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ABSTRACT 

Genetic algorithms and nonlinear programming for optimal 

low-thrust spacecraft trajectories. 

Lalitesh Kumar Katragadda 

Under the supervision of Dr. Bion L. Pierson 

Department of Aerospace Engineering and Engineering Mechanics 

Iowa State University 

The minimum thrust time problem for planetary transfer using low thrust space

craft has assumed significance. However this problem is numerically sensitive. Three 

problems were chosen for study and testing different approaches. They are: a contin-

uous thrust Mars transfer, maximum energy Earth escape, and a single-coast Earth

Moon transfer. Variations to the mathematical models gave limited success in pro

~iding better convergence. The multiplier penalty function· approach gives better 

convergence for relatively poor initial guesses .. Sequential Quadratic Programming 

showed convergence only with good initial guesses, while displaying ability to give 

high accuracy solutions. Genetic .algorithms, in their first application to optimal 

trajectory problems, seem to offer the only general way to estimate the optimal tra

jectory, which was previously done using problem specific direct solutions. They 

succeeded in solving all the problems discussed with different thrust levels. 
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CHAPTER 1. INTRODUCTION 

Projected'Space Scenario 

The next -logical step in the human space adventure has been identified as the 

establishment a~d commercial utilization of a permanent Moon base. Manned ven

tures to Mars are also planned. In depth exploration of outer planets like Jupiter and 

Saturn is projected by sending satellites to permanently orbit these planets. These 

diverse goals require a launch system for low Earth orbit injection and a propul

sion system capable of transferring satellites to other Solar bodies with low specific 

fuel consumption and at the same time permit flexible missions. Reusability of the 

propulsion inodule becomes a prerequisite for such an extended program from both 

flexibility and more importantly economic points of view. For e.?Cample, a mission to 

the Moon and back would require carrying vari~us cargo modules (including human) 

to the Moon, possibly landing on the Moon using the same propulsion system, and 

returning to Earth by a specified time. The mission would be dictated by this cargo 

and _ the time of launch and arrival. The effect of these changes on trajectory and fuel 

requirements cannot be ignored. A more exotic example would be the exploration of 

Jupiter; here, the satellite would be expected to change orbits to study features (fea- -

tures and hence orbits which cannot be predicted from Earth) and possibly transfer 

to an orbit around a planetary moon. 
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Recently a consensus has emerged as to the technology to apply to this problem. 

The low Earth orbit injection of the propulsion module, cargo and fuel is proposed to 

be carried out by a reusable launch system. Currently, the shuttle and its proposed 

updated derivatives are suitable. However, the proposed NASP ( National AeroSpace 

Plane) is expected to take over the task and provide the full flexibility envisaged. 

The propulsion module is to be a nuclear powered system. These engines would be 

either a low thrust electric propulsion system or a medium to high thrust nuclear 

thermal systems. The terms low, medium and high refer to the thrust-to-weight 

ratio (which directly translates to g force due to the thruster) of the total spacecraft 

weight. Low thrust refers to levels below 0.1 g (usually .10-3 to 10-4 g's), medium 

spans the accelerations between 0.1 g to 1 g, and all levels higher than 1 thrust

to-weight constitute high thrust. This classification though adopted here is by no 

means standard. However, all references to low thrust in this thesis shall include 

medium and high thrust levels, since the problems associated arise from the same 

mathematical models (but have different numerical properties). Note that nuclear 

thermal rockets have been reported [1] to have thrust levels of the order of 1 g or 

greater and hence they can be used for landing missions on the Moon or Mars. 

Low Thrust Transfers 

Low thrust (also called electrical propulsion or nuclear propulsion) refers to a 

propulsion mode ·where the energy to eject the propellant is obtained from a source 

external to the propellant. Usually this energy source is a nuclear power plant or 

a chemical cell. Unlike conventional chemical propulsion, this energy is constant 

and mote importantly virtually unlimited for the purposes of the engine. This en-
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abIes low but continuous mass ejection at a very high velocity for long durations. 

This implies. a large saving in required propellant mass for the same total impulse. 

Given this power fixed, energy unlimited propulsion system, the trajectory planning 

task now translates to determining the orientation history of the thruster along with 

switching times of the mass flow (or thrust) to minimize spacecraft mass which di

rectly translates into minimum cost. This involves considering a perturbed model of 

the spacecraft for prolonged periods of time requiring efficient trajectory integration, 

since we no longer have a closed form solution for the satellite orbit even as a patched 

. conic approximation. The low thrust system has been· studied for a variety of space 

missions, the chief of which can be classified as: 

• Orbital transfer. Transferring from one elliptic orbit around a large central 

attracting body to another orbit around the same body to specify certain ter

minal conditions. These conditions can arise as a geostationary parking or other 

specified elliptic orbits. 

• Hyperbolic escape/ capture. Achieving escape (or positive total specific energy) 

. sta~ting from an initial elliptic orbit which is usually a low circular parking 

orbit. The capture problem is to reach a specified elliptic orbit from a given 

escape condition. The effect of other bodies like the Moon ·or the Sun cannot 

be ignored for an ac·curate estimate. 

• Interplanetary transfer. Transferring from one escape condition with respect 

to the 'first' planet to a hyperboli.c end condition with respect to the 'second' 

planet under the influ·ence of a thir9. body (the sun). The Earth Moon transfer 

is included here since the problem is the same. 
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The objective in all these cases is almost always to minimize the amount of 

fuel mass spent. Variations can include an additional constant mass decrement. For 

example, on a manned mission, conservatively 1.5 kg per astronaut [2] are spent. 

Several variations of these problems are also introduced owing to the conditions 

imposed on the thruster. These could be: 

• Continuous thrust on. The thruster is never switched off whereby the problem 

is to minimize total time of mission. 

• Limited switching. The number of switchings, the mInImUm coasting (no 

thrust) time,· the engine on interval or a combination of these could be con

strained depending on the engine technology. 

• Different thrust levels. An interesting variation is considering two levels of 

thrust; a constant high thrust and a much lower (and transient) thrust which 

manifests itself after the high thrust is switched off (possibly due to cooling 

down requirements). 

Our Scope 

The objective of this study in a broad outline has been to develop general algo

rithms to solve the minimum (engine on) time problem for interplanetary transfer. 

A few typical problems were deeply studied for a better understanding of the asso

ciated problems and a better physical feel. The chief concern has been to get initial 

estimates from which convergence to a desir~d accuracy is tractable using existing 

algorithms and the efficiency with which this can be done without specializing the· 
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parameters to the problem (though this has also been done to understand the machi

nation of some problems). This goal is made difficult by the fact that the full transfer 

. problem is very sensitive, and the initial estimat~ itself needs to be reasonably accu

rate. Efficiency does not seem to be a primary concern since real time application is 

unlikely and the runs do not use excessive computation to begin with. But efficiency 

is a measure of the strength of an algorithm and associated problems like trajectory 

following and full mission planning systems will depend on some of the efficiency 

considerations, though these are problems not addressed in. this thesis. 

The approach to these problems has been two pronged. One is to develop and 

identify variations of the necessary conditions of optimality which show better nu

merical behavior. The other is to identify parameters and variations to existing 

algorithms which would find the optimal solution. All three attributes of a numeri

cal algorithm, sensitivity, convergence and efficiency were studied. Memory was not 

considered since there is no dynamic memory growth and the code and data size are 

not significant. 
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CHAPTER 2. PROBLEM MODELING 

This chapter elaborates on the problems chosen and the models used or developed 

for solving them,. Each of the problems serves to increase the understanding of 

the complete problem by highlighting a few of its characteristics. The complete 

problem is defined as finding the optimal, minimum engine on time trajectory between 

two planetary bodies, given specific propulsion characteristics. Simplifications and 

approximations can be generally grouped info three categories: 

1. Eliminate factors not significant in this particular problem: 

• Ignore solar pressure and radiation effects on spacecraft and propulsion 

system. 

• Ignore effects of minor bodies like asteroids and solar dusL 

2. Remove details with little effect on problem complexity, though affecting results. 

It is felt in making such assumptions that the methods developed to solve the 

simplified problems will solve the unsimplified -ones: 

• Coplanar orbits assumption. This assumption reduces the number of state' 

and costate equations. The equations involved are at ieast as stable and 

the quantities ignored (.:, i) vary less in comparison to others. 
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• Restricted three body assumption. The two large masses are assumed to 

behave as fixed relative to each other with constant rotation. Relaxing this 

assumption would involve no major change in the problem formulation. 

• Ideal engine performance is assumed: Transient engine behavior is also 

ignored. The engine is assumed to have constant mass flow and thrust 

when on, but no effect on the spacecraft when off. 

• Navigation errors and other state estimation errors are ignored as consti

tuting a control problem. 

3. Reduce complexity of the problem to isolate specific features of the problem. 

The resulting problems are chosen as test beds for various methods and their 

. variations in order to isolate or generate potential candidate codes for more 

. difficult problems. The problems outlined below were chosen for this study: 

• Continuous thrust-on transfer from a given state to a specified state under 

gravita.tional influence. This is a simplistic problem which nevertheless 

provides confidence in the numerical methods, helps in weeding out un

. suitable ones or, modifying them to solve· problems of this nature. It also 

allows us to evaluate and verify support code like the numerical integration 

module. 

• Maximum energy escape from a low altitude parking orbit. This prob

lem gives a fair idea of how escape trajectories of state and control angle 

will look like for the complete problem and enables comparisons of con

trol parameterization effectiveness with the (indirect) optimal solution. 

Sensitivity is also a significant issue in this case. 



8 

• Escaping from low Earth parking orbit to low Moon parking orbit with 

restriction of a single engine-off phase. Besides giving estimates of the fuel 

consumption and a view of how an optimal trajectory is likely to look, this 

problem incorporates most of the difficulties of a complete problem. 

Appendix A gives the values chosen for the consta~ts not explicitly listed below. 

Some of them were simply adapted from a previous thesis [7] on a similar topic for 

comparison purposes .. 

Direct and Indirect Formuiation 

. Given a system described by differential equations (State DE) 

with state x(t}E Rn and constraints 'Ij.'(x(t,),t,) E Rp (p < n), an optimal control 

problem can be defined [3] as finding u( t) to maximize (or minimize) 

(2.2) 

where the control input u(t) E Rm. Defining v E RP as the multiplier for 1/J(x(t,),t,) 

and the Hamiltonian as 

H(x, u; t) = L(x, u, t) + >.,T f(x, u, t), ,\ ERn; 

we can apply variational analysis using th~ Lagrange multiplier approach to obtain 

(in addition to equations (2.1) ) the following necessary conditions [4]. 

CostateDE : -~=f~'\+Lx, t::=;t, (2.3) 
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Stationarity Condition(SC) 

Boundary Conditions(BC) 

Hu = Lu + fJ A = 0 (2.4 ) 

ATdx Ito -Hdx Ito= 0 (2.5) 

(cPx + 1{'iV - A)T Itf dx(t,) + (cPt + 1/;; V + H) It, dt, = 0 (2.6) 

The solution of the necessary conditions gives the optimal control input subject to 

verifying the sufficient conditions. This approach is also known as the indirect method 

since the control is obtained from ~he costates which are not present in the problem 

statement. 

Another solution method would be to parameterize the control time history u( t) 

using a chosen number of real values and find these along with other unknowns like 

initial and final times to minimize the performance index (2.2) while satisfying equa

tions (2.1). This is known as the direct method for evident reasons. Some examples 

of parameterization would be splines, bezier fits, truncated taylor and fourier series. 

The parameterizations used for specific problems are discussed in Chapter 5. 

The indirect method is generally known to yield a more accurate solution with 

low constraint tolerances, where as the direct method method is numerically more 

tractable but has suboptimal properties owing to restriction of the control time his

tory sc·ope by finite parameterization. Note that for the indirect case, solving for u( t) 

from the necessary conditions is equivalent to finding the initial costates A(to), which 

completely define the state and control trajectories; given time bounds and states. 

The primary objective is to obtain the indirect solution .. Besides the advantages 

mentioned it also gives a dynamic control law, since u( t) is a function of state and 

costates, Equation (2.4). And the costates are governed by a known dynamic relation, 
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Thrust 

Figure 2.1: Chosen polar coordinate system 

Equation (2.3). 

Continuous Thrust Earth-Mars Transfer 

This problem [5] involves solving for the minimum time coplanar transfer of 

a low thrust spacecraft from- an approximate Earth escape condition to a similar 

condition with respect to Mars. All external forces except the Sun's gravitation and 

engine thrust are neglected. The orbits of Earth and Mars are assumed to be circular 

with the mean semi major axes for the radii. The two body approximation of the 

spacecraft in a polar coordinate system is given by the. state equations: 

r = U 

v2 P. 
U - - - - + a( t) . sin 0 

r r2 
uv 

v - - - + a( t) . cos 0 
r 

(2.7) 

T 
thru~t acceleration, a(t) = ., 

mo-mt 

u(t) = 0(t) is chosen with respect to the local horizon as in Figure 2.1. 'r' gives the 

radius, 'u','v' give the radial and circumferential velocities. The spacecraft's angular 



11. 

position '8' is not considered since it is not specified and decoupled from the rest of the 

. variables. The performance index J = Itt: 1 . dt and the normalized parameters [5] : 

/1 = 1.0, mo = 1.0, m = 0.07487, T = 0.1405, T/ weight It o = 0.9 x 10- 4 

Initial state constraints, x(to) : 

To 1.000 

0.000 & (2.8) 

Final state constraints, '1/'(x(tf),t.f): 

T f 1.525 

0.000 ( 2.9) 

Vf V/1/ T f 

For the indirect approach, equations (2.4),(2.3), respectively yield: 

(2.10) 

The direct solution is now obtained by minimizing J. while satisfying equations (2.7) 

and the state constraints as in (2.8,2.9). 

The indirect form is solved by satisfying (2.7),(2.10) and (2.8). The final con-

straints however, assume different forms depending on the variations chosen. The 

constraints are derived from the boundary condition (2.6) after eliminating v : 
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1. Original form. Terminal constraints are as in (2.9) and 

H(tf) = O. (2.11) 

2. Fix the final time and maximize the final radius [3] by choosing cfi( x( t f), t f) = 

r(t f ). Solve the resulting subproblems by changing t f until (r(t f ) - rf) is 

within tolerance. Each subproblem is an optimal control problem and the final 

one gives the solution. The final constraints for the subproblem are derived as : 

Uf 0.0 

vf JIl!r(t f ) 

Ar(tf ) 1 + Au / JL 
2 r 3 (t f ) 

(2.12) 

3. Similar to the above problems. Except, final constraints are the last two con-

straints in (2.9) and the last constraint is modified to 

(2.13) 

where Tf is defined in (2.9). This. shows faster convergence properties and 

retains optimal property since (2.13) linearly converges to(2.12) as r(tf) --+ rf. 

Maximum Energy Earth Escape 

The objective here is to find the control input such that the satellite attains 

the maximum p'ossible total energy. This is similar to a minimum time escape, and 

a problem of finding the minimum time required for a given total energy would 
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yield identical results. The state and costate equations are agam given by equa-

tions (2.7),(2.10) and the performance index is the negative of the total specific 

energy with respect to Earth which would be constant in absence of propulsion [6J: 

(2.14) 

The initial conditions are given by: 

To Re + 315 km 

0.0 (2.15) 

The values for Re, Ile and engine specifications are given in the aforementioned 

Appendi.x A. The direct problem is solved by choosin"g the parameterized control 

values to minimize index (2.14) while satisfying equations (2.7),( 2.15). The indirect 

problem however is unbounded above when index (2.14) is minimized, indicating that 

this may be amenable as a maximization problem. Hence the performance index for 

indirect problems is: 

(2.16) 

. which shows convergence to a maxima and validates the hypothesis. It is notable that 

the performance index will manifest itself only in" the terminal costate constraints 

which are obtained from equations (2.6),(2.16): 

Ar(tf) 

Au(tf) 

Ar (t f) 

11 
T2(t f ) 

u{tf ) 

v(tf) (2.17) 

This indicates a high degree of sensitivity to initial costate values which will be 

the optimization variables. The physics of the problem however shows that the 
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performance index is an energy integral. The performance index is redefined as : 

(2.18) 

Appendix B shows the corresponding derivations, including all the modified equa-

tions. The optimality condition and costates are now: 

tanG = 
Au + U 

Av + v 

Ar (V2 _ 2~)" Au _ uv . Av' 
'r 2 r3 r2 

v 
Au =' -Ar+ - . Au - a(t) . sin G 

r 
v U 

Av = -2-Au + - . Av - a(t)· cos G 
r r 

(2.19) 

The terminal constraints are unchanged. The total energy is effectively included 

twice in the new performance index. This change as seen later demonstrates superior 

stability and hence convergence. This also translates to less sensitivity to initial 

costates and an unusual scaling property. 

Another independent variation is maximizing index (2.16) (or minimizing (2.14) ) 

in lieu of satisfying the terminal constraints. One would expect that both forms (or 

a combination thereof) will lead to the same solution' in the limit of convergence. 

But this is not the case as will be seen. The indirect Earth escape problem with its 

four variants can be summarized as follows by the necessary conditions needed to be 

satisfied: 

• State equations (2.7) 

• Initial conditions (2.15) 

• Costate equations (2.10) OR (2.19) 

• Final constraints (2.17) AND/OR minimize index (2.14) 
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Figure 2.2: Coordinates for the Earth-Moon System 

Optimal Earth-Moon Transfer 

The objective here is to find the minimum engine on time for a spacecraft with 

only one allowable coast phase. The craft is initially in a low Earth parking orbit and 

the final desired state is a low Moon parking orbit. The Earth-Moon system for this 

problem is assumed to be acting as a restricted three body system with no influence 

of the sun; Figure 2.2. 

The coordinate frame chosen is a Earth (or Moon) centered right handed, ro

tating polar coordinate frame with the principal axis fixed to the Earth-Moon center 

line. All angles are measured clockwise. The transformation from Earth centered to 

Moon centered rotating systems as described in Appendix C is given by: 

r1 cos 81 - d1 - r cos 8 

r1 sin 81 -r sin 8 

r1 - J r1 cos2 81 + r1 sin2 81 
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A. 11 sin a - u cos a 

B - ( u sin a + 11 cos a) + d1 W 

Ul A cos a1 + B sin a1 

VI - A sin a1 + B cos a1 (2.20) 

The state equations are derived in Appendix C. They are simplified as: 

r u 

U 

2 . 

~ - ~ - /11 (r - d1 cos ()) - /11 d1 cos a + rw 2
. + 211W + a( t) sin 8 r . r2 r~ . d~ 

,11 Ul1 . (/11 /11 ) - - + d1 SIll a· - - + - - 2uw + a( t) cos 8 
r ,r~ d~ , , 

11 
(2.21) 

r 

The costate equations are simplified as :' 

-Au -- + - - - + T1· - + W - Au - + T2·-( 
112 2/1 /11 ori 2) (Ul1 ori) 
r2 r3 r~ or r2 or 

-Ar - Au ( -; - 2w) 

(2.22) 

\Vhere 

T1 /11 1.5 : 5'" (r - d1 cos a) r1 
T2 1.5 . /1~ d1 sin a r1 

or2 
2 (r - d1 cos a) 1 

or 
or2 1 2rd1 sin a oa 

J /1 + /11 W 
d3 

1 



State constraints: 

To Re + 315 km 

Uo 0.000 

Vo V Il/ro 

17 

Tj 

& Uj 

Vj 

Rm + 100 km 

0.000 

VIl/Tj 
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Note that the initial constraints refer to the Earth centered coordinate system 

and the final time constrain~s refer to Moon centered coordinate system. The sub

script ' I' in the state and costate equations refers to the secondary body. The other 

quantities refer to the primary body. The primary body is either the earth or the 

moon as chosen below. The mission is outlined as follows: 

• Start (in Earth centered coordinate system) with engine on at to = 0 till un

-known time tl and switch engine off. The initial state is defined in equa

_ tion (2.23) and Bo is an unknown. 

• Coast till unknown time t2 • 

• Transform state to Moon ·centered coordinate system using (2.20) and switch 

engine on till terminal constraints are reached at unknown time t j 

The objective of the indirect problem-is to determine Bo,t l , t2 and the control 

time history which is completely defined by the costates at t l , and t2 . The direct 

solution for this problem is not obtained since this problem is to demonst~ate the 

code's effectiveness and our primary objective has been to obtain the indirect solu

tion. Only the genetic algorithm was able to produce an initial guess. _ The other 

algorithms could not improve on this guess, since the final state is highly sensitive 

to any changes in the values at to. Hence starting with the final constraints and 
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integrating backwards until the engine is switched off, gave better results. The ob

jective here is to match the resulting state with that of the forward integration phase. 

Kleuver [7J arrived at this conclusion with similar reasons. This will be referred to 

as the modified three body model. Further modifications gave better convergence: . 

• Since initial and final angular positions are free,the corresponding costates are 

zero. The costate '\0 at to has been always found to be zero. However the other 

'\0 is either zero or fairly constant, depending on the modification used. 

• Using the modified three body model, the end time of the coast phase is deter

. mined so that the radial position matches that of the moon escape phase. This 

reduces a variable and increases convergence. 

• The angular position at moon orbit can be determined by iterating so that 

it matches that of the coast phase. Though this increases computation, pre

liminary results show increased convergence, since the number of variables is 

reduced and now, only the velocities remain as the constraints .. 

Normalization of the Variables 

Now we can proceed to normalize the variables in order to keep the quantities 

involved of the same magnitude to prevent loss of significant digits and associated 

numerical difficulties. This process is normally referred to as non-dimensional analysis 

and the approach is identical; but instead of changing the equations we proceed to 

change the values associated since this would give the flexibility to experiment with 

various reference systems and more importantly change the normalization factors 

during the course of the problem as the coordinate systems are changed. 
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The following refere'nce systems were selected employing the thumb rule that all 

state variables should remain within one magnitude as far as possible. Note that 

in this pro'cess the non-dimensional time may assume values one or two magnitudes 

higher. But since time does not appear explicitly anywhere except in the mass equa-

tion in a non-additive form, there is no loss of precision due to this. All initial 

quantities are normalized with respect to the reference quantities according to their 

dimensional definitions as discussed later: 

1. Earth-Mars ttansfe"r. The Earth-Sun distance (1 Au), the Sun's gravitational 

constant J.l' and the initial spacecraft mass were chosen as the reference pa-

rameters. All other quantities were dimensionally scaled according to these. 

2. Earth escape problem. The Earth's radius, gravitational constant and the initial 

spacecraft mass were the reference units. 

3. Earth-Moon problem. Sa'me as above. However several other possibilities exist 

which have not been explored. 

The scaling is don~ as follows: 

L :. length, T time, .M mass 

Given L rej , I1rej and lv!rej 

L3 
Trej ~ 

J.lrej 

J.lnew 
Tr

2
ej 

11'-
L;ej 
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to, tf, t new 
t 

t rej 

R e , ... , Lnew 
L 

L~ej 
m m new 

Jl1rej 

T rej T, U, V new v,--
L,.ej 

u, V new 
.. Tr~j 
v·_-

L rej 

e nondimensional 

W new w·Trej (2.24) 
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CHAPTER 3. NUMERICAL TECHNIQUES 

Overview of Methods 

This chapter outlines the algorithms used to solve the optimal control problems 

presented in Chapter 2. Classifying the various methods needs a further distinction 

between the problem formulation and the numerical algorithm used . 

• The problem formulation depends on on whether the necessary conditions are 

applied to the direct or the indirect problem. The indirect version can be solved 

by implicitly satisfying a combination of the necessary conditions. This gives 

rise to three major forms [3]. Parameterization of the control defines the form 

in the direct method. Any form can use all of the m"athematical models of the 

problem falling in its domain of definition. 

" " " 

• Two examples of the numerical algo~ithm used are SQP (Sequential Quadratic 

Programming) and collocation schemes. Each algorithm can be used to solve 

more than one problem arising from more than one problem formulation. Con-

versely, more than one algorithm can be used to solve the same problem. 

Figure 3.1 gives an overview of the possible formulations, along with the scope 

of various algorithms. Figure 3.2 summarizes the possible algorithms. "The follow

ing sections describe the salient features of the formulations and related algorithms 
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Figure 3.1: Overview of problem formulation 

tested with the low thrust problem. Others are defined briefly. Since, genetic search 

algorithms represent a relatively new field and apparently have not been explored for 

optimal trajectory problems, this topic is dealt with in more detail in Chapter 4. 

Parameterization 

The direct problem objective is to minimize a performance index while satisfying 

the state constraints. However, u(t) = 0(t) is a function of time and generally cannot 

be represented with a finite number of real values. This necessitates representing 

0(t) as a combination of known continuous functions with unknown coefficients or 

parameters. These parameters now become the design variables. The control space is 

hence discretized with the associated artificial stiffness or restrictions on the control 

space, hence loss of optimality. The choice of these functions is of primary importance 

since it affects: 
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• Accuracy. The truncation error due to finite degrees of freedom of control. If 

for example the first five terms of the Taylor series are chosen, the terms in the 

optimal control corresponding to the higher order terms are lost. This places a 

theoretical bound on the accuracy of the solution. 

• Precision. Adverse scaling of the coefficients due to improper function choice 

results in ill conditioning due to finite machine precision. For example, two· 

fifth order polynomials represent the same control space from 0 < t < 10000. 

Let one of polynomial be normalized with respect to [0,1] and the other be as 

is. The first three terms of the latter representation are lost on a machine with 

eight significant digits with half of the fourth term ineffective. 

• Convergence. The problem may become very sensitive to changes III some 

coefficients and insensitive to others. For example, in u(t) = a(b+ct), a change 

in: a may result in loss of effectiveness of band c. The apparent scaling of the 

control space may translate to an entirely different change in the solutions space 

due to high problem nonlinearity. 

Mainly two parameteri~ations were tested: 

1. Normalized polynomial in t' with t' = t/(tf - to). This method converges but 

shows poor convergence as compared to splines. One reason is that the higher 

the order the mbre weighting that is given to the right end of the time domain 

since a high degree polynomial is close to 0 until it is near 1.0 . Another reason . 

seems to be that each coefficient affects the entire control space. 

2. Free cubic spline; a spline with unspecified boundary slopes. This representa- . 

tion showed good convergence properties for the problems tested. But subop-
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timality in representing the escape trajectory was observed since the optimal 

escape trajectory shows a large number of oscillations indicating the need for 

incorporating sinusoidal functions, like sin( ~ + bi), in the control. 

Other parameterizations may easily be tested in the program framework. The results 

indicate that a carefully chosen set of functions can show sufficient optimality and 

good convergence. 

The Indirect Method 

The necessary conditions [2.1 (state DE), 2.3( costa~e DE), 2.4(SC), 2.5&2.6(BC)] 

constitute the two point· boundary value problem (2PBVP). This problem can be 

solved by' iterating on a nominal solution which implicitly satisfies one to three of 

these conditions. However, only three of the fifteen possibilities [3] have been con

ventionallyexplored. All the known algorithms iterate using successive linearization. 

The only other alternative is dynamic programming which can only solve very simple 

continuous domain problems du~ to exponential computation increase with refine

ment of domain discretization. Of the three aforementioned possibilities, two are 

indirect methods: 

1. Neighboring Extremal Methods. The nominal solution satisfies the SC and DEs, 

leaving the Bes to be satisfied by iteration. Each trajectory is an extremal for 

some other problem in the neighborhood and hence the name. Guessing the 

initial unknowns in the states, costates-, time intervals, and iterating to satisfy 

the terminal BCs are known as shooting methods. Several modifications like 

rilUltiple shooting with discretized domains, unit solutions by perturbation and 
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backward sweep enable more stability, accuracy and other improvements. In 

general, these algorithms are highly sensitive but do give accurate results. 

2. Quasilinearization. The nominal solutions satisfies theSC and possibly the 

BCs. The starting point is a guess for the state and/or costate history while 

satisfying some/or all the BCs. The resulting perturbation equations in state 

and costates give a sequence of lillear two point boundary value problems. 

The third possibility the continuous gradient method, is normally classified as 

a direct method ... The nominal ,solution only satisfies the state and costate DEs. 

This involves a guessed control time history and iterating by integrating the state 

DEs forward and the costate DE backward to get a continuous gradient (Hu), which 

is used to satisfy the SC and BCs. High initial convergence is a property of these 

methods. 

Boundary Value Problem Solvers 

These are a class of algorithms which solve ordinary differential equations with 

constraints specified at more than one point of time. The necessary conditions derived 

for an optimal control problem iead to a 2~BVP, and hen~e fall in their domain. The 

collocation code, Colsys from Ascher, Christiansen and Russell [9] was the only two

point boundary problem solver tested. It would be classified as a Quasilinearization 

scheme. However, such a method has an inherent drawback of requi~ing a fixed 

final time. For example, to solve the variable time Earth-Mars transfer problem, the' 

following scheme was used to change the end time tf to meet the constraint of final 

radius. Each subproblem maximizes end radius, using a specified t f : 
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1. Guess two end times and solve the subproblem for each of them. 

2. Obtain a first estimate by linear interpolation against the constraint, as de

scribed in Moyer's [5] generalized Newton-Raphson approach. Solve for this 

estimate. 

3. Use the two guesses and the first estimate solutions to get the next estimate 

for t f by quadratic interpolation of constraint vs t f , the generalized Newtons 

method. Solve using this estimate. 

4. Check for convergence in steps 2 and 3. Otherwise continue from step 3. 

The generalized Newton's method reduced execution time by more tha'n half that 

obtained using the generalized Newton-Raphson technique. Other modifications, like 

using the previous solution as the initial solution for the new t f , did not bring about 

major changes. Colsys failed to converge on the minimum energy escape problem. A 

suboptimal solution was obtained by splitting the [to, tf] time interval into a specified 

number (4 here) of parts. The problem was then solved for each of these intervals with 

the final state of the previous interval supplying the initial state for the next time 

interval. All the modifications described can be generally applied to other problems. 

Nonlinear Constrained Parameter Optimization 

This refers to a class of algorithms which minimize an objective function subject 

to linear and nonlinear, equality or inequality constraints. They are very flexible with 

r'espect to problem formulation modifications. Incorporating changes like variable 

initial and end times and bounds on state or control is easier when compared with 
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formulating these changes into an indirect problem or solving them using boundary 

value solvers. Conventional algorithms, however, need the objective function to be at 

least twice differentiable and convex in the region of the initial guess for guaranteed 

convergence. Extensive research [8] has made many problems solvable, regardless. 

The algorithms fall into two broad categories: 

• Unconstrained minimizers where constraints are handled by penalty functions. 

These include descent methods like conjugate gradient and quasi-Newton meth

ods like BFGS. BFGS is more widely used because of its superlinear local con-

vergence, scaling properties enabling global descent and an efficient Hessian (the 

ma.trix of second derivatives) p.pdating scheme which needs only the gradient 

to be evaluated at each step. BFGS was hence chosen for the penalty method. 

The objective is to find the design vector X to minimize F(X) subject to the 

constraints Ge(X) =.0 and Gi(X) ?:: O. The following variants achieve the 

objective by minimizing a new unconstrained function <P: 

1. Sequential penalty functions: 

. 1 
<l>(X) = F(X) + 2GTW,;G, G = 0 if Gi ?:: 0; k = 1..00 (3.1 ) 

Here, G includes both Ge and Gi, ~Vk is positive definite and the second 

norm IWk l 2 > IWk - 112 • This sequence of unconstrained subproblems gives 

linear convergence and gives a theoretical optimum as IWk l
2 

uniformly 

tends to 00. Usually, and for this study, ~Vk is chosen to be a diagonal 

matrix with equal coefficients in which case the penalty function reduces 

to: 
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1 " 
<I>(X) = P(X) + -(TkCT C; k = 1..00, (Tk > (Tk-l (3.2) 

2 . 

2. Short cut penalty function. Using a single, large (T to solve a single sub-

problem: 

<I>(X) = F(X) + ~CTWC (3.3) 

For the ~V chosen above, this translates to: 

1?(X) = F(X)j (T + ~CT C (3.4) 

3. Multipller penalty function: 

Where (Tk is increased only if the com, raint satisfaction rate drops. This 

is known as the Powell-Hestenes multiplier update. Others, like Fletcher's 

update, use the BFGS Hessian to provide superlinear local convergence. 

The multiplier penalty function gives the advantage of obtaining the op

timum in a finite number of subproblems with finite (T. This property [8] 

is affected by inducing an origin shift for the"constraints which also moves 

the discontinuity in second derivatives due to inequality constraints away 

from the optimal solution. 

4. L1 exact penalty function: 
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For a sufficiently high (T, this function gIves single step-convergence to the 

constrained optimum [8]. Discontinuities in the gradient prevent the use of 

conventional algorithms. However, this function is ideally suited for genetic 

search algorithms, which does not use gradient information . 

• Feasible direction schemes. Using a local quadratic model with linear con

straints, we can either reduce the variable set by elimination to span the con

straint free hyperspace or equivalently solve the problem using Lagrange mul

tipliers [8]. A sequence of such problems is required· for nonlinear function

also These include Sequential Quadratic Programming (SQP) .and the gradient 

projection methods: These algorithms, unlike the penalty functions possess 

quadratic (or superlinear) convergence properties by definition. Each subprob

lem is a quadratic model instead of a general nonlinear function. SQP, a well 

used and readily available code, was used for solving some of the defined prob

lems. 

Numerical Integration 

All the non1inea~ programming schemes and shooting methods require integrat-. 

ing a system of ordinary differential equations over the time domain for each value 

of the design vector or each iteration. In solving a full problem, this signifies a large 

number of these integrations, with stringent accuracy requirements to provide gra

dient information when required. Gear [10] gives an extensive discussion on various 

methods. Different· problems have different ·lengths of time and accuracy require

ments. Hence, to have both efficiency and flexibility, we need some kind of error 

control. Further efficiency accrues if the step size is changed dynamically. This is 
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possible by modifications to the widely used Runge-Kutta methods or the more recent 

. multivalue methods~ For this study, a variable step size and variable order multi value 

method was coded for the following reasons: 

• They are strongly stable, since they are predictor-corrector schemes. 

• Unlike Runge-Kutta methods, an increase in order does not increase the number 

of evaluations per step. Even for orders as high as eight, the number of function 

(differential equation) evaluations is only three compared with four for a fourth 

order Runge-Kutta method. 

• The overhead computation is comparable with Runge-Kutta. Step and order 

changes are computationally inexpensive. 

• Increasing the maximum order entails adding additional coefficients only. The 

same code can also solve higher-order differential equations. 

Error and Tolerance Scheduling 

Some of the numerical methods applied require solving a set of ~ubproblems to 

arrive at the solution, besides ~arrying out a numerical integration for each design 

vector. Since the subproblems are not the solutions, it is not necessary to solve them 

with the same accuracy and constraint tolerance. And the required accuracy for each 

integration can also. be correspondingly scaled. Hence, a method was developed to 

start with coarse error and tolerances and later refine them until the required values 

are achieved. The initial value is chosen to at least yield convergence. However, very 

coarse initial tolerances will mean an increase in the number of subproblems. The 

method is outlined as follows: 
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1. Initialize the permissible error (in constraints or gradients). Set the integration 

error corresponding to this level. For example, a required gradient level of 10-2 

means an integration error of 10- 5 or lower. The constraint tolerances can 

be set independently but must be greater by at least one magnitude than the 

integration accuracy. Using penalty functions would change this strategy since 

the constraints and gradients are being scaled. 

2. Solve the subproblem and estimate the errors. Decrease the error levels for the 

next subproblem by a determined amount (usually 0.1). If the error level is less 

than the required final level, set it to the specified level. 

This method has been applied for some problems as a proof of concept, though the 

code structure allows a complete investigation. Similar strategies could be applied 

inside each subproblem. This was not done since it would constitute rewriting parts 

of standard code and would require extensive work and would detract from the focus 

of this thesis. 
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CHAPTER 4. GENETIC ALGORITHMS 

Genetic algorithms (GAs) are randomized population based search techniques 

closely emulating the natural process of evolution. They are predominantly string or 

. integer-hased searches with each member of the popu~ation represented by a string 

of bits (alleles), alphabets or other enumerated for~s. This string or member is 

known as the chromosome. The evolution process is punctuated by evolving a new 

population set from the previous set. Each of these population sets is known as 

a generation. Each member of the new population is derived from one or more 

members from the previous set. Hence, the new chromosome is the child of the 

parent chromosome( s) from the previous generation. This process of reproduction 

is driven 'by a fitness value associated with each chromosome. 'In this context, the 

, chromosome is known as the genotype and the fitness which is the genotype's physical 

manifestation, is known as the phenotyp~. ,The problem sp~cifics playa role in genetic 

algorithms only in decoding the chromosome and constructing its fitness value or 

phenot'ype. There are no, restrictions on the domain of the decoded design space 

or the solution space. This flexibility and the robust nature of genetic algorithms 

makes them very powerful tools. Unlike dynamic programming and similar methods, 

they do not possess the curse of dimen'sionality. However, they are not as efficient 

as some of the specialized schemes like BFGS or SQP when applied to problems in 
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their domains. Hybridization or using specific problem properties to enhance GAs is 

known to restore efficiency without sacrificing too much robustness or flexibility. 

The adaptive nature of these algorithms is used to: 

• Search the solution space for a minimum (optimization). 

• Continually adapt to a changing environment (Classifier Systems) like games 

or steady-state optimal control. 

Hence, they can be used for a variety of problems like minimizing noisy functions, 

playing chess, designing gas turpines, and robot arm trajectory following. The pri

mary references in this field are due to Holland [11] and his student Goldberg [13]. 

Dejong [12] did an extensive study on optimizing real-valued functions including near 

singular and discontinuous ones. Davis [14] gives a commentary on optimizing real

valued functions and a compilation of papers. One of first applications of GAs was 

in real time optimal control of pipeline scheduling [13]. There seems to be little work 

in the area of optimal control however, except for ongoing research on optimal robot 

arm trajectory following [14]. Rao [15] and Hajela [16] are investigating applications 

in aerospace design. 

There are predominantly two processes which form the core of the evolutionary 

process: 

• Crossover. A child produced using this process will have part(s) of its chro

mosome from one parent and the rest from the second parent. More than two· 

parents are rarely used. 

• Mutation. Mutation is a allele-based process, where the mutation of an allele· 

implies replacing the existing value with a random value. 
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Both processes or operators are carried out with a specified probability of success. 

They affect a child only if they pass the probability test. Typical crossover probability 

is 0.8 per two children and a typical mutation pI:obability is 0.01 per allele. ·Which. 

means that on average 8 out of 10 children have been produced by the mating of more 

than one parent and lout of 100 alleles are mutated. The selection of parents is a 

weighted probability of their fitness. This process of evolution 'and the population-

based nature is what differentiates genetic algorithms from the rest of the search and 

optimization techniques. 

If pure crossover is used, the algorithm degenerates into a combinatorial search. 

If pure mutation is used, it degenerates into a random s~arch. Theprimary construct 

being searched for by the GA is the best schema. A schema is a similarity template 

which can match more than one chromosome. For example, a bit string chromosome 

100110 matches the schemata 10 * * * *, 100 * 10, 100110 and 61 more. The '*' repre-

sents the "don't care" logical value. Given a string of length l, there are 31 possible 

schemata. A given chromosome matches 21 schemata. The best solution is repre

sented by a set of one or more best schema. Hence, the GA evolves th~ population 

by mixing s~hema of ~he superior individuals and weeding out unwanted schemata by 
. . " 

assigning low survival to weak individuals. It is assumed that the superior individuals 
. . 

have more parts of the best schema~ However, .some good schemata may be masked 

in the weak individual and lost. Hence, mutation (and recently diploidy) is primarily 

responsible for maintaining a diver~e pool of schemata. Crossover is used to combine 

existing ones. A host of operators based on t~ese two basic ones have been developed 

to enhance ·reproduction. 
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Genetic Algorithms in Optimization 

Our interest in genetic search is restricted to optimizing nonlinear functions with 

low noise. The solution is the best individual obtained from the entire search. By 

tradition, as in the code presented, GAs are used to maximize a function. A GA for 

optimization is described as follows: 

1. Get an initial population from the user or by random string generation. 

2. Decode the genotypes (strings) of the population and evaluate the fitness value 

{-phenotype). In the GA code, a chromosome is a composite string where each 

binary substring represe~ts a real number. The binary substring is decoded to 

an integer and then mapped to a given domain of real numbers. 

3. Scale the fitness values so they are all positive. Several scaling techniques exist. 

Assign a survival probability to each individual in the population based on 

fitness. Usually, this probability is the fraction of an individual's fitness to 

total fitness. 

4; Generate a new population. In generaL a part of the population is cloned 

from the best of the previous population. The rest of it is generated by the 

reproduction process described above. The parents for reproduction are selected 

by random selection with probability as assigned in Step 3 . 

. 5. Check the termination criteria, for example, the number of new individuals 

produced, fitness difference betweeri the best and the weakest, or computation 

time elapsed. If the process is not terminated, continue from step 2. Otherwise, 

return the best individual as the solution. 
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The GA code used in this study was written in C usmg a framework and data 

structures similar to ones used by Goldberg [13]. Several modifications were made to 

improve efficiency, mostly as suggested by Davis [14]: 

• Reproduction. Steady state [14], without duplicate individuals. Using overlap

ping generations· (delete last) to copy a fixed number of the best individuals 

alive from the previous generation~ Also, making sure that no two individuals 

in the population are identical by string matching. 

• Fitness scaling. Windowing (adding a constant to all the fitnesses), to make 

all fitnesses positive and to remove large common .denominators. Optionally 

making the fitness difference between each two adjacent individuals uniform 

. (linear normalization) . 

• ' Operators. Separation of mutation and crossover as separate operators. Adding 

new operators like two-point cross over and uniform list crossover [14]. 

• Parameterization. Interpolate operator fitness using given values. 

Note that testing a genetic code involves averaging several runs of the code for' the 

same initial parameters, because of their randomized, probabilistic nature. Further 

modifications to the genetic code were developed and tried during this investigation. 

Their efficacy could not be de~onstrated because of limited computational power 

and time. The modifications are as follows: 

1. To promote keeping the best individuals, sorting of the population based on 

fitness was done, and a specified number of superior individuals were retained 

as IS. 
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2. Mutation rate in the literature refers to the average number of mutations per 

allele. However, empirical performance of GAs indicates the number of muta

tions per individual to be a better index. The rationale is that this index would 

give a consistent performance across a range of string lengths. 

3. Reproduction without duplication. In the scheme described by Davis, each 

child has to be searched against the rest of the already produced population 

before being accepted. The high number of duplicates produced indicates a 

large number of searches of the order of the square the population size. This 

is justified when the fitness evaluation time is long, since the benefits accrued 

are outweighed by the extra computation. To get similar benefits for fitness 

functions with small evaluation times, a set of rules was developed to eliminate 

most of the duplicates. A survey of duplicates indicated that most duplicates 

are produced by crossover of parents without mutation when the crossed over 

material is identical. This can be detected in three stages: 

(a) Check if mutation occurs. If it does not and crossover has not taken place 

. or .both the parents were the same, then a duplicate child is found, and a 

sibling is discarded; both are discarded if the pp.rent has been kept alive. 

(b) Next step is to do a string comparison against the parents and discard 

them if the parents are being kept alive. 

(c) Compare the child against all children produced by the parents. 

The last test has not been implemented. It is observed that a majority of 

duplicates are eliminated using the first two techniques. Or alternately, if du

plication is allowed; the fitness value of the duplicate can be copied on to the 
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child, saving decoding and function evaluation. These tests, when performed 

before a full search, decreases the number of full searches. Further investigation 

as to' the source of duplicates seems to be a promising field. 

4. Fitness scaling by modified windowing. Windowing has the disadvantage that an 

individual very superior relative to the rest dominates reproduction, and soon 

brings about premature convergence. However, linear normalization makes con-

vergence e~traordinarily slow by destroying relative inform.ation, which is not 

acceptable due to high computation cost. Hence, a scaling method which uses 

the basic windowing and introduces an' additional specified difference between 

each individual may prove beneficial. Typically, the difference is the average 

fitness. Table 4.1 demonstrates the effect of such a change. Hence,.the modi-

Table 4.1: Comparison of fitness scaling methods 

·1 A set of population fitnesses 

Original Fitness -4.50 -3.20 0.00 10.10 100.00 
Windowing. 0.10 1.40 4.60 14.70 104.60 
Selection Probability % 0.08 1.12 3.66 11.72 83.41 
Linear Normalization 1.00 2.00 3.00 4.00 5.00 
Selection Probability % 6.67 13.33 20.00 26.67 33.33 
Modified Windowing 25.18 51.56 79.84 115.02 230.00 
Selection Probability % 5.01 10.27 15.91 22.93 45.85 

fied windowing scheme retains the distribution without completely suppressing 

the weak individual's selection chances. 

5. Combined operators. Instead of using segregated operators as suggested by . 

Davis [14], combined operators like mutation with uniform list crossover were 
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tried out. Preliminary tests did not reveal any significant differences. 

A new operator, named the adaptive template operator, was conceived by the 

author. First a template is generated by using the XOR binary operator on 

the best two (or more) chromosomes. The crossover is now carried out by 

random exchange of corresponding bits between two parents wherever the cor

responding template bit is 1 and exchanging whole blockS of strings wherever 

a contiguous string of Os appears in the template. The rationale is that the 

better chromosomes, especially in the later stage of evolution, show similarities 

due to accumulation of good schema or due to domination of a particular in

dividual. And hence this process may promote the exchange of better schema 

whil~ suppressing their disruption. A more rigid operator would be to retain 

all the bits corresponding to Os and exchange the rest at random. This would 

also help maintain schema separated by other alleles, which would otherwise be 

disrupted. A more logical choice in this context would be to treat the chromo

some as a circular string [13], since the string ends are arbitrary positions fixed 

by· the chosen coding scheme. 

None of these ch·ang~s have been thoroughly tested. Since proving GA changes is an· 

arduous task, extensive testing across a variety of problems is required to validate or 

reject the suggestions. 

GAs in Optimal Control 

The optimal trajectory problems presented in Chapter 2 present an opportunity 

to apply GAs to develop a general algorithm for generating initial trajectories for the 



41 ' 

indirect method. The objective is to find ,a solution close enough to the optimal solu-

,tion with enough digits of accuracy (normally two or three) to enable more efficient 

codes like SQP or one of the NEM codes' to converge to the optimal solution. This 

objective has been successful with GAs. The literature surveyed so far fails to reveal 

a (general) method for obtaining the indirect solution. 

Finding a feasible trajectory for optimal control problems in general, let alone the 

one under consideration, is reported [3J to be very difficult due to the sensitive natur,e 

of the costate equations. GAs also have the ability to find more than one optimal 

solutions or niches. This leads to. the three chief uses of GAs for such problems: 

• To find solutions to the .given problem with practically no coding except for 

objective function evaluation. This can save enormous investigative and devel

opment time for sensitive problems. 

• To add specific enhancements and code hybrid GAs to gIve robustness and 

superior local convergence. 

• To aid in better problem understanding. Analytic tools have long been the 

major source for problem understanding, using simplified problems. Hence, 

there is limited meaning to be found. (except by long experience) on quanti ties 

like costates. Genetic codes by virtue of finding several solutions and allowing 

ad hoc problem modifications can enhance this process. A demonstration is 

given in Chapter 5. 

In solving the optimal trajectory problem, the unknown initial states, costates 

and time intervals are taken as the design variables. Each variable is represented by 

a string of a specified number of bits. It was found that using slightly more bits than 
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required for the anticipated accuracy gave better performance. Given a length of Ii 

bits for the ith variable, its domain is discretized to 2li uniformly spaced real numbers. 

Goldberg's [13] simple genetic algorithm is not suitable for real world applications 

because of its low efficiency. However, if we incorporate the enhancements described 

above, the GA starts rivalling conventional algorithms in efficiency. However, unlike 

other methods, there was no problem the GA did not converge for. Some paramet

ric adjustments were required to get more performance. Constraints are handled by 

the L1 exact penalty function (Equation (3.6)) described by Fletcher [8]. The uncon

strained minima of this function have been proved to be the constrained minima of the 

problem. These functions exhibit slope discontinuities and therefore cannot be min

imized us"ing gradient based techniques. The constraints were sufficiently weighted 

by trial and error, in order to ensure boundedness of the function. Bounds on the 

domain of the design vector are implicitly handled by the decoding scheme used. 

Numerical integration is carried out with much lower accuracies as compared to the 

requirements of nonlinear programming methods, since gradient information IS no 

longer required. 

Incomplete" simulation for efficiency 

Genetic search permits function discontintiities and hence allows incomplete or 

coarse trajectory simulation using the physical know how of the problem. Hence· 

the following modifications gave significant performance increase with no change in 

convergence: 

• Terminate trajectory after the first engine on phase if the radius is less than the 

initial radius or if the radius is less than five times planet radius. The.former 
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truncates trajectories spiraling down and the latter conservatively weeds out 

non-escape conditions . 

• Terminate trajectory after the coast phase if the radius is more than half the 

'interplanetary' distance d1 • 

• For the escape problem, terminate the trajectory if the control angle has ex-

ceeded 0.3 radians before (if - i o )/10 has elapsed, since the optimal escape is 

known to be very close to zero for aimost the entire trajectory. 

These modifications, by no means extensive, were deemed safe in terms of not re-

stri~ting the flexibility of the genetic code. 

Testing the GA 

Validation of the GA coded was done using a few representative functions as 

shown in Table 4. The third column gives the range and the number of bits used for 

each variable. The functions include nonconvex, discontinuous, large search space and 

bad scaling properties to demonstrate some of the robustness and efficiency properties . " 

Of the GA. Figures 4.1-4.6 show the performance of the various functions versus the 

number of function evaluations. All the performance curves were generated using the 

seed random number 0.1678943251 and are reproducible. Two performance indices 

are used. One is the average of the log of the difference between the optimal solution 

and the best solution at that point and the other is the average of the best solution 

in the population. The performance was averaged over fifty runs. The best possible 

value using the given discre"tization is also shown in the figures as a solid horizontal 

line. All except Goldberg's test function were solved using a population size of 100 
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Name -Function Xi range 
3 

Dejong's l· t function L X7 [-5.12,5.12] 10 
I 

Dejong's 2nd function ( 2 f 2 100 Xl - X2 + (1 - xd [-2.048,2.048] 12 

5 

Dejong's 3rd function L integer( xd [-.5.12,5.12] 10 
I 

30 

DeJong's 4th function Lix; [-1.28,1.28] 8 
I 

Modified binary, F6 
cos2

( Jx2 + y2) 
[-100,100] 22 

1.0 + 0.001 (x 2 + y2)2 

I Goldberg's example [0.0,1.0].30 I 

and a steady state population size of 95. The first generation is produced by random 

initialization." Figure 4.1 shows the linear convergence rate on the logarithmic scale. 

At the end of 1000 evaluations an approximate log index of 3 implies that on average, 

the solution rapidly converges to within 0.001 of the optimal solution. Figure 4.2 gives 

the log performance for "a badly scaled nonconvex function. The convergence is hence 

slightly slower (2.5 digits) since variable range and search spaces are much larger. 

Figure 4.3 shows the avera,ge performance for a five dimensional step function. Note 

that there is no local information available since the function is constant except at 

the discontinuities. A verag~ performance was chosen since the function can only 

assume integer values. Observing the solutions showed that 24 and 25 were the 

only solutions produced, the latter (optimal) solution appearing more frequently. 

Figure 4.4 demonstrates the property of GAs in being able to efficiently search large 
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design spaces. The average solution produced is approximately -0.6 as compared to 

the optimal of 0.0. Figure 4.5 gives the log performance of the modified 'Binary 

. F6' [14] function. This function is a two di~ens~onal trigonometric function with a 

large number of local minima and maxima near the optimal solution (0.0,0.0). This 

function has been extensively tested by Davis [14]. The best performance given in 

these tests using binary representation was 3.5 digits versus 5 digits of accuracy given 

by this algorithm. This comparison indicates the efficiency of the algorithm being 

used. However real number encoding is noted to give higher. convergence of up to 

6.5 digits. Figure 4.6 demonstrates the high accuracy to which GAs can converge to. 

The design variable is very finely discretized and the function lies close to 0 in most 

of its domain and hence supplies very little information. It was seen that for 4000 

evaluations, the GA always converged to the exact solution. 
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Figure 4.1: Average log performance of DeJong's first function 



1\ 
I 

r 
r 

5.50 

4.50 

3.50 

2.50 

1.50 

0.50 

47 

I I I , I , • I I 

--------~---------t---------~-----~--~---------~--------~---------t---------~--------i---------
I I I I I I , I I 
I I I I , I I , t 
I I , I , I I • I 

, " • I I 
I I I ,. t 

I , I I I I I I , 

--------~---------r---------~--------~---------~--------~---------T---------r--------,---------I I I I I I • I I 
I 1 I t I I 
I I I I I • 
I I • , I I 
I I I I I • 
t I I I I \ 1 I I 

--------~---------p---------~--------~---------~------ --~---------.---------r--------,---------I t I I I I' t 
I , • I I I I I 
I I I I I I I 
f , I I I I I 
I I I I I I , 
I I I I I I I I I 

--------~---------.--------~--------.---------.--------~---------.--------~--------~---------I I I I I I" 
I I • I I f I I 
I I I I I I I I 
I I I I • t • 

t " " I I t , f I I I I I I • 

--------~---------~---------~--------~---------~--------~---~-----~--------~--------~---------, I t I I I I • I 
• I I I I I t I f 
I I • I I .1 I I 
, , I , I I 
, I I I I I 
I I I I I I I I , 

--------~---------~---------~--------i---------r--------~---------t---------~--------i---------
• I I I ! I • I 
I I I I I I , • 
, • I 4 

• , I I I t I I I I 

I 
I 
I 
I 

I I I 

--------~---------t---------~--------~---------r------ --~- ---,---------r--------,---------
• I I I I I I I 
I • I I I I I I 
I • , I I , I , , , I I I 
, I I I , 
I I ! I I I 

--------~---------~-------- ----~---------~--------~---------~---------~--------~- --------I , 
I I 
I I , , 
I I 
I 

I I I , • I 
I I I I I I 
I I I , 

I 
I 

I I \ I I • I 

--------~--------
• _________ ~--------4 _________ ~ ________ ~- ________ .---------~--------i---- ____ _ 

o. 

I 
I 
I 
I 

Figure 4.2: 

• I I I I , I I 
I I I I I I I I 
I I I I I I I , 
I I I I I 
I I I I I 
t I I • I 

200. 400. 800. 800. 1000. 
N.".. -> 

Average performance of DeJong's second function 



28.0 

2".0 

t 
!:II 
~ 20.0 

18.0 

12.0 

I 
I 
I 
I 
I 
I 
I 

48 

I I I I I ") 

---.----~---------.---------~--------.---------~-------.~---------.--------~--------~---------I I I I I I I I , 
I I , I I I I , I 
I I I I I t I I 
I I I I I I I I 

I 

: . 
--- ... -- ...... i- ........................ ~ ......... -- ......... -:- ...................... i .. '" -- ............... ~ ................... ;- ..................... ~- ........ ... ~--------~---------I I I I I I I I I 

I • I I I I I I 
I I I I I • 
I I' I I I 
I I I . 
I I I I 
I I I . 
I I I I I , , t 

--------~---------~--- .. -----~--------~----- --~--------~---------~---------~--------~---------I I I I I I I I I 
I I t f I I I I I 
• I I , 

• I I I I · . I I I I I 
I I I · . I I I I I 
I I I · . I I I I I I I I 

--------~---------~--------- -------~---------~--------~---------~---------~--------~---------I I I I , I , , 

: ! I I I I I I 
I I I I t 

I I I I' I I 

: : · . · . I I • I I 
I I I , I I I I , 

--------~--------- ............ --- ... :- .. _ ........... - ... , -- ................... r-"''''''''''''''''' ~-- ... - ........... t ..... - ---- - -r"'''''''·''' -- ... i ................. - .. ... 
I 
I 
I 
I 
I 
I 
I 
I 

I I I I I I I 
I I I I I I I 
f I I I 
I I I I 
I I I I 
, I I I 
I t I I 

I t I I I I I --------..f---- -... -.+---- ... -- ... -~ ...... --- ...... -.---- ... ----~- ... ---- ... -~-~-- ... ----+-- ... -... -... -... ~------ ... -.-------- ... 

o. 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I I I I I I I I 
I I ,I I, I 
f I I f I I 
, I I I I 
I I , f I 
fit I t 

I I I I I 
• I I I It' 
, , I I I I I I --------r---------,---------j---------r--------,---------r---------r--------,---------
t I I , If, I 
t I I I f I I 
I , t I I I I 
I I I I I 
I f I , , 
, , Itt 
I I I I I 
I , I I I 

200. <400. 800. 800. 1000. 

Figure 4.3: Avera.ge performance of DeJong's third function 



o. 

-<40. 

-80. 

-120. 

49 

, 
o 
I 
o 
I 

: , , 
I • 

___ ~ ______ ~L __________ L ___________ ~ ___________ ~ ___________ ~ ___________ ~ ___________ ~ __________ _ 

I • I I , I I 
I I I I I I I 
I • • I 

: : : : 
I I , I 
I I I , 
I I I I 
I • • I 

: : : , I : : ___________ L ___________ ~ ___________ ~ ___________ ~ ______ _____ L ___________ L __________ _ 

I It' I I 
I I I I I 
I I I. 
I • • , , , 
, • 0 
I I , , . , 
, 0 0 
, I I 

I' I I I , ____ L. __________ L ___________ L ___________ L ___________ L ___________ L ___________ L __________ _ 
I I I I I I I 
I • I I I I 
I I , I 
I I I • 
I I I I 
I I I I 
I I I I 
I • t I 
I I I I 
I I I I 
I ,I I I I _______ L ___________ L ___________ L ___________ L ___________ L ___________ L ___________ L __________ _ 
I , I I I • I 
t • I I 
, I I I 
I I I I 
I I I I 
I I I I 
1 I I I 
I • I , 
I , I I 
I I t I 
I t I I I , I ________ L ___________ L ___________ L ___________ L ___________ L ___________ L ___________ L __________ _ 

, • , I , , , 

, • I I I I 
I I • I 'I 
I , t \ I I 
I I I I I 
I I' • I 
I I' I I 
I I I , 
I I I I 
I I I I 
I I I I 

o. 1000. 2000. 3000. 4000. 
Nev",-> 

Figure 4.4: Average performance of Dejong's fourth function 



10.0 

8.0 

6.0 

2.0 

0.0 

I 
I 
I 
I 

50 

" , 
I I I I I I I 1 I 

--------i---------t---------:---------~---------~--------~---------t---------~--------1---------
I , I I r I • I • 

I 
I 

, , 1 I I I I I t 

--------~---------}---------~--------~---------~--------~---------~---------~--------~-------
I I ' r , I I , , 
I , I I I I 
I I I I 1 I 
I I I I 
I I I , 
I , 1 I I r , I I 

--------~---------~---------~----~---~---~-----~--------~---------.---------~--------~---------I I 1, I I I 
I I , I 
I I I I 
I I , I 
I I I I 
I I I I I I I , I 

--------~---------.---------~--------.---------~--------~---------.---------~--------~---------I " I , 
I 
I 
I , 

, I I I I I I I ________ ~ _________ ~ _________ ~ ________ ~ _________ ~ ______ __ J _________ L _________ ~ ______ _ 

, , I I I 
I I I I , 
I I I 
I I I 
I I I 
I I I I I I , , I 

--------~---------t---------~--------i--------- -------~---------~---------~--------i---------
I 'I I 
I , I 
I I I 
I I , 
I I I 
I I , I I I , I I 

~-------,---------T---------j-------- ---------r--------~---------T---------I--------l---------
I • I I I I I t I 

• 1 , ., I I 
I • I \ I 
, I I I I 
I I I 1 I 
I 1 , I I I 

--------~---------p------- --------~---------~--------~---------T--------_r------- -,---------I 1 I I I I 

t I' 1 
I , I 
I I 1 
I I 
• I I I 

----.-------------------------------------~---------.---------~--------.---------I I , I I I 

I 
I 
I 
I 
I 

o. 800. 1800. 20400. 3200. 04000. 
N EvaIa-> 

Figure 4.5: A verage log performance of the modified F6 function 
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CHAPTER 5. COMPARISON OF MODELS AND METHODS 

This chapter gives numerical comparisons for the various models and algorithms 

discussed. The index of comparison was chosen to be the number of function eval

uations. Here, 'function' refers to an evaluation of the right-hand sides of the state 

equations or the combined state-costate equations for the ~ndirect models. This gives 

a good estimate of efficiency since most of the computation is in integrating· the 

equations; this means a fixed overhead per function evaluation. However, the indi

rect problem when compared to the direct one requires integration of twice as many 

equations. This approximately translates to double the cost (of a direct method) for 

an indirect solution with an equal number of evaluations. Table 5.1 gives a compar

ison of CPU times and this ind~x for the direct Mars transfer problem with various 

algorithms and number of spline points. Table 5.2 validates our choice of polar c~or

dinates. for numerical integration using the multi value method descri bed in Chapter 3. 

Effect of Models 

In comparing the efficacy of the mathematical models for the p~oblems described 

in Chapter 2, a·single algorithni will be used; usually the algorithm giving the best 

results for the particular problem is chosen. 
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Table 5.1: Comparison of CPU times and function evaluations 

PFM, 5 PFM, 6 PFM, 10 SQP, 10 
CPU time (s), DEC 5000 42.92 46.485 69.37 78.812 
Number of Evaluations 553088 599680 897840 1112630 
Ratio x 1000 (s/eval) 0.077 0.077 0.077 . 0.070 

Table 5.2: . Comparison of Polar and Cartesian coordinates for integration 

Low Accuracy (10- 4
) High Accuracy(10-9) 

Polar 1484 5670 
Cartesian 2255 6167 

Continuous thrust Mars transfer 

The Mars transfer problem can be solved using any of the models (2.11-2.13). 

However the original problem (2.11) cannot be solved using Colsys [9] since tf is not 

fixed. Table 5.3 compares the other models. The three best strategies of tolerance 

scheduling are listed alongwith. The performance values of the overall better strategy 

(1), are listed. Performances with other strategies used are lIsted if better. The 

. variant (2.13).with strategy (1) shows faster convergence against the best performance 

of variant (2.12) and shows that the former is superior. All Colsys solutions use two 

collocation points per interval and two initial intervals. The best overali formula 

for choosing initial intervals for subsequent subproblems was the lower of 16 and· 

half the int~rvals required for the previous subproblem to converge. Table 5.4 

compares direct .and indirect formulations. (2.11-2.13), using the multiplier penalty 

function (3.5). The initial guess provided was t f = 2.0 and linearly interpolated 

control points between 1.0 and 6.0 radians. Note that the exact solution given by 
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Table 5.3: Comparison of indirect models for Mars transfer 

I Tolerance II 10-,-3 I 10-5 10- 7 

Equation (2.12) 7072 38704 51060 51060 
2:6800 3:16080 3:19296 2:49612-

Equation (2.13) .5488 11098 19498 26298 
2:2520 3:7660 3:19168 

Tolerances Initial Increment 
(1) 0.01 0.1 
(2) 0.1 0.1 
(3) 0.1 0.01 

Colsysis 3.319309, which corresponds to 193.05 days. Choosing a lower end time than 

anticipated gives remarkable increases in performance due to reduction in integration 

per simulation. Integration accuracy of 10-6 (8 digits) was used. With a tolerance 

of 10-2 , it is possible to get performance of the order of 14000. This is however 

not useful since Colsys with the generalized Newton's iteration provides far higher 

accuracy with lower computation. Table. 5.4 demonstrates the superior convergence 

and accuracy of using spline interpolation. But even using a 10-point spline does 

not give the accuracy of an indirect solution and takes far more computation. Hence 

we can conclude that direct solutions need only be used when indirect ones are not 

present. Since spline interpolation is continuous only up to its second derivative, the 

multivalue integrator halts due to use of higher derivatives. To overcome this problem, 

the step size was arbitrarily reduced by half each time the step size estimator using -

higher order derivatives failed more than once to bring error within tolerance, at the 

same time point. 
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Table -5.4: Comparison of direct and indirect formulations of the Mars transfer prob
lem 

. Tolerance: 10 3 

Perf. tf 
IN : Equation (2.13) 153066 3.28 
D : Polynomial, O( 4) 505664 4.22 
D .: Taylors Series, 0(4) 179868 3.55 
D : Normalized Poly,· O( 4) 169151 3.49 
D : Normalized Poly, O( 5) 125619 3.46 
D : Spline , 5 point 49647 ·3.38 
D :. Spline , 6 point 61370 3".33 
D : Spline, 7 point 52733 3.33 
D : Spline , 10 point 144139 3.32 

IN: Indirect model; D: Direct Model 

Maximum energy Earth e.scape 

The four variations of the indirect model are compared in Table 5.5 using BFGS 

or the multiplier penalty method. The variation used is indicated along side. The 

state equations and initial conditions are unchanged. All the solutions used a 10-4 

. . 

integration .error and had a tolerance of 10-3 on gradient and constraints. The third 

set of initial costates~ ACo/$y$' refers to the suboptimal solution obtained.from Colsys. 

as described in Chapter 3. As the table shows, the performance ofColsys is very high. 

For the optimal solution, the minimizing index (2.14) using costate Equation (2.19) 

. evidently gives the best results and the fastest convergence. The modified costate 

has hence reduced sensitivity to i~itial values, increased the convergence rate, and 

gives the same solutions. However, the lower final energy obtained by satisfying 

constraints (2.17) is not expected since by definition of the necessary conditions, 

the solution is optimal. Note that even using tight tolerances and high precision 
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integration, the bes~ solution by satisfying constraints (2.17) is 2.33 x 10-3
• 

Direct solutions obtained for increasing number of spline points is given by Ta

ble 5.6. This shows the suboptimal nature of such solutions, even for a twenty point 

spline. Though there is marginal improvement with number of spline points, the 

increase in computational cost is not acceptable. 

Table 5.5: Comparison of indirect formulations of Maximum Energy Escape 

>'0 = (1.00 x 3) >'0 = (0.01 x 3) >'0 = >'Col.sy.s 
Perf. E .103 . Perf. E·103 Perf. E .103 

Co.: 2.10, C : 2.17 NjC NjC 2:90285 2.34 
NjG NjG 3:78754 2.33 

. Co : 2.10, M : 2.14 NjC 2:551668 -3.50 2:57189 2.96 
NjC 3:383788 -1.83 3:57151 2.96 

Co : 2.19, C : 2.17 NjC '2:79020 2.72 2: 97176 1.64 
NjC 3:79088 2.72 3:115001 1.64 

Co : 2.19, M : 2.14 2:63282 2.96 2:46209 2.96 2:25546 2.96 
II 3:54663 I 2.96 I 3:59409 I 2.96 I 3:24535 I 2.96 I 

Co: Costate, C: Constraints, M: Minimization index 
2: Dog Step line search, 3: Hookstep line search [8] 

>'Col.sy.s = (0.55714, -0.0046112,0.61079), Performance=4560 
ECol.sy.s = 2.126 X 10-3 , E = 6.75 X 10-4 

Energy in ~: (per unit mass) as described in Chapter 2. 

. . 

Table 5.6: Direct solution's using BFGS and free cubic splines 

Degree 5 6 7 10 20 
Energy.103 2.647 2.637 2.642 2.718 2.811 
Performance 2:22907 2:29938 2:79427 2:54344 2:210034 

II 3:31315 I 3:49824 I 3:39326 I 3:53050 I 3:189636 I 
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Single coast Earth-Moon transfer 

This problem could only be solved using the genetic code. Using the genetic 

algorithm's output for the initial guess and the modified three body model (Chapter 2), 

the multiplier method gave a small improvem~nt. The solution did not improve 

after the first subproblem indicating that the multipliers are not helpful in this case. 

This solution used 3,34,519 function evaluations and satisfied the constraints to' an 

accuracy of 8 .10- 2
• Using other algorithms or the original set of constraints gave no 

improvement. 

Algorithm Comparison and Maximum Accuracies 

Table 5.7 lists the maximum accuracies successfully obtained for the Mars trans

fer problem using various algorithms and models. SQP gives the best accuracy with 

the indirect method. However, the best accuracies for the direct method are ob

tained from the multiplier penalty method. The multiplier method uses a constant 

but small increment in (T. The' degeneration of SQP with increase in spline points 

can be attributed to the increase in the number of free variables in the constrained 

hypersl>ace. This causes SQP to do an unconstrained local search at each step using 

more variables. The extreme nonlinearity of the problem prevents such a search from 

being effective. Table 5.8 lists. the best possible constraint satisf~ction for the es

cape problem. As described above, maximum accuracy for the Earth-Moon problem 

is 2 . 10-2 • These restrictions on maximum accuracy are due to the limited gradient 

~ccuracy ( which is half the possible integration accuracy) and possihly due to ill con

ditioning of the Hessian estimate. The question of maximum accuracy is not relevant 

to genetic algorithms since given sufficiently accurate integrals, they will eventually 
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evolve to the desired accuracy. Instead we look at the performance graphs of the GA 

in Chapter 6: We now list the best performance and the algori thm( s) used for all the 

three problems: 

• The Mars transfer problem can be solved to five digit accuracy using Colsys in 

7800 function evaluations. 

• The Earth escape problem can be solved to four digit accuracy using Colsys 

and then the multiplier method, and the modified model in 19000 function 

evaluations. 

• The Earth-Moon transfer problem can be solved to three digit accuracy usirig 

GAs and the multiplier method in about a million evaluations. Note that the 

constraint accuracy is in terms of the quantities normalized with respect to 

Earth radius and /Le (Chapter 2). 

Table 5.7: Maximum accuracies using different models and methods 

Colsys PFM Multiplier SQP 
Eq 2.13 10 8 2.10 3 4.10 6 3. 10 11 

3.319308 3.304817 3.319"298 3.319308 
Spline, 5point NjA 2.10 6 5.10 9 1 . 10 8 

3.379104 3.379114 3.379114 
Spline, 6point· NjA 1 . 10-7 6.10-9 10-3 

3.29548 3.329549 4.5 
Spline, 10point NjA 1 . 10-7 2.10-7 10-3 

3.320988 3.320988 3.83 

Multiplier: Multiplier PFM. 
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Table 5.8: Best constraint tolerances using different models and methods 

II Multiplier I SQP I 
Co : 2.10, Con: 2.17 1. 10-2 NjC 
Co : 2.19, Con: 2.17 3·10 3 NjC 

GAs and Low Accuracy Solutions 

It was observed that most of the computation time required by the nonlinear 

optimization techniques is lost in reaching a convex region containing the optimal 

solution. GAs were found to be an efficient ·and robust tool for such low accuracy 

solutions. Hence we briefly mention the relevant GA solutions obtained for the three 

problems. The Mars transfer problem was solved to two digit accuracy in about 

5000 evaluations. Since this problem is well behaved, GAs are not relevant for this 

case. The Earth escape energy was optimized to 2.26 x 10-3 in 7588 evaluations. 

These figures are averaged over 50 runs with different initial random numbers. As 

discussed in the section above, the GA solution to the Earth-Moon problem is our 

only option. We now describe how the global property of GA solutions helped in 

developing a transformation for the initial costate representation which resulted in 

faster convergence. 

Model enhancement through GAs solutions 

For computation, the initial costate ·vector was conventionally represented as 

Ai == X( i). X is the variable set used in optimization. Solving the maximum energy 

Earth escape problem using the genetic algorithm gave different solutions from dif

ferent runs. These solutions had the property of having similar energy values with 
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significantly different initial costates. Comparing the solutions however revealed a 

remarkable property of the optimal initial costates. 

Though the first costate assumed a range 9f values, the corresponding third 

costate was always near this value. This implied a coupling between the first and 

third costates. Though desirable, this coupling is broken by the crossover process, 

slowing convergence. Hence a transformation of the variable set to the effect 

A,. = x(l); Av = x(l) + x(3) ( 5.1) 

decoupled the variables. The genetic algorithm showed remarkably increased per

formance after this change. This can be attributed to·the fact that now x( 3) has a 

lesser domain and is decoupled from x{ 1). For the escape problem, GAs can now be 

directly used to give a solution of requested accuracy. For instance we need 75880 

function evaluations to arrive at an average final energy of 2.934 . 10-3
• The low 

accuracy solution mentioned above used this transformation. 
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CHAPTER 6. PRESENTATION OF SOLUTIONS' 

This Chapter presents the optimal trajectories obtained. Figure 6.1 shows the 

optimal trajectory for the Earth-Mars transfer problem in polar coordinates. Fig

ure 6.2 shows the optimal control time history. The optimal initial costate is given by 

Ama1"3 = (1.87706,0.928998,2.02450) and a final time of 3.319308 (193.05 days). The 

control is observed to be accelerating the spacecraft in the first half of the trajectory 

and decelerating in the next half. 

Figure 6.3 gives the optimal Earth escape trajectory. Figure 6.4 gives the optimal 

control time history and Figure 6.5 compares the indirect and the direct control 

solution histories using 20 spline points. As we can observe, the direct solution is 

trying to emulate the indirect, optimal solution but remains unsuccessful due to its 

restricted nature. However, towards the end when the oscillations reduce, the direct 

solution is very close to the indirect one. This 'also accounts for the energies being 

similar, since initially the control is near zero and has little effect on the final energy. 

F,igure 6.6 gives the average performance of genetic algorithm using the original 

Earth-Moon model.' Figure 6.7 gives the performance for the modified model. The 

modified model shows improved convergence. The optimal trajectory for the initial, 

thrust-to-weight ratio of 10-3 is given in Figure 6.8. It was observed that the multi

plier method gave marginal improvement over the GA solution. The control history 
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in Figure 6.9 indicates that the Earth escape phase of the control is similar to the 

solution of the maximum energy escape problem. The optimal trajectory takes 2.252 

days of initial thrusting, 0.479 days of final thrusting and 4.795 days of coasting. The 

optimal angles of departure (B(t = 0)) and arrival (B1(t = 7.526)) are6.128 and 5.569 

radians, respectively. The Earth and Moon escape cosatates are, respectively, given 

by ).E = (0.9953,0.03895,1.1186,0.0) and AM = (0.6804,0.05938,0.8760,0.0). 
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Figure 6.1: Optimal Mars transfer trajectory 
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Figure 6.7: A verage performance of the modified Moon model 



70. 

50. 

30. 

10. 

'10. 

70 

I 
I 
I 
I 
I 
I 
I 

I I I I I I I I I I , 

-----L-----L-----~-----~-----L-----L~----L-----L-----L ____ ~~ ____ _ 
I I I , I ___ .- I I I I I 
I I I , __ - - T - I , I I I I 
I I t _--, I I I I I I I 

: L --' - j- : : : : : : : ; 
: " ... ,: : : : : : : : : : 
.... I I I I I I I I I I 

--;L~~-----~-----t-----~-----~-----~-----~-----~-----~ _____ ~-----~-----
I I I I I I I I I I f I 

I I t I I I I 1 I I I I 

I : : : : : : : : : ; : 
\ I I t I I I I I I I I 
\ I I I I I I t I I I I 
,I , I I I I , I I I I 

" I I I I I I I I I ) 

---~~~-----~-----~-----~-----~-----~-----~-----~-----~-----~-----~-----
~ I I I I , I I I I I 
I.... I t I I I t I I , I 
I.... I I I I I I I , t I 
I """" I I f I I I I I 
I 's.... I I I I I, I 
I , .... I I I I I I , 
I I ........ I I I I I I I 
I I ........ I I I I I I I I 

·-----~-----r-----r--,--r-----r-----r-----r-----r-----r-----r-----r-----
I I 1 ....... ' I I I I I I I 
I I I ,......... I I I , I 1 1 
I I I I '_ I I I I I I J 
I It. ...,.... It. I I I 
I I I I I ........ I I I I I , 

: : : : : .... ...;'...: : : : : 
I I I I I I ......... I I I I I 

-----t-----t-----~-----~-----~-----~-----1_~---~-----t- ----~-----~-----
t I • I I I I .... ' I I I I 
I I I I I • I "l.... I I I 
1 I I , I I I I ...... I I I 

! : : : : : : : "'of, ! : 
, I , I I I I I I .... , I I 
I I • • I , I • I .... • I 

-----L-----~-----~ _____ L-----~- ____ ~-----L- ____ L _____ ~ -----1, ---t----_ 
I I I I I I • I I I • 
I I I I I I I I I I I 

I I I I I I I , I I 
I I I f I I I I , 
• I I I I I I r I 
I I I I I I I 
I I I I I I 

I • • • , t 
I I I I I 1 --r-----r-----r-----r-- -r-----r----
I , , I I I 
I I It. I 
I I I I I 
I I I I 1 
1 I I I 
I • I t 
I I I I 
I I I I 

'14.0 -10.0 -6.0 -2.0 2.0 6.0 10.0 

Figure 6.8: Optimal Earth-Moon transfer trajectory 
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CHAPTER 7. CONCLUSIONS AND SUGGESTIONS 

In concluding the study; the objective of a constructing a general code for com

puting optimal trajectory estimates has been successful. However an equally if not 

more arduous task remains before the objective of a general code for optimal trajec

tory planning is realized. This would involve modifying t.he state and costate equa

tions for -three .dimensional equations, using a standardized ephemeris ~nd further 

hybridization along with better nonlinear optimization codes. We now summarize 

the relevant conclusions and observations of this investigation along with suggestions 

in light of the above objective. 

Conclusions 

• Genetic algorithms proved to be the only successful general solver of the optimal 

trajectory problems considered here.· 

• Conventional algorithms c~>uld not improve upon the solution· of GA using the 

original model. However using the modified constraint set, we were able to 

obtain convergence of the conventional algorithms starting with the GAs esti-· 

mate. As problems get more complex, dependence on hybrid GAs arid modified 

models for the optimal solution is likely to increase. 
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• Though GAs can be used to completely solve the problem, conventional algo

rithms give faster convergence near the solution. But genetic search is inher

ently parallel since the new generation of individuals only depends on its prede

cessors, completely independent of the other individuals in the new population. 

Hence, on any parallel machine with sufficient processors, genetic algorithms 

will outperform conventional algorithms. 

• Making ad hoc changes in the simulation (integration) module, does not effect 

convergence of the GA but does give better performance due to reduction in 

integration cost. 

• Making modeling changes to "tightly couple the problem objective into the 

costate equations desensitizes the problem. An example is the optimal Earth 

escape problem. The three-body model was rederived to incorporate the sec

ondary body parameters as opposed to conventionally including only the pri

mary body's effect. This model needs to be compared with a conventional 

model to test its efficacy. 

• Constraint modifications improve <;onvergence and performance as demonstrated 

by all three problems. 

• When solving a ser~es of subproblems, tolerance scheduling gIves highly in

creased performance. 

• The multiplier penalty method is robust relative to SQP and gives faster con

vergence wh~n compared to the PFM. It requires lesser magnitude penalty con- " 

stants and increments. This saves a lot of computation in increased integration 
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accuracy, since high weights require more significant digits. 

• Splines offer suitable parameterization for problems without oscillations in the 

optimal control. 

• SQP gives very high performance for the indirect method, at high accuracies. 

However, a close initial estimate is required. 

Observations 

• For low to medium integration accuracies (up to 10-8 ), the number of signifi

cant digits for gradient evaluati0!l can be assumed to be two greater than the 

specified local accuracy. This property was observed on all the three problems, 

indicating the stable nature of the state equations. This enables sufficient gra

dient accuracy with reduced computation. 

• Colsys adapts by doubli~g or halving of the mesh size. This can give con

vergence problems. In solving the optimal e~cape problem the mesh size was 

repeatedly halved with. no further decrease in the error. A better approach 

would have been t'o identify intervals of maxim urn error and adapt the mesh. 

• Saving in significant digits is also achieved by multiplying the objective function 

by a constant less than 1, instead of weighting the coU:straints .. 

• The SQP and Collocation codes used are not state-of-the-art. Using better 

routines if available should yield better results. 
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Suggestions 

.• The genetic code needs to be further refined and is likely to give even better 

performance. Some untested variants are proposed in Chapter 4. Extensive 

testing of GAs is required to improve performance. Testing the GA needs 

averaging over a large number of seed random numbers. The machine used 

(DEC 5000) proved to be unsuitable for this task due to its computational 

limitations. The task is made further difficult by the plethora of options which 

can improve or destroy convergence. 

• Investigation of better SQP and BVP solving codes is required to realize their 

full potential. The tlvlSL SQP code and the. finite difference BVP solver are 

two such candidates. 

• Using a parameterization of the form 8( t) = a + bt + ct2 + d sin( e + it) is likely 

to improve the performance fOT the direct method on problems similar: to the 

escape pro.blem. 

• A method for: getting initial estimates to control angles usmg a control law 

failed. This might be achieved using neural nets. But this is now not relevant· 

to the current problem since optimal estimates are possible. 

• The cylindrical coordinates seem tobe the logical choice for the three dimen

sional problem. This would enable the current form of control definition and 

minimal changes in the state and costate equations. 

• Though limited study was done to arrive at the reference normalization con

stants, a more analytic study along with a systematic comparison of the effect 
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of strategies to fix or vary the origin and normalization parameters needs to be 

carried out. 
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APPENDIX A. SOLAR AND SPACECRAFT PARAMETERS 

The following numerical values were used for the problems solved in this thesis: 

It· 1.0 

Rref 1.0Au 

This was the system chosen to compare results with the reference problem [5]. One 

time unit then implies 58.16 days. 

Earth 

J.le 

Mean semi - major axis 

6378.14453125km 

315km + Re 

4670.71094km· 

3.986011875 x 105 km3 
/ S2 

1.0Au 

\Vhere Re refers to the mean Earth radius and Rb refers to the position of the Barycen- . 

ter of the Earth-Moon system. Ro refers to the position of the low parking orbits 
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from which the escape trajectory begins. The final time for the maximum energy 

escape problem is 2.38 days. 

Moon 

Rm 1738.0km 

Ro 100km + Rm, (for Moon parking orbit) 

JlI 

Spacecraft 

384400.0km 

Rb . 
Jl' dl - Rb 

m 

Thrust 

0.0299kgj s 

2942.0N 

For the Mars transfer problem, the spacecraft ·parameters in the normalized coordi-

nates chosen above are: 

i.o 

m 0.07487 

Thrust 0.1405 
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APPENDIX B. DERIVATION OF OPTIMAL ESCAPE MODELS 

The state equations of the satellite; ~scaping orbit, are given by Equations (2.7). 

The time rates of the kinetic energy k and potential energy .il are given by: 

. K uu + vv 

u J.L --u 
r2 

(B.1) 

Hence the time rate of change of specific energy, e is given by: 

(B.2) 

Substituting Equations (2.7 ,B.1) in the above gives: 

e = a( t) . (u sin e + v cos e) (B.3) 

U ~ing e as the functional whose integral has to be maximized and adding the total 

energy as an end time functional, we get the new performance index: 

u 2(t ) + v 2(t ) J.L. it! J = f f - -- + a(t) . (u sin e + v cos e )dt 
. 2 r(tf) to 

(BA) 

The performance index is inciuded twice to enable more stable costates and suit

able terminal ~onstraints.Substituting (BA) in Equations (2.7) and (2.3) gives the· 

governing new costate equations: 

tane = 
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Ar --2- ·A --·A 
(

V2 Jl) 'UV 

r2 r3 u r2 u 

-A r + ~ . Au - a(t) . sin e 
r 

A . 
u 

. v u . 
- 2 - Au + - . Au - a( t) . cos e 

r . r . 
(B.5) 

Noting that the final time is fixed and applying the boundary conditions (2.6) gives 

the same terminal constraint's: 

Ar(tf) 

Au(tf) 

Ar(tf) 

Jl 
r 2(t f ) 

u(tf) 

v(t f ) (B.6) 
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APPENDIX C. DERIVATION OF THE THREE-BODY MODEL 

The three-body sy~tem is defined by a small mass under the influence of two large 

point-mass bodies. We refer to one of the large bodies as the p~imary and the other as 

. the secondary. The coordinate system is defined by Figure 2.2. The primary body's 

parameters are defined without any subscript, and th~ secon'dary body is referred to 

by the subscript \ '. The origin is at the primary. The motion of the satellite with 

respect to the rotating reference frame, fixed to the primary is given by adding the 

gravitational forces of the two bodies in the polar frame. To obtain its accelerations 

with respect to an inertial frame fixed to the primary, the acceleration of the origin 

(primary) is subtracted to give: 

r u 

u ( 
J1 . A J11 A J11 dA

) A -r + -r1 +.- 1 • r r2 . rl dl r 

v - - - -i1 + -d1 . e uv (Ill III A) A 
r r2 d2 

v e.= -
r 

1 1 

( C.1) 

Here the vectors i and d~ are pointing away from the origin. Hence, the vector 

quantities are given by: 

--r rr 
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d~ d1 cos er - d1 sin ee 

(r - d1 cos e) r + d 1 sin ee (C.2) 

Substituting vectors (C.2) in Equations (C.l) gives: 

r u 

u 

2 . 
v J.L J.L1 J.L1 - - - - - (r - d1 cos e) - -d1 cos e 
r r2 r3 d3 

1 1 

UV ·J.L1. J.L1 -- - -d1 sme+ -d1 cose 
r r3. d3 

1 1 

v 

e v 

r 
(C.3) 

The centripetal and Coriolis acceleration components due to the barycenter rotation 

are given by: 

-r 
-w wk 

-w Q 

J J.L + ILl [6] d3 ,. 
1 

w 

ur + ve -r 
(CA) 

Substituting Equation (C.3) in Equation (CA) and adding terms for the thrustac-

celeration of the engine gives: 

r u 

u 
2 . 

v J.L J.L1 . J.L1 2 • 
- - - - 3 (r - d1 cos e) - d3 d1 cos e + rw + 2vw + a( t ) sm e . 
r r2 rl1 .. 

v 
uv J.L1. J.L1 . 

- - - 3 d1 sm e + 3 d1 cos e - 2uw + a( t ) cos e 
r r 1 d1 

v 

r 
(C.5) 
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The costate equations are obtained from Equations (2.3) and (C.5) as follows: 

Ar (UV ori) -Av - +T2·-r2 or 

(C.6) 

where 

Tl 
3 JLl 
- . 5"" (r - dl cos ()) 
2 r l . 

3 JLl d . (J .:..... - Ism 
2 r 5 

1 

T2 

2 (r - dl cos (J) 

2rdl sin () 

These equations will· be regrouped in a compact form in Chapter 2. If we need to 

swit.ch to the secondary as our new primary, the velocity a.nd position components 

need to be transformed. This done by choosing the connecting line between the 

. primary and the secondary as the reference axis and grouping all quantities with 

respect to this. Now an additional d'l is added to the horizontal component of position 

and an additional dlw is added to the vertical component of the velocity. These 

quantities are then resolved with respect to the new (J (previously (Jl), which is found 

by vect'or transformation. The resulting set of equations becomes (2.20). Using these 
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equations and swaPI?ing the values of J1 and J1I switches the origin from the primary 

. to the secondary which then becomes the new primary. 



8i 

APPENDIX D. CODE LISTING 

The code is modular in' nature and allows rapid modifications and experimen-

tation. During its development the necessity for object oriented syntax was felt. 

The genetic algorithm is written in C rather than FORTRAN to enable the use of 

structured variables and due to ease of string manipulati~n. 

Main Program 

This module is responsible for initializing data, ensuring data flow between the 

other modules, and unifying different problems and algorithms. It consists of the main 

program and input modules for GA (SGAINP), SQP (SQPINP), penalty methods 

using BFGS (PENINP), Colsys (COLSINP) and common data (GENINP). 

C******************************************************************** 
C 
C 

* 
AUTHOR: LALITESH KUMAR KATRAGADA * SEP 10, 1991 

* 
* 

C*******~*****************~****************************************** 
C NERVE CENTER FOR CONTROLLING DATA FLOW 
C CAN SOLVE ALL PROBLEMS WITH ANY ALGORITHM, AND INITIAL VALUES 
C POSSIBLE TO PIPE OUTPUT OF ONE PROGRAM TO INPUT OF OTHERS 
C MODULES CAN BE ADDED INDEPENDENT OF OTHERS 
C 

C 

C 
PROBLEMS 
ALGORITHMS 

MARS TRANSFER, ESCAPE, EARTH-MOON TRANSFER 
COLSYS, PFM, MULTIPLIER, GENETIC ALGORITHM 
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C PLOTTING DATA OPTIONAL 
C******************************************************************** 

C 
C 
C 

C 
C 

C 
C 

C 

C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 

C 

C 
C 

C 

C 

C 
C 
C 

C 

C 
C 
C 
C 
C 

C 

PROGRAM CONTROL 
IMPLICIT NONE 

INITYP 
PROBTYP 
METHOD 
FNTYPE 

EPSO 
EPSI 

. EPSMIN 
DYNEPS 

DYNPROB 
NPROBS 

TOLO 
TOLl 
TOLMIN 
DYNTOL 

DYNTIME 

FTOL 
CTOL 
GTOL 

FNTYPE 
CONTYPE 

·PARTYPE 

NOTE 

INITIALIZATION TYPE 
PROBLEM TYPE. 
METHOD TO BE USED TO SOLVE IT. 
MATH MODEL to USE. ; BCIS TO USE. 

INITIAL EPSILON (FOR INTEGRATION) . 
EPS INCREMENT (IF·D~NEPS) 

MIN EPS TO USE. 
DYNAMIC EPS CHANGE IF .TRUE .. 

> 1 SUBPROBLEMS if true 
No. of SUBPROBLEMS 

INITIAL TOLERANCE 
SAME AS ABOVE (IF DYNTOL) 
MIN TOLERANCE. 
DYNAMIC TOLERANCING IF .TRUE. 

End TIME is NOT fixed. 

Tolerance on functi9n 
Tolerance on gra4ient 
Gradient· Toleran.ce 

State-Costate equation set. 
Constraint Type 
Type.of Parameterization for Direct Method. 
1 Polynomial 
2 Normalized Polynomial 
3 Taylors Series Polynomial 
4 Spline 
5 Normalized Taylors Series ? 
6 Mo·dified Sin .Series ? 

SET any unused value to O. so that inadvertent 
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C 

89 

usage will generate error messages. 

INTEGER PROBTYP, INITYP, METHOD, OUTYP, ~ODEL, FNTYPE,CONTYPE, 
+ PARTYPE, PINDEX ,NMAX , I, CMAX, MAXOPS, NiMAX 

PARAMETER (NMAX=40,CMAX=20,NiMAX=30) 
PARAMETER (MAXOPS=10) 

DOUBLE PRECISION TOLO,TOLI,TOLMIN, EPSO,EPSI,EPSMIN, EPS, 
+ FTOL,CTOL,GTOL 

INTEGER IFCNT,IGCNT,IGDCNT,NDIF,NRIGHT,MAXINT,NINT;IPR,K, 
+ INITSOL,SENSE,FLAG,NPROBS,NOUTPTS, Ni,N,MCON, 
+ IFCNTi,IGCNTi,IHCNTi, SKIP,NSKIP, 
+ ITER,ITNLIM, DIGITS, MAXITR, NIN,NOUT, 
+ POPSIZ, NELITE, MAXGEN, NEVAL,NODUP,SCALE,NRUN 

DOUBLE PRECISION MEPS,mu, delta, TF, RF, RO,Thrust,mo,mdot, 
+ To,Uo,Vo,t2init,DX(3,2),TDELTA, 
+ Too,TFF,Xi(NiMAX),SCOEF(4,NiMAX),TX(NiMAX), 
+ Mui,Di,OMEGA,DAY,Re,Rm, 
+ X (NMAX) ,FPLS,GPLS(NMAX) ,GRADTL,STEPTL,STEPMX,CNORM,CONTL , 
+ LINETA,BL(NMAX+CMAX),BU(NMAX+CMAX+l), 
+ BOUNDS(O:3*NMAX),OPFITS(O:3*MAXOPS),PCROSS,PMUT, 
+ SCMIN,SCMAX,RANDSEED 

LOGICAL DYNEPS,DYNTOL,START,MULINTS,DONE,DYNTIME,DYNPROB, 
+ STORE, PLOT 

CHARACTER*20" FILENAME 
INTEGER*l CHR(20) 
EQUIVALENCE (FILENAME,CHR) 
COMMON /MVCOUNT/ ifcnt,igcnt, igdcnt 
COMMON /COUNT / IFCNTi,IGCNTi,IHCNTl 
"common /EXMARS / mu, delta, TF, RF, RO,Thrust,mo,mdot 
COMMON /PLANET /" Mul,Di,OMEGA,DAY,Re,Rm 
COMMON /escape / To,Uo,Vo 
COMMON /FNSPECS/ FNTYPE,CONTYPE,PARTYPE,PINDEX,METHOD,PLOT 
COMMON /ERSPECS/ EPS,FTOL,CTOL,GTOL 
COMMON /DIRCOMN/ Xl,TX,SCOEF,Too,TFF,Nl 
COMMON /COUT / SKIP,NSKIP,STORE 
COMMON /CINOUT / NIN,NOUT 

NIN = 5 



NOUT = 6 
ifcnt = 0 
igcnt = 0 
igdcnt = 0 

·IFCNTl = 0 
igcntl = 0 
ihcntl = 0 
N = 0 
MC.ON = 0 

MEPS=4.D-16 
delta = sqrt(meps) 
NSKIP=4 

EPSI=O.l 
EPSO=1.D-2 
EPSMIN=l. D-5· 
EPS=EPSO 

START=.TRUE. 

DYNEPS=.FALSE. 
DYNPROB=.FALSE. 
DYNTIME=.FALSE. 
NOUTPTS=301 

90 

CALL GENINP (NIN,NOUT,N,N1,MCON,PROBTYP,FNTYPE,PINDEX, 
+ METHOD, CONTYPE,INITYP,PARTYPE) 

GOTO (1,2,3) INITYP 
WRITE(NOUT,*)· 'INVALID INITIALIZATION CODE' 
STOP 

1 CALL MARINIT (Mu ,ro.' to, rf, tf , t2ini t, Thrust ,mo ,mdot) 
GOTO 10 

2 CALL EARINIT (Mu,ro,to,rf,tf,t2init,Thrust,mo,mdot) 
Uo=O.O 
Vo=SQRT(Mu/Ro) 

GOTO 10 
3 CALL MOONINI (Mu,Mu1,D1,OMEGA,Ro,Rf,Thrust,mo,mdot 
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+ ,DAY,Re,Rm) 
10 CONTINUE 

WRITE(NOUT,*) 'GIVE EPS, NDIGITS' 
READ(NIN,*) EPS, DIGITS 

IF (METHOD. NE .4) .THEN 
Write (NOUT,*) 'Give initial values ' ,N 
READ (NIN, *) (X(I)" ,I=1,N) 

ENDIF 

PLOT=.FALSE. 
if (method.eq.6) THEN 

PLOT=.TRUE. 
Method=,2 

ENDIF 
GOTO (21,22,23,24,22) METHOD 
WRITE(NOUT,*) 'INVALID METHOD CODE' 
STOP 

21 CONTINUE 
CALL COLSINP (NIN,NOUT,DYNPROB,DYNTlME,NPROBS, 

+ NINT,K,MAXINT,EPSO,EPSI,EPSMIN) 
EPS=EPSO 
NDIF=6 
NRIGHT=NDIF/2 
IPR=O 
INITSOL;;'l 
SENSE=1 

C .DEFINE INITIAL AND TWO END TIME APPROXIMATIONS 
IF (DYNPROB) THEN 

TDELTA=(T2INIT-To)*1.00001/DBLE(NPROBS) 
TF=To+TDELTA 
Rf '= Rf*Tf/(T2init-To) 

END IF 
DX(l,l)=TF 

GOTO 30 
22 CONTINUE 

ITER=O 
CALL PENINP(NIN,NOUT,GRADTL,STEPTL,STEPMX,CONTL, 
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+ ITNLIM,MAXITR) 
GOTO 30 

23 CONTINUE 
CALL SQPINP (NIN,NOUT,N,BL,BU,STEPTL,CONTL,LINETA) 
GOTO 30 

24 CONTINUE 
WRITE(*,*) 'Give filename 10char ~ong in quotes' 
READ(* ,*) FILENAME 
CHR(11) =0 
CALL SGAINP(NIN,NOUT,N,BOUNDS,OPFITS,POPSIZ, NELITE, 

+ MAXGEN, NEVAL,PCROSS, PMUT, RANDSEED, 
+ NODUP, SCALE, SCMAX, SCMIN, NRUN) 

30 CONTINUE 

. DONE=.FALSE. 
FLAG=1 

100 CONTINUE 
GOTO (11,12,13, 14,12) METHOD 

11 CALL EXM1(EPS,NDIF,NRIGHT,MAXINT,NINT,K,IPR,INITSOL, 
+ SENSE,START,FLAG) 

GOTO 20 
12 CONTINUE 

110 

+ 

CNORM=10*CONTL 
IF «CNORM.GT.CONTL).AND.(ITER.LT.MAXITR» THEN 

CALL PENSUB(N,MCON,X,FPLS,GPLS,DIGITS, 
GRADTL, STEPTL, STEPMX, CNORM,ITER,ITNLIM,START) 

WRITE(* ,*) 'ITER,CNORM.,FPLS, TFN' ,iter, cnorm, fpls, ifcnt 
write(*,*) 'gradient', (GPLS(i) ,i=l,n) . 
write(*,*) 'X ' ,(X(i),i=1,ri) 
IF «ITER.EQ.MAXITR) .AND.(CNORM.GT.CONTL» THEN 

WRITE(NOUT,*) '**ERROR MAX ITERATIONS EXCEEDED' 
·FLAG=-1 

ELSE 
FLAG=1 

ENDIF 
GOTO 110 

ELSE 
DONE=.TRUE. 
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ENDIF 
CLOSE(1) 

GOTO 20 
13 CONTINUE 

FLAG=O 
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CALL EXM3(N,X,BL,BU,MCON,DIGITS,MAXITR, 
+ LINETA,STEPTL ,CONTL ,FLAG) 

DONE=.TRUE. 
GOTO 20 

14 CONTINUE" 
CALL FSGA(X,BOUNDS,OPFITS,POPSIZ,NELITE,MAXGEN,NEVAL,PCROS 

+ S,PMUT,RANDSEED,NODUP,SCALE,SCMAX,SCMIN,FILENAME,NRUN,MCON) 
DONE=.TRUE. 

20 CONTINUE 

IF (FLAG.NE.1) THEN 
WRITE(NOUT,*) 'DOES NOT CONVERGE, FLAG=' ,FLAG 
DONE=.TRUE. 

ELSE 
IF (DYNPROB) THEN 

IF (METHOD.EQ.1) CALL OUTCSYS(NOUTPTS,NDIF) 
CALL ADAPESC (NINT,DONE,T2INIT,TDELTA) " " 

ELSE 
IF (DYNTIME) 

+ CALL TADAPT (DX,EP.S,NINT,DONE,T2INIT,EPSO,EPSI,EPSMIN) 
IF «DONE).AND.(METHOD.EQ.1)) "CALL OUTCSYS(NOUTPTS,NDIF) 

ENDIF 
ENDIF 
IF (. NOT. (DO"NE)) GOTO 100 

stop 
end 
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C******************************************************************** 

+ 
+ 

SUBROUTINE SGAINP(NIN,NOUT,N,BOUNDS,OPFITS,POPSIZ, NELITE, 

IMPLICIT NONE 

MAXGEN, NEVAL,PCROSS, PMUT, RANDSEED, 
NODUP, SCALE, SCMAX, SCMIN, NRUN) 

INTEGER N,POPSIZ,NELITE,MAXGEN,NEVAL,NODUP, 
+ SCALE,NRUN,MAXOPS,NOPS,I,NIN,NOUT 

PARAMETER (MAXOPS=20) 
DOUBLE PRECISION BDUNDS(O:3*N) ,OPFITS(O:3*MAXOPS) ,PCROSS,PMUT, 

+ RANDSEED,SCMAX,SCMIN 
CHARACTER*20 FILENAME 

WRITE (*, *) , Gi ve Fi.le in quotes for Operators and bounds' 
READ(*,*) FILENAME 
OPEN(UNIT=l,FILE=FILENAME,STATUS='OLD') 
READ(l,*) I, NOPS 
IF (I.NE.N) THEN 

WRITE(*,*) 'Improper file' 
STOP 

ENDIF 
BOUNDS(O)=N 
OPFITS(O)=NOPS 
READ(l,*) (OPFITS(I),I=l,NOPS) 
READ(l,*) (OPFITS(I+NOPS),t=l,NOPS) 
READ(l,*) (OPFITS(I+2*NOPS),I=1,NOPS) 
READ(l,*) 
READ(l,*) (BOUNDS(I),I=l,N) 
READ(l,*) (BOUNDS(I+N),I=l,N) 
READ(l,*) (BOUNDS(I+2*N),I=1,N) 
CLOSE(l) 
RANDSEED=O.1678943251 

SCALE=3 
NODUP=3 
SCMAX=1.0 
SCMIN=O.Ol 
NELITE = 95 
NEVAL=1000 
POPSIZ=100 



MAXGEN=1000 
PCROSS=O.80 
PMUT=O.004 
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write(NOUT,*) 'Give rand seed ., 
read(NIN,*) randseed 

WRITE(NOUT,*) 'Number of times to run (for averaging) ., 
REAP(NIN,*) NRUN 

Write(NOUT,*) 'Give POPSIZE,NELITE,MAXGEN,MAXEVAL' 
Read(NIN,*) POPSIZ,NELITE,MAXGEN,NEVAL 
Write(Nout,*) 'Give Pcross, Pmut' 
Read(*,*) pcross,pmu~ 
Write(Nout,*) 'Give fitness scale'type, Scale Max,' 
Write(Nout,*)' Scale min, Duplication type' 
Read(Nin,*) SCALE,SCMAX,SCMIN,NODUP 

RETURN 
END 

SUBROUTINE SQPINP (NIN,NOUT,N,BL,BU,STEPTL,CONTL,LINETA) 
IMPLICIT NONE 
INTEGER NIN,NOUT,N,I 
DOUBLE PRECISION BL(N),BU(N+1),STEPTL,CONTL,LINETA,BIG 

C.. Relaxed Line search. O:strict, 1:relaxed. 
,WRITE(NOUT,*) 'GIVE'Func Tol, Constr. Tol,', 

+ ., Line search. O:strict -) 1:relaxed.' 
READ(NIN,*) STEPTL,CONTL,LINETA 

WRITE(NOUT,*) 'GIVE LOWER, UPPER BOUNDS ON SEPERATE LINES' 
WRITE(NOUT,*) 'EQUAL BOUNDS WILL BE TREATED AS INFINITE' 
BIG=1.D10, 
READ(NIN,*) (BL(I),I=1,N) 
READ(NIN,*) (BU(I),I=~,N) 

DO 10 I=1,N 
IF (BL(I).EQ.BU(I» THEN 

BL(I)=-BIG 
BU(I)=BIG 

ENDIF 
10 CONTINUE 
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BU(N+1)=BIG 
RETURN 
END 

SUBROUTINE PENINP(NIN,NOUT,GRADTL,STEPTL,STEPMX,CONTL, 
+ ITNLIM,MAXITR) 

IMPLICIT NONE 
INTEGER NIN,NOUT,ITNLIM,MAXITR 
DOUBLE PRECISION GRADTL,STEPTL,STEPMX,CONTL 

WRITE(NOUT,*) 'Give Gradient Tol, Step tol, , 
+ 'Ma~ step allowed, Constraint Tol' 

READ (NIN, *) GRADTL, STEPTL, STEPMX, CONTL 
WRITE(NOUT,*) 'Giv~ Max iterations for each Subproblem .J 

READ (NIN, *) ITNLIM 
WRITE (NOUT,*) 'Give max penalty subprobs to solve: ' 
READ (NIN,*) MAXlTR 

RETURN 
END 

SUBROUTINE COLSINP (NIN,NOUT,DYNPROB,DYNTIME,NPROBS,NINT, 
+ K,MAXINT,EPSO,EPSI,EPSMIN) 

LOGICAL DYNPROB,DYNTIME 
INTEGER NPROBS;NINT,K,MAXINT 
DOUBLE PRECISION EPSO,EPSI,EPSMIN 

WRITE(NOUT,*) 'GIVE (T/F) O~NTIME, DYNPROB,NPROBS' 
READ(NIN,*) DYNTIME~DYNPROB,NPROBS 
WRITE(NOUT,*) 'GIVEN INTERVALS ,MAX INTERVALS' 
READ(NIN,*) NINT,MAXINT 

. WRITE(NOUT,*) 'GIVE NO. OF COLLOCATION PTS/INTERVAL' 
READ(NIN,*) K 

RETURN 
END 

WRITE(NOUT,*)' 'GIVE EPSo, EPSinc, Min EPS' 
READ(NIN,*) EPSO,EPSI,EPSMIN 

SUBROUTINE GENINP (NIN,NOUT,N,N1,MCON,PROBTYP,FNTYPE,PINDEX, 
+ METHOD,CONTYPE,INITYP,PARTYPE) 
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IMPLICIT NONE 
INTEGER NIN,NOUT,PROBTYP,FNTYPE,METHOD,N,N1, 

+ PINDEX,CONTYPE,INITYP,PARTYPE,MCON 
. WRITE(NOUT,*) 'GENERALISED TRAJECTORY PLANNER & OPTIMIZER ' 

WRITE(NOUT,*) 'Give Problem type (1:EMARS,2:ESCAPE,3:EMOON)' 
READ(NIN,*) PROBTYP 
WRITE(NOUT,*) 'GIVE FUNCTION TYPE M:~,2, E:3,4,5 M:6-8 ' 
WRITE(NOUT,*)' COLSYS 1) e-mars, 2) Escape' 
READ(NIN,*) FNTYPE 
WRITE(NOUT,*) 'Give Algorithm to use: " 

+ '1:Colsys, 2:Multiplier PFM, 3:SQP, 4:GA, 5:PFM' 
READ(NIN,*) METHOD 
WRITE(NOUT,*) 'Give Constraint Type (for colsys)' 
WRITE(NOUT,*) '1) E-Mars 2) Version 2., 3) Escape' 
WRITE(NOUT,*) 'For Esc: 1) TSC, 2) NONE' 
READ(NIN,*) CONTYPE 

. WRITE (NOUT , *) , Give initial Data code (1 : Mars ,2 :Earth,3 :EM)' 
READ(NIN,*) INITYP 
WRITE(NOUT,*) 'Give Parameterization (Direct Problems) &', 

+ 'No. of control parameters (in direct)' 
WRITE(NOUT,*) '1 : Polynomial 2 Normalized Polynomial' 
WRITE(NOUT,*) '3 : Taylors Series 4 : Spline, 0 : NONE' 
READ(NIN,*) PARTYPE,N1 

GOTO (41,42,43,44;45,46,47,48,49) FNTYPE 
WRITE(*,*) 'MAIN:INVALID FNTYFE ' ,FNTYPE 
STOP 

41 MCON=3 
goto 60 

42 N=4 
MCON=3 

GOTO 50 
43 MCON=O 

GOTO 60 
44 N=3 

45 

MCON=3 
GOTO.50 

N=3 
MCON=3 

GOTO 50 



46 N=12 
MCON=3 

GOTO 50 
47 N=l1 

MCON=3 
GOTO 50 

48 N=l1 
MCON=4 

GOTO 50 
49 N=l1 

MCON=3 
GOTO 50 

60 CONTINUE 
GOTO (31,32) PROBTYP 
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WRITE(NOUT,*) 'DIRECT METHOD INVALID, PROB ',PROBTYP 
STOP 

31' N=N1+1 
PINDEX=2 

GOTO 40 
32 N=N1 

PINDEX=l 
40 CONTINUE 
50 CONTINUE 

RETURN 
END 

SUBROUTINE GMOON 
WRITE(*,*), DUMMY SUB,GMOON' 
'STOP 
END. 
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Initial Data Module 

The three routines MARINIT, EARINIT and MOONINI, respectively supply 

initial data for the Mars transfer, the Earth escape and the Earth-Moon transfer. 

C--------------------------------------------------------------------
C INITIALIZATION MODULES 
C-----------------------~--~-----------------------------------------

SUBROUTINE MARINIT (Mu,ro,to,rf,tf,t2init,Thrust,mo,mdot) 
IMPLICIT NONE 
DOUBLE PRECISION Mu,ro,to,rf,tf,t2init,Thrust,mo,mdot 

TO=O.O 
tf=3.0 
T2INIT= 4.0 
rf=1.525 
ro=1.0 
mu = 1.0 
Thrust = 0.1405 
Mo = 1.0 
Mdot = 0.07487 

RETURN 
END 

SUBROUTINE EARINIT (Mu,ro,to,rf,tf,t2init,Thrust,mo,mdot) 
IMPLICIT NONE· 
DOUBLE PRECISION MU,ro,to,rf,tf,t2init,Thrust,mo,mdot, 

+ Re,Day,Mass,Len 
Re = 6378.14453125 
Len = Re 
Day = DBLE(0.5*24*3600) 
Mass = 1.0D05 
Ro = (315.0+Re)/Len 
mu = 3.986011875D05 
DAY = SQRT(Len**3/Mu) 

Mu = Day*Day/Len**3 * Mu 
TO=O.O 
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T2INIT=2.38*24.*3600./Day 
TF=2.38*24.*3600./Day 
rf=15.0*Re/Len 
Mo = 1.D5/Mass 

. Thrust = 2942. O/Mass* Day*Day/Leon/l.D03 
Mdot = 0.0299*Day/Mass 

RETURN 
END 

SUBROUTINE MOONINI (Mu,Mul,Dl,W,Ro,Rf, 
+ Thrust,rno,rndot,DAY,Re,Rrn) 

+ 

IMPLICIT NONE 
DOUBLE PRECISION Mu,Mul,Dl,W,Ro,Rf,Thrust,rno,rndot, 

Rrn,Re,Day,Mass,Len~TR 

Re = 6378.14453125 
Rrn = 1738.0 
01 = 384400.0 
TR = 4670.71094 
Len = Re 
Mass = 1.0005 
rnu = 3.986011875005 
Mul = Mu * (TR/(Dl-TR)) 
W = SQRT«Mu+Mul)/Dl**3) 
DAY = SQRT(Len**3/Mu) 

Ro = (315.0+Re)/Len 
Rf = (100.0+Rrn)/Len 
Re = Re/Len 
Rrn = Rrn/Len 
Mu = Day*Day/Len**3 * Mu 
Mul= Day*Day/Len**3 * Mul 
W = W*DAY 
01 = Dl/Len 
Mo = 1.D5/Mass 
Thrust = 2942.0/Mass* Day*Day/Len/l.D03 
Mdot = 0.0299*Day/Mass 

. RETURN 
END 
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C--------------------------------------------------------------------

Simulation Module 

This module contains the routine FPLANET which controls the other simula-

tion routines for different problems. This enables problem specification in inpuL 

The routines FMARS, FMARS2, FESCAPE, FESCAPE2, FESCAPE3, E_MOON and 

E_MOON(2,3,4) setup the variables to call SOLPATH which calls the multivalue in-

tegrator, and evaluate the object~ve functions and constraints. These routines pass 

on the state or costate equations (MARS through ALLBODY) to be used as an ar

gument to SOLPATH. Routines for parameterizing the control time history for the 

direct methods are THANGLE and INITAN'G. The other routines (OUT*) are the 

output routines called by the integrator at each successful step. 

C******************************************************************** 
C PROBLEM SIMULATIONS 

C******************************************************************** 

FUNCTION FPLANET (N,X,I) . 
C NOTE: FPLANET (N,X,O) MUST BE 'CALLED BEFORE ANY OTHER CALLS. 

IMPLICIT NONE 
INTEGER FNTYPE,CONTYPE,PARTYPE,PROBTYP,N,I,j, 

+ IFCNT,IGCNT,IHCNT,TFCNT,THTYPE 
DOUBLE PRECISION X(N),C(20),FPLANET,TMP(30),TMP1(30), 

+ FMARS,FMARS2,FESCAPE,FESCAPE2,E_MOON,E_MOON2,E_MOON3, 

+ FEscape3 ,THETA ,E_MOON4 

CHARACTER*20 FILE 
LOGICAL IN IT 
COMMON /FNSPECS/ FNTYPE,CONTYPE,PARTYPE,PROBTYP 

COMMON /CLOCAL / C 
COMMON /COUNT / IFCNT,IGCNT,IHCNT 



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
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COMMON /MVCOUNT/ TFCNT 
COMMON /POUT/ THETA,INIT,THTYPE,File 
COMMON /EXTEMP / TMP,TMP1 

FILE='plot.dat' 
IF (1. EQ. 0) THEN 

IFCNT=IFCNT+1 
GOTO (1,2,3,4,5,6,7,8,9) FNTYPE 
WRITE(* ,*) 'INVALID FUNCTION' ,FNTYPE 
STOP 

THTYPE=1 
FPLANET = FMARS (N,X,C) 

GOTO 10 
THTYPE=3 
FPLANET = FMARS2(N,X,C) 

. GOTO 10 
THTYPE=1 
FPLANET = FESCAPE (N,X,C) 

GOTO 10 
THTYPE=3 
FPLANET = FESCAPE2 (N,X,C) 

GOTO 10 
THTYPE=2 
FPLANET = FESCAPE3 (N,X,C) 

GOTO 10 
THTYPE=4 
FPLANET = E_MOON (N,X,C) 

GOTO 10 
THTYPE=4 
FPLANET = E_MOON2 (N,X,C) 

GOTO 10 
THTYPE=4 
FPLANET = E_MOON3 (N ,X,C) 

GOTO 10 
THTYPE=4 
FPLANET = E_MOON4 (N,X,C) 

CONTINUE 
do 11 j=1,n 

tmp (j) =x(j) 



C 
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write(*,*) FPLANET,' ',C(l) ,c(2) ,c(3) 
ELSE 

do 12 j=l,n 
IF (tmp(j).NE.x(j)) then 

write(*,*) 'function mismatch' ,x(j),tmp(j) 
stop 

end if 
t2 continue 

FPLANET = C(I) 
ENDIF 

RETURN 
END 

FUNCTION FMARS (N,X,C) 
C S~t N=Nl+l, MCON=3 

IMPLICIT NONE 
INTEGER N,NDIF,MAXK,i,FNTYPE,CONTYPE,PARTYPE,PINDEX,METHOD 
PARAMETER (NDIF=3,MAXK=20) 
DOUBLE PRECISION X(N), MU, DELTA, tf,rf, ro, 

+ FMARS, Y(NDIF,MAXK), Thrust,mo,mdot,C(3) 
EXTERNAL MARS,OUT 
COMMON /FNSPECS/ FNTYPE,CONTYPE,PARTYPE,PINDEX,METHOD 
COMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,mo,mdot 

C TMP CHECKS FOR ILLEGAL CALLS TO FMARS. MAY BE REMOVED. 

Tf = X(t) 
Y(l,t)=RO 
Y(2,l)=0.0 
Y(3,l)=SQRT(MU/RO) 
CALL SOLPATH (Y,NDIF,MAXK,N,X,MARS,OUT, .FALSE.) 

C ... for Penalty Problem. 
IF (METHOD.EQ.3) THEN 

Fmars = X(t)*X(l)*O.l 
ELSE 

Fmars = X(t)*X(l)*O.OOl 
ENDIF 

C(t) = (Y(l,l)-RF) 



C(2) = Y(2,1) 
C(3) = (Y(3,1)-SQRT(MU/RF» 
RETURN 
END 

FUNCTION FMARS2 (N,X,C) 
C Set N=Nl+l 

IMPLICIT NONE 
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INTEGER N,NDIF,MAXK,j,TFCNT,FNTYPE,CONTYPE, 
+ PARTYPE ,PINDEX ,METHOD 

PARAMETER (NDIF=6,MAXK=10) 
DOUBLE PRECISION X(N), MU, DELTA, tf,rf, ro, 

+ FMARS2, Y(NDIF,MAXK), Xl(10), 
+ Thrust,mo,mdot, C(3) 

EXTERNAL ALSTAT1,OUT 
COMMON/MVCOUNT/TFCNT 
COMMON /FNSPECS/ FNTYPE,CONTYPE,PARTYPE,PINDEX,METHOD 
COMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,mo,mdot 

Y(l,l)=Ro 
Y(2,1)=0.0 
Y(3,1)=SQRT(MU/RO) 
Tf =X(l) 
Y(4,1)=X(2) 
Y(5,1)=X(3) 
Y(6,1)=X(4) 
CALL SOLPATH (Y ,NDIF ,MAXK,N ,Xl ,ALSTATl, OUT, . FALSE.) 
IF (METHOD.EQ.3) THEN 

Fmars2 = Tf*Tf*O.l 
ELSE 

Fmars2 = T£*Tf**O.OOl 
ENDIF 

c(1) = Y(2,1) 
C(2) = Y(3,1) - SQRT (MU/RF) 
C(3) = (Y(l,l)- RF)*4. 
RETURN 
END 



FUNCTION FESCAPE (N,X) 
C Set N=N1+1, MCON=O 

IMPLICIT NONE 
INTEGER N,NDIF,MAXK,TFCNT 
PARAMETER (NDIF=3,MAXK=10) 
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DOUBLE PRECISION X(N), MU, DELTA, tf,rf, ro, 
+ FESCAPE, Y(NDIF,MAXK), 
+ Thrust,rno,rndot 

EXTERNAL MARS,oUT 
CoMMON/MVCOUNT/TFCNT 
CoMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,rno,rndot 

Y(1,1)=Ro 
Y(2,1)=O.O 
Y(3,1)=SQRT(MU/RO) 
CALL SoLPATH (Y,NDIF,MAXK,N,X,MARS,OUT, .FALSE.) 
FESCAPE = -O.5*(Y(2,1)*Y(2,1) + Y(3,1)*Y(3,1)) + MU/Y(1,1) 
RETURN 
END 

FUNCTION FESCAPE2 (N,X,C) 
C Set 'N=N1+1, MCoN=O 

IMPLICIT NONE 
INTEGER N,NDIF,MAXK,j,TFCNT,FNTYPE,CoNTYPE,PARTYPE,PINDEX 
PARAMETER (NDIF=6,MAXK=10) 
DOUBLE PRECISION X(N), MU, DELTA,.tf,rf, ro, 

+ FESCAPE2,Y(NDIF ,MAXK), Xi(10) , 
+ Thrust,rno,rndot, C(3) 

EXTERNAL ALSTAT1,oUTESC~,out 
COMMON/MVCoUNT/TFCNT 
COMMON /FNSPECS/ FNTYPE,CoNTYPE.PARTYPE,PINDEX 
COMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,rno.rndot 

V(1,1)=Ro 
Y(2,1)=O.O 



Y(3,1)=SQRT(MU/RO) 
Y(4,1)=X(1) 
Y(5,1)=X(2) 
Y(6,1)=X(3) 
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CALL SOLPATH (Y ,NDIF ,MAXK, N ,Xl ,ALSTAT1, OUT ,. FALSE. ) 
FESCAPE2 =-0.5*(Y(2,1)*Y(2,1)+Y(3,1)*Y(3,1»+MU/Y(1,1) 
IF (CONTYPE.EQ.l) THEN 

C(1)=Y(4,1)-MU/(Y(1,1)*Y(1,1» 
C(2)=Y(5,1)-Y(2,1) 
C(3)=Y(6,1)-Y(3,1) 
Fescape2=0.0 

ELSE 
c(l)=O.O 
c(2)=0.O 
c(3)=0.0 

ENDIF 
RETURN 
END 

FUNCTION FESCAPE3 (N,X,C) 
C Set N=Nl+l, MCON=O 

IMPLICIT NONE 
INTEGER N,NDIF,MAXK,j,TFCNT,FNTYPE,CONTYPE,PARTYPE,PINDEX 
PARAMETER (NDIF=6,MAXK=10) 
DOUBLE PRECISION X(N), MU, DELTA, tf,rf, ro, 

+ FESCAPE3, Y(NDIF,MAXK), Xl(10), 
+ Thrust,mo,mdot, C(3) 

EXTERNAL ALSTAT2,OUT,OUTESC2 
COMMON/MVCOUNT/TFCNT 
COMMON /FNSPECS/ FNTYPE,CONTYFE,PARTYPE,PINDEX 
COMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,mo,mdot 

Y(l,l)=Ro 
Y ( 2 , 1 ) =0 . 0 . 
Y(3,1)=SQRT(MU/RO) 
Y(4,1)=X(1) 
Y(5,1)=X(2) 
Y(6,1)=X(3) 
CALL SOLPATH (Y,NDIF,MAXK,N,Xl,ALSTAT2,OUT, .FALSE.) 
FESCAPE3 =-0.5*(Y(2,1)*Y(2,1)+Y(3,1)*Y(3,1»+MU/Y(1,1) 
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Write(*,*) 'e=',Fescape3 
IF (CONTYPE.EQ.l) THEN 

C(1)=Y(4,1)-MU/(Y(1,1)*Y(1,1)) 
~(2)=Y(5,1)-Y(2,1) 

C(3)=Y(6,1)-Y(3,1) 
Fescape3=O.O 

ELSE 
c(1)=O.O 
c(2)=0;0 
c(3)=O.0 

ENDIF 
RETURN 
END 

FUNCTION E_MOON2 (N,X,C) 
C Set N=ll, MCON=3. 

IMPLICIT NONE 
INTEGER N,NDIF,MAXK,j,NDIF2 
PARAMETER (NDIF=8,NDIF2=4,MAXK=10) 
DOUBLE PRECISION X(N), MU, DELTA, tf,rf, ro, 

+ E_MOON2, Y(NDIF,MAXK), X1(20), R1,TH1,U1,V1, 
+ Thrust,mo,mdot, C(3), Mu1,D1,W, Y2(NDIF2,MAXK), 
+ Smo,SMU,Smu1,DAY,DAY1,ENERGY,E,EO,Rs, Hamilt, Re,Rm 

EXTERNAL ALLBODY,OUT 
COMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,mo,mdot 
COMMON/PLANET/Mul,D1,W,DAY,Re,Rm 
ENERGY(W) = 0.5*(Y(2,1)**2+(Y(3,1)+W*Y(1,1))**2)-MU/Y(1,1) 

Smo =Mo 
Smu =Mu 
Smu1 =Mu1 
Day1 =DAY/(24.*3600.) 
Tf =X(2)/DAY1 
Y(l,l)=Ro 
Y(2,1)=0.0 
Y(3,1)=SQRT(MU/RO)-W*Ro 
Y(4,1)=X(1) 



Y(5,1)=X(3) 
Y(6,1)=X(4)*(X(3)+X(5» 
Y(7,1)=X(3)+X(5) 
Y(8,1)=0.0 
EO=ENERGYOn 
Rs=Y(l,l) 
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CALL SOLPATH (Y,NDIF,MAXK,N,Xl,ALLBODY,OUT, .FALSE.) 

E=ENERGY(W) 
IF «(E.LT.EO) .OR.(Y(l,l).LT.Rs».OR. 

+ (Y(1,1).LT.Ro*5.0» THEN 
Rl=Y(l,l) 
Ul=Y(2,1) 
Vl=Y(3,1) 
TH1=Y(4,1) 
CALL TRANSFORM(Rl,THf,Ul,Vl,Dl,W, 

+ Y(l,l) ,Y(4,1) ,Y(2,1) ,Y(3,1» 
GOTO 100 

ENDIF 
RS=Y(l,l) 

Mo = Mo-X(2)*Mdot 
Tf = X(6)/DAYl 
Y2(l,l)=Y(1,1) 
Y2(2,l)=Y(2,1) 
Y2(3,l)=Y(3,1) 
Y2(4,l)=Y(4,1) 
CALL SOLPATH (Y2 ,NDIF2 ,MAXK,N ,Xl ,ALLBODY ,OUT,. FALSE.) 

CALL TRANSFORM(Y2(1,1) ,Y2(4,1) ,Y2(2,1) ,Y2(3,l) ,Dl,W, 
+ Y(l,l) ,Y(4,1) ,Y(2,1) ,Y(3,1» 
'IF «Y2(1, 1) . Lt .. RS) . OR. (Y(l, 1) .GT. Dl*O. 75) 

+ .OR.(Y(l,l).LT.Rrn» THEN 
GOTO 100 

ENDIF 
Mu =SMul 
Mul =Smu 
Tf =X(11)/DAYf 
Y(5,l)=X(7) 
Y(6,1)=(X(9)+X(7»/X(8) 



Y(7,1)=X(9)+X(7) 
Y(8,1)=0.33 
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CALL SOLPATH (Y,NDIF,MAXK,N,Xl,ALLBODY,OUT, .FALSE.) 
100 continue 

Mo=Smo 
Mu=Smu 
Mul=Smul 

E_MOON2 = X(2)+X(11) 
C(1)=Y(1,1)-Rf 
C(2)=Y(2,1) 
C(3)=ABS(Y(3,1)+W*Y(1,1»-SQRT(MU1/Rf) 
C(1)=C(1)*20. 
C(2)=C(2)*5. 
C(3)=C(3)*5. 
RETURN 
END 

FUNCTION E_MOON (N,X,C) 
C Set N=12, MCON=3 

IMPLICIT NONE 
INTEGER N,NDIF,MAXK,j,NDIF2 
PARAMETER (NDIF=8,NDIF2=4,MAXK=10) 
DOUBLE PRECISION X(N), MU, DELTA, tf,rf, ro, 

+ E_MOON, Y(NDIF,MAXK), X1(20),.Rl,TH1,Ul,V1, 
+ Thrust,mo,mdot, C(3), Mu1,D1,W, Y2(NDIF2,MAXK), 
+ Smo,SMU,Smu1,DAY,DAY1,ENERGY,E,EO,Rs, Hamilt 

EXTERNAL ALLBODY,OUT 
COMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,mo,mdot 
COMMON/PLANET/Mu1,D1,W,DAY 
ENERGY(W) = 0.5*(Y(2,1)**2+(Y(3,1)+W*Y(1,1»**2)-MU/Y(1,1) 

Smo =Mo 
Smu =Mu 
Smul =Mu1 
Dayl =DAY/(24.*3600.) 
Tf =X(2)/DAY1 
Y(1,1)=Ro 
Y(2,1)=0.0 
Y(3,1)=SQRT(MU/RO)-W*Ro 



Y(4,1)=X(1) 

Y(5,1)=X(3) 
Y(6,1)=X(4)*(X(3)+X(5)) 
Y(7,1)=X(3)+X(5) 
Y(S,1)=X(6) 
EO=ENERGY(W) 
Rs=Y(1,1) 
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CALL SOLPATH (Y,NDIF,MAXK,N,Xl,ALLBODY,OUT, .FALSE.) 

E=ENERGY(W) 
902 FORMAT (,y , ,S(G9.3,lX» 

IF «E.LT.EO) .OR. (Y(l,l) .LT.Rs» THEN 
.. Rl=Y(1,1) 

Ul=Y(2,1) 
Vl=Y(3,1) 
TH1=Y(4,1) 
CALL TRANSFORM(Rl,TH1,U1,Vl,Dl,W, 

+ Y(l,l) ,Y(4,1) ,Y(2,1) ,Y(3,1» 
GOTO 100 

ENDIF 
RS=Y(1,1) 

Mo = Mo-X(2)*Mdot 
Tf ,= X(7)/DAYl 
Y2(1,1)=Y(1,1) 
Y2(2,1)=Y(2,1) 
Y2(3,1)=Y(3,1) 
Y2(4,1)=Y(4,1) 
CALL SOLPATH (Y2,NDIF2,MAXK,N,X1,ALLBODY,OUT,.FALSE.) 

CALL TRANSFORM(Y2(1,1) ,Y2(4,1),Y2(2,1),Y2(3,1),Dl,W, 
+ Y(1,1),Y(4,1),Y(2,1),Y(3,1» 

IF «Y2(1,1) .LT.RS).O~.(Y(i,1).GT.D1» THEN 
GOTO 100 

ENDIF 
Mu =SMul 

. Mul =Smu 
Tf =X(12)/DAYl 
Y(5,1)=X(S) 



Y(6,1)=(X(10)+X(8))/X(9) 
Y(7,1)=X(10)+X(8) 
Y(8,1)=X(11) 

111. 

CALL SOLPATH (Y,NDIF,MAXK,N,Xl,ALLBODY,OUT,.FALSE.) 
100 continue 

Mo=Smo 
Mu=Smu 
Mul=Smul 

C ( 1 ) = Y ( 1 , 1) - Rf 
C(2)=Y(2,1) 
C(3)=ABS(Y(3,1)+W*Y(1,1))-SQRT(MU1/Rf) 
E_MOON:= X(2)+X(12) 
C(1)=G(i)*10. 
C(2)=C(2)*5. 
C(3)=C(3)*5. 

RETURN 
END 

FUNCTION E_MOON3 (N,X,C) 
C Set N=ll, MCON=3 

IMPLICIT NONE 
INTEGER N,NDIF,MAXK,j,NDIF2 
PARAMETER (NDIF=8,NDIF2=4,MAXK=10) 
DOUBLE PRECISION X(N), MU, DELTA, tf,rf, ro, 

+ E_MOON3, Y(NDIF,MAXK), Xl(~O), Rl,TH1,Ul,Vl, 
+ Thrust,mo,mdot, C(4), Mul,Dl,W, Y2(NDIF2,MAXK), 
+ Smo,SMU,Smul,Smdot,DAY~DAY1,ENERGY,E,EO,Rs, Re,Rm 
EXT~NAL ALLBODY,OUT 
COMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,mo,mdot 
COMMON/PLANET/Mul,Dl,W,DAY,Re,Rm 
ENERGY(W) = 0.5*(Y(2,1)**2+(Y(3,1)+W*Y(1,1))**2)-MU/Y(1,1) 

Smo =Mo 
Smu =Mu 
Smul =Mul 
Smdot=Mdot 
Dayl =DAY/(24.*3600.) 



Tf =X(2)/DAY1 
Y(1,1)=Ro 
Y(2,1)=0.0 

. Y(3,1)=SQRT(MU/RD)-W*Ro 
Y(4,1)=X(1) 

Y(5,1)=X(3) 
Y(6,1)=X(4)*(X(3)+X(5)) 
Y(7,1)=X(3)+X(5) 
Y(8,1)=0.0 
EO=ENERGY(W) 
Rs=Y(1,1) 
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CALL SDLPATH (Y,NDIF,MAXK,N,X1,ALLBDDY,DUT, .FALSE.) 

E=ENERGY(W) 
Y2(1,1)=Y(1,1) 

. Y2(2,1)=Y(2,1) 
Y2(3,1)=Y(3,1) 
Y2(4,1)=Y(4,1) 
Mo= Mo-X(2)/Day1*Mdot 
Tf = X(6)/DAY1 
CALL SDLPATH (Y2,NDIF2,MAXK,N,X1,ALLBDDY,DUT,.FALSE.) 
CALL TRANSFDRM(Y2(1,1),Y2(4,1),Y2(2,1),Y2(3,1) ,D1,W, 

+ R1,Th1,U1,V1) 

Mu =SMu1 
Mu1 =Smu 
Mdot =-Smdot 
Tf =X(11)/DAY1 
Mo =Mo-X(11)/Day1*Smdot 
Y(1,1)=Rf 
Y(2,1)=0.0 
Y(3,1)=SQRT(MU/Rf)-W*Rf 
Y(4,1)=X(10) 
Y(5,1)=X(7) 
Y(6,1)=(X(9)+X(7))*X(8) 
Y(7,1)=X(9)+X(7) 
Y(8,1)=0.0 
CALL SDLPATH (Y,NDIF,MAXK,N,X1,ALLBDDY,DUT, .FALSE.) 
CALL NDRMANG(Y(4,1)) 



100 continue 
Mo=Smo 
Mu=Smu 
Mu1=Smu1 
Mdot=Smdot 
C(1)=Y(1,1)-R1 
C(2)=Y(2,1)-U1 
C(3)=ABS(Y(3,1)-V1) 
C(4)=ABS(Y(4,1)-Th1) 
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E_MOON3 = (X(2)+X(11))*0.01 
RETURN 

. END 

FUNCTION E_MOON4 (N,X,C) 
C S~t N=11, MCON=3 

IMPLICIT NONE 
INTEGER N,NDIF,MAXK,j,NDIF2 
PARAMETER (NDIF=8,NDIF2=4,MAXK=10) 
DOUBLE PRECISION X(N), MU, DELTA, tf,rf, ro, 

+ E_MOON4, YCNDIF,MAXK), X1(20), R1,TH1,U1,V1, 
+ Thrust,mo,mdot, C(4), Mu1,D1,W, Y2(NDIF2,MAXK), 
+ Smo,SMU,Smu1,Smdot,DAY,DAY1,ENERGY,.E,EO,Rs, Re,Rm 

EXTERNAL ALLBODY,OUT 
COMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,mo,mdot 
COMMON/PLANET/Mu1,D1,W,DAY,Re,Rm 
DOUBLE PRECISION THETA 
INTEGER THTYFE 
LOGICAL INIT 
CHARACTER*20 FILE 

·COMMON /POUT/ THETA,INIT,THTYPE,File 
ENERGY(W) = 0.5*(Y(2,1)**2+(Y(3,1)+W*Y(1,1))**2)-MU/Y(1,1) 

Smo =Mo 
Smu ·=Mu 
Smu1 =Mu1 
Smdot=Mdot 
Day1 =DAY/(24.*3600.) 
Tf =X(2)/DAY1 



Y(l,l)=Ro 
Y(2,1)=0.0 
Y(3,1)=SQRT(MU/RO)-W*Ro 
Y(4,1)=X(1) 

Y(5,1)=X(3) 
Y(6,1)=X(4)*(X(3)+X(5» 
Y(7,1)=X(3)+X(5) 
Y(8,1)=0.0 
EO=ENERGY(W) 
Rs=Y(l,l) 
FILE='plot1.dat' 
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CALL SOLPATH (Y,NDIF.,MAXK,N,X1,ALLBODY,O"UT, .FALSE.) 

E=ENERGY(W) 

Y2(1,1)=Y(1,1) 
Y2(2,1)=Y(2,1) 
Y2(3,1)=Y(3,1) 
Y2(4,1)=Y(4,1) 
Mo = Mo-X(2)/Day1*Mdot 
Tf = X(6)/DAY1 

C------------------------~------
THTYPE=l 
THETA=O.O 
FILE='plot2.dat' 
CALL SOLPATH (Y2,NDIF2,MAXK,N,X1,ALLBODY,OUT,.FALSE.) 
CALL TRANSFORM(Y2(1,1),Y2(4,1),Y2(2,1),Y2(3,1) ,D1,W, 

+ R1,Th1,U1,V1) 

Mu =SMu1 
Mu1 =Srnu 
Mdot =-Smdot 
Tf =X(11)/DAY1 
Mo =Mo-X(11)/Day1*Srndot 
Y(l,l)=Rf 
Y(2,1)=0.0 
Y(3,1)=SQRT(MU/Rf)-W*Rf 
Y(4,1)=X(10) 
Y(5,1)=X(7) 



Y(6,1)=(X(9)+X(7»*X(8) 
Y(7,1)=X(9)+X(7) 
Y(8,1)=0,0 

C-~---~--------------------------
·THTYPE=4 
FILE='plot3,dat' 
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CALL SOLPATH (Y,NDIF,MAXK,N,X1,ALLBODY,OUT, ,FALSE,) 
CALL NORMANG(Y(4,1» 

100 continue 
Mo=Smo 
Mu=Smu 
Mu1=Smu1 
Mdot=Smdot 
C (1) =SQRT( (Y( 1,1) *COS (Y (4,1» -R1*COS (TH1) **2 

+ +(Y(1,1)*SIN(Y(4,1»-R1*SIN(TH1»**2) 
C(2)=Y(2,1)-U1 
C(3)=Y(3,1)-V1 

E_MOON4 = (X(2)+X(11»*0,01 
RETURN 
END 

SUBROUTINE TRANSFORM (R,THETA,U,V,D,W,R2,THETA2,U2,V2) 
IMPLICIT NONE 
DOUBLE PRECISION R,THETA,U,V,D,W,R2,THETA2,U2,V2, 

+ RSIN2,RCOS2,SINT,COST 

SINT=SIN(THETA) 
COST=COS(THETA) 
RSIN2=R*SINT 
RCOS2=D-R*COST· 
R2 = DSQRT(RSIN2*RSIN2 + RCOS2*RCOS2) 
THETA2= -ATAN2(RSIN2,RCOS2) 
CALL NORMANG(THETA2) 
RCOS2=V*SINT-U*COST 
RSIN2=-(U*SINT+V*COST)+D*W 

. SINT=SIN(THETA2) 
COST=COS(THETA2) 



U2=COST*RCOS2+SINT*RSIN2 
V2=-SINT*RCOS2+COST*RSIN2 

RETURN 
END 

SUBROUTINE NORMANG (THETA) 
IMPLICIT NONE 
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DOUBLE PRECISION THETA, TWOPI 
TWOPI=8.*ATAN(1.0DO) 
DO WHILE (THETA.GT.TWOPI) . 

THETA=THETA-TWOPI 
ENDDO 
DO WHILE (THETA.LT.O.O) 

THETA=THETA+TWOPI 
ENDDO 

RETURN 
END 

SUBROUTINE SOLPATH (Y,NDIF,MAXK,N,X,MARS,OUT,STORE1) 
IMPLICIT NONE 
INTEGER N,J,NDIF,MAXK,FAIL,P,K,FNTYPE,CONTYPE,PARTYPE,THTYPE, 

+ FACTORIAL,TFCNT, SKIP,NSKIP, INDEX,PINDEX,METHOD 
DOUBLE PRECISION T, X(N), MU, DELTA, MEPS, 

+ tf,rf, ro,Thrust,mo,mdot, EPS,FTOL,CTOL,GTOL, 
+ Y(NDIF,MAXK), DY(20), H,HMIN,HMAX,THETA 

LOGICAL EXIT, STORE, STORE1, PLOT,INIT 
PARAMETER (MEPS=1.2E-16) 
COMMON /MVCOUNT/ TFCNT 
COMMON /EXMARS / MU,DELTA, TF, RF, RO,Thrust,mo,mdot 
COMMON /COUT / SKIP,NSKIP,STORE 
character*20 file 
COMMON /POUT / THETA,INIT,THTYPE,file 

COMMON /ERSPECS/ EPS,FTOL,CTOL,GTOL 
COMMON /FNSPECS/ FNTYPE,CONTYPE,PARTYPE,PINDEX,METHOD,PLOT 
EXTERNAL OUT, FACTORIAL, MARS, OUTP 

STORE= STORE1 
P = 1 
K = P 



T = 0.0 
H = EPS 
HMIN = MEPS*100. 
HMAX = (Tf-T)/10. 
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IF (PARTYPE.NE.O) CALL INITANG (X(PINDEX),T,TF) 

CALL MARS (P,NDIF,T,Y,DY) 
DO 20 J=1,NDIF 

Y(J,P+1)=H**P/FLOAT(FACTORIAL(P))*DY(J) 
20 CONTINUE 

IF (STORE) CALL STOREINIT (NDIF,NDIF,O) 
EXIT=.FALSE. 

SKIP=NSKIP 

IF (PLOT) THEN 
INIT=.TRUE. 
CALL OUTP (NDIF,K,NDIF,Y,T,EXIT) 
CALL MVAL (NDIF,NDIF,Y,T,Tf,H,HMAX,HMIN,EPS,K,P, 

. + MARS,OUTP,FAIL) 
ELSE 

CALL OUT (NDIF,K,NDIF,Y,T,EXIT) 
CALL MVAL (NDIF,NDIF,Y,T,Tf,H,HMAX,HMIN,EPS,K,P, 

+ MARS,OUT;FAIL) 
ENDIF 

IF (STORE) THEN 
CALL STOREINIT (NDIF,NDIF,1) 
CALL GETXVAL (TF,Y,1) 

ENDIF 
IF (PLOT) THEN 

WRITE(*,*) 'PLOT DONE' ,TFCNT 
write(*,*) (y(j,1),j=1,ndif) 
CLOSE(10) 
IF «File.eq.'plot.dat') .or.(file.eq.'plot3.dat')) STOP 

·ENDIF 

DO 30 J=l,NDIF 
Y(J,2)=Y(J,2)/H**P*FLOAT(FACTORIAL(P)) 
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30 CONTINUE 
IF (FAIL.NE.O) THEN 

WRITE(*,*) 'INTEGRATION MULTIVAL FAILS:' ,FAIL, tfcnt 
C STOP 

ENDIF 
RETURN 
END 

SUBROUTINE MARS (P,MAX,T,Y,DY) 
implicit NONE 
COMMON /MVCOUNT/IFCNT 
INTEGER P,MAX,IFCNT 
DOUBLE PRECISION T, Y(MAX,P),DY(MAX), ThAngle, 

+ THR, MU, DELTA, THETA, TF, RF, RO, SIN, COS, 
. + Thrust ,mo ,mdot 

CPMMON /POUT/ THETA 
common /EXMARS/ Mu, delta, tf, rf, ro,Thrust,mo,mdot 

IFCNT=IFCNT+1 
C ... CALCULATE SPECIFIC THRUST = "THRUST" 

+ 

THR=Thrust/(Mo· - Mdot*t) 
Theta = THANGLE (T) 
DY(1) = Y(2,1) 

. DY(2) = (Y(3,1)*Y(3,1) MU/Y(1,1»/Y(1,1) 

DY(3) 
return 
End 

= 
+ THR*SIN(THETA) 
-Y(2,1)*Y(3,1)/Y{1,1) 

SUBROUTINE COSTATE (P,MAX,T,Y,DY) 

+ THR*COS(THETA) 

. implicit NONE 
COMMON /MVCOUNT/IFCNT 
INTEGER P,MAX,IFCNT 
DOUBLE PRECISION T, Y(MAX,P),DY(MAX),X(20),Th, 

+ Mu, delta, tf, rf, ro,Thrust,mo,mdot 
common /EXMARS/ Mu, delta,· tf, rf, ro,Thrust,mo,mdot 

IFCNT=IFCNT+1 
CALL GETXVAL (T,X,1) 
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TH=THRUST/(Mo-Mdot*t) 
OY(1) = -(Y(2,1)*(-X(3)*X(3)+2*MU/X(1» + 

+ Y(3,1)*X(2)*X(3»/(X(1)*X(1») 
OY(2) = -Y(1,1) + Y(3,1)*X(3)/X(1) 
OY(3) = -2*Y(2,1)*X(3)/X(1) + Y(3,1)*X(2)/X(1) 

RETURN 
ENO 

SUBROUTINE ALSTAT1 (P,MAX,T,Y,OY) 
implicit. NONE 
COMMON /MVCOUNT/IFCNT 
INTEGER P,MAX,IFCNT 
OOUBLE PRECISION T, Y(MAX,P),OY(MAX), TH,SQ,a,b, 

+ Mu , delta, tf, ·rf, ro, Thrust ,mo ,mdot 
common /EXMARS/ Mu, delta, tf, rf, ro,Thrust,mo,mdot 

IFCNT=IFCNT+1 
TH=THRUST/(Mo - Mdot*t) 
a=Y(5,1) 
B=Y(6,1) 
SQ = SQRT(A*A + B*B) 

OY(1) = Y(2,1) 
OY(2) = (Y(3,1)*Y(3,1) - MU/Y(1,1)}/Y(1,1) + TH*A/SQ 
OY(3) = -Y(2,1)*Y(3,1)/Y(1,1) + TH*B/SQ 
OY(4) = -(Y(5,1)*(-Y(3,1)*Y(3,1)+2.*MU/Y(1,1» 

+ + Y(6,1)*Y(2,1)*Y(3,1»/(Y(1,1)*Y(1,1» 
OY(5) = -Y(4,1) + Y(6,1)*Y(3,1)/Y(1,1) 
OY(6) = -2.*Y(5,1)*Y(3,1)/Y(1,1) +Y(6,1)*Y(2,1)/Y(1,1) 

. RETURN 
ENO 

SUBROUTINE ALSTAT2 (P,MAX,T.Y,OY) 
implicit NONE 
COMMON /MVCOUNT/IFCNT 
INTEGER P,MAX,IFCNT 

C Note : Alstat2 differs from alstat1 only in definition 
C of A,B & OY(5),OY(6): 1 extra term at end. 
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DOUBLE PRECISION T, Y(MAX,P),DY(MAX), TH,SQ,a,b, 
+ Mu, delta, ·tt, rt, ro,Thrust,mo,mdot 

+ 

common /EXMARS/ Mu, delta, tt, rt, ro,Thrust,mo,mdot 

IFCNT=IFCNT+1 
TH=THRUST/(Mo - Mdot*t) 
a=Y(2,1)+Y(5,1) 
B=Y(3,1)+Y(6,1) 
SQ = SQRT(A*A + B*B) . . . 

DY(1) 
DY(2) 
DY(3) 
DY(4) 

DY(5) 
DY(6) 

RETURN 
END 

= Y(2,1) 
= (Y(3,1)*Y(3,1) - MU/Y(1,1»/Y(1,1) + TH*A/SQ 
= -Y(2,1)*Y(3,1)/Y(1,1) + TH*B/SQ 
= -(Y(5,1)*(-Y(3,1)*Y(3,1)+2.*MU/Y(1,1» 

+ Y(6,1)*Y(2,1)*Y(3,1»/(Y(1,1)*Y(1,1» 
= -Y(4,1) + Y(6,1)*Y(3,1)/Y(1,1' - TH*A/SQ 
= -2.*Y{5,1)*Y(3,1)/Y(1,1)+Y(6,1)*Y(2,1)/Y(1,1)-TH*B/SQ 

SUBROUTINE ALLBODY (P,MAX,T,Y,DY) 
implicit NONE 
COMMON /MVCOUNT/IFCNT 
INTEGER.P,MAX,IFCNT 
DOUBL~ PRECISION T, Y(MAX,P),DY(MAX), TH,SQ,a,b, 

+ Mu, delta, tt, rt, ro,Thrust,mo,mdot, 
+ MU1,R1,SQR1,COS1,SIN1,D1,D1SQ,W,SINT,COST, 
+ DR1R,DR1T,T1,T2 

common /EXMARS/ Mu, delta, tt, rt, ro, Thrust ,mo·,mdot 
COMMON /PLANET/ MU1,D1,W 

IFCNT=IFCNT+1 
IF (MAX.GT.4) THEN 

TH=THRUST/(Mo - Mdot*t) 
a=Y(6,1) 
B=Y(7,1) 
SQ = SQRT(A*A + B*B) 

ELSE 
TH=O.O 



A=O. 
B=O. 
SQ = 1. 

ENDIF 
COST = COS(Y(4,1)) 
SINT = SIN(Y(4,1)) 
COS1 = Y(1,1)-D1*COST 
SIN1 = D1*SINT 
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SQR1 = COS1*COS1+SIN1*SIN1 
R1 = SQRT(SQR1) 
D1SQ = D1*D1 

DY(1)=Y(2,1) 

DY(2)=(Y(3,1)*Y(3,1)-MU/Y(1,1))/Y(1,1) 
+ - MU1*(COS1/SQR1/R1 + COST/D1SQ) 
+ +W*(W*Y(1,1)+2.*Y(3,1)) + TH*A/SQ 

DY(3)=-Y(3,1)*Y(2,1)/Y(1,1)+MU1*SIN1*(-1./SQR1/R1+1./D1SQ/D1) 
+ -2.*Y(2,1)*W + TH*B/SQ 

DY(4)=Y(3,1)/Y(1,1) 

IF (MAX.LE.4) RETURN 

DR1R = 2.*COS1 
DR1T = 2.*Y(1,1)*SIN1 
T2 = MU1/(SQR1*SQR1*R1)*1.5 
T1 = T2*COS1 

DY(5)=-Y(6,1)*«-Y(3,1)*Y(3,1)+2.*MU/Y(1,1))/Y(1,1)/Y(1,1) 
+ +T1*DR1R + W*W) 
+ -Y(7,1)*(Y(2,1)*Y(3,1)/Y(1,1)/Y(1,1)+T2*SIN1*DR1R) 

DY(6)=-Y(5,1) +Y(7,1)*(Y(3,1)/Y(1,1)+2.*W) 

DY(7)=-Y(6,1)*2.*(W+Y(3,1)/Y(1,1)) +Y(7,1)*Y(2,1)/Y(1,1) 
+ -Y(8,1)/Y(1,1) 
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+ -MU1*(-D1/SQR1/R1+1./D1SQ)*(Y(6,1)*SINT+Y(7,1)*COST) 

RETURN 
END 

FUNCTION ThAngle (T) 
C ... RETURNS THRUST ANGLE OF THE THRUSTOR AT 
C ... THE GIVEN TIME. USES HORNERS ALGORITHM. 

IMPLICIT NONE 
INTEGER I,N, IER,N1MAX,FNTYPE,CONTYPE,PARTYPE 
PARAMETER (N1MAX=30) 
DOUBLE PRECISION T,To,TFF, THANGLE, X(N1MAX) ,Ts, 

+ SCOEF(4,N1MAX) ,TX(N1MAX) ,SPEVAL 
COMMON/DIRCOMN/X,TX,SCOEF,To,TFF,N 
COMMON /FNSPECS/ FNTYPE,CONTYPE,PARTYPE· 
.EXTERNAL SPEVAL 
GOTO (1,2,3,4)PARTYPE 
WRITE(*,*) 'IMPROPER PARTYPE' ,PARTYPE 
STOP 

1 ThAngle = X(N) 
DO 11 I=N-1,1,-1 

ThAngle = ThAngle*T + XCI) 
11 CONTINUE 

RETURN. 
2 Ts = (T-To)/T££ 

ThAngle = X(N) 
DO 10 I=N-1,1,-1 

ThAngle = ThAngle*Ts. + XCI) 
10 CONTINUE 

RETURN 
3 ThAngle = X(N) . 

DO 12 I=N-1,1,-1 
ThAngle = ThAngle*T/DBLE(I+1) + XCI) 

12 CONTINUE 
RETURN 

4 ThAngle = SPEVAL (SCOEF,TX,N-1,T,IER) 
IF (IER.EQ.O) RETURN 
WRITE(*,*) 'IMPROPER XDATA : SPEVAL ',T,ier,TX(1),TX(N) 
STOP 
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END 

SUBROUTINE INITANG (X,TOO,Tff) 
IMPLICIT NONE 
INTEGER N1,I,IER,NINT,N1MAX,FNTYPE,CONTYPE,PARTYPE,PINDEX 
PARAMETER (N1MAX=30) 
DOUBLE PRECISION X(N1) ,To,TF,X1(N1MAX) ,TFF,SCOEF(4,N1MAX) , 

+ TX(N1MAX),DT,TOO 
COMMON/DIRCOMN/X1,TX,SCOEF,To,TF,N1 
COMMON /FNSPECS/ FNTYPE,CONTYPE,PARTYPE,PINDEX 
to=tOO 
tf=tff 

DO 10 I=1,N1 
X1(I)=X(I) 

10 . CONTINUE 

IF (PARTYPE.EQ.4) THEN 
NINT=N1-1 
DT=(TF-TO)/NINT 
TX(1)=TO 
DO 20 I = 2,N1-1 

TX(I) = TX(I-1)+DT 
20 CONTINUE 

TX(N1)=TF 
CALL SPLINE (TX,X1,NINT,SCOEF, IER) 
IF (IER.NE.O) THEN 

WRITE(*,*) 'UNSUCCESSFUL SPLINE' ,IER 
STOP 

ENDIF 
ENDIF 
RETURN 
END 

SUBROUTINE OUT (YMAX,K,N,Y,T,EXIT) 
IMPLICIT NONE 
INTEGER K,N,YMAX,I,SKIP,NSKIP 
DOUBLE PRECISION Y(YMAX,K+.1), T, THeta,PI 
LOGICAL EXIT,STORE,MODIFY 
COMMON /COUT/ SKIP,NSKIP,STORE 
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END 
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IF (STORE) CALL STOREVAL (K,Y,T) 
IF «SKIP.GE.NSKIP).OR.(EXIT)) THEN 

SKIP=O 
ELSE 

SKIP=SKIP+1 
ENDIF 

RETURN 

SUBROUTINE OUTP (YMAX,K,N,Y,T,EXIT) 
IMPLICIT NONE 
INTEGER K,N,YMAX,I,SKIP,NSKIP,THTYPE 
DOUBLE PRECISION Y(YMAX,K+l),T,THeta,PI,THETA1, 

+ ANGLE,TOLD,H,TEMP 
LOGICAL EXIT,STORE,MODIFY,INIT 
Character*20 file 
COMMON /COUT/ SKIP,NSKIP,STORE 
COMMON /POUT/ THETA,INIT,THTYPE,File 
COMMON /PLOCAL/ ANGLE,TOLD,H,TEMP 

IF (INIT) THEN 
OPEN(UNIT=10,FILE=file,STATUS='UNKNOWN') 
INIT=.FALSE. 
IF «YMAX.EQ.4).OR.(YMAX.EQ.8)) THEN 

ANGLE=Y(4,1) 
ELSE 

ANGLE=O~O 

TOLD=T 
ENDIF 

ELSE 
H=T-TOLD 
TEMP=O.O 
DO 10 I=1,K+1,2 

TEMP=TEMP+Y(3,I)/DBLE(I) 
IF(I.LT.K+1) TEMP=TEMP-Y(3,I+1)/DBLE(I+1) 

CONTINUE 
ANGLE=ANGLE+TEMP*H/Y(1,1) 
TOLD=T 

ENDIF 
Pi=4.*ATAN(1.) 
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IF (THTYPE.EQ.1) THEN 
THETA1=THETA 

ELSEIF (THTYPE.EQ.2) THEN 
THETA1=ATAN2((Y(5,1)+Y(2,1)),(Y(6,1)+Y(3,1))) 

ELSEIF (THTYPE.EQ.3) THEN . 
THETA1=ATAN2(Y(5,1),Y(6,1)) 

ELSEIF (THTYPE.EQ.4) THEN 
THETA1=ATAN2(Y(6,1) ,Y(7,1)) 

ELSE 
WRITE(*,*) 'oUTP ERROR' ,THTYPE 
STOP 

ENDIF 
THETA1=THETA1*180/Pi 
IF ((YMAX.EQ.4) :oR. (YMAX.EQ.8)) THEN 

WRITE(10,910) T,Y(1,1) ,Y(2~1) ,Y(3,1), 
+ Y(4,1),ANGLE,THETA1 

ELSE 
WRITE(10,910) T,Y(1,1),Y(2,1),Y(3,1),ANGLE,THETA1 

END IF 
910 FoRMAT(10(G20.10,1x)) 

END 

IF ((SKIP.GE.NSKIP).oR.(EXIT)) THEN 
SKIP=O 

ELSE 
. SKIP=SKIP+1 
END IF 

RETURN 

SUBROUTINE oUTESC2 (YMAX,K,N,Y,T,EXIT) 
IMPLICIT NONE 
INTEGER K,N,YMAX,I,SK~P,NSKIP 
DOUBLE PRECISION Y(YMAX,K+1),T,THeta,PI,B,EINT,THMAX 
LOGICAL EXIT,SToRE,MoDIFY 
COMMON /CoUT/ SKIP,NSKIP,SToRE 
COMMON /MVoUTL/ B,EINT 
COMMON /oUTCLOC/THMAX,MoDIFY 

IF (T.LE.O.00001) THEN 



END 

THMAX=O.O 
MODIFY=.TRUE. 

ENDIF 
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IF (STORE) CALL STOREVAL (K,Y,T) 
IF «SKIP.GE.NSKIP).OR.(EXIT)) THEN 

SKIP=O 
Theta=ATAN«Y(2,i)+Y(5,i))/(Y(6,i)+Y(3,i))) 
THMAX=MAX(THMAX,ABS(THETA)) 
IF «MODIFY).AND.(T.GT.B*O.i)) THEN 

MODIFY=.FALSE. 
IF (THMAX.GT .. 3) EINT=EINT*i0. 

END IF 
ELSE 

SKIP=SKIP+i 
ENDIF 

RETURN. 

SUBROUTINE OUTESCi (YMAX,K,N,Y,T,EXIT) 
IMPLICIT NONE 
INTEGER K,N,YMAX,I,SKIP,NSKIP 
DOUBLE PRECISION Y(YMAX,K+i),T,THeta,PI,B,EINT,THMAX 
LOGICAL EXIT,STORE,MODIFY 
COMMON /COUT/ SKIP,NSKIP,STORE 
COMMON /MVOUTL/ B,EINT 
COMMON /OUTCLOC/THMAX,MODIFY 

IF (T.LE.O.OOOOi) THE. 
THMAX=O.O 
MODIFY=.TRUE. 

ENDIF 
IF (STORE) CALL STOREVAL (K,Y,T) 

. IF «SKIP.GE.NSKIP).OR.(EXIT)) THEN 
SKIP=O 
Theta=ATAN(Y(5,i)/Y(6,i)) 
THMAX=MAX(THMAX,ABS(THETA)) 
IF «MODIFY).AND.(T.GT.B*O.i)) THEN 

MODIFY=.FALSE. 



END 
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IF (THMAX.GT .. 3) EINT=EINT*10. 
ENDIF 

ELSE 
SKIP=SKIP+l 

ENDIF 
RETURN 

Colsys Interface 

This module sets up and calls Colsys. Routines for the differential equations, 

constraints, initial solution and output are also included. The routines for the gen-

eralized ~ewton's method and tolerance scheduling are also present. 

C******************************************************************** 
C Colsys interface Modules 
C******************************************************************** 

SUBROUTINE EXM1(EPS,NCOMP,NREC,NMAX,NINT,K,IPR,INITSOL, 
+ SENSE,START,IFLAG) 

c 

c problem Mars transfer - see Lewis: 247, Bryson & Ho : 66-68 
c & Balakrishnan arid Neustdat : pl00 
c 

c TO,TF,RO,RF : Initial,final times and radii 
c Tl,Rl, rold, told: store previous values of final time, radius 
c z(l .. ncomp): vector storing variables, 
c See input description for further details. 
c eps, epso, epsi, epsmin : Tolerances for heuristic control 
c of tol. 
c m(l.:ncomp): stores derivative orders, 1 in our case 
c delta: stores diff. for derivative evaluation. 
c 
C 
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implicit None 
integer maxdif,MAXF,MAXI 
parameter (maxdif=20, MAXF=120000, MAXI=6000) 
double precision zeta(maxdif), fspace(MAXF), tol(maxdif), 

+ z(maxdif), mu, x, fixpnt, Tfl, 
+ TO, TF, RF, RO, DELTA, 
+ EPS, FSAVE(MAXF), TSAVE, TOSAVE, 
+ Thrust,mo,mdot, Uo,Vo 
integer m(maxdif), ipar(ll), ispace(MAXI), ltol(maxdif),NREC, 

+ mstar, ncornp, iflag, I, KD,KDM, ISAVE(MAXI),NDIMI,NDIMF, 
+ niter, NMAX, NINT, IPR,SENSE, 
+ INITSOL, K 
. LOGICAL DONE,DYNAMIC,START 

common /EXMARS/ mu, delta, TF, RF, RO,Thrust,mo,mdot 
COMMON /INITSOL/ FSAVE,ISAVE,TSAVE,TOSAVE,NTTER 
COMMON/escape/To,Uo,Vo 
COMMON /LARGE/fspace,ispace 
COMMON /LOCALCS/ ZETA,TOL,LTOL,MSTAR,IPAR,M 
external solutn,fsub,dfsub,gsub,dgsub 

C ... note No. of Function evaluations slightly1ncreases 
C 
C 

~hen delta is decreased to 5.e-13 

c NCOMP no. of differential equations. 
c NREC: no. of right end bc's 
c K no. of collocation points per subinterval 
C nmax {max intervals) 

IF (START) THEN 
C . DEFINED REQUIRED FINAL RADIUS AND INITIAL RADIUS. 

TOSAVE=TO 

c orders 
mstar=O 
DO 10 I=l,NCOMP 

M(I)=l 
MSTAR=MSTAR+M(I) 

10 CONTINUE 
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c a nonlinear problem 
ipar(l) = 1 

·ipar(2) = K 
c initial uniform mesh of NINT subintervals, See ipar(3) 

ipar(8) = 0 
c dimension of real work array fspace 

KD=K*NCOMP 
KDM=KO + MSTAR 
NDIMF = NMAX*(4+k+2*kd+(4+2*k)*mstar+(kdm-nrec)*(kdm+l)) 
ipar(5) = NOIMF 

cdimension of integer work array ispace is CALCULATED. 
NDIMI=NMAX*(3 + KOM .- NREC) 
ipar(6) = NOIMI . 
IF «NOIMI.GT.MAXI).OR.(NDIMF.GT.MAXF)) THEN 

WRITE(*,*) 'NOIMF,NDIMI' ,ndimf,ndimi 
WRITE(*,*) 'ERROR IN NMAX' 
STOP 

ENOIF 

c print (-l)full, (O)LITTLE, (l)NO output. 
ipar(7) = IPR 

c initial approximation for nonlinear iteration is provided 
c in solutn 

ipar(9) = INITSOL 
c a sensi ti·ve problem 

ipar(10) = SENSE 
c no fixed points in the mesh 

ipar(l1) = 0 

c 

NITER = 0 
START=.FALSE. 

ENDIF 

ipar(3) = NINT 
... locations 

zeta( 1) = TO 
zeta(2) = TO 
zeta(3) = TO 
zeta(4) = TF 

of side conditions 



zeta(5) = TF 
zeta(6) = TF 
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c tolerances on all components 
ipar(4) = ncomp 
do 20 i=l,ncomp 

ltol(i) = i 
tol(i) = eps 

20 continue 

C ... only place' tfl is used (bec tf is in common) 
Tfl=Tf 

c call colsys 
call colsys encomp, m, TO, TF1, zeta, ipar, It'ol, 

tol, fixpnt, ispace, fspace, iflag, 
fsub,dfsub,gsub,dgsub,SOLUTN) 

NITER=NITER+l 
if (iflag.eq.l) then 

C ... SAVE CURRENT SOLUTION 
DO 30 I=l,NDIMI 

ISAVE(I)=ISPACE(I) 
30 CONTINUE 

DO 40 I=l,NDIMF 
FSAVE(I)=FSPACE(I) 

40 CONTINUE 
endif 
TSAVE=TF 
ToSave=To 

RETURN 
end 

c ................... , ............................................ . 

SUBROUTINE SOLUTN (T,X,DMVAL) 
IMPLICIT NONE 
INTEGER FNTYPE,CONTYPE 
DOUBLE PRECISION T, X(l), DMVAL(l) 
COMMON /FNSPECS/ FNTYPE,CONTYFE 

GOTO (1,2) FNTYPE 
WRITE(*,*) 'INVALID FN TYPE' ,FNTYPE 

STOP 
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END 
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CALL MSOLUTN (T,X,DMVAL) 
RETURN 

CALL ESOLUTN (T,X,DMVAL) 
RETURN 

subroutine Msolutn (t,x, dmval) 
c Initial estimate of solution for Mars transfer Problem. 

implicit none 
INTEGER MAXF,MAXI 
PARAMETER (MAXF=120000, MAXI=6000) 
INTEGER ISPACE(MAXI),NITER,ISS,IS6 
double p~ecision x(6), t, dmval(6), Mu, delta, tf,rf,ro, 

+ FSPAqE(MAXF),TSAVE,TOSAVE,Tl 
C 'Not used 

+ ,Thrust,mo,mdot 
COMMON /INITSOL/ FSPACE,ISPACE,TSAVE,TOSAVE,NITER 
common /EXMARS/ Mu, delta, tf, rf, ro,Thrust,mo,mdot 

IF (NITER.GE.O) THEN 
x(l)=ro + (rf-ro)*t/tf 
dmval(l)=(rf-ro)/tf 
x(2)=O.O 
dmval(2)=O.O 
x(3)=sqrt(mu/x(1») 
dmval(3)=-O.S*sqrt (mu/x(1)**3) *dmval(l) 
x(4)=1.0 
dmval(4)=O.O 
if (t.le.tf/2.0) then 

x(S)=O.S2 
x(6)=O.3 

else 
x(S)=-O.S 
x(6)=O.O 

end if . 
dmval(S)=0 .0 
dmva1(6)=0 .0 

ELSE 
IS6 = ISPACE(6) + 1 
ISS = ISPACE(l) + 2 
Tl=(T-TOSAVE)/(TF-TOSAVE) * (TSAVE-TOSAVE) 
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CALL approx (ispace(5) , T1, X, fspace(isS),fspace,ispace, 
1 fspace(is5), ispace(2) , ispace(3) , ispace(8) , 
2 ispace(4), 1, DMVAL, 1) 

ENDIF 

return 
end 

subroutine Esolutn (t,x, dmval) 
c Initial estimate of solution for Mars transfer Problem. 

implicit none 
INTEGER MAXF,MAXI 
PARAMETER (MAXF=120000, MAXI=SOOO) 
INTEGER ISPACE(MAXI),NITER,IS5,ISS 
double precision x(S), t, dmval(S), Mu, delta, tf,rf,ro, 

+ FSPACE(MAXF),TSAVE,TOSAVE,T1, 
+ To,Uo,Vo 

C Not used 
. + ,Thrust ,mo ,mdot 
. COMMON /INITSOL/ FSPACE,ISPACE,TSAVE,TOSAVE,NITER 

common /EXMARS/ Mu, delta, tf, rf, ro,Thrust,mo,mdot 
COMMON/escape/To,Uo,Vo 

IF (NITER.GE.O) THEN 
x(1)=ro + (rf-ro)*t/tf 
dmval(1)=(rf-ro)/tf 
x(2)=O.O 
dmva1(2)=0 . 0 
x(3)=sqrt(mu/x(1» 
dmval(3)=-O.5*sqrt(mu/x(1)**3)*dmval(1) 
x(4)=1.0 
if (t.le.tf/2.0) then 

x(5)=O.52 
x(S)=O.3 

else 
x(5)=-O.5 
x(S)=O.O 

endif 
dmval(4)=O.O 



dmval(S)=O.O 
dmval(6)=O.O 

ELSE 
IS6 = ISPACE(6) + 1 
ISS = ISPACE(l) + 2 
T1=T-To + TOSave 
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CALL approx (ispace(S), Tl, X, fspace(is6),fspace,ispace, 
1 fspace(isS), ispace(2), ispace(3), ispace(8), 
2 ispace(4), 1, DMVAL, 1) 

ENDIF 

return 
. end 

c ..... · .......................................................... . 

subroutine fsub (t, x, f) 
implicit NONE 
DOUBLE PRECISION T, X(6), f(6) 
integer ifcnt, igcnt, igdcnt, FNTYFE,CONTYFE 
common /MVcount/ifcnt,igcnt, igdcnt 
COMMON /FNSPECS/ FNTYPE,CONTYFE 
ifcnt=ifcnt+l 

GOTO (1,2) FNTYPE 
WRITE(*,*) 'INVALID FUNCTION TYPE' ,FNTYPE 

STOP 
1 CALL FMARSIN (T,X,F) 

2 

RETURN 
CALL FESC 

RETURN 
END 

(T,X,F) 

subroutine fmarsin (t, x, f) 
·implicit NONE 
DOUBLE PRECISION T, X(6), f(6), TH, MU, DELTA, SQ, TF, RF, RO, 

+ THRUST, MO, MDOT 
common /EXMARS/ mu, delta, TF, RF, RO,Thrust,mo,mdot 

TH=THRUST/(Mo - Mdot*t) 
SQ = SQRT(X(S)*X(S) + X(6'*X(6» 

F(l) = X(2) 
F(2) = (X(3)*X(3) - MU/X(l»/X(l) + TH*X(S)/SQ 
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F(3) = -X(2)*X(3)/X(1) + TH*X(6)/SQ 

F(4) = -(X(5)*(-X(3)*X(3)+2.*MU/X(1» 
+ + X(6)*X(2)*X(3»/(X(1)*X(1» 

F(5) = -X(4) + X(6)*X(3)/X(1) 
F(6) = -2.*X(5)*X{3)/X(1) + X(6)*X(2)/X(1) 
RETURN 

END 

subroutine fesc (t, x, f) 
implicit NONE 
DOUBLE PRECISION T, X(6), F(6), TH, MU, DELTA, SQ, TF, RF, RO, 

+ THRUST, MO, MDOT,a,b 
cornmon /EXMARS/ mu, delta, TF, RF, RO,Thrust,mo,mdot 

TH=THRUST/(Mo - Mdot*t) 
a=X(5)+X(2) 
b=X(6)+X(3) 
SQ=SQRT(A*A+B*B) 
F(1) = X(2) 
F(2) = (X(3)*X(3) - MU/X(1»/X(1) + TH*A/SQ 
F(3) = -X(2)*X(3)/X(1) + TH*B/SQ 

F(4) = -(x"(5)*(-X(3)*X(3)+2.*MU/X(1» 
+ + X(6)*X(2)*X(3»/(X(1)*X(1» 

F(5) = -X(4) + X(6)*X(3)/X(1) - TH*A/SQ 
F(6) = -2.*X(5)*X(3)/X(1) + X(6)*X(2)/X(1) - TH*B/SQ 

RETURN 
end 

c ............................................................... . 
subroutine dfsub (t, x, df) 
implicit none 
double precision t, x(6), dfe6,6), temp, FX(6), F(6), MU,DELTA, 

C ... not used 
+ tf, rf, ro,Thrust,mo,mdot 

INTEGER I,J 
cornmon /exmars/ MU, DELTA, tf, rf, ro,Thrust,mo,mdot 

CALL FSUB (T, X, FX) 



DO 20 J=1,6 
TEMP=X(J) 
X(J)=X(J) +DELTA 
CALL FSUB (T, X, F) 
DO 10 1=1,6 
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DF(I,J) = (F(I)-FX(I))/DELTA 
10 CONTINUE 

X(J)=TEMP 
20 CONTINUE 

return 
end 

c ................................................................ . 

1 

2 

3 

SUBROUTINE GSUB (I, X, G) 
IMPLICIT NONE 
INTEGER I,FNTYPE,CONTYPE 
DOUBLE PRECISION X(1), G 
COMMON /FNSPECS/ FNTYPE, CONTYPE 

GOTO (1,2,3) CONTYPE 

END 

WRlTE(*,*) 'INVALID CONSTRAINT TYPE' ,CONTYPE 
STOP 

CALL MARGSUB (I,X,G) 
RETURN 

CALL MARGSB2 (I,X,G) 
RETURN 

CALL EARGSUB (I",X,G) 
RETURN 

subroutine MARgsub (I, X, G) 
implici t NONE 
DOUBLE PRECISIONX(6), G, MU, DELTA, TF, RF, RO 

C Not used 
+ ,Thrus~,mo,mdot 

integer i, ifcnt,igcnt, igdcnt " 
COMMON /MVCOUNT/ifcnt,igcnt, igdcnt 
COMMON /exmars/ MU, DELTA, TF, RF ,RO, Thrust,mo,mdot 
IGCNT=IGCNT+1 
go to (1, 2, 3, 4, 5, 6), i 

1 g = X(l)- RO 
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return 
g = X(2) 
return 
g = X(3) - SQRT(MU/RD) 
return 
G = X(2) 
return 
G = X(3) - SQRT(MU/Rf) 
return 
G = X(4)- 1. - X(6)*SQRT(MV)/(2*Rf**1.5) 
return 
end 

. subroutine MARgsb2 (I, X, G) 
implicit NONE 
DOUBLE PRECISION X(6), G, MU, DELTA, TF, RF, RO 

C Not used 

1 

2 

3 

4 

5 

6 

+ ,Thrust,mo,mdot 
integer i, ifcnt,igcnt, igdcnt 
COMMON /MVCDUNT/ifcnt,igcnt, igdcnt 
COMMON /exmars/ MU, DELTA, TF, RF ,RO, Thrust,mo,mdot 
IGCNT=IGCNT+l 
go to (1, 2, 3, 4, 5, 6), i 
g = X(l)- RO 
return 
g = X(2) 
return 
g = X(3) - SQRT(MU/RD) 
return 
G = X(2) 
return 
G = X(3) - SQRT(MU/X(l» 
return 
G = X(4)- 1. - X(6)*SQRT(MU)/(2*X(1)**1.5) 
return 
end 

subroutine EARgsub (I, X, G) 
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implicit NONE 
DOUBLE PRECISION X(6), G, MU, DELTA, TF, RF, RO, 

+ To,Uo,Vo 
C Not used 

1 

2 

3 

4 

5 

+ ,Thrust,mo,mdot 
integer i, ifcnt,igcnt, igdcnt 
COMMON /MVCOUNT/ifcnt,igcnt, igdcnt 
COMMON /exmars/ MU, DELTA, IF, RF, RO,Thrust,mo,mdot 
COMMON/escape/To,Uo,Vo 
IGCNT=IGCNT+1 
go to (1, 2, 3,4,5,6), i 
g = X(1)- RO 
return 
g = X(2)- Uo 
return 
g = X(3) - Vo 
return 
G = X(4) + MU/(X(1)*X(1)) 
G = X(4) - MU/(X(1)*X(1)) 
return 
G = X(5) + X(2) 
G = X(5) - X(2) 
return 

6 G = X(6) + X(3) 
G = X(6) .- X(3) 
return 
end 

c ............................................................... . 
subroutine dgsub (i, X, dg) 
implicit NONE 
DOUBLE PRECISION X(6),dg(6), G, TEMP, MU, DELTA, GX, TF, RF, RO 

C Not used 
+ ,Thrust,mo,mdot 
integer i,j , ifcnt,igcnt, igdcnt 
COMMON /MVCOUNT/ifcnt,igcnt, igdcnt 
common /EXMARS/ Mu, delta, tf, rf, ro,Thrust,mo,mdot 

CALL GSUB (I,X,GX) 
do 10 j=1,6 

TEMP=X(J) 



X(J)=X(J)+DELTA 
CALL GSUB(I,X,G) . 
DG(J)=(G-GX)/DELTA 
X(J)=TEMP 

10 CONTINUE 
IGDCNT=IGDCNT+1 
return 
end 
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c--------------------------------------------------------------------

C 

FUNCTION ZERO (X1,Y1,X2,Y2,X3,Y3) 
. IMPLICIT NONE 

DOUBLE PRECISION ZERO,X1,Y1,X2,Y2,X3,Y3, DX,A,B,C, 
+ Y21,X21,Y32,X32, TMP,S21,S32 

lNTRINSIC SIGN,MAX,MIN . 

Y21=(Y2-Y1)*1.e2 
Y32=(Y3-Y2)*1.e2 
X32=(X3-X2)*1.e2 
X21=(X2-X1)*1.e2 

TMP = (X21*Y32-X32*Y21) 
IF (ABS(TMP) .LE.1.E-S) THEN 

write(*,*) 'straight line inter ., 

. .. SLOPE DY/DX 
OX = Y32/X32 
ZERO = -(Y3-DX*X3)/DX 

ELSE 
S21 = Xil*(X2+X1) 
S32 = X32*(X3+X2) 
DX=X21*S32-X32*S21 
B=(Y21*S32-S21*Y32)/DX 
A=TMP/DX 
C=Y3-(B+A*X3)*X3 
ZERO = (-B+SQRT(B*B-4*A*C))*0.5/A 
WRITE(*,*) 'QUADRATIC INTERP' 

ENDIF 
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c$$$ 
c$$$ 900 
c$$$ 

WRITE(*,*) Xl,Yl,X2,Y2,X3,Y3, A,B,C,ZERO 
FORMAT(lX,3(G12.6,lX,G12.6,2X),lX,4G12.6) 
read(*,*) 

return 
END 

c--------------------------------------------------------------------

C 

c 

C 

c 

SUBROUTINE TAD APT (DX,EPS,NINT,DONE,T2INIT,EPSO,EPSI,EPSMIN) 
IMPLICIT NONE 
INTEGERMAXF,MAXI,MAXDIF 
PARAMETER (MAXDIF=20, MAXF=120000, MAXI=6000) 
INTEGER NITER,NINT,ISPACE(MAXI),ISAVE(MAXI) 
DOUBLE PRECISION DX(3,2) ,Z(MAXDIF),T2INIT,mu, delta, TF,RF,RO, 

+ Thrust,mo,mdot, TOSAVE,TSAVE,FSPACE(MAXF) ,FSAVE(MAXF), 
+ EPSO,EPSI,EPSMIN,EPS,ZERO 

+ 

LOGICAL DONE 
EXTERNAL ZERO 
common /EXMARS/ mu, delta, TF, RF, RO,Thrust,mo,mdot 
COMMON /INITSOL/ FSAVE,ISAVE,TSAVE,TOSAVE,NITER 
COMMON /LARGE / FSPACE,ISPACE 

CALL APPSLN (TF,Z,FSPACE,ISPACE) 
wr i t e ( * , * ) , R ; U ,V : " z (1) ,z (2) ,Z (3 ) 
DX(3,2)=Z(1)-RF 
IF (ABS(Z(l)-RF) .LE.EPSMIN) THEN 

DONE=.TRUE. 
ELSE 

IF (NITER.GT.l) THEN 
TF = Tl + (Tl-TFOLD)*(RF-Rl)/(Rl-ROLD) 

the newton raphson method above has been 
.. replaced by quadratic interpolation. 

TF = ZERO(DX(1,1),DX(1,2),DX(2,1),DX(2,2), 
DX(3,1),DX(3,2)) 

CALL ADAPEPS(EPS,EPSO,EPSI,EPSMIN,Z(l)-Rf) 
WRITE(*,*) 'NEW TF, EPS =' ,TF,EPS 
... set no. of interv to prev values 
NINT = min(ispace(1)/2,16) 
DX(1,1)=DX(2,l) 
DX(1,2)=DX(2,2) 
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DX(2,l)=DX(3,l) 
DX(2,2)=DX(3,2) . 

ELSE 
DX(l,2)=Z(1)-RF 
DX(2,l)=DX(l,l) 
DX(2,2)=DX(l,2) 
TF = T2INIT 
EPS=EPSO 

ENDIF 
DX(3,l)=TF 

ENDIF 
RETURN 
END 

SUBROUTINE ADAPEPS (EPS,EPSO,EPSI,EPSMIN,ERR) 
IMPLICIT NONE . 
DOUBLE PRECISION EPS,EPSO,EPSI,EPSMIN,ERR 

EPS=MAX(EPSI*ABS(ERR),EPSMIN) 
EPS=MIN(EPS,EPSO) 

RETURN 
END 

SUBROUTINE ADAPESC (NINT,DONE,T2INIT,TDELTA) 
IMPLICIT NONE 
INTEGER MAXF,MAXI,MAXDIF 
PARAMETER (MAXDIF=20, MAXF=120000, MAXI=6000) 
INTEGER NITER,NINT,ISPACE(MAXI);I 
DOUBLE PRECISION DX(3,2),Z(MAXDIF),T2INIT,mu, delta, TF,RF,RO, 

+ Thrust,mo,mdot, FSPACE(MAXF.),TDELTA,To,Uo,Vo 
LOGICAL DONE 
COMMON/escape/To,Uo,Vo 
common /EXMARS/ mu, delta, IF, RF, RO,Thrust,mo,mdot 
COMMON /LARGE / FSPACE,ISPACE . 

IF (TF.GE.T2INIT) then 
DONE=.TRUE. 

ELSE 
CALL APPSLN (TO,Z,FSPACE,ISPACE) 
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WRITE(*,*) 'SUBPROBLEM' 
Wr~te(*,*) To,(Z(i),i=1,6) . 
CALL APPSLN (TF,Z,FSPACE,ISPACE) 
Write(*,*)TF,(Z(i),i=1,6) 
Ro=Z(1) 
IF (Rf.LT.Ro) Rf=Ro+Rf 

TO=TF 
TF=TF+TDELTA 
IF (TF.GT.T2init) TF=T2INIT 
Uo=Z(2) 
Vo=Z(3) 

ENDIF 

RETURN 
END 

SUBROUTINE OUTCSYS (NPTS,NDIF) 
IMPLICIT NONE 
INTEGER MAXF,MAXI,MAXDIF,NPTS,NDIF 
PARAMETER (MAXDIF=20, MAXF=120000, MAXI=6000) 
INTEGER ISPACE(MAXI),I,J,ifcnt,igcnt, igdcnt,NITER, 

+ FNTYPE,CONTYPE,is5,is6 . 
DOUBLE PRECISION FSPACE(MAXF),TF~,TO,X,Z(MAXDIF),PI,dmval(6), 

+ rnu, delta, TF, RF, RO,Thrust,rno,rndot,DEL, THETA,ANGLE 
COMMON /INITSOL/ FSPACE,ISPACE,TFS,TO,NITER 
cornmon /EXMARS/ rnu, delta, TF, RF, RO,Thrust,rno,rndot 
COMMON /MVCOUNT/ifcnt,igcnt, igdcnt 
COMMON /FNSPECS/ FNTYPE,CONTYPE 

c print values of the obtained approximate solution at points 
x = TO 
del = (TF-TO-1.e-S)/DBLE(NPTS-1) 
Pi = 4.0*ATAN(1.0) 
ANGLE=O.O 
CALL APPSLN (TF,Z,FSPACE,ISPACE) 
write(*,*) 'Energy = ',(Z(2)*Z(2)+z(3)*z(3))/2.0-Mu/z(1) 



write (6,201) 
do 555 i=l,NPTS 

IS6 = ISPACE(6) + 1 
IS5 = ISPACE(l) + 2 
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CALL approx (ispace(5) , x, z, fspace(is6), fspace, ispace, 
1 fspace(is5), ispace(2) , ispace(3) , ispace(8) , 
2 ispace(4) , 1, DMVAL, 1) 

C call appsln (x,z,fspace,ispace) 
IF (FNTYPE.EQ.2) THEN 

Theta = ATAN2«Z(2)+Z(5)) ,(Z(6)+Z(3))) 
ELSE 

Theta = ATAN2(Z(5) ,Z(6)) 
IF (Theta.LT.O) THETA=THETA+2.*Pi 

ENDIF 
THETA = THETA*180./Pi 
if (i.gt.l) Angle=Angle+(z(3)-dmval(3)/2)/z(1)*del 
write (6,202) x, (z(j),j=1,6),THETA,Angle 
x = x + del 

555 continue 
write(*,900) igcnt, igdcnt,IFCNT 

RETURN 
900· format ('no. G, GD, F = , ,3(I7)) 
201 format (, t r 

Lr 
Theta' ) 

202 format ( F9.4, lx, 8G15.6) 
END 

Lu 

SQP Interface 

u 

Lv 
v 

The main routine sets up and calls the NAG SQP code. It supplies routines for 

gradient evaluation which are listed below. 
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C******************************************************************** 
C Interface modules for NAG SQP, v.14c 
C******************************************************************** 

SUBROUTINE EXM3(N,X,BL,BU,NCNLN,NDIGITS,ITMAX, 
+ ETA,FTOL,NCTOL,IFAIL) 

C E04VCF EXAMPLE PROGRAM TEXT 
C .. Parameters 

IMPLICIT NONE 
INTEGER 

* 
PARAMETER 

N, NCLIN, NCNLN, NCTOTL, NROWA, NROWJ, NROWR, 
LIWoRK, LWoRK, NMAX, NCMAX, NDIGITS 
(NMAX=25,NCMAX=20,NRoWA=NCMAX, 

* NRoWJ=NCMAX,NROWR=NMAX, 
*. LIWoRK=3*NMAX+2*NCMAX,LWoRK=1000) 

DOUBLE PRECISION ZERO, ONE 
PARAMETER (ZERo=O.ODO,oNE=1.0DO)· 
INTEGER NIN, NoUT 

C .. Local Scalars .. 
DOUBLE PRECISION EPSAF, EPSMCH, ETA, FToL, OBJF 
INTEGER I, IFAIL, ITER, ITMAX, MODE, MSGLVL, NSTATE 
LOGICAL COLD, FEALIN, ORTHOG 

C .. Local Arrays 
DOUBLE PRECISION A(NROWA,NMAX), BL(NCMAX), BU(NCMAX), C(NROWJ), 

* CJAC(NROWJ,NMAX), CLAMDA(NCMAX),FEAToL(NCMAX), 
* oBJGRD(NMAX), R(NROWR,NMAX) ,WORK(LWORK) , 
* X(N) ,tmpp(20).,NCTOL,BIGBND 

INTEG.ER ISTATE(NCMAX), IWORK (LIWoRK) 
INTEGER NiMAX, IFCNT,IGCNT,.IHCNT, TFCNT, Ni 
PARAMETER (NiMAX=20) 
DOUBLE PRECISION DELTA,FVAL(O:20) 

·COMMON /COUNT I IFCNT,IGCNT,IHCNT 
COMMON /MVCoUNT/ TFCNT 
COMMON /EOLoCAL/ FVAL,DELTA,tmpp 
COMMON /CINoUT / NIN,NoUT 

C .. External Functions .. 
DOUBLE PRECISIONX02AJF 
EXTERNAL X02AJF 

C .. External Subroutines 
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EXTERNAL OBJFUN, E04VCF, E04ZCF, CONFUN, X04ABF 
C .. Intrinsic Functions .. 

INTRINSIC ABS, SQRT 
C .. Executable Statements 

EPSMCH = 10.**(-NDIGITS) 
C ... Initialize Common 

C 

C 

NCLIN=O 
NCTOTL=N+NCLIN+NCNLN 

DELTA= SQRT(EPSMCH) 

WRITE (NOUT,FMT=99999) 

CALL X04ABF(1,NOUT) 
BIGBND = BU(N+1) 

C * CHANGE MSGLVL TO A VALUE .GE. 5 TO GET INTERMEDIATE OUTPUT * 
MSGLVL = 20 
DO 20'1 = 1, N+NCLIN 

FEATOL(I) = FTOL 
20 CONTINUE 

do 50 I=N+NCLIN+1,NCTOTL 
FEATOL(I) = NCTOL 
BL(I)=O.O 
BUC!) =0.0 

50 . CONTINUE 

C SET THE ABSOLUTE PRECISION OF THE OBJECTIVE AT THE STARTING 
C POINT. 

NSTATE = 1 
MODE = 1 

EPSAF = EPSMCH 
COLD = .TRUE. 
FEALIN = .TRUE. 
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ORTHOG = .TRUE. 
C 

C SOLVE THE PROBLEM FROM A COLD START. 
C 

C 

IFAIL = -1 
CALL E04VCF(ITMAX,MSGLVL,N,NCLIN,NCNLN,NCTOTL,NROWA,NROWJ, 

* NROWR,BIGBND,EPSAF,ETA,FTOL,A,BL,BU,FEATOL,CONFUN, 
* OBJFUN,COLD,FEALIN,ORTHOG,X,ISTATE,R,ITER,C,CJAC, 
* OBJF,OBJGRD,CLAMDA,IWORK,LIWORK,WORK,LWORK,IFAIL) 

IF (IFAIL.EQ.O) THEN 
WRITE(NOUT,*) 'SUCCESSFUL SOLUTION' 
IFAIL=l 

ELSE 
. WRITE (NOUT ,FMT=99994) IFAIL 

IF (IFAIL.GT.O) IFAIL=IFAIL+l . 
END IF 
write(NOUT,*)· 'x=',(x(i) ,i=l,n) 
~rite(NOUT,*) 'NFN, NO. FN :' ,ifcnt,tfcnt 

ENDIF 
STOP 

99999 FORMAT (, MARS TRANSFER VERSION 3 ',/1X) 
99996 FORMAT (I' INITIAL X.' ,/(lX,7Fl0.2)) 
99995 FORMAT (I' E04VCF TERMINATED WITH IFAIL =' ,13) 
99994 FORMAT (I' INCORRECT GRADIENTS. IFAIL =' ,13) 

C 
END 

SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE) 
IMPLICIT NONE 
INTEGER MODE, N, NSTATE, I,j 
DOUBLE PRECISION OBJF,.OBJGRD(N), X(N), FVAL(0:20), DELTA, 

+ TMP(20),c,CJac(10) 
COMMON IEOLOCALI FVAL,DELTA,TMP. 

c ... for direct escape problem 
C CALL CONFUN(MODE,O,N,MAX(l,O),X,C,CJac,NSTATE) 

do 20 i=l,n 
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if (tmp(i) .ne.x(i)) then 
write(*,*) 'error,obj ',(x(j),tmp(j),j=l,n) 
stop 

endif 
20 continue 

C Executable Statements 
OBJF = FVAL(O) 
DO 10 I=l,N 

OBJGRD(I) = (FVAL(I)-OBJF)/DELTA 
10 CONTINUE 

+ 

RETURN 
END 

SUBROUTINE CDNFUN(MODE,NCNLN,N,NROWJ,X,C,CJAC,NSTATE) 

IMPLICIT NONE 
INTEGER MODE, N, NCNLN, NROWJ, NSTATE, 

I, J 
DOUBLE PRECISION C(NROWJ), CJAC(NROWJ,N), X(N), FVAL(0:20) , 

+ TMPX, FPLANET ,DELTA , TMP(20) 
COMMON /EOLOCAL/ FVAL,DELTA,tmp 
EXTERNAL FESCAPE, FESCAPE2, FMARS, FPLANET 

do 40 i=l,n 
tmp(i)=x(i) 

40 continue 
FVAL(O) =FPLANET(N ,X ,0) 
DO 10 J=l,NCNLN 

C(J)=FPLANET (N,X,J) 
10. CONTINUE 

DO 20 I=l,N 
TMPX=X(I) 
X(I)=X(I)+DELTA 
FVAL(I)=FPLANET(N,X,O) 
DO 30 J=l,NCNLN 

CJAC(J,I)=(FPLANET(N,X,J)-C(J))/DELTA 
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30 CONTINUE 
X(I)=TMPX 

20 CONTINUE 
RETURN 
END 

Penalty Interface 

This modules contain the skeleton functions supplied to the mInImIzer. The 

main routine, PENSUB calls an implementation of BFGS. PENSUB also optionally 

calculates the penalty multipliers and( or) accelerates the ?olution using the Hessian. 

C******************************************************************** 
C * 
C By : Lalitesh Kumar Katragadda * 
C 
C To m~n~~ze a given function subject to a set of equality and 
C inequality Constraints Using the Penalty Function Method. 
C The library routine UNCMIN is used to solve the penalty 
C subproblems. 
C 
C User documentation : To minimize a given function read protocol 
C in FPSKEL, follow examples given and create your routine. 
C Modify 1) PENSUB calling routine in main program,change MCON;N 
C 2) Replace the function cailed IN FUNC by your own Func 
C Assume That FUNC(N,.X,O) will be called before any calls to 
C get the constraints. This gives one flexibility to 
C -set constants and optimize constraint evaluation. 
C 
C 

C 

C 
C 

C 

Interface Some of the keyboard inputs have been.suppressed 
for convenience, The user can (un)comment them any 
time if (repeated)no change is required. To comment 
a input, comment both prompt & read statement 
& make sure default is defined (or use values given 



C 

C 
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by the default routine, see UNCMIN user's guide. 

C******************************************************************** 

C******************************************************************** 
C CHANGES 
C 

1) DLT = STEPMX 
2) TYPSIZ = INITIAL X - Does not work 

C 

FUNCTION FUNC (N,X,I) 
IMPLICIT NONE 
INTEGER N,I,MCON,IFCNT,IGCNT~IHCNT 
DOUBLE PRECISION X(N),SIGMA,FUNC,FPLANET,LAMBDA(10) 
COMMON/PFCOUNT/IFCNT,IGCNT,IHCNT 
COMMON/PENAL1/SIGMA,LAMBDA,MCON 

IF ((I.LT.O).OR.(I.GT.MCON)) THEN" 
WRITE(*,*) '**********E R R 0 R**********' 
WRITE(*,*)' IMPROPER CONSTRAINT NUMBER, FUNC,' ,MCON 
STOP 

ENDIF 
FUNC = FPLANET (N,X,I) 

RETURN 
END 

SUBROUTINE FPSKEL (N,X",F) 
IMPLICIT NONE 

C Skeleton Routine for formulating a Constrained Minimization 
C problem as a Penalty Problem. 
C 

C 

C 
C 

C 

Expected Name 
MCON 
SIGMA 

FUNC : FUNC(X,N,I), function to be optimized. 
No. of Constraints. 
Constraint weight. 

INTEGER IFCNT,IGCNT,IHCNT,MCON,I,N 
DOUBLE PRECISION X(N) ,F ,SIGMA", LAMBDA(10) ,FUNC, TEMP,C 
COMMON/PFCOUNT /IFCNT, IGCNT ,"IHCNT 
COMMON/PENAL1/SIGMA,LAMBDA,MCON 

C FUNC : Function to be Optimized. 
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C 1) If equality constr. => Value returned. 
C 2) If inequu Constr => 0 or Value if not satisfied. 
C Function Value FUNC(X,N,O), Gives Function value. 
C 
C 
C 

C 

C 

C 

Constraint 
MCON 
SIGMA 

F=O.O 
TEMP= FUNC(N,X,O) 
DO 10 I=l,MCON 

FUNC(X,N,I), Gives Ith Constraint. 
No. of Constraint equations 
Penalty weight. 

C= FUNC(N,X,I) 
F=F+C**2 
TEMP=TEMP-C*LAMBDA(I) 

10 CONTINUE 
F= TEMP + SIGMA*0.5*F 
IFCNT=IFCNT+1 
RETURN 
END 

SUBROUTINE PENSUB(N;M1,X,FPLS,GPLS,DIGITS, 
+ GRADTL, STEPTL, STEPMX, CNORM,ITER,ITNLIM,START) 

IMPLICIT NONE 

C Refer to Uncmin Handout for explanation 
C of variables. 'Rest explained by input prompts. 
C 

C CNORM Norm of the constraint vector C 
C SINC Factor by Which Sigma is incremented each iteration. 
C N No. of variables. 
C M1,MCON Total No. of Constraints 
C 

LOGICAL UPDATE, START 
INTEGER ITNLIM,N,M,I,LINMETH,HESMETH, 

$ IFCNT,IGCNT,IHCNT,METHOD,IEXP,MSG,NDIGIT,ILIM, 
$ IAGFLG,IAHFLG,IPR,ITRMCD, M1,MCON, ITER, 
$ IFCN, ICASE,J, DIGITS, NIN,NOUT, 
$ FNTYPE,CONTYPE,PARTYPE,PINDEX,FMETHOD 



PARAMETER (M=40) 
INTEGER IPVT(M) 
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CHARACTER*15 LINC(3),HESC(0:1),FNAME 
DOUBLE PRECISION X(N),TYPSIZ(M) ,XPLS(M),GPLS(N), 

$ A(M,M), WRK(M, 8) ,GRADTL, STEPTL, S'TEPMX, FSCALE ,DLT ,DUM, 
$ STP,FPLS,Yl(100),Y2(100),Y3(100) ,SINC,SIGMA, 
$ CONTL, FUNC, CNORM, F, TEMP, TMP2, 
$ RNOISE,RCOND, DELTA,LAMBDA(10) 

EXTERNAL FCN 
COMMON Yl, Y2, Y3 
COMMON /PFCOUNT/ IFCNT, IGCNT, IHCNT 
COMMON /PENAL1/SIGMA,LAMBDA,MCON 
COMMON /PSUB1/IFCN 
COMMON /LOCALPN/ TYPSIZ,LINMETH,HESMETH, UPDATE 
COMMON /CINOUT / NIN,NOUT 
COMMON /FNSPECS/ FNTYPE,CONTYPE,PARTYPE:PINDEX,FMETHOD 
DATA LINC/'LINE' SEARCH' ,'DOG STEP' ,'HOOKSTEP'/ 
DATA HESC/'NEWTONS METHOD' ,'BFGS METHOD'/ 
EXTERNAL D1FCN,D2FCN,FPSKEL,FUNC 

MCON=Ml 
IF (START.EQ .. TRUE.) THEN 

START = .FALSE. 
DO 11 I = l,N 

TYPSIZ(I) = 0.0 
11 CONTINUE 

Write(NOUT,*) 'Give Global Step Strat 1) Lin Srch. ' 
+ '2)'Dogleg 3) Hookstep' 

READ (NIN,*) LINMETH 

Write(NOUT,*) 'Give Hessian method 0) Finite Diff, 1) BFGS' 
READ (NIN,*) HESMETH 

WRITE(NOUT,*)'Sigrna w~ll be increased by SINC each iteration' 
Write (NOUT,*) 'Give Starting .SIGMA value & SINC : ' 
READ (NIN,*) SIGMA, SINC 

. WRITE(NOUT,*) 'Give output file name in quotes 
READ (NIN,*) FNAME 
WRITE(NOUT,*) 'ACCELERATE? (TRUE/FALSE) , 



READ (NIN,*) UPDATE 
DO 15 I=l,MCON 

LAMBDA(I)=O.O 
15 CONTINUE 
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C Set Update (.true.) => acceleration step used else skippped. 
OPEN(UNIT=l,FILE=FNAME,STATUS='UNKNOWN') 

ENDIF 

WRITE (NOUT, 900) 
C ADJUST INITIAL VALUES OF X 
C 

C 

CALL DFAULT(N, X, XPLS, FSCALE, METHOD, IEXP, MSG, 
+ NDIGIT, ILIM, IAGFLG, IAHFLG, IPR, DLT, DUM, 
+ STP, DUM) 

IF( STEPMX .GT. O.ODO) STP = STEPMX 
METHOD = LINMETH 
IAGFLG = 0 
IAHFLG = 0 
IEXP = HESMETH 
ILIM = ITNLIM 
Tl = SECOND(DUM) 
NDIGIT=DIGITS 
DLT=STEPMX 
CALL OPTIF9(M, N, X, FPSKEL, 

+ D1FCN, D2FCN, TYPSIZ, FSCALE, 
+ METHOD, IEXP, MSG, NDI~IT, ILIM, IAGFLG, IAHFLG, 
+ IPR, DLT,· GRADTL, STP, STEPTL, 
+ XPLS, FPLS, GPLS, ITRMCD, A, WRK) 

IF ((ITRMCD.NE.l) . AND. (ITRMCD.NE.2)) THEN 
WRITE(*,*)'************ ERROR **********', itrrncd,rnsg 

ENDIF 
WRITE (NOUT, 901) IFCNT, IGCNT, IHCNT 
WRITE(l,*) 
WRITE(l,902) LINC(METHOD), 

';' ,HESC(IEXP) " NEVAL= , ,IFCNT 
DO 20 I=l,N 

X(I)=XPLS(I) 
XPLS(I)=O.O 
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20 CONTINUE 
C XPLS IS THE RIGHT HAND SIDE FOR ACCEL. EQUATION 

CNORM=O.O 
F = FUNC(N,X,O) 
WRlTE(l,*) I F = I,F 
DO 10 I=l,MCON 

TEMP = FUNC(N,X,I) 
IF (FMETHOD.EQ.2) THEN 

LAMBDA(I)=LAMBDA(I)-SIGMA*TEMP 
ELSE 

LAMBDA(I)=O.O 
ENDIF 
WRITE(l,*) I C(X) ',1, ':',TEMP 
XPLS(N+I)= TEMP 
CNORM=MAX(CNORM,ABS(TEMP)) 

10 CONTINUE 
C CNORM=CNORM**0.5 

ITER=ITER+1 
WRITE (1,903) ITER, SIGMA, CNORM 
WRITE (1,*) (X(I), I=l,N) 
IF (UPDATE.EQ .. TRUE.) THEN 

C********** START ACCELERATION, XPLS CONTAINS THE RIGHT HAND SIDE. 

C 

C 

C 

C 

RNOISE=1.0E-10 
DO 30 J=l,N 

delta=sqrt(rnoise)*Max(x(j),l./Typsiz(j)) 
IFCN=O 
ICASE=l 
TEMP=X(J) 
X(J)=X(J)+DELTA 
. .. INITIALIZE BY CALLING FOR IFCN=O 
CALL FCN (N,X,FPLS) 
Set up -A,-A(t) 
DO 40 I=l,MCON 

IFCN=I 
CALL FCN (N,X,FPLS) 
TMP2=(FPLS-XPLS(N+I))/DELTA 
... Transpose(A) 
A(N+I,J)= -TMP2 
... Set up A 
A(J,N+I)=-TMP2 
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30 

110 

120 

CONTINUE 
X(J)=TEMP 

CONTINUE 
IFCN=O 
FPLS=O.O 
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DO 110 I=1,MCON 
FPLS=FPLS+XPLS(N+I)**2 

CONTINUE 
FPLS= F + SIGMA*0.5*FPLS 

DO 120 I=1,N 
Y1(I)=(rnoise**(1./3.))*Max(x(I),1./Typsiz(I)) 
TEMP=X(I) 
X(I)=X(I)+Y1(I) 
CALL FPSKEL (n,X, Y2 (I) ) 
X(I)=TEMP 

CONTINUE 
DO 130 I=1,N 

TEMP=X(I) 
X(I)=X(I)+Y1(I) 
DO 140 J=1,I 

TMP2=X(J) 
X(J)=X(J)+Y1(J) 
CALL FPSKEL(N,X,F) 
A(I,J)=«FPLS-Y2(I))+(F-Y2(J)))!(Y1(I)+Y1(J)) 
X(J)=TMP2 

140. CONTINUE 
X(I)=TEMP 

130 CONTINUE 

C lo~er triang hessian in place 

60 
50 

DO 50 -1;=1,N 
DO 60 J=I+1,N 

A(I,J)=A(J,I) 
CONTINUE 

CONTINUE 

DO 80 I=N+1,N+MCON 
DO 80 J=N+1,N+MCON 



C 

C 

C 

80 

70 

90 

91 

RETURN 

A(I,J)=O.O 
CONTINUE 
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HESSIAN IN PLACE 
SOLVE TO GET UPDATE 
CALL DGECO(A,M,N+MCON,IPVT,RCOND,Yl) 
CALL DGESL(A,M,N+MCON,IPVT,XPLS,O) 
DO 70 I=l,N 

X(I)=X(I)+XPLS(I) 
CONTINUE 
write(NOUT,*) 'SOLVER FINISHED' 
CNORM=O.O 
F = FUNC(N,X,O) 
DO 90 I=l,MCON 

TEMP = FUNC(N,X,I) 
CNORM=CNORM+TEMP*TEMP 

CONTINUE 
WRITE(l,*) 'UPDATE, F= , ,F,' ;F*= , ,F+0.5*CNORM*SIGMA 
WRITE(l,*) (X(I), I=l,N) 
cnorm=O.O 
do 91 i=l,rncon 

ternp=func(n,x, i) 
cnorm=rnax(cnorrn,abs(ternp)) 

continue 
CNORM=CNORM**0.5 

WRITE (1,*) 'CNORM= , ,CNORM 
WRItE(l,*) 

ENDIF 
SIGMA=SIGMA*SINC 

900 'FORMAT(lHl) 
901 FORMAT(23H OPTEST 

+ 23H OPTEST 
+ 23H OPTEST 

#FCN EVAL = , 110/ 
GRAD EVAL = , 110/ 
HESN EVAL = 110) 

C. + 23H OPTEST EXEC TIME = , lP, D12.4, 4H SEC) 
902 FORMAT (lX,All,Al,A15,A8,I4) 
903 FORMAT (lX,I3,'th Iter, Sigma =',Fl1.2, 

+ '; Norrn(C) = , ,f16. 9) 
904 FORMAT (5(lX,F15.8)) 
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SUBROUTINE D1FCN 
END 

SUBROUTINE D2FCN 
END 

SUBROUTINE FCN (N/X,F) 
IMPLICIT NONE 
INTEGER N,I 
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DOUBLE PRECISION X(N),F,FUNC 
COMMON /PSUB1/1 
IF (I.EQ.O) THEN 

CALL FPSKEL(N,X,F) 
ELSE 

F = FUNC(N ,'X, I) 
ENDIF 
RETURN 
END 

FORTRAN Interface for the GA 

This routine sets up calls to the genetic algorithm written in C. This routine 

can also determine the average performance over a specified number of GA runs and 

output the history. 

C******************************************************************** 
C FORTRAN INTERFACE FOR GENETIC ALGORITHM 
C************************************~******************************* 

SUBROUTINE FSGA(X,BOUNDS,OPFITS,POPSIZ, NELITE, MAXGEN, 
+ NEVAL,PCROSS, PMUT, RANDSEED, NODUP, 
+ SCALE, SCMAX, SCMIN, FILENAME,NRUN,MCON1) 
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IMPLICIT NONE 
INTEGER IFCNT, IGCNT, IHCNT, TFCNT,NEVAL,STATSON, NODUP, 

+ MAXN, MAXOPS, I, MCON,MCON1 
INTEGER POPSIZ, MAXGEN, NELITE, SCALE, NRUN, TOTALF, TOTALIF 
PARAMETER (MAXN=40, MAXOPS=20) 
DOUBLE PRECISION PCROSS, PMUT, RAND SEED , SCMAX, SCMIN, 

+ HISTORY(0:5000),HISTORY2(0:5000),SIGMA,LAMBDA(10) , 
+ BOUNDS(0:3*MAXN),OPFITS(0:3*MAXOPS),GPLANET,X(1) 

CHARACTER*20 FILENAME 
COMMON/MVCOUNT/TFCNT 
COMMON/COUNT/IFCNT,IGCNT,IHCNT 
COMMON/PENAL1/SIGMA,LAMBDA,MGON 
EXTERNAL GPLANET 

MCON=MCON1 
DO 10 I=l,NRUN 

HISTORY(O)=FLOAT(I) 
HISTORY2(0)=0.0 
IF (I.GE.NRUN) THEN 

STATSON=2 
ELSE 

STATSON=l 
ENDIF 
CALL SGA (GPLANET,X,BOUNDS,OPFITS, 

+ POPSlZ, NELlTE, MAXGEN, NEVAL, 
+ PCROSS, PMUT, RANDSEED, 
+ NODUP, SCALE, SCMAX, SCMI~, STATSON, 
+ HISTORY, HISTORY2, FILENAME) 

RANDSEED=RANDSEED+1.E-5*2.·**10 
TOTALF=TOTALF+TFCNT 
TOTALIF=TOTALlF+IFCNT 

10 CONTINUE 
Write(*,*)· 'Runs completed, avg performance TFN, IFN:', 

+ FLOAT(TOTALF)/NRUN,FLOAT(TOTALIF)/NRUN 
RETURN 
END 



SUBROUTINE GAPLANT (F,X,N) 
IMPLICIT NONE 
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INTEGER N,I,IFCNT,TFCNT,MCON 
DOUBLE PRECISION X(N), F, FPLANET,sigma,larnbda(10) 
COMMON/COUNT/IFCNT 
COMMON/MVCOUNT/TFCNT 
EXTERNAL FPLANET 
COMMON/PENAL1/SIGMA,LAMBDA,MCON 

F=-FPLANET(N,X,O) 
do 10 I=l,MCON 

F=F-ABS(FPLANET(N,X,I)) 
10 CONTINUE 

C WRlTE(*,*) 'EARTH MOON---) ',F,' ',IFCNT,' ',TFCNT 
RETURN 
END 

Integration Module 

This is an implementation of Adams multivalue method described by Gear [10]. 

This implementation can also solve for higher order equations. A set of routines 

to store and efficiently interpolate the solution history are also included. A sam-

pIe output routine explains the calling sequences. The output routine supplied to 

MULTIVAL is called at each successful step. 

C--------------------------------------------------------------------
C NUMERICAL INTEGRATION MODULE 
C--------------------------------------------------------------------

SUBROUTINE GETMVAL(K,P,L) 
IMPLICIT NONE 
INTEGER K,P,I,J 
DOUBLE PRECISION SL(3,7,7+4),L(K+4) 
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LOGICAL 5TART 
COMMON /MVLOCAL/5L,START 

C K ORDER OF THE METHOD =>K+1 COEFF5 
C CODE THE DERIVATIVE ORDER OF THE METHOD 
C P=l=> F=Y', 2=>F=Y" ... F=Y-(P) 
C IF 5TART I5 TRUE L I5 NOT INITIALIZED, 5L I5 5ET UP. 

C 

IF (5TART.EQ .. TRUE.) THEN 
... INITIALIZE IF FIR5T TIME. 

5L(l,l,l)=1. 
5L(l,2,l)=0.5 
SL(l,2,3)=0.5 
5L(l,3,l)=5./12. 
5L(l,3,3)=3./4. 
5L(l,3,4)=1./6. 
5L(l,4,l)=3./8. 
5L(l,4,3)=11./12. 
5L(l,4,4)=1./3. 
5L(l,4,5)=1./24. 
5L(l,5,l)=251./720. 
5L(l,5,3)=25./24. 
5L(l,5,4)=35./72. 
5L (1,5,5) =5./ 48. 
5L(1,5,6)=1/120. 
SL(l,6,l)=95./288 .. 
5L(l,6,3)=137./120. 
5L(l,6,4)=5./8 .. 
5L(l,6,5)=17./96. 
5L(l,6,6)=1./40. 
5L(l,6,7)=1./720. 
5L(l,7,l)=19087./60480. 
5L(l,7,3)=49./40. 
5L(l,7,4)=203./270. 
5L(l,7,5)=49./192. 
5L(l,7,6)=7./144 .. 
5L(l,7,7)=7./1440. 
5L (1,7,8) =1. /5040. 

C veriry below values. 
5L(2,2,l)=1.0 
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SL(2,2,2)=1.0 
SL(2,3,1)=1.0007 
SL(2,3, 2)=5./6. 
SL(2,3,4)=1./3. 
SL(2,4,1)=1./6. 
SL(2,4 ,·2) =3./4. 
SL(2,4,4)=.5 
SL(2,4,5)=1./12. 
SL(2,5,1)=19./20. 
SL(2,5,2)=251./360. 
SL(2,5,4)=11./18. 
SL(2,5,5)=1./6. 
SL(2,5,6)=1./60. 
SL(2,6,1)=3./20. 
SL(2,6,2)=665./1008; 
SL(2,6,4)=25./36. 
SL(2,6,5)=35./144. 
SL(2,6,6)=1./24. 
SL(2,6,7)=1./360. 
SL(2,7,1)=863./6048. 
SL(2,7,2)=19087./30240. 
SL(2,7,4)=137./180. 
SL(2,7,5)=5./16. 
SL(2,7,6)=17./240. 
SL(2,7,7)=1./120. 
~L(2,7,8)=1./2520. 

SL(3,4,1)=.25 
SL(3,4,2)=.5 
SL(3,4,3)=1.25 
SL(3,4,5)=.25 
SL(3,5,1)=3./80. 
SL(3,5,2)=19./40. 
SL (3,5·,3) =9. /8. 
SL(3,5,5)=3./8. 
SL(3,5,6)=1./20 . 

.. . INITIALIZE ERROR CONSTANTS 
SL(1,1,3)=2.0 
SL(1,1,4)=12. 
SL (1,1 ,5) = 1. 
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SL(l,2,4)=12. 
SL(l,2,5)=24. 
SL(l,2,6)=1. 
SL(l,3,5)=24. 
SL(l,3,6)=37.89 
SL(l,3,7)=2. 
SL(l,4,6)=37.89 
SL(l,4,7)=53.333 
SL(l,4,8)=1. 
SL(l,5,7)=53.333· 
SL(l,5,8)=70.08 
SL(l,5,9)=0.3157 
SL(l,6,8)=70.08 
SL(l,6,9)=87.97 
SL(l,6,10)=0.07407 
SL(1,7,9)=87.97 
SL(t,7,10)=1. 
SL(l,7,ll)=0.0139 

C VERFIY BELOW VALUES. 
SL(2,l,3)=1. 
SL(2,l,4)=12. 
SL(2,l,5)=1. 
SL(2,2,4)=12. 

C 2,2,5 IS 1/0.0, 6000 TAKEN AS KLUDGE. 
SL (2,2, 5r=6000. 
SL(2,2,6)=0.5 

. SL(2,3, 5) =6000. 
SL(2,3,6)=240. 
SL(2,3,7)=2.0 
SL(2,4,6)=240. 
SL(2~4,7)=240. 

SL(2,4,8)=250. 
SL(2,5,7)=240. 
SL(2,5,8)=273.66516. 
SL(2,5,9)=2.0 
SL(2,6,8)=273.66516 
SL(2,6,9)=318.31579 
SL(2,6,10)=0.333333 
SL(2,7,9)=318.31579 



C 

C 

C 

C 
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SL(2,7,10)=369.1932 
SL(2,7,11)=0.0542986 

DO 10 1=1,3 
DO 10 J=1,7 

SL(I,J,I+1)=1.0 
START=.FALSE. 
RETURN 

ENDIF 

.. . Db INPUT ERROR CHECK 
IF (K.LT.P) THEN 

ADD CONSTS FOR K=P+1,CHECK CONSTS, REFER GEARS COMMENT 
WRITE(*,*) "NO. OF VALUES (K) INSUFFECIENT K>=P' 
STOP 

ELSEIF «P.LT.1) .OR. (P.GT'.3» THEN 
WRITE(*,*) 'UNAVAILABLE DERIVATIVE ORDER IN MULTIVAL' 
STOP 

ELSE IF ««P.EQ.1) .OR.(P.EQ.2».AND.(K.GT.7».OR. 
+ «P.EQ.3).AND.(K.GT.5») THEN 

WRITE(*,*) 'UNAVAILABLE ORDER IN MULTIVAL' 
STOP 

ENDIF 

... INITIALIZE ARRAY L AND ERROR CONSTANTS 1 .. K+1 CORRECTORS 
K+2 .. K+4 : ERROR EVALUATION COEFFS. 

DO 20 I=1,K+4 
L(I)=SL(P,K,I) 

CONTINUE 

RETURN 
END 

SUBROUTINE MVAL (N,MAX1,Y,T,B,H,HMAX,HMIN,EPS,K,P,F,OUT,FAIL) 

C******************************************************************** 
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C AUTHOR: LALITESH KUMAR KATRAGADDA. DATE: JUNE 11, 91 * 
C * 
C ROUTINE TO SOLVE A SET OF N ORDINARY DIFFERENTIAL EQUATIONS* 
C OF PTH ORDER, WITHIN AN ACCURACY OF EPS, USING VARIABLE STEP,* 
CORDER MULTIVALUE METHOD. * 
C RECOMMENDED INITIALORDER=P, SIZE·H:SMALL(EPS) * 
C******************************************************************** 
C 

C 
C 

C 

C 

C 

C 

C 

C 

C 

N : NO OF.Y'S, NC : NO OF CORRECTION STEPS 
T,B : INITIAL AND FINAL TIME 
H,HMAX,HMIN : INITIAL, MAX AND MIN STEP SIZES. 
K STARTING ORDER, THAT MANY DERIVATIVES REQUIRED. 
MAX1: FIRST DIM FOR Y, GIVES MAX VECTOR SIZE. 
P DERIVATIVE ORDER, >= 1 

NO. OF CORRECTORS. 

* 
* 

'* 

* 
* 
* 
* NC 

L CORRECTOR COEFF ARRAY(INCLUDEs ERROR EVALUATION COEFFS)* 
F 
OUT 

FUNCTION, GIVES USER SUPPLIED DERIVATIVES. * 
OUTPUT ROUTINE CALLED AT EACH STEP. * 

C IMAX: LOCAL MAX., >= DIMENSIONS OF MAX AND SECOND Y DIMENSION. * 
C DMAX: MAX DERIVATIVE ORDER, MAX VALUE OF P POSSIBLE. * 
C DYP : LOCAL l-D ARRAY TO STORE PREDICTOR PTH DERIVS. * 
C 

C 

C 

C 

C 

C 

C 

C 

C 

DY LOCAL l-D ARRAY TO STORE CURRENT DERIVATIVES. 
YMAX: l-D ARRAY OF SCALING FACTORS FOR ERROR CHECKS. 
EPS : APPROX ERROR OVER THE WHOLE INTERVAL. 
ERR : MAX LOCAL TRUNCATION ERROR PERMITTED= EPS*H/(B-To) 
ER, ERUP., ERDN : CEOFFECIENTS FOR STEP SIZE ESTIMATION 
EINT: REL INTERVAL ERROR = EPS/(B-To) 
EMAX: MAX LOCAL ERROR. 
ALPHA: FACTOR BY WHICH H IS DIVIDED: 

. FAIL : ERROR CODE. 0 IF SUCCESSFUL. 

* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 

C TO DO : 
C ASSOCIATE ZERO WITH MEPS. 
C ASSOCIATE OTHER CONSTANTS HMIN, CONVERGENCE WITH MEPS 

IMPLICIT NONE 
INTEGER N,K,P,I,J,M,NC,MAX1,FACTORIAL,IMAX,NMAX, 

+ NSTEP,KMAX, FAIL,KNEW,NFAIL 
PARAMETER (NMAX=40) 



PARAMETER (IMAX=15) 
PARAMETER (KMAX=7) . 
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DOUBLE PRECISION Y(MAX1,KMAX+1),L(IMAX) ,T,B,H,HMAX,HMIN,EPS, 
+ DYP(NMAX) ,DY(NMAX) ,G(NMAX) ,FACP, STOREL(3,7,7+4), 
+ ERR, ER,ERUP,ERDN, BND, ALPHA, YMAX(NMAX), EINT, EMAX, 
+ TALPHA,ALMIN,AL1, NK,NKDN,NKUP, HNEW,OLDDYP(NMAX), 
+ YOLD(NMAX,IMAX),TOLD,TF 

PARAMETER (ALMIN=1.E-2) 
LOGICAL START, CNVRG, EXIT 
COMMON /MVLOCAL/STOREL,START 
COMMON /MVOUTL/TF,ERR 
EXTERNAL OUT,F 

. TF=B 
IF (B-T.LT.O.O) then 

WRlTE(*,*) 'INValid time input' 
FAIL = -6 
return 

endif 
START=.TRUE. 
CALL GETMVAL (K,P,L) 
DO 10 I=l,N 

10 YMAX(I)=l. 
C EINT=EPS/(B-T) 

EINT=EPS 
ALPHA=1.0 
KNEW=K 
K=K-1 
ERR=EINT 

C ERR=EINT*H 

C 

NSTEP=KNEW+1 
EXIT = . FALSE .. 

INITIALIZATION COMPLETE, BEGIN MAIN LOOP. 

DO WHILE (1.LT.2) 

FACP=H**P/FLOAT(FACTORIAL(P» 
IF (KNEW.NE.K) THEN 

K=KNEW 
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C 

20 
40 
30 

C. 

C 
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CALL GETMVAL(K,P,L) 
ER = (L(K+2)*ERR) 
ERUP = (L(K+3)*ERR) 
ERDN = (L(K+4)*ERR) 
NK = 1./FLOAT(K+1) 
NKUP=· 1. /FLOAT(K+2) 
NKDN= 1./FLOAT(K) 
BND = ERR*.5*NKUP/FLOAT(N) 
IF (ERDN.EQ.O) THEN 

WRITE(*,*) 'ERROR OR STEP SIZE TOO SMALL' 
WRITE(*,*) 'k,p,err,1(k+4) = ',k,p,err,l(k+4) 
FAIL=-5 
RETURN 

ENDIF 
ENDIF 

FAIL=O 

DO WHILE ((NSTEP.GT.O) .AND.(FAIL.GE.O» 
NSTEP=NSTEP-1 
TOLD=T 
T=T+H 
DO 170 I=l,N 

DO 170 J=l,K+1 
YOLD(I,j)=Y(I,J). 

... GET PREDICTOR BY PASCAL'S TRIANGLE 
'DO 30 J=2,K+1 

DO 40 M=K,J-1,-1 
DO 20 I=l,N 

Y(I,M)=Y(I,M)+Y(I,M+1) 
CONTINUE 

CONTINUE 
CONTINUE 

. .. SAVE PREDICTOR DERVIATIVES FOR ERROR EVALUATION. 
DO 70 I=l,N 

OLDDYP(I)=DYF(I) 
DYP(I)=Y(I,P+1) 
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C 
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80 

c 

C 

100 

90 

c 
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CONTINUE 

CNVRG=.FALSE. 
NC=O 
DO WHILE «CNVRG .EQ. :FALSE.) .AND. (NC .LT. 3» 

CALL F(P,MAX1,T,Y,DY) 
... DERIVATIVES EVALUATED, APPLY CORRECTOR. 

CNVRG=.TRUE. 
DO 80 I=1,N 

DY(I)=FACP*DY(I) 
G(I) =DY(I)-Y(I,P+1) 
CNVRG= «CNVRG. EQ .. TRUE. ) . AND. 

(ABS(G(I».LE.(BND*YMAX(I»» 
DO 60 J=1,P 

.G IS CORRECTOR REFERRED IN GEAR 
Y(I,J)=Y(I,J)+G(I)*L(J) 

Y(I,P+1)=DY(I) 
CONTINUE 
NC=NC+1 . 

END DO 
IF (CNVRG.EQ .. FALSE.) THEN 

ELSE 

write(*,*) 'convergence fails' 
ALPHA=4.0 
AL1=0.25 
FAIL=-2 

... COMPLETE CORRECTION 
EMAX=O.O 
DO 90 I=1,N 

DYP(I)=Y(I,P~1)-DYP(I) 

DO 100 J=P+2,k+1 
Y(I,J)=Y(I,J)+DYP(I)*L(J) 

EMAX=MAX(EMAX,ABS(DYP(I)/YMAX(I») 
CONTINUE 

IF (EMAX.GT.ER) THEN 
FAIL=-1 
write(*,*) 'step fails' 

ELSE 



+ 

180 

120 

FAIL=O 
NFAIL=O 
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IF (B-T.LE.EPS/l000.) then 
EXIT = .. TRUE . 

ENDIF 
CALL OUT(MAX1,K,N,Y,T,EXIT) 
IF (EXIT.EQ .. TRUE.) RETURN 

ENOIF 
ENOIF 

END DO 

IF (FAIL.LT.O) THEN 
NFAIL=NFAIL+l 
IF (H.LT.HMIN*1.0001) THEN 

WRITE(*,*) 'FATAL ERROR IN MULTI VAL , 
IF (FAIL.EQ.-l) THEN 

'WRITE(*,*)'T,H=' ,T,H, 
'DIVERGENCE, EPS TOO SMALL' 

ELSE 
WRITE(*,*) 'ERROR - CORRECTOR INCONVERGANT' 

ENOIF 
RETURN 

ENOIF 
DO 180 I=l,N 

DO 180 J=1,K+1 
Y(I,J)=YOLO(I,J) 

T=TOLO 
ENDIF 

KNEW=K 
IF (FAIL.GE.-l) THEN 

ALPHA~ 1.2*(EMAX/ER)**NK 
AL1=1./ALPHA 
IF «K.LT.KMAX).ANO.(FAIL.EQ.O» THEN 

EMAX=O.O 
DO 120 I=l,N 
EMAX=MAX(EMAX,ABS«OYP(I)-OLOOYP(I»/YMAX(I») 
TALPHA=1.4*(EMAX/ERUP)**NKUP 
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IF (TALPHA.LT.ALPHA) THEN 
KNEW=K+1 
ALPHA=TALPHA 

ENDIF 
ENDIF 
IF (FAIL.EQ.-1) THEN 

DO 190 I=l,N 
DYP(I)=OLDDYF(I) 

CONTINUE 
ENDIF 

IF (K.GT.P) THEN 
EMAX=O.O 
DO 130 I=l,N 

EMAX= MAX(EMAX,ABS(Y(I,K+1)/YMAX(I))) 
TALPHA=1.3*(EMAX/ERDN)**NKDN 
IF (TALPHA.LT.ALPHA) THEN 

KNEW=K-1 
ALPHA=TALPHA 

ENDIF 
ENDIF 

ENDIF 

IF ((NFAIL.GT.2) .AND.(FAIL.EQ.-1» THEN 
WRITE(*,*) 'MVAL,NF,K,KN,AL' ,NFAIL,K,KNEW,ALPHA 

ALPHA=MAX(ALPHA,2.0DO) 
AL1=0.25 

ENDIF 

ALPHA = MAX(ALPHA, ALMIN) 
ALPHA=l./ALPHA 
HNEW=H*ALPHA 

IF (HNEW.GT.HMAX) THEN 
HNEW=HMAX 
ALPHA=HNEW/H 

ENDIF 

IF (HNEW.LT.HMIN) then 
HNEW=HMIN 
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END DO 
RETURN 
END 

ALPHA=HNEW/H 
ENDIF 
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IF «(ALPHA-1.).GT.0.1).OR. 
«ALPHA.LT.1.0) .AND.(AL1.LT.0.95») THEN 

ELSE 
ALPHA=1.0 
KNEW=K 
HNEW=H 

ENDIF 

IF (hnew*(knew+l)+t.gt.b) THEN 
HNEW = (B-T)/float(KNEW+1) 
ALPHA = HNEW/H 

ENDIF 

IF (ALPHA.NE.1.0) THEN 
H=HNEW 
TALPHA=ALPHA 
DO 150 J=2,K+1 

DO 160 I=l,N 
Y(I,J)=Y(I,J)*TALPHA 

TALPHA=TALPHA*ALPHA 
CONTINUE 

ENDIF 
NSTEP=KNEW+1 

IF (KNEW.GT.K) THEN 
DO 140 I=l,N 
'. Y(I,KNEW+1)= DYP(I)*L(K+1)/FLOAT(K+1)*TALPHA 

CONTINUE 
ENDIF 

FUNCTION FACTORIAL(P) 



IMPLICIT NONE 
INTEGER FACTORIAL,TEMP,P 
TEMP=P 
FACTORIAL=l 
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DO 10 TEMP = 2,P,1 
FACTORIAL=FACTORIAL*TEMP 

10 CONTINUE 
RETURN 

END 

C***********SAMPLE OUTPUT ROUTINE 
c$$$ 

********************************** 

c$$$ 
c$$$ 
c$$$ 
c$$$ 
c$$$ 
c$$$ 
c$$$ 
c$$$ 
c$$$C 
c$$$ 
c$$$ 
c$$$ 
c$$$ 
c$$$10 
c$$$ 
c$$$ 
c$$$ 
c$$$ 
c$$$ 
c$$$ 

SUBROUTINE OUTDAT .(MAX,K,N,Y,T,EXIT) 
IMPLICIT NONE 
INTEGER SKIP,NSKIP,U1,U2,N;I,K,MAX,TSTEP 
DOUBLE PRECISION Y(MAX,K+1),T 
LOGICAL EXIT 
COMMON /OUTC/SKIP,NSKIP,U1,U2,TSTEP 

TSTEP=TSTEP+1 
CALL STOREVAL(MAX,K,N,Y,T) 

IF ((SKIP.GE.NSKIP).OR.(EXIT» THEN 
SKIP=l 
WRITE(U1,10) T,(Y(I,l) ,I=l,N) 
WRITE(U2,10) T, (Y(I ,1) , I=l ,N) 
FORMAT (5X,G13.6,3X,100(G17.9,2X» 

ELSE 
SKIP=SKIP+1 

ENDIF 
RETURN 
END 

C~--------------------------------~-------------~--------------------
C MODULES FOR STORING, RETRIEVING INTERPOLATIOn DATA 
C-------------------------------------~------------------------------

SUBROUTINE STOREINIT (NN,MAXY,CODE) 
IMPLICIT NONE 
INTEGER XMAX,TMAX, N,MAX,NN,MAXY, NSTEP, CODE 



C 

C 

C 

C 

C 

C 

C 

C 

C 

PARAMETER (XMAX=40000) 
PARAMETER (TMAX=5000) 
INTEGER TI(0:TMAX,3), TEMP 
DOUBLE PRECISION X(XMAX) 

liO 

COMMON /HISTORY/ X,TI,NSTEP,N,MAX,TEMP 

XMAX 
TMAX 
X 
TI 

MAX SIZE OF VECTOR= N*TMAX*(AVGK+1) 
MAX NO. OF TIME STEPS ANTICIPATED 
1-D ARRAY STORING THE TRAJECTORY HISTORY 
ARRAY CONTAINING TIME HISTORY 

IF (CODE.EQ.O) THEN 
N=NN 
MAX=MAXY 
NSTEP=O 
TI(O,l)=O 
TI(0,2)=0 

.TI(0,3)=1 
X(1)=-1.D20 
TI(1,3)=2 

ELSE 
TEMP=l 
X(TI(NSTEP+1,3»=X(TI(NSTEP,3»+1.D20 

ENDIF 
RETURN. 

END 

SUBROUTINE STOREVAL (K,Y,T) 
IMPLICIT NONE 
INTEGER MAX,K,N,XMAX,TMAX, NSTEP, INDEX, I,J 
PARAMETER (XMAX=40000) 
PARAMETER (TMAX=5000) 
INTEGER TI(O:TMAX,3),TEMP 
DOUBLE PRECISION Y(MAX,K+1) ,T, X(XMAX) 
COMMON /HISTORY/ X,TI,NSTEP,N,MAX,TEMP 

XMAX 
.TMAX 
X 

TI 

MAX SIZE OF VECTOR=.N*MAXT*(AVGK+1) 
MAX NO. OF TIME STEPS ANTICIPATED 
1-D ARRAY STORING THE TRAJECTORY HISTORY 
ARRAY CONTAINING DATA ON ACCESSING X 
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C 
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(1,1) : K (order), (1,2): no. of values for Ith step 
(1,3) : Starting Index for ith step in XC) 

NSTEP=NSTEP+1 
TI(NSTEP,l)=K 
INDEX=TI(NSTEP,3) 
TEMP=INDEX 
X(INDEX)=T 
INDEX=INDEX+1 

DO 10 J=l,K+1 
DO 10 I=l,N 

X(INDEX)=Y(I,J) 
INDEX=INDEX+1 

10 CONTINUE. 
c ... set index for·start of next step. 

TI(NSTEP+l,3)=INDEX 
TI(NSTEP,2) =INDEX-TEMP 

RETURN 
END 

SUBROUTINE GETXVAL (T,Y,ND) 
IMPLICIT NONE 
INTEGER MAX,N, ND,XMAX,TMAX, TEMP, NSTEP, INDEX, I,J,K 
PARAMETER (XMAX=40000) 
PARAMETER (TMAX=5000) 
INTEGER TI(0:TMAX,3) . 
DOUBLE PRECISION Y(MAX,ND),T, X(XMAX), DT; ALPHA 
COMMON /HISTORY / X, TI, NSTEP , N°, MAX, TEMP 

IF (T.GE.X(TI(TEMP,3») THEN 
DO WHILE (T.GE.X(TI(TEMP+l,3») 

TEMP=TEMP+l 
END DO 

ELSE 
DO WHILE (T.LT.X(TI(TEMP,3») 

TEMP=TEMP-1 
END DO 

ENDIF 



C 

10 

40 

20 
30 

+ 

INDEX=TI(TEMP,3) 
K=TI(TEMP,l) 
DT=T-X(INDEX) 
IF (DT.LT.O) THEN 
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... THIS IF BLOCK to be elimnated after full testing. 
WRITE(*,*)'ERROR-IMPROPER VALUE pF TEMP OR T IN GETXVAL' 

,index 
ELSEIF (DT.LT.1.E-11) THEN 

DO 10 J=l,ND 
DO 10 I=l,N 

INDEX=INDEX+1 
Y(I,J)=XCINDEX) 

CONTINUE 
ELSE 

IF «TEMP.LT.1).OR.(TEMP.GE.NSTEP)) THEN 
WRITE(*,*) 'GETXVAL ERROR ',T,TEMP, 

+ X(1),X(TI(NSTEP,3)),NSTEP 
. IF (TEMP.EQ.NSTEP) THEN 

WRITE(*,*) 'GETXVAL WARNING, RANGE EXCEEDED, , 
ELSE 

STOP 
ENDIF 

ENDIF 

ALPHA=DT/(X(TI(TEMP+1,3))-X(INDEX)) 
INDEX=TI(TEMP+1,3) 
DO 40 I=N,l,-l 

INDEX=INDEX-1 
Y(I,l)=X(INDEX) 

CONTINUE 

DO 30 J=K,l,-l 
DO 20 I=N,l,-l 

INDEX=INDEX-1 
Y(I,l)=X(INDEX)+Y(I,l)*ALPHA 

CONTINUE 
CONTINUE 



ENDIF 
RETURN 
END 
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The Genetic Algorithm 

This algorithm implements the genetic algorithm. Each of the modules is com-

mented and separated. The comments can be better understood by referring to 

Goldberg [13]. The data structure is more comprehensive and all parameters and 

. variants are accessible through input. The specified· include files are listed below 

alongwith comments. 

/*******************************************************************/ 
/* Genetic Algorithm with interface for Real valued functions */ 
/* AUTHOR: LALITESH .KUMAR KATRAGADDA */ 
/* See Goldberg for basci data structures */ 
/*******************************************************************/ 

#include <math.h> 
#include <float.h> 
#include <stdio.h> 
#include <stdlib.h> 
#define GAmaxpop 100 
#define GAmaxstring 250 
#define GAmaxn 30 
#define GAmaxops 6 
#define rinp "Yolf" 

typedef double real; 
typedef struct { real v [GAmaxn+1] ;} vartype; 
typedef unsigned char boolean; 
typedef boolean allele; 
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typedef allele chromosome [GAmaxstring+l] ; 
/* notice that means that the index [0 .. GAmaxstring], c- pah */ 
typedef struct { 

chromosome chrom; 
vartype x; 
real 
int 

fitness,funcval; 
parentl,parent2,xsite,optype; 

} individual; 
typedef individual population [GAmaxpop+2] ; 
typedef real oparray[GAmaxops+l] ; 

population oldpop, newpop; 
int 
real 
int 

boolean 
real 

oparray 
real 

popsize, nelite, lchrom, gen, maxgen,maxeval, GAnvars; 
pcross, pmutation; 
nmutation, ncross, nf.unc, scale, noduplicate, 
noperators, ops[GAmaxops+l] ,nbits[GAmaxn+l]; 
statson,output; 
avg, max, min, sumfitness, 
scalemax, scalemin, scalesum, 
*history, *history2, 
llim[GAmaxn+l] ,rlim[GAmaxn+l] ; 

opfitness, opfitini, opfitend; 
(*objfunc)(vartype x); 

/* scale 0 (no scaling), 1 (windowing), 
2 (interpolation by increment) */ 

/* opfitness should sum to 1 */ 

#include </home/lalit/genetic/random.c> 

#include </home/lalit/genetic/utility.c> 

#include </home/lalit/genetic/interfac.c> 

#include </home/lalit/genetic/stats.c> 

#include </home/lalit/genetic/report.c> 
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#include </home/lalit/genetic/triops.c> 

#include </home/lalit/genetic/sort.c> 

#include' </home/lalit/genetic/generate.c) 

#include </home/lalit/genetic/initial.c> 

void sga_ (real (*objfunc1) (vartype x), 
real x[], real bounds[], real opfits[], 
int *popsiz1, int *nelite1, int *maxgen1, int *rnxev11, 
real *pcross1, real *pmut1, real *randseed, 

int *nodup, int *scale1, real *scmax, real *scrnin, 
int *stats1,real *hist1, real *hist2. char filenarne[10]) 

/* A Genetic Algorithm - GA - v2.0 */ 
{ FILE *out; 

int ;i,j,ngen; 
gen=O; 
j=O; 
GAnvars =bounds[O]; 
for (i=1; i<= GAnvars; i++) 

{ nbits[i] = bounds[i]; 
j = j+nbits [i] ; 
llim[i] = bounds [i+GAnvars] ; 
rlim[n = bounds [i+2*GAnvars] ; 

}; . 

if (j>GArnaxstring) 
{ printf("******ERROR, string exceeded %d %d\n",GArnaxstring,j); 

exi.t; 
}; 

noperators=opfits[O]; 
for (i=1; i<= noperators; i++) 

{ ops[i] = opfits[~]; 
opfitini[i] = opfits[i+noperators]; 
opfitend[i] = opfits[i+2*noperators];. 

}; 

objfunc=objfunc1; 
popsize = *popsiz1; 



maxgen = *maxgenl; 
maxeval= *mxevll; 
pcross = *pcrossl; 
pmutation = *pmutl; 
nelite = *nelitel; 
scale = *scalel; 
scalemax = *scmax; 
scalemin = *scmin; 
history = histi ; 
history2 = hist2; 
statson= *statsl; 
noduplicate = *nodup; 
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output= «*statsl > 1) I I (*statsl <= 0»; 
if (output) out = fopen(filename,ltwt lt ); 
initialize(out, *randseed); 
do { 

gen = gen+1; 
generationO; 
statistics(popsize, popsize-nelite, nfunc, statson, 

&max, &avg, &min, &sumfitness, newpop, 
history, history2); 

if (output) report(gen,out); 
1* first sort according to fitness upto nelite individuals *1 
sort (nelite, popsize, newpop); 
1* scale population as desired,full sorting may be required*1 
scalepop(scale,popsize,max,avg,min,sumfitness,scalemax, 

::;calemin,&scalesum, newpop); . 
setopfitness (noperators, maxeval,nfunc~ 

opfitness, opfitini ,opfitend); . 
for (i=1; i<=popsize; i++) oldpop[i]=newpop[i]; 

} 

while «gen<maxgen)&&(nfunc<maxeval»; 

if (nelite==O) sort (1, popsize, newpop); 
for (i=O;i<GAnvars; i++) x[i]=newpop[l] .x.v[i]; 
x[GAnvars]=newpop[l].funcval; 

if (statson) 
{ 

if (output) { 
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fprintf(out,"\n\n\n HISTORY\n\n") ; 
for (i=l; i<=maxeval;i++) 

fprintf(out,"%d %13.10g 
*(h1story),*(history2+i)/ 

%13.10g\n",i,*(history+i)/ 
*(history»; 

}; 

printf ("X : "); 
for (i=l;i<=GAnvars;i++) 

printf("%9.7g ",newpop[l] .x.v[i]); 
printf("%13.10g \n",newpop[l] .funcval); 

}; 

if (output) fclose(out); 
} 

/*******************************************************************/ 
/* Random Number generation Module 

including 1) advance_random, 2) warmup_random, 3) random, 
4) randomize, 5) flip, 6) rnd 

/* Global vari~bles - don't use these var names in other code */ 

real oldrand[56]; 
int jrand; 

void advance_random() 
/* create next batch of random numbers */ 
{ 

int jl; 
real new_random; 

for ( jl=l; jl<=24; jl++ ) 
{new_random = oldrand[jl] - oldrand[jl+31]; 
if (new_random < 0.0) new_random = new_random+1.0; 
oldrand[jl] = new_random; 
} 



} 
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for ( jl=25; jl<=55; jl++ ) 
{new_random = oldrand[jl] - oldrand[jl-24]; 
if (new_random < 0.0) new_random = new_random+1.0; 
oldrand[jl] = new_random; 
} 

void warmup_random (real random_seed) 
/* Get random off and runnin */ 
{ 

} 

int jl,ii; 
real new_random, prev_random; 

oldrand[55] = random_seed; 
new_random = 1.0e-9; 
prev_random = random_seed; 
for ( jl=1; jl<=54; jl++) 

{ii = (21*jl) 'l. 55; 
oldrand[ii] = new_random; 

}; 

new_random = prev_random - new_random; 
if (new_random<O.O) new_random = new_random+1.0; 
prev_random = oldrand[ii]; 

advance_random(); advance_random(); advance_random(); 
jrand=O; 

real randomO 
/* Fetch a single random number between 0.0 and 1.0 - Subtractive 

Method See Knuth, t>. (1969) J v. 2 for details */ 
{ 

} 

jrand++; 
if (jrand<55) 

{jrand=i; advance_random(); }; 
return(oldrand[jrand]) ; 



{ 

return (random(»; 
} 
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boolean flip (real probability) 
/* Flip a biased coin - tru if heads */ 
{ 

} 

if (probability==1.0) 
return(1) ; 

else 
return (random() <= probability); 

int rnd (int lo~, int high) 
/* Pick a random integer bet~een lo~ and high */ 
{ 

} 

int i; 

if (lo~ >= high) 
i = lo~; 

else 
{i = . (high-lo~+1)*random()+lo~; 
if (i>high) i=high; 

}; 

return(i); 

void randomize(real randomseed) 
/* Get seed number for random and start it up */ 
{ 

/* AUTOmate this using- ftime, milliseconds */ 
~arrnup_random(randomseed); 

} 

/* Utility Contains pause, page, repchar, skip, po~er */ 



void pause(int pauselength) 
1* p~use a while *1 

{ 

.#define maxpause 2500 
int· i,jl; 
real x; 
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for (i=1; i<=pauselength; i++) 
for (jl=1; jl<=maxpause; jl++) x=x*1.0+0.1; 

} 

void page(FILE *out) 
{fprintf(out,"\f\n\n\n"); 

} 

void repchar (FILE *out, char ch, int repcount) 
I*repeatedly write ch to output device *1 

{int j; 
for (j=1; j<=repcount; j++) 

{fputc(ch,out);} 
} 

void skip (FILE *out, int skipcount) 
1* Skip Skipcount lines on device out *1 

{int j; 
for (j=1.; j<=skipcount; j++, fprintf(out,l/n"));} 

real power (real x, real y) 
1* Raise x to the yth power *1 

{return(exp(y*log(x)));} 

1*******************************************************************/ 
1* INterface module : contains objfun~, decode */ 
1* change these for different problems *1 

real goldberg_ (vartype x) 
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/* Fitness function f(x)=x**n */ 
/* lower lim: 0.0, ul : 1.0, 30 bits */ 

{ 

} 

nfunc++; 
return(power(x.v[l] ,10»; 

real objfunc2_ (vartype x) 
/* Fitness function f(x)=x**n+y**2 */ 
/* same as for.objfuncl, 30bits for y */ 
{ 

nfunc++; . 
return(power(x.v[l] ,10)+power(x.v[2] ,2»; 

} 

real binf6_ (vartype x) 
/* Binary F6 f(x,y)= */ 
/* lower lim -100.0, ul 100.0 */ 
/* x,y : 22 bits */ 

{ real temp,templ; 
nfunc++; 

} 

temp = x.v[l]*x.v[l] + x.v[2]*x.v[2]; 
templ = cos(sqrt(temp»; 
return(templ*templ/(1.0+0.001*temp*temp» ; 

real dejongl_ (vartype x) 
/* De Jong test function 1 */ 
/* Bounds [-5.12, 5.12] */ 
/* Ganvars 3, string length 10 for each */ 

{ nfunc++; 
return (-(x.v[l]*x.v[l] + x.v[2]*x.v[2]+x.v[3]*x.v[3]»; 

} 



real dejong2_ (vartype x) 
1* De Jong test function 2 *1 
1* Bounds [-2.048, 2.048] *1 
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1* Ganvars 2, string length 12 for each *1 

{ real temp,templ; 
nfunc++; 

} 

temp = x.v[1]*x.v[1]-x.v[2]; 
templ = l-x.v[l]; 
return (-100*temp*temp-templ*templ); 

real dejong3_ (vartype x) 
1* De Jong test function 3 *1 
1* Bounds [-5.12, 5.12] *1 
1* GAnvars 5, string length 10 for each *1 

{ int i; 
real temp; 
nfunc++; 
temp=O; 

} 

for(i=l; i<=GAnvars; i++) 
temp=temp+ceil(x.v[i]); 

return (-temp); 

real dejong4_ (vartype x) 
1*·De Jongtest function 4 *1 
1* Bounds [-1.28,1.28] *1 
1* GAnvars 30, string length 8 for each *1 

{ int i; 
real temp,templ; 
nfunc++; 
temp=O; 
for(i=l; i<.=GAnvars; i++) 

{ templ = x.v[i]*x.v[i]; 
temp=temp+i*templ*templ; 

}; 



return (-temp); 
} 

real dejong5_ (vartype x) 
1* De Jong test function 5 *1 
1* Bounds [-65.536,65.536] *1 
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1* GAnvars 2, string length 17 for each *1 

{ int i,j; 

{ 

}; 

} 

real temp,ternp1,temp2; 
nfunc++; 
temp=0.002; 
for(j=1; j<=25; j++) 

{ 

for (i=1; i<=GAnvars; i++) 

if (i~=j) temp1 = 1.0; 
else temp1= 0.0; 
temp1 = x.v[i]-temp1; 
temp1 = temp1*temp1*temp1; 
temp2 = temp1*temp1+ j; 

temp = temp + 1.0/temp2; 
}; 

return (-temp2); 

real gplanet_ (vartype x) 
1* Fortran Planetary function *1 
1* uncornrnent gescape_ *1 

{ real f,y[GArnaxn]; 
int n,i; 

} 

nfunc++; 
n=GAnvars; 
for (i=1; y[i-1]=x.v[i], i<=~; i++); 
gaplant_ (&f,y,&n); 
return(f); 
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real emoon_ (vartype x) 
1* Fortran Earth Moon transfer function *1 
1* GAnvars 12, bits 15,*1 
1* uncomment gmoon_ *1 

{ real f,y[GAmaxn]; 
int n,i,j; 
nfunc++; 
n=GAnvars; 
for (i=l,j=O; j <= n-l; j++) 

{ 

y[j]=x.v[i]; i++; 

} 

}; 

gmoon_ (&f,y,&n); 
return(f); 

vartype decode (chromosome chrom, int lbits) 
1* Decode string as unsigned binary integer- true=l, false=O *1 
{ 

int i,j,bit; 
long int temp,powerof2; 
vartype accmn; 

powerof2=1.0; 
bit=O; 

for (i=l; i<=GAnvars; i++) 
{ 

temp=O; 
powerof2=1; 

{ 
for (j=l; j<=nbits[i]; j++) 

bit++ ; 
if (chrom[bit]) 

temp=temp + powerof2; 



powerof2=powerof2*2; 
}; 

powerof2=powerof2-1; 
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accum.v[i]= (real)templ (real)powerof2* 
(rlim [i] -llim [i]) + llim [i] ; 

}; 

return(accum); 
} 

1*******************************************************************1 
1* stats : Statistics module */ 

int GAkfunc=O; 
1* dejong1,2,4 *1 
real GAsolution =0.0;· 
int GAmaxdig = 9; 

1* dejong3 
real GAsolution =25.0; 
int GAmaxdig = 9; 
*1 

1* dejong5 
real GAsolution = -1.2; 
int GAmaxdig = 9;· 
*1 

void statistics (int popsize, int ngen,. int nfunc, boolean statson, 
real *max, real *avg, real *min, 
real *sumfitness, population pop, 
real ptr[] , real ptr2[]) 

1* calculate population statistics *1 

{int j,k; 
re.al temp; 
1* initialize *1 
*sumfitness=pop[l] .funcval; 



*min 
*max 

=pop[1] .funcval; 
=pop[1] .funcval; 
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/* loop for max, min, sumfitness */ 
for (j=2; j<=popsize; j++) 

{*sumfitness = *sumfitness+pop[j] .funcval; 
if (pop[j] .funcval>*max) *max=pop[j] .funcval; 

else if (pop[j] .funcval<*min) *min=pop[j] .funcval; 
} 

/* calculate average */ 
*avg = *sumfitness /popsize; 
if (stat son) 

{ 

if (GAkfunc>nfunc) {GAkfunc=O;}; 
/* lawerenceDavis's criteria */ 
ptr2[O]= *max; 
for (k=GAkfunc+1 ,j=popsize-ngen+1; k<=nfunc; j++ ,k++) 

{ 

}; 

temp = GAsolution-ptr2[0]; 
if (temp<=O) ptr[k] =ptr[k] +GArnaxdig; 
else 

ptr[k]=ptr[k]-log10(temp); 
ptr2 [k] =ptr2[k] +ptr2 [0] ; 

GAkfunc=nfunc; 
}; 

} 

char *GASCALE[4] = {"None.","Windowing", 
"Constant increment", "Window & Increment"}; 

void scalepop (int scale, int popsize, real max, real avg, 
real min, real sumfitness, real scalemax, 
real scalemin, real *scalesurn, population pop) 

/* scales population fitness from scalemax to scalsmin */ 
{ 

int i; 
real scalefactor; 

switch (scale) { 
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case 1 : 
scalefactor=(scalemax-scalemin)/(max-min); 
*scalesum = 0.0; 
for ({=1; i<=popsize; i++) 

{ 

pop[i] .fitness=(pop[i] .funcval-min)*scalefactor 
+scalemin; 

*scalesum = *scalesum+pop[i].fitness; 
}; 

/*note: *scalesum = scalefactor*(sumfitness-min*popsize) 
+scalemin*popsize; try this and check */ 

break; 

case 2 : /* use only if fully sorted */ 
scalefactor = (scalemax-scalemin)/popsize; 
pop [popsize] .fitness=scalemin; 
*scalesum = pop[popsize].fitness; 
for (i=popsize-1;i>=1; i--) 

{ 

} 

pop[i] .fitness=pop[i+1] .fitness+ scalefactor; 
*scalesum = *scalesum+pop[i] .fitness; 

break; 

case 3 : /* use only if fully sorted */ 
scalefactor = (max-min)/popsize*scalemax; 
pop [popsize] .fitness=scalemin*(max-min)/popsize 

+scalefactor; 
*scalesum = pop [popsize] . fitness;. 
for (i=popsize-1; i>=1; i--) 

{ 

} 

pop[i] .fitness=(pop[i] .funcval-pop[i+1] .funcval) 
+ pop[i+1] .fitness+scalefactor; 

*scalesum = *scalesum+pop[i] .fitness; 

break; 

case 0 : 
*scalesum=sumfitness; 
for (i=l; i<=popsize; i++) 
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pop[i] .fitness = pop[i] .funcval; 
break; 

}; 
} 

void setopfitness (int noperators, int maxeval, int nfunc, 
oparray opfitness, oparray opfitini,oparray opfitend) 

{int i; 

} 

real factor,sum; 
sum=O.O; 
factor= (real) nfunc/ (real) maxeval; 
for (i=l; i<noperators; i++) 

{ 

}; 

opfitness[i]=opfitini[i] + (opfitend[i]-opfitini[i])*factor; 
sum=sum+opfitness[i] ; 

opfitn~ss[noperators] = 1.0-sum; 

/* Output module */ 
/* report.c : containswritechrom, report */ 

void writechrom(FILE *out, chromosome chrom, int lchrom) 
/* Write a chromosome as a string of l's (true's) &O's(false's)*/ 
{ 

} 

int 
for 

j; 
(J= lchrom; j>=l; 
if (chrom[j]) 

fputc(' l' ,out) ; 
else 

fputc('O' ,out); 

j-- ) 

void report (int gen, FILE *out) 
/* Write the population report */ 
#define linelength 132 
{ int j,k; 

repchar (out, ' -, ,linelength); fprintf (out, "\n") ; 
repchar(out,' , ,50); fprintf(out,"Population Report\n"); 
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repchar(out,' , ,23); 
repchar(out,' ',57); 
fprintf(out,"\n"); 

fprintf(out,"Generation %2d",gen-l); 
fprintf(out;"Generation %2d\n",gen); 

fprintf(out," # x fitness"); 
fprintf(out," # parents xsite"); 
fprintf (out," string 

" fitness \n"); 
repchar(out, ,_, ,linelength); fprintf (out, II \n"); 

if (! statson) 
for(j=l; j<= pops~ze; j++) 

{ 

fprintf(out," %2d 
fprintf (out, II %9g %8g 
oldpop[j] .fitness); 

" ,j); -I*old string*/ 
!",oldpop[j] .x.v[l], 

I*new string*/ 
II • ,J, fprintf(out,"%2d) %ld:(%2d,%2d) %2d 

newpop[j] .optype,newpop[j] . parent 1 , 
newpop[j] .parent2,newpop[j] .xsite); 
writechrom(out,newpop[j] .chrom,lchrom); 
fprintf(out," %9g %8g \n",newpop[j] .x.v[l], 
newpop[j] .funcval); 

} 

else 
for(j=nelit~+l; j<= popsize; j++) 
{ 

fprintf(out,"Y.2d) Y.ld:(Y.2d,Y.2d) Y.2d 
newpop[j] .optype,newpop[j] . parent 1 , 
newpop[j] .parent2,newpop[j] .xsite); 
for (k=1;k<=GAnvars;k++) 
fprintf(out," Y.9g ",newpop[j] .x.v[kJ); 
fprintf (out, II Y.8g \n'l ,newpop [j] . funcval) ; 

} 

II • ,J, 

repchar(out, 1 _1 ,linelength); fprintf (out," \n"); 

x " 

1* Generation statistics and accumulated values *1 
fprintf(out," Note: Generation Y.2d &: Accumulated Statistics: " 

gen); 
fprintf (out," max= %6. 4f, min= Y.7. 5f, avg=%6. 4f" ,max ,min, avg) ; 



} 
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fprintf(out,", sum=%6.4f, numutation=%d, ncross= %d, NFN=%d \n", 
. sumfitness, nrnutation,· ncross, nfunc); 
repchar(out,' -, ,linelength); fprintf (out," \nlt); 
page(out) ; 

1* Triops module *1 
1* Reproduction (select), Crossover (crossover), Mutation (mutatio*1 
1* Plus four others *1 

int select(int popsize, real sumfitness, population pop) 
1* select a single individual via roulette wheel selection *1 

{ real rand, partsum; I*random point on wheel, partial sum*1 
int.j; I*population index*1 
partsum=O.O; j=O; I*zero out pointer & accumulator*1 
rand = random()*sumfitness; 

1* wheel point calc. uses random[O . . 1]*1 
do{/*find wheel slot *1 

j=j+1; 
partsum = partsum+pop[j] .fitness; 

} 

} whi~e«partsum<rand)&&(j<popsize)); 
1* return individual nUmber *1 
return(j) ; 

into selectop(int noperators, real opfitness[]) 
/* select an operator via roulette whee~ selection */ 

{ real rand, partsum; 
int j; 
partsum=O.O; j= 0; 
rand = random(); 
do{ j++; 

part sum· = partsum+opfitness[jJ; 
} while«partsum<rand)&&(j<noperators)); 

return(ops [j]) ; 
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} 

allele mutationCallele alleleval, real pmutation, int *nmutation) 
1* Mutate an allele wi pmutation, count no. of mutations *1 
{ boolean mutate; 

mutate = flipCpmutation); 
if (mutate) { 

*nmutation= *nmutation+i; 
return(!alleleval); I*change bit value*1 

} 

} 

else 
return(alleleval); 

1**************************************************************1 

1** Operator : 0 **1 
void crossover(chromosome parenti, chromosome parent2, 

chromosome child1, chromosome child2, 
int *lchrom, int *ncross, int *nmutation, int *jcross, 
real *pcross, real *pmutation, 

boolean *new1, boolean *new2) 
1* Cross two parent strings, place in two child strings *1 
{ int j, temp1, temp2; 

if (flip(*pcross)) { 
*jcross = rnd(1,*lchrom-1); /*cross between 1 & 1-1 */ 

*ncross = *ncross+1; 
} 

else 
{ 

*jcross = *lchrom; I*force mutation */ 
*new1 = 0; 
*new2 = 0; 

}; 

tempi = *nmutation; 
temp2 = *nmutation; 
/*1st exchange 1-1, 2-2 *1 
for (j=1; j<=*jcross; j++) 
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{ 

chi1d1[j] = mutation(parent1[j] ,*pmutation, &temp1); 
chi1d2[j] = mutation(parent2[j] ,*pmutation, &temp2); 

}; 

{ 

/* 2nd exchange, 1-2, 2-1 */ 
if (jcross != 1chrom) /* skip if xsite i~ 1chrom--no xover*/ 

for (j = *jcross+1; j <= *lchrom; j++) 

chi1d1[j] = mutation(parent2[j] ,*pmutation, &temp1); 
chi1d2[j] = mutation(parent1[j] ,*pmutation, &temp2); 

}; 

} 

*ne~1 = (*new1 I I (temp1 > *nmutation»; 
*new2 = (*new2 I I (temp2> *nmutation»; 
*nmutation = temp1 + (temp2-*nmutation); 

/** Operator :1 **/ 
void pure_cross(chromosome parent 1 , chromosome parent2, 

chromosome chi1d1, chromosome chi1d2, 
int *lchrom, int *ncross, int *jcross) 

/* Cross two parent strings, place in two child strings */ 
{ int j; 

*jcross = rnd(1,*lchrom-1); /*cross between 1 & 1-1 */ 
*ncross = *ncross+1; 

/*1st exchange 1-1, 2-2 */ 
for (j=1; j<=*jcross; j++) 

{ 

chi1d1[j] = parent1[j]; 
chi1d2[j] = parent2[j]; 

}; 

/* 2nd exchange, 1-2,2-1 */ 
for (j = *jcross+1; j <= *lchrom; j++) 

{ 

chi1d1[j] = parent2[j]; 



child2[j] = parentl[j]; 
}; 

} 

/** Operator : 2 **/ 
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void mutate (chromosome parent, chromosome child, int *lchrom, 
int *nmutation, real *pmutation, boolean *new) 

/* Mutate parent and produce a child~ Clone with random changes */ 
{ int j,temp; 

temp = *nmutation; 
. for (j=1; j<=*lchrom; j++) 

~hild[j] = mutation(parent[j] ,*pmutatio~, &temp); 

} 

*new = (temp> *nmutation); 
*nmutation = temp; 

/** Operator : 3 **/ 
. void. uniform_cross (chromosome parent1, chromosome parent2, 

chromosome child1, chromo.some child2, 
int *lchrom, int *ncross) 

/* Cross two parent strings, place in two child strings */ 
{ int j; 

{ 

} 

*ncro.ss = *ncross+l; 

for (j=l; j<=*lchrom; j++) 
if (flJ.p(O.5» 

child1[j] = parent1[j]; 
child2[j] = parent2[j]; 



else 
{ 

child1[j] = parent2[j]; 
child2[j] = parent1[j]; 

}; 

} 

/** Operator : 4 **/ 
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void uniform_cross2(chromosome parent1, chromosome parent2, 
chromosome child1, chromosome child2, 
int *lchrom, int *ncross, int *jcross) 

/* Cross two parent strings, place in two child strings */ 
{ int j; 

{ 

} 

{ 

*jcross = rnd(1,*lchrom-1); /*cross between 1 & 1-1 */ 
*ncross = *ncross+1; 

for (j=1; j<=*lchrom; j++) 
if ((j <= *jcross)I I (flip(O.5))) 

child1[j] = parent1[j]; 
child2[j] = parent2[j] ~ 

else 

child1[j] = parent2[j]; 
child2[j] = parerit1[j]; 

}; 

} 

/** Operator : 5 **/ 
void multi_cross (chromosome parent1, chromosome parent2, 

chromosome child1, chromosome child2, 
int *ncross, real *pcross, 
boolean *new1, boolean *new2) 

/* Cross two parent strings, place in two child strings */ 
{ int i,j,jcross,bit; 

boolean new; 



bit=l; 
?ew=O; 
for (i=l; i<=GAnvars; i++) 

{ 

if (flip(*pcross» 
{ 
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jcross = rnd(l,nbits[i]-l); I*cross between 1 & 1-1 *1 
new=l; 

} 

else 
jcross = nbits[i]; 

l*lst exchange 1-1, 2-2 */ 
for (j=i; j<=jcross; j++,bit++) 

{ 

childl[bit] = parent 1 [bit] ; 
child2 [bit] = parent2 [bit] ; 

}; 

1* 2nd exchange, 1-2, 2-1 *1 
for (j = jcross+l; j <= nbits[i]; j++,bit++) 

{ 

childl[bit] = parent2[bit]; 
child2[bit] = parent 1 [bit] ; 

}; 

} 

}; 

*new1 = (*newl && new); 
*newl = *new2; 

1** Operator : 6 **1 
void uniform_cross3(chromosom~ parentl, chromosome parent2, 

chromosome childl, chromosome.child2, 
int *lchrom, int *ncross, int ~nmutation, 
real *pcross, real *pmutation, 

boolean *newl, boolean *new2) 
{ int j,templ,temp2; 



{ 

} 

{ 

temp1 = *nmutation; 
temp2 = *nmutation; 
for (j=1; j<=*lchrom; j++) 

if (flip(0.5» 
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child1[j] = mutation(parent1[j] ,*pmutation, &temp1); 
child2[j] = mutation(parent2[j] ,*pmutation, &temp2); 

else 

childl[j] = mutation(parent2[j] ,*pmutation, &temp1); 
child2[j] = mutation(parentl[j] ,*pmutation, &temp2); 

}; 

} 

*new1 = (*newl I I (temp1> *nmutation»; 
*new2 = (*new2 I I (temp2> *nmutation»; 
*nmutation =templ + (temp2-*nmutation); 

/*****************************************************************/ 
/* Sorting Module */ 

int GAcompare(individual *a, individual *b) 
{ 

if «*a) .funcval> (*b) .funcval) 
return ( -1) ; 

else 
{ 

} 

if «*a).funcval«*b).funcval) return(l); 
else return(O); 

} 

void sort (int nelite, int popsize, population pop) 
{ 

int best,i; 
individual temp; 

if (nelite <= 0) exit; 



if (nelite==l) { 
best=l; 
for (i=2; i<=popsize; i++) 
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if (pop[i].funcval > pop[best].funcval) best=i; 
temp = pop [1] ; 
pop[l] = pop [best] ; 
pop [best] = temp; 

} 

else 
qsort(&(pop[l]),popsize,sizeof(individual),GAcornpare); 

} 

/*******************************************************************/ 
/* Generation module */ 

boolean GAnotequal (individual *test, individual *kid) 
{ 

} 

int i,notequal; 
notequal=O; 
for (i=l;«i<=lchrom)&&(!notequal) ;i++) 

notequal = «*test).chrom[i] - (*kid) .chrom[i]); 
return(notequ~l); 

boolean deliver_child(individual *kid, 
boolean newchild, int jcross,. 
int matel, int mate2, int npop) 

/* inoldpop : true => match found in oldpop, not new */ 
{int i,j,notequal,jeq; 

boolean inoldpop; 
inoldpop = 0; 
notequal=l; 
switch (abs(noduplicate) 

{ 

case 1 
case 2 
case 3 



jeq=mate1 ; 
if (! newchild) 

if (rnate1<=nelite) 
{notequal=O; break;} 

else 
inoldpop=1; 

if (abs(noduplicate)<2) break; 
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if (!GAnotequal(&oldpop[rnate1] ,kid» 
{if (rnate1<=nelite) 

{inoldpop=O; notequal=O; break;} 
else 

inoldpop=1; 
}; 

if (mate1 != mate2) 
if (!GAnotequal(&oldpop[mate2] ,kid» 

{jeq=mate2; 
if (mate2<=nelite) 

{notequal=O; inoldpop=O; break;} 
else 

inoldpop=1; 
}; 

}; 

if (abs(noduplicate)<3) break; 

for (j=npop; «j>=1)&&(notequal»; j--) 
if «j>nelite) I I «j!=mate1)&&(j!=mate2») 

notequal = GAnotequal(&newpop[j] ,kid) ; 
if (!notequal) jeq=j; 

if «notequal)&& (! inoldpop» 
{ 

/* decode string, evaluate fitness */ 
(*kid).x = decode«*kid).chrom,lchrom); 
(*kid) . funcval = objfunc « *kid). x) ; 

} 

else 
{ 



{ 

} 

{ 
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if (inoldpop) 

(*kid) .x = oldpop[jeq] .x; 
(*kid) .funcval = oldpop[jeq] .funcval; 

else 

if (noduplicate > 0) return(O); 
(*kid).x = newpop[jeq] .x; 
(*kid) .funcval = newpop[jeq] .funcval; 

}; 

} 

}; 

/* record parentage data on both children */ 
(*kid) .parent1 = mate1; 
(*kid) . parent 2 = mate2; 
(*kid) .xsite = jcross; 
return(l) ; 

void generation() 
1* Create a new generation through select, crossover, and mutation *1 
1* Note : Generation does not assume an even numbered popsize 
/* however if nelite>=l, sorted oldpop is assumed 
{ 

{ 

int j,mate1, mate2, jcross, op; 
boolean newch~ldl,newchild2; 

/* copy to save the elite individuals from oldpop (sorted)*/ 
for (j=l; j<=nelite; j++) 

newpop[j] = oldpop[j]; 

/* generate the rest of the individuals */ 
j=nelite+l ; 
do { 

op = selectop (noperators, opfitness); 
matel = select (popsize, scalesum, oldpop); 
jcross=O; 
newpop[j] .optype=op; 
switch (op) 
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case 2 : 
br.eak; 

default : 
mate2 = select (popsize, scalesum, oldpop); 
newchildl = (matel != mate2); 
newchild2 = newchildl; 
newpop[j+l] .optype=op; break; 

}; 

switch (op) 
{ 

case 0 : 
/* Crossover and mutation */ 
crossover(oldpop[matel] .chrom, oldpop[mate2] .chrom, 

newpop [ j] . chrom, newpop [j+l ] .chrom, 
&lchrom,&ncross,&nmutation,&jcross,&pcross, 
&pmutation,&newchildl,&newchild2); 

break; 
case 1 : 

pure_cross (oldpop[matel] .chrom, oldpop[mate2] .chrom, 
newpop[ j] .chrom, newpop[j+l ] .chrom, 
&lchrom,&ncross,&jcross); 

break; 
case 2 : 

mutate (oldpop[matel] .chrom, newpop[j] .chrom, 
&lchrom,&nmutation,&pmutation,&newchildl) ; 
break; . 

case 3 : 
uniform_cross (oldpop[matel] .chrom, oldpop[mate2] .chrom, 

newpop[ j] .chrom, newpop[j+l ] .chrom, 
&lchrom,&ncross); 

break; 
case 4 : 

uniform_cross2 (oldpop[mat~l] .chrom, oldpop[mate2] .chrom, 
newpop[ j] .chrom, newpop[j+l ] .chrom, 
&lchrom,&ncross,&jcross); 
break; 

case 5 : 
multi_cross (oldpop[matel] .chrom, oldpop[mate2] .chrom, 

newpop[ j] .chrom, newpop[j+l ] .chrom, 
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incross, &pcross, &newchild1,&newchild2); 
break; 

case 6 : 
uniforrn_cross3(oldpop[mate1] .chrom, oldpop[mate2] .chrom, 

newpop[ j] .chrom, newpop[j+1 ] .chrorn, 
&lchrom,&ncross,&nrnutation,&pcross, 
&prnutation,&newchild1,&newchild2) ; 
break; 

default : 
printf ("invalid operator %d \n",op); break; 

}; 

switch (op) 
{ 

case 2 : 
if (deliver_child(&newpop[j] ,newchild1, 

o ,rnate1 ,rnate1, j -1)) j ++; 
break; 

default : 

}; 

if (deliver_child(&newpop[j] ,newchild1, 
jcross,rnate1,rnate2, j-1)) 
{j++;} 

else 
newpop[j] = newpop[j+1] ; 

if «j<=popsize)&& 
deliver_child(&newpop[j] ,newchil~2, 

jcross,rnate2,mate1, j-1)) j++; 

} while(j<=popsize); 
} 

/* initial: contains initdata, initpop, initreport, initialize */ 

void initdata (int *popsize, int *lchrom, int *maxgen, 
real *pcross, real *pmutation) 
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1* Interactive data inquiry and setup *1 
{ 

} 

printf (" I--------------------------------I\n"); 
printf (" I Genetic Algorithm v2.0 GAI\n"); 
printf (" I--------------------------------I\n\n\n"); 
printf (11***** Data entry and Initialization *****\n"); 
printf ("Enter population size ").; 
scanf ("'l,d",popsize); 
printf ("Enter elite population size ,,); 
scanf ("'l,d" ,nelite); 
printf ("Enter chromosome length ,,) ; 
scanf ("'l,d",lchrom); 
printf (IIEnter max generations ") ; 
scanf ("'l,d",maxgen); 
printf ("Enter crossover probability"); 
scanf (rinp,pcross); 
printf ("Enter mutation probability"); 
scanf (rinp,prnutation); 

voidinitreport(FILE *out, real randseed) 
{ int i; 

fprintf 
fprintf 
fprintf 

(out,"--------------------------------\n") ; 
(out,"A Genetic Algorithm, V 2.0 \n"); 
(out,"--------------------------------\n\n"); 

fprintf (out," GA Parrnaters \n"); 
fprintf (out," ------------ \n\n"); 
fprintf (out," Population size 'l,d\n",popsize); 
fprintf (out," Elite population size 'l,d\n",nelite); 
fprintf (out," Fitness Scaling 'l,s\n",GASCALE[scale]); 
fprintf (out," Chromosome length 'l,d (lI,lchrom); 
for (i=l; i<=GAnvars; i++) fprintf (out," 'l,d",nbits[i]); 
fprintf (out, II )\n"); 
fprintf (out," Domain : "); 
for (i=l; i<=GAnvars; i++) 

fprintf (out, "x'l,d: ['l,g,'l,g] ",i,llim[i],rlim[i]); 
fprintf (out,"\n"); 



} 
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fprintf (out," Noduplicate mode 
fprintf (out," Max generations 
fprintf (out," Max evaluations 

%d\n" ,noduplicate) ; 
%d\n",maxgen); 
'l,d\n",maxeval) ; 

fprintf (out," Crossover probability %g\n",pcross); 
%g\n",prnutation); fprintf (out," Mutation probability 

fprintf (out," Operator fitnesses tI) ; 

for (i=1; i<=noperators; i++) 
fprintf (out, "'l,d: [%g, %g] ", ops [i] ,op£i tini [i] ,opfi tend [i]) ; 

fprintf (out,"\n"); 
fprintf (out," Random seed : %11.9g\n\n\n\n", 

randseed); 

fprintf (out," Initial Generation Statistics\n"); 
fprintf (out," -----------------------:------\n") ; 
fprintf (out," Initial population maximum fitness = %g\n" ,max) ; 
fprintf (out," Initial populatiop average fitness = %g\n",avg); 
fpri~tf (out," Initial populatiop minimum fitness = 'l,g\n" ,min) ; 
fprintf (out," Initial populatiop sum of fitness = %g\n", 

surnfitness); 
£printf (out,"\n\n\n\n\n\n\n\n"); 

/*************** Population initialization routines ~****.*********/ 

void ini tpop () 
1* Initialize a population at random */ 
{ 

} 

int j ,jl; 
for (j=1; j<=popsize; j++) 

{for Ul=1; jl<=:lchrom; jl++) oldpop[j] .chrom[jl]=flip(O.5); 
oldpop[j].x = decode(oldpop[j].chrom, lchrom); 
oldpop[j] .funcval = objfunc(oldpop[j] .x); 
oldpop[j] .parentl=O; oldpop[j] .parent2=O; oldpop[j] .xsite=O; 

}; 

/* geneinp initialization by file */ 



{ 
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void sinitpopO 
1* Initialize a population at random *1 
{ FILE *inp; 

} 

int j,jl; 
char schrom[31] ; 
inp = fopen("gene.ini","rt"); 
for (j=l; j<=popsize; j++) 

1******************************************************************1 

void initialize(FILE *out, real randseed) 
1* Initialization coordinator */ 
{ int i; 

lchrom=O; 
for (i=l; i<= GAnvars; i++) 

lchrom=lchrom+nbits[i] ; 
for (i=l; i<=noperators; i++) 

opfitness[i] = opfitini[i]; 
/* initdata(); *1 

randomize(randseed); 
nmutation=O; 
ncross=O; 
nfunc=O; 
ini tpop 0 ; 



} 
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statistics(popsize, popsize, nfunc, statson, 
. &rnax, &avg, &rnin, &sumfitness, oldpop, 

history, history2); 
sort (nelite, popsize, oldpop); 
scalepop(scale,popsize,rnax,avg,rnin,sUmfitness,scalemax, 

scalernin,&scalesum, oldpop); 
if (output) initreport(out,randseed); 


