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INTRODUCTION 

The nasal mucosa has been the object of study by many investigators, 

especially with reference to its role in the regulation of brain tempera-

ture. Some of the first reports on the countercurrent heat exchange 

between cerebral arterial blood and cr.anial venous blood were by Taylor 

(1966) in the goat, Magilton and Swift (1967) in the dog, and Baker and 

Hayward (1967) in the cat. This functional significance was later demon-

strated in the sheep by Baker and Hayward (1968b) and in the antelope by 

Taylor (1969). Magilton and Swift (1968, 1970b) described two physiologic 

heat exchange systems in the dog: 1) an "external heat exchange system" 

between the venous system and the ambient air passing over the nasal 

mucosa (either by conduction or by evaporation, or both), and 2) an 

"internal heat exchange system" between the warm blood in the internal 

carotid artery (destined for the brain) and cool venous blood from the 

n?sal area, which flows around the artery in the cavernous sinus (i.e., 

countercurrent heat exchange). 

Further, Baker and Hayward (1968a, b) noted a decrease in brain 

temperature in the region of the hypothalamus when air was blown over 

the nasobuccal surfaces of the sheep. On the other hand, Young et al. 

(1976) prevented breathing in the panting sheep by mechanically occluding 

the nostrils, as well as by chemical means, .which caused an immediate 

increase in the hypothalamic temperature. From their work they concluded 

that evaporation from the surfaces of the upper respiratory tract has an 

immediate and locat effect on the. brain temperature. In the cavernous 

sinus, cool venous blood, draining the nasal mucosa of the nose of the 
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sheep, dissipates the heat of the warmer arterial blood in the carotid 

rete; so, there is direct cooling of the brain when the sheep is panting. 

Also, the results of Cabanac and Caputa (1979) suggested that there is a 
.selective cerebral cooling in humans due to venous blood returning .from 

facial skin via the· ophthalmic vein to the cavernous sinus, where a cool-

ing of arterial blood ascending to the brain can take place. 

I.n addition, Baker et al. (1974), while studying the effects· of a 

tracheostomy on brain temperature, reported that when the dog breathed 

directly through the tracheal opening, there was an immediate rise in the 

temperature of the cerebral arterial blood and the hypothalamus. Kluger 

and D'Alecy (1975) had rabbits with tracheal bypass canulas, which enabled 

them either to breathe normally with the bypass "closed," or to breathe 

through it with the bypass "open." They found that hypothalamic tempera-

ture was influenced by the µpper respiratory cooling of venous b.lood and 

that the subsequent transfer of heat from the warmer internal carotid 

artery to the cooler venous blood in the cavernous sinus could effectively 

cool the brain. Carithers and Seagrave (1976) irrigated the nasal·al?r 
0 fold of dogs having body core temperature elevated to. 42 C. At this 

0 elevation, a difference of 0.5-1.0 C between brain temperature and body 

core temperature was maintained for up ·to 1.5 hours. Caputa et al. (1976b) 

found that vasodilatation of the nasal mucosa of rabbits paralleled a 

drop in brain temperature and, conversely, its vasoconstrictio~ paralleled 

an increase in the brain·temperature. The nasal mucosa, therefore, plays 

an iinportant role in brain temperature regulation. 

Heat dissipation of the brain is also dependent upon an increase in 

the rate of blood flow; however, toleration limits on brain temperature 

... 
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are important. Carithers and Seagrave (1976) stated that' the cells of 

the central nervous system appear to be among those which are most prone 

to thermal damage, and the thermal damage is permanent because the cells 

cannot regenerate. Hayward and Baker (1969) administered 10% co2 to 

monkeys through breathing and the gas produced cerebral vasodilatation, 

accompanied by an increase in the arterial flow through the brain. By 

so doing, they were successful in lowering brain temperature toward the 

arterial blood· temperature, which was due to the increase in arterial 

flow accelerating the removal of metabolic heat. From this experiment, 

they verified that the arterial blood serves an important role in the 

removal of heat from the brain and that fluctuations in brain temperature 

are greatly determined by the temperature of the blood. Ab~ams et al. 

(1965) reported that the rate of heat transfer from a heat-producing 

mass (hypothalamus) to a coola.nt fluid (arterial blood) must depend, in 

part, on the rate of flow of that coolant through the heated mass. There-

fore, a relatively high temperature difference will exist .between the 

heat-producing mass and the coolant fluid when either the rate.of fluid 

flow is relatively low or the rate of production of heat by the mass is 

relatively high, or both. So, when the brain becomes warm, under normal 

physiologic conditions, the arterial blood acts in such a way that the 

heat is removed from the brain parenchyma, thus preventing an excessive, 

or perhaps fatal, rise in the brain temperature. 

Several investigators demonstrated a linear correlation between 

cerebral vasodilatation, increased blood volume, and an increase in 

cerebrospinal fluid pressure (Langfitt and Kassell, 1968), and that the 

cerebrospinal fluid pressure parallels roughly the changes in the dii:uneter 
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of the pial artery (Forbes and Wolff, 1928). Further, Magilton and Swift 

(1970b) and Sawada and Tazaki (1977) attributed both decreases and increases 

in the cerebrospinal fluid pressure to indicate cerebral vasoconstrict:i:oh 

and cerebral vasodilatation, respectively. Even the amount of heat reac)l-

ing the skin from the deep tissues can be varied by changing the rate 

of blood flow to the skin (Ganong, 1977). When the cutaneous vessels 

are dilated, warm bloocl raises the skin temperature, whereas, in the 

maximally vasoconstricted state, heat is held centrally in the body. 

The purpose, then, of this experiment was to demonstrate that the 

sheep, when placed on upper respiratory bypass breathing: 1) would 

exhibit an increase in brain temperature due to a decrease in heat loss 

in the nasal mucosa; and 2) cerebral vasodilatation would occur as evi-

denced by an increase in cerebrospinal fluid pressure. 



5 

REVIEW OF LITERATURE 

Over the years, many investigators have presented many theories con-

cerning the functional significance of the carotid rete of some domestic 

animals. In the sheep, the carotid rete or rete mirabile epidurale 

rostrale (International Committee on Veterinary Anatomical Nomenclature, 

1973) consists of a compact network of intertwined, freely anastomosing 

arteries at the base of the brain. It is triangular in outline and lies 

intracranially between the foramen orbitorotundum, rostrally, to just 

beyond the foramen ovale, caudally. The hypophysis cerebri (pituitary 

gland) is situated between, but not surrounded by, the two bilaterally 

symmetrical halves of the rete, which col!Ullunicate across the midline. 

The rete is bathed in venous blood which drains the nasal and facial 

area and flows through the cavernous sinus. Blood destined for the more 

dorsally located cerebral arterial circle must first pass through this 

venous sinus via the well-developed carotid rete (Daniel et al., 1953; 

Baldwin, 1964). 

The main blood supply to the carotid rete in the sheep is from the 

external carotid artery, via the caudal and rostral rete branches of. 

the maxillary artery. The rete develops as a result of the dividing 

of these caudal and rostral rete branches into small vessels in the 

cavernous sinus. The large vessel which emerges from the dorsomedial 

aspect of the rete is called the internal carotid artery. It pierces 

the internal layer of the dura mater and gives off a branch, the caudal 

communicating artery, which joins the basilar artery. The internal caro-

tid artery turns rostrally and, after coursing along the ventral surface 
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of the optic tract, gives off the middle cerebral and continues further 

as the rostral cerebral artery. There is no rostral communicating artery, 

cot!necting the right and left rostral cerebral arteries (just rostral to 

the optic chi!!sma) , and no caudal epidural rete mirabile as found in 

other domestic mammals, such as the ox, cat, dog, and pig (Baldwin, 1964; 

Getty, 1975). 

The arterial blood that flows through the carotid rete, does not 

mix with the venous blood pool of the cavemous sinus (Baker, 1979.). 

·However, the rete arteries are very thin as compared to the .thick wall 

of the internal carotid artery and the cavemous sinus acts as a counter-

current hea.t exchanger. The warmer arterial blood thus loses heat to 

the cooler venous blood in which the rete is bathed (Baker, 1979). 

Venous blood is drained into the cavernous sinus from several sources. 

Some of it comes from· the base of the brain; much of it comes from out-

side the cranial cavity (Baker, 1979). To outline some of these routes, 
. ' 
Baker and Hayward (1968b) injected colored latex rostrally into the . 

angular vein· (of the eye), and it entered the nasal cavity through the 

dorsal and lateral nasal veins, and thus filled the superficial v~nous 

plexuses of the nasal mucosa (Dawes and Prichard, 1953) of the same side 

over the dorsal and ·ventral maxillary turbinates (conchae), the lateral 

wall and median septum, and portions of the ethmoturbinates. ·Latex 

injected caudally into the angular vein entered the supraorbital vein, 

which traverses the supraorbital canal and anastomoses with the ophthalmic 

veins caudal to the orbit, and filfed the cavernous sinuses bilaterally. 

While these injection studies by .Baker and Hayward (1968b) demonstrated 

one pathway for nasal venous drainage to the cavernous sinus, they 
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stated that "it is likely the ethmoidal and sphenopalatine veins, which 

also drain the nasal mucosa in sheep (Dawes and Prichard, 1953), are 

also connected to the cavernous sinus." Taylor (1966) demonstrated a 

venous pathway draining from .the horns of the goat to the cavernous sinus. 

Magilton and Swift (1969) suggested that the dorsal nasal, angularis 

oculi, and ophthalmic veins, which form a venous pathway from the nasal 

area to the cavernous sinus, play a part in the brain temperature regula-

tion in the dog. Robertshaw (1976) and Baker (1979) reported that venous 

blood from the nose and parts of the mouth of ruminants drain into several 

intracranial dural sinuses, including the cavernous sinus. 

Many investigators have demonstrated the possible role of the nasal 

passages in brain temperature regulation in various mammals. For instance, 

Hemingway et al. (1966) reported that the hypothalamic temperature. in 

the sheep, which is supplied by the blood in the internal carotid artery 

aft~r it emerges from the cavernous sinus (and has, therefore, been 

cooled by countercurrent heat exchange), is cooler than deep body temper-

ature under normal physiologic conditions. Also, Hellstrom and Hammel 

(1967) stated that the control of the rate of respiration in the dog and 

in other panting animals, which has been shown to lower .brain temperature, 

is strongly dependent upon both hypothalamic temperature a'nd ambient 

temperature. Additionally, Taylor (1969) reported that in the gazelle 
0 • 

the hypothalamus was as much as 2.9 C cooler than the carotid arterial 

blood and he attributed this to the cool venous blood from the nasal 

passages draining into the cavernous sinus. Baker and Hayward (1968a) 

found that, in the resting sheep, shifts in hypothalamic and other brain 

temperatures paralleled temperature .shifts in the cerebral arterial 
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blood, which was cooler than central arterial blood. Further, Baker 
0 and Hayward (1968d) demonstrated that, in the recumbent sheep at 20 C, 

. . 0 
cerebral arterial blood was 0;5 C cooler than carotid blood. During 

periods of arousal and paradoxical sleep, vasoconstriction of the nasal 

mucosa. and the ear skin occurred and temperatures of the cerebral arterial 

blood and brain rose without a comparable rise in central arterial blood 

temperature (Baker and Hayward, l968c). Baker and Hayward (1968b) stated 

that the venous blood returning from the nasal mucosa and skin of the 

head to the cavernous sinus cools the central arterial blood ·in thE\ caro-

tid rete. Just as the cerebral arterial blood cooled by countercurrent 

!leat exchange with venous blood bathing the rete in the cavernous sinus 

is considered the "internal heat exchange system," the venous blood 

cooled by the ambient air passing over the surface of the nasal mucosa 

is considered the "external heat exchange system" (Magilton and Swift, 

1968, 1970a). This is an importan.t factor in the maintenance. of hypo-

thalamic temperature in the wool-covered, long-nosed, panting sheep and 

affects hypothalamic thermoreceptors and temperature regulation in 

species with a variably developed carotid rete, especially the cat, dog, 

and sheep (Baker and Hayward, 1968a, b). Fluctuations in cerebral 

arterial blood as well as the brain temperature occur quite independent 

of the steady central arterial temperature. Baker and Hayward (1968b) 

observed that, when air was 'blown over. the nasal passages and buccal 

surfaces of the sheep, there was a local fall in brain temperature in 

the region of the hypothalamus. This was attributed to a transfer of 

heat from the relatively warm arterial blood passing through the carotid· 

rete to the relativel)'. cool venous b.lood draining from the nasobuccal 
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surfaces into the cavernous sinuses surrounding the rete. They concluded 

that the heat exchange between the central arterial blood in the carotid 

re.te and the cranial venous blood in the cavernous sinus is the major 

factor regulating cerebral arterial blood and brain temperatures in the 

sheep. 

In the sheep, the mucosa, lining the turbinates (conchae) and the 

rest of the nasal cavity, is highly vascular and contains a large number 

of arteriovenous anastomoses (Dawes and Prichard, 1953). There are also 

species differences in the methods of breathing that will have an influ-

ence on the level of heat transfer from these mucosa! surfaces to the 

ambient air. For example, in dogs, which pant due to a heat load, most' 

of the respired air enters through the nose and leaves via the mouth 

(Schmidt-Nielsen et al., 1970). Different patterns of air flow are 

possible, however, in this species. Also, Blatt et al. (1972) found 

that two lateral nasal (Steno's) glands, opening in the nasal vestibule, 

appear to provide a large part of the water for evaporative cooling in 

the panting dog. The lateral nasal gland is found in a variety of ani-

mals (dog, cat, pig, sheep, goat, and small antelopes), which utilize 

thermal panting for evaporative cooling. Scott (1954) stated that the 

nasal. mucous membrane of man contains many mucus secreting glands, 

which, by their activity, keep its surface moist. Thus, the modes of 

breathing and the presence of the nasal and mucous glands greatly influ-

ence the effectiveness of the nasal mucosa in brain temperature regula-

tion. But, Rober.tshaw (1976) observed that ruminants pant with the 

mouth closed and heat exchange must, therefore, take place at the nasal 

mucosa, especially since Bligh (1957) demonstrated that there is no 
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change in the temperature of the blood as it passes through the lungs 

of calves during panting. Baker and Hayward (1968d) also reported that 

the closed mouth panting, which occurs in the heat-stressed sheep, accel-

erates countercurrent heat exchange between arterial blood in the internal 

carotid and the venous blood in the cavernous sinus. This allows the 

sheep to maintain a relatively cool brain in the face of a rising body 

temperature. The panting mechanism, thus, allows for localized cooling 

of the most sensitive brain.tissue. 

The heat loss, which has .been demonstrated to take place at the 

nasal mucosa, depends not only upon the rate and pattern of air flow 

over the nasal.passages, but also upon the rate of blood flow through 

its mucosal surfaces. In a cool environment, when the respiratory rate 

is relatively constant, vasoconstriction of the mucosal vessels. decreases 

the nasal heat loss. and vasodilatation increases it. In a warm environ-

ment, panting increases the evaporation in the nasal cavity, but vaso-

motor activity can still influence the heat loss there. When the nasal 

mucosa is constricted, the amount of cool venous blood bathing the rt.te 

decreases and cerebral arterial blood temperature rises toward central 

art~tial temperature; when the nasal mucosa is dilated, the amount of 

cool venous blood bathing the rete increases and blood in the rete is 

cooled below central arterial temperature (Baker, 1972}. 

· Intracranial.pressure and its relationship to the diameter of 

cerebral vessels have been the interest and concern of many investigators. 

Magilton and Swift ·(1970b) concluded that changing the temperature of 

the vascular plexus at the tip of the nose of dogs produced repeatable 

variations in the cerebrospinal fluid pressure. The response of the 
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cerebral vasculature to hot water irrigation was an increase in cerebro-

spinal fluid pressure. Conversely, the response of the cerebral vascula-

ture to cold water irrigation was a decrease in cerebrospinal fluid 

pressure. They demonstrated that there was no correlation between blood 

gas levels and the changes in cerebrospinal fluid pressure (Magilton and 

Swift, 1970b), and they considered changes in cerebrospinal fluid pres-

sure as an indication of constriction and dilatation of cerebral vessels 

similar to other workers in the field. Forbes and Wolff (1928) demon-

strated that an increase in pial vessel diameter was accompanied by an 

increase in the cerebrospinal fluid pressure. Langfitt and Kassell (1968) 

stated that a dilatation of cerebral vessels causes an increase in cere-

bral blood volume and a rise in intracranial pressure. Risberg et al. 

(1969) noted that acute transient rises of intracranial pressure in the 

lateral ventricle of the human brain were accompanied by an increase in 

cerebral blood volume. While studying the effects of co2 on collateral 

circulation in the human brain, Sawada and Tazaki (1977) .measured the 

cerebrospina:\- fluid pressure to determine the extent of cerebral vaso-

dilatation. 

The demonstration by Baker and Hayward (1968b), that brain tempera-

ture decreased with an increase in the rate of air flow through the nasal 

l'assages, as previously mentioned, indicates that an increase in .the rate 

of air flow through the passages results in accelerated heat loss from 

the blood circulating in the nasal mucosa, which, in turn, causes a 

decrease in the temperature of the venous blood flowing toward the cavern-

ous sinus.. Consequently, more heat is transferred from the arterial to 

venous blood in the cavernous sinus, resulting in a lowering of brain 
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temperature. 

An increase in intracranial pressure is reflected in an increase 

in the cerebrospinal fluid pressure. Cobb and Fremont-Smith (1931) 

demonstrated that the cerebrospinal fluid pressure in man could be 

reduced to zero in some cases with 20 to 30 deep breaths. They attributed 

the fall in pressure partly to the withdrawing of blood from the cerebral 

veins as a result of the increased negative intrathoracic pressure and, 

perhaps, partly to a cerebral vasoconstriction that was observed in 

similar experiments in cats (Wolff and Lennox, 1930). The possible 

causes for the reduction of cerebrospinal fluid pressure as shown by 

Cobb and Fremont-Smith have never been fully resolved. Most workers, 

however, attribute this change to blood gas levels. 
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MATERIALS AND METHODS 

This experiment has been designed to compare brain temperature and 

cerebrospinal fluid pressure changes as they relate to zero air flow 

and the air flow during normal nasal breathing as they relate to· changes 

in the rate of air flow through the nasal passages. 

Six sexually matured Rambouille ewes (30 to 60 kg body weight), 

aged 14 months to three years, were acquired from the National Veterinary 

Services Laboratory in Ames. The animals were housed in the LAR facilities 

and, prior' to investigation, they were moved to the veterinary anatomy 

holding room for acclimatization. · During this period of acclimatization·, 

rectal temperatures, pulse rates, respiration rates, and heart rates 

were taken on each animal three times a day. 

An upper respiratory bypass canula, which was designed by Kluger 

and D'Alecy (1975) for rabbits, was modified and adapted to the sheep 

(Figure 4). Several days were allowed to elapse after implantation of 

the modified canula in order for the animals to recover and become 

accustomed to the implant, Then, an indwelling catheter was placed in 

the cerebellomedullary cistern according to the method of Buck (1964) 

and a thermistor was placed in the brain employing a technique which 

was designed by the author and coworkers. 

In all cases, each sheep was held off feed 24 hours prior 

to surgery. Thirty minutes before the induction of haloth'!-ne anesthesia, 

atropine was injected intramuscularly at a rate of approximately 1/4 mg/kg 

body weight to reduce salivation during the operation. The surgical area 

was first clipped and scrubbed with several applications of surgical soap 
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until cleaned and then swabbed with a 1:750 aqueous solution of benzal-

konium chloride ("Zephiran" chloride; Winthrop Laboratories, Division of 

Sterling Drug, Inc., New York). 

The techniques, employed for implantation, are described in greater 

detail as follows. 

1) For the implantation ·Of the upper respiratory bypass canula, 

a ventral midline incision of the caudal one-third of the neck 

was made and the trachea exposed. The trachea was transected 

and the cranial and caudal tubal extensions of the canula (Fig-

ure 4) were inserted into the cut ends of the cranial and caudal 

segments, respectively, of the trachea. A double loop of No. 2 

surgical silk was fastened about each cut end of the trachea, 

securing an airtight seal between the cut ends of the trachea 

and the tubal extensions of the canula. Supporting sutures·were 

placed.through the cut ends of the trachea along the lateral 

sides of the canula in order to draw the ends of the trachea 

toward the body of the canula. All sutures were placed to pre-· 

vent the trachea from sliding off the tubal extensions of the 

canula when the animal forcefully extended its neck. The wound 

was then closed; leaving the body of the canula extending beyond 

the surface of the skin. Each day, the cap of the body of the 

canula was unscrewed and the flow-through insert (Figure 4) was 

removed for cleaning. 

·2) The technique for placing the indwelling catheter required a 

six-inch vinyl catheter, having an outside diameter (O.D.) of 

0.088 inch and an inside diameter (I.D.) of 0.054 inch.. One end 
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was bent at a right angle and this short end (1.5 cm) would sub-

sequently be placed through the spinal dura mater so that it 

would be just dorsal to the spinal cord with the free end pointed 

cranially into the cerebellomedullary cistern. Just above the 

angled tip of the catheter, two collars were made by linearly 

compressing the tubing; both the angled tip and the collars 

were formed by heating the tubing after placing a stiff wire 

stylet in the lumen. After halothane anesthesia was attained 

by using a mask over the muzzle, the animal was placed on the 

surgery table and a plastic tube to the tracheal canula (with 

the bypass insert in place) was substituted for the mask. The 

sheep was placed on its sternum and its muzzle (planum nasale) 

was placed in a moderately tapered funnel. This funnel was 

firmly fixed in. the table by placing the tapered end into a 

hole bored in the table. A strap, fastened to the edge of the 

large opening of the funnel on one side, was pulled tightly over 

the dorsum of the head and buckled on the other side to hold 

the head firmly in the funnel. With the head securely held in 

the funnel, the animal was pushed forward to flex the head and 

widen the space at the atlantooccipital junction as desired for 

optimal surgical accessibility. Wooden blocks, mounted on 

screw-adjustable metal rods, were used to maintain the animals 

in ventral recumbency by exerting external pressure on the 

thorax. After the animal was surgically prepared, a three~inch 

skin incision was made along the dorsal midline of the neck 

beginning at the external occipital protuberance and contii:t1.\ed 
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caudally to expose the nuchal ligament. The right and left 

halves of the nuchal ligament were separated and retracted, 

exposing the extensor muscles of the head (rectus capitis dor-

salis major and minor)·. These muscles were bluntly dissected 

from their insertions with a periosteal elevator, exposing a 

tough, dorsal atlantooccipital membrane over the caudal portion 

of the cerebellomedullary cistern. Two lengths of suture mater-

ial (000 cardiovascular, black, braided silk with a size 20, 

Ferguson, 1/2 circle, taper-point needle) .were placed sagittally 

(one on each side of the dorsal midline) through the exposed 

dorsal atlantooccipital membrane. A sagittal midline incision 

was subsequently made between the two sutures. It was important 

that this incision be made exactly on the midline, which is at 

the center of the triangle bounded by the "V" shaped notch 

separating the articular surfaces of the atlas and the caudal 

edge of .the external occipital crest, to avoid severing blood 

vessels. The incision was extended cranially and caudally -with 

a hemostat. The free ends of the suture material which had 

be!Jn passed through the atlantooccipital membrane, were. pulled 

laterally and served to enlarge the operative area. The epidural 

fat was removed and the dura mater was expos.ed over the cerebel-

lomedullary cistern. A sterile 2S gauge needle on a 12 cc 

syringe was used to withdraw 5 to 8 cc of cerebrospinal fluid 

from the cistern. The puncture hole in the dura mater, made 

by the needle, was enlarged to allow the passage of the catheter • 

. The catheter tip was then passed through the opening in the 
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atlantooccipital membrane, inserted through the dura mater, 

and directed rostrally into the cerebellomedullary cistern until 

the first collar rested on the dura mater. The lengths of suture 

material, which had been passed through the atlantooccipit'al 

membrane, were·then drawn around the catheter in such a way as 

to anchor the second collar to the dorsal atlantooccipital 

membrane. The retractors were released, allowing both parts 

of the nuchal ligament to return to.the midline, and the skin 

was closed with a continuous mattress suture using No. 3 silk. 

The cerebrospinal.fluid, previously withdrawn from the cerebel-

lomedullary cistern, was replaced through the catheter. 

A Luer stub adapter was placed on the external end of the 

catheter to facilitate its attachment to a pressure transducer 

or Luer-lock syringe. When it was' not in use, the adapter was 

capped. 

3) While the sheep was still under anesthesia, the thermistor was 

placed in the brain. A stereotaxic instrument designed for 

the beagle was used (with.modification of techniqiie) for place-

ment of the thermistor at the site where the internal carotid 

artery emerges from the cavernous sinus. The sheep was placed 

on the table in· ventral recumbency and the mouthbar was placed 

caudal to the dental pad. The orbital fixation bars were pl.aced 

on the nose to hold the nose firmly against the mouthbar.. The 

.orbits were aligned equidistant from the stereotaxic tracks. 

The dorsum of the skull was leveled ·from side to side by visual 

inspection. 
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A midline incision was.made from a transverse line between 

the most dorsal parts of the orbits and was extended caudally 

to a transverse line between the rostral margin of the base of 

the ears. The skin and fascia were reflected laterally with a 

self-retaining wound retractor and the periosteum was then 

reflected laterally with a periosteal elevator. The area of 

convergence of the parietofrontal sutures as well as the irtter-

frorttal suture was identified. 

A vertically oriented stereotaxic drill bit (0.1360 inch, 

No. 29) was placed on the midline 10 mm rostral to the point 

of convergence of the parietofrontal suture. The drill was 

then moved laterally 10 mm from the midline and a drill b:i.t 

marker was used to mark the spot (and to make a depression), 

so that the drill bit would not slide on the convex external 

surface of the skull. The skull was then trephined to the 

1.evel of the dura mater. Three additional trephinations, ·in 

the form of a triaµgle around the first, were·made to assist 

in anchoring cranioplastic to the surface of the skull. All 

four trephinations were tapped (size 8-32 x 3/8") for sub~equent 

threadings of flat headed nylon screws. 

The nylon screw that was placed in the trephination for. 

the thermistor was center drilled. The size of the hole was 

determined by the size of the thermistor to insure a snug fit 

as the thermistor was passed through the screw for placement 

in the brain. 
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A two and one-half inch thermistor, previously plumbed, 

was passed through the hole drilled in the screw and continued 

until the base of the skull was encountered. The thermistor 

was then withdrawn a distance of two mm. The placement of the 

thermistor at the exact (desired) site was not possible because 

of the difference in size and shape of the heads of the sheep. 

For protection, brass sleeves were fitted around the extra-

cranial portions of the thermistor. Cranioplastic was then 

applied to the surface of the skull, around the heads of the 

four nylon screws, and built up around the brass tubing. 

After the cranioplastic had hardened, the top of the-~rass 

tubing was crimped around the hub of the thermistor with needle-

nose pliers to keep it from, (1) moving up and down, and, (2) 

turning around on its long axis. The thermistor (and its 

encasement) was then padded with cotton and the latter was held 

ih place by adhesive· tape. A piece of stockinette was then 

slipped over the head and neck of the sheep and held in place 

by plastic tape. 

When the animal was able to stand erect, during recovery from the 

anesthesia,. "the thermistor was attached directly to the Grass polygraph 

machine (Model 5c; Grass Instrument Company, Quincy, Massachusetts) and 

the catheter was attached to this recorder by way of a pressure trans-

ducer. These connections monitored the brain temperature and the cerebro-

spinal fluid pressure, respectively. 

The brain temperature and the cerebrospinal fluid pressure were 

first recorded with the flow-through insert (on normal breathing) in the 
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canula and then with the bypass insert. A bead thermistor, placed inside 

the nasal vestibule, was used to determine the efficacy of the bypass 

(no oscillation demonstrable on the polygraph). While on a bypass period, 

cool air (at approximately 45° C) wa~ introduced cranially over the nasal 

mucosa through a needle embedded into the wall of the upper respiratory 

bypass canula to obtain results on subsequent changes in the temperature 

of the brain and the cerebrospinal fluid pressure. 

The sheep were usually eating within a few hours after the initial 

readings which were taken during recovery from anesthesia. Antibiotics 

were given I/M immediately after the operation and were continued through-

out the postsurgical recovery and the experimental periods. Small amounts 

of fluid surfaced externally around the catheter, in some cases. To 

prevent local infection from occurring, the area was cleansed and.local 

antibiotics were applied daily. 

After the experimental trials were completed on each sheep, it was 

sacrificed and the head was embalmed and injected to outline the cerebral 

vascular network (Figure 6). Then, after decapitation, the head was 

sagittally sectioned with a band saw, approximately two cm on either 

side of the midline (Figure 7). This facilitated dissection of the 

cerebral structures in order to determine the location of the tips of 

the thermistors and their relative proximity to the cerebral arterial 

circle, and, in particular, to the internal carotid artery (Figure 1). 
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RESULTS 

A total of 20 trials were made on six sheep: three trials on each 

of four sheep and four trials on each of the remaining two sheep. A 

trial consists of four phases comprising: (1) a period of normal breath-

ing (via the nasal cavity), (2) followed by a period of tracheal breathing 

(via the upper respiratory bypass canula), (3) .then a second period of 

normal breathing, and (4) a second period of tracheal breathing. Brain 

temperature and cerebrospinal fluid pressure were not recorded si.mul-

taneous ly in all animals because of the inability of some to endure the 

stress. 

The trials were conducted on the resting and unanesthetized sheep 

in a standing position. The room, where polygraph recordings were made, 

was kept as quiet as possible in order to minimize false recordings. 

It was found that even the least movement within the field of vision 

of the experimental animal or slightest audible sound would cause a. 

change in the cerebrospinal fluid pressure and brain temperature (the 

latency of the latter depended upon the distance of the thermistor from 

the desired site). The desired site was the point of emergence of the 

internal carotid artery from the cavernous sinus (Figure l.A). 

The location of the tips of the thermistors (represented in Figure 

1 by black dots) as determined on postmortem, was as follows: 

.1) Sheep No. 53--the thermistor tip was one mm medial to the 

internal carotid artery where the caudal communicating artery 

branches off toward the basilar artery (B). 
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2) Sheep No. 37--the thermistor tip was located one nun caudal ~o 

the caudal cerebral artery and two mm lateral to the caudal 

connnunicating artery (C). 

3) Sheep No. 150--the thermistor tip was located caudal, lateral, 

and adjacent to the junction of the arterial branch to the 

rostral mesencephalic tectum and the caudal connnunicating 

arteries (D). 

4) Sheep No. 76-~the thermistor tip was located caudally,_ adjacent 

to the arterial branch to the rostral mesencephalic tectum, 

and one nun· lateral to the caudal conununicating artery (E). 

5) Sheep No. 174--the thermistor tip was rostral and lateral to 

the junction of the rostral cerebellar and caudal connnunicating 

arteries (F). 

6) Sheep No. 26--this animal died (after recordings were completed) 

and, therefore, was not embalmed and injected in order to locate 

the tip of the thermistor. 

In the sheep (No. 150), where the thermistor was adjacent ·to the 

cerebral arterial circle (Figure l.D), 30 seconds elapsed before the 

first detect.able change in brain temperature was recorded, with the first 

change from nasal to bypass breathing. In another sheep (No. 174), 

· where the thermistor was 1 nun lateral to the cerebral arterial circle 

(Figure l .F), the first detectable change took place after two minute_s 

and 40 seconds. _following a similar change in the breathing route. 

Only four brain· temperature recordings were considered in the anal-

yses of the results; These temperatures correspond to: 

1) normal breathing (Nl); 
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2) bypass breathing, temperature at maximum change (BPl); 

3) normal breathing, temperature at maximum change (N2); and 

4) bypass breathing, temperature at maximum change (BP2). 

On all sheep and trials (Table 1), the average temperatures for 

these four phases of each trial (based on 12 observations) were: 

Nl = 38.56° c 
BPl = 38.89° c 

N2 = 38.51° c 

BP2 = 38.90° c 

Four questions were constructed concerning the differences among 

the four phases mentioned above and, for each question, a test statistic 

(a t-value) was calculated and a probability attached. The probability 

is considered as the s_trength of the evidence for the supposition that 

the calculated difference examined represents a true underlying differ-

ence of zero. The questions were as follows. 

1) Does Nl differ from N2? 

2) Does BPl differ from BP2? 

(Nl f N2) 

(BPl f BP2) 

3) Does the change from Nl to BPl differ from the change from 

N2 to BP2? (Nl - BPl f N2 - BP2) 

4) Does the average of the two bypass measures differ from the 

average of the two normal measures? 

Nl + N2 f BPl + BP2 
2 2 
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Table 1. 0 Brain temperature ( C) 

Phase a Trial Sheep No. No. 1 No. 2 No. 3 No. 4 

37 1 38.833 38.667 38.000 
2 38.833 38.667 38.000 
3 38.666 38.334 37.666 
4 38.750 38.501 38.000 

26 l 38.333 38.833 Trial not 
2 38.167 38.917 used for 
3 38.833 39.000 analysis 
4 39.334 38.916 

174 1 39.501 Trial not 38.667 
2 . 39.501 used for 38.833 
3 39.501 analysis 38.585 
4 39.752 38.833 

' 

150 1 Trial not 38.400 38.501 38 .. 835 
2 used for 39.000 39.167 39.500 
3 analysis 38.500 38.500 38.668 
4 39.000 39.167 39.668 

76 1 Trial not Trial not 37.000 
2 performed performed 37.800 
3 37.200 
4 37.600 

53 1 Trial not Trial not Trial not 38.670 
2 performed performed performed 39.330 
3 38.670 
4 39.330 

a . 
(Nl); Phase 2 =bypass breathing (BPl); Phase 1 = normal breathing 

Pha,se 3 = normal breathing (N2); Phase 4 =.bypass breathing (BP2). 
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Nl # N2 0.625 

BPl # BP2 0.125 

Nl - BPl # N2 - BP2 0.54 

Nl + N2 # BPl + BP2 
2 2 

7.2 

25 

Probability 

0.5 < p < 0.6 

0.8<P<0.9 

0.5 < p < 0.6 

p < o. 01 

Remarks 

Very probably no 
difference 

Almost assuredly not 
a difference 

No evidence for a 
difference 

Almost unquestionably 
there is a difference 

Therefore, the brain temperatures, measured at the sites near the 

cerebral arterial circle in these sheep (Figure 1), were significantly 

higher when the animals were breathing through the upper respiratory bypass 

canula and, when the sheep were placed on normal nasal breathing, they 

were able to maintain a relatively lower brain temperature. This occurred 

in every trial of all sheep even though the degree of change varied with 

the location of the thermistor and the behavior of the individual animal. 

In the sheep, where the thermistor was nearest the desired site in the 

brain, the brain temperature difference between tracheal breathing an<l 

normal nasal breathing registered a high of 1° C in these resting, stand-

ing, unanesthetized sheep. The average difference in brain temperature 

in all trials, between normal breathing and tracheal bypass breathing, 
0 however, was 0.37 C. 

The same statistical method was used for evaluating the results 

regarding the changes in the cerebrospinal fluid pressure. On all sheep 

and trials (Table 2), the average pressures (in mm Hg) for the four phases 

of each trial (based on 17 observations) were: 
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Table 2. Cerebrospinal fluid pressure (mm Hg) 

Sheep No. Phase a Trial 
No. 1 No. 2 No. 3 No. 4 

37 1 -42.306 -38.460 23.076 
2 -38.460 -30.768 34.614 
3 -38.460 -34.614 38.460 
4 -34.614 -26.922 42.306 

26 1 69.228 30.768 Trial not 
2 73.074 24.999 used for 
3 69.228 28.845 analysis 
4 73.074 28.845 

174 1 73.074 Trial not 80.766 
2 65.382 used for 80.766 
3 76.920 analysis 80.766 
4 80.766 76.920 

150 1 57.690 65.382 46.152 57.560 
2 49.998 79.966 60. 736 61.406 
3 42.306 65. 382 49.198 61.406 
4 56.890 50.798 49.198 75.990 

76 1 -07.692 38.460 -19.230 
2 -15.384 53.044 -07.692 
3 -15.384 76.120 -15.384 
4 -15.384 64. 582 -03.846 

53 1 -23.076 Trial not 11.538 -03.846 
2 -11.538 used for -19.230 ~18.430 
3 23.076 analysis -49.998 -22.276 
4 03.846 -53.844 -26.122 

a , 
Phase 1 =normal breathing (Nl); Phase 2 =bypass breathing (BPl); 

Phase 3 =normal breathing (N2); Phase 4 =bypass breathing (BP2). 
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Nl = 24.652 

BPl = 26.028 

NZ = Z5.6Z3 

BP2 = Z6.0Z8 

The same four questions were answered similar to those concerning 

the brain temperature. 

Question t-value Probability Remarks 

Nl # NZ O.Z4 p > 0.5 Most likely no 
difference 

BPl # BPZ 0.0 p > 0.5 No difference 

Nl - BPl # N2 - BPZ 0.17 p > 0.5 Practically no 
difference 

Nl+NZ # BPl + BPZ 0.31 p > 0.5 No evidence for 
z z difference 

The average pressures of the four phases registered a higher cerebra-

l fl d h .h . 1 b b h" (Z6.0Z8 + Z6.0Z8) spina ui pressure wit t e anima on ypass reat ing Z 

than when the sheep was breathing normally through the nasal cavity 

(Z4 ·65Z + z5 •6Z3) even though the difference (0.8905) is not statistically z 
significant. 

Although some differences exist between the average pressures of the 

four phases of the trials (Nl, BPl, NZ, and BPZ), there are no significant 

differences in the correlation between certain combinations of the four 

phases as exemplified in the answers to the four questions listed pre-

viously. The probability is such that very likely no difference occurs 

in the answers to all these questions. The cerebrospinal fluid.pressure 
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varied considerably and in some cases it fluctuated as much as 40 to 75 llDll 

Hg between the high and low pressures within a trial. In most cases, 

each rise and fall in the pressure was seemingly accompanied by its sub-

sequent fall and rise, respectively. 

A correlation was then made between brain temperature and the cerebra-

spinal fluid pressure values (a = correlation coefficient; b = probabil-

ity): 

Comparison 

Of total values 

Of normal nasal breathing values 

Of tracheal bypass breathing values 

Correlation of CSF pressure 
and brain temperature 

a = 0.38393 
b = 0.0071 

a = 0.36987 
b = 0.0752 

a = 0.41543 
b = 0.0435 

When total values for brain temperature and cerebrospinal fluid 

pressure were considered, there was a significant, positive, linear cor-

relation between the two (significant at 99%), i.e., when the brain 

temperature increasea, the cerebrospinal fluid pressure also increased, 

and, correspondingly, when the brain temperature decreased, the cerebra-

spinal fluid pressure also· decreased. This same positive, linear correra-

tion was observed when the ~ormal nasal breathing values of both brain 

temperature and cerebrospinal fluid pressure.were considered (significant 

at 90%), and, also, when the tracheal bypass breathing values of both 

brain temperature and cerebrospinal fluid pressure were considered (sig-

nificant at 95%). 
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A bead thermistor was placed (hand-held) in the nasal vestibule for 

the expressed purpose of verifying the efficacy of the upper respiratory 

bypass canula; for example, when the sheep was placed on tracheal breath-

ing, there would be no oscillation registered on the polygraph paper 

that would be indicative of breathing through the nasal cavity and, 

conversely, oscillation would, of course, appear on the paper with nasal 

breathing. On several trials, the temperature at the nasal vestibule' 
0 was 6 C higher on tracheal breathing compared to normal nasal breathing. 

It is recognized for this observation to be meaningful, the rate of air 

flow and blood flow in the nasal mucosa would also have to be considered. 

It is worthwhile mentioning here that, in three trials on two 

sheep (Nos. 26 and 37), the air flowed more freely through the right 

nostril than through the left. The use of the bead thermistor, however, 

was restricted, in all other cases, to the right nasal vestibule of the 

sheep in order to obtain the results from uniformity. 
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DISCUSSION 

The use.of the upper respiratory bypass canula (Figure 4) has proven 

to be an effective way to in.terrupt nonnal nasal breathing in the sheep. 

When the "flow-through insert" was placed in the canula, the sheep 

breathed nonnally through its nasal passages, and when the "bypass insert" 

was put in place, the sheep breathed through the tracheal opening, To 

check for the complete cessation of air flow through the nasal cavity 

during bypass breathing, a bead thennistor was placed in the nasal 

vestibule of the sheep. The sensitivity of the bead thennistor was 

such that air movements resulting from inspiration and expiration could 

be detected. This served to check the efficacy of the tracheal bypass. 

canula. 

In the course of this investigation, when the sheep breathed'. directly 

through the tracheal bypass canula, there was an increase in the brain 
0 temperature (av. 38.90 C), whereas, when nonnal breathing was restored, 

0 the brain temperature decreased (av. 38.53 C)(Figure 2). This is in 

agreement with the findings of Kluger and D'Alecy (1975) on the rabbit. 

Further, the temperature at the nostril was higher when the brain temper-

ature increased (bypass 36° C) and was lower when the brain temperature 

decreased (normal breathing 30° C). This demonstrates the conspicuous 

difference in the temperature of the nasal cavity with air flowing over 

the nasal mucosa during nonnal breathing and the lack of air flow through 

the nasal cavity during tracheal breathing. The higher temperature of 

the air at the nostril during.bypass breathing would, at first impression, 

indicate that relatively more· heat is being lost from the circulating 
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blood in the nasal mucosa during this phase of breathing. One must 

bear in mind, however, that the only air that is being heated during this 

phase is that which is lying static within the nasal passages whereas, :i.n 

normal breathing, air is being heated as it is circulating through· the 

entire nasal passage. From the above, it can be inferred that, when 

the animal was placed on tracheal bypass breathing, there would be no 

significant loss of heat from the circulating venous blood in the nasal 

mucosa to the ambient air. Consequently, the warmer venous blood passes 

from the nasal area to the cavernous sinus, which could not lower the 

core temperature blood of the carotid rete. Therefore, the arterial 

blood reaching the cerebral circle after passing through the carotid 

rete (bathed in the venous blood of the cavernous sinus) would register 

a higher cerebral arterial blood temperature as compared to the lower 

temperature registered on normal breathing with air flowing over the 

moist, nasal passages, where loss of heat from the nasal mucosa takes 

place. 

The observations from this investigation, using more precise methods 

for measurement, substantiate work that has previously been done. For 

example, Baker and HayWard (1968b) found that, when air was blown rapidly 

over the nasal mucosa of unanesthetized sheep, temperatures dropped in 

the cavernous sinus, and the cerebral arteries and in the bra:i.n. They 

demonstrated by injecting colored latex into the nasal veins of embalmed· 

heads that the venous blood, affecting the temperature of the arterial 

rete in the cavernous sinus, came from the nasal passages of the sheep. 

Inasmuch as the venous biood in the cavernous sinus is cooler than the 

arterial blood traversing the rete, countercurrent heat exchange takes 
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place between them. Baker et al. (1914) noted an immediate rise in 

cerebral arterial blood temperature while dogs were breathing. through a 

tracheostomy. The·cerebral arterial blood was, however, cooler when 

they breathed normally through the nasal passages. Young et al. (1976) 

mechanically occluded the nostrils of the sheep, resulting in an immediate 

rise in hypothalamic temperature. On the other hand, this temperature 

decreased to control values when the nostril occlusion ceased. 

These results are further substantiated by several investigators 

(Baker .and Hayward, 1968a, in the sheep; Magilton and Swift, 1968, in 

the dog; Robertshaw, 1976, ·in ruminants). These workers stated that the 

cool venous blood from the nasal passages enters the cavernous sinus at 

the base of the brain. The carotid arterial supply to the head also 

passes through the cavernous sinus where it breaks up into the carotid 

rete. This arrangement allows the exchange of heat between the two 

b1ood streams which is enhanced by the fact that they are flowing in. 

opposite directions and are, in effect, a countercurrent heat exchanger. 

Magilton artd Swift (1968) described two physiologic heat exchange systems 

in the dog for the control of brain temperature. One is a heat loss from 

the venous blood in the nasal mucosa to the ambient air or "external heat 

exchanger," and the other is a heat loss from the arterial blood in the 

carotid rete to the venous blood in the cavernous sinus or "internal.heat 

exchanger." Since the sJ:teep pants with its mouth closed, all heat, 

exchange from the -venous blood in the nasal mucosa to the ambient air 

would take place. in the external heat exchange system. Bligh (1957) 

.demonstrated that there is no blood temperature change in the lungs 

during panting in calves; Ingram and Whittow (1962), however, stated' 
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that there is considerable cooling of blood draining from the head in 

the ox . The findings of these workers demonstrated the fact that the 

heat exchange is a local condition and not a systemic one and that 

fluctuations in brain temperature under normal conditions are independent 

of the deep body or the core temperature. 

In the present study, during two trials, rectal temperatur e was 

taken on one sheep during normal as well as bypass breat hing. On one 
0 trial, even though the brain temperature increased (0.58 C) during 

tracheal breathing, there was no difference in the rectal temperature 

(103.2° F = 39 . 6° C)(Figure 3). On the other trial, using the same 

method, the rectal temperature increased 0.2° C in comparison to the 
0 increase in brain temperature of 0.83 C, which could no t be explained 

within the framework of this experiment. The work of Baker and Hayward 

(1968b) showed that central arterial blood temperature tended to remain 

steady even at times when cerebral arterial temperature showed pronounced 

thermal shifts associated with cranial peripheral vasomotor activity 

consequent to behavioral activity. Again, these results showed that the 

rise and fall in brain temperature is a local change and that it occurs 

independently of the body (core) arterial blood temperature . 

In the course of this investigation, a marked variation in the 

temperature of the cerebral arterial blood was observed, which was 

attributed to the location of the thermistor in the brain . For instance, 

in the change from normal nasal breathing to bypass breathing, the time 

for the recorded increase in brain temperature varied from several 

seconds to a few minutes (10 seconds to 12 minutes and 30 seconds). This 

delayed response to brain temperature increase was greatly influenced 
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by the site of the implanted thermistor in relation to the vessels of 

the cerebral arterial circle (Figure 1). The increase in the temperature· 

of the blood in the cerebral arterial circle was greater at the desired· 

site (described previously)., but it was progressively less as the site 

of the implanted thermistor was placed caudally toward the basilar artery. 

This observation is concordant with the findings of Andersson and Jewell 

(1956) in ti\e goat. The location of.the tip of the thermistor was, 

however, dependent on the size and shape of the sheep heads and· on visual 

inspection employed in the threading of the skull for the screw supporting 

the thermistor. 

This variation in brain temperature, with reference to the site of 

the implanted thermistor, can be ·explained in light of the following. 

The brain of the sheep receives its major blood supply from the carotid 

arteries, contributing vessels to the cerebral arterial circle. In small 

ruminants, blood flows caudally in the basilar artery away from the 

cerebral arterial circle (Andersson and Jewell, 1956; Baldwin and Bell, 

1963). The blood in the carotid system comes into intimate contact with· 

cool venous blood in the cavernous sinus and, therefore, a major portion 

of the brain of the sheep is under the influence of the internal heat 

exchange system as previously described. 

In the brain stem of the sheep, according to Baker and Hayward 

(1968b), a gradient of increasing temperature exists from the cerebral 

arteries. in the basal subarachnoid space toward the center of the brain. 

They concluded that, in general, the warmest brain sites are those which 

· are farthest from the source of cool blood in the subarachnoid space . 

surrounding the brain and the resistance to a change in temperature was 
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most marked in the warm, deep brain sites, and least marked in the cooler 

hypothalamic area which is near the cerebral arterial circle. Also, the· 

degree and rapidity of the temperature drop in any brain site was related 

to the thermal inertia of the site and the degree of the temperature drop 

in the cavernous sinus. Besides, they (1968a) stated that the level of 

temperature in any brain site above the cerebral arterial blood tempera-

ture appears to be dependent not only, in part, on the distance of the 

site from the source of cool blood, but also, in part, on the rate of 

local heat production and blood flow. Pasztor et al. (1965) reported 

that, when the surface of the brain is chilled, the temperature of the 

deeper structures is not reduced. They further asserted that evidence 

had been published to indicate that, if the temperature is not reduced 
0 to below 0 C at the surface and so with.out destruction of cortical cells, 

the cooling does not extend deeper than 3 to 5 mm. This would account 

for many of the observed latent changes in the brain temperature with 

reference to the location of the thermistor. 

Another objective of this experiment was to demonstrate that cerebral 

·vasodilatation as evidenced by an increase in cerebrospinal fluid pressure 

would occur ·during bypass breathing._ In this study, the results, although 

not as dramatically conclusive as anticipated, revealed a linear accom-

paniment between brain temperature and cerebrospinal fluid pressure. 

However, within the framework of this experiment, it would be difficult 

to show conclusively that the increased intracranial pressure was. the 

evidence of cerebral vasodilatation. There was a trend, though, in that . 

direction: when brain temperature elevated, the cerebrospinal fluid 

pressure also increased and vice-versa. 
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The results of some investigators, who worked previously in this 

related field, showed a linear correlation between vessel diameter and 

cerebrospinal fluid pressure (Forbes ,and Wolff, 1928) as well as increased 

intracranial pressure and c~rebral vasodilatation (Risberg et al., 1969; 

Sawada and Tazaki, 1977). The above changes can be explained by the 

displacement of the space in an immovable, nonexpansive cranial vault 

by the increase in the size·of the vessels which, in turn, exert pressure 

on the cerebrospinal fluid; conversely, when cerebral vasoconstriction 

takes place, a decrease in cerebrospinal fluid pressure results. Con-

ceivably, then, with an increased arterial blood flow through the cerebral 

structures in an effort to lower the brain temperature, an increase in 

intracranial pressure might occur. The increase in blood volume which 

might accompany an increased arterial flow in an already conipact and 

peripherally~limited cranial cavity would cause compression of surrounding 

tissues, especially the ventricles and the brain parenchyma. 

The polygraph recordings of this aspect of the study, though somewhat 

significant, were not as clear-cut and defined in their trajectory as 

compared to those that were made on brain temperature. Investigations 

concerning other parameters, such as pressure-dependent outflow resistance 

(via arachnoid granulations) controlling the rate of cerebrospinal fluid 

absorption, intracranial compliance through distention of meningeal mem-

branes and the compression of cerebral veins (Johnson et al., 1978), 

and arterial ,blood pressure and cardiac output (Chao and Hwang, 1972), 

would, perhaps, yield a meaningful correlation to complement future 

studies in this field. Further, Chao and Hwang (1972) listed a variety 

of other factors that would· regulate the intracranial cerebral blood 
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flow. Michenfelder et al. (1969) indica.ted certain techniques associated 

with neuroanesthesia and their relevance to intracranial pressure, cere-

brai blood flow, and cerebral metabolism. 

In support of the hypothesi's already stated', cool air was mechani-

cally introduced through the nasal passages, via the special device on 

th.e bypass canula (Figure 4), to decrease the temperature of the arterial 

blood destined to supply the brain and to reduce the brain temperature, 

and, thus, to reduce intracranial pressure. Some attempts had been 

made, in three sheep, to reverse the trend by lowering the brain temper-

ature, even when the animals were on tracheal breathing. To accomplish. 

this objective, cool compressed air.from a refrigerated pressure bottle 

at approximately 7.0° C was introduced initially at the rate of 10 liters 

per minute, which was later increased to 50 liters per minute. In this 

procedure, the air was passing in a direction contrary to the animals' 

natural way of breathing to which the sheep apparently could not adapt. 

The excitation that accompanied this procedure was thought to increase 

brain temperature which masked· decreases in brain temperature that might 

have occurred. Consequently, the use of this device was. discontinued. 

Lastly, it would be worth noting that, in three trials on two she~p, 

while.using the bead thermistor there was less resistance observed to 

the air flow through the right nostril than through the left. Besides 

individual variation between experimental animals, this difference could, . , 

perhaps, be' attributed to several factors, such as the anatomic structure 

and pathologic conditions of the nasal cavity, including the presence 

of some foreign body obstructing the free flow of.air, and the like, 
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Therefore, to use bead thermistors in the nostrils of sheep, abnormal 

resistance to air flow could be an important factor to avoid misleading 

results. 

. I 
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CONCLUSION 

The objectives of this study, previously stated, were to demonstrate 

that the sheep, when placed on upper respiratory bypass breathing: 

1) would exhibit an increase in brain temperature due to a decrease in 

heat loss in the nasal mucosa; and 2) cerebral vasodilatation would occur 

as evidenced by an increase in cerebrospinal fluid pressure. Within the 

framework of this·investigation, the following conclusions have been 

formulated: 

1) The cessation of air flow over the nasal passages caused a 

decrease in heat loss from the venous blood of the nasal mucosa, 

when the sheep breathed through the tracheal bypass canula (not 

via the nasal cavity). The brain temperature rose concurrently. 

2) Conversely, the air flow over the nasal passages caused an 

increase in heat loss from the venous blood of the nasal mucosa, 

when the sheep breathed normally through the nasal cavity. The 

temperature of the.brain decreased concurrently. 

3) These results, then, are evidence of the important role of 

normal nasal breathing in the control of cerebral arterial blood 

temperature. 

4) Although several investigators have associated cerebral vaso-

dilatation with an increase in cerebrospinal fluid pressure, 

this experiment was unable to conclusively demonstrate this 

correlation due to insufficient data for analysis, in particular, 

the parameter of systemic arterial blood pressure of the experi-

mental· sheep. 
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APPENDIX: ·ILLUSTRATIONS 

' I 
I 



Figure 1. The location of implanted intracranial thermistors 
at the cerebral arteries in the sheep (Getty, 1975. 
Courtesy of W. B; Saunders Co.) 

A Desired site of thermistor 

B Sheep No. 53 

c Sheep No. 37 

D Sheep No, 150 

E Sheep No .• 76 

F Sheep'No.· 174 
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CAUDAL COM-
MUNICATING A. 

FIG . 1 The location of implanted intracranial thermistors 
at the cerebral arteries in the sheep. 
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FIG. 3 A llEPRESENTATIVE PART OF A TRIAL MADE ON ONE: SHEEP. 

A~ on n•sal breathing 



Figure 4. Upper respiratory (tracheal) bypass canula 
(modified from Kluger and D'Alecy, 1975) . Solid 
arr ows denote bypass breathing with insert (A) ; 
broken a rrows denote normal breathing with 
insert (B) (manufactur ed by the work shop of the 
Engineering Research Institute, Iowa State Uni -
versity, Ames, Iowa) 

A Bypass insert 

B Flow-through insert 

c Cranial tubal extension 

D Caudal tubal extension 

E Body 

F Cap 

G Leur lock needle w~th cap 
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FIG. 4 UPPER RESPIRATORY (TRACHEAL) BYPASS CANU LA 
(MODIFIED FROM KLUGER AND D'ALECY, 1975). 
SOLID ARROWS DENOTE BYPASS BREATHING 
WITH INSERT (A); 
BROKEN ARROWS DENOTE NORMAL BREATHING 
WITH INSERT (B). 
A - BYPASS INSERT 
B - FLOW-THROUGH INSERT 
C - CRANIAL TUBAL EXTENSION 
D - CAUDAL TUBAL EXTENSION 
E - BODY 
F - CAP 
G - LEUR LOCK NEEDLE WITH CAP 



fig, 5 A SCHEMATIC ILLUSTRATION OF THE SITE 
FOR THE INSERTION OF THE CATHETER INTO 
THE CEREBELLOMEDULLARY CISTERN. 

A - SKIN B - NUCHAL LIGAMENT 
C - REcrus CAPITIS DoRSALis MAJOR M. 
D - REcrus CAPITIS DoRsALIS MrNoR M. 
E - DORSAL ATLANTOOCCIPITAL MEMBRANE 



Figure·6. A dissected sagittal section of the cranial cavity 
showing the location of a thermistor in relation 
to the cerebral arterial circle (right side = 
rostral; left side = caudal) 

A Thermistor 

B Caudal cerebral artery 

C Arterial branch to the rost.ral 
mesencephalic tectuin 

D Rostral cerebellar artery 

E Caudal communicating artery 





Figure 7. A sutured site around a cerebellomedullary 
catheter on the dorsal surface. of the neck 
of a sheep 






