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1. INTRODUCTION 

Although the backpropagation neural network was initially developed in the late 

1960's (Bryson and Ro, 1969), the capabilities of this or any other artificial neural 

network (ANN) have only become widely appreciated in recent years. The interest in 

ANNs is due to their ability to provide solutions to problems that conventional 

computer architectures cannot solve readily, or at all. Areas in which ANNs have 

shown promise are speech and pattern recognition (Tom and Tenorio, 1991), control 

systems (Garg and Floyd, 1991), and image enhancement (Kuperstein, 1991). 

The architecture of a feedforward neural network is modeled after the neural 

structure in the cerebral cortex of the brain. Feedforward neural networks are 

constructed of two types of simple building blocks: processing elements and 

interconnections (Figure 1.1). Each processing elem~nt (PE) is functionally equivalent 

to the soma (body) of a neuron. A PE sums the input values it receives and computes a 

single output via an activation function. An interconnection weighs the input value it 

receives from a PE and delivers this value to a PE on the next higher layer, much as an 

action potential generated at the hillock of a soma travels across its axon and synapses 

to a dendrite of another neuron in the cerebral cortex (Figure 1.2). The knowledge the 

network ultimately possesses is represented by the weight values associated with the 

interconnections. In order to generate the appropriate weights to solve the problem 
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Figure 1.1 Simple neural network block diagram 
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Figure 1.2 Comparison of ANN processing element and neuron 
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at hand, the network must be trained. 

Backpropagation is a popular, often implemented training algorithm. In this 

algorithm a known set of training data is fed through the network and the error, which 

is the calculated difference between the expected output and the actual output, is then 
U 7 

fed back through the network. The interconnection weights are adjusted with respect to 

the backpropagated error to minimize the error in the outputs (Hecht-Nielsen, 1989). 

Thoroughly training a network often requires presenting the entire training set 

thousands or even hundreds of thousands of times. As the size of the problem being 

addressed by the neural network grows, the ability of the ANN to be trained in a 

reasonable amount of time becomes the limiting factor in using it, particular when the 

network is implemented on a serial (single processor) computer. 

The architecture of a multi-layer neural network has a natural parallel structure. 

The PEs in each layer receive inputs simultaneously from the previous layer and 

process individual outputs independent of each other. Consequently, implementing an 

ANN on a traditional single processor, or von Neumann, computer requires a 

considerable amount of processing time to execute the same instructions for each PE 

one at a time. The vast majority of ANNs developed to date have been implemented 

on serial machines. However, an interconnected array of processors does have a 

comparable architecture to that of a multi-layer ANN and could be adapted through 

programming to accommodate a neural network. 

The DAP (Distributed Array of Processors) architecture, initially developed in 

1972 at ICL's Research and Advanced Development Centre (Flanders et al., 1990), 

possesses exactly this type of massively parallel, fine-grain processing power. The DAP 

is a single instruction mUltiple data (SIMD) system. This means that each processor, or 

processing unit (PU), executes the same instructions as all other PUs, but with a 
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different set' of data. The time saved training an ANN implemented on a parallel 

computer might provide the improved training time necessary to apply neural networks 

to more complex problems that require large architectures. 

Medical image reconstruction is a good example of a larger problem. 

Reconstruction would require a network to produce a three-dimensional construct of 

the data collected from a series of planar images taken of a target organ, or target area 

of a patient. The input to such a network would be a large image array (e.g. 64 x 64). 

Training a network of this size (e.g. 4196 input nodes and 4196 output nodes) on a serial 

computer could not typically be accomplished in a reasonable amount of time, but 

training this size of network on a DAP may be very practical. One area of image 

reconstruction in which a neural network may improve on the reconstruction algorithms 

used presently, is in the nuclear medical field of emission computed tomography (ECf). 

ECf is a radiopharmaceutical imaging technique that provides three­

dimensional distribution mapping of a radionuclide after its administration to a patient. 

The radionuclide is scanned with a gamma ray camera after it localizes in the target 

area of the body. When reconstructed, the three-dimensional image provides 

information on pathologic processes and physiological functioning in the target organ. 

ECf imaging. is primarily used for identifying organ lesions and evaluating metabolic 

processes. Reconstruction is typically achieved via a filtered backprojection algorithm 

(Larsson, 1980). Although this method works well, it does have several limitations that 

create a high percentage of statistical uncertainty in the reconstructed images 

(Budinger, 1983). 
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2. OBJECTIVE 

The objective of this study was to determine the feasibility of using an ANN, in 

particular a backpropagation ANN, to improve the speed and quality of the 

reconstruction of three-dimensional SPECf (single photon emission computed 

tomography) images. In addition, since the PEs in each layer of an ANN are 

independent of each other, the speed and efficiency of the neural network architecture 

could be better optimized by implementing the ANN on a massively parallel computer. 

The specific goals of this research were: 

1. To implement a fully interconnected backpropagation neural 

network on a serial computer and a SIMD parallel computer, 

2. To identify any reduction in the time required to train these 

networks on the parallel machine versus the serial machine, 

3. To determine if these neural networks can learn to recognize 

SPECT data by training them on a section of an actual SPECf 

image, and 

4. To determine from the knowledge obtained in this research if full 

SPECf image reconstruction by an ANN implemented on a 

parallel computer is feasible both in time required to train the 

network, and in quality of the images reconstructed. 
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3. BACKGROUND 

3.1 Backpropagation Neural Network 

The backpropagation neural network is by far the most widely utilized ANN 

today. Although originally discovered in 1969 (Bryson and Ho, 1969) and 

independently rediscovered several times since then (Parker, 1986; Werbos, 1987), 

credit for developing backpropagation into a widely known, viable ANN technique 

belongs with Rumelhart and collaborators (Rumelhart et aI., 1986; Rumelhart and 

McClelland, 1986)./perhaps the most notable step in the development of 

backpropagation involved the use of a sigmoidal activation function (Figure 3.1) as the 

output, or decision function, of each PE rather than the more traditional hard-limiting 

quantizer. A hard-limiting quantizer outputs either + 1 or -1, which is determined by 

the sum of the inputs and the preset threshold of each PE. Unlike the hard-limiting 

quantizers, the nonlinearity of the sigmoidal function provides a flexibility in the 

network that allows it to generalize, and thus learn more efficiently (Lippmann, 1987). 

A backpropagation neural network is often referred to as a mapping neural 

network (Hecht-Nielsen, 1989). Mapping difficult functions, or functional relationships 

which would otherwise be hard to evaluate, can be readily trained into the neural 

network. The network is trained on a set of randomly selected inputs from the mapping 
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Figure 3.1 Sigmoidal activation function 

area range, for which the associated outputs- are known. The network does not simply 

memorize the training set, but generalizes the training set data to closely approximate 

the mapping between and around the known data. 

3.1.1 Backpropagation Architecture 

While the basic building blocks of the backpropagation neural network, as seen 

in Figure 3.2, are the same for each network, the actual architecture of the ANN 

depends primarily on the problem at hand. A detailed block diagram of a fully­

interconnected backpropagation neural network is shown in Figure 3.3. The 

architecture has an input layer, an output layer, and a user selectable number of hidden 

layers, typically one. The number of PEs in the input layer and in the output layer is 

defined by the size of the data vector being evaluated and by the size of the output 

vector desired from the ANN. 
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Figure 3.2 Backpropagation proce~sing element diagram 
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Figure 3.3 Functional diagram of backpropagation ANN 
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The size of the hidden layer, or layers, is not as well defined. If the hidden layer 

is too small, the network will learn slowly and will require an excessive number of 

iterations of the training set. If the hidden layer is too large, the network will 

grandmother (Caudill, 1988a), or memorize the training set. Grandmothering tends to 

inhibit generalization by the network and thus, after training, the network does not 

produce accurate outputs for new, unfamiliar input patterns. There are some "rules of 

thumb" for choosing the hidden layer size. One rule suggests determining the number 

of nodes by multiplying the square root of the sum of the input and output nodes by 1.2 

and rounding that value up to the next integer. While there is research into the use of a 

dynamic node architecture (Bartlett and Basu, 1991), or a genetic algorithm 

(Heistermann, 1990) to determine the number of hidden nodes, the most prevalent 

method is by trial and error; training a variety of architectures to determine which one 

performs the best. 

Once a particular architecture has been chosen to be trained, a random weight 

value is assigned to each interconnection. Like various neurotransmitters in the 

synaptic connections between neurons, positive weight values are excitatory, and 

negative weights are inhibitory, to the next node. These weights are adjusted during 

training, and represent the knowledge possessed by the network when training is 

complete. 

3.1.2. Feedforward Data Flow 

In the typical backpropagation algorithm, a datum vector applied to the input 

layer propagates through the network, generating an output vector that is determined 
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by the architecture and weight values of the network. Each node value from the input 

layer is multiplied by the weight value associated with each interconnection from that 

node and delivered to a node in the hidden layer. Each node in the hidden layer then 

sums the weighted values it receives from the input layer (Equation 3.1). 

where 

. N 

Iii = g{ }: WIij * z(1.1)ij } (3.1) 

= 

g = 

WIij = 

Z(1·1)ij = 

j=O 

The sum of the inputs to the ith PE in layer 1. 

The gain term, which affects the slope of the 

activation function. 

The weight value of the interconnection from the jth 

PE of the previous layer, to the ith PE in layer 1. 

The output of the jth PE in layer (1- 1) to the ith PE 

in layer 1. 

The outputs of the PEs in the hidden layer(s) and output layer are characterized 

by a nonlinear sigmoidal activation function, such as Equation 3.2. 

f(a) = 1 / (1 + e·(a. 8» (3.2) 

where 

= Iii (Equation 3.1) 
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8 = The internal offset, or threshold. 

This output is again multiplied by each interconnection weight as it is passed to 

the PEs in the next layer. The values from the sigmoidal functions in the output layer 

nodes represent the network result for the given input vector. 

3.1.3. Training the Network 

Since the interconnections are initialized with random weights, these weights 

must be adjusted in order for the ANN to produce the proper outputs. This is achieved 

by feeding the output error back through the network to modify the interconnection 

weights; "training" the network. 

When a network is being used to map a function, the training set is chosen 

randomly from the input domain as determined by a fixed probability density function, 

p(x) (Hecht-Nielsen, 1989). In practical applications the problem domain may not be 

well defined,but it is important that the training set be a good representation of the 

problem domain. The more diverse the training set, the better the generalization of the 

network and the better the performance of the network. 

The error or "cost" of the network during training is determined by Equation 3.3. 

1 m 

C = {l/(N*J) * [}: }: (Dnj - Y nj)2]1/2} (3.3) 

n=Oj=O 



where 

N 

J 

Dnj 

= 
= 

= 

= 
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The number of output nodes. 

The number of patterns in ~he training set. 

The desired output of the jth node for the nth 

training vector. 

The actual output of the jth node of the nth training 

vector. 

Equation 3.3 represents the root mean square (RMS) error, also referred to as 

the least mean square (LMS) error, of the desired output minus the actual output. Part 

of the error associated with each interconnection's weight is fed back through the 

network, decreasing the magnitude of the RMS error. The learning rule used to adjust 

network weights is called the Delta Rule (Equation 3.4). 

where 

wold ji 

71 

wnew ji = wold ji + 71 * OJ * Yi (3.4) 

= 

= 

The present weight value of the interconnection 

from the ith node of the previous layer to the jth 

node of the present layer. 

The learning rate, or gain of the network 

(typically, 0.0 < 71 < 1.0). 

I 



U' J 

Yi 

= 

= 
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The difference between the desired output and the 

actual output of the jth node, multiplied by the 

derivative of the sigmoidal activation function. 

The actual output of the ith node of the previous 

layer. 

The learning rate determines the magnitude of change in each weight update. A 

large learning rate may converge more rapidly toward the absolute minima, but it may 

also tend to oscillate around local minima in the cost function. 

The sigmoidal activation function in Equation 3.4 is important because it is a 

nonlinear function, which provides a network the ability to learn the relationship 

between training data. The network derives the actual correlation between data points 

and not just a linear interpolation. The sigmoid is also important because its derivative 

is a straightforward, easily programmable computation (Equation 3.5). 

f '(a) = f(a) * (1 - f(a)) (3.5) 

This derivative is incorporated into Uj of Equation 3.4. This derivative is a 
. . 

gaussian-shaped curve which results in interconnection weights of nodes with outputs 

near zero or one to be changed very little, and outputs near 0.5 to be changed more by 

the backpropagation. This is particularly useful in networks with binary outputs, since 

the interconnection weights to indecisive nodes are adjusted more during training. For 

the interconnections that feed from the last hidden layer into the output layer: 



where 

X· 
:J 

dj 

= 

= 

14 

Delta Rule (3.6) 

The actual output of the jth node. 

The desired output of the jth output node. 

and, for the interconnections that input into a hidden layer: 

where 

N 

oj = Xj{1 - Xj) * l: (dk - xk) * Wjk Generalized Delta Rule (3.7) 

k=O 

= The desired output of the kth node in the next feedforward 

layer. 

= The weight of the interconnection from the jth node in the 

hidden layer to the kth node in the next feedforward layer. 

With each iteration of the training set through the network, and 

backpropagation of the error, the cost ideally approaches zero (Equation 3.3). While 

the goal of training is to reach the absolute minimum cost, there may be local minima 

and plateaus on which the network can become indecisive as to which direction along 

the error space to proceed (Figure 3.4). This is a result of the backpropagation 
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algorithm minimizing the present error without regard to previous adjustments. The 

training time required for problems in which the networ~ tends to be indecisive may be 

improved with the addition of a momentum term (Equation 3.8). 

where 

wnew ji = wold ji + 1] * OJ * Xj + Q(Wold ji - wprevious ji) (3.8) 

= 

wprevious ji = 

The momentum term (0 < Q < 1). 

The weight value of the interconnection prior to 

wold ji. 

Error 

o 

jLOCal Minimum 

; ,Plateau 

Weights 

Global Minimum 

~ 

Figure 3.4 Example of ANN descending-search error function 
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The larger a is the more momentum there is in the direction the weights are 

being adjusted. The momentum term gives an impetuous to the training network to get 

out of local minima and to move in one direction on plateaus, instead of oscillating 

back and forth (Caudill, 1988b). 

The main drawback in using a backpropagation ANN is frequently the great 

mount of time required to train the network. Each data vector of the training set must 

feedforward through the network, and the error must be fed back. This, coupled with 

the fact that the entire training set may have to be presented to the network ,several 

thousand times, makes training very time consuming. This is particularly so for an ANN 

implemented on a serial machine. These limitations to backpropagation architectures 

can be significantly reduced, however, by implementing the neural network on a 

parallel machine. 

3.2 Massively Parallel Computing 

Massively parallel processing involves optimizing the processing power of a large 

number of individual processors, or processing units (PUs), which are interconnected 

with high speed communications links. A significant improvement in performance over 

single processor, or von Neumann type, architectures can be achieved by distributing a 

problem across many, often thousands, of processors; all of which are executing code 

simultaneously. Large problems can be solved quickly with this type of system. 

The primary distinction between types of parallel architectures is in whether the 

PUs execute identical instructions on different data (single instruction multiple data 

(SIMD)), or whether the PUs execute unique sections of code on separate data streams 
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(multiple instruction multiple data (MIMD)) (Desrochers, 1987). While MIMD can be 

used in a wider range of applications than can SIMD (Almasi and Gottlieb, 1989), the 

MIMD PUs must be larger and more complex, since they have to decode instructions 

and handle program counters. Conversely, SIMD PUs execute decoded instructions 

broadcast to them by a controller processor. The SIMD processors are less complex, 

and, thus, larger arrays of PUs can be more readily built. 

3.2.1 SIMD System Architecture 

The SIMD parallel system is composed of two individual systems: the front-end 

computer, and the massively parallel computer. The front-end computer is a serial 

machine which manages access to the parallel computer and also provides an 

environment in which the parallel code can be developed. The front-end can host 

multiple users and typically provides an array of programming tools. Access to the 

parallel machine, or data processing unit (DPU), can be provided to only one user at a 

time. A compiled program is downloaded to the DPU and executed entirely by the 

DPU. The PU array is activated by special parallel commands. Serial instructions are 

executed by the DPU control processor which usually is a small processor with 

execution rates comparable to those of a microcomputer. 

The DPU architecture has a certain inherent synchronicity since a single 

processor controls instruction decoding and PU intercommunications. The control 

processor will broadcast an instruction to all active PUs and will not execute the next 

instruction in the code until all PUs have completed the previous command. The PUs 

are made up of simple processors with small local memories (Figure 3.5). 
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The PU array performance is limited by the speed of its processors. Individual PUs, 

which possess very small processors, do not execute instructions as fast as more complex 

single processor computers. The advantages to SIMD computing are realized by 

breaking a problem down into simple calculations and distributing these among the 

many PUs. Therefore, the architecture of the PU array and how the instruction code 

distributes a problem on the array are critical to the processing performance reaped 

from a SIMD machine. 

3.2.2 Distributed Array of Processors 

A massively parallel computer consists of a large interconnected matrix (e.g., 

128x128) of processors, often referred to as a distributed array of processors. The 



19 

matrix is controlled by a single high-speed master control processor (MCP). The DAP 

is typically connected in a two-dimensional mesh of north, south, east, and west 

communication pathways. Often northeast, northwest, southeast, and southwest 

communication pathways are incorporated into the interconnection mesh. Each 

processing unit (PU) consists of a processor, local memory, and input/output controller 

(Figure 3.5). The MCP broadcasts decoded instructions to all "active" (receiving and 

executing code) PUs, and the PUs in turn execute that code on data stored in their local 

memory or registers. The next broadcasted instruction is not executed until all PUs 

have completed the previous instruction (Almasi and Gottlieb, 1989). 

Since the individual PUs typically have small 1-, 2-, or 4-bit processors, floating 

point operations and complex functions require considerable processing time. This is 

an important consid~ration when developing parallel code. While distributing the 

program on the PU array can greatly improve execution times, that improvement is 

somewhat tempered by the fact that the PUs have small processors which are 

individually slow. This is particularly true of floating point operations. If floating point 

calculations can be done via integer operations then the PU array can be better utilized, 

and thus execute code more efficiently. 

3.2.3 SIMD Programming 

Most parallel languages are based around a high-level serial language, such as 

FORTRAN or "C". All of the high-level language commands are retained and 

additional parallel extensions are used to identify which commands are to be executed 

on the PU array. Parallel declarations are used to distinguish PU variables from MCP 
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variables. The MCP executes all serial instructions, and decodes and broadcasts 

parallel instructions to all active PUs. 

Communications between PUs can be direct, or indirect. Both types of 

communication are controlled by the MCP. The difference in communication schemes 

lies in the path by which information travels, and the speed with which it is exchanged. 

Direct communications are through high-speed interconnections, and can only be 

carried out between PUs that lie on directional pathways (e.g., N, S, E, W) (Figure 3.5). 

Indirect communications are required when interacting PUs are not connected on a 

directional pathway. In these cases, information is transmitted from the PU to the 

MCP, and then the MCP channels the information to the target PU. When outlining a 

program it is important to know that direct intercommunications are substantially faster 

than indirect communications. Therefore, when distributing a program on the array of 

processors, positioning the majority of interacting PUs so as to take advantage of the 

high-speed pathways is vital to producing fast code. 

Although there is no one preferred method to parallel programming, most 

programmers will have a good working knowledge of the serial language upon which 

the parallel language is based. They will also have a serial mind set to programming 

unless they have had previous parallel programming experience. For those without 

previous parallel experience, it is often much easier to program exclusively with serial 

commands, and develop and debug a working model of the code in serial before 

introducing parallel commands. In this way parallel instructions can be systematically 

incorporated into a working model of the code, and errors, such as unfamiliar 

syntactical conventions, can be readily isolated. This technique allows for the working 

model of the program to be adapted until an acceptable execution rate is achieved. 



21 

3.3 Single Photon Emission Computed Tomography (SPECT) 

Emission Computed Tomography (ECT) utilizes the emitted radiation of a 

conventional nuclear medical radionuclide to produce a diagnostic three-dimensional 

image, reconstructed from a series of two-dimensional planar projection images. The 

ability to produce three-dimensional images from two-dimensional planar views of an 

object was mathematically demonstrated by Radon in 1917. Kuhl and Edwards initially 

investigated emission tomography in 1963. They superimposed rectilinear scans to 

produce tomographic images. These early images were blurred by extraneous noise, 

and physical photon effects. In the early 1970's, better reconstruction algorithms, 

originally developed for x-ray computed tomography, were adapted for ECT. 

ECT has since developed in two directions, each of which is defined by the type 

of radiation emitted by the tracer used: positron emission computed tomography 

(PET), and single photon emission computed tomography (SPECT). PET is based on 

the detection of a pair of photons released 1800 opposite each other when a emitted 

positron interacts with an electron. Commonly used radionuclides in PET imaging are 

F-18 and C-ll (Macovski, 1983). While PET can be used for some very unique 

diagnostic applications, the short half-life of the positron emitters requires that these 

tracers be produced at the time of use. This means that a high cost cyclotron particle 

accelerator must be on hand to produce the radiopharmaceuticals. SPECT on the 

other hand, relies on the detection of gamma ray emitting tracers, such as Tc-99m and 

Ti-201 (Jaszczak, 1988). Since these tracers have longer half-lifes, an onsite cyclotron is 
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not required. For this reason a SPECf system is far less expensive to implement into 

the clinical environment. 

3.3.1 SPECT Data Collection 

A variety of radiopharmaceuticals are used in SPECf imaging. Different 

radionuclides localize better in certain regions of the body and are selected according 

to the target organ to be imaged (Jaszczak, 1988). The technicium isotope, Tc-99m, is 

an example of a widely used radionuclide. The advantages of using Tc-99m are 

threefold: it does not require a cyclotron to produce, it has a short 6-hour half-life so 

the patient is exposed to the radiation for a brief period of time, and it has a gamma ray 

emission energy of 140 kev, which is a low energy level similar to the energy used in x­

rays, and so has little effect on cells and tissues (Macovski, 1983). 

The detecting element of the photons emitted by the radionuclide is a sodium 

iodine crystal (NaI(TI», which emits visible light photons after exposure to gamma 

photons (Cho and Ra, 1984). A photomultiplier tube (PMT) converts the light photons 

to electrical pulses which are manipulated to produce an image that can be recorded 

and displayed (Figure 3.6). The Anger camera (Jaszczak, 1988), or gamma ray 

scintillation camera, resolves the problem of limited resolution that is inherent in 

cameras composed of an array of discrete detectors (Figure 3.6). The Anger camera 

(Figure 3.7) channels the gamma rays through a multiple hole collimator on to a large 

NaI(TI) crystal. Instead of having a PMT for each collimator hole, there is a small 

array of PMTs which are exposed to light from the scintillation crystal. The magnitude 

of the signals produced by each PMT can be used to pinpoint where a gamma ray was 
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absorbed. This not only simplifies the camera, but it also allows a high resolution image 

to be produced with a limited number of detectors (Jaszczak, 1988). 

Unlike radiology where the scintillation image is recorded on film, the visible 

photons detected by the PMTs are converted to electrical signals and the image 

corrected for attenuation and scatter effects, if desired (Larsson, 1980). Compton 

scattering, in which a photon colliding with a free or bound electron is deflected at a 

new angle and at a lower energy level, can cause significant distortion that often 

appears as fog in the image (Macovski, 1983). Some of the scatter is absorbed by the 

collimator material, typically lead, since the photons are not travelling parallel to the 

channels (Figure 3.7). The scattered photons that do reach the detector may be 

eliminated by a filter circuit in the recorder (Figure 3.8). After conversion of photon 

events to electrical signals, some filtering of scattered photons is possible since they may 
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have energy levels well below that of the energy level of the isotope administered. 

Likewise, mUltiple events have a higher than expected energy and can be identified and 

discarded by the recorder. The recorder circuitry determines the position of each event 

and eliminates photons outside the expected energy range. Once these planar images 

are recorded the SPECf system generates three-dimensional image slices of the 

scanned area using a reconstruction algorithm. 

3.3.2 Reconstruction Algorithms 

The gamma ray camera is typically mounted on a gantry so that equally spaced 

incremental planar images can be taken over a 1800 rotation, or 3600 in some systems, 

about the patient. These multiple views of the target organ are necessary to provide 

enough information to reconstruct image slices of the target area. Simple 

backprojection methods were initially used by Kuhl and Edwards to perform ECf 

reconstructions (Kuhl and Edwards, 1968). These methods, however, produced very 

blurred images that provided limited information. Since then, filtering prior to 

backprojection reconstruction or after reconstruction, termed filtered backprojection, 

has proven to produce clearer tomographic images. Filtered backprojection algorithms 

are predominantly used in clinical medical imaging. Despite this wide acceptance of 

filtered backprojection, it does suffer from a variety of noise effects, such as scatter and 

attenuation, which create a high percentage of statistical uncertainty in the 

reconstructed images. 

Filtered backprojection encompasses a wide range of reconstruction techniques. 

The majority of these methods can be classified as either analytic or algebraic. 
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Analytical algorithms pe'rform a spatial or frequency filtering of the planar data prior to 

backprojection, or after backprojection. Algebraic algorithms use iterative techniques 

in which the projection data sums are adjusted until the difference between calculated 

values and experimental values fall within a predetermined acceptance range. 

Each filtered backprojection method has its advantages. Comparisons between 

analytical and algebraic techniques show that while algebraic methods are easier to 

implement, the analytical methods' abilities to handle incomplete and noisy gamma 

camera images make them the preferred backprojection techniques (Larsson, 1980). 

Additional sources of error, such as systematic errors, artifacts, and physical photon 

transport effects (scatter and attenuation), can to some extent be compensated for, but 

the compensation methods greatly increase reconstruction time. 

Techniques, that perform reconstruction with much less statistical error than 

filtered backprojection, have been developed but require extensive computational time. 

Once such method, called the Monte Carlo method, improves on the accuracy of the 

reconstructed slices by modeling the physics of SPECT imaging and uses this 

information in conjunction with a standard reconstruction algorithm to correct for 

scatter and attenuation (Gordon and Herman, 1974; Shepp and Vardi, 1982). 

However, while such techniques give a reconstructed image a more desirable degree of 

error, the reconstruction time required makes their use in clinical situations impractical. 
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4. LITERATURE REVIEW 

Backpropagation neural networks have found wide application in a variety of 

areas: speech and pattern recognition (Carpenter et aI., 1991; Fukushima, 1990; Kim 

and Lee, 1991; Hiraiwa et aI., 1990; Tom and Tenorio, 1991), image compression and 

enhancement (Garg and Floyd, 1991; Mougeot et aI., 1991), and control systems (Abbas 

and Chizeck, 1991; Kuperstein, 1991). A survey of the literature revealed only the 

article by E. B. Bartlett and this author applying neural networks to medical image 

reconstruction (Appendix I). 

While image reconstruction is a new field for neural network application, ANNs 

have found a wide range of other uses in medical imaging. Considerable research into 

the diagnosis and detection of physiological abnormalities in medical images using 

ANNs has been done. These studies primarily utilize the pattern recognition abilities of 

ANNs as image classifiers (Hudgins et aI., 1991) and as aides in medical diagnosis, such 

as vascular necrosis determination from a magnetic resonance image (MRI) (Manduca 

et aI., 1991), and in detection of organ lesions and nodes, such as from x-ray scans (Garg 

and Floyd, 1991) and in PET images (Kippenhan et at, 1991). 

Simulating a backpropagation neural network on a parallel machine has recently 
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attracted considerable interest (Brown et aI., 1989; Koikkalainen and Oja, 1991; 

Schiffmann and Mecklenburg, 1990). There is no one best implementation of a neural 

network on the PU array of a SIMD parallel machine. Two typical implementation 

schemes are: (i) to dedicate a PU to each node and each interconnection in the neural 

network (Hicklin and Demuth, 1988), and (ii) to dedicate one node and one 

interconnection from each layer of the neural network to a single PU (Y oon et aI., 

1990). The higher degrees of processing efficiency are primarily dependant on utilizing 

the entire PU array and reducing the number of floating point operations whenever 

possible. Integer operations can be quickly executed by the small processors in the PU 

array, but floating point operations and complex function calls are detrimental to the 

PU arrays performance. An efficient backpropagation ANN simulated on a parallel 

machine can execute two to three orders of magnitude faster than an ANN simulated by 

a serial machine (Kamgar-Parsi et aI., 1988). Additionally, the development of a 

integer-based backpropagation algorithm would make a SIMD ANN simulation even 

more efficient. 

A great number of three-dimensional reconstruction algorithms have been 

developed to improve on the standard backprojection algorithm without incurring an 

excessive cost in time. Spatial filtered and frequency filtered backprojection techniques 

(Larsson, 1980) are used in the majority of clinical applications. Techniques which have 

less statistical error in their reconstructions, such as a Monte Carlo algorithm (Shepp 

and Vardi, 1982), would be better in clinical situations than filtered backprojection 

algorithms if it were not for the time required for reconstruction. The Monte Carlo 

technique involves a randomized searching scheme to determine the best 

reconstruction image. The time required to randomly search the domain of possible 
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reconstruction patterns is computational expensive even for a parallel machine. 
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5. MATERIALS AND METHODS 

5.1 SPECT Data Description 

The projection data used to train the neural network and make reconstruction 

error measurements was generated from a clinically reconstructed SPECf image of a 

human brain. Data manipulation routines were required to extract 8x8 sections from 

image slices, project the 8x8 slices into eight 8-quadrant planes, normalize output data 

for network training, and convert 8x8 images into a displayable. format. The "c" code 

developed to execute these conversions and data manipulations is listed, along with 

functional descriptions, in Appendix II. 

Each 8x8 section used for ANN training was taken from a clinical 64x64 SPECf 

image slice. The planar inputs were generated by projecting each image slice into eight 

8-quadrant planes. Each plane was rotated 22.50 from the previous plane around the 

image, giving eight incremental views covering 1800 around the image (Figure 5.1). 

Each of the eight quadrants of each planar view represented the summation of the 

intensity values projected from the 8x8 section. 

Two sets of training data were used to demonstrate SPECT reconstruction. The 

first set consisted of a single datum. The objective of training a single image was to 

demonstrate a neural network's ability to memorize a SPECT image. The second data 

set consisted of two parallel sections separated by one slice from the clinical SPECf 
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Figure 5.1 Eight planar projections from 8x8 SPECT section 

image. The objective here was not only to show the ANN's ability to recall more than 

one image, but also to determine its ability to generalize the relationship between the 

planar and reconstructed data, This was achieved by testing the network's ability to 

reconstruct the untrained center image slice, 

5.2 Backpropagation ANN Implementation 

The fully-interconnected backpropagation neural networks were simulated on a 

serial computer and a parallel computer. The networks were composed of 64 input 

nodes to accommodate the eight 8-quadrant projection planes and 64 output nodes to 
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produce the 8x8 image reconstructions. Various hidden layer architectures were 

implemented and trained both for parallel-to-serial processing time comparisons, and 

for determining the optimal architecture for learning the reconstruction relationship. 

The architectures which converged the fastest and had the smaller RMS errors in 

reproducing the slices are identified in the results chapter of this text. The feedforward 

and backpropagation equations were implemented as cited in the background chapter 

of this text. A learning rate of 0.3 (equation 3.4) and a momentum term of 0.0 

(equation 3.7) were used in each neural network simulation. 

The serial computer (V AXStation 3520) neural network simulation program was 

coded in "C" and is listed, along with a functional description, in Appendix III. The 

parallel system (MasPar MP-l) neural network simulation program was coded in 

"Mas Par Parallel Language" (MPL), a parallel derivative of "C". MPL possesses all the 

"c" commands and libraries, as well as a small set of parallel specific-extensions and 

commands. The parallel code is listed, along with a functional description, in Appendix 

IV. 

All output values in the training sets were normalized to a 0.1 to 0.9 range. This 

was done so that the maximum and minimum output values of the sigmoidal activation 

function from each node (equation 3.2) were in the active region of the function and 

not in the saturated region near 0 and 1 (Figure 3.1). This technique limits all the PE 

outputs to the active region of the sigmoidal function, which gives the neural network 

better generalizing capabilities. It also allows the ANN to be more readily trained, 

since driving the activation functions of the PEs into the saturated regions takes many 

more iterations of the training set. 
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5.3 MasPar MP·l SIMD Parallel Computer 

5.3.1 MP-l Architecture 

The MasPar MP-1 is a single instruction multiple. data (SIMD), massively 

parallel machine. The MP-1 is composed of a 128x128 interconnected array of 4-bit 

processors (Figure 5.2). The MP-l's performance is dependant on how readily the 

problem at hand can be distributed among its 16,384 processors. Access to the PE 

array, program development, and program debugging are the functions of the front-end 

system (Figure 5.2), which in this case is a V AXStation 3520. The MP-1, commonly 

referred to as the data processing unit (DPU), consists of an arithmetic control unit 

(ACU) which decodes and broadcasts instructions to the PU array and executes all 

serial commands, and a PU array which is a 128x128 torodial mesh of 4-bit processors 

and memory elements (Figure 5.2). 

5.3.2 MPL Extensions and Commands 

MPL is based on Kernighan and Ritchie "C", first edition (Kernighan and 

Ritchie, 1978). MPL provides low-level access to the DPU. A detailed knowledge of 

the DPU is necessary to properly control processing on the PU array. Control of the 

processing units in the array is via predefined variables, user-defined parallel variables, 

PU-to-ACU communications, and PU-to-PU communications. 

Both singular and parallel variables are defined in the MPL library "mpl.h". 



Front-end 
System 

VAXStation 
3520 --

ACU 

4-bit 
Proc. 

IMem.1 

[@J 

34 

MP-1 (OPU) 

128x128 PU Array 
.... 
· ... 
· ... 
· ... .... 

I""" 

. 
. 

· ... 

Figure 5.2 MasPar MP·l system block diagram 

Variables nproc, nxproc, and nyproc define the total number of PUs in the array, the 

number of PUs in the x-direction of the array, and the number of PUs in the y-direction 

of the array, respectively. Likewise, singular variables lnproc, lnxproc, and lnyproc 

contain the number of bits required to represent the values in nproc, nxproc, and 

nyproc. These values are useful in masking out processing units, which can be used to 

change the size of the active PU array during code execution. 

User-defined parallel variables are variables which can be declared locally in 

each PU. Singular variables can be declared in the ACU only. The syntax for a parallel 

declaration is distinguishable from that of a singular declaration by the addition of the 

plural extension. 

plural float x; 
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Each PU allocates a memory location for the variable, in this case x. In a SIMD 

parallel computer each PU executes the same code, but on different data. This is 

accomplished in the MP-l by having variables with identical names allocated in all PUs, 

but with different data values. 

PU-to-ACU communications are via the proc instruction. 

proc[x] [y].val = acu _val; 

This example of the proc command sets the variable val in the PU located at 

coordinates x, y equal to the ACU variable acu _val. 

acu_val = proc[x] [y].val; 

Likewise, this example of the proc command sets the ACU variable acu _val equal to 

the value of plural variable val in PU x, y. 

PU-to-PU communications can be carried out via an xnet command or the 

router command. The xnet commands use high-speed communications pathways to 

transfer data directly from one PU to another. To use xnet commands the 

communicating PUs must lie on one of the eight directional pathways: north, south, 

east, west, northeast, northwest, southeast, southwest (Figure 3.5). The twenty-four 

different xnet commands are listed in Table 5.1. xnetp and xnetc differ from the basic 

PU-to-PU xnet commands. The xnetp (pipeline) commands are faster, but require all 

PUs in between the communicating PUs to be inactive. On the other hand, xnetc 

(copy) commands change the value of the variable being transferred, and in all the PUs 

in between, to the value of the variable being broadcasted. 
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Table 5.1 : Listing of all MPL xnet commands. 

Plain Access Copy Pipeline 

xnetN xnetcN xnetpN 

xnetS xnetcS xnetpS 

xnetE xnetcE xnetpE 

xnetW xnetcW xnetpW 

xnetNE xnetcNE xnetpNE 

xnetNW xnetcNW xnetpNW 

xnetSE xnetcSE xnetpSE 

xnetSW xnetcSW xnerpSW 

xnetNW[5].val = new_val; 

This xnet command example sets the variable val in all PUs, that are five PUs away 

from all active PUs in the northwest direction, equal to the value of new_val in each 

respective PU . 

. The router command is not as fast as the xnet commands since all data is sent to 

the ACU and then forwarded to the receiving PU. However, the router command is 

not restricted to any pathways and can be used to exchange data between PUs 

regardless of their location on the PU array. 
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router[3].val = new_val; 

This router command example instructs each PU, whose iproc value is three greater 

than an active PU, to set its variable val equal to value of new val from the associated 

PU. 

5.3.3 Neural Network Distribution on the PU Array 

The architecture implemented to determine the feasibility of SPECf 

reconstruction by an ANN required 64 inputs for the eight planar projections and 64 

outputs to produce the 8x8 reconstructed image slice. The optimal number of PEs in 

the hidden layer was determined by training a number of networks with various hidden 

layer sizes. The neural networks were distributed on the processor array by dedicating 

a processor to each node and each interconnection in the network (Figure 5.3). The 

nodes of the network were aligned on the array so as to best utilize the high speed 

north-south, east-west communication pathways. This distribution of the network 

allowed data to propagate from layer to layer more efficiently than it could through 

indirect pathways. This implementation scheme limits the maximum ANN architecture 

to no more than 128 input and output nodes combined, and to no more than a 128 

nodes in the hidden layer. This was an acceptable utilization of the PU array for 8x8 

image reconstructions, but could not be used for larger reconstructions, such as full 

64x64 SPECf images. 
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Figure 5.3 ANN distribution on 128x128 PU array. 
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6. RESULTS 

The objectives of this research were two-fold: (i) simulate a backpropagation 

neural network on a SIMD parallel computer and evaluate its performance, and (ii) 

determine the feasibility of SPECT image reconstruction from planar images via a 

backpropagation neural network simulated on the parallel computer. 

6.1 Parallel Vs. Serial Processing Rates 

The efficiency of the parallel backpropagation code, listed in Appendix IV, to 

the serial code, listed in Appendix III, was determined by measuring the execution time 

required to train each backpropagation network architecture on a single datum training 

set for 1000 iterations. Five different ANN architectures consisting of 64 input-nodes, 

64 output-nodes, and 8, 16,24,32, and 40 hidden-nodes were simulated with both the 

serial and parallel codes. The execution times on the MP-1, the parallel machine, and 

the V AXStation 3520, the serial machine, are listed in Table 6.1. The results in Table 

6.1 show that the processing rates on the V AXStation 3520 increased at a nearly linear 

rate of approximately 55 seconds for each additional 8-hidden nodes. Conversely, each 

incrementally larger hidden node architecture had comparatively small increases in 

processing time on the MP-1. Table 6.1 shows that smaller architectures, below 
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64x8x64, execute faster on the serial machine than on the parallel machine. On the 

other hand, as the architectures get larger the processing rate on the parallel machine 

becomes significantly smaller than that of the serial machine. 

Table 6.1: Serial vs. parallel processing rates 

ANN Architecture 

1000 iterations of a single datum training set (time) 

64x8x64 64x16x64 64x24x64 64x32x64 64x4Ox64 

VAXStation 

3520 62s 135 s 176 s 225 s 277 s 

(serial) 

MasPar 

MP-l 62s 66 s 72 s 75 s 77 s 

(parallel) 

6.2 SPECT Image Reconstruction 

The feasibility of SPECf reconstruction by a backpropagation neural network 

was evaluated via two training tests; (i) training different ANNs on a single 8x8 SPECf 

section to determine each network's ability to recall a known image, and (ii) training 

different networks on two 8x8 sections and then determining each network's ability to 

recall an untrained 8x8 section. 
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6.2.1 Single Image Reconstruction 

A number of different neural network architectures were trained on a single 

SPECf image. Each network architecture was trained to an RMS error (equation 3.3) 

-of zero (single·precision 16·bit floating point), except for the architecture with only one 

hidden node. All other architectures reproduced the SPECf images exactly. This 

precise recall accuracy was achieved in less than 100 training iterations for all trainable 

architectures, except for 2, 3, 4, and 5 hidden-node architectures which required as 

many as 200 iterations to reach an RMS error of zero. Table 6.2 lists the architectures 

tested, the number of iterations required to reach minimum RMS error, and the 

minimum RMS error achieved by each network architecture. 

The one hidden-node architecture was the only network that did not converge to 

an RMS error of zero. Different random number values for the interconnects were 

tried, but the network always converged to the same RMS error (0.020802). Since the 

input and output layers were large, it is not surprising that the one hidden node could 

not process all the data it received from the input layer. 

6.2.2 Untrained Image Reconstruction 

The "next task was to determine a neural network's ability to generalize the 

training set in order to accurately produce novel images. This was tested by training 

each ANN on two 8x8 parallel images from the clinical SPECf image, which were 

separated by one image slice, and then generating the untrained 8x8 reconstructed 
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Table 6.2 : Minimum RMS error obtained from single image training set. 

# Hidden Nodes # Training Iterations RMS Error 

1 3000 0.020802 

2 110 0.000000 

3 175 0.000000 

4 110 0.000000 

5 170 0.000000 

6 <100 0.000000 

7 <100 0.000000 

8 <100 O.OOQOOO 

9 < 100 0.000000 

10 <100 0.000000 

11 <100 0.000000 

12 <100 0.000000 

13 <100 0.000000 

14 <100 0.000000 

center slice given its planar images as inputs to the network. The full 64x64 

reconstructed SPECf image, from which the untrained 8x8 section was taken, is shown 

in Figure 6.1. The actual untrained 8x8 SPECf image section, from which the eight 8-

quadrant planar projections were calculated, and the ANN generated 8x8 section are 

shown in Figure 6.2 and Figure 6.3, respectively. The network that produced the image 

in Figure 6.3 had a 64x8x64 architecture and was trained for 6000 iterations on the two-
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image training set. The network achieved an RMS error of 0.001928 on the two-image 

training set. The generated output image had an RMS error of 0.001231. T4is means 

that the trained network reproduced the untrained image better than it could produce 

either image in the training set. It is most \ikely that the generalizing characteristics of 

the neural network, induced by the sigmoidal activation functions, learned a nonlinear 

average of the two training set images allowing the network to reproduce the untrained 

middle image with better accuracy than either training image. Table 6.3 lists various 

architectures and RMS errors achieved with the two-image training set. 

Table 6.3 Minimum RMS error obtained from two-image training set 

#Hidden Nodes # Training Iterations RMS Error 

8 6000 0.001928 

10 10000 0.002240 

16 7000 0.002156 

20 2000 0.002946 



44 



45 



46 

~ -~ 
"0 
"'0 
Q) 

c: 
~ .. -c: 
= 
E 
o 

c!: 

c: 
o .--C.I 
Q) 
til 

00 
>( 

00 
"'0 
Q) -C.I 

= .. -til c: 
o 
C.I 

f:! 
c: 
~ 



47 

7. DISCUSSION AND CONCLUSIONS 

Each neural network's ability to memorize a SPECT image, and to generalize 

between two SPECT image slices to reconstruct an untrained center image, shows that 

full SPECT image reconstruction via an ANN is feasible. Although statistical 

comparisons of reconstructed images to the original images were made, the most 

important measure of the ANN's image r.econstruction ability is a visual one. This is 

particularly true of SPECf information collection, which is through visual 

interpretation. It can be seen in Figure 6.2 and Figure 6.3 that the anatomical features 

and the gamma ray intensities of the original SPECT section are present in the image 

reconstructed by the ANN. 

The parallel simulation of the ANNs on the MP-l demonstrated the advantages 

of training very large networks on a parallel machine. Smaller networks will typically 

train faster on a serial machine since high-speed 16- and 32-bit processors can handle 

smaller networks better than a few 4-bit processors on a parallel machine. These 

results demonstrate that larger architectures cannot be trained in a reasonable amount 

of time on a serial computer, and that an ANN simulated and trained on a parallel 

computer will be required if full 64x64 SPECf reconstruction via an ANN is to be 

achieved. 
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The next step in developing SPECf reconstruction with an ANN will be to train 

the network on every other slice from all the slices of a SPECf brain image. This will 

be important in determining if the ANN can generalize over a large range of images 

and accurately reproduce untrained slices. From this point the same approach taken 

for 8x8 image reconstruction will be applied to full 64x64 SPECf images. This will 

require a modification to the parallel implementation algorithm of the ANN. Although 

the processing times achieved with the MP-1 are encouraging, many high-speed serial 

machines could more efficiently train the architectures used in this paper. Superior 

training rates are attainable through better utilization of the PU array and perhaps 

through the development of an integer-based backpropagation algorithm. The parallel 

ANN simulation code developed for this study can only handle 64 input-nodes and 64 

output-nodes. Therefore, a new algorithm will be necessary for full SPECf image 

reconstruction, and for what may eventually be a more efficient SPECf reconstruction 

technique. 

The primary constraint to accurate ECf image reconstruction involves the 

presence of noise, systematic errors, artifacts, and physical photon transport effects such 

as scatter and attenuation (Budinger, 1983; laszczak. 1988). Improved SPECf 

reconstruction via an ANN may be achieved by compensating for these problems in the 

training set. One way in which the accuracy of reconstruction can be improved is by 

modeling the physics of the problems in conjunction with the reconstruction algorithm 

used to produce the ANN training set. The Monte Carlo reconstruction method can be 

used to simulate attenuation, scatter, and other effects so that the ANN can be trained 

to correct for these undesired artifacts (Gordon and Herman, 1974; Shepp and Vardi, 

1982). ANN SPECf reconstruction would then offer the advantages associated with 

the Monte Carlo method, but without the inherent computational cost. Ultimately, 
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ANN SPECf reconstruction would require training just one network on simulated data. 

The network could then be used for all SPECf reconstructions, regardless of the 

SPECf system used, the target organ imaged, or the radiopharmaceutical administered. 
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Abstract 

In tltis paper, tlte feasibility of reconstructing a single photon emission computed tomography (SPECT) image 
via the parallel implementation of a back propagation neural network is shown. The MasPar, MP-l is a single 
instruction multiple data (SIMD) massively parallel mac/lille. It is composed of a 128x128 a"ay of 4-bit 
processors. The neural network is distributed on the a"ay by dedicating a processor to each node and each 
interconnection of the network. An 8x8 SPECT image slice section is projected illto eight planes. It is sltown 
that based on the projections. tlte neural network can produce tlte original SPECT slice image exactly. 
Likewise. when trained on two parallel slices. separated by one slice. tlte nellra/network is able to reproduce 
tlte cellter, untrained image to an RMS e"or of 0.001928. 

Introduction 

In recent years, artificial neural networks (ANNs) have been the subject of extensive 
theory, implementation and applications research. Spawned by the ever-increasing 
processing power of computers, ANNs have proven to be useful in applications for 
which conventional techniques have had difficulty. Such applications include pattern 
and speech recognition, and image enhancement. 

One area in which the image enhancement capabilities of neural networks may be 
applied is nuclear medical emission computed tomography (ECf). ECf utilizes the 
radiation emitted by a medical radionuclide to produce a three-dimensional image. 
This image is reconstructed from a series of two-dimensional projections. 
Reconstruction is typically achieved through a computationally expensive filtered 
backprojection algorithm [1]. Although this method provides useful diagnostic 
information, it does have several limitations that create high statistical uncertainty in 
the reconstructed image [2,3]. Neural networks on the other hand, have the capability 
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of handling many of the causes of these uncertainties, including attenuation and scatter 
effects. However, the training time required to simulate a reconstruction ANN large 
enough to handle useful images (Le., 64x64) may not be practical. Training a network 
fully, often requires presenting the entire training set several thousands of times. 
Therefore, the time in which the ANN can be trained is an important consideration in 
ECf reconstruction. 

Although much success has been achieved with neural networks, the applicability of 
ANN's to large-scale problems has been limited. Implemented primarily through 
simulation on digital serial computers, the size of the neural network and hence, the 
size of the problem that can be evaluated is limited by the processing speed of the 
implementing computer. The architecture of a multi-layer neural network has a natural 
parallel structure. One way to utilize this architecture and improve processing time is 
to simulate the ANN on a parallel machine. 

The objective of this paper is to demonstrate the feasibility of single photon emission 
computed tomography (SPECf) image reconstruction via a backpropagation neural 
network [4], implemented on the MasPar MP-1 parallel computer. 

SPECT Data Set 

Small sections of conventionally reconstructed SPECf images were used as the training 
set for demonstrating neural network reconstruction capabilities. Each 8x8 section used 
for training the ANN was taken from a clinical 64x64 SPECf image slice. The planar 
inputs were generated by projecting each image slice into eight 8-quadrant planes. 
Each plane was rotated 22.50 from the previous plane around the image, giving eight 
incremental views covering 1800 around the image. Each of the eight quadrants of each 
planar view is a summation of the intensity values projected from the 8x8 section. 

Two sets of training data were used to demonstrate SPECf reconstruction. The first 
set consisted of a single datum. The objective 'of training a single image was to 
demonstrate the neural networks ability to memorize a SPECf image. The second data 
set consisted of two parallel sections separated by one slice, taken from a clinical 
SPECf image. The objective here was not only to show the ANN's ability to recall 
more than one image, but also to determine its ability to generalize the relationship 
between the planar and reconstructed data. This was achieved by testing the networks 
ability to reconstruct an image slice not used in the training set. 
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Multi-layer Neural Network on a Distributed Array of Processors 

The MasPar MP-1 is a single instruction multiple data (SIMD), massively parallel' 
machine. Composed of a 128x128 interconnected array of 4-bit processors, the 
performance of the MP-1 is dependant on how readily the problem at hand can be 
distributed among the 16,384 processors. The backpropagation architecture can utilize 
this parallel processing power, by executing the functions of all processing elements 
(PEs) in each layer simultaneously. 

The architecture implemented for determining the feasibility of SPECf reconstruction 
by an ANN, required 64 inputs, for the eight planar projections, and 64 outputs, to 
produce the 8x8 reconstructed image slice. The optimal number of PEs in the hidden 
layer was determined by training a number of networks with various hidden layer sizes. 
The neural network was distributed on the processor array by dedicating a processor to 
each node and each interconnection in the network, figure 1. These processors are 
aligned on the array so as to best utilize the high speed north-south, east-west 
communication pathways. This distribution of the network allows data to propagate 
from layer to layer more efficiently than less direct pathways. The training time 
required for large architectures was significantly less on the MP-I than on the 
V AXStation 3520 serial computer, to which serial and parallel training rate 
comparisons were made, Table 1. 

II WIll w112 w1l3 · . · Wllj 

12 w121 w122 w123 · . . W12j 

13 w131 w132 w133 · · W13j 

· 
· · · · · 
· · · · · 

164 HI/WI H2/w2 H3/w3 · H'/w' J J 

w2lI w221 w231 W2jI 01 

· · · · 
· · · · · . 
· · · · . 

w2163 w2263 w2363 · · . W2j63 063 

w2I64 w2264 w2364 · · . W2j64 064 

Figure 1 ANN Distribution on 128x128 PE Array. 
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Table I Serial Vs. Parallel Processing Rates 

ANN Architecture 
1000 iterations of a single datum training set (time) 

64x8x64 64x16x64 64x24x64 64x32x64 64x4Ox64 
VAXStation 

3520 62 s 135 s 176 s 225 s 277 s 
(serial) 
MasPar 
MP-1 62 s 66 s 72s 75 s 77 s 

(parallel) 

Single Image Memorization 

A number of different neural network architectures were trained on a single SPECf 
image. Each network architecture trained to an RMS error of zero (single-precision), 
except for an architecture with only two hidden nodes. All other architectures 
reproduced the SPECf images exactly. This precise recall accuracy was achieved in 
less than 100 training iterations, except for 1-,3-,4-, and 5- hidden node architectures 
which required as many as 200 iterations to reach an RMS error of zero. Overall 
memorization of a single SPECf image was not a problem for the backpropagation 
neural networks. 

ANN Generalization of Multiple SPECT images 

The next task was to determine the neural networks ability to generalize the training set 
in order to accurately produce novel images. This was addressed by training an ANN 
on two 8x8 parallel image slice sections which were separated by one slice. The 
network was trained on these two images and achieved an RMS error of 0.001928. 
Then the untrained middle image slice was fed forward through the neural network. 
The output image generated had an RMS error of 0.001231. The full 64x64 
reconstructed SPECf image from which the untrained 8x8 section was taken, is shown 
in figure 2. The actual SPECf image section and the ANN generated SPECf image 
section are shown in figures 3 and 4. The network that produced the image in figure 4, 
had a 64x8x64 architecture and was trained for 6000 iterations on the two image 
training set. 
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Discussion and Concluding Remarks 

The neural networks ability to memorize a SPECT image and to generalize between 
two slice images to reconstruct the center, untrained image shows that full SPECf 
image reconstruction via an ANN is feasible. Although a statistical comparison of the 
reconstructed image to the original image was made, the most important measure of 
the ANN's image reconstruction ability is a visual one. This is particularly true of 
SPECf information collection which is through visual interpretation. It can be seen in 
figures 3 and 4 that the anatomical features of the original SPECT section are present 
in the image reconstructed by the ANN. 

The next step in developing SPECT reconstruction with an ANN will be to train the 
network on multiple slices, every other one, from all the slices of a SPECf brain image. 
This will be important in determining if the ANN can generalize over a large range of 
images and accurately reproduce the untrained slices. 

From that point the same approach taken for 8x8 image reconstruction will be applied 
to full 64x64 SPECf images. This will require a modification to the parallel 
implementation of the ANN. Although the processing times achieved with the MP-1 
are encouraging, many high-speed serial machines could more efficiently train the 
architectures used in this paper. Superior training rates are attainable through better 
utilization of the PE array. An improved parallel backpropagation implementation 
algorithm has been proposed [5]. A new algorithm will be necessary for full SPECT 
image reconstruction, and for what may eventually be a more efficient SPECf 
reconstruction technique. 

The primary constraint to accurate ECT image reconstruction involves the presence of 
noise, systematic errors, artifacts, and physical photon transport effects such as scatter 
and attenuation [2, 3]. Improved SPECf reconstruction via an ANN may be achieved 
by compensating for these problems in the training set. One way in which the accuracy 
of reconstruction can be improved is by modeling the physics of these problems in 
conjunction with the reconstruction algorithm used to produce the ANN training set. 
The Monte Carlo method can be used to simulate attenuation, scatter, and other effects 
so that the ANN can be trained to correct for these undesired artifacts [6, 7]. ANN 
SPECf reconstruction would then offer the advantages associated with the Monte 
Carlo method, but without the inherent computational cost. 
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Figure 2 Reconstructed 64x64 SPECT image from which the 8x8 
untrained section was taken (denoted by arrow). 
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Figure 3 Conventionally reconstructed 8x8 SPECT section. 

Figure 4 ANN reconstructed 8x8 SPECf section. 
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APPENDIX II 

SPECT DATA CONVERSION AND MANIPULATION ROUTINES 
"C" CODE 
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This code, written in "C" language, was written to manipulate the data of a 
complete, conventionally reconstucted SPECf image file. These data 
manipulation routines are required to extract reconstructed slices form the 
image, extract 8x8 sections from a slice image, project the slices into eight 8-
quadrant planes, normalize output data for network training, and convert 8x8 
images into a displayable format. The rest of this page list the declarations 
section of the code. 

#inc1ude < stdio.h > 
#inc1ude < math.h > 

#define NAME SIZE 12 
#define MAX COL 64 
#define MAX ROW 64 

void file _ data(); 
void compress _ dataO; 
void retrieveO; 
void project_ dataO; 
void calc _ dataO; 
void convert_ dataO; 
void format_ data(); 
void gen _ dataO; 

int x _ num, Y _ num, proj, empress, num; 
char inname[NAME _SIZE], outname[NAME _SIZE]; 
char sel; 
float in _ data[MAX _ ROW][MAX _ COL]; 
float id[MAX _ ROW][MAX _ COL]; 
FILE *ap; 



mainO 
{ 

} 
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The main program makes the primary function calls to the data manipulation 
routines. The routines selectable are listed under the whileUloop in the main 
program. 

while (1){ 
printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n"); 
printf(" SPECf data handling procedures\n"); 

} 

printf(" 1) Retrieve record\n"); 
printf(" 2) Compress file\n"); 
printf(" 3) Project file into eight planes\n"); 
printf(" 4) Convert binary file to ANN format\n"); 
printf(" 5) Merge projection files\n"); 
printf(" 6) Generate image formatted file\n"); 
printf(" 7) Exit\n\n"); 
printf(" Enter selection -> "); 
while «sel = getcharO) = = '\n'); 
switch(sel){ 

} 

case '1' : retrieveO; 
break; 

case '2' : file _ dataO; 
compress _ dataO; 
break; 

case '3' : project_ dataO; 
break; 

case '4' : convert_dataO; 
break; 

case '5' : format_ dataO; 
break; 

case '6' : gen_ dataO; 
break; 

default: exit(O); 
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The function file _ dataO reads in SPECf file information and the desired section 
size to be extracted. 

void file _ dataO 
{ 

} 

int i, j; 
FILE *fp; 

printf(" Input data filename: "); 
scanf("%s", inname); 
if «fp = fopen(inname,"r"» = = NULL){ 

printf(" Input file not found\n"); 
exit(O); 

} 
printf(" Enter number of data points in each row _ > It); 
scanf("%d", &x _ num); 
printf(" Enter number of data points in each column -> "); 
scanf(lt%dlt, &y_ num); 
printf(1t Enter the compression factor _ > It); 
scanf(lt%dlt, &cmpress); 
for (i = 0; i < y_num; + +i) 

for (j = O;j < x_num; + +j) 
fscanf(fp, It%f It, &in _ data[i][j]); 
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The procedure compress _ dataO compresses 64x64 slices into a user selectable 
SIze. 

void compress _ dataO 
{ 

} 

int i, j, k, 1; 
float tmp data[MAX ROW][MAX COL]; - - -
char cpname[NAME _SIZE]; 
FILE *cp; 

x_ num = x _ num/ cmpress; 
y _ num = y _ num/ cmpress; 
printf(" Enter compressed image filename: "); 
scanf("%s", cpname); 
cp = fopen(cpname,"w"); 
for (i = 0; i < y_num; + +i) 

for U = O;j < x_num; + +j){ 

} 

for (k = 1; k < cmpress+ 1; + + k) 
for (l = 1; 1 < cmpress+ 1; + + 1) 

tmp _ data[i][j) + = 
in _ data[i*cmpress + k-l][j*cmpress+ 1-1]; 

in data[i)U] = tmp data[i]U]/(cmpress*cmpress); - -
fprintf( cp, "%9.6f ", in _ data[i][j]); 
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The procedure retrieveO reads a 64 x 64 record from the SPECf file and stores 
that in a separate file so further data manipulation can be done without 
destroying the original SPECf file. 

void retrieveO 
{ 

int i, j, k, 1, rec, tpp; 
char dt[MAX _COL], dy[8]; 
char recname[NAME _SIZE], opname[NAME _SIZE]; 
short dat[64]; 
FILE *op; 
FILE *rp; 

printf(" Enter filename in which record is located: "); 
scanf("%s", opnam.e); 
if « op = fopen( opname, "r"» = = NULL){ 

printf(" Input file not found\n"); 
exit(O); 

} 
printf(" Enter filename to store record: "); 
scanf("%s", recname); 
rp = fopen(recname, "W"); 
printf(" Enter the number of the record -> "); 
scanf("%d", &rec); 
for (i = 0; i < rec-l; + +i) 

for (j = 0; j < 64; + + j) 
fread( da"t,2,64,op); 

printf(" Enter '1' for an 8x8 image, '2' otherwise -> "); 
seanf("%d", &ree); 
for (j = 0; j < 64; + + j){ 

fread( dat,2,64,op); 

if (ree = = 1){ 
if «(j > 23) && (j < 32»{ 

for (1 = 16; I < 24; + + l){ 
if (dat[l] < 0) 

dat[l] = 0; 



} 

} 

} 
else{ 

} 

} 

} . 
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tpp = dat[l]; 
dy[1-16] = tpp; 

fwrite( dy, 1,8,rp); 

for (k = 0; k < 64; + + k){ 
if (dat[k] < 0) 

dat[k] = 0; 
tpp = dat[k]; 
dt[k] = tpp; 

} 
fwrite( dt, 1,64,rp); 

fclose(recname ); 
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The procedure project dataO projects an 8x8 image section into eight 8-
quadrant planes 1800 about the 8x8 section. 

void project dataO 
{ 

int i, j, numb; 
float tmpin[8][8]; 
char projname[NAME _ SIZE1, netname[NAME _SIZE]; 
FILE *pf; 

numb = 1; 
printf(" Enter the 8x8 input filename: "); 
scanf("%s", projname); 
if «pf = fopen(projname,"r"» = = NULL){ 

printf(" Input file not found\n"); 
exit(O); 

} 
printf(" Enter network formatted projection filename: "); 
scanf("%s", netname); 
ap = fopen(netname,"w"); 
for(i = O;i < 8; ++i) 

for (j = 0; j < 8; + + j){ 
fscanf(pf, "%f\ tn, &id[i][j]); 
id[i][j1 = «id[ilUl / 128.0) * 0.80) + 0.10; 

} 
fprintf(ap, n%d\n", numb); 
calc _ dataO; 
for(i = O;i < 8; ++i) 

for (j = 0; j < 8; + + j) 
tmpin[ilUl = idU][7-i]; 

for (i = 0; i < 8; + + i) 
for (j = 0; j < 8; + + j) 

id[il[j] = tmpin[ilUl; 
calc _ dataO; 
for (i = 0; i < 8; + + i) 

for (j = 0; j < 8; + + j) 



} 
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fprintf(ap, "%9.6£\t", id[7,.j][i]); 
fprintf( ap, "\n"); 
fclose(netname ); 
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The procedure calc_dataO is a routine called bt project_dataO to calculate four 
8-quadrant planar projections from a 8x8 image. The procedure project_dataO 
then rotates the section 90° and calls calc _ dataO again to calculate the other 
four planar projections. 

void calc _ dataO 
{ 

int i, j; 
float prt[8]; 

1* Projection No. 0 
for (i = 0; i < 8; + + i){ 

} 

prt[i] = 0.0; 
for G = 0; j < 8; + + j) 

prt[i] + = idU][i]; 

for (i = 0; i < 8; + + i) 
fprintf(ap, "%9.6£\t", prt[i]); 

*/ 

1* Projection No.1 * / 
prt[O] = 0.23445*id[0][2] + 0.83975*id[0][1] + 0.00819*id[0][0] 

+ 0.78835*id[1][1] + 0.29404*id[1][0] + 0.37415*id[2][1] 
+ 0.70824*id[2][0] + 0.10789*id[3][1] + 0.92623*id[3][0] 
+ 0.54572*id[4][0] + 0.13900*id[5][0]; 

prt[1] = 0.31684*id[0][3] + 0.76555*id[0][2] + 0.00731 *id[1][3] 
+ 0.86343*id[1][2] + 0.21165*id[1][1] + 0.45654*id[2][2] 
+ 0.62585*id[2][1] + 0.06691 *id[3][2] + 0.94171 *id[3][1] 
+ 0.07377*id[3][0] + 0.62811 *id[4][1] + 0.45428*id[4][0] 
+ 0.14111 *id[5][1] + 0.85140*id[5][0] + 0.79962*id[6][0] 
+ 0.38547*id[7][0]; 

prt[2] = 0.39923*id[0][4] + 0.68316*id[0][3] + 0.03099*id[1][4] 
. + 0.91483*id[1][3] + 0.13657*id[1][2] + 0.53893*id[2][3] 

+ 0.54346*id[2][2] + 0.12472*id[3][3] + 0.92490*id[3][2] 
+ 0.03279*id[3][1] + 0.71050*id[4][2] + 0.37189*id[4][1] 
+ 0.21390*id[5][2] + 0.85889*id[5][l] + 0.00960*id[5][0] 
+ 0.00960*id[6][2] + 0.87241 *id[6][l] + 0.20038*id[6][0] 
+ 0.46786*id[7][1] + 0.61453*id[7][0]; 
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prt[3] = 0.48162*id[0][S] + 0.60077*id[0][4] + 0.07107*id[1][S] 
+ 0.93346*id[1][4] + 0.07786*id[1][3] + 0.62132*id[2][4] 
+ 0.46107*id[2][3] + 0.20711 *id[3][4] + 0.87S28*id[3][3] 
+ 0.00819*id[3][2] + 0.87S28*id[4][3] + 0.289S0*id[4][2] 
+ 0.29629*id[S][3] + 0.78610*id[S][2] + 0.03SS3*id[6][3] 
+ 0.91933*id[6][2] + 0.127S3*id[6][1] + 0.SS02S*id[7][2] 
+ 0.S3214*id[7][1]; 

prt[7] = 0.2344S*id[7][S] + 0.8397S*id[7][6] + 0.00819*id[7][7] 
+ 0.7883S*id[6][6] + 0.29404*id[6][7] + 0.3741S*id[S][6] 
+ 0.70824*id[S][7] + 0.10789*id[4][6] + 0.92623*id[4][7] 
+ 0.S4S72*id[3][7] + 0.13900*id[2][7]; 

prt[6] = 0.31684*id[7][4] + 0.76SSS*id[7][S] + 0.00731 *id[6][4] 
. + 0.86343*id[6][S] + 0.2116S*id[6][6] + 0.4S6S4*id[S][S] 

+ 0.62S8S*id[S][6] + 0.06691 *id[4][S] + 0.94171 *id[4][6] 
+ 0.07377*id[4][7] + 0.62811 *id[3][6] + 0.4S428*id[3][7] 
+ 0.14111 *id[2][6] + 0.8S140*id[2][7] + 0.79962*id[1][7] 
+ 0.38S47*id[0][7]; 

prt[S] = 0.39923*id[7][3] + 0.68316*id[7][4] + 0.03099*id[6][3] 
+ 0.91483*id[6][4] + 0.136S7*id[6][S] + 0.S3893*id[S][4] 
+ 0.S4346*id[S][S] + 0.12472*id[4][4] + 0.92490*id[4][S] 
+ 0.03279*id[4][6] + 0.71OS0*id[3][S] + 0.37189*id[3][6] 
+ 0.21390*id[2][S] + 0.8S889*id[2][6] + 0.00960*id[2][7] 
+ 0.00960*id[1][S] + 0.87241 *id[1][6] + 0.20038*id[1][7] 
+ 0.46786*id[0][6] + 0.614S3*id[0][7]; 

prt[4] = 0.48162*id[7][2] + 0.60077*id[7][3] + 0.07107*id[6][2] 
+ 0.93346*id[6][3] + 0.07786*id[6][4] + 0.62132*id[S][3] 
+ 0.46107*id[S][4] + 0.20711 *id[4][3] + 0.87S28*id[4][4] 
+ 0.00819*id[4][S] + 0.87S28*id[4][4] + 0.289S0*id[3][S] 
+ 0.29629*id[2][4] + 0.7861O*id[2][S] + 0.03SS3*id[1][4] 
+ 0.91933*id[1][S] + 0.127S3*id[1][6] + 0.SS02S*id[0][S] 
+ 0.53214*id[0][6]; 

for (i = 0; i < 8; + +i) 
fprintf(ap, "%9.6£\t", prt[i]); 

/* Projection No.2 * / 
prt[O] = O.91169*id[0][2] + 0.28680*id[0][3] + 0.2lS74*id[O][1] 

+ O.28680*id[1][2] + 0.91169*id[l][1] + 0.28680*id[2][1] 
+ O.2lS74*id[1][0] + 0.91169*id[2][0] + 0.28680*id[3][0]; 

prt[l] = 0.01472*id[0][S] + 0.6S68S*id[0][4] + 0.71320*id[O][3] 
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+ O.01472*id[1][4] + O.6S68S*id[1][3] + O.71320*id[1][2] 
+ O.01472*id[2][3] + O.6S68S*id[2][2] + O.02944*id[O][2] 
+ O.02944*id[1][1] + O.71320*id[2][1] + O.01472*id[3][2] 
+ O.02944*id[2][O] + O.6S68S*id[3][1] + O.71320*id[3][O] 
+ O.01472*id[4][1] + O.6S68S*id[4][O] + O.01472*id[S][O]; 

prt[2] = O.171S7*id[O][6] + O.89949*id[O][S] + O.3431S*id[O][4] 
+ O.171S7*id[1][S] + O.89949*id[1][4] + O.3431S*id[1][3] 
+ O.171S7*id[2][4] + O.89949*id[2][3] + O.3431S*id[2][2] 
+ O.171S7*id[3][3] + O.89949*id[3][2] + O.3431S*id[3][1] 
+ O.171S7*id[4][2] + O.89949*id[4][1] + 0.3431S*id[4][O] 
+ O.171S7*id[S][1] + O.89949*id[S][O] + O.171S7*id[6][O]; 

prt[3] = 0.5*id[O][7] + O.82843*id[O][6] + O.08S79*id[O][S] 
+ O.S*id[1][6] + O.82843*id[1][S] + O.08S79*id[1][4] 
+ O.S*id[2][S] + O.82843*id[2][4] + O.08S79*id[2][3] 
+ O.S*id[3][4.] + O.82843*id[3][3] + O.08S79*id[3][2] 
+ O.S*id[4][3] + O.82843*id[4][2] + O.08S79*id[4][1] 
+ O.S*id[S][2] + O.82843*id[S][1] + O.08S79*id[S][O] 
+ O.S*id[6][1] + O.82843*id[6][O] + O.S*id[7][O]; 

prt[7] = O.91169*id[7][S] + O.28680*id[7][4] + O.21S74*id[7][6] 
+ 0.28680*id[6][S] + O.91169*id[6][6] + O.28680*id[S][6] 
+ O.21S74*id[6][7] + O.91169*id[S][7] + O.28680*id[4][7]; 

prt[6] = O.01472*id[7][2] + O.6568S*id[7][3] + O.71320*id[7][4] 
+ O.01472*id[6][3] + O.6568S*id[6][4] + O.71320*id[6][5] 
+ O.01472*id[S][4] + O.6568S*id[S][5] + O.02944*id[7][S] 
+ O.02944*id[6][6] + O.71320*id[S][6] + O.01472*id[4][S] 
+ O.02944*id[5][7] + O.6568S*id[4][6] + O.71320*id[4][7] 
+ O.01472*id[3][6] + O.6S685*id[3][7] + O.01472*id[2](7]; 

prt[5] = O.171S7*id[7][1] + O.89949*id[7][2] + 0.3431S*id[7][3] 
+ O.171S7*id[6][2] + O.89949*id[6][3] + 0.3431S*id[6][4] 
+ O.171S7*id[S][3] + O.89949*id[S](4] + 0.3431S*id[S][5] 
+ O.171S7*id[4][4] + O.89949*id[4][S] + 0.3431S*id[4][6] 
+ O.171S7*id[3][S] + O.89949*id[3][6] + 0.3431S*id[3][7] 
+ O.171S7*id[2][6] + O.89949*id[2][7] + O.17157*id[l][7]; 

prt[4] = 0.5*id[7][O] + O.82843*id[7][l] + O.08579*id[7][2] 
+ 0.5*id[6][l] + O.82843*id[6][2] + O.08S79*id[6][3] 
+ 0.5*id[S][2] + O.82843*id[S][3] + O.08S79*id[S][4] 
+ 0.5*id[4][3] + O.82843*id[4][4] + O.08S79*id[4][S] 
+ '0.5*id(3][4] + O.82843*id[3](S] + O.08S79*id(3][6] 
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+ 0.5*id[2][5] + 0.82843*id[2][6] + 0.08579*id[2][7] 
+ 0.5*id[1][6] + 0.82843*id[1][7] + 0.5*id[O][7]; 

for (i = 0; i < 8; + +i) 
fprintf(ap, "%9.6t\t", prt[i]); 

1* Projection No.3 * / 
prt[O] = 0.23445*id[2][0] + 0.83975*id[1][0] + 0.00819*id[0][0] 

+ 0.78835*id[1][1] + 0.29404*id[0][1] + 0.37415*id[1][2] 
+ 0.70824*id[0][2] + 0.10789*id[1][3] + 0.92623*id[0][3] 
+ 0.54572*id[0][4] + 0.13900*id[0][5]; 

prt[1] = 0.31684*id[3][0] + 0.76555*id[2][0] + 0.00731 *id[3][1] 
+ 0.86343*id[2][1] + 0.21165*id[1][1] + 0.45654*id[2][2] 
+ 0.62585*id[1][2] + 0.06691 *id[2][3] + 0.94171 *id[1][3] 
+ 0.07377*id[0][3] + 0.62811 *id[1][4] + 0.45428*id[0][4] 
+ 0.14111 *id[1][5] + 0.85140*id[0][5] + 0.79962*id[0][6] 
+ 0.38547*id[0][7]; 

prt[2] = 0.39923*id[4][0] + 0.68316*id[3][0] + 0.03099*id[4][1] 
+ 0.91483*id[3][1] + 0.13657*id[2][1] + 0.53893*id[3][2] 
+ 0.54346*id[2][2] + 0.12472*id[3][3] + 0.92490*id[2][3] 
+ 0.03279*id[1][3] + 0.71050*id[2][4] + 0.37189*id[1][4] 
+ 0.21390*id[2][5] + 0.85889*id[1][5] + 0.00960*id[0][5] 
+ 0.00960*id[2][6] + 0.87241 *id[1][6] + 0.20038*id[0][6] 
+ 0.46786*id[1][7] + 0.61453*id[0][7]; 

prt[3] = 0.48162*id[5][0] + 0.60077*id[4][0] + 0.07107*id[5][1] 
+ O.93346*id[4][1] + O.07786*id[3][1] + 0.62132*id[4][2] 
+ 0.46107*id[3][2] + 0.20711 *id[4][3] + 0.87528*id[3][3] 
+ 0.00819*id[2][3] + 0.87528*id[3][4] + 0.28950*id[2][4] 
+ 0.29629*id[3][5] + 0.7861O*id[2][5] + 0.03553*id[3][6] 
+ 0.91933*id[2][6] + 0.12753*id[l][6] + 0.55025*id[2][7] 
+ 0.53214*id[1][7]; 

prt[7] = 0.23445*id[5][7] + 0.83975*id[6][7] + 0.00819*id[7][7] 
+ 0.78835*id[6][6] + O.29404*id[7][6] + 0.37415*id[6][5] 
+ 0.70824*id[7][5] + 0.10789*id[6][4] + 0.92623*id[7][4] 
+ 0.54572*id[7][3] + 0.13900*id[7][2]; 

prt[6] = 0.31684*id[4][7] + 0.76555*id[5][7] + 0.00731 *id[4][6] 
+ 0.86343*id[5][6] + 0.21165*id[6][6] + 0.45654*id[5][5] 
+ 0.62585*id[6][5] + 0.06691 *id[5][4] + 0.94171 *id[6][4] 
+ 0.07377*id[7][4] + 0.62811 *id[6][3] + 0.45428*id[7][3] 
+ 0.14111 *id[6][2] + 0.85140*id[7][2] + 0.79962*id[7][1] 
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+ 0.38547*id[7][O]; 
prt[5] = 0.39923*id[3][7] + O.68316*id[4][7] + O.03099*id[3][6] 

+ O.91483*id[4][6] + O.13657*id[5][6] + O.53893*id[4][5] 
+ O.54346*id[5][5] + O.12472*id[4][4] + O.92490*id[5][4] 
+ O.03279*id[6][4] + O.71050*id[S][3] + 0.37189*id[6][3] 
+ O.21390*id[5][2] + O.85889*id[6][2] + O.00960*id[7][2] 
+ O.00960*id[5][1] + 0.87241 *id[6][1] + 0.20038*id[7][1] 
+ 0.46786*id[6][0] + 0.614S3*id[7][0]; 

prt[4] = 0.48162*id[2][7] + 0.60077*id[3][71 + O.07107*id[2][6] 
+ O.93346*id[3][6] + 0.07786*id[4][6] + 0.62132*id[3][5] 
+ 0.46107*id[4][S] + 0.20711 *id[3][4) + O.87528*id[4][4] 
+ O.00819*id[S)[4] + 0.87S28*id[4][4) + 0.28950*id[S][3] 
+ O.29629*id[4][2] + 0.78610*id[5][2) + 0.03553*id[4][1] 
+ 0.91933*id[S][1] + 0.127S3*id[6][1) + 0.55025*id[5][O] 
+ O.53214*id[6)[0); 

for (i = 0; i < 8; + + i) 
fprintf(ap, "%9.61\t", prt[i]); 
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The procedure convert_dataO converts a binary file generated from the original 
SPECf data file to the ANN output format. 

void convert_ dataO 
{ 

} 

int i; 
float bnum; 
char bdat[64]; 
char binname[NAME _ SIZE1, anname[NAME _ SIZE1; 
FILE *bp; 
FILE *np; 

printf(" Enter binary filename: "); 
scanf("%s", binname); 
if «bp = fopen(binname, "rlt» = = NULL){ 

printf(" Binary file not found\n"); 
exit(O); 

} 
printf(" Enter ANN output filename: "); 
scanf("%s", anname); 
np = fopen(anname, "w"); 
fread(bdat, 1,64,bp); 
for (i = 0; i < 64; + + i){ 

} 

bnum = bdat[i] * 1.0; 
fprintf(np, "%f\t", bnum); . 

fclose(binname ); 
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The procedure format_dataO takes ASCII files generated in the ANN format 
and merges them to create the ANN training data file. 

void format_ dataO 
{ 

} 

int i, innt; 
float fdat; 
char bin[64]; 
char anname[NAME _SIZE], binname[NAME _SIZE]; 
FILE *np; 
FILE *bp; 

printf(" Enter input projection filename: "); 
scanf("%s", anname); 
if«np = fopen(anname, IOrIO»~ = = NULL){ 

printf(" Input file not found\n"); 
exit(O); 

} 
printf(" Enter merged to image output filename: "); 
scanf("%s", binname); 
if «bp = fopen(binname, "a"» = = NULL){ 

printf(" Merge file not found\n"); 
exit(O); 

} 
fscanf(np, "%d\n", innt); 
for (i = 0; i < 128; + +i){ 

fscanf(np, "%f\t", &fdat); 
fprintf(bp, "%f\t", fdat); 
} 

fprintf(bp, "\n"); 
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The procedure gen _ dataO converts an ANN format to single byte binary 
format file which can then be displayed on a screen via xwindows. 

void gen dataO 
{ 

} 

int i, inurn; 
float fdat; 
char bin[64]; 
char annarne[NAME _SIZE], binnarne[NAME _SIZE]; 
FILE *np; 
FILE *bp; 

printf(" Enter ANN filename: "); 
scanf("%s", annarne); 
if «np = fopen(anname,"r"» = = NULL){ 

printf(" Input file not found\n"); 
. exit(O); 

} 
printf(" Enter image formatted output filename: "); 
scanf("%s", binnarne); 
bp = fopen(binnarne, "w"); 
for (i = 0; i < 64; + + i){ 

} 

fscanf(np, "%f\t", &fdat); 
inurn = ««fdat - 0.1)/0.8)*128) + 0.5)*2; 
bin [i) = inurn; 
printf("%4d", inurn); 

fwrite(bin, 1,64,bp); 
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APPENDIX III 

SERIAL BACKPROPAGATION ANN SIMULATION 
"C"CODE· 
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This code, written in "e" language, simulates a three-layer (input, hidden, 
output) backpropagation neural network. The size of the network is limited by 
the constant MAX INPUT. A network with a layer containing more nodes than 
MAX INPUT cannot simulated with this code. The rest of this and the next 
page list the declarations section of the code. The training set for a network is 
read into matrix variable in_data [] []. Variable wt _val [] [] [] handles the current 
interconnection weight values, and tmp _ wt [] [] [] stores previous weight values 
during backpropagation updating of the interconnection weights. net [] [] stores 
the most recent ouputs from all the nodes in the network. 

#include < stdio.h > 
#include < math.h > 

#define MAX LAYERS 5 
#define MAX INPUT 200 
#define MAX DATA 200 
#define NAME SIZE 12 

void getlineO; 
int net_ dataO; 
void weight_setO; 
void fwd yropO; 
void bck yropO; 
float errorO; 
void prog_intO; 
void save _ netO; 
void recall_ wgtsO; 
int test_ netO; 

int i, cnt, cum, innum, dat_ num, layers; 
int lyr[MAX _LAYERS]; 
char name[NAME SIZE], wgtfile[NAME SIZE]; - -
float in _ data[MAX _ DATA] [MAX }NPUT]; 
float wt_ val[MAX _ LA YERS][MAX _INPUT][MAX _INPUT]; 
float tmp _ wt[MAX _ LA YERS][MAX _INPUT][MAX _INPUT]; 



float net[MAX _INPUT] [MAX _INPUT]; 
float d[MAX_INPUT]; 
float errsum, errval, errmin; 
double sqrtO; 
double expO; 
double fmodO; 
FILE *np; 
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mainO 
{ 

} 
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The main program makes all the primary function calls. The while{} loop 
contains the backpropagation training calls. The loop is externally interrupted 
when the variable cnt, which stores the number of training iterations, reaches the 
number of iterations requested by the user. 

errmin = 1.0; 
errval = 0.0; 
cum = 1; 
cnt = 0; 
getlineO; 
if (net_ dataO){ 

} 

printf("\n Enter ~eight filename -> "); 
scanf("%s", wgtfile); 
if «np = fopen(wgtfile, "r")) = = NULL) 

weight_ setO; 
else 

recall_ wgtsO; 
while (1){ 

} 

errsum = 0;0; 
for (innum = 0; innum < dat_ num; + + innum){ 

fwdyropO; 

} 

bckyropO; 
for (i = 0; i < lyr[layers-l]; + + i) 

errsum + = d[i] * d[i]; 

if «errorO < errval) II (cnt = = 0» 
prog_intO; 
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The function getlineO reads in the ANN data filename from keyboard and stores 
it in character array name []. 

void getlineO 
{ 

int c, i; 

printf("\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n"); 
printf(" BACK-PROPAGATION ARTIFICIAL NEURAL NETWORK\n"); 
printf("\n Input data filename: "); 
scanf("%s", name); 

} 
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The function net _ dataO reads in the network training set size and training set 
data from file stored in name[]. It also reads in the network size from the 
keyboard. 

int net_ dataO 
{ 

} 

FILE *fp; 

int c, i, j, tst; 

if ((fp = fopen(name, "r"» = = NULL){ 
printf("Input File Not Found\n\f'); 
return 0; 

} 
printf("\n \nEnter the number of layers in the neural network -> "); 
scanf("%d", &layers); 
for (i = 0; i < layers; + + i){ 

} 

printf(" Input the number of nodes in layer%3d ", i + 1); 
scanf("%d", &lyr[i]); 

fscanf(fp,"%3d\n", &dat_ num); 
for (i = 0; i < dat_ num; + + i){ 

} 

for (j = 0; j < (lyr[O] + lyr[layers-1]); + + j) 
fscanf(fp,"%f\t", &in _ data[i][j]); 

fscanf(fp,"\n"); 

return 1; 
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The function weight_setO generates random weight values and stores them in 
the floating point array wt _val [] [] [] . 

void weight setO 
{ 

} 

float wgt; 
int i, j, k; 
double seed; 

seed = 37591.0; 
for (i = 0; i < layers-I; + + i) 

for (j = 0; j < lyr[i + 1]; + +j) 
for (k = 0; k < lyr[i]; + + k){ 

} 

seed = fmod«seed*7141 +54773), 259200.0); 
wt_val[i][k]fj] = seedj259200.0 - 0.5; 
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The function fwd _propO feeds the training data forward through the network by 
summing interconnection values and calculating node outputs via the sigmoidal 
activation function. 

void fwd yropO 
{ 

} 

int i, j, k, 1, m; 
float tmp net[MAX INPUT][MAX INPUT]; - - -
for (j = 0; j < Iyr[O); + + j){ 

} 

net[O)[j) = in _ data[innum)[j); 
if (cnt > 100){ 

printf("%6.3f ", net[O)[j)); 
} 

for (k = 1; k < layers; + + k) 
for (l = 0; I < lyr[k]; + + l){ 

tmp _ net[k][l] = 0.0; 

} 

for (m = 0; m < lyr[k-1]; + +m){ 
tmp net[k][l] + = net[k-1][m)*wt val[k-1][m][I]; - -

} 
net[k][l] = 1.0/(1.0 + exp(-tmp_net[k][l))); 
if «( cnt > 100) && (k = = layers-1)){ 

printf("%9.6f, %9.6f\n", net[k][l], tmp _ net[k][l)); 
} 
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The function bck _propO backpropagates the RMS error, or "cost", of the 
training set through the network adjusting the interconnection weight values per 
the Delta Rule and the Generalized Delta Rule. 

void bck yropO 
{ 

} 

int i, j, k; 
float sum, adj; 

for (j = 0; j < lyr[layers-1]; + + j){ 

} 

d[j] = in data[innum]U+lyr[O]] - net[layers-1][j]; 
for (k = 0; k < lyr[layers-2]; + + k){ 

} 

tmp _ wt[layers-2][k]ul = wt_ val[layers-2][k][j]; 
wt_ val[layers-2][k]ul 

+ = dOl * net[layers-2][k] * 0.3; 

for (i = layers-2; i > 0; --i) 
for (j = 0; j < lyr[i]; + + j){ 

sum = 0.0; 

} 

for (k = 0; k < lyr[layers-l]; + + k) 
sum + = d[k] * tmp _ wt[i]U][k]; 

adj = sum * net[i][j] * (1 - net[i][j]); 
for (k = 0; k < lyr[i-l]; + + k){ 

tmp _ wt[i-1 ][k][j] = wt_ val[i-1 ][k][j]; 
wt val[i-1][k][j] + = adj * net[i-l][k] * 0.3; 

} 
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The function errorO calculates the "cost" of the most recent pass of the training 
set through the network, and returns the floating point error value back to the 
calling routine. 

float errorO 
{ 

} 

float tot; 

cnt + = 1; 
tot = (1.0/(dat_ num*lyr[layers-1])*sqrt(errsum); 
if (tot < errmin) 

errmin = tot; 
if (cnt > 101){ 

} 

printf("%5d, %9.6f, %9.6f\n", cum, tot, errmin); 
cnt = 0; 
cum + = 1; 

errsum = 0.0; 
return tot; 
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The function prog)ntO is called when training is halted or when the program is 
first run so as to determine if training is to continue, weight values saved, 
untrained data tested, or the program to be halted. 

void prog_intO 
{ 

} 

char j; 

printf("\n 1) Save & quit\n"); 
printf(" 2) Quit\n"); 
printf(" 3) Continue training network\n"); 
printf(" 4) Run untrained data through network\n"); 
printf(" Enter selection -> "); 

while «(j = getcharO) = = '\n'); 
switch(j){ 

} 

case '1' : save_netO; 
case '3' : errval = errval/10.0; 

printf (\I\n Continuing %6.5f\n", errval); 
break; 

case '4' : if (ltest_ netO) 
exit(O); 

default : exit(O); 
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The function save _ netO saves the interconnection weights of the network to the 
file in character variable wgtfile. 

void save _~etO 
{ 

} 

FILE *fp; 

int i, j, k; 

fp = fopen(wgtfile, "w"); 

fprintf(fp, "%3d\t", layers); 
for (i = 0; i < layers; + + i) 

fprintf(fp, "%3d\t", lyr[i]); 
fprintf(fp, "\n"); 
for (i =0; i < layers-I; + +i) 

forU = O;j < lyr[i+I]; ++j){ 

} 

for (k = 0; k < lyr[i]; + + k) 

fprintf(fp, "%9.6f\t", wt val[i][kJUD; 
fprintf(fp,"\n"); 

printf("\n Weights saved in file %5", wgtfile); 
printf("\n"); 
exit(O); 
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The function recall_ wgtsO retrieves interconnection weights of a previuosly 
trained network from filename wgtfile if it exists in the directory. 

void recall_ wgtsO 
{ 

} 

int i, j, k, tmp _layers; 
int tmp )yr[MAX _LAYERS]; 

fscanf(np, "%d\t", &tmp )ayers); 
for (i = 0; i < tmp )ayers; + + i){ 

fscanf(np, "%d\t", &tmp _lyr[i]); 
printf("%6d\n", tmp )yr[i]);} 

fscanf(np, "\n"); 
for (i = 0; i < tmp)ayers-l; + +i) 

for (j = 0; j < tmp _lyr[i + 1]; + + j){ 

} 

for (k = 0; k < tmp _lyr[i]; t + k) 
fscanf(np, "%f\t", &wt_ val[i][k][j]); 

fscanf(np, "\n"); 
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The function test_ netO runs untrained data through the neural network to 
determine it's ability to produce accurate answers for the untrained inputs. The 
untrained inputs and the correct outputs are stored in filename in character 
variable netfile. 

int test_ netO 
{ 

} 

int i, j, numb; 
float costsum; 
char netfile[NAME _SIZE]; 
FILE *fp; 

printf(" Enter file name of untrained data -> "); 
scanf("%s", netfile); 
if «fp = fopen(netfile, "r"» = = NULL){ 

printf("\n Input file Not Found\n"); 
return 0; 

} 
fscanf(fp, "%d\n", &numb); 
for (i = 0; i < numb; + +i){ 

} 

for (j = 0; j < (lyr[O] + lyr[layers-1]); + + j) 
fscanf(fp, "%f\t", &in data[i][j]); 

fscanf(fp, "\n"); 

for (innum = 0; innum < numb; + + innum){ 
cnt = 101; 

} 

costsum = 0.0; 
fwdyropO; 
for (j = 0; j < lyr[layers-l]; + + j) 

costsum + = 
in _ data[innum][j + lyr[O]] - net[layers-l ][j]; 

printf(" Difference = %9.6f\n", costsum); 

return 1; 



96 

APPENDIX IV 

PARALLEL BACKPROPAGATION ANN SIMULATION 
"MPL" CODE 
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This code, written in "MPL" language, simulates a three-layer (input, hidden, 
output) backpropagation neural network. The size of the network is limited by 
the constant MAX_INPUT, which is also the limiting size of the PU array. A 
network with a layer containing more nodes than MAX INPUT cannot 
simulated with this code. The rest of this and the next page list the declarations 
section of the code. The training set for a network is read into singular variable 
in_data [] []. Plural variable wt _val handles the current interconnection weight 
values, and tmp _ wt stores previous weight values during backpropagation 
updating of the interconnection weights. Plural variable net stores the most 
recent ouputs from all the nodes in the network. 

#include < stdio.h > 
#include < math.h > 
#include < mpl.h > 

. 
#define MAX LAYERS 5 
#define MAX INPUT 128 
#define MAX DATA 150 
#define NAME SIZE 12 

void getlineO; 
int net_ dataO; 
void weight setO; 
void fwd yropO; 
void bckyropO; 
float errorO; 
void prog_intO; 
void save _ netO; 
void recall_ wgtsO; 
int test_ netO; 

int i, cnt, cum, innum, dat_ num, layers, iter; 
int lyr[MAX LAYERS]; 
char name[NAME_ SIZE], wgtfile[NAME _SIZE]; 
float in data[MAX DATA][MAX INPUT]; - - -



plural float wt val; 
plural float tmp wt; 
plural float net,neti; 
plural float tmp net; 
plural float diff; 
float ert, errsum, errval, errmin; 
double sqrtO; 
double fmodO; 
FILE *np; 
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mainO 
{ 
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The main program makes all the primary function calls. The while{} loop 
contains the backpropagation training calls. The loop is externally interrupted 
when the variable ent, which stores the number of training iterations, reaches the 
number of iterations requested by the user. 

errmin = 1.0; 
errval = 0.0; 
cum = 1; 
cnt = -1; 
iter = 1000; 
getline(); 
if (net_dataO){ 

printf("\n Enter weight filename -> "); 
scanf("%s", wgtfile); 
if «np = fopen(wgtfile, "r"» = = NULL) 

weight_setO; 
else 

recall_ wgtsO; 
while (1){ 

errsum = 0.0; 
if (cnt = = -l){ 

prog intO; 

} 

printf(" Enter number of iterations - > "); 
scanf("%d", &iter); 
cnt + = 1; 

for (innum = 0; innum < dat_ num; + + innum){ 
fwdyropO; 

} 

bckyrop(); 
for (i = 0; i < lyr[layers-l]; + + i){ 

} 

ert = proc[lyr[O] + i][1yr[1] + 1 ].diff; 
errsum + = ert * ert; 



} 
} 

} 
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if «error() < errval) II (ent = = O»{ 
prog_int(); 

} 

printf(" Enter number of iterations -> "); 
seanf("%d", &iter); 
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The function getlineO reads in the ANN data filename from keyboard and stores 
it in character array name[]. 

void getlineO 
{ 

int c, i; 

printf("\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n"); 
printf(" BACK-PROPAGATION ARTIFICIAL NEURAL 

NETWORK\n"); 
printf("\n Input data filename: "); 
scanf("%s", name); 

. } 
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The function net_dataO reads in the network training set size and training set 
data from file stored in name[]. It also reads in the network size from the 
keyboard. 

int net_ dataO 
{ 

} 

FILE *fp; 

int c, i, j, tst; 

if «fp = fopen(name, "r"» = = NULL){ 
printf("Input File Not Found\n\f'); 
return 0; 

} 
printf("\n\nEnter the number of layers in the neural network -> "); 
scanf("%d", &layers); 
for (i = 0; i < layers; + + i){ 

} 

printf(" Input the number of nodes in layer%3d ", i + 1); 
scanf("%d", &lyr[i]); 

fscanf(fp,"%3d\n", &dat_ num); 
for (i = 0; i < dat num; + +i){ 

} 

for U = 0; j < (lyr[O] + lyr[layers-l]); + + j) 
fscanf(fp,"%f\t", &in _ data[i][j]); 

fscanf(fp, "\n"); 

return 1; 
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The function weight _ setO generates random weight values and stores them in 
the floating point plural variable wt val. 

void weight setO 
{ 

} 

int i, j; 
double seed; 

seed = 37591.0; 
for (i = 0; i < (lyr[O] + lyr[2]); + + i) 

for U = 0; j < (lyr[l) + 1); + + j){ 

} 

seed = fmod«seed*7141 +54773), 259200.0); 
proc[i][j].wt val = (seed/259200.0); 
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The function fwd _propO feeds the training data forward through the network by 
summing interconnection values from dedicated PUs and calculating node 
outputs via the sigmoidal activation function. 

void fwd yropO 
{ 

int i, j, k, I, m; 

tmp _net = 0.0; 
for (i = 0; i < lyr[O]; + + i) 

proc[i][O].net = in _ data[innum][i]; 
if «ixproc = = 0) & (iyproc < (lyr[O])) 

xnetcE[lyr[l]].net = net; 
if «ixproc > 0) & (ixproc < lyr[l] + 1) & (iyproc < lyr[O]) 

tmp _ net = wt_ val * net; 
if «iyproc = = (lyr[O]-l» & (ixproc > 0) & (ixproc < (lyr[l] + 1»){ 

neti = net; 

} 

for (k = 1; k < lyr[O]; + + k) 
tmp _net + = xnetN[k].tmp _net; 

net = 1.0/(1.0 + fp_exp(-tmp_net»; 
xnetcS[lyr[2]].net = net; 

if «iyproc > lyr[O]-l) & (iyproc < lyr[O]+lyr[2]) & (ixproc<lyr[l]+l» 
tmp _ net = wt_ val * net; 

if «ixproc= = (lyr[l] + 1» & (iyproc> (lyr[0]-1» 
& (iyproc< (lyr[O] + lyr[2])){ 

} 

for (m = 1; m < lyr[l]+ 1; + +m) 
tmp _net + = xnetW[m].tmp _net; 

net = 1.0/(1.0 + fp_exp(-tmp_net»; 

if (cnt == iter){ 
for (i = 0; i < lyr[O]; + + i) 

if (i > lyr[O] - 5) 
printf("%9.6f, %9.6f, %9.6f\n", proc[i](O].net, 

proc[lyr[O] + i][lyr[l] + 1 }.tmp _net, 
proc[lyr[O] + i][lyr[1] + 1 ].net); 
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} 
} 
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The function bck _propO backpropagates the RMS error, or "cost", of the 
training set through the network on the PU array adjusting the interconnection 
weight values per the Delta Rule and the Generalized Delta Rule . 

.......................................................................... ~ ................................................................................ . 

void bck yropO 
{ 

} 

int i, j, k, 1; 
plural float sum; 
plural float adj; 

tmp _ wt = wt_ val; 
for (i = 0; i < lyr[layers-1]; + + i) 

proc[lyr[O] + i][lyr[1] + 1 ].diff = in_ data[innum][lyr[O] + i]; 
if «ixproc = = (lyr[1] + 1» & (iyproc > (lyr[0]-1» 

} 

& (iyproc < (lyr[O] + lyr[layers-1])){ 
diff = diff - net; 
for U = 1; j < lyr[layers-2] + 1; + + j) 

xnetW[j].wt val + = diff * 0.3 * xnetW[j].net; 
xnetcW[lyr[1]].diff = diff; 

if «iyproc = = lyr[O]-l) & (ixproc > 0) & (ixproc < (lyr[1] + 1»){ 
sum = 0.0; 

} 

for(k = l;k < lyr[layers-1] + 1; ++k) 
sum + = xnetS[k].diff * xnetS[k].tmp _ wt; 

adj = 0.3 * sum * net * (1 - net); -
wt_ val + = adj * neti; 
for (1 = 1; 1 < lyr[O]; + + I) 

xnetN[I].wt_ val + = adj * xnetN[I].net; 
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The function errorO calculates the "cost" of the most recent pass of the training 
set through the network, and returns the floating point error value back to the 
calling routine. 

float errorO 
{ 

} 

float tot; 

cnt + = 1; 
tot = (1.0/(dat_ num*lyr[layers-l])*sqrt(errsum); 
if (tot < errmin) 

errmin = tot; 
if (cnt > (iter+ 1»{ 

} 

printf("%5d, %9.6f, %9.6f\n", cum, tot, errmin); 
cnt = 0; 
cum + = 1; 

errsum = 0.0; 
return tot; 
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The function prog_intO is called when training is halted or when the program is 
first run so as to determine if training is to continue, weight values saved, 
untrained data tested, or the program to be halted. 

void progJntO 
{ 

} 

char j; 

printf("\n 1) Save & quit\n"); 
printf(" 2) Quit\n"); 
printf(" 3) Continue training network\n"); 
printf(" 4) Run untrained data through network\n"); 
printf(" Enter selection -> "); 
while (U = getcharO) = = '\n'); 
switchUH 

} 

case '1' : save _ netO; 
exit(O); 

case '3' : errval = errval/lO.D; 
printf ("\n Continuing %6.5f\n", errval); 
break; 

case '4' : test_netO; 
break; 

default : exiteD); 
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The function save _ netO saves the interconnection weights of the network to the 
file in character variable wgtfile . 

............................................................................................................................................................ 

void save _netO 
{ 

} 

FILE *fp; 
int i, j, k; 

fp = fopen(wgtfile, "w"); 
fprintf(fp, "%3d\t", layers); 
for (i = 0; i < layers; + + i) 

fprintf(fp, "%3d\t", lyr[i)); 
fprintf(fp, "\n"); 
for (i =0; i < (lyr[O] + lyr[2]); + +i){ 

} 

for (k = 0; k < lyr[l]; + + k) 
fprintf(fp, "%9.6f\t", proc[i][k+ l].wt_ val); 

fprintf(fp, "\n"); 

printf("\n Weights saved in file %s", wgtfile); 
printf("\n"); 
exit(O); 
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The function recall_wgtsO retrieves interconnection weights of a previuosly 
trained network from filename wgtfile if it exists in the directory. 

void recall wgtsO 
{ 

} 

int i, j, k, tmp _layers; 
int tmp lyr[MAX LAYERS]; - -
float wtv; 

fscanf(np, "%d\t", &tmp _layers); 
for (i = 0; i < tmp _layers; + + i) 

fscanf(np, "%d\t", &tmp lyr[i]); 
fscanf(np, "\n"); 
for (i = 0; i < (tmp _lyr[O] + tmp _lyr[2]); + + i){ 

for (k = 0; k < tmp lyr(1]; + + k){ 
fscanf(np, "%f\t", &wtv); 
proc[i)[k+ I).wt val = wtv; 

} 
fscanf(np, "\n"); 

} 
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The function test_ netO runs untrained data through the neural network to 
determine it's ability to produce accurate answers for the untrained inputs. The 
untrained inputs and the correct outputs are stored in filename in character 
variable netfile. 

int test_netO 
{ 

int i, j, numb; 
float costsum, cst; 
char netfile[NAME _SIZE), annfile[NAME _SIZE); 
FILE *fp; 
FILE *ap; 

printf(" Enter file name of untrained data - > "); 
scanf("%s", netfile); 
if «fp = fopen(netfile, "r"» = = NULLH 

printf("\n Input file Not Found\n"); 
exit(O); 

} 
printf(" Enter filename for network output: "); 
scanf("%s", annfile); 
ap = fopen(annfile, "w"); 
fscanf(fp, "%d\n", &numb); 
for (i = 0; i < numb; + + i){ 

} 

for U = 0; j < (lyr[O) + lyr[layers-l]); + + j) 
fscanf(fp, "%f\t", &in data[i)[j]); 

fscanf(fp, "\n"); 

for (innum = 0; innum < numb; + + innumH 
cnt = iter + 1; 
costsum = 0.0; 
cst = 0.0; 
fwdyropO; 
for U = O;j < lyr[layers-l); + +j){ 

fprintf( ap, "%f\ ttl, proc[lyr[O) + j][lyr[l] + 1 ].net); 
costsum = 



} 

} 
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in data[innum][j + lyr[O]] 
- proc[lyr[O] + j][lyr[ 1] + 1 l.net; 

cst + = costsum * costsum; 
} 
cst = (1.0j(numb*lyr[layers-l])*sqrt(cst); 
printf(" RMS error = %9.6f\n", cst); 

return 1; 


