
Use of sucrose-gap to measure the membrane potentials of 

the smooth muscle cells of the guinea pig thoracic duct 

by 

Kathleen J. Kovacs 

A Thesis Submitted to the 

Graduate Faculty in Partial Fulfillment of 

The Requirements for the Degree of 

MASTER OF SCIENCE 

Department: Veterinary Anatomy, Pharmacology 
and Physiology 

Major: Physiology 

Signatures have been redacted for privacy 

Iowa State University 
Ames, Iowa 

1978 

1204919 



INTRODUCTION 

REVIEW 

ii 

TABLE OF CONTENTS 

Functions of the Lymphatic System 

Movement of Lymph 

Characteristics of Vessels 

Membrane Potential 

Previous Lymphatic Studies 

MATERIALS AND METHODS 

Thoracic Duct 

Sucrose-gap 

Solutions 

RESULTS 

DISCUSSION 

BIBLIOGRAPHY 

ACKNOWLEDGMENTS 

APPENDIX: THEORETICAL BASIS FOR SUCROSE-GAP 

Page 

1 

3 

3 

4 

7 

10 

15 

18 

18 

19. 

22 

23 

30 

35 

40 

41 



1 

INTRODUCTION 

Although smooth muscles show great diversity in their 

properties, there are three physiologic characteristics of 

smooth muscle that occur in general. (1) Smooth It\usc les' can 

maintain slow, sustained contractions with a mintmUIU of 

expended energy. (2) They have exclusively autonomi,c moto;i: 

innervation. (3) smooth muscles all show a ce;!.'tai.n. amount of 

basal resting tension on which cont;ractionsare supe:r;iimposed 

(Marshall, 1974). Several years ago, .it was· proposed that 

smooth muscles be classified into two groups - unita:i.'ymuscles 

and multi-unit muscles - according to cer·tain phy'siolqgic 

properties (Bozler, 1:941) • A characteristic of unitary muscles· 

is the presence of pacemaker areas which initiate spontaneous. 

activity in the tissue which spreads throughout the whole 

muscle causing it to act like a single unit. 'Multi-unit 

muscles do not spontaneously contract and are no;!.'rnally acti.~ 

vated by multiple motor nerves in more than one reg'ion . . 
[Marshall, 1974). 

The lymphatic system plays a significant role in th.e 

fluid exchange between blood and interstitium ())iicoll· a,nd 

Taylor, 1977). Histological studies of lymphat.i:c:: vegsels :ihow 

that the walls consist largely of smooth muscle cPfleg'e:r;i 1 

et al., 1967; Leak, 1972). It has been suggested that these 

smboth muscles are of the unitary type and serve to propel 
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lymph throughout the lymphatic system (Mislin, 1966). 

Despite evidence of such an intrinsic mechanism for lymphatic 

contractility (Florey, 1927; Smith, 1949; Mislin, 1966), 

there have been very few electrophysiological studies of 

lymphatic vessels. Knowledge of the electrical properties of 

the smooth muscle cells of lymphatics could lead to better 

understanding of the functioning of the lymphatic system. 
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REVIEW 

Functions of the Lymphatic System 

The lymphatic system is a group of vessels which function 

in conjunction with the blood circulatory system. It trans-

ports to the blood stream, the large molecules, including 

protein, which leak from the blood vessels, those which pass 

through the lining of the gut, and those released by various 

tissues. It also serves to remove excess fluid accumulated 

during intense tissue activity (Casley-Smith, 1967). 

To perform its various functions, the lymphatic system is 

composed of three components: (1) an interconnected group 

of capillaries which collect lymph; (2) larger lymphatic 

vessels which return lymph to the bloodstream, eventually 

emptying into the great veins of the neck; and (3) lymph 

nodes which filter lymph (Cooper and Schiller, 1975). 

The thoracic duct is the largest vessel of the lymphatic 

system. It returns the lymph from most of the body to the 

bloodstream. It serves to drain all of the body except the 

right side of the head, neck and right thoracic limb; these 

drain into the right lymphatic duct (cranial cervical node) , 

in the guinea pig. In the guinea pig there are usually two 

thoracic ducts, one on each side of the dorsal aspect of the 

aorta (Cooper and Scli.diller, 1975). 
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Movement of Lymph 

To accomplish its functions, the lymphatic system must 

have some mechanism by which it propels lymph through the 

lymphatic vessels. Several mechanisms have been suggested to 

explain lymph movement. Earlier, it was usually assumed that 

/ the regulating factor controlling the flow of lymph through 

the thoracic duct was the difference between the positive 

abdominal pressure and the negative intra-thoracic pressure 

(Acevedo, 1943). It has since been suggested that limb and 

skeletal muscle movement may affect lymph flow and composition. 

It was found that thoracic duct lymph flow increased during 

passive limb movement and anaesthesia caused suppression of 

lymphatic return of fluid and proteins in the dog; an effect 

attributed to immobilization (Schad and Brechtelsbauer, 1977). 

Lymph flow has also been associated with a change in trans-

mural pressure (McHale and Roddie, 1976) or in hydrostatic 

pressure in the lymphatic segment (Hargens and Zweifach, 

1977). 

Some neurogenic regulation of lymph flow has also been 

suggested. In 1882, it was observed that electrical stimula-

tion of mesenteric nerves caused constriction of.lacteals; 

stimulation of splanchnic nerves caused dilatation of 

lacteals; and stimulation of the caudal end of the divided 

vagus nerve caused dilatation of the cisterna chyli (Bert and 
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Laffont, 1882). In 1894, stimulation of the distal end of 

the left splanchnic nerve was found to cause dilatation of the 

cisterna chyli (Camus and Gley, 1894). In 1927, Florey ob-

served that stimulation of the vagus caused diminution in the 

amplitude of contractions in the mesenteric lacteals of the 

rat and guinea pig; while stimulation of the left splanchnic 

nerve caused an increase in the rate of beats (Florey, 1927). 

In .1943, Acevedo found evidence of nerves in the walls 

of lymphatic vessels (Acevedo, 1943). But there was an even 

earlier detailed description of fine nerve endings in and 

around the walls of large lymphatic vessels, in particular 

the thoracic duct of the dog (Quenu and Darier1 1887). Ace-

vedo observed that stimulation of the vagus nerve caused a 

constriction of the thoracic duct in. cats (Acevedo, 1943). 

Later, spasms were observed in the lymphatics of a dog's leg 

during electrical stimulation of the lumbar sympathetic 

chain (Rusznyak, Foldi and Szab6, 1950). Browse (1968) 

observed that stimulation of the lumbar sympathetic chain 

caused an increase in lymphatic pressure in the hind limb 

of a dog. 

Although autonomic innervation has been shown to in-

fluence lymphatic vessels, the.re is evidence that the move-

ment of lymph is not exclusively controlled by neur0 genic 

mechanisms. Rhythmic contractility of lymph vessels was 
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seen in the mesenteric lymph vessels in the rat and guinea 

pig (Florey, 1927). Florey concluded that the rhythm resided 

in the lacteal wall itself since regular contractions con-

tinued for one-half to three-fourths hour after cessation of 

breathing. In 1935, Pullinger and Florey fed a guinea pig 

fat, killed it rapidly, opened the thorax and pulled the lungs 

aside; they observed spontaneous contractions of the thoracic 

duct. In 1949, Smith also noted the intrinsic nature of 

the lymphatic contractions when the vessels remained actively 

contractile for 30 to 45 minutes after the death of an animal 

during the experiment. His experiments suggested that the 

movemen.t of lymphatic vessels, in those animals with spon-

taneous lymphatic contractility, is associated directly with 

the transport of lymph. He claimed that the rate of con-

traction and rate of formation of lymph are directly related, 

and the contractions are stimulated by an increase in intra-

luminal pressure. 

In 1961, Mislin showed that the valved segment of a 

lymph vessel constitutes an autonomous functional unit, 

which was called a lymphangion. From his investigations of 

the structural-functional connections between the mesenteric 

lymph vessels, he suggested that the lymphagions are a 

contractile apparatus with an autonomous automaticity. He 

further concluded that the lymphagion is controlled by myo-

genic and neurogenic mechanisms (Mislin, 1966). 
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Spontaneous rhythmic contractility has been observed in 

many varieties of lymphatic vessels, for example, in the 

mesenteric lymph vessels of the rat and guinea pig (Florey, 

1927; Mislin, 1966; Hargens and Zweifach, 1977); in bovine mes-

enteric lymph vessels (Mawhinney and Roddie, 1973; McHale and 

Roddie, 1976; Azuma, Ohhashi and Sakaguchi, 1977); in the main 

lymphatic vessels of rats and guinea pigs (Pullinger and Florey, 

1935; Mandryko, 1975; Orlov, Borisova and Mundriko, 1976); 

the most peripheral lymphatic vessels of rats, mice and 

guinea pigs [Smith, 1949); in human lymphatics (Kinmonth 

and Taylor, 1956); and in sheep lymphatics (Hall, Morris and 

Wooley, 1965). This spontaneous contractility has been 

suggested as an intrinsic mechanism for the transport of 

lymph (Hall, et al., 1965). 

There has also been data suggesting that lymphatic 

contractions are induced by increased tension in the layer of 

smooth muscle ·encircling the vessel, since it was found that 

a rise in intraluininal pressure and stretching of the 

lymphatic wall are associated with contractions (Smith, 

1949; Hargens and Zweifach, 1977). 

Characteristics of Vessels 

Like blood vessels, the larger lymphatic vessel walls 

consist of three layers: intima, media and adventitia. 

The intimal layer is composed of endothelial cells (Leak, 
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1972). The media is composed entirely of muscle bundles en-

closed in collagen tissue (Pfleger, et al., 1967). The 

vascular wall of blood vessels is composed mostly of smooth 

muscle cells arranged in a helical fashion. In the tunica 

media of the major lymphatic vessels, including the thoracic 

duct, the smooth muscle cells are fusiformed cylinders with 

tapering ends. The cells' fine structure is distinguished by 

numerous myofilaments ranging in widths from 60 to 80 A 
(Leak, 1972). Between the intima and media a network of 

longitudinally arranged, loosely interlaced elastic fibers, 

is found; in the thoracic duct, the elastic membrane is not 

continuous, but occurs in bundles, as in large veins (Pfleger, 

et al., 1967; Leak, 1972). 

The third and outermost layer, the adventitia, is com-

posed of loosely arranged collagenous fibers which intersperse 

with each other and pass into the surrounding connective tissue 

(Pfleger, et al., 1967). This layer also contains nerves 

and nutritional blood vessels (Leak, 1972; Pfleger, et al., 

1967). 

The structural similarities between blood and lymph 

vessels suggests the possibility of similar properties. How-

ever, there are also features of lymphatic vessels which 

distinguish them from blood vessels. Some characteristics of 

lymphatic vessels not found in blood vessels are: (l) a 



9 

basket-like arrangement of muscle bundles in the media; (2) 

less pronounced development of elastic tissue; (3) wider 

and more irregular lumen; (4) loose structure of connective 

tissue in the wall of lymphatic vessels, and (5) a system of 

anc,horing filaments terminating on the endothelial wall to 

bind the lymphatic endothelium to the adjoining interstitial 

areas (Pfleger, et al., 1967·; Leak, 1970). Therefore, one 

might also expect some differences in the properties of blood 

vessels and lymphatic ves.sels. A study on bovine mesenteric 

arteries, veins and lymphatics confirms this. Serotonin 

caused constriction in all three vessels. But, overall, the 

lymphatics shortened, the arteries lengthened and the veins 

first lengthened, then shortened (Williamson, 1969). 

Williamson (1969) suggests that these responses and others 

may be related to the arrangement of smooth muscle fibers in 

the walls of the vessels. As stated by her, the lymphatic 

smooth muscle fibers are irregular and arranged loosely, the 

arteries contain only circular fibers, and the muscle wall 

of the vein consists of an inner circular coat and outer 

longitudinal bundles. 

Because of the similarities between blood vessels and 

lymph vessels and because of the paucity of information on 

the· electrophysiological properties of lymphatic smooth 

muscles, it is useful to look at the electrophysiology 

studies that have been done on the smooth muscles of arteries 
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and veins for indications of what might be expected from simi-

lar studies in lymphatics. Resting membrane potentials and 

action potentials have been measured under various conditions. 

Effects of norepinephrine and increased extracellular potas-

sium on electrical and/or mechanical activity have also 

been studied. Electrophysiological properties are found to 

depend on drug concentration, ion concentration, type of 

tissue and the species of origin. 

Membrane Potential 

The most common electrophysiological parameter which is 

measured in vascular smooth muscle is the membrane potential. 

There are two techniques by which this measurement can be 

made, the microelectrode method and the sucrose-gap tech-

nique. Measurements of resting membrane p0.tentials show 

great variability. For example, ·in the portal vein of the 

guinea pig a mean of -37 mVwas measured with microelectrodes 

(Ito and Kuriyama, 1971). But measurements in the rabbit 

portal vein were between -40 and -50 mV with the sucrose-gap 

technique (Holman, 1969). A wide range, -30 to -65 mV, of 

measurements was found in the rat portal vein. (Funaki and 

Boh.r, 1964) • 

Different arteries in the same animal also do not always 

have similar resting membrane potentials. For arteries in 

the frog tongue, the range was -55 to -75 mV with a mean of 
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-64.7 mV, but the same researcher measured resting potentials 

in the arteries in the skin of the lateral abdomen of the frog 

and found a range of -35 to -50 mV with a mean of -43.6 mV 

(Steedman, 1966). These recordings were made with micro-

electrodes. A sucrose-gap measurement of resting potential in 

the sheep carotid artery yielded recordings with a mean of 

-61 mV (Keatinge, 1964). 

Drugs, such as.norepinephrine, may have various effects 

on vascular smooth muscle, depending on the tissue and the 

dose. When norepinephrine was applied to the portal vein of 

the rabbit, at doses between 100 to 300 µg/liter (Holman, 

1969) and to the portal vein of the rat, at a dose of 100 

µg/liter (Johansson, et al., 1967), similar responses were 

obtained. In both, continuous spiking was observed. But at 

higher concentrations, different results were obtained. 

Doses of .5 to 2 mg/liter depressed spike activity in the 

rabbit portal vein, and in some, only a maintained depolariza-

tion, no spike activity, was observed (Holman, 1969). A 

similar response was seen with a dose of 10 mg/liter in the 

rat portal vein (Johansson, et al., 1967). 

A comparison of different tissues in the same animal 

may show different responses to the same drug. Low doses, 

2 x 10-B (3.39 µg/l) to 10-7 M (16.9·µg/l) of norepinephrin~, 

induce tension without depolarization in the rabbit pulmonary 

artery (Casteels, et al., 1977). This response is similar to 
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that of sheep carotid artery to a dose of 25 µg/l of 

norepinephrine (Keatinge, 1964). But in rabbit mesenteric 

veins, low doses of norepinephrine cause an increased 

frequency of action potentials concomitant with a rise in 

tension (Cuthbert and Sutter, 1965); a response which is 

similar to that of turtle veins at doses of 1 µg/ml to 

100 µg/ml of norepinephrine (Roddie, 1962). 

Responses of arteries to higher doses of norepinephrine 

resemble the responses of veins. A dose of 2.5 mg/100 ml of 

norepinephrine caused rapid depolarization followed by con-

tractions in the sheep carotid artery (Keatinge, 1964). A 

similar response, increased tension development and depolari-

zation of cells, occurred in rabbit pulmonary artery to 

doses between 2.5 x 10-7 M (4.2 µg/100 ml) and 5 x 10- 6 M 

(85 µg/100 ml) (Casteels, et al., 1977). 

The effect of increased external potassium (tenfold 

increase) on rabbit pulmonary artery (Casteels, et al., 1977) 

is similar to the effect of a 5.4-fold increase on rabbit 

mesenteric veins (Cuthbert and Sutter, 1965). In both, the 

effect is depolarization of the membrane ·and an increase 'in 

contractile activity. However there is a minimum depolariza-

tion which must occur in order to elicit the contractile activ-

ity. In the rabbit pulmonary artery, .the· minimum depolariza• 

tion is 4 mV (Casteels, et al., 1977), and in the· rabbit 

mesenteric veins, the minimum is 6 mV (Cuthbert and Sutteri, 
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1965). Sometimes, the amount of depolarization can be used 

to quantify the amount of tension or force developed. For 

potentials between -45 mV and -18 mV after depolarization, 

it has been found that a potential change of 6 mV effects a 

detectable change ;i.;n fq;i::ce develqplllent in the dc;1<;r ·ca~c:ltld 

artery (Siegel, et al., 1976). Keatinge (1964) found a 

great effect with addition of potassium-rich solution, an 

abrupt onset of depolarization which continued for up to 15 

minutes until the potential was almost 0 mV. And in all 

samples tested, the potential at this stage was always near 

0 mv, never more than +10 mV nor less than -10 mV. There were 

also persistent contractions which he found would continue 

for 24 hours if the arteries were left in the potassium-rich 

solution. 

The degree of electromechanical coupling, that is, the 

extent to which mechanical changes are dependent on electrical 

potential changes, is of interest in vascular smooth muscle. 

There is some uncertainty about whether contractions caused 

by drugs in vascular tissue are always accompanied by an 

action potential discharge. Barr (1961) recorded no action 

potentials after treating the dog carotid artery with 

epinephrine. Similarly, no depolarization of cells nor action 

potentials were record~d in the main pulmonary artery after 

tre_atment with noreplmephrine even though contractions were 

observed (Su, Bevan and Ursillo, 1964). However, in a later 
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study, Somlyo and Somlyo (1968) observed that norepinephrine 

depolarizes and causes oscillations of the membrane of 

these cells. But since the quantitative correlation between 

the tension development and depolarization was limited, and 

since drug-induced contractions may also occur in depolarized 

tissues, this type of excitation-contraction coupling was 

called pharmacomechanical coupling by these authors. 

Cuthbert and Sutter (1965) found that low doses of 

norepinephrine caused an increased frequency of action po-

tential discharge concomitant with a rise in tension caused 

by the drug. But this correlation held only for the initial 

stage of the drug effect, after which the action potential 

frequency fell to or below the control value even though the 

tension remained elevated. Higher doses (10 mg/l) of 

norepinephrine caused an even more marked dissociation be'tween 

excitation and contraction. Steedman (1966) found when 

high doses (10- 3 g/ml) of epinephrine or norepinephiine were 

dripped on arteriole vessels of the frog and rat, .that the 

vessels constricted vigorously, but only rarel'y was spike 

activity recorded. 

It is usually the case that elecitromecihahical coupling 

occurs under normal conditions as spontaneous contracti.ons 

or low do.ses of drugs. Roddie (1962) found that ·each action 

potential usually initiated an all-or-none· contraction when 

norepinephrine, in low doses (1 µg/ml to 100 \;g/ml), .wai; 
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applied to turtle arteries and veins. Holman (1969) found 

that waves of depolarization usually occurred in a one-to-

one relationship with spontaneous contractions. In the dog 

carotid artery, it was found that membrane potential and 

mechanical tension have a qualitatively equal dependence on 

external potassium concentration (Siegel, et al., 1976). 

This implies that in the dog carotid artery, tight electro-

mechanical coupling exists.· 

Previous Lymphatic Studies 

Some of the properties present in blood vessels may also 

be present in lymphatic vessels. And although few studies 

have been made on lymphatic vessels, some electrical-

mechanical properties have been described for some of the 

vessels. The number of electrica·l studies that have been 

made on lymphatic vessels is very small. The first was 

done in 1966 by Mislin, who recorded, for the first time, 

extracellular action potentials of guinea pig mesenteric 

lymphatics with the use of suction electrodes. However, he 

did not s.tate the level of the resting membrane potential 

nor did he describe the shape of the action potential. Ten 

years later, Orlov, et al. (1976) made simultaneous electrical-

mechanical recordings of the main lymphatic vessels of rats. 

They recorded spontarieotis rhythmic contractions at a rate of 

.12/minute, a much h~gher rate than recorded in bovine 
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mesenteric lymphatics, 2/minute, by Mawhinney and Roddie in 

1973. Orlov, et al. (1976) recorded resting membrane po-

tentials of -25 mv in the rat thoracic lymphatic duct, and 

-35 to -37 mV in the rat mesenteric vessels. Another 

electrical-mechanical study of lymphatics was made on bovine 

mesenteric lymphatic vessels where an average resting po-

tential of -32. 7 mV was recorded (Azuma, et al., 1977). 

Action potentials in a one-to-one correspondence to 

contraction waves were also recorded in bovine mesenteric 

vessels (Azuma, et al., 1977; Kirkpatrick and McHale, 1977). 

Only one group has applied a high concentration of 

potassium to lymphatic vessels, in a study made of rat 

thoracic lymph vessels. It was found that a depolarizing 

solution of potassium chlor.ide did not induce contractions 

but influenced spontaneous activity (Orlov and Borisova, 

1974). They found the response to be dose-dependent. Low 
' concentrations (10 mM) caused an increase in amplitude and 

frequency of the contractile waves, but high concentrations 

(20 mM and above) suppressed spontaneous contractions. 

These r~sponses are simiiar to responses of vascular smooth 

muscle to potassium-rich solutions (Cuthbert and Sutter, 1965; 

Casteels, et al., 1977). 

Effects of norepinephrine on lymphatic s.mooth muscle ):la:Ve 

been found to be dose-dependent. Mawhinney and Roddie 
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(1973) found that norepinephrine increased the frequency and 

decreased the amplitude of contractions of bovine mesenteric 

lymphatics. The smaller doses, 1 ng/ml (1 x 10-9 g/ml) to· 

5 ng/ml, only slightly increased the rate of contraction and 

slightly reduced the amplitude. But a higher dose, 25 ng/ml, 

caused the frequency of contraction to increase to 10/min 

from a baseline frequency of only 2/min. Also at this high 

frequency,. the contractions had small amplitudes and could be 

seen only as a "ripple on the trace" (Mawhinney, et al., 

1973). Similar results were obtained 

vessels of rats where a concentration 

for the main lymphatic 
-6 of 1 x 10 M (.169 ¥ 

-6 10 g/ml) of norepinephrine caused contracture and an in-

creased frequency of spontaneous contractions (Orlov, et al., 

1976). Mislin (1966) also found that norepinephrine, in con-

centrations of 10- 8 M (.169 x 10-8 g/ml) to 10-9 M (.169 x 
-9 . 

10 g/ml), had a positive inotropic effect on guinea pig 

mesenteric lymphatic vessels. A recent study on the effect 

of norepinephrine on lymphatic vessels corroborates the 

previous studies. A concentration of 5 x 10-7 g/ml of 

norepinephrine applied to bovine mesenteric lymphatics caused 

a s.light but long-lasting depolarization with frequent action 

potentials, followed by a gradual increase in smooth. muscle 

tone and the initiation of phasic contractions in one-to-one 

correspondence to the action potentials (Aztima, et al., 1977). 
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MATERIALS AND METHODS 

Thoracic Duct 

Prior to each experiment, a guinea pig was fed for two 

or more days with guinea pig pellets that had been soaked 

in olive or corn oil. This caused the thoracic duct to be 

distended with lymph, and consequently more readily visible 

for dissection. Without prior oil feeding, the duct was diffi-

cult to identify since it was quite small (less than .1 mm 

in diameter). With lymph distention, the duct was about .2-

.. 5 mm in diameter and was white and bulbous in appearance. 

Male guinea pigs weighing at least 900 g. were used. It was 

found that identification and dissection of the thoracic duct 

was very difficult, even after oil feeding, in smaller animals. 

Euthanasia was performed by placing the animal in a 

chamber which was then filled with co2 . An incision approxi-

mately midway between the vertebral column and the sternum was 

made to gain entry into the thoracic cavity. This allowed 

exposure of the thoracic ducts, normally one on each side, 

dorso-lateral to the aorta. Two ligatures (as far apart as 

possible) were placed around one of the ducts, the aorta and 

the immediately adjacent tissue. Removal of this mass of 

tissue and dissection of the thoracic duct from this tissue 

was·. done using a dissecting microscope. During dissection, 

the tissue was placed in warm (37°C) saline which was 
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oxygenated with 95% o 2 and 5% co2 • It was.necessary to have 

a strip 3~ to 4 cm long for the recording. 

After recording, the presence of the lymphatic vessel 

was verified by standard histological techniques. The tissue 

was fixed in buffered formalin, embedded in paraffin, sec-

tioned, and stained with hematoxylin and eosin. 

Sucrose-gap 

The sucrose-gap method for recording transmembrane po-

tentials with external electrodes was introduced by Stampfli 

(1954). The theoretical basis for this technique is explained 

in the Appendix (see Bure~, Petra~, and Zachar, 1967 for addi-

tional information) . This method was used for bundles of 

myelinated nerve fibers in 1954 (Stampfli and Straub), and for 

nonmedullated fibers (Ritchie and Straub, 1956, 1957). It 

was first applied to smooth muscle in 1958 (Burnstock and 

Straub) . 

The sucrose-gap apparatus is illustrated in Figure 1. 

This. technique gives satisfactory results provided movement 

and f,lbw artifacts are eliminated. Consequently, the tissue 

was .fixed at the Junctions between solutions and mixing of 

solutions was prevented by use of dental periphery wax or 

pla~ticine. One end of the thoracic duct was continuously 

superfused with saline at 37°C. The saline was heated to 

37°.c on a heater-stirrer and heat loss in the flow system 
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was eliminated by circulating hot water around the saline 

line. A thermister was used to measure temperature at the 

duct. The temperature was maintained at 37+.5°C. A 

potassium-rich solution and a solution containing norepine-

phrine were introduced to the recording chamber by switching 

the saline in-flow line to a different container which al-

ready contained the test solutions. The other end of the 

duct was alway9 superfused and depolarized by a potassium-

rich solution. The sucrose was refrigerated.and cooled to 

approximately 10°C before it entered the apparatus. This 

improves the stability and life of the preparations. It was 

passed through a deionizing column (Sybron/Barnstead) before 

use to increase its specific resistance. Silver-silver 

chloride electrodes were connected with the saline and 

potassium-rich outflow solutions through bridges of 3 M KCl 

agar. Micro-manipulators were used to hold the electrodes 

steady once they had been properly placed in the agar bridges. 

The outputs from the electrodes were amplified by a headstage 

preamplifier and signal conditioner (Brockman, 1971), dis-

played on an oscilloscope (Sony-Tekronix 323) and recorded 

on paper using a Hewlett Packard recorder (type 7402A). The 

solutions were pushed through the apparatus at a constant 

rate with a peristaltic pump. 
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Solutions 

The standard saline solution contained (mM): NaCl 133; 

NaHC0 3 16.3; NaH2Po4 1.38; KCl 4.7; CaC1 2 2.5; MgC1 2 .105; 

dextrose 7.8. In making this solution, the last three com-

pounds were added after the solution of the first four had 

been equilibrated with a mixture of 95% o2 and 5% co2 • The 

same gas mixture was bubbled through the solution continuously 

during experiments. The potassium-rich solution contained 

(mM): NaCl 3.3; NaH 2Po 4 1.38; K2so4 89.6; CaC1 2 2.5; dextrose 

7.8; MgC1 2 .105: KHC0 3 16.3. The sucrose solution contained 

318.6 mM sucrose and 7.8 mM dextrose to help survival of the 

tissue in it (Keatinge, 1964). All solutions were made 

using glass-distilled water. The potassium and sucrose 

solutions were made the day before they were used. The 

saline solution was made the day it was used as was the 

solution (2.5 mg in 100 ml) of a,1 norepineph:bine'in·saline. 
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RESULTS 

The thoracic ducts were placed in the sucrose-gap chamber 

and bathed by the three solutions for approximately 15-30 

minutes before recording was begun. The resting membrane 

potentials ranged from -46 mV to -60 mV (mean -52.2 mV, 5 

guinea pigs). In three of the five guinea pigs, the resting 

potential was not steady, but wavered by as much as 7 mV in 

either direction from its mean resting potential during the 

course of the experiment. 

The effects of norepinephrine (2.5 mg/100 ml) were 

varied. In all four cases where it was applied some de-

polarization of the membrane occurred; in one experiment the 

resting potential depolarized 14 mV (see Figure 2). A 

summary of the resting potential effects of norepinephrine 

appears in Table 1. In all cases, superfusing with normal. 

saline caused the resting potential to return to its value 

before the addition of norepinephrine. In some cases it 

appeared that there was some electrical activity present after 

the application of norepinephrine; there were some waves of 

depolarization or apparent spikes, as shown in Figure 3. 

But it is difficult to say whether this activ.ity was of 

biological origin since movements of the system could also 

cause appearance of "spikes" on the recording. But these 

movement "spikes" had a different shape and larger amplitude 

(see Figure 4), than the activity shown in Figure 3. It 
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Table 1. Resting potentials before addition of norepinephrine 
and amount of depolarization after addition of 
norepinephrine (2.5 mg/100 ml) 

Guinea 
pig 

l 

2 

3 

4 

5 

Resting potential 
before 

norepinephrine 

-50 

-54 

-47 to -50 

-54 to -58 

-46 to -60 

Amount of 
depolarization 

14 mV 

9 mV 

4 mV 

5 mv 

would be necessary to do further studies to determine whether 

norepinephrine does indeed cause spike activity in the guinea 

pig thoracic duct. 

Replacement of the saline solution with the potassium-

rich solution (see Materials and Methods section for solution) 

caused depolarization of the membrane in all cases where 

applied. The membrane potential approached 0 mV with respect 



mV 

0 
-25 
-50 
-75 

25 

. -

·------------f~---
3 

Figure 2. The cells show a resting membrane.potential of 
-54 mv. At arrow 1, the rec::or.de:i;-was turned 
off and the norepinephrine test solution 
(2.5 mg/100 ml) started. At arrow 2, the 
recorder was turned on. The application of the 
norepinephrine caused a depolarization of 14 mV, 
from -54 mV to -40 mv. The time between arrow 2 
and arrow 3 was 60 seconds. 

o~--------------~ 
-25 ---------

mv -50-..-=;;;;;;;;::::::;;;;~--..;;;;;;;;;=~=-....,...._.~~--~~ 
-7 5 ----.!1.:f'---- -----'tjf-'----'--~ 

1. 2 

Figure 3. .The cells show a resting membrane potential of 
-55· mv.. At arrow 1 the_ ·norepinephrii:J.e test 
solution (2.5 mg/100 ml) was applied. At. 
arrow 2, 45 seconds later, the cells had 
depolarized by 5 mv to -50 mv. Following 
application of the norepinephrine, the 
recording was less steady, showing possible 
spike activity. 
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0 
-2S rk- ,,4 mV • ' "- I -so j --7S 10 sec. 

Figure 4. Movement "spikes" from mechanical interference 
to the system 

0---....---,...-
- 2 S --U-il-J;-__ JI-~li~--~~=---E-~=-F- --~~~-~-_:-=- -

:il!V- S 0 --- B,--- G -- - - - ---- ----
-7s-=-~~~~~~~~~~~~~~~~___.,___~---r-~~~~~~ 

Figure S. Depolarization caused by replacement of saline 
with potassium solution. Resting potentials 
were: (A) -SS mV before potassium solution; 
(Band B') -4S to -SO mV after lS min; (C) -30 

mV with spikes after 30 min; (D) -18 to -20 
mV after 4S min; (E) -lS to -17 mV after 60 
min; (F) -14 mV after 80 min:. After replace-
ment with saline, resting potentials were: 
(G) -46 mv after 3 min; (H) -SS to -60 mv 
after 20 min; (I) -S7 to -60 mv after 2S min, 
Readings of 0 mv correspond tQ the recorder 
being "turned off. · 
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to time.· There were also, at times, small waves of depolari-

zation present with amplitudes of 2 to 5 mv (see Figure 5), 

which may have been due to biological electrical activity. 

Again, further study is required. In one case (guinea pig 415, 

in which the resting membrane potential varied from -46 to 

-60 rnV), after depolarization to -14 mV with the potassium-rich 

solution, the potassium solution was replaced with the normal 

saline solution. Within 3 minutes, the membrane potential 

returned to its smallest previous resting potential, -46 mV. 

After 20 minutes, it returned to its largest previous·· resting 

potential, -60 mV as shown in Figure 5. 

Although no spontaneous action potentials were observed 

during sucrose-gap recording, there was evidence of spontaneous 

contractions. These contractions were observed in the dead 

animal after the thoracic cavity had been opened and the tho-

racic duct exposed. After approximately one-half hour of 

observation, most of the lymph had passed through the thoracic 

duct. 

To test the sucrose-gap apparatus for validity in re-

cording resting membrane potentials, various small experiments 

were performed. Since the sucrose-gap technique had previously 

been appfied to bundles of myelinated nerve fibers (Stfuripfli 

and Straub, 1954), and to nonmedullated fibers (Ritchie 

and Straub, 1956, 1957), nerve bundles from separate 

experiments were placed in the sucrose:-gap chamber. 
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Potentials of -60 to -80 mV were obtained, as was depolariza-

tion of the membrane when the potassium-rich solution re-

placed the saline. Replacement of the potassium-rich solu-

tion with saline caused the potential to return to its 

original resting potential. 

Other experiments were performed to test whether the 

potentials measured were due to junction potentials or 

electrode differences. A tissue which was known to be 

dead, a nerve soaked in alcohol, was placed in the sucrose-

gap apparatus. The result was a very small potential, in one 

case, it was -6 mV, and in another, +6 mv. It is likely that 

these values are recording artifacts caused by imperfect 

electrodes or slight mixing of solutions. To eliminate the 

effect of mixing of solutions, in the two cases mentioned 

here, .measurements were also taken between the electrodes 

with no tissue and no sucrose in the chamber. Again, both 

readings were very small, -2 mV in the experiment which meas-

ured -6 mV with the dead tissue; and 0 mV for the second case. 

In a third ·experiment, the potential measured between 

saline and potassium lines with no sucrose nor tissue in the 

middle chamber was -10 mv. In.this case, another test for 

junction potentials was-p~rformed. An agar bridge was placed 

between a petri dish holding the saline and one holding the 

potassium-rich solution, the measurement was -4 mV. Simi-

larly, both electrodes were placed in the potassium-rich 
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solution through agar bridges, and the measurement was again 

-4 mv. The sucrose-gap apparatus was also tested with an agar 

bridge replacing the tissue. In a case where the measurement 

between the saline and potassium lines with no tissue nor 

sucrose had been O mV, with an agar bridge, the measurement 

was, very small, +12 mV. However, if plasticine was used in 

place of wax to block the leakage of solutions between 

chambers, this measurement dropped to +6 mV. Also, with the 

~ame electrodes, with dead tissue again, the measurement was 

+6 mv with wax, and 0 mV with plasticine. This suggests 

plasticine would serve as a better block to leakage than 

wax. 

It is absolutely necessary to use agar bridges on the 

electrodes. They were eliminated at one point during the 

course of the experiments because of mechanical difficulty irt 

keeping the electrodes positioned in the agar. But this 

gave readings of +30 to +50 mv whether there was tissue in 

the chamber or not. This problem was eliminated by re-

designing the flow system to allow the use of micromanipu-

lators to hold the electrode-agar bridge in contact with 

the solutions. 
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DISCUSSION 

The results show that the resting potential for the 

guinea pig thoracic duct is in the range of -46 mV to -60 

mV, using the sucrose-gap method. These values are larger 

than those of previous electrical recordings of lymphatic 

vessels. Orlov, et al. (1976), recorded a resting potential 

of the rat thoracic duct as -25 mV, and for mesenteric 

llQ!lphatics as -35 to .,..37 mV. A.z~ et ·.a,r. Cl977.J.. it\ea:su'x'ed a, 

resting potential of -32.7 mV for bovine mesenteric 

lymphatic vessels. There are several possible reasons that 

these results gave a larger measurement than previous ones. 

First, it is possible that these measurements give a true 

indication of .the resting potential of the guinea pig 

thoracic duct. • As was pointed out earlier, resting poten-

tials in vascular tissue may vary greatly between different 

blood vessels of the same animal, and between the same 

tissues of different animals. So a recording of -25 mV 

in the rat thoracic duct (Orlov et al., 1976) may not be an 

exact indication of what the resting potential of the guinea 

pig thoracic duct should be.. It is also possible that a 

small part of the measurement was contributed by junction 

potentials, since it was found that the reading between the 

electrodes with no tissue or with dead tissue ranged from -10 

mV to +6 mV. Subtracting these values, puts the measurements 
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more in the range of previous studies of lymphatics. 

The results show that one of the effects of norepine-

phrine (2.5 mg/100 ml) was a depolarization of the membrane 

by 4 to 14 mV. In the only other study of the effect of 

norepinephrine on the electrical activity of lymphatic 

vessels (Azuma, et al., 1977) a long-lasting depolarization 

was also seen, but it was only by 2 mV. However, a lower con-

centration (.05 mg/100 ml) of norepinephrine was applied. 

In the other study of electrical activity of lymphatics, in-

eluding the rat thoracic duct, no mention of depolarization 

of the membrane in response to norepinephrine was made al-

though a similar dose (l.69 mg/100 ml) was applied (Orlov, 

et al., 1976). Depolarization of the membrane is also a 

response seen in vascular muscle. The same dose (2.5 mg/100 

ml) caused depolarization by 10 to 15 mV in sheep carotid 

artery (Keatinge, 1964) and a similar dose (l.O mg/100 ml) 

of norepinephrine also caused a depolarization in the membrane 

of rat portal vein (Johansson, et al., 1967). 

The results also show that norepinephrine (2.5 mg/100 

ml) may have caused some electrical activity in the membrane, 

although the evidence is not complete. In bovine mesenteric 

lymphatics, Azuma, et al. (1977) found that noradrenaline 

(.05 mg/100 ml) caused frequent action potentials in a one-

to-one correspondence to phasic contractions. Even though 

action potentials were not substantiated by the results, it 

I 

I 
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is possible that contractions were present. Orlov, et al. 

(1976) found that norepinephrine (.02 mg/100 ml) caused con-

tracture in the main lymphatic vessels of rats, including 

the thoracic duct. Cuthbert and Sutter (1965) found-that high 

doses (1.0 mg/100 ml) of norepinephrine depressed action 

potential activity, in rabbit mesenteric veins, even though 

tension remained elevated. It is possible that a similar 

response occurred in these experiments. It is also possible 

that action potentials were occurring somewhere in the 

thoracic duct, but not in the segment from which these re-

cordings were made. 

The results show that the potassium-rich solution caused 

depolarization of the membrane to near 0 mV, possible 

electrical activity, and a return to normal with saline solu-

tion. This is similar to the effect of KCl on rat thoracic 

lymph vessels, in which depolarization occurred, although con-

tractions were not induced (Orlov, et al., 1974). An eight-

fold increase in external potassium caused initially con-

tinued spike firing and contraction, and depolarization which 

continued after spike activity ceased; switching back to 

normal solution caused repolarization and return of spikes 

and phasic contractions in rat portal vein (Axelsson, 

et al., 1967). But the guinea pig responses measured here 

are most like those of sheep carotid artery in which de-

polarization resulted, most of it occurring in the first five 
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minutes, but slowly continuing for about 10 more minutes until 

the potential was close to 0 mV (Keatinge, 1964). Keatinge 

also found that contractions persisted if the arteries were 

left in the potassium-rich solution. The similarity between 

the guinea pig results and the results of the experiments 

described above ends in the time involved in the depolarization 

of the membrane. In the sheep carotid artery experiments, the 

depolarization occurred within 15 minutes, whereas the guinea 

pig thoracic duct depolarization took over an hour. One 

possible reason is a slower replacement of the saline with 

the potassium-rich solution because of differences in system 

design and because there was a certain amount of connective 

tissue still adhering to the surface of the thoracic duct. 

To gain more complete knowledge of the electrophysio-

log ical properties of the guinea pig thoracic duct, further 

studies may be carried out. The effects of variations in 

external potassium concentration could be studied by use ·of 

graded increases in potassium concentration in the solution 

applied. Norepinephrine could also be added in graded 

amounts to determine its effect at various concerit:rations·, 

A simultaneous :recording of mechanical and electri.cal 

activity would also further enhance.understanding of the. 

resting propel'ties of the guinea pig thoracic duct, .as well 

as knowledge of its spontaneous activity, .responses' to in-

J 
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creased external potassium concentration, and responses to 

norepinephrine. Electrical recordings made in a different 

segment of the thoracic duct from which these recordings were 

made might show more electrical activity.· Application of 

other drugs could also give more insight into the properties· 

of the guinea pig thoracic duct. 
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APPENDIX: THEORETICAL BASIS FOR SUCROSE-GAP 

I---•• E' 

where: 

Em = transmembrane potential 

E' =·potential measured with extracellular electrodes 

A 

I 

= external resistance 

= internal resistance of the cells of the thoracic 
duct 

= area of tissue which has been depolarized 

= current 

By Kirchhoff's laws, in this diagram: 

but 

E' 

= I (R +R.) e J. 

= IR so e 

~ E = m 

I = E'/R e 
E' R(R +R.) e e J. 



R e E' = CR. + 
l. 

The term 
Re 

R.+R 
i e 
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is called the short circuiting factor. 

If R is made e very high with respect to R., the short 
l. 

circuiting factor approaches 1. This allows E' and Em to 

be approximately the same. 




