
Wind tunnel testing of shelterbelt effects on dust 

emissions from swine production facilities 

by 

David Joseph Laird 

A thesis submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

Major: Aerospace Engineering 

Major Professor: Dr. Bruce Munson 

Iowa State University 

Ames, Iowa 

1997 



11 

Graduate College 

Iowa State University 

This is to certify that the Master's thesis of 

David Joseph Laird 

has met the thesis requirements of Iowa State University 

Signatures have been redacted for privacy 



III 

TABLE OF CONTENTS 

LIST OF SYMBOLS IV 

ABSTRACT Vll 

CHAPTER I: INTRODUCTION 1 

CHAPTER II: EQUIPMENT AND PROCEDURE 4 
Equipment 4 
Wind Modeling 12 
Particle Modeling 19 
Other Scaling Effects 23 
Experimental Procedure 24 
Data Collection 29 

CHAPTER III: RESULTS AND DISCUSSION 33 
Digital Photograph Analysis 35 
Statistical Analysis of Mass Data 43 

CHAPTER IV: CONCLUSIONS 51 

APPENDIX A: EXPERIMENTAL CONDITIONS, VELOCITY, AND 
MASS DATA 55 

APPENDIX B: INTENSITY DATA 70 

APPENDIX C: BOUNDARY LAYER PROFILES 97 

APPENDIX D: DESIGN OF ROUGHNESS ELEMENTS 100 

APPENDIX E: COMPUTER CODE FOR PHOTOGRAPHIC 
ANALYSIS 104 

APPENDIX F: PHOTOGRAPHIC RESULTS 111 

REFERENCES 125 

ACKNOWLEDGMENTS 128 



IV 

LIST OF SYMBOLS 

a Speed of sound 

Al Dimensionless threshold friction speed 

b Spire width 

B Friction Reynold's number 

CD Drag Coefficient 

Cc Friction coefficient 

d Particle diameter 

D Roughness block spacing, Particle diameter 

e Coefficient of restitution 

F Pressure drop factor 

g Gravitational acceleration 

h Reference height, Boundary layer thickness 

H Spire height 

Ho Test section height 

k Roughness block height 

I General horizontal length 

L Reference length 

M Mass 
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R Reynold's number 

t Time 

u Mean velocity 

u. Friction speed 

Uf Terminal speed 

Ut Threshold speed 

u. Threshold friction speed 
t 

U oo Freestream Velocity 

U Wind speed at reference height 

Vf Fall velocity 

w Width 

Z Distance above floor 

Zo Roughness height 

a Boundary layer shape coefficient 

8 Boundary-layer thickness 

11 General height 

v Kinematic viscosity 

p Fluid density 
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Subscripts: 

m Model 

p Particle 

ref Condition at reference location 
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ABSTRACT 

Dust emissions from swine containment facilities are a constant 

nuisance in the areas near by. The strong odors produced offend 

neighbors and can lower property values. Ways to minimize the problem 

of dust emissions through the use of wind breaks can be explored through 

wind tunnel testing. The wind tunnel can be used to conduct quick, 

inexpensive, and repeatable experiments that would be difficult to 

accomplish on a full scale. Modeling wind transport effects on a small 

scale involves proper matching of many properties such as geometric, 

kinematic, and dynamic similarities. It is also important to distinguish 

what similitude requirements are most important, since they cannot all be 

matched. Proper modeling allows small scale testing to predict full scale 

results. Experiments to determine the effects of wind breaks involve 

varying the wind speed and direction, and also changing the height, 

thickness, and number of model bushes. Methods of data acquisition 

include collecting the particle deposit on the wind tunnel floor and 

recording the mass, and using digital photography to analyze the dust 

deposits. It has been determined that wind speed has the biggest effect on 

the amount of dust that is carried far downstream. The number and 

height of bushes are also influential. In the best case scenarios, the 
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amount of dust carried far from the model decreased by between 35% to 

56%. A technique of using digital photographs to determine the amount of 

deposit by relating it to image intensity is also introduced, but so far 

errors have rendered the method ineffective. 
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CHAPTER I: INTRODUCTION 

Hog production is one of Iowa's strongest economic forces, bringing 

in $12 billion in 1995. However the expansion of this industry is meeting 

resistance by local communities because of its offensive odor. Larger hog 

facilities are being built in the state, some of them holding thousands of 

hogs at a time. There are already tough regulations imposed on large hog 

operations, but odor remains the biggest problem. Senator Berl Priebe, D­

Algona, chair of the Senate Agriculture Committee has commented that if 

odor problems can be corrected, many of the problems now facing the Iowa 

pork industry will be resolved. 

The motivation behind the following text is to explore and 

understand the movement of dust from swine production facilities into the 

surrounding areas. The purpose is to investigate how dust from these 

facilities is transported downwind, and how this transport can be reduced 

by appropriate barriers. 

The cause of odor from these facilities can be broken down into two 

categories: dust emission and gaseous emission. The subject of this study 

will concentrate solely on dust emission, gases being reserved for future 

examination. The dust is formed by dried manure, feed stuff, and 

dandruff being agitated by the trampling of hogs, and it is swept away by 
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the wind. Even though the hogs are inside, the buildings have large open 

windows that allow the breeze to cool the hogs. The transport of this dust 

depends on many factors, the most important of which is wind speed. 

Particle motion by the atmosphere is a well researched subject. 

Scientists have used wind tunnel testing to study the effects of erosion, 

snow drifts, desert growth, pollution, and most importantly, how to 

prevent these effects. Our goal is to extend this field of research to the 

modeling of a hog production facility, examining the dust entrainment 

process and determining shelterbelt effects on the volume of, and/or 

distance traveled by particles. 

For this research, the Environmental Wind Tunnel at Iowa State 

University is used. Wind tunnels are used to perform this kind of 

research because it is less expensive, quicker, and easier to test 

atmospheric wind phenomenon with a small scale model, whether the test 

is of the air flow around a model building, or the means of controlling 

particle transport. Control of the experiment (wind direction, velocity, 

duration, etc.) is a primary advantage with small scale models. 

Experiments are also relatively cheap to perform and many more 

experiments can be conducted in a given period of time. The important 

question for model experiments concerns the validity of full scale 

prediction from model results. It is sometimes difficult to properly 
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simulate at small scale the wind, temperature, and turbulence profiles 

which occur naturally in the atmosphere (1). 
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CHAPTER II: EQUIPMENT AND PROCEDURE 

Equipment 

The equipment used in this experiment is as follows: 

1. Low speed wind tunnel 

2. Model of swine production facility 

3. Spires and roughness blocks 

4. Pitot-static tube, pressure transducer, amplifier 

5. Ricoh RDC-l remote control digital camera 

6. Hewlett Packard PC 

7. Vertical collector device 

8. Remote digital thermometer 

9. Transversing pitot-static tube system 

10. Vacuum cleaner 

11. Mass balance 

12. Crushed walnut shell 

An atmospheric wind tunnel is designed to simulate testing in the 

natural boundary layer. Two types of atmospheric wind tunnels are 

commonly used, both having long test sections. The first is called a 

meteorological wind tunnel, and may have a test section up to 15 test 
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section heights long, and has the capability to both cool and heat the air 

and test section floor. This is especially important when it is necessary to 

simulate an atmospheric temperature gradient, as when testing with 

some types of tests of pollution. When it is not required to cool or heat the 

air and test section floor, as in our case of particulate saltation, the effect 

of temperature gradients can be ignored. For these kinds of tests, 

simulating the boundary layer structure and turbulence will be adequate, 

which can be done using the second type of atmospheric wind tunnel, the 

environmental wind tunnel. This type of tunnel normally has test 

sections about 10 test section heights long. This research was performed 

using the Environmental Wind Tunnel at Iowa State University. A 

drawing of the wind tunnel floor depicting important items of the 

experiment is shown in Figure 1, and a photograph of the facility is shown 

in Figure 2. 

For general tests involving particle entrainment, there are some 

advantages to having a straight through, open circuit tunnel (or even a 

closed circuit tunnel which may be converted to open circuit) because 

many types of these tests could damage a closed circuit type. These tests 

may involve smoke, "snow material", erosion with sand, model failure, 

water troughs, or rain simulations which could hurt plywood construction 

or rust balance components. In our particular case, any recirculation of 
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Figure 2: The Environmental Wind Tunnel at Iowa State University 

the walnut shell particles could possibly influence the experimental data. 

Also necessary for such tests is an adequately long test section to fully 

develop the modeled boundary layer, which tends to favor an open circuit 

type . However, if a closed circuit wind tunnel has the sufficient length to 

model the boundary layer, there is no reason that it could not be used (2). 

A wind tunnel is often required to operate at very low velocities 

during airborne dispersion tests. A direct-current drive motor plus a 

variable pitch propeller is the best arrangement. An alternating current 
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motor with a variable pitch propeller tends to be cheaper and is usually 

adequate, and is the type of system employed in our wind tunnel. 

Adjusting tunnel speed by rpm is not necessary with thick boundary layer 

flow because the flow pattern can be adjusted by spires and roughness 

elements in the test section. The tunnel drive system should be capable of 

maintaining flow speeds within 1-2% (2). 

Flow velocity was determined by using Bernoulli's incompressible 

equation, which requires pressure and temperature inputs. Pressure 

measurements are difficult to obtain in turbulent flow. Normal procedure 

is to use a pressure transducer that has a flat frequency response to 

around 150 Hz, and then to average samples taken at rates of 50-150/s for 

20 seconds or so. The most commonly used pressure transducers are 

diaphragm types. These generally measure a differential pressure, where 

a preselected reference pressure is applied to the reference side. Absolute 

pressure types are also available. Pressure transducers come in a wide 

range of differential pressure values, though 2.5 psid and 5.0 psid are the 

most widely used. Because accuracy at low speed is important in this 

experiment, a 2 inH20 (- .07 psid) transducer was used. Transducers 

require a bridge power supply similar to strain gages, and the output 

voltage varies with pressure. A calibration is performed to translate the 

output voltage into pressure. This is done by applying a series of known 
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pressures to the transducer. Transducers are calibrated using a primary 

standard in a dead weight tester or a calibrated secondary standard. 

These units most often apply pressure to the reference side of the 

transducer, but this is not mandatory. In our case, a crank manometer 

was connected to the reference port, and the output was recorded at varied 

inputs of mmH20. This data can be fed into a curve-fitting routine to 

determine the calibration curve. Transducers tend to be linear, but often 

a third degree curve fit is used. The calibration curve for this system is 

shown in Figure 3. Transducers may sometimes need to be recalibrated. 

For our experiments, the only recalibration consisted of zeroing the 

transducer prior to each test by measuring the voltage output during a 

zero wind condition, and shifting the calibration curve to intersect that 

point (2,3). 

The most common device used with a pressure transducer is the 

pitot-static tube, an instrument that provides both the total head and the 

static pressure. This experiment uses two pitot-static tubes. The primary 

tube is at a fixed position in the test section 31 cm upstream of the model, 

and 6 cm above the floor, as shown in Figure 2. The second pitot-static 

device is placed on a transversing rack above the test section, which is 

only employed while determining velocity profiles. The orifice at the tip of 
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Figure 3: Calibration curve for pressure transducer and amplifier 

a pitot-static tube reads total pressure, p + ~ pV2, and the orifices on the 
2 

sides read the static pressure, p. If the pressures from the two orifices are 

connected across a differential type pressure transducer, the result will be 

the dynamic pressure q = ~ pV2, from which the velocity may be 
2 

calculated, provided air density is known. This is found using the state 

equation, p = pRT, and the temperature. 

The static temperature is essentially constant through a boundary 

layer in incompressible flow. Thus, the easiest method of measuring 

static temperature is through the use of a flush, wall mounted 

temperature probe. It is beneficial if the probe is remote indicating, 

enabling the temperature to be read in a convenient location. The probe 
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should be located in an area of the test section where the chance of 

damage is minimal. The temperature probe should have an output in 

millivolts so that it can be recorded by a digital data acquisition system if 

one is used. The temperature probe in this experiment is located 

approximately 6 em above the floor, next to the pitot-static tube, as shown 

in Figure 2. 

Finally, a one fiftieth scale model of a typical containment facility 

was constructed out of plywood using an architectural drawing provided 

by the Iowa State University Agricultural and Biosystems Engineering 

Department. The ceiling, outside walls, and roof are modeled, but window 

frames and interior pen rails are not. Also, only a single structure is 

present, whereas in real life the buildings are often grouped in rows, 

columns, or both, and include large feed bins at the end of each structure. 

It is also important to realize that not all facilities are the same. They 

may have different lengths, roof styles, or other geometric properties that 

may impact the aerodynamics and consequently the pattern of dust 

transport. Further investigations my be required to determine the effect 

of different facility styles. The roof of the model is removable, to allow the 

floor inside to be filled with walnut shell, simulating the dust particles. 

Figure 4 shows the model. 
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Figure 4: The wind tunnel model 

Wind Modeling 

Model testing is based on the laws of similarity. For the model to 

be representative of the full size structure, there must be geometric, 

kinematic, and dynamic similarity. 

For geometric similarity, all the relevant linear dimensions of the 

model must have the same direct proportionality to the corresponding full 

size dimensions. For kinematic similarity, there must be a constant ratio 

between the two sets of corresponding velocities. Finally, there must be a 
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constant ratio between the corresponding sets of forces to achieve dynamic 

similarity (4). 

In most situations, the exact similitude requirements for modeling 

dust emission problems cannot be met, or are impractical to satisfy on a 

small scale, because of the large number of modeling parameters that 

cannot be solved simultaneously. Because of this problem, it is better to 

ignore factors which have only minor influence on the situation, and 

concentrate on those with a predominant influence. However, the 

complexity of the similitude problem is emphasized by the lack of 

agreement as to the most important or appropriate sets of parameters on 

which to base a similitude (1,4). 

The following variables describe the boundary layer problem: 

g gravitational acceleration 

h reference height 

L reference length 

I other horizontal lengths 

Zo roughness height 

U wind speed at reference height 

11 other heights 

v kinematic viscosity 
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Important nondimensionalized testing parameters identified in 

references 1, 2, 4, 5, 6, and 7 describe the following modeling conditions of 

a meteorological wind tunnel in order to provide useful information: 

• 

• 

• 

• 

• 

Reynold's number, £. UL = UL 

U 
Mach number, -

a 

Jl v 

U 
Rossby number, -

LQ 

Scaling of buildings and topographic features,~,~,21 
L L h 

Kinematic simulation of air flow, boundary layer velocity 

distribution, turbulence, and roughness criterion, ~ 
L 

• Matching the zero pressure gradient found in the 

atmosphere 

The predominant forces in air flow are those caused by inertia and 

viscosity. The Reynold's number is a measure of the ratio of the inertia 

forces to the viscous forces. Therefore, similarity of flow between a scaled 

model and the full size structure can be obtained if the Reynold's number 

for both systems is the same. However, the reduced linear scale of wind 

tunnel models usually means that the Reynold's number of experimental 

models are orders of magnitude less than those found for full scale. 
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Fortunately, the effects of not achieving a proper match are usually small 

because of the turbulence produced by the sharp edges of most objects 

under study. Check runs should be made at various speeds to make sure 

this assumption is true. If problems were to occur, they could most likely 

be resolved through the use of trip strips (2, 4). 

The Mach number is the ratio of velocity to the speed of sound, and 

provides another measure of inertial properties. If a model test has the 

same Reynold's and Mach numbers as the full scale subject, then the flow 

around the model and the full scale subject will be dynamically similar 

(4). 

The Rossby number is a function of the Coriolis effect on the earth's 

winds. It may account for up to a 5 degree shift of wind at 600 ft. This is 

oflittle significance and would be hard to simulate if it were necessary (2). 

Generally, physical structures are modeled such that the scale in 

all three dimensions is the same. However, since the variables used in 

modeling listed previously contain both a reference height and a reference 

length, there is the possibility of having a geometrically distorted model. 

Not only is it necessary to simulate the structure being tested, but also 

the surrounding area within 1000 to 2000 ft full scale of the building site. 

These surroundings may change not only the wind loads, but may add to 

pollution problems. The building to be tested and its surroundings should 
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be placed on a turntable, so when rotated the test area can experience 

winds from any direction. There is a small amount error because the 

boundary layer and turbulence in the atmosphere may be different 

depending on the wind direction. Sometimes, especially when a building 

is on a lake shore, or near a hilly area, a different wind structure should 

be employed (2). 

The velocity distribution in the natural boundary layer should be 

simulated as completely as possible. In our case, at a scale of 1:50 a 5 m 

tall barn will be 10 cm high. The boundary layer must be duplicated to at 

least 15 cm high, and preferably extend to the test section ceiling. If the 

actual boundary layer is known at the location of a proposed site, then an 

effort should be made to model it. However if the boundary layer is 

unknown, the following guide can be used. The maximum speed at 30 ft 

altitude can be estimated and the boundary layer is structured according 

to: 

where u = mean velocity at height z, Uref = mean velocity at reference 

height. The boundary layer shape coefficient a varies according to the 

terrain, and may be chosen using Table 1 as a guide. Wind speed 

increases with height, while turbulence is greatest near the ground (2). 
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Table 1: Choices for the boundary 
layer shape coefficient 

Boundary layer a 
thickness h (ft) 

upen country It:lU U.10 

Low rise 
1200 0.28 

buildings 
Urban 1700 OAO 

The boundary layer velocity distribution and turbulence can be 

duplicated by installation of spires in the wind tunnel followed by a 

roughness run of 10 - 15 test section heights often made with small cubes 

on the floor. Using the method of reference 8, plywood spires and 

Styrofoam roughness blocks were constructed to produce a boundary layer 

u 
thickness of 20 em, and _. of .06 at the test section. The design of these 

u", 

elements can be found in Appendix D. Their layout is shown in Figure 1, 

and can be seen in Figure 5. 

In addition, it has been shown that for simulation of the 

atmospheric boundary layer the roughness parameter in the model should 

be the same as that in the atmosphere, i.e., 
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Figure 5: Spires and roughness blocks as seen 
through the wind tunnel inlet 

Finally, the longitudinal pressure gradient normally found in a 

wind tunnel, and compounded by the very thick boundary layer, needs to 

be eliminated to match the zero pressure gradient found in the 

atmosphere. This is done by providing an adjustable test-section roof that 

may be adjusted to provide the extra cross-sectional area needed (2). 
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Particle Modeling 

The movement of loose surface particles by wind is a complex 

phenomenon. Loose particles can move in one of three ways: creep, 

saltation, or suspension. Creep is the motion in which large particles roll 

along the surface but do not become airborne. Saltation is caused by 

medium-size and smaller particles becoming airborne due to aerodynamic 

lift, or a combination of lift and impact of returning particles. In 

saltation, particles rise from the surface nearly vertically and then 

gradually return by a shallow angle trajectory. This process is responsible 

for most of the motion and end deposits that form snowdrifts or soil 

erosion. The velocity below which saltation will not occur is called the 

threshold velocity. When the wind velocity exceeds about 5 times the 

threshold velocity, the particles bump hard enough to bounce into the air 

stream, and are then said to be in suspension. Saltation and suspension 

can occur at much lower speeds in the presence of falling particles. Very 

small particles, after becoming airborne, may go into suspension and 

perhaps rise to great heights before gradually settling out of the 

atmosphere. 

The ratio of terminal speed to threshold friction speed is: 
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I 

Ur =2(3C
D

)-Z 
u. A 

1 

where the drag coefficient CD is a function of Reynold's number: 

C - CUrB D- D(R=-) 
u. 

1 

24 24 
CD = -,(R ~.1), CD> -,(R >.1) 

R R 

The dimensionless threshold friction speed, AI, is given by 

Most researchers assume AI is a unique function of particle friction 

Reynolds number B: 

u.D p 
B=-'-'-

v 

In addition, however, the threshold parameter Al must be a 

function of cohesive forces for small particles. 

The mean vertical turbulent eddy velocity in the boundary layer 

has the same order of magnitude as the friction speed u •. Thus, particles 

go into suspension because their terminal speed, Ur, is smaller than u. 

(or u. ). An approximate division between dust (material in suspension) 
1 

and sand (saltating particles) is therefore found by setting the ratio 
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Ur = 1. For particle diameters large enough so that Ur is greater than 
u. u. 

I I 

1, particles will not become suspended until that ratio ~ is reached 
u. 

I 

when Ur becomes approximately unity. Unless under the influence of 
u. 

very strong winds, nearly all blowing particles move in the saltation mode 

(2). The dust from hog facilities is an exception however, because of the 

small particle size. This dust mostly moves in suspension. 

The introduction of moving particles to the problem requires the 

following additional variables: 

Dp particle diameter 

t time 

p fluid density 

pp particle density 

These variables must be considered along with the wind modeling, and 

result in these additional scaling requirements: 

• Scale factor, ~ where d = diameter of model particle (in) 
L 

and L = length of a full-scale reference dimension (in). 

• Coefficient of restitution, e. This concerns the rebound 

distance/drop distance. 
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Y 
• Particle velocity, _P , where Vp = velocity of model particle 

Y 

• 

• 

• 

(fps) and V = velocity of a full scale particle (fps). 

Fall velocity, Yf 
, where Vf = free fall velocity of model 

Y 

particle (fps) 

Froude number, y2 where g = acceleration of gravity, ft/s2. 
gd 

Density ratio, ~ 
Pp 

The Froude number is important to achieve similarity in situations 

with blowing particles. The particle diameter to length ratio is rarely 

satisfied in a small scale model because the small particle size results in 

u 
too small of a value of _f . This causes motion to be due to suspension 

u. 
I 

rather than saltation. The Froude number cannot be satisfied in the wind 

tunnel because a portion of the model must have speeds above the 

threshold velocity for particle motion. Thus there is a lower limit on the 

wind speed, in addition to the usual Reynolds number limitation (1). 

The result is that small scale particle transport models are 

distorted, and if quantitative data is to be obtained from a model test, it is 

necessary to determine the effect of model distortion (1). 
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The material originally selected for its particle modeling properties 

was lycopodium spores. However, it is very expensive. Because of the 

cost involved, and the materials available, the material actually used in 

testing was ground walnut shell. 

Other Scaling Effects 

It must be remembered that the modeling of geometric, kinematic, 

and dynamic properties of air flow and particle transport will result in 

the 

scaling of other, sometimes unexpected, properties as well. For example, 

the small scale properties of this experiment has resulted in the following 

time scaling: 

dM pU 
2 
(U - U

t 
) 

Flow rate is determined by Q = - ~ -'-----'------!...:.. 

dt g 

~Mg ~Mg 
For full scale ~t = 2 ' and for the model ~tm = ------"'--

pu (u-u t ) pu2 (u-u t )m 

To satisfy the Froude number, u' = u' ,which leads to ~ = ~ H = J5ij 
gH gH Urn Hm 

m 

u= Eo U m 

Again, because the model is distorted, this is not completely true, but it is 

close. It is a good model for particle deposition, and is proper for 
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geometry. It really depends on the threshold velocity. Now using the flow 

rate equation, 

and substituting for u, 

So after a test run of 15 minutes, we get the results of a full scale test 

after more than 3 112 days. 

Experimental Procedure 

First the threshold velocity must be determined, which is the 

minimum airspeed required to begin the entrainment process. The model 

is filled with the crushed walnut shell, and is placed inside the test 

section. Then the wind tunnel is turned on to its lowest setting, and the 

airspeed is slowly increased until there is visual confirmation of airborne 

particles. The velocity is recorded, and the wind tunnel is turned down 

again. This process is repeated several times to establish an average 

threshold velocity. This threshold velocity is used to establish the 

minimum speed to be used during the experimental testing. 
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Next, the model is refilled, the floor is cleaned, and the tunnel is 

restarted. Several experimental runs are conducted near the threshold 

velocity, photographs are taken, and the data is analyzed. Then, 

additional runs are completed at higher speeds, and with the model facing 

different angles. The angle between the longitudinal axis of the model 

and the wind direction will be referred to as the angle of attack. After 

gathering data for the particulate deposit behind the model, the next 

phase is to add obstacles in order to simulate bushes, with the goal to 

understand the effects of these wind barriers. Bushes are made out of a 

coarse, fibrous packing material, and are shaped as shown in Figure 6. 

The list of variables to be tested and the values used include: 

Wind velocity: 4, 5, and 6 mls 

Model angle of attack: 0, 15, and 30 degrees 

Hedge thickness: 3 and 4.5 cm 

Hedge Height: 10, 7.5, and 5 cm 

Number of hedges: 0, 1,2, and 3 Since the total 

combinations of all the variables are well beyond the scope of the project, 

help was obtained from the field of statistic analysis. Particular 

combinations of experimental variables are chosen to reveal the most 

amount of information with the least amount of testing. Table 2 lists the 

experiment schedule for testing without hedges, and Table 3 lists 
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Figure 6: Model and bush arrangement 

the test schedule with bushes. It is important to point out here that when 

the actual experiments were carried out, Run 7 on the schedule was not 

followed properly. This has a slight impact on the statistical analysis, and 

it should be noted that the Run 7 configuration listed here will not agree 

with the rest of this report. 
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Table 2: Experiment schedule 
without hedges 

Run 
Wind Speed Angle of Attack 

(m/s) ( a ) 
1 4 U 

2 4 30 
3 5 15 
4 6 0 
5 6 30 
6 5 15 

Table 3: Proposed experiment schedule with hedges 

Wind Speed Angle of Number of 
Bush 

Thickness 
Run Height (m/s) Attack ( 0) Rows 

(cm) 
(em) 

(XX 4 U 1 lU ;;s 

8 4 30 1 10 4.5 
9 6 0 3 10 3 

10 4 0 3 10 4.5 
11 6 0 1 10 4.5 
12 4 30 3 10 3 
13 6 30 3 10 4.5 
14 6 30 1 10 3 
15 5 15 2 7.5 4.5 
16 5 15 2 7.5 3 
17 5 15 2 7.5 4.5 
18 5 15 2 7.5 3 
19 4 0 3 5 3 
20 4 0 1 5 4.5 
21 4 30 1 5 3 
22 6 0 3 5 4.5 
23 6 30 3 5 3 
24 4 30 3 5 4.5 
25 6 0 1 5 3 
26 6 30 1 5 4.5 

**In actual tests, 3 rows were used instead 
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Inputs and analysis regarding the statistical aspects of this 

research were provided by Jave Pascual of the Department of Statistics at 

Iowa State University, and Philip W. Iversen, Ph.D., senior statistician of 

the Eli Lilly and Company. The goals of the statistical design of the 

experiments are to determine which variables have the most influence on 

deposition, which two way interactions are important, and to select the 

most important variables to study further. For the experiments with the 

hedges, we have four variables with three values (low, middle, and high), 

and one variable with two values. The sixteen combinations of high and 

low values cover one half of all the vertices of a 5-dimensional hypercube. 

They are selected in a way that the effect of each variable on particle 

deposition can be estimated independently of each other. In addition, all 

ten of the two-way interactions between these five variables can be 

estimated independently of each other, and also independently of the 

main effect of each variable. It is also the case that any four dimensional 

sub-hypercube will have all sixteen of its vertices covered by this design. 

This series of experiments also assumes that there will be some 

follow on studies. This sort of statistical design will determine what the 

linear effect of each variable is. It will also indicate if any of the variables 

interact with each other. For example, the effect of hedge height on odor 

control is different depending on the wind speed or the number of barriers. 
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The center runs are used to indicate if there is nonlinearity somewhere in 

the system. However, this design will not show which of the variables are 

nonlinear. It will be necessary to conduct some additional runs to 

determine this. If the nonlinearity is small, then these additional may not 

be needed. 

Several of the runs are repeated. That is, Run 6 is a repeat of Run 

3, Run 17 is a repeat of Run 15, and Run 18 is a repeat of Run 16. These 

runs are the "center" runs, meaning that they use the middle values for 

each variable. These repeat runs allow any experimental noise in the 

system to be measured. In this case, experimental noise is indicated by 

any irregularity in the results when the experiment is run from start to 

finish more than once, and under the same conditions. Further 

information about statistical experiment design can be found in references 

9, 10, and 11. 

Data Collection 

There are two methods used to collect data in this experiment. One 

is simply to let the particle deposits build on the floor down wind of the 

model, and use a digital camera to photograph the deposit at different 

times throughout the test run. The camera is mounted on the wind 

tunnel ceiling, downwind of the model. Photography is a common form of 
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qualitative data collection for particle transport studies, however a unique 

method of analyzing the photographs will be presented in the following 

chapter. 

The second method used is a mass study of the particles. After the 

model is filled with the walnut shell particles, the mass of the model and 

its contents are measured using a digital scale. Then the model is placed 

in the tunnel and tested. For this reason, it is important that the model 

be easily removable. Mter each test, the model is removed, and the mass 

of it and its remaining contents are recorded. This information provides 

the total mass that left the model during the experiment. Next, the mass 

of an empty vacuum cleaner bag is recorded before being placed in a 

vacuum cleaner. Then all particle deposits on the wind tunnel floor to a 

reference point about 1.3 m down stream of the model are carefully picked 

up with a vacuum cleaner. The bag is then removed and its mass 

recorded. Now there is enough information to determine the total mass of 

deposit on the floor, and also the total mass that is carried out of the wind 

tunnel. Again, the goal of the research would be to minimize the mass 

that is carried out of the tunnel because this demonstrates the amount of 

material that would reach surrounding neighborhoods in full scale. 

An alternate method of data collection was to use a vertical particle 

collector, a rack made of thin strips of wood and covered with a thin coat 
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of grease. This was placed down wind of the model and was intended to 

show the vertical distribution of the airborne particles. The vertical 

collector was also photographed using the digital camera. Figure 7 shows 
o 

how the vertical collector was used. 

Figure 7: The vertical collector, Left) placement in the wind tunnel, 
Right) result after test 

The vertical data was intended provide insight into the vertical 

structure of the particulate entrainment. However, no noticeable 

difference was found for tests involving different parameters. Because the 

only available camera was employed photographing the area of interest on 
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the wind tunnel floor throughout the test, only one photo of the vertical 

collector could be taken for each test after it was finished. Also, to 

maintain the consistency of the photographic data collection, the camera 

could never be moved. So the vertical collector had to be moved from its 

test location to the front of the camera, and a background board placed 

behind it. Also, between every run, the surface of the collector had to be 

cleaned, the grease applied to it so the new particles would stick. Care 

had to be taken to be consistent in the grease application as not to cause 

any variance in color or the amount of particles that would stick. The 

final result of the whole vertical collector situation was that the method 

was difficult, time consuming, cumbersome, provided little information, 

and was eventually abandoned. 
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CHAPTER III: RESULTS AND DISCUSSION 

This chapter will discuss the results the preceding experiments 

have yielded. Digital analysis of the photographic data, and the 

statistical analysis of the mass loss data are presented. 

When reviewing the results and drawing conclusions about the 

data, it is important to note several accidental variations from the 

predetermined experiment schedule in order to consider how they may 

effect the usefulness of the results. In Table 2, Run 7 was actually 

performed using three rows of bushes instead of one. This does not effect 

the data taken, but has some impact on the completeness of the 

experiments, and slightly limits the conclusions that can be drawn from 

the statistical analysis. For the sake of accuracy, the actual experiment 

schedule performed is given in Table 4, and is repeated in Appendix A. 

Other accidental variations from the planned experiment schedule 

consist of the loss of mass data for Run 17, and an anomaly in Run 12. 

The missing data for Run 17 can be overcome, because it is identical to 

Run 15. The only effect of this loss is the reduced ability to determine 

experimental noise. Run 12 mass data indicates that more mass was 

collected on the wind tunnel floor than left the model. Clearly a 
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Table 4: Experiment schedule with hedges 

Wind Speed Angle of Number of 
Bush 

Thickness 
Run Height 

(m/s) Attack (0) Rows 
(cm) 

(cm) 

( 4 U ;:s lU ;:s 

8 4 30 1 10 4.5 
9 6 0 3 10 3 

10 4 0 3 10 4.5 
11 6 0 1 10 4.5 
12 4 30 3 10 3 
13 6 30 3 10 4.5 
14 6 30 1 10 3 
15 5 15 2 7.5 4.5 
16 5 15 2 7.5 3 
17 5 15 2 7.5 4.5 
18 5 15 2 7.5 3 
19 4 0 3 5 3 
20 4 0 1 5 4.5 
21 4 30 1 5 3 
22 6 0 3 5 4.5 
23 6 30 3 5 3 
24 4 30 3 5 4.5 
25 6 0 1 5 3 
26 6 30 1 5 4.5 

measurement error was made. However the mistake was not noticed 

until long after the completion of the experiments, and the run could not 

be repeated. As in the case of the Run 1 error, this mistake degrades the 

amount of useful information that can be concluded from the experiment. 

The most important modeling aspect of this experiment that effects 

its overall usefulness, is the correct recreation of the atmospheric 

boundary layer. Appendix C shows the resulting boundary layer profile, 

which matches the planned boundary layer thickness of 20 cm, and has a 
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roughness height Zo of 5 cm. Profiles after the addition of the model and 

bushes are also given in Appendix C. 

Digital Photograph Analysis 

In Figures 8, 9, and 10, comparison photos between runs with and 

without bushes are shown. In the tests with shelterbelts, the area 

between the model and the first bush indicates a deposition pattern that 

is similar to patterns found without any shelterbelts. There is a dramatic 

difference, however, down wind of the hedges. The hedges produce an 

even, wide spread particle distribution which extends across the length of 

the bush. It is clear that there is much more material on the floor when 

windbreaks are present. Photographs of each run taken after 15 minutes 

can be found in Appendix F. 

In order to provide a quantitative analysis of the photographs, the 

following process was applied. The digital photograph files are converted 

to an ASCII gray scale format, which uses 0 as black and 255 as white. 

This conversion works well, since the light colored walnut shell dust 

provides contrast against the black wind tunnel. From the photograph, a 

cross section, approximately 3 cm long and nearly the width of the picture 

frame, is chosen at a reference length of 100 cm down stream of the model, 

which is called the area of interest. The location of this area is outlined in 
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Figure 8: Wind speed 6m/s, angle of attack 300 
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Figure 9: Wind speed 4m/s, angle of attack 00 
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Figure 10: Wind speed 45m/s, angle of attack 150 
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Figure 11: Typical photograph taken during a test run 
with area of interest outlined in white 

white in Figure 11. 

The gray scale intensity across this area of interest is averaged in 

the X direction as defined in Figure 1, to produce a set of values 1 pixel 

"long", and the same width of the area of interest. This averaging is 

intended to help filter out any anomalies may appear in some of the 

pixels. Throughout the experiment, the Y location is measured in pixels, 
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where 0 is the left side of the photograph. This procedure can performed 

using the FORTRAN computer code found in Appendix E. A picture of the 

clean floor is also taken before each test, and the cross sectional intensity 

resulting from this photo is subtracted from the others. This is to help 

reduce error from discoloration in the floor, so that the intensity will begin 

at 0 at all points, regardless of any "spots" on the floor. Mter taking a 

photograph and analyzing it as described, we obtain a plot like that shown 

in Figure 12 by plotting the intensity versus the Y location. As more of 

the light colored particles accumulate in the area of interest, the intensity 

increases. This type of plot shows the intensity across the area of interest, 

and thus directly reveals the amount of accumulation in the area. 

As the test progresses, photographs are taken at different times, 

and this same photographic analysis is repeated. Figure 13 shows all of 

resultant curves in the same figure. Each curve directly corresponds to 

the particle accumulation in the area of interest at each time increment 

during the test. The figure. clearly shows the increase of intensity with 

time throughout the experiment. This series of curves reveals not only 

the amount of deposit, but also suggests an accumulation rate. A sample 

of this comparison is shown in Figure 13. Next, each of these curves is 

integrated over Y, resulting in the total intensity across the entire cross 

section for each given time. This data is now used to make plots of 
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total intensity across the area of interest as a function of time. The 

vertical axis of the chart indicates the total deposit at any time, and the 

slope of the curve indicates the rate of increase. An example of this curve 

is given in Figure 14. 
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Figure 14: Typical plot of total intensity versus time 

This final curve can be integrated, resulting in a simple number. 

This number represents the running total of all intensity (i.e. particle 

deposit) at all times. Thus, any difference in deposited amounts of dust 

and deposit rates will be reflected in this running total, and will allow a 

direct comparison between each of the tests. 
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Statistical Analysis of Mass Data 

The objective of this analysis is to study the relationship between 

the percentage of mass lost downstream and the five experimental 

variables tested: angle of attack, number of bushes, bush height, bush 

thickness, and wind velocity. Twenty four data points on these factors 

and percentage of mass lost are recorded for analysis. The importance of 

these factors in determining the mass loss percentage are investigated. 

In order to perform statistical analysis on the data a proposed 

model must describe the functional relationship between the percentage of 

mass lost and the five variables. Then the fit of the data to this model can 

be assessed. Let Y represent the mass loss percentage and ANGLE, 

BUSH, HT, THICK, and VEL represent the angle of attack, number of 

bushes, bush height, bush thickness, and wind velocity respectively. The 

model to be investigated is a polynomial regression model given by: 

Y = 130 + 131(ANGLE) + P2(BUSH) + P3(ANGLExBUSH) + 134(HT) + 

135(ANGLExHT) + P6(BUSHxHT) + P7(THICK) + 

I3g{ANGLExTHICK) + l3iBUSHxTHICK) + PlO(HTxTHICK) + 

1311(VEL) + P12(ANGLExVEL) + P13(BUSHxVEL) + 

1314(HTxVEL) + P15(THICKxVEL) + E 
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where the ~i'S are unknown coefficients to be estimated from the data and 

the E'S are independent and identically distributed normal with mean 0 

and variance 0-2 . The E'S represent the random component due to noise, or 

experimental error. The model describes the linear dependence ofY on 

the five variables. The product terms are called linear-by-linear 

interaction terms between the five variables. 

Estimation of the unknown coefficients in the model is performed 

using least-squares methods. Hypothesis tests of the form HO:~i = 0 are 

performed to study the importance of the corresponding effects. If there is 

evidence indicating that ~i *- 0, then the corresponding effect (main or 

interaction) is important in determining the response Y, and the effect is 

said to be significant. The importance of the five variables can be judged 

by the significance of the respective coefficients, namely, ~l, ~2' ~4' ~7' ~1l. 

The data from the 26 runs consists of 24 separate test 

configurations using 24 combinations of values for ANGLE, BUSH, HT, 

THICK, and VEL. The first six runs are omitted for the analysis below 

because the factors are not independent, i.e. BUSH = 0 automatically 

means HT = THICK = o. 

Fitting the model given above to the data is done by least-squares 

methods, and this obtains R2 = 99.80% and MSE = 4.51 with 2 degrees of 
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freedom (d£). R2 is called the coefficient of determination which is defined 

to be the proportion of variation in the percentage of mass lost 

measurements that is explained by the model that we fit. Values close to 

100% are ideal and indicated that the model describes the data 

adequately. MSE stands for mean square error, an estimator of 0'2. 

Table 5 gives the least-squares estimates of the coefficients PI' .. " 

P15' For each i, the hypothesis that Ho:Pi = 0 is tested. Each test yields a t­

statistic and a p-value. The t-statistic gives a numerical summary of the 

test and the p-value is a probability that quantifies how unusual or 

extreme the t-statistic is, if Ho:Pi = 0 is indeed true. Unusual values of the 

t-statistic disagrees with the hypothesis, and rejects Ho. Small values of 

the p-value (e.g., < 0.05) indicate unusual t-statistic values. If p-value < a 

= 0.05, then the hypothesis is rejected at the a = 0.05 level of significance, 

there is not enough evidence to support Pi = O. Rejecting Ho:Pi = 0 

suggests that Pi *- 0 and the corresponding effect is important. Columns 3 

and 4 of Table 5 give the t-statistics and the p-values for tests that model 

coefficients are zero. Tests significant at the 0.05 level are indicated by 

two asterisks. 

Based on the t-tests in Table 5, velocity, bush height and the 

number of bushes are the most important of the five variables. The 
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Table 5: Coefficients estimates and 
results of hypothesis tests 

Effect 
Cae icient 

t-statistic p-value 
Estimate 

appropriate hypothesis tests for the coefficients of these factors are 

significant at the 0.05 level. Thickness appears to be the least important 

of the five variables. 

The results of mass loss measurements are listed in Appendix A, 

and are graphed in the following figures. Figure 15 is a plot of the 

percentage of mass lost downstream versus the angle of attack. The line 

segments connect mean responses at each value of ANGLE. Figures 16, 

17, 18, and 19 are similar plots for BUSH, HT, THICK, and VEL 

respectively. These plots indicate that THICK does not have strong effect 

on the response and that the effects of BUSH and HT are more 
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pronounced at the higher levels. It is clear from these plots that VEL is 

important in determining the mass lost. These plots indicate what has 

been concluded about the five factors from the hypothesis tests above. 

The results in Table 5 are used to obtain a smaller, more 

manageable model. It is common practice to eliminate from the 

polynomial model the least important (highest p-value) of the highest 

degree terms at each step. In the analysis above, ANGLExBUSH should 

be deleted first. Mter a few steps, the equation becomes: 
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Figure 15: Plot of % mass lost versus angle of attack 
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Figure 17: Plot of % mass lost versus bush height 
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Figure 18: Plot of % mass lost versus bush thickness 
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Figure 19: Plot of % mass lost versus bush wind speed 
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y= 51.60 = 0.35(ANGLE) - 3.29(BUSH) - 3.59(HT) -

3.94(BUSHxHT) - 0.03(THICK) + 2.85(BUSHxTHICK) -

1.56(HTxTHICK) + 15.99(VEL) + 4.84(ANGLExVEL) + 

1.61(BUSHxVEL) - 2.02(HTxVEL) 

Here, R2 = 99.13 %. Further simplifications are possible. The final 

fitted version is: 

y = 50.25 + 2.24(ANGLE) - 2.82(BUSH) - 3.22(HT) + 15.62(VEL) + 

4. 23(ANGLExVEL) 

Here, R2 = 96.59%. 
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CHAPTER IV: CONCLUSIONS 

The overall purpose of this project is to use a wind tunnel model to 

investigate the emission of dust from swine production facilities. The 

focus of this thesis is the design, construction, and testing of an 

appropriate wind tunnel configuration to model the full scale facilities and 

to conduct initial tests concerning how the dust is carried downstream. 

The particular model and test conditions used are detailed in the 

main body and the appendices of this thesis. One of the goals was to 

determine how much of the dust that is blown from the building is 

deposited near the building and how much actually travels farther 

downstream where it could produce unwanted odors. The following 

conclusions were reached. 

From the photographic data gathered, it is determined that the use 

of bushes causes an increase of deposit on the wind tunnel floor. This 

corresponds to a decrease of particle flow out of the wind tunnel. These 

facts are reinforced by the mass loss data, clearly indicating the 

differences with and without bushes. A highlight of the mass data 

showing the best case (minimum) percentage of mass lost using the 

shelterbelts is given in Table 6. 
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Table 6: Mass comparison with and without bushes 

% Lost 
Best Case 

Wind Speed Angle of 
Without 

% Lost % Reduction 
(m/s) Attack (0) 

Bushes 
Using of % lost 

Bushes 
4 0 57.4 29.1 49.3 
4 30 75.3 32.8 56.4 
5 15 80.0 51.7 35.4 
6 0 81.9 49.3 39.8 
6 30 96.4 63.0 34.6 

Knowing that full scale conditions have been properly modeled, it 

can be concluded that the results would be similar around an actual hog 

production building. A successful reduction in mass transport far down 

stream, ranging from 35% to 56%, would provide a substantial reduction 

in the offensiveness of odor in surrounding areas. 

However, the model is known to be distorted, since not all 

similarity properties could be met. Also, values found using the digital 

phptograph analysis procedure such as intensity and total intensity can 

indicate the differences between test runs, but their exact meaning and 

'. usefulness in the full scale is unknown. For these reasons, to make the 

information gathered useful for full scale applications, it remains 

necessary to perform a small amount of full scale testing. Then, a 

comparison can be made between the full scale and wind tunnel results. 
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This comparison can be used to provide the exact relationship between the 

model and full scale, enabling model results to be directly applicable. 

Use of the digital photographic analysis technique has not yet 

proven successful. Errors in the pictures taken may be caused if any 

photographic aspect is changed during the experiment, including camera 

position, shutter speed, aperture, and lighting. In the beginning of the 

research, it was noticed that the camera mount vibrated in the wind, and 

a more rigid mount was used to remedy this problem of camera motion. 

However, inspection of the photographs shows that the brightness in 

many of the pictures is different, indicating a change of one or more of 

these photographic factors. In an effort to refine the results and 

investigate these errors, a scheme to correct the data taken is being 

undertaken. This method involves using an inert area of the photographs 

and correcting the intensity of this area to match in all of the 

photographs. Data corrected using this method will be presented in an 

upcoming thesis on the same wind tunnel topic by S. Magnus Thernelius. 

Based on the statistical analyses of the mass data, it is suggested 

that velocity, number of bushes, and height of bushes are the most 

important of the five experimental variables used. Thickness does not 

have a strong effect, if any, on the mass lost. Velocity appears to be the 

most important of the five variables. Its effect on the amount of mass lost 
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downstream may interfere with detection of the significance of other 

factors, and of interactions between factors. Further experimental runs 

with velocity kept constant may reveal the importance of these effects. 

These results can be used to plan future runs based on a smaller set of 

factors. These runs will reveal not only on the main effects of test 

variables but also on their interactions effects. 
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APPENDIX A: EXPERIMENTAL CONDITIONS, VELOCITY, AND 
MASS DATA 
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Experiment schedule without hedges 

Wind 
Angle of % Mass 

Run Speed 
(m/s) Attack ( a ) Lost 

1 4 U 01.4 

2 4 30 75.3 
3 5 15 67.5 
4 6 0 81.9 
5 6 30 96.4 
6 5 15 80.0 

Experiment schedule with hedges 

Wind Speed Angle of Number of 
Bush 

Thickness % Mass 
Run Height (m/s) Attack (0) Rows 

(cm) 
(cm) Lost 

7 4 U j 10 j jU.O 

8 4 30 1 10 4.5 32.8 v-
9 6 0 3 10 3 49.3 ...-
10 4 0 3 10 4.5 29.1 ~v 

11 6 0 1 10 4.5 58.6 
12 4 30 3 10 3 -57.7 
13 6 30 3 10 4.5 63.0 ,..-
14 6 30 1 10 3 75.4 
15 5 15 2 7.5 4.5 55.8 
16 5 15 2 7.5 3 53.8 
17 5 15 2 7.5 4.5 No Data 
18 5 15 2 7.5 3 51.7 ~ 

19 4 0 3 5 3 37.1 
20 4 0 1 5 4.5 41.5 
21 4 30 1 5 3 33.6 
22 6 0 3 5 4.5 64.2 
23 6 30 3 5 3 74.4 
24 4 30 3 5 4.5 34.9 
25 6 0 1 5 3 68.5 
26 6 30 1 5 4.5 73.9 



Conditions: 

Temperature (deg. C): -3 
Pressure (kPa): 98.23192 
Number of Samples 
Collected Per Reading: 5000 

Test Information: 

Number of Bushes: 0 
Angle of Attack (deg.): 0 
Height of Bush(es): 0 
Thickness of Bush(es) 0 
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Run 1 
Velocity: 

Desired Average Velocity (mls): 
Actual Average Velocity (mls): 

Mass Relationships: 

Mass Leaving the Model (g): 
Mass Recovered (g): 
Mass Lost Downstream (g): 
Percent Lost Downstream (%): 

Run 1: Velocity Vs. Time 
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Conditions: 

Temperature (deg. C): 
Pressure (kPa): 
Number of Samples 
Collected Per Reading: 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush(es): 
Thickness of Bush(es): 

a 
97.27200 
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a 
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a 
a 
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Run 3 
Velocity: 

Desired Average Velocity (m/s): 
Actual Average Velocity (m/s): 

Mass Relationships: 
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8r-------------~------------------------------------~ -.!!! 7 
.§. 6 
z;. 
U 5 o 
~ 4 3L-----~--______________________________________ ~ ____ ~ 

o 0 
N 

o 0 0 0 0 0 000 000 
10 NIX)...,. 0 10 NIX)"'" 0 10 N 

..... N M M ...,. ...,. ~ 10 10 "-

Time (seconds) 

o 
IX) 
"-

o o 
(J) 



Conditions: 

Temperature (deg. C): -5 
Pressure (kPa): 100.48510 
Number of Samples 
Collected per Reading: 5000 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush(es): 

o 
30 
o 
o 

59 

Run 5 
Velocity: 

Desired Average Velocity (m/s): 
Actual Average Velocity (m/s): 

Mass Relationships: 

Mass Leaving the Model (g): 
Mass Recovered (g): 
Mass Lost Downstream (g): 
Percent Lost Downstream (%): IThi~n~:s of Bush(es): 

Run 5: Velocity Vs. Time 

.!!! 7 

.§. 6 
l;­
U 5 o 
~ 4 

6.00 
6.16 

1047.2 
37.5 

1009.7 
96.4 

3~------------~--------------------------------~----~ o 

Conditions: 

o 
N 

o co 

Temperature (deg. C): 

o 0 
N <0 

o 0 0 
..,. 0 co 
N <'l <'l 

o 
N ..,. o 0 

<0 ..,. 
..,. \0 

Time (seconds) 

Run6 
Velocity: 

o o co 
o co co 

o 
N r--

o 
<0 r--

-10 Desired Average Velocity (m/s): 
Pressure (kPa): 100.44510 Actual Average Velocity (m/s): 
Number of Samples 
Collected per Reading: 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush(es): 
Thickness of Bush(es): 

-.!!! 
.§. 
l;-
U 
0 
'S 
> 

6 

5.5 

5 

4.5 

4 
0 0 

N 
o co o 

N 
o 
<0 ... 

5000 

Mass Relationships: 

0 Mass Leaving the Model (g): 
15 Mass Recovered (g): 
0 Mass Lost Downstream (g): 
0 Percent Lost Downstream (%): 

Run 6: Velocity Vs. Time 

o 0 0 
..,. 0 co 
N <'l <'l 

o 
N ..,. 

o 
<0 ..,. 

Time (seconds) 

o 
o co 

o co co 
o 
N r--

o 
<0 r--

o o 
(J) 

5.00 
5.11 

570.3 
114.0 
456.3 

80.0 

o o 
(J) 



Conditions: 
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Run 7 
Velocity: 

Temperature (deg. C): -7 Desired Average Velocity (m/s): 
Pressure (kPa): 100.36510 Actual Average Velocity (mls): 
Number of Samples 
Collected per Reading: 5000 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush(es): 
Thickness of Bush(es): 

5 

! 4.5 

b ·u 
0 

3.5 Qj 
> 

3 
0 0 0 0 

N co N 
~ 

Conditions: 

Temperature (deg. C): 
Pressure (kPa): 
Number of Samples 
Collected per Reading: 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush(es): 
Thickness of Bush(es): 

5 

~ 4.5 
.§. 
b 4 
U 
0 

3.5 Qj 
> 

3 
0 0 

N 
o 0 co N 

0 
<XI 

Mass Relationships: 

3 Mass Leaving the Model (g): 
0 Mass Recovered (g): 

10 Mass Lost Downstream (g): 
3 Percent Lost Downstream (%): 

Run 7: Velocity Vs. Time 

0 0 
~ 0 
N <') 

-3 

000 co N <XI 
<') ~ ~ 

Time (seconds) 

Run 8 
Velocity: 

o o co 
o co 
<0 

o 
<XI ..... 

Desired Average Velocity (mls): 
97.25867 Actual Average Velocity (mls) : 

o 
<XI 

5000 

Mass Relationships: 

1 Mass Leaving the Model (g): 
30 Mass Recovered (g): 
10 Mass Lost Downstream (g): 

4.5 Percent Lost Downstream (%): 

Run 8: Velocity Vs. Time 

o 0 0 0 0 0 
~ 0 co N <XI ~ 
N <') <') ~ ~ It) 

Time (seconds) 

o o co 
o 0 0 co N <XI co ..... ..... 

4.00 
4.03 

127.8 
88.8 
39.0 
30.5 

8 
a> 

4.00 
4.06 

73.9 
49.6 
24.2 
32.8 

o 
o 
a> 



Conditions: 

Temperature (deg. C): -2 
Pressure (kPa): 99.24517 
Number of Samples 
Collected per Reading: 5000 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush(es): 
Thickness of Bush(es): 

3 
o 

10 
3 
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Run 9 
Velocity: 

Desired Average Velocity (mls): 
Actual Average Velocity (mls): 

Mass Relationships: 

Mass Leaving the Model (g): 
Mass Recovered (g): 
Mass Lost Downstream (g): 
Percent Lost Downstream (%): 

Run 9: Velocity Vs. Time 

6.00 
6.03 

1027.2 
520.7 
506.5 

49.3 

8r-----------------------------------------------------~ -.!!! 7 
.§. 6 
~ 
U 5 
o 
~ 4 
3~~--~--____ ~~ __ ~ ______ ~~ __ ~ ______ ~~ __ ~ ____ ~ 

o o 
N 

o 0 
co N 
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Conditions: 

Temperature (deg. C): 
Pressure (kPa): 
Number of Samples 
Collected per Reading: 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush(es): 
Thickness of Bush(es): 

o 
co 

000 0 0 0 
v 0 co N co v 
N M M v v ~ 

Time (seconds) 

Run 10 
Velocity: 

o 
o 
co 

o 
co ..... 

0 Desired Average Velocity (mls): 
96.65872 Actual Average Velocity (mls): 

5000 

Mass Relationships: 

3 Mass Leaving the Model (g): 
0 Mass Recovered (g): 

10 Mass Lost Downstream (g): 
4.5 Percent Lost Downstream (%): 

Run 10: Velocity Vs. Time 

o o 
(J) 

4.00 
3.95 

74.5 
52.8 
21.7 
29.1 

5r------------------------------------------------------, 
! 4.5 

~ 
U o 
~ 3.5 

3 
0 0 

N 
0 0 0 0 0 
co N co v 0 

~ ~ N M 

0 0 0 0 0 0 0 0 0 0 
co N co v 0 co N co v 0 
M v v ~ co co ..... ..... co (J) 

Time (seconds) 



I 

Conditions: 

Temperature (deg. C): 
Pressure (kPa): 
Number of Samples 
Collected per Reading: 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush(es): 
Thickness of Bush(es): 

-7 
99.99178 

5000 

1 
o 

10 
4.5 
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Run 11 
Velocity: 

Desired Average Velocity (m/s): 
Actual Average Velocity (m/s): 

Mass Relationships: 

Mass Leaving the Model (g): 
Mass Recovered (g): 
Mass Lost Downstream (g): 
Percent Lost Downstream (%): 

Run 11: Velocity Vs. Time 

6.00 
6.06 

1004.4 
415.4 
588.9 

58.6 

8,-------------------------------------------------------, 
~ 7 
§. 6 
~ 
U 5 o 
~ 4 

o 

Conditions: 

o 
N 

o 
<0 

o 
N .... 

Temperature (deg. C): 
Pressure (kPa): 
Number of Samples 
Collected per Reading: 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush(es): 
Thickness of Bush(es}: 

o co 

-4 
97.32533 

5000 

3 
30 
10 
3 

o o 
C'"l 

o 0 0 
<0 N co 
C'"l ~ ~ 

Time (seconds) 

Run 12 
Velocity: 

o o 
<0 

o 
<0 
<0 

o 
N ..... 

o co ..... 

Desired Average Velocity (m/s): 
Actual Average Velocity (m/s): 

Mass Relationships: 

Mass Leaving the Model (g): 
Mass Recovered (g): 
Mass Lost Downstream (g): 
Percent Lost Downstream (%): 

Run 12: Velocity Vs. Time 

o 
o 
Ol 

4.00 
3.97 

53.2 
83.9 

-30.7 
-57.7 
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Conditions: 

Temperature (deg. C): -7 
Pressure (kPa): 99.59181 
Number of Samples 
Collected per Reading: 5000 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush(es): 
Thickness of Bush(es): 

3 
30 
10 

4.5 
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Run 13 
Velocity: 

Desired Average Velocity (mls): 
Actual Average Velocity (m/s): 

Mass Relationships: 

Mass Leaving the Model (g): 
Mass Recovered (g): 
Mass Lost Downstream (g): 
Percent Lost Downstream (%): 

Run 13: Velocity Vs. Time 

8 -.!!! 7 
.§. 

6 
~ ·u 5 
0 
Gi 4 > 

3 
0 

Conditions: 

o 
N 

o 
ID 

Temperature (deg. C): 
Pressure (kPa): 
Number of Samples 
Collected per Reading: 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush(es): 
Thickness of Bush(es): 

o 
co 
~ 

o 
v 
N 

-12 
99.59181 

5000 

1 
30 
10 
3 

o o 
M 

o 0 0 
ID N co 
M v v 

Time (seconds) 

Run 14 
Velocity: 

o o 
ID 

o co .... 

Desired Average Velocity (mls): 
Actual Average Velocity (mls): 

Mass Relationships: 

Mass Leaving the Model (g): 
Mass Recovered (g): 
Mass Lost Downstream (g): 
Percent Lost Downstream (%): 

Run 14: Velocity Vs. Time 

6.00 
6.03 

782.3 
289.7 
492.6 
63.0 

o 
o en 

6.00 
6.11 

870.1 
214.2 
655.9 

75.4 
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I 

I 
I 
! , 

64 

Run 15 
Conditions: Velocity: 

Temperature (deg. C): -10 Desired Average Velocity (m/s): 
Pressure (kPa): 99.56514 Actual Average Velocity (mls): 
Number of Samples 
Collected per Reading: 5000 

Test Information: Mass Relationships: 

Number of Bushes: 2 Mass Leaving the Model (g): 
Angle of Attack (deg.): 15 Mass Recovered (g): 
Height of Bush{es): 7.5 Mass Lost Downstream (g): 
Thickness of Bush{es): 4.5 Percent Lost Downstream (%): 

Run 15: Velocity Vs. Time 

6 -..!!! 5.5 §. 
~ 5 
'u 
0 

4.5 a; 
> 

4 
0 0 0 0 0 0 

N <0 N co ~ 
N 

Conditions: 

Temperature (deg. C): -10 
Pressure (kPa): 99.19184 
Number of Samples 
Collected per Reading: 5000 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush{es): 
Thickness of Bush{es): 

2 
15 

7.5 
3 

0 
0 
C") 

0 0 0 0 
<0 N co ~ 
C") ~ ~ III 

Time (seconds) 

Run 16 
Velocity: 

Desired Average Velocity (mls): 
Actual Average Velocity (mls): 

Mass Relationships: 

Mass Leaving the Model (g): 
Mass Recovered (g): 
Mass Lost Downstream (g): 
Percent Lost Downstream (%): 

Run 16: Velocity Vs. Time 

5.00 
5.02 

471.8 
208.7 
263.1 

55.8 

5.00 
5.02 

420.6 
194.3 
226.3 

53.8 
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000 
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Conditions: 

Temperature (deg. C): No Data 
Pressure (kPa): No Data 
Number of Samples 
Collected per Reading: No Data 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 

2 
15 

Height of Bush{es): 7.5 
Thickness of Bush(es): 4.5 
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Run 17 
Velocity: 

Desired Average Velocity (m/s): 5.00 
Actual Average Velocity (m/s): No Data 

Mass Relationships: 

Mass Leaving the Model (g): No Data 
Mass Recovered (g): No Data 
Mass Lost Downstream (g): No Data 
Percent Lost Downstream (%): No Data 

Run 17: Velocity Vs. Time 

6 -.!!! 5.5 .§. 
~ 
U 

5 
0 

4.5 Qj 
> 

4 
0 

Conditions: 

o 
N 

o 
to 

Temperature (deg. C): 
Pressure (kPa): 
Number of Samples 
Collected per Reading: 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush{es): 
Thickness of Bush{es): 

o 
N 

o 
<Xl 

o 
'<t 
N 

-10 
99.19184 

5000 

2 
15 

7.5 
3 

o 
o 
M 

o 0 0 
to N <Xl 
M '<t '<t 

TIme (seconds) 

Run 18 
Velocity: 

o 
o 
to 

o 
to 
to 

o 
N ,... 

Desired Average Velocity (m/s): 
Actual Average Velocity (m/s): 

Mass Relationships: 

Mass Leaving the Model (g): 
Mass Recovered (g): 
Mass Lost Downstream (g): 
Percent Lost Downstream (%): 

Run 18: Velocity Vs. Time 

o 
'<t 
<Xl 

5.00 
5.04 

436.0 
210.5 
225.5 

51.7 

6r----------------------------------------------------, -~ 5.5 
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Conditions: 

Temperature (deg. C): 
Pressure (kPa): 
Number of Samples 
Collected per Reading: 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush(es): 
Thickness of Bush(es): 

5 -..!!! 4.5 
.§. 
z;. 4 
U 
0 

3.5 Gi 
> 

3 
0 0 0 

N <0 

Conditions: 

Temperature (deg. C): 
Pressure (kPa): 
Number of Samples 
Collected per Reading: 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush(es): 
Thickness of Bush(es): 

0 
N 
~ 

66 

Run 19 
Velocity: 

-6 Desired Average Velocity (mls): 
99.40516 Actual Average Velocity (mls): 

5000 

Mass Relationships: 

3 Mass Leaving the Model (g): 
0 Mass Recovered (g): 
5 Mass Lost Downstream (g): 
3 Percent Lost Downstream (%): 

Run 19: Velocity Vs. Time 

0 0 
co ~ 

N 

-10 
99.12518 

5000 

1 
o 
5 

4.5 

0 
0 
M 

0 0 0 
<0 N co 
M ~ ~ 

0 0 
~ 0 
10 <0 

o 
<0 
<0 

o 0 
N co ,... ,... 

Time (seconds) 

Run 20 
Velocity: 

Desired Average Velocity (mls): 
Actual Average Velocity (mls): 

Mass Relationships: 

Mass Leaving the Model (g): 
Mass Recovered (g): 
Mass Lost Downstream (g): 
Percent Lost Downstream (%): 

Run 20: Velocity Vs. Time 

4.00 
4.08 

66.3 
41.8 
24.6 
37.1 

o 
o 
(J) 

4.00 
4.03 

51.8 
30.3 
21.5 
41.5 
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Conditions: 

Temperature (deg. C): 
Pressure (kPa): 
Number of Samples 
Collected per Reading: 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush(es): 
Thickness of Bush(es): 

5 -.!! 4.5 .§. 
b 4 ·u 
0 

3.5 Gi 
> 

3 
0 0 0 

N co 

Conditions: 

Temperature (deg. C): 
Pressure (kPa): 
Number of Samples 
Collected per Reading: 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush(es): 
Thickness of Bush(es): 

0 
N 
~ 

-14 
99.40516 

5000 

1 
30 

5 
3 
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Run 21 
Velocity: 

Desired Average Velocity (m/s): 
Actual Average Velocity (m/s): 

Mass Relationships: 

Mass Leaving the Model (g): 
Mass Recovered (g): 
Mass Lost Downstream (g): 
Percent Lost Downstream (%): 

Run 21: Velocity Vs. Time 

0 0 0 co ~ 0 
~ N ('") 

-4 
98.48524 

5000 

1 
0 
5 

4.5 

o 0 0 
co N co 
('") ~ ~ 

Time (seconds) 

Run 22 
Velocity: 

o 
o 
co 

o co 
r-. 

Desired Average Velocity (m/s): 
Actual Average Velocity (m/s): 

Mass Relationships: 

Mass Leaving the Model (g): 
Mass Recovered (g): 
Mass Lost Downstream (g): 
Percent Lost Downstream (%): 

Run 22: Velocity Vs. Time 

4.00 
4.03 

48.6 
32.3 
16.3 
33.6 

o 
o en 

6.00 
5.96 

754.8 
269.9 
484.9 

64.2 
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Conditions: 

Temperature (deg. C): 
Pressure (kPa): 
Number of Samples 
Collected per Reading: 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush(es): 
Thickness of Bush(es): 

-4 
98.48524 

5000 

3 
30 

5 
3 
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Run 23 
Velocity: 

Desired Average Velocity (m/s): 
Actual Average Velocity (rn/s): 

Mass Relationships: 

Mass Leaving the Model (g): 
Mass Recovered (g): 
Mass Lost Downstream (g): 
Percent Lost Downstream (%): 

Run 23: Velocity Vs. Time 

6.00 
5.92 

630.9 
161.6 
469.2 

74.4 

8.-------------------------------------------------------, 
~ 7 
.§. 6 
~ 
U 5 
o 
~ 4 

o 

Conditions: 

o 
<0 

o 
N 

Temperature (deg. C): 
Pressure (kPa): 
Number of Samples 
Collected per Reading: 

Test Information: 

Number of Bushes: 
Angle of Attack (deg.): 
Height of Bush(es): 
Thickness of Bush(es): 

o 
co ... 

-14 
99.40516 

5000 

3 
30 

5 
4.5 

o o ...., 
000 
<0 N co ...., v v 

Time (seconds) 

Run 24 
Velocity: 

8 
<0 

o 
N ,... o 

co ,... 

Desired Average Velocity (rn/s): 
Actual Average Velocity (rn/s): 

Mass Relationships: 

Mass Leaving the Model (g): 
Mass Recovered (9): 
Mass Lost Downstream (g): 
Percent Lost Downstream (%): 

Run 24: Velocity Vs. Time 

o o 
en 

4.00 
4.06 

88.3 
57.5 
30.8 
34.9 

5r----------------------------------------------------, 
~ 4.5 .§. 
z;. 4 
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0 3.5 Gi 
> 

3 
0 0 0 

N <0 
o 0 000 0 000 000 0 0 
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Time (seconds) 



Conditions: 

Temperature (deg. C): -6 
Pressure (kPa): 98.20525 
Number of Samples 
Collected per Reading: 5000 

Test Information: 

Number of Bushes: 1 
Angle of Attack (deg.): 0 
Height of Bush(es): 5 
Thickness of Bush(es): 3 
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Run 25 
Velocity: 

Desired Average Velocity (m/s): 
Actual Average Velocity (mls): 

Mass Relationships: 

Mass Leaving the Model (g): 
Mass Recovered (g): 
Mass Lost Downstream (g): 
Percent Lost Downstream (%): 

Run 25: Velocity Vs. Time 

6.00 
6.15 

800.5 
252.3 
548.2 

68.5 
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APPENDIX B: INTENSITY DATA 
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Run 1: Intensity Vs. Y Location 
10r-------------------------------------------------------------------~ 

5 

o +--+---+-I-+--+r...-4-. 

l:' 
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1:-5 
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..5 

-15 

~O~------------------------------------------------------------------~ 
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--3OOs --420s ·---540s 660s 780s --900s 

Run 1: Total Intensity Vs. Time 

3000~----------------------------------------------------------------_, 
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Run 2: Intensl " "ty Vs Y Location 

-----------------------~~~~~::::~"ty~V~S~T~im::e--------------~~~~--, 
Run 2: Totalintensl . i 
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-------------::---.::-=..::::.ty~V~S~Y~Lo~.c:a:t:io:n~------. ~=~---! 
Run 3: Intensl • , 
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Run 4: Intensity Vs. Y Location 
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Run 5: Intensity Vs. Y Location 
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Run 6: Intensity Vs. Y Location 

8r------------------------------------------------------------, 
6 

4 

2 

o 

-8 

-10 

-12~----------------------------------------------------------~ 
Y Pixel Location 

--10s --20s 30s --60s --120s --180s --240s 

--300s --420s ----540s 660s 780s --900s 

Run 6: Total Intensity Vs. Time 

2000r---------------------------------------------------------------, 
1000 

l:-
.~ -1000 
.! 
.5 
~ -2000 
~ 

-3000 

-4000 

o ..-
N 

o 
r-­
N 

o 
M 
M 

o en 
M 

o 
lO 
'¢ 

o 
r-­
lO 

o 
M 
(0 

o 
en 
(0 

-5000L-----------------------------------------------~~------------~ 

Time (seconds) 

I 
.-.-l 



I 

40 

35 

18000 

16000 

14000 

I 
~ 12000 

I
i 10000 

- 8000 l-
IS 
I~ 

I 

I 

I 
o 

------

o 
C'l 

77 

" Vs Y Location 
Run 7: Intensity __ " __________ _ 

o ~ ~ 
:-I __ ....:...._-y:-::p-·ixel Location 

o 

--10s ---20s 30s - ---60s O --180s --12 s --240s 

420s -­--300s --~-- 780s -- 900s S===~6~6~0~S========== ______ __ 
540~ 

7" Totallntensl " "ty Vs Time 
Run " ___ ~ ____________________ ::~ 



78 

Run 8: Intensity Vs. Y Location 

18~----------------------------------------------------------------, 

16 

12 

10 
~ 
'iii 
r::: 
S 
.5 

6 

4 

2 

9000 

8000 

7000 

~6000 
'iii 
5i 5000 -r::: 
~ 4000 
0 
I- 3000 

2000 

1000 

0 
0 0 .., 

Y Pixel Location 

--10s --20s 30s --60s --120s --180s --240s 

--300s --420s----- 540s 660s 780s --900s 

0 0 0 
0) It) ~ 

N 

Run 8: Total Intensity Vs. Time 

0 0 ...... (') 
N (') 

000 
0) It) 
.., ~ It) 

Time (seconds) 

o ...... 
It) 

o .., 
(0 

o 
0) 
(0 

o 
It) ...... 

o ...... 
<Xl 



79 

Run 9: Intensity Vs. Y Location 
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Run 10: Intensity Vs. Y Location 
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Run 11: Intensity Vs. Y Location 
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Run 12: Intensity Vs. Y Location 
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Run 13: Intensity Vs. Y Location 
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Run 14: Intensity Vs. Y Location 

15r-----------------------------------------------------------------~ 

10 

5 

i!­
Vi c: -5 
.l!! 
.E 

-10 

-15 

-20 

-25~----------------------------------------------------------------~ 
Y Pixel Location 

---10s --20s 30s --60s --120s --180s --240s 

--300s --420s ----- 540s 660s 780s --900s 

Run 14: Total Intensity Vs. Time 

6000 

4000 

2000 

0 
i!- 0 0 0 0 0 0 0 0 0 

-2000 
.., 0) 10 u:; ..... .., 0) 10 a; Vi .., .., ..,. 10 <0 <0 ..... 

c: 
.l!! -4000 .E 
~ -6000 0 
I-

-8000 

-10000 

-12000 

-14000 
Time (seconds) 

0 ..... 
co 



85 

Run 15: Intensity Vs. Y Location 
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Run 16: Intensity Vs. Y Location 
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Run 17: Intensity Vs. Y Location 
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Run 18: Intensity Vs. Y Location 
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Run 19: Intensity Vs. Y Location 
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Run 20: Intensity Vs. Y Location 
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Run 21: Intensity Vs. Y Location 
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Run 22: Intensity Vs. Y Location 

-25~----------------------------------------------------------____ ~ 

0 

-2000 

-4000 

~ 
iii -6000 r:::: 
CD -.E 
B -8000 
0 
~ 

-10000 

-12000 

-14000 

Y Pixel Location 

--10s --20s 30s --60s --120s --1805 --240s 

--3005 --4205----- 5405 660s 780s --9005 

Run 22: Total Intensity Vs. Time 

o ..... 
N 

o 
M 
M 

o 
(J) 
M 

o 
10 
'<t 

Time (seconds) 

o 
M 
co 

o 
(J) 
co 

o 
co 

o ..... 
co 



40 

35 

30 

25 

~ 
·~20 
CD -.E 

15 

10 

5 

0 
0 0 
~ 0> 

0 0 0 
~ 0> ~ 

N 

93 

Run 23: Intensity Vs. Y Location 
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Run 24: Intensity Vs. Y Location 
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Run 25: Intensity Vs. Y Location 
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Run 26: Intensity Vs. Y Location 
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APPENDIX C: BOUNDARY LAYER PROFILES 
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Boundary Layer Profile At Model Location 
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APPENDIX D: DESIGN OF ROUGHNESS ELEMENTS 
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The design of spires and roughness elements used is based on the 

procedure of Ref 8. The goal is to produce a set of roughness elements for 

a skin friction coefficient value of 0.0032, and a boundary layer thickness 

at x = 6H of 20 cm. The roughness blocks will also have a spacing of 15 

cm. 

1. Spires of height H are designed to produce the desired boundary layer 

thickness 8 at x = 6H. 

2. Assume, for example, that 8 = 20 cm at 6 spire heights downwind of the 

spIres. 

3. The design is based on a power law profile with exponent of a, i.e., 

4. The value of a depends on the desired value of friction coefficient, i.e., 

5. Definitions: 

C
f 
= 0.13 i ~)2 

\l+a 

~ = ~~, where Ho = test section height 
Ho 1 + a 
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H == 1.39-
b
-, where H is spire height 
a 

1+-
2 

1 

(
a J 

1+-
~ == O.5Ho'V ( 2) ,where b is spire width 
H I+'V b 

6. Spire spacing is H/2 

7. Pressure drop factor F: 

a(3 + 2a) 

l+a(l- :J 
8. Increase of b downwind of 6 spire heights: 

l\b == O.068a( 1 + 2a) l\xF 
I+a 

9. Block roughness height k 

-\ 

where D is the block roughness spacing 

10. Calculations: 
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Cr is obtained through: 

where ~= 0.06, resulting in Cf= .0072. The rest of the variables 
Uoo 

calculate as follows: 

Ho = 107 em 

~ = 0.043 

H = 24.19 cm 

\jI = 0.050 

b = 3.553 cm 

F = 0.861 

D = 15 em 

k = 2.37 cm 

So the final design consists roughness spires 24.19 em tall by 3.553 

cm wide, spaced 12.09 cm apart, with 2.37 cm roughness cubes spaced 15 

em apart. This is planned to produce a boundary layer thickness of 20 cm 

at the test section. 
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APPENDIX E: FORTRAN COMPUTER CODE FOR DIGITAL 
PHOTOGRAPHIC ANALYSIS 



* 
* 
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Fortran code to convert ASCII photograph files into intensity data 
By S. Magnus Therneilus, Iowa State University 

implicit none 
real*8 temp(640000), z(800, 800), new(800), smoothed(1000) 
real*8 num, col, row, max, data(1000), fc, ft, dt 
real*8 tmp, avg(1000), row_start, row_end, rows, orig(lOOO) 
integer x, y, col_int, row _int, num_int, i, j 
integer r_s_int, r_e_int, k, num_smo, n 
integer coCstart, col_end, cnt, nn, counter 
character*2 chI 
character* 42 ch2 
character*50 file1, file2, file3, file4, file5, file6, file7 
character*50 fileO 
character*50 file 11, file22, file33, file44, file55, file66 
character*50 file77 

fileO = ' . .Idata/lmOzz710/imageOl.pgm' 
file1 = ' . .IdatailmOzz710/image16.pgm' 
file11 = ' . .IdatailmOzz710Iimage16_smoothened.dat' 
file2 = ' . .IdatailmOzz710/image16.pgm' 
file22 = ' . .Idatal1mOzz710/image 16_smoothened.dat' 
file3 = ' . .IdatailmOzz710/image16.pgm' 
file33 = ' . .ldatal1mOzz710Iimage16_smoothened.dat' 
file4 = ' . .ldatallmOzz710/image16.pgm' 
file44 = ' . .ldatallmOzz710/image16_smoothened.dat' 
file5 = ' . .ldatal1mOzz710/image16.pgm' 
file55 = ' . .Idata/lmOzz710Iimage16_smoothened.dat' 
file6 = ' . .IdatailmOzz710/image16.pgm' 
file66 = ' . .Idatal1mOzz710/image 16_smoothened.dat' 
file7 = ' . .Idata/lmOzz710/image 16.pgm' 
file77 = ' . .IdatallmOzz710/image16_smoothened.dat' 

open (unit = 9, file = fileO, status ='unknown') 
open (unit = 10, file = file1, status ='unknown') 
open (unit = 12, file = file2, status ='unknown') 
open (unit = 14, file = file3, status 'unknown') 
open (unit = 16, file = file4, status ='unknown') 
open (unit = 18, file = file5, status 'unknown') 
open (unit = 20, file = file6, status ='unknown') 
open (unit = 22, file = file7, status ='unknown') 
open (unit = 11, file = file11, status ='unknown') 
open (unit = 13, file = file22, status ='unknown') 
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open (unit = 15, file = file33, status ='unknown') 
open (unit = 17, file = file44, status ='unknown') 
open (unit = 19, file = file55, status ='unknown') 
open (unit = 21, file = file66, status ='unknown') 
open (unit = 23, file = file77, status ='unknown') 
counter = 1 
nn=9 

5 write (*, *), 'File being processed (max 8):', counter 
read (nn, 10) chI 

10 format (A2) 
read (nn, 20) ch2 

20 format (A42) 

* 

read (nn, *) col, row 
read (nn, *) max 

* Read the data 
* 

* 

num = col * row - 3 
num_int = int(num) 
col_int = int(col) 
row _int = int(row) 
do y = 1,1 

read (nn, *, end = 30) (temp(x), x = 1, num_int) 
end do 
i = 1 
do y = 1, row_int 

do x = I, col_int 
z(x, y) = temp(i) 
i = i + 1 

end do 
end do 

* OK, everything has been read in now. There are so many columns 
* and so many rows. Now it is necessary to go in and look at the 
* rows & columns that are of interest. 
* 

col_start = 57 
col_end = col_start + 661 

row_start = 256.0 
r_s_int = int(row _start) 
row_end = row_start + 22.0 
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* 
* Next step is to look at removing the sides of the picture 
* 

* 

rows = row_end - row_start + 1.0 
k=O 
do i = 1, col_int 

tmp = 0.0 
do j = r_s_int, r_e_int 

tmp = tmp + z(i, j) 
end do 
avg(i) = tmp / rows 

* Subtract the original data from all the curves. 
* 

if (cnt .eq. 0) then 
orig(i) = avg(i) 

else 
avg(i) = avg(i) - orig(i) 

end if 
end do 
go to 40 

30 write (*, *) 
40 write (*, *) 

num_smo=6 
n=6 
fc = 10.0 
ft = 12.0 
dt = 0.01 
if (cnt .eq. 1) then 

call smooth(avg, num_smo, coCint, n, 
& fc, ft, dt) 

do i = col_start, col_end 
smoothed(i) = avg(i) 
write (nn + 1, *) i, smoothed(i) 

end do 
end if 
if (cnt .eq. 0) then 

nn= nn+ 1 
else 

nn = nn + 2 



* 

end if 
cnt = 1 
counter = counter + 1 
if (counter .ne. 9) then 

go to 5 
end if 
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* Close all the files 
* 

do i = 9,23 
close (i) 

end do 
write (*, *), 'Done' 
end 

********************************************************************* 
*** 

* 

subroutine smooth(data, num_smo, col_int, n, fc, ft, dt) 
implicit none 
real*8 data(1000), fc, ft, dt, pi, wt, wc 
real*8 sum, wht(1000), whtO, w, pp, h, f, s 
real*8 summ, t 
integer num_smo, n, j, kk, kkk, iI, col_int 
integer k, ij, in 

* FILTER CONSTRUCTION PROGRAM 
* 
* Definitions: 
* dt sampling interval (s) 
* fc - cutoff frequency (Hz) 
* ft - terminal frequency (Hz) 
* wht - weighting factors, n <> 0 
* whtO - weighting factor, n = 0 
* 

pi = 4.0 * atan(l.O) 
wt = 2.0 * pi * ft 
we = 2.0 * pi * fc 
sum = 0.0 
do 65 j = 1, n 

s = dreal(j) 
t = s * dt 
wht(j) =(pi/(2.0*t»*«sin(wt*t)+(wc*t»)/(pi*pi-(wt-wc)**2*t**2) 
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65 sum = sum + 2.0 * wht(j) 
sum = sum + fc + ft 
do 8j = 1, n 

8 wht(j) = wht(j) I sum 
whtO = (ft + fc) I sum 
call smonly(data, wht, whtO, num_smo, col_int, n) 

* 
* FILTER ANALYSIS PROGRAM 
* 
* Definitions: 
* w - Frequency (rad/s) 
* f Frequenzy (Hz) 
* h - Amplitude Ratio 
* 
* WIGHT OUTPUT 
* 

kk=O 
c write (3, 10) kk, whtO 
10 format (lh, 5x, Ihn, 9x, 6hweight, I, 6x, iI, 5x, f12.8) 

do 12 k = 1, n 
kkk= 1 *k 

c write (3, 15) kkk, wht(k) 
c 15 format (lh, 4x, i2, 5x, f12.8) 
12 continue 
* 
* FILTER ANALYSIS 
* 
c write (3, 16) 
c 16 format (lhl, 9x, Ihw, 23x, Ihf, 23x, Ihh) 

w = 0.01 
do 40 ij = 1, 40 

summ = 0.0 
do 30 in = 1, n 

pp = dreal(in) 
30 summ = summ + wht(in) * cos(pp * w) 

h = whtO + 2.0 * summ 
f = w I (2.0 * pi * dt) 

c write (3, 50) w, f, h 
c 50 format (lh, £20.8, 5x, £20.8, 5x, £20.8) 

w = w + 0.025 
40 continue 



return 
end 

110 

********************************************************************* 
*** 

* 
* FILTER EMPLOYMENT PROGRAM 
* 

* 

subroutine smonly(data, wht, whtO, num_smo, 
& col_int, n) 

implicit none 
real*8 data(1000), psum, whtO, wht(1000) 
integer n, iI, i2, num_smo, ick, i, j, kl, 

& k2, col_int 
il = n + 1 
i2 = col_int - n 

* FOR THIS EXAMPLE, DATA ARE SMOTHENED 10 TIMES 
* 

do 99 ick = 1, num_smo 
do 100 i = iI, i2 

psum = 0.0 
do 101 j = 1, n 

kl = i + j 
k2 = i - j 
psum = psum + whtG) * (data(kl) + data(k2)) 

101 continue 
data(i) = psum + whtO * data(i) 

100 continue 
99 continue 

return 
end 
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APPENDIX F: PHOTOGRAPHIC RESULTS 
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