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CHAPTER 1. INTRODUCTION 

Current Situation 

Because today's power systems are often heavily loaded and highly stressed, 

operating them is becoming increasingly difficult. Power system operating practices 

have evolved so that now the transmission network functions quite differently from 

the way it did a decade or so ago. It is not surprising that heretofore uncommon, 

even unheard-of, network-instability mechanisms have been linked to major power 

system failures in several countries. One such operational problems occurs in the area 

of system voltages, which gradually decrease as the system load increases. In some 

instances, voltage collapse has caused blackouts. The condition in which this collapse 

may occur is called the critical point, or the collapse point. Power systems may also 

evidence nonlinear oscillatory behavior resulting in an inter-area mode oscillation or 

parametric resonance phenomena [1, 2]. 

Necessity of Studying Nonlinearity 

. Voltage collapse or nonlinear oscillatory phenomena generally occur in stressed 

power systems. In stressed power systems, nonlinear effects are of great importance 

for capturing infrequent phenomena. Previous studies have either not included non­

linear model or have not considered one properly. 
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In general, solving or analyzing nonlinear dynamical equations is very difficult 

and requires special techniques. To avoid these difficulties, systems are generally 

linearized in an attempt to predict their behavior. These linearized equations, how­

ever, may not predict true system behavior. Recent advances in nonlinear dynamical 

system theory and in bifurcation theory have made it possible to analyze dynamical 

systems in a systematic way. These theories show how nonlinearity affects the be­

havior of a system. In this thesis, an attempt has been made to show the importance 

of nonlinearity in terms of its effect on the operation of a power system network. 

Scope of This Work 

Recently, nonlinear analysis has been undergoing important developments. In 

this thesis, our aim is to use the bifurcation theory to explain certain nonlinear 

phenomena. Bifurcation theory basically deals with the qualitative change of system 

state according to variations of an particular parameter of the system. This theory 

was applied to a sample power system network to study the effect of variations of 

one parameter on the behavior of the system. Systematic application of the theory 

revealed the existence of both stable and unstable periodic solutions as well as the 

conditions leading to voltage collapse. A particular response depends upon the value 

of the parameter under consideration. It was discovered that voltage collapse is a 

subset of overall bifurcation phenomena that a system may undergo when influenced 

by system parameters. A low dimensional center manifold reduction was applied to 

reveal the relevant dynamics involved in the voltage collapse process. 
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Literature Review 

The literature on voltage collapse from dynamic considerations is extensive. The 

earlier work of Thomas and Tiranuchit considered the effect of load dynamics [3]. 

These investigations found that induction motor dynamics could affect voltage insta­

bility before a steady-state bifurcation point was reached. Dobson et al. [4] developed 

the voltage collapse model, which includes load as well as generator dynamics. In 

their study, the dynamics of the voltage collapse process were analyzed around the 

critical point. 

Abed and Varaiya, on the other hand, examined the oscillatory behavior of the 

power system according to Hopf bifurcation theory [5]. Although the Hopf bifurcation 

point can be the critical point in a power system operation, it is qualitatively different 

from the conventional critical point. Alexander [6] and Rajagopalan et al. [7] also 

studied system instability around the Hopf bifurcation point. 

In general, under the variation of a certain parameter, a dynamic system may 

become unstable in two ways, depending upon how the eigenvalues leave the left half 

of the complex plane. First, one or more real system eigenvalues may become positive, 

and, second, a pair of complex conjugate eigenvalues may cross the imaginary axis. 

The voltage collapse problem studied by Dobson et al. is related to the former way, 

for load voltage dominates system instability. On the other hand, [5, 6, 7] considered 

the latter way, which includes generator dynamics. 

Ajjarapu and Lee studied two qualitatively different system instabilities due to 

bifurcation in a sample power system model [8, 9]. In their preliminary study, they 

raised the possibility of coexistence of 1) oscillatory type of instability and 2) voltage 

collapse depending upon the value of the parameter under consideration. They also 
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enumerated the conditions and parameter values necessary to obtain one of these 

phenomena. 

This thesis, the extended version of work reported in [8] and [9], consists of two 

parts. The first part constitutes Chapters 2, 3, and 4, which introduce mathematical 

concepts necessary to understand the work reported. In Chapter 2, the principles 

of bifurcation phenomena and the determination of dynamical system stability are 

broadly discussed. In Chapter 3, bifurcation theory is reviewed. Real and complex 

bifurcations are defined, and the bifurcation diagram is used to show various branch­

ing behaviors. In Chapter 4, the stability of the stationary or the periodic branch 

is discussed. The monodromy matrix and the Floquet multiplier are introduced as 

tools to analyze the stability of the periodic branch. Application of the above mathe­

matical concepts to a sample power system network is discussed in the second part of 

the thesis, which consists of Chapters 5 and 6. Chapter 5 deals exclusively with the 

analysis of oscillatory phenomena, whereas Chapter 6 concentrates on the dynamics 

involved in the voltage collapse process. 
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CHAPTER 2. CONCEPTS OF BIFURCATION AND LINEAR 

STABILITY 

Everyday, we experIence gradual or sudden changes. Consider the following 

simple experiment discussed in reference [10]. Imagine a: board somehow supported 

at both ends and load (p) on top of it. If load p is small enough, the board will 

be bent with the deformation depending upon the weight of load P and the physical 

properties of the board (such as its stiffness). This state of the board will remain 

stable; that is a small variation in the load (or in the stiffness) will lead to a slightly 

perturbed state. Such a variation would be referred to as a quantitative change. The 

board is deformed within its elastic regime and will return to its original shape when 

the perturbation is removed. 

Nevertheless, the situation changes abruptly when the load is increased beyond 

a certain critical level, PO, upon which the board breaks. This sudden event is an 

example of a qualitative change. Suppose the shape of the board is modeled by some 

function (solution of an equation). \Ve, thus, might say that there exists a solution 

for load values P < PO, and that this solution ceases to exist for p > PO. Load p and 

stiffness are examples of parameters, which control the outcome of any experiment 

or of any event. Varying a parameter can result in a transition from a quantitative 

change to a qualitative change. The following pairs of verbs may serve as illustrations: 
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bend -+ break 

stretch -+ tear 

inflate -+ burst 

The verbs on the left side stand for states that are stable under small perturbation; 

the response of each system is a quantitative one. The related drastic and irreversible 

change is reflected by the verbs on the right side. 

The abovementioned problems are much too limited to cover phenomena that 

we will later refer to with the term bifurcation. The extended range of phenomena 

we have in mind is indicated by the pair 

stationary state -+ motion. 

Transition from a stationary state to motion, and VIce versa, is a qualitative 

change. Here, again, in terms of solutions - of governing equations - we have a 

different quality of solution on either side of a critical parameter. Let the parameter 

in question again be denoted by p, with the critical value being PO. In terms of wind 

speed, for instances, the state (for example, of a flag) is stationary for p < PO and 

oscillatory for p > PO. Qualitative changes may come in several steps, as indicated 

by the sequence [10J 

stationary state, 

regular motion, 

irregular motion. 
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The transition from regular to irregular motion is related to the onset of turbulence, 

or chaos. As a first tentative definition, we will refer to a qualitative change caused 

by the variation of some physical parameter p, such as branching or bifurcation. 

Some important features that may change at bifurcations have already been 

mentioned. The following list summarizes various kinds of qualitative changes as 

mentioned in [10]: 

stable --!- unstable 

symmetric --!- asymmetric 

stationary --!- periodic (regular) motion 

regular --!- irregular 

order -t chaos 

Several of these changes may take place simultaneously and in complicated ways. 

A thorough discussion of such branching phenomena will be undertaken in terms 

of bifurcation theory. Before proceeding to the mathematical analysis of stability 

and bifurcation, we shall review a number of important principles in the remaining 

sections. 

Fundamentals of Stationary Points and Their Stability 

Suppose the state of a two variable system is described by functions h (t) and 

h(t): 

Yl 

Y2 

h (Yl, Y2), 

h(Yl ,Y2)· 

(2.1) 

(2.2) 
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Equilibrium points (Yl' Y2) are defined by !il = 0 and i12 = o. At the equilibrium 

points, the system is at rest. The points Yl' Y2 are also called stationary points. 

Stationary points are solutions of the system of equations given by the right-hand 

side of the following differential equations: 

II(Yl'Y2) 

h(Yl'Y2) 

0, 

o. 

The stability of stationary points is defined as follows: 

The stationary solution yS is said to be stable if the response to a small 

perturbation remains small as the time approaches infinity. Otherwise, 

the stationary point is called unstable or nons table. 

(2.3) 

(2.4) 

Stability can be determined from the eigenvalue analysis as follows. Let us take 

a Taylor series expansion of II and 12 about (Yl' y2)· 

Because II (Yl ' Y2) = 12 (Yl' Y2) = 0, dropping the second and higher order terms 

yields two differential equations linear in Yl - Yl and in Y2 - y2. This system of 

equations can subsequently be expressed by 

(2.5 ) 



9 

where 

JS = ( 

Clearly, the eigenvalues A 1 and ;\2 of the Jacobian are the roots of the characteristic 

equation 

det( J s - AI) = 0, 

where I is the identity matrix. The linear approximation of Yl(t) and Y2(t) is for­

mulated as follows: 

Yl(t) - Yl 
Y2(t) - Y2 

(2.6) 

(2.7) 

where ci, i = 1,· .. ,4, are scalar constants corresponding to the initial value. (171, 173)T 

and (172,7]4)T are the eigenvectors corresponding to eigenvalues Ai and A2, respec-

tively, which is denoted by the vector notation A = (A b A2) in this thesis. The 

real part of eigenvalues gives the rate of expansion (if Re[\l > 0) or contraction (if 

Re[\J < 0) in the neighborhood of the equilibrium point along the direction of 17i. 

If Re[Ail < 0 for all \' then for all sufficiently small perturbations, the stationary 

point is stable. If some Re[\l > 0, then the stationary point is not stable and is either 

unstable (all Re[Ail > 0) or nonstable (one of Re[\J < 0 and the other Re[Ail > 0). 

When the stationary point is nonstable, it needs further analysis. Stability at the 

nons table stationary points depends upon the direction of the perturbation. 

Depending upon the type of eigenvalues, three cases can be obtained: 
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In this case, when both eigenvalues are real and have the same sign, the station­

ary point is called the node. There are, moreover, two subcases: 

• A < 0 implies that limt-+oo eAt = o. Therefore, y(t) converges to yS in a 

sufficiently small neighborhood of the node. This type, in which perturbations 

die out, is called a stable node . 

• A > 0 implies that limt-+oo eAt = 00. As a consequence, y( t) diverges locally; 

that is, the trajectories y( t) leave the neighborhood of the node, which is hence 

unstable. 

Case 2: A1,A2Real,A1A2<0 

When the real eigenvalues have different signs, the stationary point is called 

the saddle point. Under this condition, the solution y( t) has a stable solution if 

the perturbation is in the direction of the eigenvector associated with the negative 

eigenvalue. Otherwise, the solution is always unstable. 

Case 3: AI, /\2 Complex Conjugate With Nonzero Real Part 

Let Al = a + j{3 and A2 = a - j{3, where a and ±(3 denote real and imaginary 

parts, respectively. The time-dependent part of y( t) is thus 

The phase e±j{3t = cos {3t ± j sin {3t represents rotation, (counterclockwise if {3 > OJ 

and clockwise if (3 < 0). The phase eat has a radius of increasing value if a > 0 
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and a radius of decreasing value if a < o. In time, f3 indicates frequency, and a the 

amplitude of an oscillating wave. The corresponding equilibrium is therefore called 

either an unstable (a > 0) or a stable (a < 0) focus. 

When the y( t) has a stable solution, the steady-state solution is called a point 

attractor. The next section will introduce an attractor that is qualitatively different 

from a steady-state attractor. 

Fundamentals of Limit Cycles 

As emphasized earlier, stability and instability results are of a local nature. Even 

if one is able to find all the equilibria of a particular problem, putting all the local 

pieces together is not guaranteed to give a complete, global picture. There are other 

attractors not so easy to obtain as equilibria. One such attractor is the limit cycle. A 

limit cycle represents regular motions. Examples are voltage or currents in electrical 

circuits and vibrations of violin strings in air. 

Consider the Van der Pol equation, a differential equation of the second order, 

in which nonlinearity results from damping: 

(2.8) 

The second-order Van der Pol equation (Equation 2.8) can be transformed into two 

first-order differential equations by means of, for instance, Yl = U, Y2 = u: 

Yl Y2, 

Y2 J\(l- YI)Y2 - Yl· 



i i 
I ,r 

I 

12 

Y2 t , 

T 
r 

Figure 2.1: The trajectory of the limit cycle for initial value (Y1' Y2) = (0.0, 0.1) 
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This system has one stationary solution at (Yl'Y2) = (0,0). For 0 < A < 2, this 

point is unstable [10]. To discuss the dynamics of the system for small positive values 

of A, a numerical time simulation is applied for the finite time intervals 0 ~ t ~ t f' 

The trajectory for the data 

Y1 (0) = 0.1, Y2(0) = 0.0, t f = 50.0, A = 0.5 

is plotted in Figure 2.1, where it can be seen that the trajectory approaches a closed 

curve and remains there. Such a closed curve towards which the trajectory winds 

is termed a limit cycle. A limit cycle is a periodic solution (orbit); i.e., after some 

period T, the solution values will be the same: 

y(t + T) = y(t). (2.9) 

Trajectories starting outside the limit cycle also wind towards it. Limit cycles are 

stable if they are approached by nearby trajectories. Orbits are unstable when tra­

jectories leave their neighborhoods. The Van der Pol equation has a stable limit cycle 

for 0 < A < 2. 

Additional Remarks 

In the preceding sections, the basic principles of branching phenomena and of 

linear stability were clarified. The next chapter discusses various bifurcation phe­

nomena and how the center manifold can be used to analyze nonlinear dynamical 

systems. 
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CHAPTER 3. REVIEW OF BIFURCATION THEORY 

Introduction 

Bifurcation theory has become a major focus of research in the analysis of non­

linear dynamical systems. Central to this topic is the question of whether the qual­

itative properties of a dynamical system change with the variation of certain of its 

parameters. Generally, if certain of the parameters of any physical or natural system 

continue to vary, a critical stage may be reached in which the system makes a sudden 

jump from one state to another. The new state may be qualitatively, and sometimes 

quantitatively, different from the original state. 

Change of state is described in terms of the eigenvalue of the dynamical system. 

If the parameter is varied slowly, the eigenvalues of the Jacobian evaluated on the 

solution path change accordingly. As mentioned in the previous chapter, if the real 

part of eigenvalues moves to the right hand side of the imaginary axis in eigenspaces, 

the system can reach a critical state. 

The travelling of eigenvalues from one half plane to another can be realized 

III one of two qualitatively different ways. Generally, when real eigenvalues cross 

the imaginary axis, new branches of stationary solutions arise. If a pair of complex 

conjugate eigenvalues cross the imaginary axis, then there is a possi bility of a periodic 

branch. Other cases are possible, but this study will be confined to the cases where 
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one real eigenvalue becomes zero, or a paIr of complex conjugate eigenvalues are 

purely imaginary. 

Autonomous Dynamical System 

Consider a power system dynamical model described by autonomous differential 

equations of the vector form in n-dimensional space, 

x = F(x,p), (3.1) 

where 

Here, xi denotes the state variable (generator angle, generator angular velocity, load 

voltage magnitude or angle, etc.), p is a time invariant scalar parameter (real or 

. ) d' d dx h ., reactIve power, etc. ,an x enotes dt were t IS tIme. 

The system is autonomous; i.e., the time variable does not appear explicitly 

in the right hand side of the Equation 3.1. We assume that the right hand side is 

continuous and continuously differentiable. Because the vector field does not depend 

upon time, the initial time may always be taken at to = O. The solution is called the 

trajectory and is denoted by x(t,xO)' The dynamical system 3.1 is linear if fi(x) is. 

Bifurcations in an Autonomous Dynamical System 

Near an equilibrium point, the left-hand side term .i: of Equation 3.1 becomes 

zero; i.e., the steady-state (stationary) solution x of 3.1 satisfies the set of nonlinear 
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algebraic equations: 

F(x, p) = O. (3.2) 

As stated in Chapter 2, the stability of the stationary solution x for a given P is 

determined by the eigenvalues of the linearized system, i.e., by the eigenvalues of the 

Jacobian matrix J = [8 iii 8x j 1 evaluated for this stationary solution. The elements 

of the Jacobian matrix J continuously depend upon P (with continuous dependence 

of the stationary solution x{p)). Hence, the eigenvalues of J also continuously depend 

upon p. vVhen, with the variation of the parameter, one or more eigenvalues cross 

the imaginary axis, the stability of the stationary solution can change. Let PO be 

the critical value of a parameter for which the real part of one or more eigenvalues 

becomes zero. For P < PO all the eigenvalues of J are in the complex left-half plane. 

Subsequently, the stationary solution satisfies the following conditions in the sense of 

local analysis: 

• P < PO, it is stable. 

• p = PO, it is critical. 

• P < PO, it is either unstable or nons table. 

At (x*, PO), if the eigenvalue is equal to zero, it follows from the implicit function 

theorem that the equilibria of 3.1 for value P different from PO can be expressed as 

the smooth function x = x(p). The function x(p) is called a branch of equilibria. If 

at (x*,PO), several branches of equilibria come together, the point (x*,PO) is said 

to be a bifurcation point. In Figure 3.1, solid and dashed lines depict branches of 

equilibrium. The solid lines represent stable equilibrium, and the dashed line unstable 

equilibrium. As can be seen from the bifurcation diagram, a formerly single 
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/ 
Bit. Pt. 

Figure 3.1: A bifurcation diagram 

1m 

o Real 

Figure 3.2: Real bifurcation 



18 

1m 

o Real 

Figure 3.3: Complex bifurcation 

equilibrium bifurcates into several distinct equilibria at the bifurcation point. The 

value of p at which the bifurcation occurs is called the bifurcation point. 

As mentioned in the introduction to this chapter, we will discuss the instances in 

which 1) a real eigenvalue becomes zero and 2) a pair of complex conjugate eigenvalues 

are purely imaginary. In the former case, new branches of stationary solutions usually 

arise, called real bifurcation. The latter instance may lead to the arising of a branch 

of periodic solutions called complex bifurcation. 

Real Bifurcations 

Let us consider the case in which the real eigenvalue crosses the imaginary axis. 

We shall assume that the function Ii has first and second derivatives. The classi-
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fication of point (x* ,p) satisfying 3.1 will be discussed in the following subsections 

[10]. 

Fold Bifurcation 

The simple example of fold bifurcation can be introduced by the one-dimensional 

system 

y = i ± A, (3.3) 

where y E R, and A E R. 

y 

j ! ! 

I 0 I \ 

" 

I 
..... - unstable (saddle) 

1 
---

~ -
0 

Figure 3.4: Fold bifurcation diagram 

Figure 3.4 illustrates the bifurcation diagram of the equation y = y2 - A. The 

equilibria y(,\) of y2 - A = 0 form a parabola defined only for A 2: O. For A = 0, there 

is only one solution (y = 0), whereas for A > 0 there are two equilibria: y = J:\, 

and y = -vT The point at which solutions begin to exist (,\ = 0, and y = 0 in this 

example) is a peak. The branch in Figure 3.4 comes from one side and turns back 
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at the turning point (emphasized by the dot in Figure 3.4). This point is called the 

turning or limit point or the saddle node. 

The phrase saddle node implies the stable behavior of the solutions when re­

garded as equilibria of differential equations. Clearly, the equilibrium ~ is stable, 

whereas -~ is not. The stable branch is called the node and the unstable branch 

the saddle. The bifurcation diagram of equation if = y2 + A presents a picture 

symmetrical with respect to A = O. 

In summary, locally there are no solutions on one side of a turning point, but 

there are two solutions on the other side. At a turning point, two solutions either are 

born or extinguish each other. 

Transcritical Bifurcation 

Fold bifurcation implies that no equilibrium exists for parameter values smaller 

for if = y2 - A or larger for if = y2 + A than the bifurcation value. A dynamical system 

can have at least one equilibrium for any parameter value regarding the exchange of 

stability of a persisting equilibrium; a case in point is transcritical bifurcation, which 

is characterized by an exchange of stability of the origin. Figure 3.5 represents a 

transcritical bifurcation diagram for the equation 

(3.4) 

The solutions are y = 0 and y = A. Stable branches are indicated by solid lines. For 

A < AO = 0, the origin y = 0 is the only stable equilibrium point. If A > AO, then 

the equilibrium y = 0 becomes unstable, and a new stable equilibrium line emerges. 

The bifurcation diagram of the equation if = -/\y - y2 is symmetrical with respect 

to A = O. 
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y 

I 
stable (sink) 

unstable (source) 

A 

Figure 3.5: Transcritical bifurcation diagram 

Pitchfork Bifurcation 

A final example of the bifurcation of an equilibrium into two or more stable 

and unstable equilibria occurs with so-called pitchfork bifurcation. This type of 

bifurcation can occur in dynamical systems of 3.1 although the assumption is made 

that Ii is an odd function with respect to x. 

Figure 3.6 shows the bifurcation diagram for the equation 

. \ 3 Y = Ay - Y . (3.5) 

For A > 0, there are two nontrivial equilibria, y = ±v:x. The transition of stability is 

shown in Figure 3.6. For A < AO = 0, the origin y = 0 is the only stable equilibrium 

point. 'When A > AO' however, the equilibrium y = 0 becomes unstable, and two new 

stable branches emerge. This type of bifurcation is called supercritical bifurcation. 
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Figure 3.6: Supercritical pitchfork bifurcation diagram 

Let us consider another equation: 

. \ 3 y = /ly + y , (3.6) 

'Whose bifurcation diagram appears In Figure 3.7. There is a loss of stability at 

the bifurcation point (y,'\) = (0,0). In contrast to Figure 3.6, however, there is 

no exchange of stability. Instead, stability is lost locally at the bifurcation point. 

This type of bifurcation is called subcritical bifurcation. So far, we have considered 

only the simplest examples of one-dimensional systems. Because the dimension of 

dynamical systems considered in a practical situation is quite high, analyzing these 

systems is not always so simple. Nonetheless, it may be possible to reduce the high 

dimensional manifold to the low dimensional center manifold, thereby characterizing 

the relevant dynamics near critical points. The next section explains this reduction 

technique. 
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Figure 3.7: Subcritical pitchfork bifurcation diagram 

Center Manifold Reduction 

In this section, we will introduce the center manifold-reduction technique, which 

is usually used in the investigation of bifurcations and of the stability of bifurcated 

solutions. The basic concepts of the center manifold theory will be described briefly. 

The solution structure of the linear system 

x = A.x (3.7) 

is characterized by the eigenvalues and by the corresponding eigenspaces of matrix 

.4.. Each of the eigenspaces is invariant. The term invariant is defined as follows: 

Let a set 5 be a subset of Rn , and for any initial value, let xo be contained 

in S. If we have x(t,O,xO), which is contained in f for all t, then the set 
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S is said to be invariant under the vector field x = f( x). 

Eigenspaces are examples of invariant sets. Therefore, the solutions with initial 

conditions on the eigenspaces remain in that space. In nonlinear system 3.1, which 

posseses a fixed point at x*, although invariant subspaces are retained, they are 

no longer linear (flat) spaces; they become curved. We thus have smooth invariant 

manifolds composed of solution curves. One may, however, have other fixed points or 

limit cycles in a nonlinear system, and thus this description is generally useful only 

locally; i.e., near x*. 

It is convenient to separate the locally decaying solutions from the growing ones. 

Thus, we define stable, unstable, and center eigenspaces E S
, EU

, and E C of the 

matrix A as those spaces spanned by eigenvectors belonging to eigenvalues of A with 

negative, positive, and zero real parts, respectively. Orbits starting in E S decay to 

zero as t --+ 00; orbits starting in E U become unbounded as t --+ 00, and orbits 

starting in E C neither grow nor decay exponentially as t --+ 00, depending upon the 

nonlinear terms. In the nonlinear case, however, we have invariantly stable, unstable, 

and center manifolds W s , tVU
, and W C

, which are tangent to E S
, E U

, and E C at x*. 

If the system has only stable and center eigenspaces, then the flow is restricted to 

E C
• Long term behavior is dominated by the center manifold, which can be obtained 

as follows: 

Consider the n-dimensional system given by 3.1. As p varies, let l eigenvalues 

cross the imaginary axis simultaneously with other n -l eigenvalues remaining in the 

left half plane. The center manifold theorem implies that there is a local nonlinear 

change of the coordinates 

W : x --t y or y = w( x), (3.8) 



figure 3.8: EigenSpaces 
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such that in Y coordinates, Eq 3.1 can be studied in the form 

( ::) (: (3.9) 

where all the eigenvalues of B have zero real parts, and all the eigenvalues of C 

have negative real parts. We assume that the coordinates of y have been chosen 

in such a way that the origin is an equilibrium point and that G1, G2 are strictly 

nonlinear. In Eq. 3.9, Ys is a stable manifold because its behavior is dominated by 

the C eigenvalues having negative real parts. At the origin, G1 and G2 vanish along 

with their first derivatives. The loss of stability is determined by the variables Ye. 

The stable manifold can be expressed locally as a function of Ye: 

Ys = h(Ye), (3.10) 

and if we incorporate Eq. 3.10 into Eq.3.9, then 

(3.11) 

where h(O) = h(O) = 0, which implies that We is tangent to E e at x*. Although the 

function of h(ye) may be obtained by directly solving Eq. 3.9 in the form of functional 

differential equations, in general, it is very difficult to do so. The polynomial of Taylor 

expansion can be used to approximate the closed form of Eq. 3.10: 

(3.12) 

Differentiating Eq. 3.10 with respect to time implies that the Ys, Ye coordinates of 

any point on We must satisfy 

(3.13) 
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where D denotes dd . All points on We obey the dynamics generated by Eq. 3.9. 
Ye 

Therefore, replacing Ys and Ye in Eq. 3.13 with Eq. 3.11 and at the same time 

incorporating the Ys of Eq. 3.10 into Eq. 3.13 gives 

(3.14) 

or 

(3.15) 

Therefore, to find a center manifold, all we need to do is to solve Eq. 3.15. Let us 

observe Eq. 3.13 carefully. If we assume that only one real eigenvalue becomes zero, 

i.e., I = 1, then, because B = 0 and G1 is strictly nonlinear, Ye is expanded into 

. d 2 d 3 Ye = lYe + 2Ye + .... (3.16) 

h(Ye) of Eq. 3.12 consists of terms with orders greater than two. Therefore, when 

h(ye) is substituted with Ys in Eq. 3.13, the coefficients of ai are involved in terms 

of an order greater than or equal to cubic term. Therefore, the coefficient d1 is not 

multiplied by ai and d1 can be obtained directly, without solving Eq. 3.15. In this 

work, the steps involved in calculations up to Eq. 3.15 are made using the symbolic 

package MACSYMA [11]. 

Hopf Bifurcation 

In this section, we shall discuss the instance in which a pair of complex conjugate 

eigenvalues becomes zero. Under certain circumstances, a branch of periodic solutions 

(limit cycles) arises adjacent to the branch of stationary solutions. In short, a fixed 

point is bifurcated into a closed orbit in a neighborhood of the equilibrium. 
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The type of bifurcation that connecting equilibria with periodic motion is com-

monly referred to as Hopf Bifurcation [10] (because it was E. Hopf who proved the 

following theorem for the n-dimensional case in 1942). 

Let us assume 

2. The Jacobian matrix [oF/ox] has a simple pair of purely imaginary 

eigenvalues J-l(Pc) = ±iwO; and 

3. d(Re(J-l(pc)))/dp f O. 

There is subsequently a birth or death of limit cycles at (xc, pc), de-

pending upon the sign of the derivative in 3. 

The value Pc is the Hopf bifurcation value. Requirement 3 guarantees that 

there is a transversal crossing of the imaginary axis by the pair of complex conjugate 

eigenvalues. The Hopf bifurcation concludes more specifically that a one-parameter 

family of periodic solutions X(t,E) of Eq. 3.1 always exists in the neighborhood of 

(xc, Pc). If the derivative in 3 is positive, then the conjugate pair of eigenvalues 

moves into the right half plane. The parameter E can be chosen so that 

x 

p 

T 

xc+ Ex l(t)+ ... 

2 Pc + P2 E + ... 

27r /wO + T2E2 + ... 

(3.17) 

(3.18) 

(3.19) 

in which T = T(E) is the period of X(t,E) [12]. In particular, X(t,E) -+ XO,p(E) -+ 

PO,T(E) -+ 27r/wO as E -+ 0+. Furthermore, the stability of the periodic solution 

x( t, E) can be determined as follows. 
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In the above mentioned instance, periodic solutions have the Floquet exponent 

;3( €) = i32 €2 + ... , where i32 = -2P2dRe(JL(Pc))/ dpc [8,9]. The stability of the periodic 

branch emanating from the stationary branch is determined by i32. Periodic solutions 

exist either supercritically or subcritically if {32 is negative or positive, respectively. 

When the bifurcation is supercritical, the periodic branch is initially stable, and when 

subcritical, initially unstable [12]. 

Example of Hopf Bifurcation 

Let us consider the Lorenz equations for a sample system [13] motivated by the 

problem of weather forecasting: 

-X1 x3+ rx1- x 2 

Xl x2 - 2.666x3 

(3.20) 

(3.21) 

(3.22) 

where Xi is the real variable, and r the parameter. Xi denotes dx/dt, where t IS 

dimensionless time. 

We solve the algebraic equations by putting zero to the left hand side. It reveals 

the certain facts, namely, there are three solutions depending only on r, thus: 

• zero solution 
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• upper solution 

xIs J2.666( r - 1) 

x2s J2.666( r - 1) 

x3s r - 1 

• lower solution 

xIs -J2.666(r - 1) 

x2s -J2.666(r - 1) 

x3s r - 1. 

Nonzero solutions appear for r 2 1. The bifurcation diagram for the Lorenz 

equations takes the form shown in Figs. 3.10, 3.11, and 3.12. The stability of each 

branch is easily assessed by studying the eigenvalues of the Jacobian matrix 

-10 10 o 
J(Xs) = -X3s + r -1 -xIs 

x2s xIs -2.666 

For the zero solution of this equastion, the eigenvalues are 

Al -2.666 

A2 0.5( -11 - VSl + 40r) 

A3 0.5( -11 + vSl + 40r), 

where Al and A2 are always negative and real. The eigenvalue A3 is always real, but 

for r = 1, it becomes zero, which is the supercritical pitchfork-bifurcation point (see 
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Figs. 3.10, 3.11, and 3.12). For values of r greater than one, zero solution branch 

becomes unstable, and the parabolic curve branches off at r = 1. 

Along the upper branch, the characteristic equation for eigenvalues is 

",3 + 13.666",2 + (r + 10)'" + 26.666{r - 1) = o. (3.23) 

If we apply the Routh criterion to Eq. 3.23, we find one negative real eigenvalue 

and two complex eigenvalues along the upper branch. Complex eigenvalues have a 

negative real part up to rc = 23.734 and a positive real part thereafter. The rc is the 

critical value of r for the instability of parabolic branches. Finally, we can say that 

• 0 < r < 1 -t no parabolic branch, 

• 1 < r < rc -t stable parabolic branches, and 

• r > rc -t no steady-state stable solutions. 

To investigate what happens in the neighborhood of rc, let us apply the Hopf 

bifurcation theorem. We know that rc is a critical solution; i.e., the real part of 

complex conjugate eigenvalues becomes zero. The transversality condition is 

(3.24) 

That is, with the increasing of r through the value of TC, the real part of '" goes from 

negative to positive. 
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Further Analysis Needed 

In the prevIOUS section, the periodic orbit was discussed, and the conditions 

needed to obtain the periodic orbit were cited. The analyzing technique introduced 

in this chapter focuses on static analysis more or less. When we tackle the problem 

related to periodic motion, the eigenvalue analysis can no longer be adapted, and it 

becomes necessary to find a pertinent tool for further analysis of periodicity. In the 

next chapter, Floquet theory is employed to analyze system behavior on the periodic 

orbit. This theory plays a major role in the analysis of periodic motion, as does the 

eigenvalue analysis in the steady state. 
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CHAPTER 4. ANALYSIS OF PERIODIC SOLUTIONS 

Introduction 

In the previous chapter, we showed that a Hopf bifurcation point connects sta­

tionary solutions to periodic ones and guarantees the existence of a local periodic 

orbit emanating from the Hopf bifurcation point. With fixed parameters, the Hopf 

bifurcation theory provides the condition necessary to determine the local stability 

of this periodic orbit. Once the periodic orbit is established, the next step is to vary 

the parameter to trace the periodic branch. When a branch of periodic solutions is 

traced, questions arise as to: 1) whether the periodic solutions are stable, and 2) 

where and in what way stability is lost. In this chapter, a tool will be introduced 

to analyze the periodic solutions and their stability. Bifurcations on the periodic 

orbit, with the parameter variation, will be described, and the chapter concluded by 

introducing the possibility of chaotic behavior. 

Monodromy Matrix 

. The existence of periodic orbit is guaranteed locally near the Hopf bifurcation 

point. The next step is to trace the periodic orbit as the parameter value increases. 

Each time the parameter is increased, the stability condition is investigated locally. 

Thus, the system state along the whole periodic orbit can be determined. 
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Consider solution x* with period T along the periodic branch. The stability 

of periodic polutions can be studied in the framework of the method developed by 

Seydel [10] and Guckenheimer [14]. Trajectories of the differential equation can be 

defined by x = cp( t, z), which is the periodic solution of Eq. 3.1 with z as an initial 

value; i.e., cp(t+T,z) = cp(t,z). When Eq. 3.1 is perturbed with z* +dO, a trajectory 

progresses to the periodic orbit x* = cp(t, z*) with the distance 

d(t) = cp(t, z* + dO) - cp(t, z*), (4.1 ) 

where z* means the particular initial value for a particular solution. After one period 

T, the distance is measured by 

d(T) = cp(T, z* + dO) - cp(T, z*), 

and its linear approximation with Taylor expansion becomes 

In Eq. 4.3, the matrix 

d(T) = ocp(~; z*) dO' 

ocp(T, z*) 
oz 

( 4.2) 

( 4.3) 

( 4.4) 

governs the growth or decay of the initial perturbation dO' The matrix in Eq. 4.4 is 

called a Monodromy matrix, and the eigenvalues of the monodromy matrix are called 

Floquet multipliers or characteristic multipliers [15]. 

Because cp(t,z) is the solution of Eq.3.1, x can be replaced with cp(t,z). Thus, 

dcp(t,z)jdt = F(cp(t,z),p) ( 4.5) 

for all t. If we differentiate Eq. 4.5 with respect to z and use the chain rule, 

d ocp(t,z) 
dt oz 

of(cp(t, z),p) ocp(t, z) 
ocp(t,z) oz 

( 4.6) 
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1>(t) = o<p(t, z), 
oz (4.7) 

then Eq. 4.6 will be represented by the matrix equation, which solves the matrix 

initial value problem 

<i>(t) = Fx(x,p)1>(t), 1>(0) = z*, ( 4.8) 

where Fx(x,p) is the Jacobian of Eq. 3.1. Consequently the monodromy matrix 

corresponds to 1>( t) at t = T. To calculate the monodromy matrix, we integrate 

Eq. 4.8 for 0 ::; t ::; T. Because Fx(x,p)1> varies with x(t), the Jacobian matrix 

should be provided for each t. One way to provide the Jacobian for all t's is to 

combine Eqs. 3.1 and 4.8 as an initial value problem. 

( x) (F(X'P)) 
<i> - Fx(x,p)1> ' ( 

X(O)) ( x*(O) ) 

1>(0) z* 

Then the periodic solution of Eq. 3.1, i.e., x(t) = <p(t,x(O)), is provided to evaluate 

the Jacobian matrix at each time step. Finally, when we integrate the initial value 

problem until t = T, then the monodromy matrix is given by 1>(T). To apply 

this method, a normalization has to be introduced to fix period T. Generally, the 

normalizing boundary condition 

n 
<i>(0) = " oFx(x,p) 1>(0) = 0 

L.t ax. 
i=l l 

( 4.9) 

can be imposed. For simplicity, the integration interval will be normalized to 0 < 

t < 1. After normalization, linearization takes the form 

<i> = TFx(x,p)1>, 1>(0) = 1>(1), <i>(0) = O. ( 4.10) 



39 

The periodic system thus has the boundary-value problem of dimension 2n + 2: 

x TF(x,p) 

p 0 

T 0 

<1> TFx(x,p)<1> 

x(O) - x(l) 

<1>(0) - <1>(1) 

L~l 8Fx~:~0),p) <1>(0) 

<1>(0) - 1 

=0 

Solving the above boundary value problem yields the periodic solution and the mon-

odromy matrix. 

The Floquet multipliers provide a useful tool for investigating the stability of 

periodic solutions. In the next section, we will show how to determine the stability 

of periodic solutions. 

Stability of Periodic Solutions 

Consider a periodic solution x*(t) on the periodic branch. The stability of the 

periodic solution is determined by linearizing Ii at x* (T). The linear system 

8i:(t) = J\I/(p)8x(t) (4.11) 

governs the local behavior of Ii near x* (T). The orbit of the system for initial 

condition x*(T) + 8xO is 

l(x*(T) + 8xO) x*(T) + 8x(t) ( 4.12) 
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x*(T) + lt1(p)t8xO 

x*(T) + C1 171JLI + ... + cn1]nJL~, 

where JLi, (i = 1,···, n), and 1]i, (i = 1,···, n) are the eigenvalues and eigenvectors 

of the monodromy matrix M(p), and where ci, (i = 1,···, n) are scalar constants 

chosen to achieve the correct initial condition. 

The eigenvalues JLi of monodromy matrix M(p) are called the Floquet multipli­

ers, or the characteristic multipliers, of periodic solution x*(t) at t = T, and they 

determine the amount of contraction( I JL 1< 1) and expansion (I JL I> 1) near x * (t) 

in the direction of 1]i. To preserve periodicity, one of these n-Floquet multipliers is 

always equal to 1. The other n - 1 Floquet multiplier determines (local) stability. 

• If all Floquet multipliers JLi lie within the unit circle, then the periodic solution 

is asymptotically stable. 

• If all Floquet multipliers JLi lie outside the unit circle, then the periodic solution 

is unstable. 

• If some Floquet multipliers lie within the unit circle and others lie outside it, 

then the periodic solution is nonstable. The stability of the periodic solution 

in such a case depends upon the direction of perturbation. 

If one of the Floquet multipliers lies on the unit circle, then the stability of the 

periodic solution cannot be determined by these multipliers alone. 
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Bifurcation of Periodic Solutions 

On the stable periodic orbit, n - 1 Floquet multipliers are always inside the unit 

circle. Floquet multipliers are the function of the parameter under consideration; 

when we vary the parameters, the Floquet multipliers also change, and some of them 

may cross the unit circle. In this section, we shall discuss the stability of the periodic 

solutions in terms of variation of the parameter. 

The stability of periodic solutions on one branch may change with variation of 

the system parameter because some of the Floquet multipliers may move outside of 

the unit circle in the complex plane. The Floquet multiplier crossing the unit circle 

is called the critical multiplier. Different types of branching occur depending upon 

where a critical multiplier, or a pair of complex conjugate multipliers cross the unit 

circle. Three associated types of branching are shown in Fig. 4.1. This figure shows 

the path of the critical multiplier only-i.e., the Floquet multiplier with 1 J.L(pc) 1= 1. 

In Fig. 4.1.a, the critical multiplier goes outside the unit circle along the positive 

real axis with J.L(Pc) = 1. In Fig. 4.1.b, the critical multiplier goes outside the unit 

circle along the negative real axis with J.L(pc) = -1. In Fig. 4.1.c, a pair of complex 

conjugate multipliers cross the unit circle with a nonzero imaginary part. All three 

sketches refer to aloss of stability when P passes through Pc on one branch. On the 

other hand, changing the arrows to point in the reverse direction illustrates a gain of 

stability-i.e., a critical multiplier enters the unit circle . 

. If one multiplier passes through the unique circle at -1 on the real aXIS, the 

originally stable periodic solution becomes unstable, and a branch of periodic solu­

tions with a doubled period branches off. The new branch can be either supercritical 

(branching of stable periodic solutions with period two) or subcritical (branching of 
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a.ll(pd = 1 b. p(pC> = -1 c. Im(p(pC> ) "* 0 

Figure 4.1: Three ways of losing stability 

unstable periodic solutions with period two). The bifurcation, in which a Floquet 

multiplier intersects the unit circle through -1 is called the period-doubling bifur­

cation. The period-doubling bifurcation often multiplies its period and may lead to 

a more complex bifurcation called chaos, which will be discussed in the next section. 

When the multiplier intersects the unit circle through + 1, a limit point appears 

along the curve of the periodic solutions on a parameter space. This point may 

correspond to intermitency, in which periodic oscillations are alternated by active 

and passive dynamics in the neighborhood of that point [10]. When a pair of complex 

conjugate Floquet multipliers intersects the unit circle, the originally stable branch of 

the periodic solutions becomes unstable, and a stable or unstable torus may appear 

at the bifurcation point. 
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Chaotic Behavior 

The oscillations we have discussed so far have been periodic. Periodicity reflects 

a high degree of regularity and order. Frequently, however, one encounters irregular 

oscillations that are either random or chaotic. The former are generally caused by the 

random disturbance or random variation of parameter, whereas the latter, although 

seemingly random, are generally caused by a deterministic equation without any 

evident random input or random variation of parameter. In this section we shall 

briefly discuss the characteristics of chaos. 

Chaos can be characterized by two elements: geometrical features and sensitivity 

to initial conditions. Geometrical features are explained by tracing the trajectory 

in either the phase plane or the time domain. Trajectories are bounded but not 

periodic. They do not have the characteristic of uniform distribution. Another 

property of a chaotic system is sensitive dependence on initial conditions: given two 

different initial conditions arbitrarily close, the trajectories emanating from these 

points diverge at a rate characteristic of the system until they are uncorrelated. In 

practice, the initial state of a system can never be specified exactly, but only to 

within the tolerance E: > 0; if the two initial conditions xo and xo lie within E: of 

one another, they cannot be distinguished. After a finite amount of time, however, 

4>t(xO) and 4>t(xO) will diverge and become unrelated. Therefore, no matter how 

precisely the initial condition is known, the long term behavior of a chaotic system 

can never be predicted. This unpredictability can be considered the deterministics 

of random behavior. Figures. 4.2 and 4.3 show two characteristics of chaos for the 

Lorenz equations. Fig. 4.2 shows the chaotic trajectory in time plot. The waves are 

bounded but not periodic. The sensitive dependence on initial conditions is captured 
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in Figure 4.3. The initial values of the upper diagram and the lower diagram are 5.0 

and 5.01, respectively. They differ by just 0.3 percent. 

lli vs. fiMe; 

i I 
; I 
I 
I , , 

Ii , 

-29.999999 

Figure 4.2: Chaotic trajectory of the first component of the Lorenz equation 
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Period-doubling Route to Chaos 

In the previous section, we briefly discussed the characteristics of chaos. Because 

we are considering parameter-dependent equations, it is only natural to ask how 

chaos depends upon the system parameter p. We are particularly interested in how 

chaos arises, and for which values of the system parameter p one may expect chaotic 

behavior. Generally, there is no unique way in which chaos arises. In this section, we 

suggest a period-doubling route, that leads to chaos. 

Let us consider the one-dimensional, discrete-time system 

Xt+1 = PXt(1- Xt), Xt E [0,1]' ,p E [0,4], ( 4.13) 

which is the so-called logistic equation [13]. Without any analytic investigation, this 

example shows that the way to chaos is through a series of period-doubling bifur­

cations. Although this example is by far simpler than the actual systems, it serves 

well to illustrate the process of chaos. This simple example helps us to concentrate 

on concepts without becoming engulfed in details. 

We assume xo = 0.4 for an initial value at t = 0.0. If we perform iterations for 

a particular p = 2.0, 

Xl pxo(1 - xO) 

x2 pX1(1-x1) 

p2xo(1- xO)(l - pxo(1- xo)), 

then the iterated value converges to the fixed value 0.5. If we increase p step by 

step, however, then the iterated value converges to a nonfixed value. At p = 3.4, 
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iterations settle down to the alternating values of 0.45196 and 0.84215, as shown in 

Fig. 4.4.a. Settling to these two values is called period doubling, and 0.45196 and 

0.84215 are attractors of period two. Similarly, at p = 3.5, there is period 4 with 

alternating values of 0.82694, 0.50088, 0.87500, and 0.38282, as shown in Fig. 4.4. If 

we increase p further, then the number of alternating values increases with period 

2n. Finally, Fig. 4.4.c shows nonalternating values at p = 4.0. 

As mentioned in the previous paragraph, the greater the period, the faster the 

period doubling and the smaller the distance between neighboring points on the 

orbits. For example, we need a microscope to see the structure for period 2048 in the 

logistic maps. Higher periods have a remarkable property, which was analyzed by 

Mitchell Feigenbaum in the 1970s. When a period is sufficiently high, its structure is 

indistinguishable from the structure of the previous period. Feigenbaum found that 

the sequence of repeated period doubling obeys a certain law in the limit, as follows. 

( 4.14) 

This number is universal as is 7r. Period doubling and Feigenbaum numbers appear 

not only on computer model simulations, but also in many kinds of natural chaos. 

Concluding Remarks 

So far, the mathematical concept of bifurcation theory has been reviewed. In 

Chapter 3, real and complex bifurcations were introduced, and in Chapter 4, Floquet 

theory was used to discuss periodic branch stability caused by complex bifurcation. 

The next two chapters apply this theory to a sample power system to explain voltage 

collapse and oscillatory phenomena in the framework of bifurcation theory. 
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CHAPTER 5. A SAMPLE THREE BUS SYSTEM 

Chapters 2, 3, and 4 briefly explained the techniques necessary to study nonlinear 

dynamical systems in a systematic way. In this chapter, the above methods are 

applied to a sample electrical power system. The aim is to explain the voltage 

collapse process, as well as other nonlinear oscillatory phenomena a power system 

may undergo. To this end, the power system model (Fig. 5.1) considered by Dobson 

et al. [4] is employed. This model consists of a load supplied by two generators. The 

load is represented by an induction motor in parallel with a constant PQ load. The 

dynamic equations of this system consist of four state variables corresponding to the 

generator angle (8), the generator angular velocity(w), the load angle{ 8 L), the load 

voltage magnitude (V). Load reactive power is chosen as the system parameter so 

that increasing Q1 corresponds to increasing the load reactive power demand. For 

the detailed system equations of this model, see Appendix A. 

w 

w 16.66667 sin(8 L - 8 + 0.08727)V 

- 0.16667w + 1.88074 

496.87181 V 2 - 166.66667 cos( 8 L - 8 

- 0.08727)V - 666.66667cos(8L - 0.20944)V 

(5.1) 

( 5.2) 
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- 93.33333V + 33.33333Q1 + 43.33333 

V = -78.76384V2 + 26.21722cos(<5L - <5 

- 0.01241)V + 104.86887 cos(<5 L - 0.134.58)V 

+ 14.52288V - 5.22876Q1 - 7.03268 

( 5.3) 

(5.4 ) 

--+--- Em L 8 

Figure 5.1: The sample power system network 
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The above equations can be formed as x = F(x,p), where x is the vector of four 

state variables, and p is the reactive power Q1 at load bus. 

In their study, Dobson et al. [4] determined only the voltage collapse phe­

nomenon in the sample power system model and missed other nonlinear phenomena. 

This chapter analyze the nonlinear oscillatory phenomena not reported in their work. 

Computing Stationary Branch 

Suppose the power system described by Eqs. 5.1, 5.2, 5.3, and 5.4 is operating at 

the stable equilibrium point xs( Qd, where Q1 is the reactive power demand at the 

load bus. Now, assume that Ql is slowly increased while other parameters remain 

fixed. In such an instance, equilibrium point xs(Q1) will vary as Q1 is increased. 

At each parameter step, the system eigenvalues are calculated in the anticipation of 

identifying critical points at which the real part of certain eigenvalues become zero. 

As mentioned in Chapter 3, the critical point corresponding to Hopf bifurcation has 

a complex conjugate pair with zero real part. On the other hand, the critical point 

representing real bifurcation has a zero real eigenvalue. 

Obtaining the stationary branch is straightforward as long as the steady-state 

equilibrium point is at a distance from real bifurcation. The algebraic system de­

termining the equilibrium point, however, will be ill-conditioned when it approaches 

real bifurcation. In fact, this critical point is often defined as the point at which the 

Jacobian of the Newton-Raphson method becomes singular. To avoid this singular­

ity, the continuation method is applied. Thus, the resulting continuation algorithm 

avoids becoming ill-conditioned and instead approximates the critical point. 

The software package A UTa [16] provides the continuation algorithm, and also 
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Table 5.1: State Variable Values At The Critical Points 

8 w 8£ V Q1 
0.31009 0.0 0.12005 1.09991 10.94606 51 

0.34348 0.0 0.13620 0.94252 11.40678 52 

0.34755 0.0 0.13799 0.92501 11.41146 53 

automatically calculates eigenvalues at each parameter step. The numerical results 

shown in the preceding section were calculated by this package. 

Detecting the Critical Points 

In the course of computing a stationary branch, three critical points are detected, 

as shown in Table 5.1. Figure 5.2 shows the stationary branch and the three critical 

points-51' 52, and 53-at which the system changes its stability. The critical points 

correspond to an operating point at which certain eigenvalues of the system cross the 

imaginary axis. In Fig. 5.2, the solid line represents the stable state, and the dotted 

line the unstable stationary trajectory. 

Table 5.2 shows the variations of system eigenvalues when the parameter Q1 is 

varied. The real part of complex conjugate eigenvalues becomes positive through 51 

and then negative again through 52' After a short stable region, one real eigenvalue 

becomes positive at 53' There are no point attractors in the interval between 51 and 

52' At two critical points-51 and 52-a pair of complex conjugate eigenvalues cross 

the imaginary axis, as shown in Fig. 5.3. At the last critical point, 53, also called 

the fold bifurcation point or the turning point, one real eigenvalue becomes zero. 

In this chapter, the critical points 51 and 52 are studied in detail. At these 
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Figure 5.2: A QV curve in a sample power system 
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Table 5.2: The movement of eigenvalues 

RealI ComplexConjugate Rea12 
-0.13459 E+03 -0.10548E-Ol±j O.38004E+Ol -0.16889E+02 
-0.13154E+03 -0.54156E-02±j O.37742E+Ol -0.16133E+02 
-0.13019E+03 -0.29641E-02±j O.37622E+Ol -0.15788E+02 
-0.12927E+03 -0.12323E-02±j O.37539E+Ol -0.15550E+02 
-0.12863E+03 -0.15137E-05±j 0.37481E+Ol -0.15384E+02 SI 
-0.12673E+03 0.38559E-02 ±j 0.37302E+Ol -0.14879E+02 
-0.12375E+03 0.10479E-Ol ±j O.37008E+Ol -0.14061E+02 
-0.12002E+03 0.19873E-Ol ±j 0.36611E+Ol -0.12993E+02 
-0.11774E+03 0.26326E-Ol ±j 0.36348E+Ol -0.12312E+02 
-0.11533E+03 0.33828E-Ol ±j 0.36049E+Ol -0.11567E+02 
-0.11275E+03 0.42683E-Ol ±j 0.35699E+Ol -0.10741E+02 
-0.10996E+03 0.53296E-Ol ±j 0.35273E+Ol -0.98087E+Ol 
-0.10687E+03 0.66155E-Ol ±j 0.34726E+Ol -0.87300E+Ol 
-0.10336E+03 0.81411E-Ol ±j O.33958E+Ol -0.74326E+Ol 
-0.99158E+02 O.95124E-Ol ±j 0.32687E+Ol -0.57587E+Ol 
-0.95188E+02 O.78427E-Ol ±j O.30807E+Ol -0.39933E+Ol 
-0.93613E+02 0.43327E-Ol ±j 0.29742E+Ol -0.31992E+Ol 
-0.92606E+02 -0.36278E-03 ±j O.28937E+Ol -0.26368E+Ol S2 
-0.90789E+02 -0.16853E+00 ±j 0.27402E+Ol -0.14191 E+Ol 
-0.89119E+02 -0.45468E+00 ±j 0.27318E+Ol -0.73737E-02 S3 
-0.87257E+02 -0.64046E+00 ±j 0.29305E+Ol 0.13355E+Ol 
-0.85549E+02 -0.67057E+00 ±j 0.30956E+Ol 0.23204E+Ol 
-0.84035E+02 -0.65205E+00 ±j O.32010E+Ol 0.31324E+Ol 
-0.82697E+02 -0.62111E+00 ±j 0.32672E+Ol 0.38445E+Ol 
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Figure 5.3: The movement of the complex conjugate eigenvalue 

points, the possibility of oscillatory or of other nonlinearly dynamic behavior is in-

vestigated by applying the Hopf and Floquet theories. System behavior near 53 may 

be associated with voltage collapse and will be discussed in the next chapter. 

Checking for Hopf Bifurcation Conditions 

In the previous section, we detected the points 51 and 52, at which the real 

parts of complex conjugate eigenvalues become zero. The eigenvalues at the first two 

critical points-51 and 52-are {O.OOOO ± j3.i481, -128.6327, -15.3845} and {O.OOOO ± 

j2.893i, -92.6059, -2.636.5}, respectively. The complex conjugate pair of eigenvalues 

correspond to generator angle and to generator-angular velocity, respectively. 

The existence of Hopf bifurcation is verified by satisfying the conditions men-
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tioned in Chapter 3. The stability of Hopf bifurcation is verified by calculating the 

value f32, which is calculated by the package BIFOR2 [12]. 

At5b f32 = 0.0904025 (subcritical), 

and 

At52, f32 = -252.2531 (supercritical). 

The periodic branch emanating from 51 is locally unstable because it is subcriti­

cal, whereas the periodic branch emanating from 52 is locally stable because it is 

supercritical. 

This condition is local in terms of fixing the parameter at the Hopf bifurcation 

point. Further increases of the parameter move the system state along the periodic 

orbit emanating from the Hopf bifurcation. The next section explains system behavior 

along this trajectory. 

Tracing the Periodic Branch 

As mentioned in Chapter 4, Floquet multipliers calculated from the monodromy 

matrix provide useful information for analyzing the stability of the periodic orbit. 

Table 5.3 shows the movement of Floquet multipliers along the branch of periodic 

orbit in between 51 and 52' FLi,(i = 1,,,,,4) and NUMBER, respectively, repre­

sent four Floquet multipliers and the number of Floquet multipliers inside the unit 

cirCle. The same A UTO package used here to trace periodic orbits generates the 

Floquet multipliers automatically at each parameter step. Figs. 5.4 and 5.5 show the 

branching diagram of parameter space, which includes periodic orbits. These figures 

depict the branch of stationary solutions including the unstable part and the point at 
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Table 5.3: The movement of floquet multipliers 

FL1 FL2 FL3 FL4 NUMBER B.Pt. 
1.00 1.01 0.00 0.00 3 
1.00 1.06 0.00 0.00 3 
1.00 0.93 0.00 0.00 4 
1.00 0.60 0.00 0.00 4 
1.00 -0.43 0.00 0.00 4 
1.00 -0.93 0.00 0.00 4 
1.00 -1.50 0.00 0.00 3 
1.00 -10.59 0.00 0.00 3 
1.00 -30.87 0.00 0.00 3 
1.00 -1.01 0.00 0.00 3 
1.00 -0.50 0.00 0.00 4 
1.00 0.35 0.00 0.00 4 
1.00 0.97 0.00 0.00 4 

which the two Hopf bifurcation points are connected by a branch of periodic orbits .. 

The stable-steady state solution becomes unstable for the value Q1 = 10.94606, and 

a periodic limit cycle emanates from Hopf bifurcation point 51' At this point, the 

periodic solution has a frequency of h = 0.596527 and a period of T1 = 1.67637, 

which is associated with the imaginary part of complex conjugate eigenvalues ob-

tained from the system equations. The periodic branch Sl to Pt emanating from 51 

is unstable because it is sub critical and because one of the multipliers lies outside 

the unit circle. As can be seen from the same diagram (Figs. 5.4 and 5.5), at point 

Pt , the multiplier lying outside the unit circle enters the unit circle from the positive 

side of the real axis, and the unstable periodic orbit turns to the right and gains 

stability. With further increases of Q1, however, one of the multipliers crosses the 

unit circle at -1 for the value of Q1 = 10.8716 and this periodic orbit bifurcates 

to a new periodic orbit with period two. The multiplier enters the unit circle again 
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from the negative side of the real axis for the value of Ql = 11.38847, which is the 

period-doubling bifurcation point P d2. When the multiplier passes through the sec­

ond period-doubling bifurcation point P d2' again the periodic orbit gains stability 

in the supercritical region between P d2 and 52. Finally, system oscillation vanishes 

at 52 (Ql = 11.40678, h = 1.060985), and the system state approaches the critical 

point 53. 

The stability and the type of periodic bifurcation solution, as mentioned above 

can be explained in terms of the movement of Floquet multipliers. Each predicted 

behavior in this section will be verified through time simulation. 

Bistable Region 

As shown in Figs. 5.4 and 5.5, at the interval 10.84041 < Ql < 10.88559, there 

exist two stable attractors: one is the steady state, and the other a stable limit cycle. 

The simultaneous existence of two stable attractors raises quite interesting questions 

including that of as which attractor dominates system behavior. 

This question can be answered by considering points A, B, and C in Fig. 5.6. 

These points correspond to the value Ql = 10.85, where 10.84061 < Ql < 10.88559. 

The point labeled A corresponds to a stable fixed point; B, to an unstable limit 

cycle; and C, to a stable limit cycle. For the value Q 1, the system has a stable 

equilibrium point surrounded in the phase plane by an unstable limit cycle, which 

is in turn surrounded by a stable limit cycle, with the unstable limit cycle acting as 

the separatrix between the basin of attraction of the equilibrium point and that of 

the stable limit cycle. Thus, the perturbed system lying inside the unstable limit 

cycle will tend towards the fixed point, whereas the perturbed system lying outside 
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Figure 5.7: Two attractors and an unstable limit cycle 



63 

this region will tend towards the stable limit cycle. This bistability is illustrated in 

Fig. 5.7, which shows a w-b plot of the phase plane for Q1 = 10.85. 

A Series of Period-doubling Bifurcations 

The sample time simulation of such predicted behavior with respect to growing 

oscillation near 51, period two oscillation at Pd2' and period one oscillation between 

Pd
2 

and 52 is shown in Figs. 5.8 through 5.12. Figure 5.8 shows a growing oscillation 

for Q1 = 11.0245 near 51' Figures 5.9 and 5.10 show the single period oscillation for 

Q1 = 11.389 on the 52 to Pd2 branch. Figures 5.11 and 5.12 show the period two 

oscillation for Q1 = 11.383 near P
d2

, with two different maximum amplitudes. 

As mentioned in Chapter 2, according to the bifurcation theory, one way to 

chaotic motion is through a sequence of period-doubling bifurcations. Figures 5.13 

and 5.14 show period four oscillation for Q1 = 11.380. The chaotic motion captured 

at Ql = 11.379 is shown in Figs. 5.15 and 5.16. Near the period-doubling bifur­

cation point P d2' because of the stiffness of the generator angle and the generator 

angular velocity with respect to parameter Q1, the oscillation is very sensitive to the 

parameter value, as can be seen in Figs. 5.11 through 5.16. 
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Figure 5.8: Growing oscillation for Q1 = 11.0245 



65 

Cl) .45 

.25 

a. Phase portrait on 
Cl)-B plane 

Figure 5.9: W-D phase plane trajectory: Period one oscillation for Q1 = 11.389 
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Figure 5.11: w-b phase plane trajectory: Period two oscillation for Q1 = 11.383 
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Figure 5.13: w-b phase plane trajectory: Period four oscillation for Q 1 = 11.380 
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Figure 5.15: w-b phase plane trajectory: Chaotic behavior for Q 1 = 11.379 
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Figure 5.16: w in time axis: Chaotic behavior for Q1 = 11.3i9 

Additional Remarks 

In this chapter, we verified oscillatory phenomena through time simulations with 

PHASER, a simulator devised for dynamical systems (13]. To analyze chaotic oscil-

lation theoretically, however, pertinent methods are required. Types of analyses still 

needed in the study of chaos will be mentioned at the conclusion of this thesis. 
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CHAPTER 6. VOLTAGE COLLAPSE AND CENTER MANIFOLD 

REDUCTION 

In the previous chapter, we discussed system behavior in the region before critical 

point 53' The oscillation phenomenon vanishes when load reactive power Ql is 

further increased through the second Hopf bifurcation point 52' Additional increases 

in Ql are possible only up to 53, beyond which the voltage may collapse. 

Dobson et al. [4] investigated system dynamics near the point 53 and suggested 

a voltage collapse model based on center manifold. The results of their study and of 

ours are briefly summarized and compared in the next section. They considered the 

complete system model, whereas our study concentrates on a reduced model obtained 

through the center manifold reduction technique. 

Review of the Previous Work 

Dobson et al. [4] suggested that voltage collapse can be identified in system dy­

namics at a saddle-node bifurcation (fold bifurcation) of a stable equilibrium point. 

They developed the model of generator and load dynamics described in the Ap­

pendix A. 

At point 53, the Jacobian matrix evaluated has one zero real eigenvalue, and 

the real parts of the remaining ones are negative. The eigenvector corresponding to 
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the zero real eigenvalue points in the direction of system trajectories. A curve IS 

made up of the system trajectories, which are tangential to the eigenvector at 53 and 

which are the union of a system trajectory converging to 53 (W':J, the equilibrium 

point 53' and a system trajectory diverging from 53 (~V~J. Thus 53 is stable for the 

initial conditions on W':" and unstable for the initial conditions on W'+. The sign of 

the eigenvector is chosen so that it points along the system trajectory diverging from 

53' Because the nonzero eigenvalues of the Jacobian at 53 have negative real parts, 

the eigenvector points along the only unstable direction. Because 53 is unstable, a 

small perturbation of the state from 53 may cause the state to move away from 53 

in the approximate direction of the eigenvector. 

The values of state variables at 53 are (8* ,w*, 81, V*) = (0.34755, 0.0, 0.13799, 

0.92501), and Q1 = 11.41146. The eigenvector associated with the zero eigenvalue 

at 53 is (0.235,0.0,0.102, -1.000). The relatively large negative component of the 

eigenvector associated with voltage indicates that, at 53, the initial movement of 

system dynamics will be in such a direction that voltage magnitude decreases while 

other state variables remain nearly constant. 

Numerically, system dynamics at 53 are identified by numerical integration 

methods designed for stiff systems, because the Jacobian of the system is quite ill­

conditioned around 53' Figure 6.1 shows the behavior of voltage magnitudes at the 

critical point, with respect to time. It starts with a slow variation and at some 

instance drops abruptly. 
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Figure 6.1: The behavior of voltage at 53: The magnitude of voltage at the critical 
point of the complete system 

Center Manifold Reduction 

In the previous section, system dynamics involved in the voltage collapse process 

were demonstrated. As discussed in Chapter 3, the same dynamical behavior can be 

observed qualitatively with a reduced number of system equations. In this section, 

the original dynamic equations with four state variables are reduced to a form with 
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only one critical variable. 

As mentioned earlier, the dynamical system model has four state variables-

8, w, 8 L' V -and a single parameter corresponding to load reactive power Q1. At 53, 

the system becomes critical with the value 

Xc = ( 0.34755 0.0 0.13799 0.92501 ) 

Pc = ( 11.41146 ) . 

Eigenvalues corresponding to the critical state are (0.0000, -89.1100, -0.4562±j2.7325), 

at which the real eigenvalue becomes zero although the other eigenvalues have nega­

tive real parts. 

When new variables are introduced, all critical values of state variables and value 

of a parameter are shifted to the origin 

where 

z 

u 

Now, the transformation 

gives Eq. 6.1 the new coordinates 

X - Xc 

P - Pc· 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 
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where T is a nonsingular transformation matrix containing eigenvectors of function 

An NAG subroutine F02AGF on the VAX/VMS 11/780 system was used to calculate 

eigenvalues offunction Fat 53. Now the Jacobian offunction P2 will be in the Jordan 

Canonical form 

where 

c= 

B = (0.0000), 

-89.1100 0.0000 

0.0000 -0.4562 

0.0000 

2.7325 

0.0000 -2.7325 -0.4562 

All algebraic manipulation is performed with the symbolic calculation software-

package MACSYMA. As explained previously, Yc can be incorporated into Ys, as 

shown in Eq. 3.9. If we take the second-order approximation of Eq. 3.9, then it 

can be directly obtained from Eq. 3.10 without solving the nonlinear Eq. 3.11 which 

consists of coefficients of Eq. 3.9. In as much as the equations involve trigonometric 

functions, they create multitude of extra terms in the process of algebraic manipu-

lation. Finally, the four-dimensional system is reduced into a form having only one 
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Figure 6.2: The behavior of voltage at 53: The variation of the center manifold 
variable 

critical variable: 

Yc = -81.819890y2, (6.6) 

where Yc is a combination of four state variables. The results of the time simulation 

in Fig. 6.2 approximate well the time simulation curve for the complete system. 
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CHAPTER 7. SUGGESTIONS FOR FUTURE WORK AND 

CONCLUSIONS 

Suggestions for Future Work 

In this thesis, the nonlinear power system dynamical model is studied in the 

framework of bifurcation theory. The motivation for this study was recent advances 

in both nonlinear dynamics and chaos theory. The important outcome of chaos the­

ory is that even a simple deterministic model is capable of extremely complicated 

behavior. Preliminary study of a sample power system dynamic model indeed con­

firmed this possibility. To be realistic, however, the theory must be extended to 

large, practical power system networks with detailed network models. To this end, 

a robust continuation methodology tracking steady-state solution trajectory must 

first be developed. This methodology has already been developed in the form of a 

continuation power flow package [17] based on Rheinboldt and Burkardt's study [18] 

and is capable of handling large systems. Similarly, a methodology tracking periodic 

solution and their stability can be developed based on Floquet theory. 

Conclusions 

In general, solving or analyzing nonlinear dynamical equations is quite difficult 

and requires special techniques. To overcome such difficulties, systems are gener-
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ally linearized in an attempt to predict their behavior. The study described in this 

thesis stressed the importance of nonlinearity in power system dynamics, especially 

in highly stressed systems. Recent advances in bifurcation and nonlinear dynamical 

system theories have made it possible to analyze dynamical systems systematically. 

The examples included in this work have shown the importance of bifurcation theory 

in the analysis of nonlinear dynamical equations. In the early stage of our research, 

we in fact applied this theory to the power system example to analyze the dynamic 

aspects involved in the voltage collapse process. During theory testing, it was discov­

ered that other types of bifurcations were possible. For example, the study revealed 

the existence of both stable and unstable periodic orbits for certain values of the pa­

rameter under consideration. Periodic orbits and their stability were therefore studied 

in the framework of Hopf bifurcation and Floquet theory. The predicted behavior 

was verified by soft wares such as AUTO, BFIR02, MACSYMA, and PHASER. It 

was concluded that the voltage collapse phenomenon is a subset of overall bifurcation 

phenomena. 

Certain aspects of the work reported in this thesis, chaos, for example, have not 

yet been observed in a significant way in practical power system networks. Erratic 

nonlinear oscillation attributed to noise in the system, however, has been observed. 

The analysis developed in this study may lead to an explanation of noise from chaos. 

Nonlinear dynamics theory is not yet complete, and much research is being done 

in the United States and abroad. This thoery can do much to improve the ability of 

power system engineers to tackle the problems of voltage collapse and of nonlinear 

oscillations. 
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APPENDIX A. A SAMPLE POWER SYSTEM MODEL 

Consider the power system model shown in Figure 5.1 that was developed in 

reference [4]. One generator is a slack bus and the other generator has constant 

voltage magnitude Em and angle dynamics given by the swing equation 

1118 = -dmw + Pm + Em VYm sin(8 L - delta - em) 

+E~Ymsinem 

(A.1) 

where JIll, dm , and Pm are the generator inertia, damping and mechanical power 

respecti vely. 

The load model includes a dynamic induction motor model with a constant PQ 

load in parallel. The dynamic induction motor model specifies the real and reactive 

power demands of the motor in terms of load voltage and frequency. The combined 

model for the motor and the PQ load is 

P Po + PI + Kpw 8 L + Kpv(V + TV) 

Q 
. 2 

Qo + Q1 + Kqw 8L + Kqv V + Kqv2 V 

(A.2) 

(A.3) 

where PO' Qo are the constant real and reactive powers of the motor and PI, Q1 

represent the PQ load. 

Q1 is chosen as the system parameter so that increasing Q1 corresponds to 

increasing the load reactive power demand. The load also includes a fixed capacitor 
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C to raise the voltage up to 1.0 per unit. The Thevenin equivalent of the circuit 

including reference bus is seen from the capacitor is given by: 

, 1 
EO EO/(I + C2YO-2 - 2CYO-

I cos(OO)) 2 
, 1 

YO Yo(1 + C2YO-
2 - 2CYO-

I cos(OO))2 

, -1 CYO-
I sin(OO) 

00 00 + tan ( 1 ) 
1 - CYO- cos( 00) 

The real and reactive powers supplied to the load network are 

, , , 
P = -EOYO sin(8 L + 00) -

Q 

EmYm V sin(8L - 8 + Om) , , 
+(YO sin(OO) + Ym sin(Om))V2 

, , , 
EO YO cos( 8 L + 00 ) + 

Em Y m V cos( 8 L - 8 + Om) 

" 2 -(YO cos(OO) + Ym cos(Om))V 

(AA) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

Algebraic manipulation of A.I through A.8 results in the following four dynam-

ical equations: 

Kqw 8 L 

w 

-8w + Pm 

+ EmYm V sin(8 L - 8 - em) 

+E~IYm sin(Om) 

-Kqv2 V 2 - Kqv V , , , 
+EoYO V cos(8L + 00 ) 

(A.9) 

(A.IO) 

(A.ll) 
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+EmYm V cos(8 L - 8 + am) 

" 2 -(Yo cos(aO) + Ym cos(am))V 

-Qo - Ql 

T KqwKpv it = Kpw K qv2 V 2 

+(KpwKqv - KqwKpv)V 

II 2 2 " v (Kqw + Kpw)[-EOYO V , 
cos( 8 L + aO - 1/) 

-EmYm V cos(8 L - 8 + am - 1/) , , 
+(YO cos( aO - 1/) 

+Ym cos(am - 1/))V2] 

-Kqw(PO + PdKpw(Qo + Ql) 

1/ = tan- 1(Kqw ). 
Kpw 

The load parameter values are 

Kpw = 0.4, Kpv = 0.3, Kqw = -0.03, 

Kqv = -2.8, Kqv2 = 2.1, T = 8.5 

Po = 0.6, Qo = 1.3, PI = 0.0 

and the network and generator parameter values are 

Yo = 20.0, aO = -5.0, EO = 1.0, , , 
C = 12.0, YO = 8.0, aD = -12.0, 

( A.12) 

(A.13) 

(A.14) 
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I 
EO = 2.5, Ym = 5.0, em = -5.0, 

Em = 1.0, Pm = 1.0, dm = 0.05, 

M = 0.3 

All values are in per unit except for angles, which are in degrees. 
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APPENDIX B. STABILITY AT HOPF BIFURCATION POINT 

Here, we show the system stability at Hopf Bifurcation point conceptually. 

On the center manifold the Equation 3.1 has the following form 

Y1 

Y2 

OY1 - I~A(P)Y2 + f1(Y1,Y2,P) 

I~A(P)Y1 + OY2 + f2(Y1,Y2,P) 

(B.1) 

(B.2) 

where it and h are strictly nonlinear in Y1 and Y2. A(p) and its complex conjugate 

A *(p) are the eigenvalues of the vector field linearized about the fixed point at the 

origin (Hopf bifurcation point). 

To obtain the above two equations, several preliminary steps were first con-

ducted. As discussed in Chapter 3, we first transformed the fixed point to the origin 

and performed a transformation of the coordinates so that the A matrix had Jor-

dan canonical form. Because a pair of complex conjugate eigenvalue becomes purely 

imaginary, the stable manifolds are locally expressed as follows: 

(B.3) 

(B.4) 

In general the complex conjugate eigenvalue are denoted by 

A(p) = a(p) ± iw(p), (B.5) 
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and at Hopf bifurcation 

a(pc) = 0, w(Pc) f- O. 

The next step is to transform Eqs.B.1 and B.2 into normal form. The method of 

normal forms provides a way of finding a coordinate system in which the dynamical 

system takes the simplest form. This was done in [19]. Rand [20] provides a software 

package using MACSYMA that transforms it to normal form. The normal form was 

found to be 

Y1 = a(p )Y1 - w(p )Y2 + (a(p )Y1 - b(p )Y2 )(Yf + Y§) + . . . (B.6) 

Y2 = w(p)Y1 + a(p)Y2 + (b(p)Y1 + a(p)Y2)(Yf + Y§) + ... (B.7) 

where a(p) and b(p) are real and imaginary part of c(p) that is a constant depending 

on p [19]. 

B.6 and B. 7 are more conveniently investigated in polar coordinates. In polar 

coordinates, B.6 and B. 7 are given by 

r = a(p)r + a(p)r3 + ... (B.8) 

e = w(p) + b(p)r2 + ... (B.9) 

Since we are interested in the dynamics near p = pc, we expand the coefficients a(p), 

w(p), a(p), and b(p) in Eqs.B.8 and B.9. Eqs. B.8 and B.9 becomes 

I 3 r = a (pc)pr + a(pc)r + ... (B.1O) 

. I 2 e = w(pc) + w (pc)p + b(pc)r + ... (B.ll) 

I I 
where a (Pc) denotes da(pc)jdp and w (pc) dw(pc)jdp. Neglecting the higher order 

terms in B.10 and B.ll give 

I 3 r = a (pc)pr + a(pc)r (B.12) 
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. , 2 
() = w(Pc) + w (Pc)p + b(pc)r . (B.13) 

In Eqs. B.12 and B.13, one can observe that the dynamics is dominated by r, because 

only r appears in the right hand side of both equations. To be precise, values of r > 0 

and p for which T = 0, but e -I- 0, correspond to periodic orbit. Wiggins [19] gave 

explicit conditions to determine stability: 

• asymptotically stable for a < OJ 

• unstable for a > O. 

a(pc) is given explicitly in the form of second, third derivatives of B.3,B.4. [12] 

shows that (32 is nothing but 2a(pc). 
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APPENDIX C. THE ANALYSIS OF VOLTAGE VERSUS REACTIVE 

LOAD CURVE 

This section basically explains affect ofload modelling on voltage versus reactive 

load curve. The magnitude of the voltage at the load bus gradually decreases as the 

reactive power portion Q1 of the constant load increases. The decrease in the load 

voltage causes a nonlinear change in reactive power consumed by the induction motor 

load as shown in the curve of V versus Qmot in Figure C.l. Figures C.1 and C.2 

do not include stability information, i.e., only the area around the turning point 

is taken into account. The reactive power injected into the load is the sum of the 

reactive powers of each load. Figure C.1 shows that increasing Q1 corresponds to 

increasing the load reactive power demand Qtot injected into the load bus. However, 

the voltage versus Qtot curve has a peak, which is not the critical point. On the 

curve corresponding to Qtot, the critical point is located at the point corresponding 

to Vcr below peak. 

When a constant PQ load, which is independent of system voltage, is considered 

instead of induction motor, the reactive power curves of the individual load are shown 

in Figure C.2. The curve of total reactive power injected into the load bus has· a 

critical point at its peak. 

Usually in the region below the peak point, the system is considered unstable, 
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Vop _ __________________ _ 

Critical Point 
arnot: Reactive power injected to the induction motor 
a I: Reactive power in jected to a constant PO load 
atot: Reactive power injected to load bus 
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Figure C.l: Load voltage versus reactive power of constant PQ load with induction 
motor in parallel 

but it is not always true. Figures C.l and C.2 indicate that the induction motor 

moves the critical point of Qtot below the peak. It may be stable depending on the 

characteristics of individual loads even if the system operates below the peak. 
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Figure C.2: Load voltage versus reactive power of constant PQ load 


