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I. INTRODUCTION 

Ever since the possibilities of using deuterium and tritium to 

fuel a fusion reactor were realized, it has been known that such a 

reactor could only be practical if more tritiwn is produced than 

consumed. Deuterium presents no problem as a fuel since economical 

means, such as distillation, chemical exchange, or electrolysis, can 

be used to extract the small amount of naturally occurring deuterium 

from water. Unlike deuterimn, however, tritium does not exist in 

nature and, therefore, has to be bred from other materials. 

Several elements can be used to breed tritium, but lithium is 

by far the best choice , Lithium has two naturally occurring isotopes, 

6 7 Li, which is in abundance of 7%, and Li, which comprises the re-

mainder. 

Tritium is bred from lithium in two different ways. One way 

is by the 6Li(n, t) reaction, which is most prominent at low neutron 

energies. The other way is by the 7Li(n, tn) reaction, which occurs 

at high neutron energies. The purpose of this study is to find the 

optimum concentrations of 6Li and 7Li that will produce the greatest 

tritium breeding rate. 

The method that was used was multi-group neutron diffusion theory. 

An infinite slab of lithium was used to idealize a breeding blanket for 

a fusion reactor. 'nae group fluxes were calculated for slabs of 

100 cm and 200 cm and for varying concentrations of 6Li and 7Li using 

the multi-group diffusion code, FAIMOS. Ten groups were incorporated 

into the code for flux calculations. From the calculated fluxes, the 
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tritium breeding rate in each group was found and all rates were added 

together to arrive at a total tritium breeding rate. 'nle total tritium 

breeding rates were found for different concentrations of 6Li in each 

slab, and from these calculations an optimum concentration was deter-

mined. 

It is emphasized that no attempt was made in this study to design 

or suggest building materials [ 11, 12] . A process for the concentration 
6 analysis not deter-Li and an economic of such a process were also 

mined. It is hoped that the results of this study could further 

design techniques of a tritium breeding blanket around a D-T fusion 

reactor core. 

of 
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II. REVIEW OF LITERATURE 

George Bell of Los Alamos Scientific Laboratory in 1965 investi-

gated the process of breeding tritium from lithium [2]. He approached 

the problem by using a twenty-five group DSN transport code with 

cylindrical geometry. Molybdenum was chosen for the container walls 

because of its excellent refractory properties. Bell utilized the 

6Li(n, t) reaction, and for this reason, incorporated beryllium as a 

moderator in the blanket. Beryllium was chosen because of its ability 

to moderate the neutrons into lower energy groups where the 6Li(n, t) 

c ross section ·is greatest, and also because of its (n, 2n) neutron 

producing reaction. Flibe, 2LiF · BeF2 , was used as the coolant 

for several reasons. Since pure molten lithium is a fairly good 

conductor of electricity, problems might arise from its use around 

the magnetic lines of force used to contain the fusion plasma. Using 

flibe as a coolant and beryllium as the moderator, a breeding ratio of 

1.79 was calculated. Bell concluded the following: ( 1) the use of 

flourine in flibe reduces the breeding ratio; (2) beryllium is a good 

moderator to use in the blanket; (3) if pure lithium is used, the 

blanket would be too thick; and (4) flibe is a good coolant . 

In 1967, Donald Steiner [14] of Oak Ridge National Laboratory 

did a similar study using the transport code, ANISN, incorporating 

100 groups with slab geometry. Steiner took a slightly different 

approach, however, making these observations; 

(1) Niobium would be a better material for container walls 

because of its better welding characteristics . 
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(2) Lithium would be a better coolant to use than flibe becaus e 

of its lower costs and super ior heat transfer properties . 

The lithium coolant channe ls could be cons tructed to run 

parallel to the magnetic fie ld lines containing the plasma 

and, thereby, minimize the e l ectromagne tic resistance to the 

flow . 

(3) Although beryll ium gives good neutron multiplication and is 

an e xce llent moderator , it is ver y expensive and undergoes 

severe r ad iat ion damage. 

Steiner usc•d two different approaches to blanket design. One 

was to assume, t hrough proper design of coolant channe ls, that the 

electromagnetic r esistance to the flow could be min imized, and as a 

result , pure lithium could be used throughout the blanket . The second 

design was conser vative in that flibe was u sed to c ool the i nner wall 

while lithium was us ed throughout the rest of the blanket . 

Through his calculations, Steiner r eached these conclus ions: 

(1) Very good breeding ratios can be achieved withou t the use 

of beryllium as a moder ator . This can be explained from t he 

fact that without beryl lium the f lux is s hifted to higher 

energies. This, of cour se, decr eases the production of 

tritium from the 6Li(n , t) reaction, but at the same time 

increases the production of tritium from the 7Li (n, tn) 

reaction. It must also be r emembered that while the 6Li(n, t) 

reaction c ompletely absorb s t he neutron, the 7Li(n, tn) 

reaction releases anothe r neutron that possibly can go on 

to produce more tritium. 
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(2) If flibe is used rather than lithium, the breeding is con-

siderably reduced. This can be attributed to the inelastic 

scattering of high energy neutrons b y flourine and results 

in a reduction of tritium b r eeding from the high ene rgy 
7Li(n , tn) reaction. 

Steiner also did an economic analysis of the different blanket designs. 

The most promis i n g design in thi s r espect seemed to be a blanket of 

l i thium, withou t beryllium, and n i obium r a ther than molybdenum as 

container wall material . 
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III. THEORY 

Diffusion theory is an approximation to the more exact transport 

theory. Diffusion theory does not take into account the angular distribu-

tion of the flux, and in this respect, is less exact than transport 

theory. For certain problems, diffusion theory can provide a good 

approximation to the more exact transport solution . 

Consider an arbitrary volume in which neutrons are diffusing in 

a steady state condition. The equation that describes the neutron 

flux at any point r and energy E within the volume is 

V • D(E) V¢(r, E) - Et(E)¢(r, E) + S(r, E) = 0, (1) 

where D(E) is the diffusion coefficient, ¢(r, E) is the neutron flux, 

/t(E) is the total removal cross section, and S(r, E) represents the 

neutron source. 

Because of the energy dependence, Eq. (1) is extremely difficult 

to use. In order to get Eq. (1) in a useable form, the multi-group 

diffusion method is incorporated. The central idea behind multi-

group diffusion theory is that the entire energy range of the neutrons 

is divided into energy groups. The neutron balance in group i is then 

J
E~ 

[V · D(E)V¢(r, E) - Et(E)¢(r, E) + S(r, E)]dE = 0, 

EiJ (2) 

where Ei~ and Eiu are the lower and upper energy boundaries of group i, 

respectively. Equation (2) can be simplified by describing the di f-

fusion of neutrons in each energy group by an average group flux 

given as 
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(3) 

where the integration is over the energy range of group i, and 

AEi = Eiu - Eit is the energy width of group i. The neutron balance 

in group i can then be given by the multi-group diffusion equation 

where 

S(r, E)dE 

AEi 

(4) 

i i which is the neutron source for group i, and D and Lt are the dif-

fusion coefficient and total removal cross section of group i, 

respectively, which will be defined in more detail later in this 

section. 

To get Eq. (4) in a more workable form, it is best to look at 

each term individually. Neutrons can be lost from group i by leakage, 

which is represented by Div2¢i(r). Also, neutrons can be removed 

from group i by absorption or scattering, either elastically or in-

elastically, to lower energy groups . Thus, 

where Ls(i - j) is the macroscopic scattering (elastic and inelastic) 

cross section from group i to group j. The sununation is over all 
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energy groups lower than i, and N is the lowest energy group. Neutrons 

can appear i n group i by scattering from higher energy groups or by 

neutron sources such as f i ss i on . Therefore, 
i -1 N 

Si(r) = ~ (Es( j - i) ¢j (r)) + Xi~ [(v~f)j ¢j(r)], 

where E (j - i ) i s the macroscopic scattering cross section into group i 
s 

from group j with the summation over all energy groups greater than i, 

t [ (vEf)j ¢j(r) J i s the total number of neutrons produced from fission in 
j =l 3 . 
all groups per cm per s e cond, and x1 is the fraction of fission neutrons 

which appear i n group i. 

Thus, a bette r and more workable form of Eq . (4) is 

N 

l: 
j=i+l 

(5) 

Equation (5) represents a set of N, second order, coupled, differential 

equations which nrust be solved simultaneously. 

Before solving Eq. (5), the constants need to be defined. Each 

of the constants Di, Ei a' 
i and (vEf) represents an average value in 

group i, weighted by the flux as a function of energy within each 

group . Thus, if the flux can be represented by a separable function 

of space and energy , 

J:. D(E) ¢ ( E) dE 

J:. ¢ (E) dE 
(6) 

where the limits of integration are the lower and upper energy bounds 

of group i. Likewi se, 
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l /,a (E) <i>(E) dE 

h ~(E)dE 

9 

= 

V(E) Ef (E) ¢(E) dE 

J: ¢(E)dE 

(7) 

(8) 

In some instances ¢(E) can be considered constant over the energy group 

interval [ 9] , and 

Di i 
Ei L 

a 

and 

= 

as a result, Eqs. 
D(E)dE 

6E . 
l. 

E (E)dE a 

6Ei 

V(E) Ef(E)<lE 

6Ei 

(6), (7), and (8) become 

(9) 

(10) 

(11) 

where 6Ei is the energy width of group i. The constant Xi = ~ X(E)dE, 

where X(E) is the prompt neutron spectrum normalized so that 

~m X(E)d(E) = 1. 
0 

The transfer coefficients, E (i - j), can be de fined in different s 
ways, depending upon how the groups are chosen. Probably the simplest 

way js to choose the groups such that neutrons from one energy group 

can only be scattered into the next lowest energy group. In this 

respect the groups are directly coupled. Thus, we have E (i - j) = 0, s 
for j > i + 1. The criterion to calculate E (i - i + 1) can be il-s 

lustrated by the use of Fig. 1. In order that groups i - 1 and i be 
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GROUP 
I - 1 

GROUP 

Fig . 1. Criterion for direct coupling of groups. 

directly coupled, a neutron in group i - 1 cannot be scattered past 

E2. This condi t ion can be met if 

Li > t n E t E 
a.El 

- n -
El 

> tn 1 
a. , 

where Li is the lethargy width of group i and a. is the max imum frac -

tional amount of energy a neutron can lose in a single collision . 

Alpha can be calcu l ated from a.=[ (A -l)/(A+l)] 2 ,wher e A is the 

atomic mass of the diffusing material . If this criterion is met, 

the transfer coefficients can be calculated in the following way. 

The total number of scattering collisions in group i per cm3 per 

second is i i L: ¢ (r) , where s 
Li _h r: s (E) ¢(E) dE _ l_i _r:_s_cE_)_d_E 

s l ¢(E) d (E) 6Ei 
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If ~i is the aver age increase in lethar gy per collision, then it takes 

Li /Si collisions to t raver se the ith ene r gy group. Here, 

i 1 '"' i s = -. L.J i;h L: h ' L l. .£, .L S.L 

s 
where the sununation ove r .£, represents different nuclear species, and 

a. s..e = 1 + 1 _ a. .tn a.. 

In terms of A, 

1 - (A - 1) 2 .tn 
2A (A+ 1) 

A - 1 

Th f 11 b ?i~i rll(r) /Li 3 d 1 . ere ore, there wi e ~ ~ ~ neutrons per cm per secon eavi.ng s 

group i and entering group i + 1, or 

), ( i .... i + 1) s 

siL:i 
s (12) 

When more than one or two energy groups a r e used, Eq. (5) can 

be so l ved by use of a computer. FAIMOS [3], a one-dimens i onal, 

neutron diffusion code, is used to solve Eq. (5). Basically , the 

code solves the equation, 

i -1 
x is(r) + I: 

j=q 
[ L: ( j - i) ¢\ r ) ] , s 

where Di is the diffusion coefficient in each group, 

J,i = L:i + Di(B2)i + tiL:th + ~ L: (i --+ j), 
t a p . ~ 1 s 

J=l.+ 

L:i is the absorption cross section in each group, (B 2) i is the a 

transverse buckling in each group, l.th is the poison cros s section in p 
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the therma l group, ti is the ratio of the poison cross s ection in 

group i to the poison c ros s section in the thermal group, L (i ~ j) s 

is t he transfe r coefficients from group i into group j , g i s the 

minimum of 18 or i + 8, q is the maximum of 1 or i - 8, x i is the 

integral of the fiss i on spectrum over the energy range of group i, and 

S(r) is the fission source normalized so that one neutron is produced 

in the entire fissionable volume . Thus, 

S(r) 

where 

and V is the fissionable volume. 

A description of the finite difference equations and how they are 

used in FAIMOS can be found in r eference [ l ] . Also, a comple t e 

description of the input formats to be used i n FAIMOS a r e given in 
' 

reference [ 3] . 

FAIMOS is designed so that a microscopic cross section libr a r y 

cannot be used . As a result, macroscopic c ross sections must be put 

into the code. The following section describes how the macro-

scopic cross sections and other inputs into FAIMOS were formulated . 
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IV. PROCEDURE 

A. Microscopic Cross Sections 

Following are described the microscopic cross sectional data 
6 7 for Li and Li as the cross sections vary with energy. It might 

be pointed out that the cross sections presented here do not include 

all of the reactions possible with either isotope of lithium. There 

is, 6 for example, a Li(n, 2n) reaction at about 14 . 1 MeV. Since 

this reaction only appears at very high energy levels and is small, 

about 70 mb, compared with other reactions, about 500 mb, the 
6 Li(n, 2n) cross section was ignored. Due to its small value of 

approximately 10 mb, the 6Li(n, p) reaction was also ignored. With 

7L. 
1. ' above 10 MeV an (n, 2n) and an (n, d) reaction were also ignored 

because of their small values of approximately 50 mb and 10 mb, 

respectively [6, 13]. 

The scattering cross sections for both 6Li and 7Li are treated in 

the following manner. The total scattering cross section, which 

includes both elastic and inelastic scattering, is treated entirely 

as elastic scattering. This may seem at first to be a poor assumption, 

but upon close examination of the scattering cross sections (see Figs. 4 

and 5), it can be seen that the total scattering is entirely elastic 

until approximately 1 MeV. From 1 MeV to 15 MeV, the elastic scattering 

differs only a few tenths of a barn from the total scattering cross 

section. Thus, to ease calculations, the assumption was made that 

scattering from either isotope of lithium will be entirely elastic. 

Below 0.1 MeV, the 6Li and 7Li total microscopic scattering cross 
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sections are approximately constant at 0.6 barns and 0.85 barns, 

respectively. This is conmen for scattering cross sections of light 

nuclei such as lithium. 

The 6Li(n, dn) reaction and 7Li(n, tn) reaction are interesting 

in that a neutron is released as a product. The 7Li(n, tn) reaction 

(see Fig. 2) is endothermic with a Q-value of - 2.47 MeV and, thus, a 

threshold energy of 2.82 MeV. The 61i(n, dn) reaction (see Fig. 6) 

is also endothermic with a Q-value of - 1.47 MeV and a threshold 

energy of 1.72 MeV. Both reactions must be treated in a special 

way, since these reactions resemble inelastic scattering rather than 

absorption or elastic scattering. Each of these reactions involve 

a three body problem. In the center of mass system, unlike the 

elastic, two body problem, the resulting products do not have a 

unique energy and momentum [8]. In particular, the neutron produced by 

such a reaction can have a spectrum of energies ranging from zero 

to a maximum energy, which is determined by the individual masses of 

the products. For example, the three products of the 7Li(n, tn) 

reaction are tritium, helium, and a neutron (see Fig. 8). The maximum 

energy that the neutron can have is when the tritium nucleus has zero 

energy and momentum, and the helium nucleus conserves momentum with 

the product neutron. If E1 is the total energy in the laboratory 

system, considering the 7Li atom at rest, the total energy available 

in the center of mass s ystem is 
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•1 n 
BEFORE COLLISION AFTER COLLISlON 

Fig. 8. Maximum neutron energy in the 7Li(n, tn) reaction. 

The energy available for motion of the products is E c 
7 

- Q = S EL - Q 

where Q is the Q-value of the reaction. Since this reaction is 

endothermic, it only occurs at high energies . As a round number, let 

EL = 10 MeV. The energy available for motion of the particle is 

then 

1.. E - Q :::::;2. (10) - 2 . 5 MeV:::::; 6.25 MeV. 8 L 8 

Using conservation of momentum and energy, 

and 
1 _2 1 2 2 ~~ + 2 ~eVHe:: 6.25 MeV, (13) 

where Mn, Vn' ~e' and VHe are the masses and velocities of the 

neutron and helium nucleus in the center of mass system, respectively. 

Thus, from conservation of momentum 
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and 

Substituting V~e into Eq. (13) and using Mn Ft:J 1 and ~e A:J 4, 

.!. v2 + ! v2 
2 n 8 n 

ntus, the neutron has 1/2 
112 + l/S = 4/5 the total kinetic energy, or 

about 5 MeV. ntus, a 10 MeV neutron, which lies in the second group, 

can be scattered with an energy from 0 to 5 MeV. This means it is 

possible to scatter into any lower energy group . A similar calcula-

tion can be made with the 6Li(n, dn) reaction obtaining similar 

results. 

It can be seen that predicting probabilities and energy spectra 

7 of neutrons scattered from each group by the Li(n, tn) and the 
6 Li(n, dn) reactions is almost an impossibility. Therefore, in 

order to treat the 6Li(n, dn) and the 7Li(n, tn) reactions, a simpli-

fying assumption will be made. It will be assumed, according to 

calculations in the last example, that the energy spectrum of the 

scattered neutron is flat and that it extends from zero to the next 

lowest energy group (see Fig. 9). This assumption will hold for both 
6 7 the Li(n, dn) and the Li(n, tn) reaction. Thus, a neutron in group i 

which undergoes a 7Li(n, tn) or 6Li(n, dn) reaction can be scattered 

into any lower energy group with a probability depending only upon 

the width of the energy group in question. Thus, the probability of 

landing in group i - 1 would be 6Ei_1/E
0

, the probability of scattering 
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into group i - 2 would be 6E. 2 /E , and so on, where 6E. 1 and 6E. 2 1- 0 1- 1-

are the energy widths of group i - 1 and i - 2, respectively. E 
0 

is the lower energy bound of group i. It might be noted that in 

Fig. 9 the graph is drawn such that 

E 

1 ° Probability dE = P E = 1. 
0 0 

0 

Using this criteria, the calculated probabilities are shown in Table I. 

A close look at Table I will help justify the assumption that the 

probability energy distribution is fl3t for the scattered neutrons 

from the 7Li(n, tn) reaction and the 6Li(n , dn) reaction. It can be 

seen that the first groups are much wider compared to the lower 

energy groups. Therefore, no matter how the probability d istribution 

really looks, a large probability will exist for the neutrons to be 

scattered into t he next few lower energy groups. It should also be 

pointed out that the 7Li(n, tn) reaction and the 6Li(n, dn ) reaction 

are fairly small compared to the other reactions and occur at high 

energy ranges. Thus, it is felt that little error will be intro-

duced by incorporating the flat probability distribution into the 

problem. (Later calculations showed a difference of about 2% in the 

tritium breeding rates when a slightly different type of distribution 

was used.) 

The 6Li(n, t) reaction and 7Li(n, y) reaction are absorption 

reactions. The 6Li(n, t) reaction (see Figs. 2 and 3) is exothermic 

and from thermal energies to approximately 100 Kev has a strong 

l/V dependence. The Q-value for the 6Li(n, t) reaction is approximately 
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Table I. Scattering probabilities for the 7Li(n, tn) reaction and the 
6Li(n, dn) reaction 

Source group (i) Scatter group (j) Pr obability (Pj) 

1 2 0 . 520 
1 3 0.274 
1 4 0.164 
1 5 0.0342 
1 6 0 . 00678 
1 7 0.0 
1 8 0 . 0 
1 9 0 . 0 
1 10 0.0 

2 3 0.571 
2 4 0 .343 
2 5 0 .0714 
2 6 0. 0141 
2 7 0. 0 
2 8 0 . 0 
2 9 o.o 
2 10 0.0 

3 4 0 . 800 
3 5 0 . 167 
3 6 0 . 033 
3 7 0 . 0 
3 8 0.0 
3 9 0.0 
3 10 0 . 0 

4 5 0 . 833 
4 6 0.165 
4 7 0 . 0165 
4 8 0 . 0 
4 9 0.0 
4 10 o.o 

8.54 MeV. The 7Li(n, Y) reaction is also exothermic and has a Q- value 

of approximately 2. 03 MeV [ 10]. 

Of course, the most important reactions are the 6Li(n, t) reaction 

and the 
7
Li(n, tn) reaction. These arc the only types of reactions 
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that occur in lithium which yield tritium as a product. It is these 

reactions that will be used later to calculate the tritium breeding 

rates in the lithium slabs. 

Table II illustrates the different lithium reactions considered 

in this work and how they are used throughout. 

Table II . 6Li and 7Li reactions 

Type and 
Isotope Reaction description 

6Li (n, t) Exothermic 
absorpLion 

61i Total scattering Elastic 
scattering 

6Li (n, dn) Endothennic 
inelastic scattering 

7ti (n' t n) Endothennic 
inelastic scattering 

7ti (n, 'V) Exothermic 
absorption 

7Li Total scattering Elastic 
scattering 

Q-value 
(MeV) 

+ 8. 54 

- 1. 47 

- 2. 47 

+ 2.03 

Eth 
(MeV) 

1. 72 

2.82 

In order to calculate the group microscopic cross secti ons, the 

groups have to be determined. The main criterion in the selection of 

the groups was that all groups were to be directly coupled. Thus, 

all group energy widths in tenns of lethargy had to be greater than 

tn(~). When a was calculated for 611 and 7ti, the following values 

were obtained: 
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a.6 0.509, and 

a.7 0.562. 

6 1 7 1 Thus, for Li, Ln ~ = 0.675, and for Li, Ln ~ = 0 .576. It can be 
a.6 a.7 

seen that 6Li puts a more stri ngent requirement on the group lethargy 

widths. This i s to be expected since 61i is a lighter isotope than 

71. 1, and therefore, more energy can be lost in a single scattering 

encounter. If the group boundaries are picked such that their 

lethargy widths are greater than 0.675, each group will be directly 

coupled, regardless of different isotopic contents of the lithium. 

A second major fac tor in the selection of energy groups was the 

resonances in the microscopic cross sectional data. In the case 

of the 6Li(n, t) reaction, 61i total scattering , and 7Li total 

scattering, a large resonance occurs at about 0 .25 MeV (see Figs. 2, 

4, and 5). For this reason, a group was chosen f rom 0.10 to 0.60 MeV, 

includi ng these resonances i n one group. A small resonance also 

appears in the 7Li microscopic scat tering at about 5 MeV (see Fig. 5). 

A group from 3 to 7 MeV was chosen to i nclude this resonance. It 

might be noted that the lethargy width in each case is larger than 

0.675. 

Since the first , or highest e ne r gy group, does not have any neutrons 

scattered into it from a higher source, group number one doe s not 

have to obey the criterion for directly coupled groups. Therefore, 

group number one was chosen to include the energy interval 14.6 MeV 

to 15.0 MeV . The r eason for this is that in the fusion process 14.8 MeV 

neutrons are libera ted. These neutrons i mpinge upon the lithium 

blanket. Thus, a reasonable inner boundary condition for the diffus i on 
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equation would be a constant flux of 14.8 MeV. In the group diffusion 

method, however, fluxes of one single energy are not calculated. 

Rather, fluxes oi e nergy groups are calculated. Thus, the appropriate 

inner boundary condition would be : 

¢i(O) 
~ {const anc > 0 for i 1 

0 for i > 1 

It can be seen, then , that a flux of 14.8 MeV neutrons can best be 

approximated by a very narrow group centered about 14.8 MeV. 

Table III illustrates how the groups were chosen. It might be 

noted that 

J,n 
Ei 

u - . ' Ei 
J, 

where Li is the lethargy width of group i and Ei and Ei are the upper u J, 

and lower energy bounds of group i, respectively. 

After the groups have been determined, microscopic cross sections 

have to be calculated for e ach group. The flux as a function of 

energy is a very complicated function when absorption is present. To 

facilitate the calcula tions , the flux as a function of energy is 

assumed to be constant over each group. Thus, 

or 

i a 

i a 

l a (E) ¢ (E)dE 

i </J(E)dE 

l a (E)dE 
=-----6E. 

1 

where ¢(E) is a constant, and 6E. is the group energy width. To 
1 

justi fy the assumption that ¢(E) is constant, two things must be 

(14) 
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Table III. Energy groups and their lethargy widths 

Upper energy Lower energy Lethargl 
Group bound bound width (L ) 

1 15.0 MeV 14.6 MeV 0.0275 

2 14.6 MeV 7.0 MeV 0.735 

3 7.0 MeV 3.0 MeV 0.847 

4 3.0 MeV 0.6 MeV 1. 61 

5 0.6 MeV 0.1 MeV 1. 79 

6 0.1 MeV O. 01 MeV 2.31 

7 10.0 Kev 1.0 Kev 2.31 

8 1.0 Kev 100 ev 2.31 

9 100.0 ev 1.0 ev 4.61 

10 Thermal 

remembered. First, the flux need be only considered constant with 

respect to energy over one group at a time, and not the whole energy 

width of 14.8 MeV. The value of the constant can be different for 

each group . It can be seen then that this approximation is very good 

for narrow groups such as the lower energy groups in Table III. 

Secondly, it should be noted that all cross sections, except for the 
6Li(n, t) cross section, vary little within each group. Thus, if the 

cross section is fairly constant within each group, the flux has little 

effect upon the group cross section. This can be seen in the fol-

lowing. 



i a 
i cr (E) ¢ (E)dE 

h ¢(E)dE 

:::::: cr0 J:. ¢ (E)dE 

J:. ¢(E)dE 

:::::: a 
0 
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where the microscopic cross section a is assumed to be constant over 
0 

group i and is taken out of the intergal in the numerator. 

The group microscopic cross sections are calculated in the fol-

lowing way. It can be seen that the numerator in Eq. (14) is simply 

the area under the cross sectional curve determined by the upper and 

lower energy bounds of group i. Thus, by dividing each group up into 

small intervals and estimating the cross section in each division, 

the area under the cross sectional curve in group i can be calculated . 

By dividing this area by the energy width of group i, an arithmetic 

average microscopic cross section in each group can be determined. 

In Table IV is illustrated the results of the microscopic cross 

sectional calculations. 

B. Group Macroscopic Cross Sections 

From the group microscopic cross sections, the macroscopic cross 

sections to be used in the diffusion equation can be calculated. 

Since the problem necessitates calculations of macroscopic data 



Table IV. Group microscopic cross sections 

(Barns) (Barns) (Barns) (Barns) (Barns) (Barns) 
Group 6Li(n, t) 7Li (n, tn) 6Li scattering 7Li scattering 6Li(n, dn) 7Li(n, Y) 

1 0.0275 0.315 0.82 1.45 0.290 0.120 

2 0.0409 0.405 1.02 1. 72 0.381 0.190 

3 0 . 0905 0.175 1.41 2.06 0.568 0.273 

4 0 . 287 0 .0 1.12 1. 51 0.0525 0.174 

5 1.138 0.0 2. 38 1. 95 0.0 0.0 

6 0 . 948 o.o 0.600 0.850 0.0 0.0 w ..... 
7 2.59 0.0 0.600 0.850 o.o 0.0 

8 7.35 o.o 0.600 0.850 0.0 0.0 

9 27.2 0.0 0.600 0.850 0.0 o.o 
10 845 o.o 0.600 0.850 o.o 0.0 
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with differing atom densities of 6Li and 7Li, it i s convenient to define 

an independent variable 

R 

which is simply the atom density rat io of 6Li t o 7Li. The macroscopic 

i i i cross sections are then~ = N7 (a7 + Ra 6). Using a constant value of 

N7 and specifyi n g a value of R, the macroscopic cross sections used 

in the group diffusion equations can be easily calculated. It might 

be mentioned at this point that another important independent variable 

y, which is defined as the atom percent of 6Li, can be calculated 

f rom R since 

y 
N6 (100) 

N6 + N7 
R(lOO) 
R + 1 

6 7 The Li(n, t) reaction and the Li(n, Y) reaction are the micro-

scopic absorption cross sections. The macroscopic absorption cross 

sections can be calculated for group i by 

l:i 
a (15) 

where a! y represents the 7Li(n, y) microscopic cross section and a!t 
represents the 6Li(n, t) microscopic cross section for group i. 

S . · 1 1 h 6L. d 7L. 1 . · · · imi ar y, t e 1 a n 1 tota microscopic scattering cross sections 

can be used t o obtain the total macroscopic scattering cross section. 

Thus, for group i 

(16) 



33 

i i where a87 and cr86 are the total microscopic scattering cross sections 

for 7Li and 6Li, respectively. 

In order to calculate the transfer coefficients, Si must first be 

calculated. This can be done as follows. 
i i 

S6Ls6 + 'S7Ls7 
Li 

(17) 

s 

where s 6 and 'S7 are the average logarithmic energy decrements for 6Li 

and 7L1' , t . 1 respec i.ve y, 

Li i 
s6 N6° s6 

and 
i i 

J.s 7 Ni1's7 . 
Thus, 

i i 
si 'S6N6° s6 + 'S7N7° s7 

= i i 
N7(0 s7 + Rcrs6 ) 

or 

:Si 'S6Ra!6 + ;1°!1 
i i 

0 s7 + Rcrs6 

s 6 and s 7 were calculated to be 

s6 = 0 . 295, and 

s 7 0.254. 

Thus, 

0.295 Rai + 0 . 254 i 
si a s.7 s6 (18) i i 

0 s7 + RO's6 

The macroscopic transfer coefficients are now ready to be calcu-

lated . It might be remembered that all groups are directly coupled, 
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6 and thus, neutrons which are elastically scattered from the Li and 

7Li total scattering cross sections enter only the group directly 

below. 7 Neutrons that are inelastically scattered due to the Li(n, tn) 
6 and the Li(n, dn) reactions are able to scatter into several lower 

energy groups. Thus, 

~iI:i 
= __ s + 

Li 
E (i .... 

s i + 1) 

sir:i 
= --.-s + 

Li. 
N Pi+l(cri + Rcrnidn), 7 ntn (19) 

where Li is the group lethargy width (see Table III), ~i is the group 

lethargy decrement (see Eq. (18)), ti is the total macroscopic scat-s 
tering cross section (see Eq. (16)), Pi+l is ~he probability of scat-

tering into group i + 1 due to the 7Li(n, tn) reaction and the 6Li(n, dn) 

reaction (see Table I), cri is the microscopic cross section for the ntn 
7Li(n, 
6 Li(n, 

i + 1, 

i tn) reaction, and a d is the microscopic cross section for the n n 

dn) reaction. For scattering into energy groups lower than 

(20) 

for j > i + 1, and Pj is the probability of the neutron landing in 

group j. In Eq. (19) the first term represents the neutrons that are 

scattered into group i + 1 from group i due to elastic scattering, 

while the second term represents neutrons scattered into group i + 1 
7 6 from group i due to the Li(n, tn) reaction and the Li(n, dn) 

reaction. Since the groups are directly coupled by elastic scattering, 

only the neutrons from the 6Li(n, dn) reaction and the 7Li(n, tn) 
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reaction can be scattered into groups lower than i + 1, as is shown 

by Eq. (20). 

Using Eqs. (15), (16), (18), (19), and (20), all macroscopic 

cross sections for a specific value of R can be calculated for use in 

the group diffusion equation. 

C. Diffusion Coefficients 

From Fick's Law the diffusion coefficient is defined as 

D = 
E s 
"7' 3 t 

where Es is the macroscopic scattering cross section and Et is the 

total macroscopic cross section. In deriving the equation, however, 

it was assumed that the scattering was isotropic in the lab system 

and that there was little absorption. Neither of these assumptions 

hold in this problem. 

It is possible, however, to compensate for moderate anisotropic 

scattering by using transport corrections to the diffusion coefficients . 

From methods of transport theory it is found that 

Es ~ [Et +'1t]- 1 + 3Dr.su 2 I: .ln ~ - _1_+_3_D_E_t"'"\j ' 
a E - 2 

t D 

where u is the average value of the cosine of the scattering angle 

in the lab system. An approximation of this equation can be obtained 

by expanding the logarithm in a series of powers of E /E . The a t 

result is 
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4 I:a 
~ /n = 3(I: + I: )I: (1 - -s r + r ) a a s a a s 

(see reference [7], p. 127). 

Since the diffusion coefficient is going to be different for 

each energy group, 

I:i . 
2 = 3(2:1. + 
Di a 

Here I:i is chosen so that a 

I:i i i 
= N7crny + N6CJnt + a 

or 

ri i i = N7(crnY + CJ + a ntn 

i i i i 

l,i 
4 a 

- 5 I:i + 
a 

i 
N7° ntn + i 

N6° ndn 

i 
Rant + i 

Randn), 

' 

where N7 , crnY' a nt' a ntn' 0 ndn' and R are de fined as before. I:i 
s 

(21) 

(22) 

is calculated from Eq. (16) . Using Eqs. (22) and (16) and substituting 

into Eq. (21), all diffusion coefficients for each group and for a 

specific value of R can be calculated. 

The first results of the fluxes and integrated fluxes calculated 

from FAIMOS indicated that the calculations needed to be somewhat 

refined . This could be seen by a close look at the flux of group 1. 

The flux of group 1 should represent a purely exponential decay, given 

by 

= e 

1 -I: r 
t 

(23) 

where r! is the total removal cross section of group 1 and is given 

by 
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1 In this case ¢ (r) represents the uncollided flux. For a slab of 

l i thium of width w, 
w w l </ll(r)dr = L 

If w is large, 

1 1 ¢ (r)dr ~ -
El 

t 

1 - l. r 
t e dr , 

(24) 

1 Thus , by comparing l /E t with the integrated flux of group 1 calculated 

by FAIMOS, an indi cation of the error involved could be seen. 

An example of these results i s shown in Fig. 10. The calculated 

first group flux from FAIMOS and the graph of Eq. (23) are shown for 

R = 0.2 and w = 100 cm. -1 In this case Et = 0.5914 cm 1 and - "" 1.69. 
Et 

It can be seen that the flux calculated by FAIMOS is not in agreement 

with Eq. (23). The integrated flux of group 1 is 2. 95, which is in 

considerable error with the expected result of 1.69. 

This error is due to the i naccuracies of diffusion theory at 

high energies. It is possible, however, to adjust the diffusion coef-

ficient, D1 , and somewhat correct for this error. In this example 

the calculated value of D1 "" 5.15 i s used to obtain the flux in Fig. 10. 

When o1 is adjusted to 1.55, the integrated flux for group 1 is 
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-+-+- Eq. (23) 
-o--o- CALCULATED FROM 

FAIMOS 

5 10 
DISTANCE INTO SLAB (cm) 

Fig. 10. ¢1(r) for R = 0.20 and w = 100 cm. 
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calculated at 1.694, which is i n good agreement with the predicted 

result (see Fig. 10). 

The diffusion coefficient for the first group was adjusted in 

each case until the integrated flux for group 1 was in fair agreement 

with l/~!· This was done by a trial and error manner with three or 

four trials being necessary to adjust D1 to the proper value. Values 

for the diffusion coefficients for all other groups are calculated 

from Eq. (21). 

D. Calculations of Constants for the Diffusion Equation 

A computer program specifically designed to use Eqs. (15), 

(16), (18), (19), (20), (21), and (22) was developed to calculate 

the constants for use in the multi-group diffusion equation. Di, 

~i ~i, ~i and~ (i - j) were calculated using values of 0 < R < 9 in a' s s 

steps of 0.05. A value of N7 = 0.0378 X 10+24 atoms per cm3 , which 

is the atom density of molten lithium at 1300 °F, was used [ 2] . From 

the use of this program, all constants and cross sectional data were 

generated for blankets of 100% 7Li to 10% 7Li and 90% 6Li, or values 

of 0:: y:: 0.90. In order to present typical values of group constants 
i i -i i used in FAIMOS, representative calculations of ~ , ~ , S , D , and 
a s 

~ (i - j) are given in Tables V and VI. Similar data were prepared s 

for other values of R. 
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Table V. Group macroscopic cross sections and constants for R = 0.25, 
or a blanket of 20% 6Li and 80% 7Li 

E1 (cm-1) E1 (cm-1) -i Di (cm) Group i; a s 

1 0.0048 0.0626 0.259 5.02 

2 0.00757 .o .. 0747 o. 259 4.17 

3 0.0112 0.0912 0.260 3.48 

4 0.00929 o. 0677 0.260 4.79 

5 0.0108 0.0962 0.264 3.39 

6 0.00896 0.0378 0.260 8.42 

7 0.0245 0.0378 0 . 260 7.81 

8 0 . 0695 0.0378 0 . 260 6.45 

9 0.257 0.0378 0.260 3.74 

10 7.99 0.0378 0.260 0.204 

E. Tritium Breeding Rates 

In order to calculate the trit i um breeding rate for a specific 

concentration of 6Li and 7Li, the group fluxes must first be calcu-

lated . The multi-group diffusion Eq. (5) was used for this purpose. 

i Lithium, however, is not fissionable, and, therefore all X are 

zero. The multi-group diffusion equation applicable to lithium is 

then 

i-1 
+ ~ (~s(j ~ i)¢j(r)) = O. 

j=l 
(25) 
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Table VI. Transfer coefficients for R = 0.25 or a blanket of 20% 6ti 
and 80% 7Li 

(i) (j) -1 Source group Receiving group r: (i ..... j) (cm ) s 

1 2 0.597 

1 3 0.00401 

1 4 0.0024 

1 5 0.000501 

1 6 0.000103 

2 3 0.0371 

2 4 0.00649 

2 5 o. 00135 

2 6 0.00267 

3 4 0.0376 

3 5 0.0020 

3 6 0.00395 

4 5 o. 0114 

4 6 0.0000819 

4 7 0.00000819 

5 6 0.0142 

6 7 0.00426 

7 8 0.00426 

8 9 0.00426 

9 10 0.00213 
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Since ten groups were chosen, Eq. (25) represents ten simultaneous, 

linear, second order differential e quations in one dimension. Twen ty 

boundary conditions are needed to solve Eq. (25). The ten inner 

boundary conditions are 

i l 1 for 
i 1 

</J (0) = (26) 
0 for 1 < i < 10 

2 Equation (26) closely represents a flux of one neutron per cm per 

second at 14 . 8 MeV incident upon the inner face of the infinite slab . 

The outer boundary conditions are set so that no return current 

enters the slab [5] , or that 

0, for 1 < i < 10, (27) 

where w is the thickness of the slab and di is the extr apol ated boundary 

for group i. FAIMOS automatical l y calculates each di. 

Upon solving Eqs. ( 25) , (26), and (27) simultaneously, unique 

solutions to ten f luxes as a f unction of position throughout the 

lithium slab are computed . The multi - group computer code FAIMOS 

is used to obtain the solutions to the group fluxes . 

The output o f FAIMOS gives the values of the ten group fluxes 

as they vary throughout the lithium bl anket. FAIMOS also calculates 

the integrated f luxes over posit ion, or 

(IF) i = Lw ¢'cr)dr, 

0 

whe r e ( IF) i is the integrated f lux of group i and w is the width of 

the blanket. i The average value of </J (r) through the slab can then 

be f ound by 
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Lw i ¢ (r)dr 
= ------w 

where ¢i is the average value of ¢i(r) over the width of the lithium 

blanket. 

From the average group fluxes, the breeding rate resul ting f rom 

the 7Li(n, tn) reaction can be calculated by, 

BR = 7 

10 L: i = l 

h "'i i d "'i ~i . h b d . t . i w ere ~ntn = N7ontn' an ~tn~ 1s t e ree 1ng ra e 1n group . 

The breeding rate resulting from the 6Li (n, t) reaction is 

10 =L: 
i=l 

"'i i "'i rl.i i h where ~nt = N6ont' and ~nt~ i s the breeding rate n group i. T e 

total tritium breeding rate is then 

BRtotal = BR7 + BR6 , 

10 

L: 
i=l 

[ (E\ + n n 
L:i ) ¢i] 
nt ' 

10 

L: L (O~tn i -i (28) N7 + Rn-nt) ¢ J . 
i=l 

Since ~i and ~ i are functions of R and ¢i is a function of R ntn nt 
and w, the total tritium breeding rate is also a function of R and w. 

By setting the width of the blanket as constant and calculating the 

total tritium breeding rate for different values of R, an optimum 

breeding rate can be found. A computer program was written that 

used Eq . (28) to calculate the total tritium breeding rates. 
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V. DISCUSSION OF RESULTS 

The total tritium breeding rates are calculated for different 

concentrations of 6Li in a 100 cm slab and a 200 cm slab. Figures 13 

and 14 show the results of the total tritium breeding rate calculations 

as a function of concentration of 61i for both slab widths. 

Before discussing Figs. 13 and 14, some interesting results can 

be obtained by looking at Table VII. In Table VII the ranges in the 

percentage of the total breeding rate for each group are given for 

both slab widths. It can be seen that in each slab width, between 

80% and 90% of the tritium is bred in groups 1, 2, 3, and 5. The 

Table VII. Ranges in the percent of total breeding rates for each 
group in 100 cm slab and 200 cm slab. Ranges were taken 
from 0% to 30% 6Li 

Relative breeding rates Relative breeding rates 
Group for w = 100 cm (%) for w = 200 cm (%) 

1 21. 0-26. 3 29.1-33.9 

2 43.4-54.6 38.1-55.1 

3 9.5-11.0 8. 4-11.0 

4 1. 2-7. 3 0.0-6.4 

5 2. 8-11. 3 0.0-10.0 

6 2.0-5.8 0.0-5.3 

7 1.5-1.7 0.0-2.3 

8 0.3-0.6 0. 0-1. 2 

9 0.0-0.1 0.0-0.3 

10 o.o-o.o 0.0-0.0 
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breeding in groups 1 and 2 is due mostly to the 7Li(n, tn) reaction. 

5 b d · d . 1 6L . d . th 1 t f In group the ree ing is ue entire y to 1, an is e resu o 

the resonance in the 6Li(n, t) cross section at about .26 MeV (see 

Fig. 2). It can also be seen from Table VII that there i s virtually 

no tritium bred at thermal energies. This surprising result stems 

from the fact that most of the neutrons are absorbed before becoming 

th ermalized. 

It can be concluded, therefore, from Taple VII that the choice 

of groups used i n this paper is a somewhat poor one. It can be 

seen that about 50% of all the tritium breeding occurs in group 2. 

This, of course, is due to its large energy width which was neces-

sary in order to make al l groups directly coupled . For future 

calculations, it would be advisable to choose the groups so that the 

energy range from 3 to 15 MeV i s split into narrow groups, thus, doing 

away with directly coupled groups. The lowest energy group could 

probably be made from 0 to 1.0 MeV since hardly any breeding was done 

in this energy range . 

I n Figs. 11 and 12 a representative example of the group fluxes 

is shown for R 0.20 in t he 100 cm slab and the 200 cm slab, 

respectively. Only groups 1, 2, 3, 4, 5, 6, and 7 are shown since 

hardly any tritium is bred in the energy ranges below group 7 . From 

Fi gs. 11 and 12 it can easily be seen why virtually no tritium is 

bred below group 7 s i nce all fluxes below this are decreased by a 

factor of 1000 or more. Another conclusion that can be drawn from 

Fig . 12 i s that increasing the width of the slab beyond 100 cm is 

almost pointless i n regard to the total amount of tritium being bred. 
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6 Fluxes of groups 1-7 for w = 100 cm and 16.7% Li concentra-

tion (R = 0.20) . 
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It can be seen that the group fluxes which do the most breeding are 

decayed to very low values after 120 cm. This would tend to suggest 

that virtually all the breeding is done in the first 100 cm; and any 

added thickness beyond this would breed very little more tritium. 

One of the first things noticed by comparing Figs. 13 and 14 

is the relative heights of the two peaks . In the 100 cm slab the 

peak is at a value of 0.819 X 10- 3 tritons per cm3 per second, while in 

the 20( cm slab the peak is at a smaller value of 0.343 X 10- 3 tritons 
3 per cm per second. No conclusion, however, can be drawn from this 

result. The reason for this lies in the way in which the fluxes in 

each of the two widths are normalized . The group fluxes are nor-

malized so that 

w 

~ S (r)dr 1, 
0 

where 
10 

S(r) = ~ VL~¢i(r). 
i=l 

The same (VLf)i are used for each slab width and for each 61i con-

centration. Using the same (VLf)i in each 61i concentration assures 

that the group fluxes in a single width are normalized equally. 

When w is incre ased from 100 cm to 200 cm, however, the size of the 

limits of integration on the source are doubled in size . Since the 
i values for (VLf) do not change, and since an integrated source 

3 of l neutron per cm per second is calculated in each width, the 

group fluxes for the 200 cm slab have to be relatively smaller than 

the group fluxe s in the 100 cm slab. This, of course, results in 
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lower breeding rates for the 200 cm slab. It might also be pointed 

CA.It that the relati.>nship between increasing the integration limits and, 

thereby, decreasing the group fluxes is not linear. In other wor ds, 

the breeding rates in the 200 cm slab cannot be doubled and then 

compared with the breeding rates in the 100 cm slab. It would be 

logical, however, to expect a slightly greater breeding rate in the 

200 cm slab since the leakage would be less. Also, more lithium is 

available for tritium production in the larger slab . 

In Figs. 13 and 14 the position of the optimum tritium breeding 

rate occurs at 5% 6Li in the 200 cm slab and a t 0% in the 100 cm 

slab. This result offers some interesting possibilities. From 

Figs. 13 and 14 one can see that the optimum concentration of 6Li 

for breeding purposes can be determined by ad justing the wi dth of 

the slab. If t his is true, it might be possible to design a 

breeding blanket with a proper width to give optimum breedi ng condi-

tions for natural lithium. This would require no enrichment of 7Li 

and could, of course, be a great economical asset to the fusion reactor. 

The results of Fig. 12, though, show that except for increasing the 

optimum concentration of the blanket very little increase in the total 

tritium breeding would occur by increasing the width of the slab 

past 100 cm. Thus, the ideal width will depend upon several factors. 

One would be the economics of an enrichment process for lithium. 

Another important consideration would be the physical problems as -

sociated with placing a blanket of lithium near the magnetic field 

lines which confine the plasma. Problems in this area could restrict 

the maximum blanket width which could be used . Therefore, an ideal 
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blanket width would have to take into account the effect of all these 

factors. 

These results, regretfully , should be applied with reservat i ons. 

Tite inadequacies of diffusion theory at high energies may have in-

jected considerable errors into the calculations since the differential 

scattering cross section is highly anisotropic. Also, due to the way 

in which the groups were chosen, which resulted in 50% of the tritium 

being bred in group 2 , even more accuracy is sacrificed. Upon further 

analysis of the data it was found that assuming N7 to be constant was 

also a source of error . The correct treatment would be to use 
24 3 N = 0.0378 X 10 atoms per cm , where 

t 

and thus, 

(29) 

This , of course, will affect all macroscopic cross sections and dif-

fusion coefficients. 'nle effect upon Figs. 13 and 14, due to the 

changes that this correction will make on the macroscopic cross s ections, 

will only involve a scaling factor. 'nle effect due to the errors in 

the diffusion coefficient , however, will not be scaled. A recalculation 

of n1 using Eq. (29) for R 0.20 resulted in n1 = 6.20 cm. This i s 
1 somewhat different than D = 5.15 cm as shown in Fig . 10. Since the 

group diffusion coefficients are only used in leakage calculations, 

it is felt that the change in N7 by using Eq. (29) will not affect 

the results appreciably. Also, since about 70% of the tritium is bred 
1 2 in groups 1 and 2, the errors in D and D will have the greatest 
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effect upon the total breeding rates. n1 , however, was corrected in 

each case (see Fig. 10), and therefore, only the error in n2 will affect 

the results. Figures 13 and 14 are the corrected results using Eq. (29). 

It might be pointed out, however, that the way in which the cross 

sections were treated was shown to be adequate for this problem. Rather 

than using a flat probability distribution for the 61i(n, dn) and the 

7Li(n, tn) reac t ions, a bell-shaped distribution was tried . The re-

sulting constants for the diffusion equation were calculated for a 

100 cm slab with a concentration of 16.7% 61i. A total breeding rate 

was calculated and found to be less than 2% off the total tritium 

breeding rate of the flat distribution. 

To validat e the assumption t hat all scat tering was elas tic, new 

cross sections were calcula ted ignori ng the i nelastic scatte ring. The 

total tritium breeding rate was calculated f or a 100 cm slab with 16.7% 
6

Li concentrat i on and was found to be 22% off the total breeding rate 

found by treat i ng the inelast i c s cattering as elastic . Th i s, of course, 

would be the maximum possible error. The ac tual error would be con-

siderably less. 

Although some attempt was made to compensate for these errors, 

it is felt that a more accurate transport calculation should be made 

with a better choice of groups before any of these results can be 

applied. This study, however , could provide a good comparison for 

such a calculation. 
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VI. SUMMARY AND CONCLUSIONS 

From the multi-group neutron diffusion code, FAIMOS, the fluxes 

for varying concentrations of 6Li were calculated in two infinite 

slabs of lithium with widths of 100 cm and 200 cm. Using these fluxes, 

the total tritium breeding rates were calculated for each concentration 

and an optimum tritium breeding rate was found for each slab width. 

In the 100 cm slab the optimum concentration of 6Li was approximately 

0%, or pure 7Li. When the slab width was incre ase d, the optimum 

concentration rose to about 5% 6Li, which is a lmost natural li thium. 

This result suggests that it might be possible , by proper ad j ustment 

of the blanket width, to design a D-T fusion r eactor blanket in which 

natural lithium would be the optimum condition for tritium breeding 

purposes . These results do no t agree with El-Wakil [4] who suggested 
6Li enrichments in excess of 20% . 

Although, from t his study , the optimum t r i tium breeding rate oc-

curred at about natural lithi um concentration for the 200 cm slab, the 

author is hesitant to conclude this to be the ideal blanke t width. 

From the flux calculations, it is evident t hat diffusion theory intro-

duces errors, especially in the high energy ranges. Errors were also 

introduced from the way in which the groups were selected. As a 

result, it is hoped that the results of this study will be used in 

support of a more exact transport calculation, which in turn can 

lead to the design of a f usion blanket where the trititnn breeding is 

utilized to its fullest extent. 
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VII. SUGGESTIOOS FOR FURTHER STUDY 

This study can be expanded and improved upon in several different 

ways. One of the first things that could be done would be to split 

the higher energy ranges into finer groups. This work only considered 

a slab width of 100 cm and 200 cm. Other widths could be tried. 

Other geometries, such as cylindrical or spherical, could also be 

used to study optimum concentrations. Rather than using diffusion 

theory, transport theory could be applied and then compared to the 

results of this study . The development of an enriching process for 

lithium and an economic analysis of such a process would also be a 

worthwhile and interesting extension of this work. 
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