitations of the controlled-release systems it was very difficult to 

prevent intermixing of the joining solution and tylosin tartrate. This 

intermixing is the primary cause of variation in the release 

characteristics for systems 34A-E. System 34A produced a 6.0 ug/hr 

zero-order release rate for eighty-four hours and released a t~tal 

cumulative tylosin tartrate amount of 31,729.8 ug. The effective 

release area has a 6.0 mm diameter. Tylosin tartrate mixed with the 

joining solution at the interface, and the device retained the faint 

yellow color of tylosin tartrate after the experiment. The post-

experiment characteristics of systems 34A and 348 are identical; thus, 

similar release characteristics are expected. System 348 produced a 

33.3 ug/hr zero-order release rate for eighty-four hours and released a 

total cumulative tylosin tartrate amount of 32,619.0 ug. Therefore, the 



117 

cumulative tylosin tartrate release for systems 34A and 34B are similar, 

but the release rate for system 34B is 5.6 times higher than that of 

34A. This difference cannot be explained by the post-experiment 

characteristics since the devices appeared identical. However, it is 

possible that the joining solution may have mixed with the tylosin 

tartrate to a greater extent in system 34A than in system 34B. Thus, 

the tylosin tartrate concentration gradient in system 34A would be lower 

and the release rate smaller. System 34C contained a 6.0 mm diameter 

effective release area and the remainder of the device was sealed. 

Extensive intermixing of the joining solution and tylosin tartrate 

~ccurred, and tylosin tartrate particles remained in the device after 

the experiment. This intermixing dramatically reduced the drug 

concentration gradient across the membrane. System 34C produced a 1.0 

ug/hr zero-order release rate for sixty-eight hours and released a total 

cumulative tylosin tartrate amount of 991.8 ug. System 340 had a 9.0 mm 

diameter effective release area; otherwise, its post-experiment 

characteristics were identical to those of system 34C. The intermixing 

of tylosin tartrate and joining solution is the primary factor in the 

10.0 ug/hr, thirty-six hour zero-order release rate and total cumulative 

tylosin release of 1,316.7 ug for system 340. System 34E produced a 

20.3 ug/hr zero-order release rate for eighty-eight hours and released a 

total cumulative tylosin tartrate amount of 25,927.4 ug. The effective 

release area has a 6.0 mm diameter. Some intermixing of the joining 

solution and tylosin tartrate occurred, and a few tylosin tartrate 

particles remained in the device after the experiment. This intermixing 
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was more extensive than systems 34A and 34B and less extensive than 

systems 34C and 340; therefore, intermediate release rates were expected 

and did occur. 

The release-experiment data indicate that with improved quality 

control it is possible to achieve a predictable zero-order release of 

tylosin tartrate powder from 90:10 MMA/2-HEMA reservoir devices at the 

rate needed to treat BIK. The release rates from the 33 series were not 

sufficient to cover the entire lachrymal flow range, and the release 

rates from the 34 series exceeded the required rates. Therefore, the 

optimum drug loading is between 5.0-50.0 mg. Although the devices have· 

an exterior diameter of 17.9 mm, the effective release area diameters 

were on the order of 4.0 mm for the 33 series and 7.0 mm for the 34 

series. Zero-order release is achieved by this configuration because 

the hydrophobic 90:10 MMA/2-HEMA control membrane restricts the flow of· 

water to the interior of the device. Thus, a saturated solution is 

maintained within the system for the duration of the experiment. 
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RECOMMENDATIONS FOR FURTHER RESEARCH 

Hughes and Pugh (1975) found that 42.9-44.5 mm diameter rings 

constructed of poly (vinyl chloride) tubing (with a tube outside 

diameter of 2.82, 1.65, or 0.914 mm) could be retained in the bovine eye 

for up to nineteen days. Reaction to the devices was minimal and 

consisted of increased tearing initially and increased mucous secretion 

after prolonged retention. A ring of this type could serve as the 

retaining device for a 90:10 MMA/2-HEMA-tylosin tartrate ocular 

controlled-release system. 

Figure 43 illustrates the configuration of a suggested prototype. 

The poly (vinyl chloride) tubing is first formed into a ring by 

inserting a short piece of tube with a smaller diameter into the two 

ends and joining the outer tube edges utilizing a tetrahydrofuran 

·solvent. Next, the 90:10 MMA/2-HEMA films are cut into crescents so the 

curved edge conforms to the shape of the poly (vinyl chloride) ring (See 

Figure 43). The crescents are the control membranes and should be 

totally flat for the assembly process as suggested earlier. Tylosin 

tartrate powder is weighed onto a crescent, the joining solution is 

carefully applied, and the top crescent is placed on the joining 

solution to seal the device. The results of this study indicate the 

importance of not intermixing the tylosin tartrate and joining solution, 

and controlling the size of the effective release area. When both 

crescents are dry, they are attached to the poly (vinyl chloride) ring 

with 90:10 MMA/2-HEMA joining solution. This device is designed to fit 
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Poly (vinyl chloride) 
ring 

FIGURE 43. Prototype, ocular controlled-release system 

into the conjunctival sac. Insertion is accomplished by holding the 

eyelids open and directing one side of the ring into the lateral fornix. 

The remainder of the ring is guided under the lids and onto the outer 

surface of the nictitating membrane (Hughes and Pugh, 1975). The two 

crescents would be in the upper and lower conjunctival sac. This 

configuration does not impede oxygen flow to the cornea, and the system 

would release tylosin tartrate into the region where drugs are currently 

applied (Blood and Henderson, 1979; Hughes, 1981). 

The 90,10 MMA/2-HEMA film is a fairly rigid, hydrophobic material 

and may cause ocular irritation. To reduce ocular irritation, a more 

hydrophilic hydrogel may be needed. Since tylosin tartrate is very 

soluble in water, a controlled-release system composed of hydrophilic 

hydrogel may not provide long-term release because too much water may 

flow through the hydrogel. Should this adaptation be required, tylosin 

(water solubility 5 mg/ml at 25°c) (Windholz et al., 1976) is available 
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from Elanco Products Co. (T. Matsuoka, personal communication)l, and 

could possibly be utilized in place of tylosin tartrate. 

1 Elanco .Products Co. , Indianapolis, Indiana. 



122 

BIBLIOGRAPHY 

Abrahams, R. A., and S. H. Ronel. 
sustained zero-order release of 
Mater. Res. 9:355-366. 

1975. Biocompatible implants for the 
narcotic antogonists. J. Biomed. 

Aronson, C; E. , T. E. Powers, and S. F. Scheidy. 1983. Product 
information: pharmaceuticals. The Complete Desk Reference of 
Veterinary Pharmaceuticals and Biologicals 1982/1983: 16-1 - 16-318. 

Baldwin, E. M. 1945. A study of bovine infectious keratitis. Am. J. 
Vet. Res. 6:180-187. 

Blogg, J. R. 
disease. 

1980. The eye in veterinary practice, extraocular 
W. B. Saunders Company, Philadelphia. 586 pp. 

Blood, D. C., and J. A. Henderson. 1979. Veterinary medicine. 
Bailliere Tindall, London. 1135 pp. 

Bloomfield, s. E., M. W. Dunn, T. Miyata, K. H. Stenzel, S.S. Randle, 
and A. L. Rubin. 1977. Soluble artificial tear inserts. Arch. 
Ophthalmol. 95:247-250. 

Bruck, S .. D. 1981. Properties of biomaterials in the physiological 
environment. CRC Press Inc., Boca Raton, Florida. 142 pp. 

Burger, A. 1970. Medical Chemistry. 3rd ed. Wiley-Interscience, New 
York. 2 vols. 

Cardinal, J. R., s. H. Kim, ands. z. Song. 1980. Hydrogel devices for 
the controlled release of steroid hormones. Pages 123-133 in R. 
Baker, ed. Controlled release of bioactive materials. Academic 
Press, New York. 

Charles, W., D. H. Venino, J. R. Hall, and J. c. Mosier, eds. 1979. 
Veterinary product and therapeutic reference. 5th ed. Therapeutic 
Communieations Inc., Caldwell, New Jersey. 534 pp. 

Chien, Y. w. 
New York. 

1982. Novel drug delivery systems. Marcel Dekker, Inc., 
633 pp. 

Chiou, G. c. Y., and K. Watanabe. 1982. Drug delivery to the eye. 
Pharmacol. Ther. 17:269-278. 

Cowsar, D. R. 1974. Drug delivery systems: design criteria. 
237-244 in A. c. Tanquary and R. E. Lacey, eds. Controlled 
of biological active agents. Plenum Press, New York. 

Pages 
release 



123 

Cowsar, D. R., O. R. Tarwater, and A.C. Tanquary. 1976. Controlled 
release of floride from hydrogels for dental applications. Pages 
180-197 in J. D. Andrade, ed. Hydrogels for medical and related 
applications. American Medical Society, Washington, D. c. 

Debackere, M., and K. Baeten. 1971. A thin-layer chromatographic 
method for the detection of tylosin in biological materials and 
feeds. J. Chromatogr. 61:125-132. 

Debackere, M., and L. Laruelle. 1964. Isolation, detection and 
identification of some alkaloids or alkaloid-like substances in 
biological specimens from horses with special reference to doping. 
J, Chromatogr. 35:234-247. 

Ebert, C., J, McRea, and S. w. Kim. 1980. Controlled release of 
antithrombotic agents from polymer matrices. Pages 107-122 in R. 
Baker, ed. Controlled release of bioactive materials. Academic 
Press, New York. 

Ellis, L. F., and L. E. Barnes. 1961. Tylosin treatment of bovine pink 
eye. Vet. Med. 56:197. 

Estevey, J.M. J., and F. Ridley. 1966. Safety requirements for 
contact lens materials. Am. J. Ophthalmol. 62:132-136. 

Gelatt, K. N., G. G. Gum, L. w. Williams, and R. L. Peiffer. 1979. 
· Evaluation of a soluble sustained-release ophthalmic delivery unit in 

the dog. Am. J, Vet. Res. 40:702-704. 

Hamill, R. L., M. E. Haney, M. Stamper, and P. Wiley. 1961. 
new antibiotic: II isolation, properties, and preparation 
desmycosin, a microbiologically active degradation product. 
Antibiot. chemother. 11:328-334. 

Tylosin, a 
of 

Hoffman, D., and P. B. Spadbrow. 
lachrymal fluid from cattle. 

1978. A method of collecting 
Res. Vet. Sci. 25:103-104. 

Hophenberg, H., and K. c. 
rate delivery systems. 

Hsu. 1978. Swelling controlled, constant 
Polym. Eng. Sci. 18:1186-1191. 

Hughes, D. c •. 1981. Infectious keratoconjunctivitis. Pages 237-245 in 
M. Ristic and I. Mcintyre, eds. Diseases of cattle in the tropics. 
Martinus Nijhoff Publishers, Boston. 

Hughes, D. E., and G. W. Pugh. 1970. A five-year study of IBK in a 
.beef herd. J, Am. Vet. Med. Assoc. 157:443-451. 

Hughes, D. E., and 
conjunctivitis: 
the bovine eye. 

G. W. Pugh. 1975. Infectious bovine 
a ring device desi9!Jed for prolonged 
Am. J. Vet. Res. 36:1043-1045. 

kerato-
retention in 



124 

Jackson, F. c. 1953. Infectious keratoconjunctivitis of cattle. Am. 
J. Vet. Res. 14:19-25. 

Jensen, R., and D.R. Mackey. 
and Febiger, Philadelphia. 

1965. Diseases of feedlot cattle. Lea 
305 pp. 

Jensen, R., and D.R. Mackey. 1979. Diseases of feedlot cattle.· 3rd 
ed. Lea and Febiger, Philadelphia. 300 pp. 

Johnston, D. E. 19.82. The Bristol veterinary handbook of antimicrobial 
therapy. Bristol Laboratories,. Syracuse, New York. 224 pp. 

Korzybski, T., z. Kowszyk-Gindifer, and w. Kurylowicz. 1967. 
Antibiotics origin, nature and properties. Vol. 1 of 2 volumes 
translated by Edwin Paryski. Pergamon Press, New York. 

Kronenthal, R. L. 1975. Biodegradable polymers in medicine and 
surgery. Pages 119-139 in Z. Oser and E. Martin, eds. Polymers in 
medicine and surgery. Plenum Press, New York. 

Langer, R., W. Rhine, D. s. T. Hsieh,. and J. Folkman. 
release kinetics of macromolecules from polymers. 
7:333-350. 

1980. Control of 
J. Membr. Sci. 

Langer, R. S., and N. A. Peppas. 1981. Present and future applications 
of biomaterials in controlled drug delivery systems. Biomaterials 
2:201-214. 

Langer, R., H. Brem, and D. Topper. 1981. Biocompatibility of polymer 
delivery systems for macromolecules. J. Biomed. Mater. Res. 
15 :267-277. 

Macoul, K. L., and D. Pavan-Langston. 1975. Pilocarpine ocusert system 
for sustained control of ocular hypertension. Arch. Ophthalmol. 
93:587-590. 

Maichuk, Y. F. 1975a. Soluable ophthalmic drug inserts. Lancet 1:173. 

Maichuk, Y. F. 1975b. Ophthalmic drug insert, editorial on recent 
advances. Invest. Ophthalmol. 14:87-90. 

McGuire, J.M., w. S. Boniece, c. E. Higgens, M. M. Hoehn, w. M. Stark, 
J. Westhead, and R. N. Wolfe. 1961. Tylosin,.a new antibiotic: I. 
Microbiological studies. Antibiot. Chemother. 11:320-327. 

Olanoff, L., and J.M. Anderson. 1979. Controlled release of 
tetracycline II: Development of an in-vivo flow-limited 
pharmacokinetic model. J. Pharm. Sci. 68:1151-1155. 



125 

Olanoff, L., T. Koinis, and J.M. Anderson. 1979. Controlled release· 
of tetracycline I: In-Vitro studies with a trilaminate 
2-hydroxyethyl methacrylate-methyl methacrylate system. J, Pharm. 
Sci. 68:1147-1150. 

Ose, E. E., and L. E. Barnes. 1960. 
in turkeys with tylosin tartrate. 

Treatment of infectious sinusitis 
J, Am. Vet. Assoc. 137:421-423. 

Pedley, D. G.,· P. J. Skelly, and B. J. Tighe. 1980. Hydrogels in 
biomedical applications. Br. Polm. J. 12:99-110. 

Pitt, c. G., A. R. Jeffcoat, R. A. Zweidinger, and A. Schindler. 1979. 
Sustained delivery systems I. The permeability of poly 
(£-caprolactone), poly (DL-lactic acid), and their copolymers. J. 
Biomed. Mater. Res. 13:497-507. 

Pitt, c. G., M. M. Gratzl, G. L. Kimmel, J. Surles, and A.Schindler. 
1981. Aliphatic polyesters II. The degredation of poly (DL-
lactide), poly (£-caprolactone), and their copolymers in vivo. 
Biomaterials 2:215-220. 

Podos, s. M., B. Becker, c. Asseff and J. Hartstein. 1972. Pilocarpine 
therapy with soft contact lenses. Am. J. Ophthamol. 73:336-341. 

Pugh, G, W. 1969. Characterization of Moraxella bovis and its 
relationship to bovine infectious keratoconjunctivities. Ph. D. 
Dissertation. Iowa State University, Ames, Iowa. 213 pp. 

Pugh, G. w., and D. E. Hughes. 1968. Experimental BIK caused by 
sunlamp irradiation and Moraxella bovis infection: Correlation of 
hemolytic ability and pathogenicity:-""°Am. J. Vet. Res. 29:835-839. 

Pugh, G. W., and D. E. Hughes. 1975. Bovine infectious 
keratoconjunctivitis: carrier state of Moraxella bovis and the 
development of preventative measures against disease. J. Am. Vet. 
Med. Assoc. 167:310-313. 

Pugh, G. w., T.J. McDonald and A. B •. Larsen. 1978. Experimentally 
induced IBK: potentiation of Moraxella bovis pilus vaccine's 
immogenicity by vaccination with mycobacterium paratuberculosis 
bacteria. Am. J. Vet. Res. 39:1656-1661. 

Pugh, G. W., K. E. Kopecky, W. G. Kvasnicka, T. J. McDonald and G, D. 
Booth. 1982. Infectious bovine keratoconjunctivitis in cattle 
vaccinated and medicated against Moraxella bovis before parturition. 
Am. J. Vet. Res. 43:320-325. 



126 

Ratner, B. D., and A. s. Hoffman. 1976. Synthetic hydrogels for 
biomedical applications. Pages 1-36 in J. D. Andrade, ed. Hydrogels 
for medical and related applications.~American Chemical Society, 
Washington, D. c. 

Refojo, M. J, 1969. Articicial membranes for corneal surgery. J. 
Biomed. Mater. Res. 3:333-347. 

Refojo, M. J. 1974. Materials for use in the eye. Pages 313-331 in A. 
c. Tanquary and R. E. Lacey, eds. Controlled release of biological· 
active agents. Plenum Press, New York. 

Rhine, W. D., D. S. T. Hsieh, and R. Langer. 1980. Polymers for 
sustained macromolecule release: procedures to fabricate 
reproducible delivery systems and control release kinetics. J. 
Pharm. Sci. 69:265-270. 

Richardson, K. J. 1975. ocular microtherapy. Arch. Ophthalmal. 
93:74-86. 

Rosenbusch, R. F. 1983. Influence of mycoplasma preinfection on the 
expression of Moraxella bovis pathogenicity. Am. J. Vet. Res. 
44:1621-1624. 

Rosenbusch, R. F., and W. U. Knudtson. 1980. 
conjunctivitis: experimental reproduction 
the disease. Cornell Vet. 70:307-320. 

Bovine mycoplasmal 
and characterization of 

Rossoff, I. s. 1974. Handbook of veterinary drugs. Springer 
Publishing Co., New York. 730 pp. 

Sampson, G. R., and R. P. Gregory. 
neomycin powder in the treatment 
Anim. Clin. 69:166-167. 

1974. Evaluation of tylosin-
of bovine pinkeye. Vet. Med. Small 

Schindler, A., R. Jeffcoat, G. L. Kemmel, c. G. Pitt, M. E. Wall, and R. 
Zweidinger. 1977. Biodegradable polymers for sustained drug 
delivery. Pages 251-289 in E. M. Pearce and J. R. Schaefgen, eds. 
Contemporary topics in polymer science. Plenum Press, New York. 

Sherma, J. 1981. Practice and applications of thin layer 
chromatography on Whatman KC 18 reserved phase plates. Whatman 
Chemical Separation, Inc., Clifton, New Jersey. 3 vols. 

Sherma, J. 1982. Practice and applications of thin layer 
chromatography on Whatman linear-K preadsorbent plates. Whatman 
Chemical Separation, Inc., Clifton, New Jersey. 3 vols. 

Slatter, D. H., and M. E. Edwards. 1982. Normal bovine tear flow 
rates. Res. Vet. Sci. 33:262-263. 



Snyder, L. R., and J. J. Kirland. 
Wiley-Interscience, New York. 

127 

1974. Modern liquid chromatography'. 
534 pp. 

SPSS Inc. 1983. SPSSX ® User Is 
806 pp. 

Guide. McGraw-Hill Book Company, 
Chicago. 

Stahl, E., and H. Jork. 1968. Thin layer chromatography XIX, direct 
evaluation with the chromatogram spectrophotometer. Zeiss Inf. 
68: 52-61. 

Stecher, P. G., M. Windholz, D. s. Leahy, D. M. Bolton, and L. G. Eaton, 
eds. 1968. The Merck index. 8th ed. Merck and Company Inc., 
Rahway, New Jersey. 1713 pp. 

Theodorakis, M. c., A.H. Brightman, J.M. Otto, J.E. Tomes, and T. w .. 
Whitlock. 1983. A polymer insert for treating infectious bovine 
keratoconjunctivitis. Pages 23-38 in Transactions of the 14th annual 
scientific program of college veterinary ophthalmologists, Chicago, 
Illinois, October 29-30, 1983. 

Thrift, F. A., and J. R. Overfield. 1974. Impact of pinkeye 
(infectious bovine kerato-conjunctivitis) on weaning and postweaning 
performance of hereford calves. J, Anim. Sci. 38:1179-1184. 

Touchstone, J. c., and M. F. Dobbins. 1978. Practice of thin layer 
chromatography. University of Pennsylvania School of Medicine. 
Wiley-Interscience Publication, New York. 383 pp. 

Wagman, G. H., ·and M. J. Weinstein. 1973. Chromatography of 
antibiotics. Elsevier Scientific Publishing Company, New York. 240 
PP· 

Whatman Chemical Separation Inc. 1981. How to use the 
LKC 18 /LKC 18 F/PLKC 18 F preadsorbent reversed phase TLC plate. Whatman 
Instruction #510-2/81. Whatman Chemical Separation Inc., Clifton, 
New Jersey. 

Windholz, M., s. Budavari, 
1976. The Merck index. 
Jersey. 1952 pp. 

L. Y. Stroumtsos, and M. N. Fertig, eds. 
9th ed. Merck and Company Inc., Rahway, New 

Wise, D. L., J, D. Fellmann, J.E. Sanderson, and R. Wentworth. 1979. 
Lactic/glycolic acid polymers. Pages 237-270 in G. Gregoriodis, ed. 
Drug carriers in biology and medicine. Academic Press, New York. 



128 

ACKNOWLEDGEMENTS 

The author wishes to express his appreciation to Dr. R. T. Greer 

for his guidance and encouragement throughout this study, and to Dr. C. 

S. Swift and Dr. F. Hembrough for serving on his committee. Special 

thanks are given to Dr. H. M. Stahr and the members of the Veterinary 

Diagnostic Laboratory for their assistance with the thin layer 

chromatography analysis and for welcoming the author into their lab to 

perform this study. The author wishes to acknowledge Dr. A. J, Netusil 

for his assistance in the design of the statistical analysis and Dr. P.· 

K. McAllister for her assistance ~ith experimental set-up, data 

collection, and photography. The author is deeply grateful to his wife, 

Barbara, for her assistance with statistics and manuscript reviews and 

especially for her love. 

This work was supported by a grant from the United States 

Department of Agriculture. 



129 

APPENDIX A: AVERAGE WEIGHT OF PEAK DATA BASED ON SEVEN IDENTICAL 
TYLOSIN TARTRATE AMOUNTS IN TYPE-ONE AQUEOUS SOLUTION ON A TLC PLATE 

Amount of tylosin Weight of Weight of Average weight 
tartrate peak #1 peak #2 of peak 

(ug) (gm) (gm) (gm) 

0.2 0.0080 0.0078 0.0079 
0.2 0.0038 0.0038 0.0038 
0.2 0.0106 0.0108 0.0107 
0.2 0.0072 0.0078 0. 0075 
0.2 0.0062 0.0062 0.0062 
0.2 0.0066 0.0064 0.0065 
0.2 0.0064 0.0062 0.0063 

0.3 0 .0096 0.0096 0.0096 
0.3 0.0102 0.0102 0.0102 
0.3 0.0084 0.0080 0.0082 
0.3 0 .0110 0.0120 0. 0115 
0.3 0.0096 0.0104 0.0100 
0.3 0.0106 0.0108 0.0107 
0.3 0.0092 0.0084 0.0088 

0.4 0.0228 0.0206 0.0217 
0.4 0.0158 0.0152 0.0155 
0.4 0.0135 0. 0118 0.0126 
0.4 0.0238 0.0253 0.0245 
0.4 0.0158 0.0158 0.0158 
0.4 0.0148 0.0164 0.0156 
0.4 0.0174 0.0178 0.0176 

0.5 0.0232 0.0242 0.0237 
0.5 0.0207 0.0207 0.0207 
0.5 0.0224 0.0228 0.0226 
o;5 0.0181 0.0165 0.0173 
0.5 0.0174 0.0174 0.0174 
0.5 0.0230 0.0240 0.0235 
0.5 0.0200 0.0206 0.0203 

0.6 0.0188 0.0202 0.0195 
0.6 0.0287 0.0271 0.0279 
0.6 0.0230 0.0222 0.0226 
0.6 0.0284 0.0286 0.0285 
0.6 0.0241 0.0241 -0 .0241 
0.6 0.0326 0.0334 0.0330 
0.6 0.0291 0.0315 0.0303 
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Amount of tylosin Weight of Weight of Average weight 
tartrate peak #1 peak #2 of peak 

(ug) (gm) (gm) (gm) 

0.7 0.0222 0.0234 0.0228 
0.7 0.0168 0.0168 0.0168 
0.7 0.0164 0.0162 0.0163 
0.7 0.0128 0.0126 0.0127 
0.7 0.0166 0.0166 0.0166 
0.7 0.0170 0.0172 0.0171 
0.7 0.0184 0.0186 0.0185 

0.8 0.0120 0.0120 0.0120 
0.8 0.0140 0.0132 0.0136 

. 0 .8 0. 0118 0.0128 0.0123 
0.8 0.0100 0.0100 0.0100 
0.8 0.0088 0.0092 0.0090 
0.8 0.0130 0. 0132 0. 0131 
0.8 0.0100 0.0100 0.0100 

0.9 0.0224 0.0212 0.0218 
0.9 0.0179 0.0179 0.0179 
0.9 0.0204 0.0200 0.0202 
0.9 0.0228 0.0226 0.0227 
0.9 0.0176 0.0176 0.0176 
0.9 0.0196 0.0188 0.0192 
0.9 0.0163 0. 0177 0.0170 

1.0 0.0132 0.0134 0. 0133 
1.0 0.0126 0.0120 0.0123 
1.0 0.0149 0.0149 0.0149 
1.0 0.0100 0 .0110 0.0105 
1.0 0. 0118 0 .0114 0 .0116 
1.0 0.0121 0.0121 0.0121 
1.0 0.0144 0.0140 0.0142 

2.0 0.0188 0.0188 0.0188 
2.0 0.0181 0.0181 0.0181 
2.0 0.0169 0.0169 0.0169 
2.0 0.0186 0.0186 0.0186 
2.0 0.0168 0.0172 0.0170 
2.0 0.0185 0.0177 0.0181 
2.0 0.0166 0.0166 0.0166 
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Amount of tylosin Weight of Weight of Average weight 
tartrate peak #1 peak #2 of peak 

(ug) (gm) (gm) (gm) 

3.0 0.0518 0.0596 0.0557 
3.0 0.0537 0.0537 0.0537 
3.0 0.0494 0. 0478 0.0486 
3.0 0.0522 0.0524 0.0523 
3.0 0.0538 0.0536 0.0537 
3.0 0.0508 0.0500 0.0504 
3.0 0.0500 0.0498 0.0499 

4.0 0.0139 0.0137 0.0138 
4.0 0.0150 0.0142 0.0146 
4.0 0.0134 0.0130 0.0132 
4.0 0.0156 0.0158 0.0157 
4.0 0.0121 0.0125 0.0123 
4.0 0.0153 0.0155 0.0154 
4.0 0.0141 0.0143 0.0142 

5.0 0.0294 0.0290 0.0292 
5.0 0.0288 0.0288 0.0288 
5.0 0.0271 0. 0271 0.0271 
5.0 0.0305 0. 0311 0.0308 
5.0 0.0300 0.0304 0.0302 
5.0 0.0261 0.0269 0.0265 
5.0 0.0227 0.0221 0.0224 

6.0 0.0331 0.0331 0.0331 
6.0 0.0337 0.0349 0.0343 
6.0 0.0319 . 0.0315 0.0317 
6.0 0.0346 0.0344 0.0345 
6.0 0.0300 0.0308 0.0304 
6.0 0.0324 0.0322 0.0323 
6.0 0.0355 0.0359 0.0357 

7.0 0.0346 0.0352 o·.034.9 
7.0 0.0377 0.0373 0.0375 
7.0 0.0326 0.0354 0.0340 
7.0 0.0368 0.0364 0.0366 
7.0 0.0335 0.0331 0.0333 

. 7. 0 0.0375 0.0375 0.0375 
7.0 0.0313 0.0297 0.0305 
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Amount of tylosin Weight of Weight of Average weight 
tartrate peak #1 peak #2 of peak 

(ug) (gm) (gm) (gm) 

8.0 0.0455 0.0453 0.0454 
8.0 0.0470 0.0470 0.0470 
8.0 0.0491 0.0483 0.0487 
8.0 0.0415 0.0397 0.0406 
8.0 0.0459 0.0457 0.0458 
8.0 0.0452 0.0442 0.0447 
8.0 0.0372 0.0372 0.0372 

9.0 0. 0712 0.0712 0. 0712 
9.0 0.0602 0.0600 0.0601 
9.0 0.0668 0.0668 0.0668 
9.0 0.0625 0.0653 0.0639 
9.0 0.0703 0.0707 0.0705 
9.0 0.0686 0.0686 0.0686 
9.0 0.0660 0.0660 0.0660 

10.0 0.0850 0.0838 0.0844 
10.0 0.0937 0.0955 0.0946 
10.0 0.0904 0.0904 0.0904 
10.0 0.0754 0.0714 0.0734 
10.0 0.0920 0.0896 0.0908 
10.0 0.0889 0.0891 0.0890 
10.0 0.0834 0.0836 0.0835 
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APPENDIX B: AVERAGE WEIGHT OF PEAK DATA FOR THE THREE GROUPS OF TYLOSIN 
TARTRATE TYPE-ONE AQUEOUS SOLUTION STANDARDS 

TLC Plate Amount of Weight of Weight of Average weight 
tylosin peak #1 peak #2 of peak 

tartrate {gm) {gm) (gm) 
(ug) 

1 0.1 
1 0.2 0.0049 0.0051 0.0050 
l 0.3 0.0069 0.0069 0.0069 
1 0.4 0.0104 0.0092 0.0098 
l 0.5 0.0082 0.0082 0.0082 
1 0.6 0.0092 0.0082 0.0087 
1 0.7 0.0155 0.0155. 0.0155 

2 0.1 
2 0.2 0.0058 0.0056 0.0057 
2 0.3 0.0066 0.0070 0.0068 
2 0.4 0.0082 0.0082 0.0082 
2 0.5 0.0087 0.0059 0.0073 
2 0.6 0.0105 0.0105 0.0105 
2 0.7 0.0170 0.0188 0.0179 

3 0.1 
3 0.2 0.0013 0. 0013 0.0013 
3 0.3 0.0030 0.0030 0.0030 
3 0.4 0.0058 0.0066 0.0062 
3 0.5 0.0068 0.0072 0.0070 
3 0.6 0.0066 0.0068 0.0067 
3 0.7 0.0094 0.0084 0.0089 

4 0.1 
4 0.2 0.0042 0.0038 0.0040 
4 0.3 0.0060 0.0060 0.0060 
4 0.4 0.0058 0.0066 0.0062 
4 0.5 0.0068 0.0072 0.0070 
4 0.6 0.0066 0.0068 0.0067 
4 0.7 0.0094 0.0084 0.0089 

5 0.1 
5 0.2 0.0042 0.0038 0.0040 
5 0.3 0.0060 0.0060 0.0060 
5 0.4 0.0101 0.0095 0.0098 
5 0.5 0. 0118 0 .0110 0. 0114 
5 0.6 0.0087 0.0075 0.0081 
5 0.7 0 .0118 0.0124 0.0121 
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TLC Plate Amount of Weight of Weight of Average weight 
tylosin peak #1 peak #2 of peak 

tartrate (gm) (gm) (gm) 
(ug) 

6 0.8 0.0134 0. 0114 0.0124 
6 0.9 0.0096 0.0098 0.0097 
6 1.0 0.0157 0.0149 0.0153 
6 2.0 0.0328 0.0330 0.0329 
6 3.0 0.0514 0.0482 0.0498 
6 4.0 0.0673 0.0689 0.0681 
6 5.0 0.1118 0.1078 0 .1098 

7 0.8 0.0063 0.0063 0.0063 
7 0.9 0.0081 0.0083 0.0082 
7 1.0 0.0146 0.0154 0.0150 
7 2.0 0.0269 0.0285 0.0277 
7 3.0 0.0504 0.0476 0.0490 
7 4.0 0. 0716 0.0708 0.0712 
7 5.0 0.0938 0.0906 0.0922 

8 0.8 0.0035 0.0029 0.0032 
8 0.9 0.0055 0.0055 0.0055 
8 1.0 0.0072 0.0082 0. 0077 
8 2.0 0.0218 0.0228 0.0223 
8 3.0 0.0309 0.0313 0. 0311 
8 4.0 0.0391 0.0423 0.0407 
8 5.0 0.5360 0.0614 0.0575 

9 0.8 0.0031 0.0039 0.0035 
9 0.9 0.0072 0.0086 0.0079 
9 1.0 0. 0117 0.0107 0.0112 
9 2.0 0.0221 0.0215 0.0218 
9 3.0 0.0373 0.0367 0.0370 
9 4.0 0.0504 0.0536 0.0520 
9 5.0 0.0773 0. 0771 0. 0772 

10 0.8 0.0168 0.0184 0.0176 
10 0.9 0.0156 0.0154 0.0155 
10 1.0 0.0236 0.0248 0.0242 
10 2.0 0.0419 0.0401 0.0410 
10 3.0 0.0751 0.0787 0.0769 
10 4.0 0.0941 0.0965 0.0953 
lb 5.0 0.1359 0.1413 0 .1386 
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TLC Plate Amount of Weight of Weight of Average weight 
tylosin peak #1 peak #2 of peak 

tartrate (gm) (gm) (gm) 
(ug) 

11 4.0 0.0167 0.0155 0.0161 
11 5.0 0.0212 0.0196 0 •. 0204 
11 6.0 0.0268 0.0280 0.0274 
11 7.0 0.0348 0.0336 0.0342 
11 8.0 0.0381 0.0395 0.0388 
11 9.0 0.0436 0.0428 0.0432 
11 10.0 0.0482 0.0474 0. 0478 

12 4.0 0.0155 0.0153 0.0154 
12 5.0 0.0250 0.0224 0.0237 
12 6.0 0.0309 0.0305 0.0307 
12 7.0 0.0407 0.0383 0.0395 

. 12 8.0 0.0447 0.0435 0.0441 
12 9.0 0.0473 0.0437 0.0455 
12 10.0 0.0481 0.0507 0.0494 

13 4.0 0.0104 0.0086 0.0095 
13 5.0 0.0144 0.0138 0.0141 
13 6.0 0.0184 0.0176 0.0180 
13 7.0 0.0248 0.0250 0.0249 
13 8.0 0.0287 0.0281 0.0284 
13 9.0 0.0328 0.0308 0.0318 
13 10.0 0.0342 0.0350 0.0346 

14· 4.0 0.0169 0.0183 0.0176 
14 5.0 0.0266 0.0266 0.0266 
14 6.0 0.0319 0 .0277 . 0.0298 
14 7.0 0.0354 0.0330 0.0342 
14 8.0 0.0382 0.0378 0.0380 
14 9.0 0.0365 0.0373 0.0369 
14 10.0 0.0450 0.0466 0.0458 

15 4.0 0.0106 0 .0114 0.0110 
15 5.0 0.0170 0. 0178 0.0174 
·15 6.0 0.0214 0.0196 0.0205 
15 7.0 0.0252 0.0266 0.0259 
15 8.0 0.0307 0.0299 0.0303 
15 9.0 0.0342 0.0352 0.0347 
15 10.0 0.0381 0.0409 0.0395 



TLC 
plate 

1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
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APPENDIK C: AVERAGE WEIGHT OF PEAK DATA FOR VARIOUS SALINE 
CONCENTRATIONS WITH IDENTICAL TYLOSIN TARTRATE AMOUNTS 

Amount of Amount of type-one Weight of Weight of Average 
tylosin water added to the peak #1 peak #2 weight 

tartrate salts of 2 ml of (gm) (gm) of peak 
(ug) Ringer's solution (gm) 

(ul) 

2.0 100% type-one water 0 .0112 0. 0112 0 .0112 
2.0 100% type-one water 0.0116 0. 0110 0 .0113 
2.0 100.0 ul 0.0080 0.0090 0.0085 
2.0 100.0 ul 0.0089 0.0091 0.0090 
2.0 300.0 ul 0.0108 0.0104 0 .0106 
2.0 300.0 ul 0.0087 0.0089 0.0088 
2.0 500.0 ul 0.0145 0.0141 0.0143 
2.0 500.0 ul 0. 01.27 0.0123 0.0125 
3.0 100% type-one water 0.0167 0.0177 0.0172 
3.0 100% type-one water 0.0171 0.0177 0.0174' 
3.0 100.0 ul 0.0158 0.0160 0.0159 
3.0 100.0 ul 0.0149 0.0141 0.0145 
3.0 300.0 ul 0.0152 0.0160 0.0156 
3.0 300.0 ul 0.0142 0.0146 0.0144 
3.0 500.0 ul 0.0191 0.0189 0.0190 
3.0 500.0 ul 0.0197 0.0181 0.0189 
4.0 100% type-one water 0.0163 0.0165 0.0164 
4.0 100% type-one water 0.0181 0 .0171 0.0176 
4.0 100.0 ul 0.0192 0.0196 0.0194 
4.0 100.0 ul 0.0179 0.0179 0.0179 
4.0 300.0 ul 0.0200 0.0196 0.0198 
4.0 300.0 ul 0.0180 0.0196 0.0188 
4.0 500.0 ul 0.0239 0.0235 0.0237 
4.0 500.0 ul 0.0226 0.0226 0.0226 .· 
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APPENDIX D: TYLOSIN TARTRATE RELEASE-EXPERIMENT 32A 

Sample Regres- Total Weight Weight Average Amount of Amount of 
number sion volume of of weight tylosin tylosin 

line of peak peak of peak tartrate tartrate 
data!' sampleb Ill #2 (gm) in in total 

(ul) (gm) (gm) 10 ul sample 
(ug) volume 

(ug) 

1 1 1090.0 0.0194 0.0180 0.0187 1.1 119.9 
2 1 590.0 0.0506 0.0502 0.0504 2.9 171.1 
3 1 190.0 0.0438 0.0474 0.0456 2.6 49.4 
4 1 100.0 0.0321 0.0321 0.0321 1.8 18.0 
5 2 100.0 0.0034 0.0032 0.0033 2.4 24.0 
6 100.0 No spot developed on the TLC plate 
7 100.0 No spot developed on the TLC plate 
8 2 100.0 0.0478 0.0480 0.0479 3.5 35.0 
9 3 100.0 0.0137 0.0145 0.0141 0.7 7.0 

10 3 100.0 0.0035 0.0035 0.0035 0.2 2.0 
11 3 100.0 0.0023 0.0017 0.0020 0.2 2.0 
12 3 100.0 0.0026 0.0026 0.0026 0.2 2.0 
13 4 100.0 0.0041 0.0039 0.0040 0.4 4.0 
14 4 100.0 0.0039 0.0029 0.0034 0.4 4.0 
15 4 100.0 0.0050 0.0042 0.0046 0.4 4.0 
16 5 190.0 0.0270 0.0284 0 .0277 1.6 30.4 
17 4 100.0 0.0033 0.0031 0.0032 0.3 3.0 
18 6 100.0 0.0065 0.0055 0.0060 0.6 6.0 
19 5 590.0 0.0327 0.0355 0.0341 2.0 118.0 
20 5 100.0 0.0203 0.0207 0.0205 1.2 12.0 

a See Appendix s. 
b Amount of type-one water added to the dried sample; this amount 

of liquid provides the drug level in 10 ul for the spotting to 
be in the range 0.2-5.0 ug of tylosin tartrate. For example, in 
sample number one, there are 119.9 ug in 1090.0 ul to give a 
detected level of 1.1 ug in 10.0 ul. 
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APPENDIX E: TYLOSIN TARTRATE RELEASE-EXPERIMENT 328 

Sample Regres- Total Weight Weight Average Amount of Amount of 
number sion volume of of weight tylosin tylosin 

line of peak peak of peak tartrate tartrate a data sample #1 #2 {gm) in in total 
(ul) (gm) (gm) 10 ul sample 

(ug) volume 
(ug) 

1 5 1090.0 0.0435 0.0469 0.0452 2.8 305.2 
2 7 590.0 0.0435 0.0421 0.0428 2.3 135.7 
3 7 190.0 0.0341 0.0333 0.0337 1.8 34.2 
4 7 190.0 0.0236 0.0256 0.0246 1.2 22.8 
5 6 100.0 0 .0118 0 .0116 0. 0117 1.0 10.0 
6 6 100.0 0.0145 0.0125 0.0135 1.1 11.0 
7 6 100.0 0 .0112 0. 0110 0.0106 0.9 9.0 
8 7 290.0 0.0172 0.0170 0.0171 0.8 23.2 
9 8 100.0 0.0070 0.0080 0.0075 0 .4 4.0 

10 8 100.0 0 .0110 0. 0110 0. 0110 0.5 5.0 
11 8 100.0 0.0102 0.0098 0.0100 0.5 5.0 
12 8 100.0 0.0108 0.0098 0.0103 0.5 5.0 
13 9 100.0 0.0027 0.0021 0.0024 0.2 2.0 
14 100.0 No spot developed on the TLC plate 
15 100.0 No spot developed on the TLC plate 
16 100.0 No spot developed on the TLC plate 
17 100.0 No spot developed on the TLC plate 
18 100.0 No spot developed on the TLC plate 
19 100.0 No spot developed on the TLC plate 
20 10 100 .o 0.0013 0.0015 0.0015 0.4 4.0 

asee Appendix s. 



139 

APPENDIX F: TYLOSIN TARTRATE RELEASE-EXPERIMENT 32C 

Sample Regres- Total Weight Weight Average Amount of Amount of 
number sion volume of of weight tylosin tylosin 

line of peak peak of peak tartrate tartrate 
data 8 sample #1 #2 (gm) in in total 

(ul) (gm) (gm) 10 ul sample 
(ug) volume 

(ug) 

1 11 1090.0 0.0300 0.0296 0.0298 1.5 163.5 
2 11 590.0 0. 0371 0.0389 0.0380 2.0 118.0 
3 11 190.0 0.0256 0.0258 0.0257 1.3 24.7 
4 11 100.0 0.0557 0.0529 0.0543 2.9 29.0 
5 12 100.0 0.0290 0.0332 0. 0311 1.5 15.0 
6 12 100.0 0.0138 0.0140 0.0390 0.6 6.0 
7 12 100.0 0.0033 0.0033 0.0033 0.2 2.0 
8 12 100.0 0.0037 0.0043 0.0040 0.2 2.0 
9 100.0 No spot developed on the TLC plate 

10 100.0 No spot developed on the TLC plate 
11 100.0 No spot developed on the TLC plate 
1°2 100.0 No spot developed on the TLC plate 
13 100.0 No spot developed on the TLC plate 
14 100.0 No spot developed on the TLC plate 
15 100.0 No spot developed on the TLC plate 
16 13 100.0 0.0024 0.0022 0.0023 0.2 2.0 
17 100.0 No spot developed on the TLC plate 
18 100.0 No spot developed on the TLC plate 
19 100.0 No spot developed on the TLC plate 
20 100.0 No spot developed on the TLC plate 

8 See Appendix S. 
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APPENDIX G: TYLOSIN TARTRATE RELEASE-EXPERIMENT 320 

Sample Regres- Total Weight Weight Average Amount of Amount of 
number sion volume of of weight tylosin tylosin 

line of peak peak of peak tartrate tartrate 
dataa sample #1 #2 (gm) in in total 

(ul) (gm) (gm) 10 ul sample 
(ug) volume 

(ug) 

1 14 1090.0 0.0615 0.0649 0.0632 4.1 446.9 
2 14 100.0 0.0168 0.0164 0.0166 1.0 10.0 
3 . 14 190.0 0.0292 0.0270 0.0281 1.8 34.2 
4 14 100.0 No spot developed on the TLC pla.te 
5 100.0 No spot developed on the TLC plate 
6 100.0 No spot developed on the TLC plate 
7 100.0 No spot developed on the TLC plate 
8 100.0 No spot developed on the TLC plate 
9 100.0 No spot developed on the TLC plate 

10 100.0 No spot developed on the TLC plate 
11 100.0 No spot developed on the TLC plate 
12 100.0 No spot developed·on the TLC plate 
13 15 100.0 0.0052 0.0040 0.0046 0.4 4.0 
14 100.0 No spot developed on the TLC plate 
15 100.0 No spot developed on the TLC plate 
16 100.0 No spot developed on the TLC plate 
17 100.0 No spot developed on the TLC plate 
18 100.0 No spot developed on the TLC plate 
19 100.0 No spot developed on the TLC plate 
20 100.0 No spot developed on the TLC plate 

asee Appendix S. 
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APPENDIX H: TYLOSIN TARTRATE RELEASE-EXPERIMENT 32E 

Sample Regres- Total Weight Weight Average Amount of Amount of 
number sion volume of of weight tylosin tylosin 

line of peak peak of peak tartrate tartrate 
dataa sample #1 #2 {gm) in in total 

(ul) (gm) {gm) 10 ul sample 
(ug) volume 

(ug) 

1 17 1090.0 0.0437 0.0435 0.0436 2.9 316.1 
2 17 590.0 0.0424 0.0450 0.0437 2.9 171.1 
3 17 190.0 0.0478 0.0472 0.0475 3.1 58.9 
4 17 190.0 0.0430 0.0428 0.0429 2.9 55.1 
5 16 100.0 0.0292 0.0280 0.0286 1. 7 17.0 
6 16 100.0 0.0177 0.0157 0.0167 1.0 10.0 
7 100.0 No spot developed on the TLC plate 
B 16 590.0 0. 0671 0.0695 0.0683 4.1 241.9 
9 100.0 No spot developed on the TLC plate 

10 100.0 No spot developed on the TLC plate 
11 100.0 No spot developed on the TLC plate 
12 100.0 No spot developed on the TLC plate 
13 100.0 No spot developed on the TLC plate 
14 100.0 No spot developed on the TLC plate 
15 100.0 No spot developed on the TLC plate 
16 100.0 No spot developed on the TLC plate 
17 100 .o No spot developed on the TLC plate 
18 100.0 No spot developed on the TLC plate 
19 100.0 No spot developed on the TLC plate 
20 100.0 No spot developed on the TLC plate 

asee Appendix s. 
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APPENDIX I: TYLOSIN TARTRATE RELEASE-EXPERIMENT 33A 

Sample Regres- Total Weight Weight Average Amount of Amount of 
number sion volume of of weight tylosin tylosin 

line of peak peak of peak tartrate tartrate 
data a sample #1 #2 (gm} in in total 

(ul} (gm) (gm) 10 ul sample 
(ug) volume 

(ug) 

1 1 490.0 0.0726 0.0706 0 .0716 4.2 205.8 
2 2 180.0 0.0336 0.0330 0.0333 2.4 43.2 
3 2 100.0 0.0286 0 .0296 0.0291 2.1 21.0 
4 2 100.0 0.0194 0.0190 0.0192 1.3 13.0 
5 3 100.0 0.0198 0.0190 0.0194 1.0 10.0 
6 4 100.0 0.0058 0.0060 0.0059 0.5 5.0 
7 5 100.0 0.0097 0.0109 0.0103 0.5 5.0 
8 6 100.0 0.0031 0.0031 0.0031 0.4 4.0 
9 7 100.0 0.0115 0. 0111 0 .0113 0.5 5.0 

10 8 100.0 0.0040 0.0044 0.0042 0.2 2.0 
11 9 100.0 0.0022 0.0022 0.0022 0.2 2.0 
12 9 100.0 0.0038 0.0036 0.0035 0.4 4.0 
13 9 100.0 0.0017 0.0017 0.0017 0.2 2.0 
14 9 100.0 0.0018 0.0018 0.0018 0.2 2.0 
15 13 100.0 0.0010 0.0010 0.0010 0.2 2.0 
16 10 100.0 0,0077 0.0083 0.0080 1.1 11.0 
17 10 100.0 0 .0011 0 .0011 0. 0011 0.3 3.0 
18 13 100.0 0.0015 0.0015 0.0015 0.2 2.0 
19 11 100.0 0.0061 0.0063 0.0062 0.3 3.0 
20 12 100.0 0.0066 0.0070 0.0068 0.2 2.0 

a see Appendix s. 



143 

APPENDIX J: TYLOSIN TARTRATE RELEASE-EXPERIMENT 33B 

Sample Regres- Total Weight Weight Average Amount of Amount of 
number sion volume of of weight tylosin tylosin · 

line of peak peak of peak tartrate tartrate 
dataa sample #1 #2 (gm) in in total 

(ul) (gm) (gm) 10 ul sample 
(ug) volume 

(ug) 

1 19 480.0 0.0745 0.0723 0.0734 5.0 240.0 
2 No spot developed on the TLC plate 
3 19 180.0 0.0284 0.0302 0.0293 2.1 37.8 
4 18 100.0 0.0591 0.0593 0.0592 2.9 29.0 
5 20 100.0 0.0204 0.0200 0.0202 1.0 10.0 
6 20 100.0 0.0502 0.0492 0.0497 2.7 27.0 
7 20 100.0 0.0105 0.0085 0.0095 0.4 4.0 
8 20 100.0 0.0268 0.0256 0.0262 1.3 13.0 
9 20 100.0 0.0010 0.0010 0.0010 0.2 2.0 

10 21 100.0 0.0008 0.0008 0.0008 0.2 2.0 
11 21 100.0 0.0012 0.0014 0.0013 0.2 2.0 
12 21 100.0 0.0031 0.0039 0.0035 0.3 3.0 
13 21 100.0 0 .0013 0. 0011 0.0012 0.2 2.0 
14 21 100.0 0.0016 0.0014 0.0015 0.2 2.0 
15 22 100.0 0.0010 0.0008 0.0009 0.2 2.0 
l& 18 100.0 0.0435 0.0431 0.0433 2.1 21.0 
17 22 100.0 0.0039 0.0041 0.0040 0.5 5.0 
18 22 100.0 0.0022 0.0020 0.0021 0.3 3.0 
19 22 100.0 0.0018 0.0022 0.0020 0.2 2.0 
20 22 100.0 0.0013 0.0013 0.0013 0.2 2.0 

a See Appendix s. 
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APPENDIX K: TYLOSIN TARTRATE RELEASE-EXPERIMENT 33C 

Sample Regres- Total Weight Weight Average Amount of Amount.of 
number sion volume of of weight tylosin tylosin 

line of peak peak of peak tartrate tartrate 
dataa sample #1 #2 (gm) in in total 

(ul) (gm) (gm) 10 ul sample 
(ug) volume 

(ug) 

1 20 580.0 0.0052 'o. oos2 0.0052 2.8 162.4 
2 19 180.0 0.0359 0.0341 0.0350 2.4 43.2 
3 22 100.0 0.0144 0.0134 0.0139 1.5 15.0 
4 13 100.0 0.1111 0.0105 0.0108 0.9 9.0 
5 23 100.0 0.0085 0.0087 0.0086 0.8 8.0 
6 23 100.0 0.0051 0.0053 0.0052 0.5 5.0 
7 23 100.0 0.0045 0.0049 0.0047 0.5 5.0 
8 23 100.0 0.0094 0.0082 0.0088 0.8 8.0 
9 23 100.0 0.0029 0.0029 0.0029 0.4 4.0 

10 24 100.0 0.0026 0.0024 0.0025 0.2 2.0 
11 24 100.0 0.0033 0.0031 0.0032 0.2 2.0 
12 24 100.0 0.0061 0.0067 0.0064 0.4 4.0 
13 24 100.0 0.0028 0.0028 0.0028 0.2 2.0 
14 100.0 No spot developed on the TLC plate 
15 24 100.0 0.0010 0.0012 0 .0011 0.2 2.0 
16 25 100.0 0.0062 0.0060 0.0061 0.3 3.0 
17 25 100.0 0.0018 0.0018 0.0018 0.2 2.0 
18 25 100.0 0.0016 0.0012 0.0014 0.2 2.0 
19 25 100.0 0.0015 0 .0013 0.0014 0.2 2.0 
20 25 100.0 0.0055 0.0055 0.0055 0.3 3.0 

a See Appendix s. 



145 

APPENDIX L: TYLOSIN TARTRATE RELEASE-EXPERIMENT 330 

Sample Regres- Total Weight Weight Average Amount of Amount of 
number sion volume of of weight tylosin tylosin 

line of peak peak of peak tartrate tartrate 
dataa sample #1 #2 (gm) in in total 

(ul) (gm) (gm) 10 ul sample 
(ug) volume 

(ug) 

1 19 180.0 0.0334 0.0358 0.0346 2.4 43.2 
2 27 180.0 0.0297 0.0303 0.0300 1. 7 30.6 
3 27 100.0 0 .0171 0.0147 0.0159 0.9 9.0 
4 27 100.0 0.0210 0.0196 0.0203 1.2 12.0 
5 25 100.0 0.0046 0.0058 0.0052 0.3 3.0 
6 26 100.0 0.0022 0.0022 0.0022 0.2 2.0 
7 26 100.0 0.0030 0.0032 0.0031 0.2 2.0 
8 26 100.0 0.0084 0.0098 0.0091 0.5 5.0 
9 26 100.0 0.0044 0.0044 0.0044 0.3 3.0 

10 26 100.0 0.0014 0.0014 0.0014 0.2 2.0 
11 100.0 No spot developed on the TLC plate 
12 19 100.0 0.0048 0.0044 0.0046 0.4 4.0 
13 29 100.0 0.0055 0.0055 0.0055 0.2 2.0 
14 29 100.0 0.0072 0.0068 0.0070 0.3 3.0 
15 29 100.0 0.0043 0.0039 0.0041 0.2 2.0 
16 29 100.0 0. 0118 0.0122 0.0120 0.5 5.0 
17 28 100.0 0.0027 0.0027 0.0027 0.2 2.0 
18 28 100.0 0.0008 0.0008 0.0008 0.2 2.0 
19 28 100.0 0.0016 0.0016 0.0016 0.2 2.0 
20 28 100.0 0.0055 0.0055 0.0055 0.3 3.0 

asee Appendix s. 
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APPENDIX M: TYLOSIN TARTRATE RELEASE-EXPERIMENT 33E 

Sample Regres- Total Weight Weight Average Amount of Amount of 
number sion volume of of weight tylosin tylosin 

line of peak peak of peak tartrate tartrate 
dataa sample #1 #2 {gm) in in total 

(ul) {gm) (gm) 10 ul sample 
(ug) volume 

(ug). 

1 30 1180. 0 0.0392 0.0412 0.0402 4.1 483.8 
2 30 290.0 0.0426 0.0446 0.0436 4.3 124.7 
3 30 190.0 0.0137 0.0133 0.0135 1.2 22.8 
4 30 190.0 0.0180 0.0168 0.0174 1.6 30.4 
5 28 100.0 0.0138 0.0144 0.0141 0.7 7.0 
6 100.0 No spot developed on the TLC plate 
7 100.0 No spot developed on the TLC plate 
8 31 100.0 0.0046 0.0052 0.0049 0.6 6.0 
9 31 100.0 0.0021 0.0021 0.0021 0 .4 4.0 

10 31 100.0 0.0102 0.0100 o·.0101 1.1 11.0 
11' 32 100.0 0.0087 0.0089 0.0088 0.7 7.0 
12 32 100.0 0.0160 0.0150 0.0155 1.2 12.0 
13 32 100.0 0.0069 0.0061 0.0065 0.6 6.0 
14 32 100.0 0.0024 0.0026 0.0025 0.3 3.0 
15 32 100.0 0.0032 0.0032 0.0032 0.4 4.0 
16 33 100.0 0.0091 0.0093 0.0092 0.7 7.0 
17 33 100.0 0.0012 0.0018 0.0016 0.2 2.0 
18 33 100.0 0.0010 0.0010 0.0010 0.2 2.0 
19 33 100.0 0.0011 0 .0011 0. 0011 0.2 2.0 
20 33 100.0 0.0007 0.0009 0.0008 0.2 2.0 

asee Appendix s. 
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APPENDIX N: TYLOSIN TARTRATE RELEASE-EXPERIMENT 34A 

Sample Regres- Total Weight Weight Average Amount of Amount of 
number sion volume of of weight tylosin tylosin 

line of peak peak of peak tartrate tartrate 
dataa sample #1 #2 (gm) in in total 

(ul) (gm) (gm) 10 ul sample 
(ug) volume 

(ug) 

1 34 48090.0 0.0297 0.0283 0.0290 1. 7 8175.3 
2 35 48090.0 0.0157 0.0149 0.0153 1.5 7213.5 
3 36 16030.0 0.0182 0.0192 0.0187 2.4 3847.2 
4 37 48090.0 0.0205 0.0197 0.0201 1.6 7694.4 
5 38 16030.0 0.0046 0.0036 0.0041 1.8 2885.4 
6 39 1290.0 0.0575 0.0585 0.0580 2.7 348.3 
7 39 2580.0 0.0881 0.0869 0.0875 4.1 1057.8 
8 39 290.0 0.0664 0.0622 0.0643 3.0 87.0 
9 39 190.0 0.0530 0.0516 0.0523 2.4 45.6 

1.0 39 290.0 0.0700 0.0672 0,0686 3.2 92.8 
11 40 290.0 0.0244 0.0254 0.0249 1.9 55.1 . 
12 40 100.0 0.0219 0.0223 0.0221 1. 7 17.0 
13 40 100.0 0.0199 0.0197 0.0198 1.5 i.5 ~ o 
.14 40 100.0 0.0214 0.0224 0.02i.9 1. 7 17.0 
15 40 100.0 0.0206 0.0206 0.0206 1.6 16.b 
16 41 290.0 0.0400 0.0394 0.0397 3.1 89.9 
17 41 100.0 0.0084 0.0074 0.0079 0.7 7.0 
18 41 100.0 0.0040 0.0042 0.0041 0.4 4.0 
19 41 190.0 0.0136 0.0128 0.0132 1.1 20.9 
20 41 2~0.0 0.0170 0.0178 0.0174 1.4 40.6 

a see Appendix s. 
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APPENDIX 0: TYLOSIN TARTRATE RELEASE-EXPERIMENT 348 

Sample Regres- Total Weight Weight Average Amount of Amount of 
number sion volume of of weight tylosin tylosin 

line of peak peak of peak tartrate tartrate 
data a sample #1 #2 (gm) in in total 

(ul) (gm) (gm) 10 ul sample 
(ug) volume 

(ug) 

1 42 48090.0 0.0169 0.0165 0.0167 2.0 9618.0 
2 43 48090.0 0.0241 0.0233 0.0237 1.2 5770. 8 
3 44 48090.0 0.0261 0.0263 0.0262 2.4 11541.6 
4 45 4360.0 0.0227 0.0333 0.0330 3.4 1482.4 
5 47 2360.0 0.0280 0 .0272 0.0286 3.1 731.6 
6 34 1090.0 0.0902 0.0918 0.0910 4.8 523.2 
7 34 1090.0 0.0433 0.0459 0.0446 2.4 261.6 
8 34 1090.0 0.0884 0.0912 0.0898 4.7 512.3 
9 34 380.0 0.0603 0.0617 0.0610 3.2 121.6 

10 34 380.0 0.0508 0.0490 0.0499 2.7 102.6 
11 46 1160.0 0.0191 0.0197 0.0194 4.7 545.2 
12 46 3270.0 0.0183 0.0179 0.0181 2.5 817.5 
13 46 290.0 0.0225 0.0235 0.0230 3.2 92.8 
14 46 190.0 0.0191 0.0185 0.0188 2.6 49.4 
15 46 190.0 0.0128 0.0124 0.0126 1.8 34.2 
16 49 380.0 0.0373 0.0383 0.0378 3.1 111.i'r 
17 49 380.0 0.0360 0.0344 0.0352 2.7 102.6 
18 49 190.0 0.0604 0.0588 0.0596 4.8 91.2 
19 49 190.0 0.0480 0.0498 0.0489 4.0 76.0 
20 49 190.0 0.0158 0.0166 0.0162 1.4 26.6 

asee Appendix s. 
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APPENDIX P: TYLOSIN TARTRATE RELEASE-EXPERIMENT 34C 

Sample Regres- Total Weight Weight Average Amount of Amount of 
number sion volume of of weight tylosin tylosin 

line of peak peak of peak tartrate tartrate 
data a sample Ill 112 (gm) in in total 

(ul) (gm) (gm) 10 ul sample 
(ug) volume 

(ug) 

1 38 300.0 0.0043 0.0047 0.0045 0.7 21.0 
2 38 300.0 0.0202 0.0188 0.0195 2.9 87.0 
3 38 100.0 0.0025 0.0025 0.0025 1.2 12.0 
4 38 100.0 0.0020 0.0020 0.0020 0.6 6.0 
5 38 100.0 0.0039 0. 0017 0.0028 0.8 8.0 
6 44 100.0 0.0035 0.0033 0.0034 0.4 4.0 
7 44 100.0 0.0014 0.0014 0.0014 0.2 2.0 
8 44 100.0 0.0065 0.0063 0.0064 0.7 7.0 
9 44 100.0 0 .0049. 0.0043 0.0046 0.5 5.0 

10 44 100.0 0.0025 0.0021 0.0023 0.5 5.0 
11 36 100.0 0.0072 0.0076 0.0074 0.3 3.0 
12 36 100.0 0.0187 0.0185 0.0186 0.8 8.0 
13 36 100.0 0.0097 0.0087 0.0092 0.4 4.0 
14 36 100.0 0.0412 0.0412 0.0412 1.9 19.0 
15 36 100.0 0.0352 0.0334 0.0343 1.5 15.0 
16 48 190.0 0.0538 0.0526 0.0532 1.2 22.8 
17 48 190.0 0 .0378 0.0360 0.0369 5.0 95.0 
18 48 380.0 0.0253 0.0241 0.0247 3.3 125.4 
19 48 380.0 0.0231 0.0243 0.0237 3.1 117 .8 
20 37 1180. 0 0.0412 0.0402 0.0407 3.6 424.8 

asee Appendix s. 
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APPENDIX Q: TYLOSIN TARTRATE RELEASE-EXPERIMENT 340 

Sample Regres- Total Weight Weight Average Amount of Amount of 
number sion volume of of weight tylosin tylosin 

line of peak peak of peak tartrate tartrate 
data 8 sample #1 #2 (gm) in in total 

(ul) (gm) (gm) 10 ul sample 
(ug) volume 

(ug) 

1 42 300.0 0.0034 0.0024 0.0029 3.9 117 .o 
2 50 100.0 0.0060 0.0064 0.0062 0.3 3.0 
3 51 100.0 0.0154 0.0134 0.0144 1.0 10.0 
4 42 100.0 0.0066 0.0062 0.0064 1.6 16.0 
5 42 100.0 0.0026 0.0026 0.0026 0.6 6.0 
6 43 100.0 0.0329 0.0337 0.0333 1.6 16.0 
7 43 100.0 0.0343 0.0367 0.0355 1.8 18.0 
8 43 200.0 0.0573 0.0567 0.0570 2.9 58.0 
9 43 100.0 0.0764 0.0768 0.0766 3.9 39.0 

10 43 190.0 0.0541 0.0549 0.0545 2.7 51.3 
11· 45 100.0 0.0259 0.0245 0.0252 2.6 26.0 
12 45 290.0 0.0387 0.0373 0.0380 3.9 113 .1 
13 45 290.0 0.0129 0.0121 0.0125 1.4 40.6 
14 45 290.0 0 .0110 0.0108 0.0109 1.2 34.8 
15 45 290.0 0.0188 0.0182 0.0185 2.0 58.0 
16 48 1180. 0 0.0206 0.0190 0.0198 2.6 306.8 
17 47 290.0 0.0327 0.0339 0.0333 3.5 101.5 
18 47 290.0 0.0252 0.0260 0.0256 2.7 78.3 
19 47 290.0 0.0148 0.0164 0.0156 1. 7 49.3 
20 47 580.0 0.0286 0.0280 0.0283 3.0 174.0 

8 See Appendix s. 
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APPENDIX R: TYLOSIN TARTRATE RELEASE-EXPERIMENT 34E 

Sample Regres- Total Weight Weight Average Amount of Amount of 
number sion volume of of weight tylosin: tylosin 

line of peak peak of peak tartrate tartrate 
data a sample #1 #2 (gm) in in total 

(ul) (gm) (gm) 10 ul sample 
(ug) volume 

(ug) 

1 so 48090.0 0.0255 0.0297 0.0276 2.1 10098.9 
2 50 48090.0 0.0212 0.0224 0.0218 1.6 7694.4 
3 50 7160. 0 0.0438 0.0458 0.0448 3.6 2577. 6 
4 50 16030.0 0.0087' 0 .0091. 0,0089 1.5 2404.5 
5 50 1690.0 0.0438 0.0452 0.0445 3.6 608".4 
6 51 1690.0 0.0703 0.0657 0.0680 4.4 743.6 
7 51 590.0 0.0344 0.0364 0.0354 2.3 135.7 
8 51 100.0 0.0076 0.0060 0.0068 0.5 5.0 
9 51 590.0 0.0593 0.0617 0.0605 3.9 230.1 

10 51 190.0 0.0474 0.0482 0.0478 3.1 58.9 
11 53 290.0 0.0070 0.0080 0.0075 1.4 40.6 
12 53 1080.0 0. 0371 0.0359 0.0365 5.0 540.0 
13 53 1080.0 0.0256 0.0250 0.0253 3.7 399.6 
14 53 290.0 0.0073 0.0073 0.0073 1.3 37,7: 
15 53 590.0 0.0091 0.0091 0.0091 1.9 112 .1 
16 52 590.0 0.0386 0.0366 0.0376 2.5 147.5 
17 52 290.0 0.0032 0.0034 0.0033 0.6 17.4 
18 52 290.0 0.0034 0.0034 0.0034 0.6 17 .4 
19 52 290.0 0.0092 0.0088 0.0090 1.2 34.8. 
20 52 290.0 0.0054 0.0062 0.0058 0.8 23.2 

a See Appendix s. 
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APPENDIX S: REGRESSION LINE DATA FOR THE TYLOSIN TARTRATE.RELEASE 
EXPERIMENT 

Regression Amount of Weight of Weight of Average weight 
line tylosin peak Ill peak 112 of peak 
data tartrate (gm) (gm) (gm) 

(ug) 

1 0.4 0.0072 0.0066 0.0069 
1 0.8 0.0133 0.0137 0.0135 
1 1.0 0.0188 0.0204 0.0196 
1 2.0 0.0362 0.0376 0.0369 
1 3.0 0.0485 0.0523 0 .. 0504 

2 0.4 0.0048 0.0044 0.0046 
2 0.8 0. 0110 0.0122 0.0166 
2 1.0 0.0170 0.0160 0.0165 
2 2.0 0.0296 0.0306 0.0301 
2 3.0 0.0380 0.0404 0.0392 

3 0.2 0.0041 0.0039 0.0040 
3 0.5 0.0089 0.0093 0.0091 
3 0.8 0.0149 0.0147 0.0148 
3 1.0 0.0230 0.0234 0.0232 
3 2.o 0.0380 0.0382 0.0381 

4 0.2 0.0024 0.0016 0.0020 
4 0.5 0.0046 0.0046 0.0046 
4 0.8 0.0088 0.0090 0.0089 
4 1.0 0.0128 0.0122 0.0125 
4 2.0 0.0249 0.0241 0.0245 

5 0.4 0.0070 0.0068 0.0069 
5 0.8 0.0150 0.0146 0.0148 
5 1.0 0.0195 0.0197 0.0196 
5 2.0 0.0372 0.0352 0.0362 
5 3.0 0 .. 0483 0.0453 0.0468 

6 0.2 0.0019 0.0019 0.0019 
6 0.5 0.0046 0.0054 0.0050 
6 0.8 0.0068 0.0074 0.0071 
6 1.0 0.0125 0.0125 0.0125 
6 2.0 0.0264 0.0260 0.0262 
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Regression Amount of Weight of Weight of Average weight 
line tylosin peak Ill peak #2 of peak. 
data tartrate (gm) (gm) (gm) 

(ug) 

7 0.4 0.0100 0.0086 0.0093 
7 0.8 0.0162 0.0158 0.0160 
7 1.0 0.0209 0.0225 0.0217 
7 2.0 0. 0377 0.0389 0.0383 
7 3.0 0.0539 0.0539 0.0539 

8 0.2 0.0043 0.0037 0.0040 
8 0.5 0.0123 0.0095 0.0109 
8 0.8 0.0172 0.0162 0.0167 
8 1.0 0.0205 0.0209 0.0207 
8 2.0 0.0434 0.0426 0.0430 

9 0.2 0.0024 0.0024 0.0024 
9 0.6 0.0046 0.0048 0.0047 
9 0.8 0.0075 0.0073 0.0074 
9 1.0 0.0104 0.0094 0.0099 
9 2.0 0.0181 0.0181 0.0181 

10 0.2 0.0010 0.0010 0.0010 
10 0.6 0.0027 0.0027 0.0027 
10 0.8 0.0054 0.0054 0.0054 
10 1.0 0.0071 0.0073 0.0072 
10 2.0 0.0163 0.0163 0.0163 

11 0.4 0.0083 0.0083 0.0083 
11 0.8 0.0158 0.0148 0.0153 
11 1.0 0.0196 0.0214 0.0205 
11 2.0 0.0419 0.0403 0. 0411 
11 3.0 0.0569 0.0531 0.0550 

12 0.2 0.0055 0.0057 0.0056 
12 0.6 0.0126 0.0144 0.0135 
12 1.0 0.0232 0.0234 0.0233 
12 2.0 0.0425 0.0445 0.0435 
12 3.0 0.0619 0.0539 0.0579 

13 0.2 0.0034 0.0030 0.0032 
13 0.6 0.0078 0.0074 0.0076 
13 0.8 0.0128 0.0124 0.0126 
13 1.0 0.0176 0.0164 0.0170 
13 2.0 0.0300 0.0290 0.0295 



154 

Regression Amount of Weight of Weight of Average weight 
line. tylosin peak #1 peak #2 of peak. 
data tartrate (gm) (gm) (gm) 

(ug) 

14 0.2 0.0037 0.0027 0.0032 
14 0.6 0.0100 0.0108 0.0104 
14 1.0 0.0180 0.0188 0.0184 
14 2.0 0.0337 0.0325 0.0331 
14 3.0 0.0455 0.0447 0.0451 

15 0.2 0.0023 0.0023 0.0023 
15 0.6 0 .0096 0.0086 0.0091 
15 0.8 0.0136 0.0126 0.0131 
15 1.0 0.0174 0.0180 o .0177 
15 2.0 0.0310 0.0294 0.0302 

16 0.2 0.0026 0.0028 0.0027 
16 0.6 0.0087 0.0083 0;0085 
16 1.0 0.0172 0.0180 0.0176 
16 . 2.0 0.0339 0.0343 0.0341 
16 3.0 0.0526 0.0456 0.0491 

17 0.2 0.0022 0.0028 0.0025 
17 0.6 0.0072 0.0070 o .oon 
17 1.0 0.0139 0.0147 0.0143 
17 2.0 0.0308 0.0290 0.0299 
17 3.0 0.0476 0.0450 0.0463 

18 0.2 0.0045 0.0049 0.0047 
18 0.6 0.0102 0 .0110 0.0106 
18 1.0 0.0221 0.0217 0.0219 
18 2.0 0.0418 0.0410 0.0414 
18 3.0 o .0611 0.0605 0.0608 

19 0.2 0.0023 0.0023 0.0023 
19 0.6 0.0045 0.0057 0.0051 
19 1.0 0.0136 0.0138 0.0137 
19 2.0 0.0287 0.0285 0.0286 
19 3.0 0.0443 0.0425 0.0434 
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Regression Amount of Weight of Weight of Average weight 
line tylosin peak #1 peak #2 of peak 
data tartrate (gm) (gm) (gm) 

(ug) 

20 0.2 0.0045. 0.0041 0.0043 
20 0.6 0.0122 0.0128 0.0125 
20 1.0 0.0216 0.0214 0.0215 
20 2.0 0.0398 0.0390 0.0394 
20 3.0 0.0548 0.0532 0.0540 

21 0.2 0.0012 0.0012 0.0012 
21 0.6 0.0078 0.0070 0.0074 
21 1.0 0.0134 0.0134 0.0134 
21 2.0 0.0261 0.0247 0.0254 
21 3.0 0.0413 0.0395 0.0404 

22 0.2 0.0013 0.0015 0.0014 
22 0.6 0.0067 0.0059 0.0063 
22 0.8 0.0073 0.0061 0.0067 
22 1.0 0.0079 0.0085 0.0082 
22 2.0 0.0186 0.0178 0.0182 

23 0.2 . 0.0022 0.0018 0.0020 
23 0.6 0.0053 0.0045 0.0049 
23 0.8 0.0083 0.0081 0.0082 
23 1.0 0 .0115 0.0155 0. 0115 
23 2.0 0.0285 0.0271 0.0278 

24 0.2 0.0042 0.0042 0.0042 
24 0.6 0. 0112 0.0100 0.0106 
24 0.8 0.0162 0.0160 0.0161 
24 1.0 0.0225 0.0229 0 .02t1 
24 2.0 0.0448 0.0448 0.0448 

25 0.2 0.0037 0.0035 0.0036 
25 0.6 0. 0114 0. 0118 0 .0116 
25 0.8 0.0156 0.0160 0.0158 
25 1.0 0.0201 0.0203 0.0202 
25 2.0 0.0400 0.0428 0.0414 
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Regression Amount of Weight of Weight of Average weight 
line tylosin peak #1 peak #2 of peak 
data tartrate {gm) {gm) {gm) 

(ug) 

26 0.2 0.0032 0.0036 0.0034 
26 0.6 0.0106 0.0100 0.0103 
26 0.8 0.0156 0.0160 0.0158 
26 1.0 0.0204 0.0220 0.0212 
26 2.0 0.0408 0.0394 0.0401 

27 0.2 0.0029 0.0027 0.0028 
27 0.6 0.0076 0.0074 0.0075 
27 1.0 0.0174 0.0170 0.0172 
27 2.0 0.0430 0.0400 0.0415 
27 3.0 0.0495 0.0527 0. 0511 

28 0.2 0.0032 0.0034 0.0033 
28 0.6 0.0093 0.0095 0:0094 
28 1.0 0.0222 0.0210 0.0216 
28 2.0 0.0454 0.0462 0.0458 
28 3.0 0.0639 0.0631 0.0635 

29 0.2 0.0041 0.0041 0.0041 
29 0.6 0 .0113 0. 0113 0.0113 
29 1.0 0.0248 0.0236 0.0242 
29 2.0 0.0480 0.0476 0.0478 
29 3.0 0.0656 0.0588 0.0622 

30 0.6 0.0096 0.0088 0.0092 
30 1.0 0.0138 0.0148 0.0143 
30 2.0 0.0212 0.0212 0.0212 
30 3.0 0.0298 0.0298 0.0298 
30 4.0 0.0419 0.0413 0.0416 

31 0.2 0.0012 0.0012 0.0012 
31 0.6 0.0042 0.0046 0.0044 
31 1.0 0.0087 0.0087 o .:0087 
31 2.0 0.0189 0.0191 0.0190 
31 3.0 0.0318 0.0288 0.0303 
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Regression Amount of Weight of Weight of Average weight 
line tylosin peak 111 peak #2 of peak 
data tartrate (gm) (gm) (gm) 

(ug) 

32 0.2 0.0021 0.0021 0.0021 
32 0.6 0.0055 0.0055 0.0055 
32 1.0 0.0120 0.0120 0.0120 
32 2.0 0.0288 0.0304 0.0296 
32 3.0 0.0456 0.0438 0.0447 

33 0.2 0.0020 0.0020 0.0020 
33 0.6 0 .0077 0.0073 0.0075 
33 1.0 0.0146 0.0136 0.0141 
33 2.0 0.0315 0.0293 0.0304 
33 3.0 0.0482 0.0492 0.0487 

34 1.0 0.0172 00170 0. 0171 
34 2.0 0.0368 0.0374 0 .0371 
34 3.0 0.0528 0.0546 0.0537 
34 4.0 0.0720 0.0744 0.0732 
34 5.0 0.0994 0.0976 0.0985 

35 1.0 0.0106 0. 0116 0. 0111 
35 2.0 0.0213 0.0235 0.0224 
35 3.0 0.0346 0.0332 0.0339 
35 4.0 0.0442 0.0440 0.0441 
35 5.0 0.0656 0.0654 0.0655 

36 0.2 0.0044 0.0040 0.0042 
36 0.6 0 .0118 0. 0118 0.0118 
36 1.0 0.0250 0.0250 0.0250 
36 2.0 0.0478 0.0466 0.0472 
36 3.0 0.0642 0.0646 0.0644 

37 0.6 0.0072 0.0064 0.0068 
37 1.0 0.0134 0.0140 0.0137 
37 2.0 0.0282 0.0290 0.0286 
37 3.0 0.0350 0.0364 0.0357 
37 4.0 0.0428 0.0430 0.0429 
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Regl:"ession Amount of Weight of Weight of Avenge weight 
line tylosin peak #1 peak #2 of peak 
data tal:"ti-ate {gm} (gm) (gm) 

(ug} 

38 0.2 0.0025 0.0021 0.0023 
38 0.6 0.0035 0.0033 0.0034 
38 1.0 0.0081 0.0087 0.0084 
38 2.0 0.0164 0.0182 0.0173 
38 3.0 0.0230 0.0232 0.0231 

39 1.0 0.0241 0.0245 0.0243 
39 2.0 0.0456 0.0494 0.0460 
39 3.0 0.0634 O.OG60 0.0641 
39 4.0 0.0820 0.0832 0.0826 
39 5.0 0.1078 0.1088 0.1083 

40 0.2 0.0028 0.0024 0.0026 
40 0.6 0.0063 0.0055 0.0059 
40 1.0 0.0144 0.0134 0.0139 
40 2.0 0.0274 0.0282 0.0278 
40 3.0 0.0399 0.0387 0.0393 

41 0.2 0.0027 0.0025 0.0026 
41 0.6 0.0058 0.0062 0.0060 
41 1.0 0.0129 0.0121 0.0125 
41 2.0 0.0243 0.0273 0.0258 
41 3.0 0.0394 0.0388 0.0391 

42 0.2 0.0016 0.0016 0.0016 
42 0.6 0.0050 0.0046 0.0048 
42 1.0 0.0079 0.0075 0.0077 
42 2.0 0. 0171 0.0165 0.0168 
42 3.0 0.0265 0.0237 0.0251 

43 0.2 0.0041 0.0049 0.0045 
43 0.6 0.0133 0.0109 0 .0111 
43 1.0 0.0230 0.0220 0.0225 
43 2.0 0.0436 0.0444 0.0440 
43 3.0 0.0570 0.0576 0.0573 



159 

Regression Amount of Weight of Weight of Average weight 
line tylosin peak #1 peak #2 of peak 
data tartrate (gm) (gm) (gm) 

(ug) 

44 0.2 0.0012 0.0012 0.0012 
44 0.4 0.0039 0.0041 0.0040 
44 1.0 0.0106 0. 0114 0. 0110 
44 2.0 0.0255 0.0245 0.0250 
44 3.0 0.0300 0.0324 0.0312 

45 0.4 0.0024 0.0026 0.0025 
45 1.0 0.0100 0.0088 0.0094 
45 2.0 0.0190 0.0202 0.0196 
45 3.0 0.0268 0.0282 0.0275 
45 4.0 0.0384 0.0402 0.0393 

46 0.2 0.0012 0.0012 0.0012 
46 0.6 0.0034 0.0032 0.0033 
46 1.0 0.0066 0.0054 0.0065 
46 2.0 0.0137 0.0139 0.0138 
46 3.0 0 .0214 0.0224 0.0219 

47 1.0 0.0083 0.0087 0.0085 
47 2.0 0.0208 0. 0'202 0.0205 
47 3.0 0.0265 0.0279 0.0272 
47 4.0 0.0371 0.0365 0.0368 
47 5.0 0.0472 0.0478 0.0475 

48 0.4 0.0030 0.0030 0.0030 
48 1.0 0.0090 0 .009.0 0.0090 
48 2.0 0.0174 0.0172 0.0173 
48 3.0 0.0202 0.0228 0.0215 
48 4.0 0.0309 0.0289 0.0299 

49 0.2 0.0036 0.0030 0.0033 
49 0.6 0.0042 0.0050 0.0046 
49 1.0 0.0102 0.0108 0.0105 
49 2.0 0.0249 0.0249 0.0249 
49 3.0 0.0366 0.0364 0.0365 
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Regression Amount of Weight of Weight of Average weight 
line tylosin peak #1 peak #2 of peak 
data tartrate (gm) (gm) (gm) 

(ug) 

50 0.4 0. 0071 0.0059 0.0065 
50 1.0 0.0140 0.0152 0.0146 
50 2.0 0.0284 0.0274 o·.0279 
50 3.0 0.0361 .0.0375 O'. 0368 
50 4.0 0.0494 0.0464 0.0479 

51 0.4 0.0050 0.0046 0.0048 
51 1.0 0.0143 0.0155 0.0149 
51 2.0 0.0312 0.0328 0.0320 
51 3.0 0.0468 0.0454 0.0461 
51 4.0 0 .06.09 0.0617 0.0613 

52 0.4 0.0079 0.0065 0.0072 
52 1.0 0.0130 0.0132 0.0131 
52 2.0 0.0308 0.0300 0.0304 
52 3.0 0.0434 0.0410 0. 0'422 
52 4.0 0.0618 0.0628 0.0623 

53 0.4 0.0041 0.0043 0.0042 
53 1.0 0.0067 0 .0071 0.0069 
53 2.0 0.0096 0.0092 o .oog:4 
53 3.0 0 .0115 0.0115 0 .0115 
53 4.0 0.0180 0.0168 0.0174 




