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I. INTRODUCTION

Ever since the possibilities of using deuterium and tritium to
fuel a fusion reactor were realized, it has been known that such a
reactor could only be practical if more tritium is produced than
consumed. Deuterium presents no problem as a fuel since economical
means, such as distillation, chemical exchange, or electrolysis, can
be used to extract the small amount of naturally occurring deuterium
from water. Unlike deuterium, however, tritium does not exist in
nature and, therefore, has to be bred from other materials,

Several elements can be used to breed tritium, but lithium is
by far the best choice. Lithium has two naturally occurring isotopes,
6Li, which is in abundance of 7%, and 7Li, which comprises the re-
mainder.

Tritium is bred from lithium in two different ways. One way
is by the 6Li(n, t) reaction, which is most prominent at low neutron
energies. The other way is by the 7Li(n, tn) reaction, which occurs
at high neutron energies. The purpose of this study is to find the
optimum concentrations of 6Li and 7Li that will produce the greatest
tritium breeding rate.

The method that was used was multi-group neutron diffusion theory,
An infinite slab of lithium was used to idealize a breeding blanket for
a fusion reactor. The group fluxes were calculated for slabs of
100 cm and 200 cm and for varying concentrations of 6Li and 7Li using
the multi-group diffusion code, FAIMOS. Ten groups were incorporated

into the code for flux calculations. From the calculated fluxes, the



tritium breeding rate in each group was found and all rates were added
together to arrive at a total tritium breeding rate. The total tritium
breeding rates were found for different concentrations of 6Li in each
slab, and from these calculations an optimum concentration was deter-
mined.

It is emphasized that no attempt was made in this study to design
or suggest building materials [11, 12]. A process for the concentration of
6Li and an economic analysis of such a process were also not deter-
mined. It is hoped that the results of this study could further
design techniques of a tritium breeding blanket around a D-T fusion

reactor core,



II. REVIEW OF LITERATURE

George Bell of Los Alamos Scientific Laboratory in 1965 investi-
gated the process of breeding tritium from lithium [2]. He approached
the problem by using a twenty-five group DSN transport code with
cylindrical geometry. Molybdenum was chosen for the container walls
because of its excellent refractory properties. Bell utilized the
6Li(n, t) reaction, and for this reason, incorporated beryllium as a
moderator in the blanket. Berylliumwas chosen because of its ability
to moderate the neutrons into lower energy groups where the 6Li(n, t)
cross section 1s greatest, and also because of its (n, 2n) neutron
producing reaction., Flibe, 2LiF ° BeF, , was used as the coolant
for several reasons. Since pure molten lithium is a fairly good
conductor of electricity, problems might arise from its use around
the magnetic lines of force used to contain the fusion plasma. Using
flibe as a coolant and beryllium as the moderator, a breeding ratio of
1.79 was calculated. Bell concluded the following: (1) the use of
flourine in flibe reduces the breeding ratio; (2) beryllium is a good
moderator to use in the blanket; (3) if pure lithium is used, the
blanket would be too thick; and (4) flibe is a good coolant.

In 1967, Donald Steiner [14] of Oak Ridge National Laboratory
did a similar study using the transport code, ANISN, incorporating
100 groups with slab geometry. Steiner took a slightly different
approach, however, making these observations:

(1) Niobium would be a better material for container walls

because of its better welding characteristics.
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(2) Lithium would be a better coolant to use than flibe because
of its lower costs and superior heat transfer properties.
The lithium coolant channels could be constructed to run
parallel to the magnetic field lines containing the plasma
and, thereby, minimize the electromagnetic resistance to the
flow.

(3) Although beryllium gives good neutron multiplication and is
an excellent moderator, it is very expensive and undergoes
severe radiation damage.

Steiner used two different approaches to blanket design. One

was to assume, through proper design of coolant channels, that the
electromagnetic resistance to the flow could be minimized, and as a
result, pure lithium could be used throughout the blanket. The second
design was conservative in that flibe was used to cool the inner wall
while lithium was used throughout the rest of the blanket.

Through his calculations, Steiner reached these conclusions:

(1) Very good breeding ratios can be achieved without the use
of beryllium as a moderator. This can be explained from the
fact that without beryllium the flux is shifted to higher
energies. This, of course, decreases the production of
tritium from the 6Li(n, t) reaction, but at the same time
increases the production of tritium from the 7Li(n, tn)
reaction. It must also be remembered that while the 6Li(n, t)
reaction completely absorbs the neutron, the 7Li(n, tn)
reaction releases another neutron that possibly can go on

to produce more tritium,
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(2) 1If flibe is used rather than lithium, the breeding is con-
siderably reduced. This can be attributed to the inelastic
scattering of high energy neutrons by flourine and results
in a reduction of tritium breeding from the high energy
7Li(n, tn) reaction.

Steiner also did an economic analysis of the different blanket designs.
The most promising design in this respect seemed to be a blanket of

lithium, without beryllium, and niobium rather than molybdenum as

container wall material.



III. THEORY

Diffusion theory is an approximation to the more exact transport
theory. Diffusion theory does not take into account the angular distribu-
tion of the flux, and in this respect, is less exact than transport
theory. For certain problems, diffusion theory can provide a good
approximation to the more exact transport solution.

Consider an arbitrary volume in which neutrons are diffusing in
a steady state condition. The equation that describes the neutron

flux at any point r and energy E within the volume is
V - D(E)V¥(r, E) - £ _(E)¥(r, E) + S(r, E) = 0, (1)

where D(E) is the diffusion coefficient, @¢(r, E) is the neutron flux,
Tt(E) is the total removal cross section, and S(r, E) represents the
neutron source.

Because of the energy dependence, Eq. (1) is extremely difficult
to use., In order to get Eq. (1) in a useable form, the multi-group
diffusion method is incorporated. The central idea behind multi-
group diffusion theory is that the entire energy range of the neutrons

is divided into emergy groups. The neutron balance in group i is then

E
iu
f [V . D(E)V®(r, E) - Et(E)¢(r, E) + S(r, E)JdE = 0,
Ei (2)

where Ei£ and E, are the lower and upper energy boundaries of group i,

iu
respectively. Equation (2) can be simplified by describing the dif-
fusion of neutrons in each energy group by an average group flux

given as



E.
™ ¢(r, E)dE

E
o (r) = —2— :
iu dE
Eqt
f ¢(r, E)dE
i
- , (3)
AEi

where the integration is over the energy range of group i, and

AEi = Ei - Eiﬂ is the energy width of group i. The neutron balance

u

in group i can then be given by the multi-group diffusion equation

pivielir) - Ei¢i(r) +si) =0, (%)
where
f S(r, E)dE
i i
§(r) = ;
AEi

which is the neutron source for group i, and Di and E: are the dif-
fusion coefficient and total removal cross section of group i,
respectively, which will be defined in more detail later in this
section.

To get Eq. (4) in a more workable form, it is best to look at
each term individually. Neutrons can be lost from group i by leakage,
which is represented by Divzai(r). Also, neutrons can be removed

from group i by absorption or scattering, either elastically or in=-

elastically, to lower energy groups. Thus,

N
£ it (o) = (ra‘ DM N j)) o' (v,
j=1+1

where Zs(i —= j) is the macroscopic scattering (elastic and inelastic)

cross section from group i to group j. The summation is over all



energy groups lower than i, and N is the lowest energy group. Neutrons
can appear in group i by scattering from higher energy groups or by

neutron sources such as fission. Therefore,
i-1 N
sty = 2 & (3~ D) + x* f\:‘l Lazpled ],

j=1

where Es(j - i) is the macroscopic scattering cross section into group i
from group j with the summation over all energy groups greater than i,

y [(vEf)j¢J(r)] is the total number of neutrons produced from fission in
i;} groups per cm3 per second, and yi is the fraction of fission neutrons

which appear in group 1i.

Thus, a better and more workable form of Eq. (4) is

N

piv?el(r) - 2lele) - D (=t - pHIdte
@ j=i+1  °®

= N
+ tf (2.6~ Delm] +x' ; Lazpled ) = 0. (5
= A -

Equation (5) represents a set of N, second order, coupled, differential
equations which must be solved simultaneously.

Before solving Eq. (5), the constants need to be defined. Each
of the constants Di, Z;, and (vEf)i represents an average value in
group i, weighted by the flux as a function of energy within each

group. Thus, if the flux can be represented by a separable function

of space and energy,

f D(E) #(E) dE

pt =2 , (6)
f #(E)dE
i

where the limits of integration are the lower and upper energy bounds

of group i. Likewise,



7_(E)®(E)dE
i_.];a

a f¢(E)dE
i

f V(E) I, (E) @(E)dE
wrpt = = . (8)

fi (E) dE

In some instances @(E) can be considered constant over the energy group

7

z

and

interval [9], and as a result, Egs. (6), (7), and (8) become

f D(E)dE
i Ji

1 (9
AEi
f T (E)dE
gi - _i__f_____ (10)
a AEi d

and
f V(E)Z, (E)dE

i i
(sz) - AEi ’ (11)

where AEi is the energy width of group i. The constant Xi =‘]; X (E)dE,
where X(E) is the prompt neutron spectrum normalized so that

=
f X(E)d(E) = 1.

° The transfer coefficients, Zs(i - j), can be defined in different
ways, depending upon how the groups are chosen. Probably the simplest
way is to choose the groups such that neutrons from one energy group
can only be scattered into the next lowest energy group. In this
respect the groups are directly coupled. Thus, we have Zs(i - j)=20,
for j » i + 1. The criterion to calculate Es(i - i+ 1) can be il-

lustrated by the use of Fig. 1. In order that groups i - 1 and i be
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Fig. 1. Criterion for direct coupling of groups.

directly coupled, a neutron in group i - 1 cannot be scattered past

Ez. This condition can be met if
i E E
L > 4n — - in —
aEl E1
> in 4 5
a

where Li is the lethargy width of group i and a is the maximum frac-
tional amount of energy a neutron can lose in a single collision.
Alpha can be calculated from a = [(A- 1)/(A+—1)]2,nmere A is the
atomic mass of the diffusing material. 1If this criterion is met,
the transfer coefficients can be calculated in the following way.
The total number of scattering collisions in group i per cm3 per

second is E;¢i(r), where

fzs(E)qo(E)dE fi E_(E)dE

~
~

i
f 9(E)d (E) ag
b

gl .
i
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1E Ei is the average increase in lethargy per collision, then it takes
i
Li/E collisions to traverse the ith energy group. Here,
i 1 i.
- =—_izg,ﬂzs£’

DHFE /
s

where the summation over f represents different nuclear species, and

In a,

_ a

In terms of A,

2
N _ (A = 1) P (A + 1
=1 2k AR
Therefore, there will be El2;®(r)/L1 neutrons per cm3 per second leaving
group i and entering group i + 1, or
- O, |
L2

Li

(12)

Es(i - i+ 1) =

When more than one or two energy groups are used, Eq. (5) can
be solved by use of a computer. FAIMOS [3], a one-dimensional,
neutron diffusion code, is used to solve Eq. (5). Basically, the
code solves the equation,

. 2 - - - - 1_1 .
i i i ; :
- DIV + T8 () = XS0 + 2 [5G~ D],
4 s
J1=q
where D° is the diffusion coefficient in each group,
i

z

ei . di,24 . i th .
L=+ D E) +ETL T 4 E,1 =~ 9,

j=1+1
i, . i
Ea is the absorption cross section in each group, (Bz)1 is the

- ; th . . "
transverse buckling in each group, EP is the poison cross section in
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the thermal group, ti is the ratio of the poison cross section in
group i to the poison cross section in the thermal group, Es(i - 1)

is the transfer coefficients from group i into group j, g is the
minimum of 18 or i + 8, q is the maximum of 1 or i - 8, xi is the
integral of the fission spectrum over the energy range of group i, and
S(r) is the fission source normalized so that one neutron is produced

in the entire fissionable volume. Thus,

1
wE) ot (r)
Blr) =~ =% .
where
18 i
X = (VEQ) "¢ (r)dr,

=

v
and V is the fissionable volume.

A description of the finite difference equations and how they are
used in FAIMOS can be found in reference [1]. Also, a complece
description oﬁ the input formats to be used in FAIMOS are given in
reference [3].

FAIMOS is designed so that a microscopic cross section library
cannot be used. As a result, macroscopic cross sections must be put
into the code. The following section describes how the macro-

scopic cross sections and other inputs into FAIMOS were formulated.
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IV. PROCEDURE

A. Microscopic Cross Sections

Following are described the microscopic cross sectional data
for 6Li and 7Li as the cross sections vary with energy. It might
be pointed out that the cross sections presented here do not include
all of the reactions possible with either isotope of lithium. There
is, for example, a 6Li(n, 2n) reaction at about 14.1 MeV. Since
this reaction only appears at very high energy levels and is small,
about 70 mb, compared with other reactions, about 500 mb, the
6Li(n, 2n) cross section was ignored. Due to its small value of
approximately 10 mb, the 6Li(n, p) reaction was also ignored. With
7Li, above 10 MeV an (n, 2n) and an (n, d) reaction were also ignored
because of their small values of approximately 50 mb and 10 mb,
respectively [6, 13].

The scattering cross sections for both 6L1 and 7Li are treated in
the following manner. The total scattering cross section, which
includes both elastic and inelastic scattering, is treated entirely
as elastic scattering. This may seem at first to be a poor assumption,
but upon close examination of the scattering cross sections (see Figs. &4
and 5), it can be seen that the total scattering is entirely elastic
until approximately 1 MeV. From 1 MeV to 15 MeV, the elastic scattering
differs only a few tenths of a barn from the total scattering cross
section. Thus, to ease calculations, the assumption was made that
scattering from either isotope of lithium will be entirely elastic.

Below 0.1 MeV, the 6Li and 7Li total microscopic scattering cross
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sections are approximately constant at 0.6 barns and 0.85 barms,
respectively. This is common for scattering cross sections of light
nuclei such as lithium,

The 6Li(n, dn) reaction and 7Li(n, tn) reaction are interesting
in that a neutron is released as a product. The 7Li(n, tn) reaction
(see Fig. 2) is endothermic with a Q-value of - 2.47 MeV and, thus, a
threshold energy of 2.82 MeV. The 6Li(n, dn) reaction (see Fig. 6)
is also endothermic with a Q-value of - 1.47 MeV and a threshold
energy of 1.72 MeV, Both reactions must be treated in a special
way, since these reactions resemble inelastic scattering rather than
absorption or elastic scattering. Each of these reactions involve
a three body problem. 1In the center of mass system, unlike the
elastic, two body problem, the resulting products do not have a
unique energy and momentum [8]. 1In particular, the neutron produced by
such a reaction can have a spectrum of energies ranging from zero
to a maximum energy, which is determined by the individual masses of
the products. For example, the three products of the 7Li(n, tn)
reaction are tritium, helium, and a neutron (see Fig. 8). The maximum
energy that the neutron can have is when the tritium nucleus has zero
energy and momentum, and the helium nucleus conserves momentum with
the product neutron. If EL is the total energy in the laboratory
system, considering the 7Li atom at rest, the total energy available

in the center of mass system is
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Fig. 8. Maximum neutron energy in the 7Li(n, tn) reaction.

The energy available for motion of the products is Ec - Q= % EL - Q
where Q is the Q-value of the reaction. Since this reaction is
endothermic, it only occurs at high energies. As a round number, let
EL = 10 MeV, The energy available for motion of the particle is

then

(10) - 2.5 MeV = 6,25 MeV,

ool

7 -
R Al s

Using conservation of momentum and energy,

"a¥n = Mye'pe

and

N

anfl - % MHer{e = 6,25 MeV, (13)

where Mh, Vn, Mﬁe, and vHe are the masses and velocities of the
neutron and helium nucleus in the center of mass system, respectively,

Thus, from conservation of momentum
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v -mvnmi]ﬂ

He MHe 4
and 2

2

He 16 *

" 2
Substituting V e into Eq. (13) and using M~ 1 and Mﬁe 4,

H

1g2 _ g 5.
n

1 2
2 Vn # 8

Thus, the neutron has i 21121 - 4/5 the total kinetic energy, or

about 5 MeV. Thus, a 10 MeV neutron, which lies in the second group,
can be scattered with an energy from 0 to 5 MeV. This means it is
possible to scatter into any lower energy group. A similar calcula-
tion can be made with the 6Li(n, dn) reaction obtaining similar
results,

It can be seen that predicting probabilities and energy spectra
of neutrons scattered from each group by the 7Li(n, tn) and the
6Li(n, dn) reactions is almost an impossibility. Therefore, in
order to treat the 6Li(n, dn) and the 7Li(n, tn) reactions, a simpli-
fying assumption will be made. It will be assumed, according to
calculations in the last example, that the energy spectrum of the
scattered neutron is flat and that it extends from zero to the next
lowest energy group (see Fig. 9). This assumption will hold for both
the 6L1(n, dn) and the 7Li(n, tn) reaction, Thus, a neutron in group i
which undergoes a 7Li(n, tn) or 6Li(n, dn) reaction can be scattered
into any lower energy group with a probability depending only upon
the width of the energy group in question. Thus, the probability of

landing in group i - 1 would be AEi_ /Eo’ the probability of scattering

1



23

| | l |
| l | I
| GROUP | GROUP | GROUP |
l i—~2 | i‘1 { i |
5 l | I I
e | | | |
=i}
o B - T S R
D P e
)
5 I | |
| l |
| | l
| | |
0 | E
ENERGY

Fig. 9. Probability distribution for the 6Li(n, dn) and 7Li(n, tn)
scattering,



2

into group i - 2 would be AEi_zlEo, and so on, where AEi-l and AEi-Z
are the energy widths of group i - 1 and 1 - 2, respectively, Eo

is the lower energy bound of group i. It might be noted that in

Fig. 9 the graph is drawn such that
E
o
f Probability dE =P E =1,
o0
o

Using this criteria, the calculated probabilities are shown in Table I,

A close look at Table I will help justify the assumption that the
probability energy distribution is flat for the scattered neutrons
from the 7Li(n, tn) reaction and the 6Li(n, dn) reaction. 1Tt can be
seen that the first groups are much wider compared to the lower
energy groups. Therefore, no matter how the probability distribution
really looks, a large probability will exist for the neutrons to be
scattered into the next few lower energy groups. It should also be
pointed out that the 7Li(n, tn) reaction and the 6Li(n, dn) reaction
are fairly small compared to the other reactions and occur at high
energy ranges. Thus, it is felt that little error will be intro-
duced by incorporating the flat probability distribution into the
problem. (Later calculations showed a difference of about 27 in the
tritium breeding rates when a slightly different type of distribution
was used.)

The 6Li(n, t) reaction and 7Li(n, Y) reaction are absorption
reactions. The 6Li(n, t) reaction (see Figs. 2 and 3) is exothermic
and from thermal energies to approximately 100 Kev has a strong

1/V dependence. The Q-value for the 6Li(n, t) reaction is approximately
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Table I. Scattering probabilities for the 7L1‘.(n, tn) reaction and the
6Li(n, dn) reaction

Source group (i) Scatter group (j) Probability (Pj)
1 2 0.520
1 3 0.274
1 4 0.164
1 5 0.0342
1 6 0.00678
1 7 0.0
1 8 0.0
1 9 0.0
1 10 0.0
2 3 0.571
2 4 0.343
s 5 0.0714
2 6 0.0141
2 7 0.0
2 8 0.0
2 9 0.0
2 10 0.0
3 4 0.800
3 5 0.167
3 6 0.033
3 7 0.0
3 8 0.0
3 9 0.0
3 10 0.0
4 5 0.833
4 6 0.165
4 7 0.0165
4 8 0.0
4 9 0.0
4 10 0.0

7

8.54 MeV, The 'Li(n, Y) reaction is also exothermic and has a Q-value
of approximately 2.03 MeVv [10].

Of course, the most important reactions are the 6Li(n, t) reaction

7 -
and the Li(n, tn) reaction. These are the only types of reactions
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that occur in lithium which yield tritium as a product. It is these
reactions that will be used later to calculate the tritium breeding
rates in the lithium slabs.

Table II illustrates the different lithium reactions considered

in this work and how they are used throughout.

Table II. 6Li and 7Li. reactions

th
Type and Q-value E
Isotope Reaction description (MeV) (MeV)
6_. ;
1d (n, t) Exothermic + 8.54 -
absorption
6Li Total scattering Elastic = =
scattering
.
L (n, dn) Endothermic - 1.47 1,72
inelastic scattering
7Li (n, tn) Endothermic - 2.47 2.82
inelastic scattering
7Li (n, Y) Exothermic + 2,03 -
absorption
7Li Total scattering Elastic & i
scattering

In order to calculate the group microscopic cross sections, the
groups have to be determined. The main criterion in the selection of
the groups was that all groups were to be directly coupled. Thus,
all group energy widths in terms of lethargy had to be greater than
Enﬁé). When o was calculated for 6Li and 7Li, the following values

were obtained:
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a 0.509, and

6

a 0.562.

i

Thus, for 6Li, In %ﬁ-= 0.675, and for 7L1, In éf = 0.576. It can be
seen that 6Li puts 2 more stringent requirement7on the group lethargy
widths. This is to be expected since 6Li is a lighter isotope than
7Li, and therefore, more energy can be lost in a single scattering
encounter., If the group boundaries are picked such that their

lethargy widths are greater than 0.675, each group will be directly

coupled, regardless of different isotopic contents of the lithium.

A second major factor in the selection of energy groups was the
resonances in the microscopic cross sectional data. 1In the case
of the 6Li(n, t) reaction, 6Li total scattering, and 7Li total
scattering, a large resonance occurs at about 0,25 MeV (see Figs. 2,
4, and 5). For this reason, a group was chosen from 0.10 to 0.60 MeV,
including these resonances in one group. A small resonance also
appears in the 7Li microscopic scattering at about 5 MeV (see Fig. 5).
A group from 3 to 7 MeV was chosen to include this resonance. It
might be noted that the lethargy width in each case is larger than
0.675.

Since the first, or highest energy group, does not have any neutrons
scattered into it from a higher source, group number one does not
have to obey the criterion for directly coupled groups. Therefore,
group number one was chosen to include the energy interval 14.6 MeV
to 15.0 MeV. The reason for this is that in the fusion process 14.8 MeV
neutrons are liberated. These neutrons impinge upon the lithium

blanket. Thus, a reasonable inner boundary condition for the diffusion
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equation would be a constant flux of 14.8 MeV. 1In the group diffusion
method, however, fluxes of one single energy are not calculated.
Rather, fluxes of energy groups are calculated. Thus, the appropriate
inner boundary condition would be:

constant > 0 for i = 1

¢"(0) = i
0 far 4 > 1

It can be seen, then, that a flux of 14.8 MeV neutrons can best be
approximated by a very narrow group centered about 14,8 MeV,.
Table III illustrates how the groups were chosen. It might be

noted that

where Li is the lethargy width of group i and Ei and EE are the upper
and lower energy bounds of group i, respectively.

After the groups have been determined, microscopic cross sections
have to be calculated for each group. The flux as a function of
energy is a very complicated function when absorption is present. To
facilitate the calculations, the flux as a function of energy is

assumed to be constant over each group. Thus,

f o (E) ¢(E) dE

i i
o = "
f #(E)dE
or ) &
f 0 (E)dE
i
g = —E—EE;**— = (14)

where @(E) is a constant, and AEi is the group energy width., To

justify the assumption that ¢(E) is constant, two things must be



Table III. Energy groups and their lethargy widths

29

Upper energy Lower energy Pethargi
Group bound bound width (L*%)
1 15.0 Mev 14.6 MeV .0275
2 14.6 MeV 7.0 MeV « 135
3 7.0 MeV 3.0 MeV .847
4 3.0 MeV 0.6 MeV .61
5 0.6 MeV 0.1 MeV 79
6 0.1 Mev 0.01 MeV .31
7 10.0 Kev 1.0 Kev i 3
8 1.0 Kev 100 ev <31
9 100.0 ev 1.0 ev 61
10 Thermal o

remembered. First, the flux need be only considered constant with

respect to energy over one group at a time, and not the whole energy

width of 14.8 MeV. The value of the constant can be different for

each group. It can be seen then that this approximation is very good

for narrow groups such as the lower energy groups in Table III.

Secondly, it should be noted that all cross sections, except for the

6
Li(n, t) cross section, vary little within each group.

Thus, if the

cross section is fairly constant within each group, the flux has little

effect upon the group cross section,

lowing.

This can be seen in the fol-
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I o (E) ¢(E)dE

9
[ S(E)dE
1

o, f #(E)dE
1
I #(E)dE ’
1

i
(3] =

Q

R

where the microscopic cross section T is assumed to be constant over
group i and is taken out of the intergal in the numerator.

The group microscopic cross sections are calculated in the fol-
lowing way. It can be seen that the numerator in Eq. (14) is simply
the area under the cross sectional curve determined by the upper and
lower energy bounds of group i, Thus, by dividing each group up into
small intervals and estimating the cross section in each division,
the area under the cross sectional curve in group i can be calculated.
By dividing this area by the energy width of group i, an arithmetic
average microscopic cross section in each group can be determined.

In Table IV is illustrated the results of the microscopic cross

sectional calculations.

B. Group Macroscopic Cross Sections

From the group microscopic cross sections, the macroscopic cross
sections to be used in the diffusion equation can be calculated.

Since the problem necessitates calculations of macroscopic data



Table 1IV.

Group microscopic cross sections

(Barns) (Barns) (Barns) (Barns) (Barns) (Barns)
Group 6Li(n, t) 7Li(n, tn) 6Li scattering Li scattering 6Li(n, dn) TLi(n, v)
1 0.0275 0.315 0.82 1.45 0.290 0.120
2 0.0409 0.405 1.02 1.72 0.381 0.190
3 0.0905 0.175 1.41 2.06 0.568 0.273
4 0.287 0.0 1.12 1.51 0.0525 0.174
5 1.138 0.0 2,38 1.95 0.0 0.0
6 0.948 0.0 0.600 0.850 0.0 0.0
7 2.59 0.0 0.600 0.850 0.0 0.0
8 7.35 0.0 0.600 0.850 0.0 0.0
9 27 .2 0.0 0.600 0.850 0.0 0.0
10 845 0.0 0.600 0.850 0.0 0.0

T€
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with differing atom densities of 6Li and 7Li, it is convenient to define

an independent variable

\g‘az

which is simply the atom density ratio of 6Li to 7Li. The macroscopic

cross sections are then P - N7(G; + Rog). Using a constant value of

N, and specifying a value of R, the macroscopic cross sections used

7

in the group diffusion equations can be easily calculated. It might
be mentioned at this point that another important independent variable
y, which is defined as the atom percent of 6Li, can be calculated

from R since

N (100) ¢ 100)

y: =
N6 + N7 R+ 1

6
The Li(n, t) reaction and the 7Li(n, Y¥) reaction are the micro-
scopic absorption cross sections. The macroscopic absorption cross

sections can be calculated for group i by

i i i
z = N7(0n'v + Ro_.), (15)
where O;Y represents the 7Li(n, y) microscopic cross section and G:t

6_ . 2 i
represents the Li(n, t) microscopic cross section for group i,
T B . T s . : 5 ;
Similarly, the Li and Li total microscopic scattering cross sections
can be used to obtain the total macroscopic scattering cross section.

Thus, for group i

i i i
Es = N7((5s7 + RUBB), (16)
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i 1 : . 2
where o and Og¢ are the total microscopic scattering cross sections

87

for 7Li and 6Li, respectively,
In order to calculate the transfer coefficients, Ei must first be

calculated. This can be done as follows.

. Eg suy
‘gl - 6 sb6 - i 97 : (17)
=

8

where 56 and §7 are the average logarithmic energy decrements for 6Li

and 7Li, respectively,

i i
Zee = NgOgg
and
i i
g7 = NeOgy
Thus,
i i
7l 56N60g6 + S7N7047
1 q ’
N,(0 7 + Ro¢)
or
i i
i _ 56RO ¢ + 5,05,
S =T i
Os? * RUsG

@6 and §7 were calculated to be

§6 = 0,295, and
57 = 0, 254,
Thus,
i 5
0.295 Ro + 0.254 ¢
'gi _ iS6 - 37 : (18)
087 + Ros6

The macroscopic transfer coefficients are now ready to be calcu-

lated. It might be remembered that all groups are directly coupled,



6
and thus, neutrons which are elastically scattered from the Li and
7Li total scattering cross sections enter only the group directly
below. Neutrons that are inelastically scattered due to the 7Li(n, tn)

and the 6Li(n, dn) reactions are able to scatter into several lower

energy groups. Thus,

i ]Pi+1

® N60ndn

; B i
Zs(i i+1) = + [N7cntn

8 i+l1, i
= A WP G

i
i P ¥ Rmndn)’ (19)

i i
where 1” is the group lethargy width (see Table III), E' is the group

lethargy decrement (see Eq. (18)), E; is the total macroscopic scat-

tering cross section (see Eq. (16)), Pi+1

tering into group i + 1 due to the 7Li(n, tn) reaction and the 6Li(n, dn)

is the probability of scat-

reaction (see Table I), 01 is the microscopic cross section for the

ntn
7Li(n, tn) reaction, and O;dn is the microscopic cross section for the
6Li(n, dn) reaction. For scattering into energy groups lower than

i+ 1,
T(A-3j)=N Pj(oi - Rﬁi ) (20)
s 7 ntn ndn

for j > i+ 1, and Pj is the probability of the neutron landing in
group j. In Eq. (19) the first term represents the neutrons that are
scattered into group i + 1 from group i due to elastic scattering,
while the second term represents neutrons scattered into group i + 1
from group i due to the 7Li(n, tn) reaction and the 6Li(n, dn)
reaction. Since the groups are directly coupled by elastic scattering,

6

only the neutrons from the Li(n, dn) reaction and the 7Li(n, tn)
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reaction can be scattered into groups lower than i + 1, as is shown
by Eq. (20).

Using Eqs. (15), (16), (18), (19), and (20), all macroscopic
cross sections for a specific value of R can be calculated for use in

the group diffusion equation,

C. Diffusion Coefficients
From Fick's Law the diffusion coefficient is defined as

D s

=
where Zs is the macroscopic scattering cross section and Et is the
total macroscopic cross section. In deriving the equation, however,
it was assumed that the scattering was isotropic in the lab system
and that there was little absorption., Neither of these assumptions
hold in this problem.

It is possible, however, to compensate for moderate anisotropic
scattering by using transport corrections to the diffusion coefficients.
From methods of transport theory it is found that

F“ e
.E_B 5 ):‘t - 5 1+ 3D.'?".Bu

T 4n "1+ 350"’
a s .. [|za t

D
where u is the average value of the cosine of the scattering angle
in the lab system. An approximation of this equation can be obtained

by expanding the logarithm in a series of powers of Za/Et. The

result is
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b
4 a
Ea/D = 3(2a + Es)'ﬂa(l -3 'Z.'Tzs')

(see reference [7], p. 127).

Since the diffusion coefficient is going to be different for

each energy group,

i i

Za i U | 4 Ea
2 =3 +IH)Z A - 2 —2—), (21)
pt a W R 3 Z;+ Z:

Here E; is chosen so that

™o N +NG;t+N01 + NG .

a 7 nY 6 7 ntn 6 ndn
or
i i i i i
Z = Ny Opy + Open + ROpe + RO 40) (22)
i i s i i
where N7, Ony® Ont Onen’ ndn’ and R are defined as before. Es

is calculated from Eq. (16). Using Eqs. (22) and (16) and substituting
into Eq. (21), all diffusion coefficients for each group and for a
specific value of R can be calculated.

The first results of the fluxes and integrated fluxes calculated
from FAIMOS indicated that the calculations needed to be somewhat
refined. This could be seen by a close look at the flux of group 1.

The flux of group 1 should represent a purely exponential decay, given

by
1
-Zr
lr)y =e b , (23)

J:
where Et is the total removal cross section of group 1 and is given

by
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1 1 Y
2=zl ;; - 9.
In this case ¢1(r) represents the uncollided flux. For a slab of

lithium of width w,

w w

-Flr
1 t
f(ﬁ(r)dr J- e °©dr,
o o

1 |w
S e
e !
Et o
If w is large,
w
f o (ryar = Lo (24)
o Zt:

Thus, by comparing I/Ei with the integrated flux of group 1 calculated
by FAIMOS, an indication of the error involved could be seen.
An example of these results is shown in Fig. 10. The calculated

first group flux from FAIMOS and the graph of Eq. (23) are shown for

1 1
, and 5 = 1.69.

G
It can be seen that the flux calculated by FAIMOS is not in agreement

R=0.2 and w = 100 cm. In this case T, = 0.5914 cm

with Eq. (23). The integrated flux of group 1 is 2.95, which is in
considerable error with the expected result of 1.69.

This error is due to the inaccuracies of diffusion theory at
high energies. It is possible, however, to adjust the diffusion coef-
ficient, D1, and somewhat correct for this error. 1In this example
the calculated value of D1 = 5,15 is used to obtain the flux in Fig. 10.

When D1 is adjusted to 1.55, the integrated flux for group 1 is
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calculated at 1.694, which is in good agreement with the predicted
result (see Fig, 10).

The diffusion coefficient for the first group was adjusted in
each case until the integrated flux for group 1 was in fair agreement
with 1/2%. This was done by a trial and error manner with three or
four trials being necessary to adjust D1 to the proper value, Values
for the diffusion coefficients for all other groups are calculated

from Eq. (21).

D. Calculations of Constants for the Diffusion Equation

A computer program specifically designed to use Eqs. (15),

(16), (18), (19), (20), (21), and (22) was developed to calculate
the constants for use in the multi-group diffusion equation. Dl,

i

Ea’ El, E; and Es(i - j) were calculated using values of 0 < R < 9 in

steps of 0.05. A value of N7 = 0,0378 X 10+24 atoms per cm3, which
is the atom density of molten lithium at 1300 OF, was used [2]. From
the use of this program, all constants and cross sectional data were
generated for blankets of 100% 7Li to 107% 7Li and 90% 6Li, or values

of 0 <y £0.90. In order to present typical values of group constants
used in FAIMOS, representative calculations of Ei, 2;, Ei, Di, and

Zs(i - j) are given in Tables V and VI. Similar data were prepared

for other values of R.
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Table V. Group macroscopic cross sections_and constants for R = 0.25,

or a blanket of 20% 6Li and 80% 7Li

Group E: (cmvl) Zi (cm-l) Ei D:l (cm)
1 0.0048 0.0626 0.259 5.02
2 0.00757 0,0747 0.259 4.17
3 0.0112 0.0912 0.260 3.48
4 0.00929 0.0677 0.260 4,79
5 0.0108 0.0962 0.264 3.39
6 0.00896 0.0378 0.260 8.42
7 0.0245 0.0378 0.260 7.81
8 0.0695 0.0378 0.260 6.45
9 0.257 0.0378 0.260 3.74

10 7.99 0.0378 0.260 0.204
E. Tritium Breeding Rates

In order to calculate the tritium breeding rate for a specific

concentration of 6Li and 7Li, the group fluxes must first be calcu~

lated. The multi-group diffusion Eq. (5) was used for this purpose,

Lithium, however, is not fissionable, and, therefore all xi are

zero. The multi-group diffusion equation applicable to lithium is

then

v’ (r) - Shotr) -

i-

-

+ 2, (G~ DP) =o.

j=1

N

(T, = )6 ()

j=T¥1

(25)
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Table VI. Transfer coefficients for R = 0.25 or a blanket of 20% 6Li

and 807 'Li
(1) (1) -1
Source group Receiving group Es(i - 3j) (cm )

1 2 0.597

1 3 0.00401

1 4 0.0024

1 5 0.000501

1 6 0.000103

2 3 0.0371

2 4 0.00649

2 5 0.00135

2 6 0.00267

3 4 0.0376

3 5 0.0020

3 6 0.00395

4 5 0.0114

4 6 0.0000819
4 :/ 0.00000819
5 6 0.0142

6 7 0.00426

7 8 0.00426

8 9 0.00426

9 10 0.00213
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Since ten groups were chosen, Eq., (25) represents ten simultaneous,
linear, second order differential equations in one dimension. Twenty
boundary conditions are needed to solve Eq. (25). The ten inner
boundary conditions are

i 1l fori=1
¢ (0) = . (26)
0 for 1 < i< 10
Equation (26) closely represents a flux of one neutron per cm2 per
second at 14.8 MeV incident upon the inner face of the infinite slab,

The outer boundary conditions are set so that no return current

enters the slab [5], or that
¢'(w+ d') = 0, for 1 < i < 10, (27)

where w is the thickness of the slab and di is the extrapolated boundary
for group i. FAIMOS automatically calculates each di.

Upon solving Eqs. (25), (26), and (27) simultaneously, unique
solutions to ten fluxes as a function of position throughout the
lithium slab are computed. The multi-group computer code FAIMOS
is used to obtain the solutions to the group fluxes,

The output of FAIMOS gives the values of the ten group fluxes
as they vary throughout the lithium blanket, FAIMOS also calculates

the integrated fluxes over position, or

w

aml =f o' (rydr,
o]

where (IF)1 is the integrated flux of group i and w is the width of
the blanket. The average value of @1(r) through the slab can then

be found by
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=i

¢

L
f ¢l (ryar .
o _ (IF)
w ’

w

whereBi is the average value of ¢1(r) over the width of the lithium
bl anket.
From the average group fluxes, the breeding rate resulting from

the 7Li(n, tn) reaction can be calculated by,

10

i i £ =4 " .
= i te in group 1i.
where Entn N O e and Entn¢ is the breeding ra g p

7 ntn

The breeding rate resulting from the 6Li(n, t) reaction is
10
BR, = ¢,

6 - nt
i=

i i i =i
= i i i. Th
where I " N50 , and Z t¢ is the breeding rate in group e

total tritium breeding rate is then

BRtotal = BR7 + BR6’
10 ) i X
- [, +Z 091,
=1 ntn nt
10 ) i '
1 a3
=N, D [(oh, + RoE )G L. (28)

i=1
Since Eitn and Eit are functions of R and Bi is a function of R
and w, the total tritium breeding rate is also a function of R and w.
By setting the width of the blanket as constant and calculating the
total tritium breeding rate for different values of R, an optimum
breeding rate can be found. A computer program was written that

used Eq. (28) to calculate the total tritium breeding rates.
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V. DISCUSSION OF RESULTS

The total tritium breeding rates are calculated for different
concentrations of 6Li in a 100 cm slab and a 200 cm slab. Figures 13
and 14 show the results of the total tritium breeding rate calculations
as a function of concentration of 6Li for both slab widths.

Before discussing Figs. 13 and 14, some interesting results can
be obtained by looking at Table VII. 1In Table VII the ranges in the
percentage of the total breeding rate for each group are given for
both slab widths., It can be seen that in each slab width, between
807 and 907% of the tritium is bred in groups 1, 2, 3, and 5. The
Table VII. Ranges in the percent of total breeding rates for each

group in 100 cm slab and 200 cm slab. Ranges were taken
from 0% to 30% OLi

Relative breeding rates Relative breeding rates
Group for w = 100 cm (%) for w = 200 cm (%)
1 21.0-26.3 29.1-33.9
2 43.4-54.6 38,1-55.1
3 9.5-11.0 8.4-11.0
4 1.2-7.3 0.0-6.4
5 2.8-11.3 0.0-10.0
6 2.0-5.8 0.0-5.3
7 1.5-1.7 0.0-2.3
8 0.3-0.6 0.0-1.2
9 0.0-0.1 0.0-0.3

10 0.0-0.0 0.0-0.0
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breeding in groups 1 and 2 is due mostly to the 7Li.(n, tn) reaction.
In group 5 the breeding is due entirely to 6Li, and is the result of
the resonance in the 6Li(n, t) cross section at about .26 MeV (see
Fig. 2). It can also be seen from Table VII that there is virtually
no tritium bred at thermal energies. This surprising result stems
from the fact that most of the neutrons are absorbed before becoming
thermalized.

It can be concluded, therefore, from Table VII that the choice
of groups used in this paper is a somewhat poor one. It can be
seen that about 507 of all the tritium breeding occurs in group 2.
This, of course, is due to its large energy width which was neces-
sary in order to make all groups directly coupled. For future
calculations, it would be advisable to choose the groups so that the
energy range frqm 3 to 15 MeV is split into narrow groups, thus, doing
away with directly coupled groups. The lowest energy group could
probably be made from 0 to 1.0 MeV since hardly any breeding was done
in this energy range.

In Figs. 11 and 12 a representative example of the group fluxes
is shown for R = 0.20 in the 100 cm slab and the 200 cm slab,
respectively. Only groups 1, 2, 3, 4, 5, 6, and 7 are shown since
hardly any tritium is bred in the energy ranges below group 7. From
Figs. 11 and 12 it can easily be seen why virtually no tritium is
bred below group 7 since all fluxes below this are decreased by a
factor of 1000 or more. Another conclusion that can be drawn from
Fig. 12 is that increasing the width of the slab beyond 100 cm is

almost pointless in regard to the total amount of tritium being bred.
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It can be seen that the group fluxes which do the most breeding are
decayed to very low values after 120 cm. This would tend to suggest
that virtually all the breeding is done in the first 100 cm, and any
added thickness beyond this would breed very little more tritium,

One of the first things noticed by comparing Figs. 13 and 14
is the relative heights of the two peaks. 1In the 100 cm slab the
peak is at a value of 0.819 X 10-3 tritons per cm3 per second, while in
the 20C cm slab the peak is at a smaller value of 0.343 ¥ 10_3 tritons
per cm3 per second. No conclusion, however, can be drawn from this
result. The reason for this lies in the way in which the fluxes in
each of the two widths are normalized. The group fluxes are nor-

malized so that

w
f S(r)dr = 1,
o

S(r) = v}:;qsi(r) .

where

=
o

=
"
ot

The same (v)"_.f)i are used for each slab width and for each 6Li con-
centration, Using the same (vEf)i in each 6Li concentration assures
that the group fluxes in a single width are normalized equally.

When w is increased from 100 cm to 200 cm, however, the size of the
limits of integration on the source are doubled in size. Since the
values for (vZf)i do not change, and since an integrated source

of 1 neutron per cm3 per second is calculated in each width, the
group fluxes for the 200 cm slab have to be relatively smaller than

the group fluxes in the 100 cm slab. This, of course, results in



Fig.

13,

BREEDING RATE (x 103)
)
@)
I

A0 L

O 20

Total tritium breeding rate for w

PERCENT 6Li

100 cm.

40

60

6%



Fig. 14.

wg; ¢
i Q
< .30
O
A
[
.20 1 1 |
O 10 20 30
PERCENT °Li

Total tritium breeding rate for w

200 cm.

0s



51

lower breeding rates for the 200 cm slab. It might also be pointed
out that the relatiosnship between increasing the integration limits and,
thereby, decreasing the group fluxes is not linear. In other words,
the breeding rates in the 200 cm slab cannot be doubled and then
compared with the breeding rates in the 100 cm slab, It would be
logical, however, to expect a slightly greater breeding rate in the
200 cm slab since the leakage would be less. Also, more lithium is
available for tritium production in the larger slab.

In Figs. 13 and 14 the position of the optimum tritium breeding
rate occurs at 5% 6Li in the 200 cm slab and at 0% in the 100 cm
slab. This result offers some interesting possibilities. From
Figs. 13 and 14 one can see that the optimum concentration of 6Li
for breeding purposes can be determined by adjusting the width of
the slab. 1If this is true, it might be possible to design a
breeding blanket with a proper width to give optimum breeding condi-
tions for natural lithium. This would require no enrichment of 7Li
and could, of course, be a great economical asset to the fusion reactor.
The results of Fig. 12, though, show that except for increasing the
optimum concentration of the blanket very little increase in the total
tritium breeding would occur by increasing the width of the slab
past 100 cm. Thus, the ideal width will depend upon several factors.
One would be the economics of an enrichment process for lithium.
Another important consideration would be the physical problems as-
sociated with placing a blanket of lithium near the magnetic field
lines which confine the plasma. Problems in this area could restrict

the maximum blanket width which could be used. Therefore, an ideal
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blanket width would have to take into account the effect of all these
factors.

These results, regretfully, should be applied with reservations.
The inadequacies of diffusion theory at high energies may have in-
jected considerable errors into the calculations since the differential
scattering cross section is highly anisotropic. Also, due to the way
in which the groups were chosen, which resulted in 507% of the tritium
being bred in group 2, even more accuracy is sacrificed. Upon further
analysis of the data it was found that assuming N7 to be constant was

also a source of error. The correct treatment would be to use

N, = 0.0378 X 1024 atoms per cm3, where

Nt - N6 - N7 .

and thus,

B, = et (29)

This, of course, will affect all macroscopic cross sections and dif-
fusion coefficients. The effect upon Figs. 13 and 14, due to the

changes that this correction will make on the macroscopic cross sections,
will only involve a scaling factor. The effect due to the errors in

the diffusion coefficient, however, will not be scaled, A recalculation
of D1 using Eq. (29) for R = 0,20 resulted in D1 = 6,20 cm, This is

somewhat different than D1

i

5.15 cm as shown in Fig. 10. Since the
group diffusion coefficients are only used in leakage calculationms,

it is felt that the change in N7 by using Eq. (29) will not affect

the results appreciably. Also, since about 70% of the tritium is bred

in groups 1 and 2, the errors in D1 and D2 will have the greatest
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1 :
effect upon the total breeding rates. D, however, was corrected in
x 2
each case (see Fig. 10), and therefore, only the error in D~ will affect

the results. Figures 13 and 14 are the corrected results using Eq. (29).

It might be pointed out, however, that the way in which the cross
sections were treated was shown to be adequate for this problem. Rather
than using a flat probability distribution for the 6Li(n, dn) and the
7Li(n, tn) reactions, a bell-shaped distribution was tried. The re=-
sulting constants for the diffusion equation were calculated for a
100 cm slab with a concentration of 16.7% 6Li. A total breeding rate
was calculated and found to be less than 27 off the total tritium
breeding rate of the flat distribution.

To validate the assumption that all scattering was elastic, new
cross sections were calculated ignoring the inelastic scattering. The
total tritium breeding rate was calculated for a 100 cm slab with 16,7%
bLi concentration and was found to be 227, off the total breeding rate
found by treating the inelastic scattering as elastic. This, of course,
would be the maximum possible error. The actual error would be con-
siderably 1less.

Although some attempt was made to compensate for these errors,
it is felt that a more accurate transport calculation should be made
with a better choice of groups before any of these results can be

applied. This study, however, could provide a good comparison for

such a calculation.
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VI. SUMMARY AND CONCLUSIONS

From the multi-group neutron diffusion code, FAIMOS, the fluxes
for varying concentrations of 6Li were calculated in two infinite
slabs of lithium with widths of 100 cm and 200 cm. Using these fluxes,
the total tritium breeding rates were calculated for each concentration

and an optimum tritium breeding rate was found for each slab width.

In the 100 cm slab the optimum concentration of 6Li was approximately
0%, or pure 7Li. When the slab width was increased, the optimum
concentration rose to about 5% 6Li, which is almost natural lithium,
This result suggests that it might be possible, by proper adjustment
of the blanket width, to design a D-T fusion reactor blanket in which
natural lithium would be the optimum condition for tritium breeding
purposes. These results do not agree with El1-Wakil [4] who suggested

6Li enrichments in excess of 20%.

Although, from this study, the optimum tritium breeding rate oc-
curred at about natural lithium concentration for the 200 cm slab, the
author is hesitant to conclude this to be the ideal blanket width.
From the flux calculations, it is evident that diffusion theory intro-
duces errors, especially in the high energy ranges. Errors were also
introduced from the way in which the groups were selected. As a
result, it is hoped that the results of this study will be used in
support of a more exact transport calculation, which in turn can
lead to the design of a fusion blanket where the tritium breeding is

utilized to its fullest extent.
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VII. SUGGESTIONS FOR FURTHER STUDY

This study can be expanded and improved upon in several different
ways. One of the first things that could be done would be to split
the higher energy ranges into finer groups. This work only considered
a slab width of 100 cm and 200 cm. Other widths could be tried.

Other geometries, such as cylindrical or spherical, could also be
used to study optimum concentrations. Rather than using diffusion
theory, transport theory could be applied and then compared to the
results of this study. The development of an enriching process for
lithium and an economic analysis of such a process would also be a

worthwhile and interesting extension of this work.



Ls

10.

1l

12.

13;

56

VIII. LITERATURE CITED

D. C. BALLER, "The FAIM Code, A Multigroup One-Dimensional Dif-
fusion Equation Code," A.E.C. Report No. NAA-SR-7137 (1962).

GEORGE I. BELL, "Neutron Blanket Calculations for Thermonuclear
Reactors," LA 3385, Contract W-7405-eng. 36, Los Alamos Scientific
Laboratory, University of California, New Mexico (August 30, 1965).

ROBERT G. COCKRELL, "A Description of FAIMOS-A One-Dimensional
Neutron Diffusion Equation Code," Boeing Huntsville Simulation
Center, Boeing Company (1967).

M. M. EL-WAKIL, Nuclear Energy Conversion, International Textbook
Co., Scranton, Pa. (1971).

SAMUEL GLASSTONE and ALEXANDER SESONSKE, Nuclear Reactor Engi-
neering, Van Nostrand Reinhold Co., New York (1967).

DONALD J. HUGHES and JOHN A. HARVEY, Neutron Cross Sections,
U.S. Government Printing Office, Washington, D.C. (1955).

HERBERT S. ISBIN, Nuclear Reactor Theory, Reinhold Publishing
Co., New York (1963).

IRVING KAPLAN, Nuclear Physics, 2 ed., Addison-Wesley Publishing
Co., Inc., Reading, Massachusetts (1962).

JOHN R. LAMARSH, Nuclear Reactor Theory, Addison-Wesley Publishing
Co., Inc., Reading, Massachusetts (1966).

C. M. LEDERER, J. M. HOLLANDER, and J. PERLMAN, Tables of Isotopes,
6 ed., John Wiley and Sons, Inc., New York (March 1968).

W. B. MYERS, W. M. WELLS, and E. H. CANFIELD, "Tritium Regenera-
tion in a D-T Thermonuclear Reactor Blanket,'" UCID-4480, Contract
W-7405 eng.-48, 19p. UC-20-4, California University, Livermore,
Lawrence Radiation Laboratory (May 22, 1962).

D. J. ROSE, '"Feasibility of Power by Nuclear Fusion,'" ORNL-TM-2204,
Contract W-7405 eng.-26, Oak Ridge National Laboratory, Tennessee
(May 28, 1968).

JOHN R. STEHN, MURREY D. GOLDBERG, BENGAMIN A. MUGURNO, and
RENATE WEINERCHASMAN, "Neutron Cross Sections," BNL 325, Vol. 1,
Z=1 to 20, 2 ed., Supplement 2, U.S. Government Printing Office,
Washington, D.C. (May 1964).



14,

57

DON STEINER, '"Neutronics Calculations and Cost Estimates for
Fusion Reactor Blanket Assemblies," ORNL-TM-2360, 18p. 20-4 UNLTD
Dist., Oak Ridge National Laboratory, Tennessee (November 22,
1968) .



58

IX. ACKNOWLEDGMENTS

The author would like to express his sincere gratitude to Dr.
Agust Valfells and Dr. Alfred F. Rohach of the Department of Nuclear
Engineering for their guidance and helpful encouragement in the
preparation of this work. I also gratefully acknowledge Argonne
National Laboratory in supplying the computer code for use in this
work,

I would also like to express my gratitude to my wife, Glynace,

for her help in assembling the thesis.



