
Genetic algorithms and nonlinear programming for optimal low-thrust

spacecraft trajectories'

by

Lalitesh Kumar Katragadda

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Department:
Major:

Requirements for the Degree of

MASTER OF SCIENCE

Aerospace Engineering and Engineering Mechanics
Aerospace Engineering

Signatures have been redacted for privacy

Iowa: State University
Ames, Iowa

1991

11

TABLE OF CONTENTS

NOMENCLATURE ... ~ .

ACKNOWLEDGEMENTS

ABSTRACT.

CHAPTER 1. INTRODUCTION

. Projected Space Scenario.

Low Thrust Transfers .

Our Scope ..

CHAPTER 2. PROBLEM MODELING

Direct and Indirect Formulation . . ~ . .

Continuous Thrust Earth-Mars Transfer

Maximum Energy Earth Escape .

Optimal Earth-Moon Transfer.

Normalization of the Variables .

CHAPTER 3. NUME~ICAL TECHNIQUES

Overview of Methods

Parameterization ..

The Indirect Method

Vlll

X11

XUl

1

1

2

4

6

8

10

12

1.5

.. 18

21

21

22

25

III

Boundary Value Problem Solvers

Nonlinear Constrained Parameter Optimization

Numerical Integration

Error and Tolerance Scheduling

CHAPTER 4. GENETIC ALGORITHMS.

Genetic Algorithms in Qptimization .. .

GAs in Optimal Control

Incomplete simulation for efficiency

Testing the GA.

26

27

30

31

33

36

40

42

43

CHAPTER 5. COMPARISON OF MODELS AND METHODS 52

Effect .of Models.

Continuous thrust Mars transfer.

Maximum energy Earth escape .

Single coast Earth-Moon transfer

Algorithm ~omparison and Maximum Accuracies

GAs and Low Accuracy Solutions

Model enhancement through GAs solutions.

CHAPTER 6. PRESENTATION OF SOLUTIONS

CHAPTER 7. CONCLUSIONS AND SUGGESTIONS

Conclusions .

Observations

Suggestions .

REFERENCES.

52

53

55

57

57

59

.59

61

72

72

74

75

77

IV,

APPENDIX A. SOLAR AND SPACECRAFT PARAMETERS 79

. APPENDIX B. ' DERIVATION OF OPTIMAL ESCAPE MODELS 81

APPENDIX C. DERIVATION OF THE THREE-BODY MODEL. 83

APPENDIX D. CODE LISTING. 87

Main Program. . . . 87

Initial Data Module. 99

Simulation Module 10'1

Colsys Interface . 127

SQP Interface . . 142

. Penalty Interface' 147

FORTRAN Interface for the GA 155

Integration Module . . . 157

The Genetic Algorithm. 173

Table 4.1:

Table 5~1:

Table 5.2:

Table 5.3:

Table .5.4:

Table 5.5:

Table 5.6:

Table 5.7:

Table 5.8:

v

LIST OF TABLES

Comparison of fitness scaling methods 39

Comparison of CPU times and function evaluations 53

Comparison of Polar and Cartesian coordinates for integration 53

Comparison of indirect models for Mars· transfer ' . .. 54

Comparison of direct and indirect formulations of the Mars

transfer problem .. 55

Comparison of indirect formulations of Maximum Energy Es-

cape

Direct solutio~s using BFGS and free cubic splines

Maximum accuracies using different models and methods

'.

56

56

58

Best constraint tolerances using different models and methods· .59

VI

LIST OF FIGURES

Figure 2.1: Chosen polar coordinate system

Figure 2.2: Coordinates for the EarihcMoon System.

Figure 3.1: Overview of problem formulation.

Figure 3.2: Overview of possible Algorithms . ..

Figure 4.1: Average log performance of DeJong's first function

Figure 4.2: Average performance of DeJong's second function

Figure 4.3: Average performance of DeJong's third function .

Figure 4.4: Average performance of DeJong's fourth function.

Figure 4.5: A verage log performance of the modified F6 function.

F.igure 4.~: Average log performance of Goldberg's test function

Figure 6.1: Optimal Mars transfer trajectory'. . . .'.

Figure 6.2: Control angle vs time for the optimal Mars transfer problem

Figure 6.3: Optimal'Earth escape trajectory ... ,

Figure 6.4: Control angle vs time for the optimal escape problem

10

15

22

23

46

47

48

49

50

.51

63

64

65

66

Figure 6.5: . Comparison of control histories for direct and indirect methods 67

Figure 6.6: Average performance of the Earth-Moon problem

Figure 6.7: Average performance of the modified Moon model

.. 68

69

VB

Figure 6.8: Optimal Earth-Moon transfer trajectory.

Figure 6.9: Optimal Earth-Moon control histories

70

71

e

f

k

m

new

o

ref

. Au

a(t)

C

Vlll

NOMENCLATURE

Hat defines a corresponding unit vector

Dot denotes first time derivative

Double dot denotes second time derivative

Top arrow defines a correspondjng vector

Subscript denoting secondary body constants

Subscript denoting Earth physical constants

Subscript denoting quantities at final time

Subscript denoting quantities at kth subproblem or iteration

Subscript denoting Moon physical constants

Subscript. denoting the normalized variable

Subscript denoting quantities at initial time

Subscript denoting a reference value for normalization

Astronomical unit

Thrust/mass of spacecraft at time t

Constraint vector 'of the nonlinear optimization problem

Vector of equality con·straints

Vector of inequality constraints

Distance of the secondary body from the primary body

e

E

F

f

H

J

K

L

m

R

r

T

t

U

u

u

v

w

X

A

A

Jl

1/

IX·

Specific energy of. the spacecraft

Final specific energy of the spacecraft

Objective function of the nonlinear optimization problem

Vector of governing st'ate differential equatons

Hamiltonian function

Performance index of the optimal control problem

Specific kinetic energy of the spacecraft

Integrand of the optimal control performance index

Spacecraft mass

Radius of the corresponding subscript

Radial position of the spacecraft from the chosen origin

Spacecraft thrust

Time variable

Specific potential energy of the spacecraft

Control vector

Radial velocity of the spacecraft

Tangential velocity of the spacecraft

Weighting matrix of 'penalty multipliers for the constraints

Design vector for the nonlinear optimization problem

State vector

Vector of penalty multipliers

Vector of lagrange multipliers for the optimal control states

Gravitational constant (G 2vI)

Vector of constraint multipliers

w

Theta

e

Abbreviations

BC

BVP

BFGS

CPU

DE

DEC

GA

NASP

NEM

NjA

NjC

PFM

SQP

SC

x

Angular velocity of the three body system

Vector of final state constraints

Penalty function for the nonlinear optimization problem

Final time performance index of the optimal control problem

Penalty constant·

Control angle made by the thrust axis with respect to

the positive tangential direction

Clockwise angle made by the satellite with respect to the

reference or the starting position

Boundary Conditions

Boundary Value Problem

Broyden, Fletcher, Goldfarb and Shanno's hessian update

Central Processing Unit

Differential Equations

Digital Equipment Corporation

Genetic Algorithm

National AeroSpace Plane·

Neighbouring Extremal Methods

Not Applicable

Not Convergant

Penalty Function Method

Sequential Quadratic Programming

Stationarity Condition

Xl

2PBVP Two Point Boundary Value Problem

XlI

ACKNOWLEDGEMENTS

I express my deep gratitude to Dr. Bion L. Pierson, who was my advisor and

instructor~ Many a time, his understanding.of optimal controls and the trajectory
. .

problem helped me pull out of a mire of details. And the editorial net he provided

during the preparation of this thesis is very much responsible for its current form.

That I could finish my masters and this thesis in a year, is only due to his encour

agement and the energy I derived from Master Yong Chin Pak's martial arts.

I would also like to thank Dr. James Cornette, Dr. Ping Lu and Dr. Roger

Alexander for inspiring courses. My first and only exposure to genetic algorithms

was a stimulating talk by Dr. S.S. Rao (at ADA, Bangalore), which consequently led

to a part of this study.

Though it is not usual practice, I dedicate this work to the memory of my Biology

teacher, Ms. Raktima Krishnaswamy, who inculcated in me an unshakable faith and

wonder in the optimal and almost ideal nature of living systems and the process that

evolves them.

J",{.,j,ol

December 8, 1991

Xlll

ABSTRACT

Genetic algorithms and nonlinear programming for optimal

low-thrust spacecraft trajectories.

Lalitesh Kumar Katragadda

Under the supervision of Dr. Bion L. Pierson

Department of Aerospace Engineering and Engineering Mechanics

Iowa State University

The minimum thrust time problem for planetary transfer using low thrust space

craft has assumed significance. However this problem is numerically sensitive. Three

problems were chosen for study and testing different approaches. They are: a contin-

uous thrust Mars transfer, maximum energy Earth escape, and a single-coast Earth

Moon transfer. Variations to the mathematical models gave limited success in pro

~iding better convergence. The multiplier penalty function· approach gives better

convergence for relatively poor initial guesses .. Sequential Quadratic Programming

showed convergence only with good initial guesses, while displaying ability to give

high accuracy solutions. Genetic .algorithms, in their first application to optimal

trajectory problems, seem to offer the only general way to estimate the optimal tra

jectory, which was previously done using problem specific direct solutions. They

succeeded in solving all the problems discussed with different thrust levels.

1 '

CHAPTER 1. INTRODUCTION

Projected'Space Scenario

The next -logical step in the human space adventure has been identified as the

establishment a~d commercial utilization of a permanent Moon base. Manned ven

tures to Mars are also planned. In depth exploration of outer planets like Jupiter and

Saturn is projected by sending satellites to permanently orbit these planets. These

diverse goals require a launch system for low Earth orbit injection and a propul

sion system capable of transferring satellites to other Solar bodies with low specific

fuel consumption and at the same time permit flexible missions. Reusability of the

propulsion inodule becomes a prerequisite for such an extended program from both

flexibility and more importantly economic points of view. For e.?Cample, a mission to

the Moon and back would require carrying vari~us cargo modules (including human)

to the Moon, possibly landing on the Moon using the same propulsion system, and

returning to Earth by a specified time. The mission would be dictated by this cargo

and _ the time of launch and arrival. The effect of these changes on trajectory and fuel

requirements cannot be ignored. A more exotic example would be the exploration of

Jupiter; here, the satellite would be expected to change orbits to study features (fea- -

tures and hence orbits which cannot be predicted from Earth) and possibly transfer

to an orbit around a planetary moon.

2

Recently a consensus has emerged as to the technology to apply to this problem.

The low Earth orbit injection of the propulsion module, cargo and fuel is proposed to

be carried out by a reusable launch system. Currently, the shuttle and its proposed

updated derivatives are suitable. However, the proposed NASP (National AeroSpace

Plane) is expected to take over the task and provide the full flexibility envisaged.

The propulsion module is to be a nuclear powered system. These engines would be

either a low thrust electric propulsion system or a medium to high thrust nuclear

thermal systems. The terms low, medium and high refer to the thrust-to-weight

ratio (which directly translates to g force due to the thruster) of the total spacecraft

weight. Low thrust refers to levels below 0.1 g (usually .10-3 to 10-4 g's), medium

spans the accelerations between 0.1 g to 1 g, and all levels higher than 1 thrust

to-weight constitute high thrust. This classification though adopted here is by no

means standard. However, all references to low thrust in this thesis shall include

medium and high thrust levels, since the problems associated arise from the same

mathematical models (but have different numerical properties). Note that nuclear

thermal rockets have been reported [1] to have thrust levels of the order of 1 g or

greater and hence they can be used for landing missions on the Moon or Mars.

Low Thrust Transfers

Low thrust (also called electrical propulsion or nuclear propulsion) refers to a

propulsion mode ·where the energy to eject the propellant is obtained from a source

external to the propellant. Usually this energy source is a nuclear power plant or

a chemical cell. Unlike conventional chemical propulsion, this energy is constant

and mote importantly virtually unlimited for the purposes of the engine. This en-

3

abIes low but continuous mass ejection at a very high velocity for long durations.

This implies. a large saving in required propellant mass for the same total impulse.

Given this power fixed, energy unlimited propulsion system, the trajectory planning

task now translates to determining the orientation history of the thruster along with

switching times of the mass flow (or thrust) to minimize spacecraft mass which di

rectly translates into minimum cost. This involves considering a perturbed model of

the spacecraft for prolonged periods of time requiring efficient trajectory integration,

since we no longer have a closed form solution for the satellite orbit even as a patched

. conic approximation. The low thrust system has been· studied for a variety of space

missions, the chief of which can be classified as:

• Orbital transfer. Transferring from one elliptic orbit around a large central

attracting body to another orbit around the same body to specify certain ter

minal conditions. These conditions can arise as a geostationary parking or other

specified elliptic orbits.

• Hyperbolic escape/ capture. Achieving escape (or positive total specific energy)

. sta~ting from an initial elliptic orbit which is usually a low circular parking

orbit. The capture problem is to reach a specified elliptic orbit from a given

escape condition. The effect of other bodies like the Moon ·or the Sun cannot

be ignored for an ac·curate estimate.

• Interplanetary transfer. Transferring from one escape condition with respect

to the 'first' planet to a hyperboli.c end condition with respect to the 'second'

planet under the influ·ence of a thir9. body (the sun). The Earth Moon transfer

is included here since the problem is the same.

4

The objective in all these cases is almost always to minimize the amount of

fuel mass spent. Variations can include an additional constant mass decrement. For

example, on a manned mission, conservatively 1.5 kg per astronaut [2] are spent.

Several variations of these problems are also introduced owing to the conditions

imposed on the thruster. These could be:

• Continuous thrust on. The thruster is never switched off whereby the problem

is to minimize total time of mission.

• Limited switching. The number of switchings, the mInImUm coasting (no

thrust) time,· the engine on interval or a combination of these could be con

strained depending on the engine technology.

• Different thrust levels. An interesting variation is considering two levels of

thrust; a constant high thrust and a much lower (and transient) thrust which

manifests itself after the high thrust is switched off (possibly due to cooling

down requirements).

Our Scope

The objective of this study in a broad outline has been to develop general algo

rithms to solve the minimum (engine on) time problem for interplanetary transfer.

A few typical problems were deeply studied for a better understanding of the asso

ciated problems and a better physical feel. The chief concern has been to get initial

estimates from which convergence to a desir~d accuracy is tractable using existing

algorithms and the efficiency with which this can be done without specializing the·

5

parameters to the problem (though this has also been done to understand the machi

nation of some problems). This goal is made difficult by the fact that the full transfer

. problem is very sensitive, and the initial estimat~ itself needs to be reasonably accu

rate. Efficiency does not seem to be a primary concern since real time application is

unlikely and the runs do not use excessive computation to begin with. But efficiency

is a measure of the strength of an algorithm and associated problems like trajectory

following and full mission planning systems will depend on some of the efficiency

considerations, though these are problems not addressed in. this thesis.

The approach to these problems has been two pronged. One is to develop and

identify variations of the necessary conditions of optimality which show better nu

merical behavior. The other is to identify parameters and variations to existing

algorithms which would find the optimal solution. All three attributes of a numeri

cal algorithm, sensitivity, convergence and efficiency were studied. Memory was not

considered since there is no dynamic memory growth and the code and data size are

not significant.

6 '

CHAPTER 2. PROBLEM MODELING

This chapter elaborates on the problems chosen and the models used or developed

for solving them,. Each of the problems serves to increase the understanding of

the complete problem by highlighting a few of its characteristics. The complete

problem is defined as finding the optimal, minimum engine on time trajectory between

two planetary bodies, given specific propulsion characteristics. Simplifications and

approximations can be generally grouped info three categories:

1. Eliminate factors not significant in this particular problem:

• Ignore solar pressure and radiation effects on spacecraft and propulsion

system.

• Ignore effects of minor bodies like asteroids and solar dusL

2. Remove details with little effect on problem complexity, though affecting results.

It is felt in making such assumptions that the methods developed to solve the

simplified problems will solve the unsimplified -ones:

• Coplanar orbits assumption. This assumption reduces the number of state'

and costate equations. The equations involved are at ieast as stable and

the quantities ignored (.:, i) vary less in comparison to others.

7

• Restricted three body assumption. The two large masses are assumed to

behave as fixed relative to each other with constant rotation. Relaxing this

assumption would involve no major change in the problem formulation.

• Ideal engine performance is assumed: Transient engine behavior is also

ignored. The engine is assumed to have constant mass flow and thrust

when on, but no effect on the spacecraft when off.

• Navigation errors and other state estimation errors are ignored as consti

tuting a control problem.

3. Reduce complexity of the problem to isolate specific features of the problem.

The resulting problems are chosen as test beds for various methods and their

. variations in order to isolate or generate potential candidate codes for more

. difficult problems. The problems outlined below were chosen for this study:

• Continuous thrust-on transfer from a given state to a specified state under

gravita.tional influence. This is a simplistic problem which nevertheless

provides confidence in the numerical methods, helps in weeding out un

. suitable ones or, modifying them to solve· problems of this nature. It also

allows us to evaluate and verify support code like the numerical integration

module.

• Maximum energy escape from a low altitude parking orbit. This prob

lem gives a fair idea of how escape trajectories of state and control angle

will look like for the complete problem and enables comparisons of con

trol parameterization effectiveness with the (indirect) optimal solution.

Sensitivity is also a significant issue in this case.

8

• Escaping from low Earth parking orbit to low Moon parking orbit with

restriction of a single engine-off phase. Besides giving estimates of the fuel

consumption and a view of how an optimal trajectory is likely to look, this

problem incorporates most of the difficulties of a complete problem.

Appendix A gives the values chosen for the consta~ts not explicitly listed below.

Some of them were simply adapted from a previous thesis [7] on a similar topic for

comparison purposes ..

Direct and Indirect Formuiation

. Given a system described by differential equations (State DE)

with state x(t}E Rn and constraints 'Ij.'(x(t,),t,) E Rp (p < n), an optimal control

problem can be defined [3] as finding u(t) to maximize (or minimize)

(2.2)

where the control input u(t) E Rm. Defining v E RP as the multiplier for 1/J(x(t,),t,)

and the Hamiltonian as

H(x, u; t) = L(x, u, t) + >.,T f(x, u, t), ,\ ERn;

we can apply variational analysis using th~ Lagrange multiplier approach to obtain

(in addition to equations (2.1)) the following necessary conditions [4].

CostateDE : -~=f~'\+Lx, t::=;t, (2.3)

9

Stationarity Condition(SC)

Boundary Conditions(BC)

Hu = Lu + fJ A = 0 (2.4)

ATdx Ito -Hdx Ito= 0 (2.5)

(cPx + 1{'iV - A)T Itf dx(t,) + (cPt + 1/;; V + H) It, dt, = 0 (2.6)

The solution of the necessary conditions gives the optimal control input subject to

verifying the sufficient conditions. This approach is also known as the indirect method

since the control is obtained from ~he costates which are not present in the problem

statement.

Another solution method would be to parameterize the control time history u(t)

using a chosen number of real values and find these along with other unknowns like

initial and final times to minimize the performance index (2.2) while satisfying equa

tions (2.1). This is known as the direct method for evident reasons. Some examples

of parameterization would be splines, bezier fits, truncated taylor and fourier series.

The parameterizations used for specific problems are discussed in Chapter 5.

The indirect method is generally known to yield a more accurate solution with

low constraint tolerances, where as the direct method method is numerically more

tractable but has suboptimal properties owing to restriction of the control time his

tory sc·ope by finite parameterization. Note that for the indirect case, solving for u(t)

from the necessary conditions is equivalent to finding the initial costates A(to), which

completely define the state and control trajectories; given time bounds and states.

The primary objective is to obtain the indirect solution .. Besides the advantages

mentioned it also gives a dynamic control law, since u(t) is a function of state and

costates, Equation (2.4). And the costates are governed by a known dynamic relation,

10

Thrust

Figure 2.1: Chosen polar coordinate system

Equation (2.3).

Continuous Thrust Earth-Mars Transfer

This problem [5] involves solving for the minimum time coplanar transfer of

a low thrust spacecraft from- an approximate Earth escape condition to a similar

condition with respect to Mars. All external forces except the Sun's gravitation and

engine thrust are neglected. The orbits of Earth and Mars are assumed to be circular

with the mean semi major axes for the radii. The two body approximation of the

spacecraft in a polar coordinate system is given by the. state equations:

r = U

v2 P.
U - - - - + a(t) . sin 0

r r2
uv

v - - - + a(t) . cos 0
r

(2.7)

T
thru~t acceleration, a(t) = .,

mo-mt

u(t) = 0(t) is chosen with respect to the local horizon as in Figure 2.1. 'r' gives the

radius, 'u','v' give the radial and circumferential velocities. The spacecraft's angular

11.

position '8' is not considered since it is not specified and decoupled from the rest of the

. variables. The performance index J = Itt: 1 . dt and the normalized parameters [5] :

/1 = 1.0, mo = 1.0, m = 0.07487, T = 0.1405, T/ weight It o = 0.9 x 10- 4

Initial state constraints, x(to) :

To 1.000

0.000 & (2.8)

Final state constraints, '1/'(x(tf),t.f):

T f 1.525

0.000 (2.9)

Vf V/1/ T f

For the indirect approach, equations (2.4),(2.3), respectively yield:

(2.10)

The direct solution is now obtained by minimizing J. while satisfying equations (2.7)

and the state constraints as in (2.8,2.9).

The indirect form is solved by satisfying (2.7),(2.10) and (2.8). The final con-

straints however, assume different forms depending on the variations chosen. The

constraints are derived from the boundary condition (2.6) after eliminating v :

12

1. Original form. Terminal constraints are as in (2.9) and

H(tf) = O. (2.11)

2. Fix the final time and maximize the final radius [3] by choosing cfi(x(t f), t f) =

r(t f). Solve the resulting subproblems by changing t f until (r(t f) - rf) is

within tolerance. Each subproblem is an optimal control problem and the final

one gives the solution. The final constraints for the subproblem are derived as :

Uf 0.0

vf JIl!r(t f)

Ar(tf) 1 + Au / JL
2 r 3 (t f)

(2.12)

3. Similar to the above problems. Except, final constraints are the last two con-

straints in (2.9) and the last constraint is modified to

(2.13)

where Tf is defined in (2.9). This. shows faster convergence properties and

retains optimal property since (2.13) linearly converges to(2.12) as r(tf) --+ rf.

Maximum Energy Earth Escape

The objective here is to find the control input such that the satellite attains

the maximum p'ossible total energy. This is similar to a minimum time escape, and

a problem of finding the minimum time required for a given total energy would

13

yield identical results. The state and costate equations are agam given by equa-

tions (2.7),(2.10) and the performance index is the negative of the total specific

energy with respect to Earth which would be constant in absence of propulsion [6J:

(2.14)

The initial conditions are given by:

To Re + 315 km

0.0 (2.15)

The values for Re, Ile and engine specifications are given in the aforementioned

Appendi.x A. The direct problem is solved by choosin"g the parameterized control

values to minimize index (2.14) while satisfying equations (2.7),(2.15). The indirect

problem however is unbounded above when index (2.14) is minimized, indicating that

this may be amenable as a maximization problem. Hence the performance index for

indirect problems is:

(2.16)

. which shows convergence to a maxima and validates the hypothesis. It is notable that

the performance index will manifest itself only in" the terminal costate constraints

which are obtained from equations (2.6),(2.16):

Ar(tf)

Au(tf)

Ar (t f)

11
T2(t f)

u{tf)

v(tf) (2.17)

This indicates a high degree of sensitivity to initial costate values which will be

the optimization variables. The physics of the problem however shows that the

14

performance index is an energy integral. The performance index is redefined as :

(2.18)

Appendix B shows the corresponding derivations, including all the modified equa-

tions. The optimality condition and costates are now:

tanG =
Au + U

Av + v

Ar (V2 _ 2~)" Au _ uv . Av'
'r 2 r3 r2

v
Au =' -Ar+ - . Au - a(t) . sin G

r
v U

Av = -2-Au + - . Av - a(t)· cos G
r r

(2.19)

The terminal constraints are unchanged. The total energy is effectively included

twice in the new performance index. This change as seen later demonstrates superior

stability and hence convergence. This also translates to less sensitivity to initial

costates and an unusual scaling property.

Another independent variation is maximizing index (2.16) (or minimizing (2.14))

in lieu of satisfying the terminal constraints. One would expect that both forms (or

a combination thereof) will lead to the same solution' in the limit of convergence.

But this is not the case as will be seen. The indirect Earth escape problem with its

four variants can be summarized as follows by the necessary conditions needed to be

satisfied:

• State equations (2.7)

• Initial conditions (2.15)

• Costate equations (2.10) OR (2.19)

• Final constraints (2.17) AND/OR minimize index (2.14)

15

Figure 2.2: Coordinates for the Earth-Moon System

Optimal Earth-Moon Transfer

The objective here is to find the minimum engine on time for a spacecraft with

only one allowable coast phase. The craft is initially in a low Earth parking orbit and

the final desired state is a low Moon parking orbit. The Earth-Moon system for this

problem is assumed to be acting as a restricted three body system with no influence

of the sun; Figure 2.2.

The coordinate frame chosen is a Earth (or Moon) centered right handed, ro

tating polar coordinate frame with the principal axis fixed to the Earth-Moon center

line. All angles are measured clockwise. The transformation from Earth centered to

Moon centered rotating systems as described in Appendix C is given by:

r1 cos 81 - d1 - r cos 8

r1 sin 81 -r sin 8

r1 - J r1 cos2 81 + r1 sin2 81

16 .

A. 11 sin a - u cos a

B - (u sin a + 11 cos a) + d1 W

Ul A cos a1 + B sin a1

VI - A sin a1 + B cos a1 (2.20)

The state equations are derived in Appendix C. They are simplified as:

r u

U

2 .

~ - ~ - /11 (r - d1 cos ()) - /11 d1 cos a + rw 2
. + 211W + a(t) sin 8 r . r2 r~ . d~

,11 Ul1 . (/11 /11) - - + d1 SIll a· - - + - - 2uw + a(t) cos 8
r ,r~ d~ , ,

11
(2.21)

r

The costate equations are simplified as :'

-Au -- + - - - + T1· - + W - Au - + T2·-(
112 2/1 /11 ori 2) (Ul1 ori)
r2 r3 r~ or r2 or

-Ar - Au (-; - 2w)

(2.22)

\Vhere

T1 /11 1.5 : 5'" (r - d1 cos a) r1
T2 1.5 . /1~ d1 sin a r1

or2
2 (r - d1 cos a) 1

or
or2 1 2rd1 sin a oa

J /1 + /11 W
d3

1

State constraints:

To Re + 315 km

Uo 0.000

Vo V Il/ro

17

Tj

& Uj

Vj

Rm + 100 km

0.000

VIl/Tj

(2.23)

Note that the initial constraints refer to the Earth centered coordinate system

and the final time constrain~s refer to Moon centered coordinate system. The sub

script ' I' in the state and costate equations refers to the secondary body. The other

quantities refer to the primary body. The primary body is either the earth or the

moon as chosen below. The mission is outlined as follows:

• Start (in Earth centered coordinate system) with engine on at to = 0 till un

-known time tl and switch engine off. The initial state is defined in equa

_ tion (2.23) and Bo is an unknown.

• Coast till unknown time t2 •

• Transform state to Moon ·centered coordinate system using (2.20) and switch

engine on till terminal constraints are reached at unknown time t j

The objective of the indirect problem-is to determine Bo,t l , t2 and the control

time history which is completely defined by the costates at t l , and t2 . The direct

solution for this problem is not obtained since this problem is to demonst~ate the

code's effectiveness and our primary objective has been to obtain the indirect solu

tion. Only the genetic algorithm was able to produce an initial guess. _ The other

algorithms could not improve on this guess, since the final state is highly sensitive

to any changes in the values at to. Hence starting with the final constraints and

18

integrating backwards until the engine is switched off, gave better results. The ob

jective here is to match the resulting state with that of the forward integration phase.

Kleuver [7J arrived at this conclusion with similar reasons. This will be referred to

as the modified three body model. Further modifications gave better convergence: .

• Since initial and final angular positions are free,the corresponding costates are

zero. The costate '\0 at to has been always found to be zero. However the other

'\0 is either zero or fairly constant, depending on the modification used.

• Using the modified three body model, the end time of the coast phase is deter

. mined so that the radial position matches that of the moon escape phase. This

reduces a variable and increases convergence.

• The angular position at moon orbit can be determined by iterating so that

it matches that of the coast phase. Though this increases computation, pre

liminary results show increased convergence, since the number of variables is

reduced and now, only the velocities remain as the constraints ..

Normalization of the Variables

Now we can proceed to normalize the variables in order to keep the quantities

involved of the same magnitude to prevent loss of significant digits and associated

numerical difficulties. This process is normally referred to as non-dimensional analysis

and the approach is identical; but instead of changing the equations we proceed to

change the values associated since this would give the flexibility to experiment with

various reference systems and more importantly change the normalization factors

during the course of the problem as the coordinate systems are changed.

19

The following refere'nce systems were selected employing the thumb rule that all

state variables should remain within one magnitude as far as possible. Note that

in this pro'cess the non-dimensional time may assume values one or two magnitudes

higher. But since time does not appear explicitly anywhere except in the mass equa-

tion in a non-additive form, there is no loss of precision due to this. All initial

quantities are normalized with respect to the reference quantities according to their

dimensional definitions as discussed later:

1. Earth-Mars ttansfe"r. The Earth-Sun distance (1 Au), the Sun's gravitational

constant J.l' and the initial spacecraft mass were chosen as the reference pa-

rameters. All other quantities were dimensionally scaled according to these.

2. Earth escape problem. The Earth's radius, gravitational constant and the initial

spacecraft mass were the reference units.

3. Earth-Moon problem. Sa'me as above. However several other possibilities exist

which have not been explored.

The scaling is don~ as follows:

L :. length, T time, .M mass

Given L rej , I1rej and lv!rej

L3
Trej ~

J.lrej

J.lnew
Tr

2
ej

11'-
L;ej

20

to, tf, t new
t

t rej

R e , ... , Lnew
L

L~ej
m m new

Jl1rej

T rej T, U, V new v,--
L,.ej

u, V new
.. Tr~j
v·_-

L rej

e nondimensional

W new w·Trej (2.24)

21"

CHAPTER 3. NUMERICAL TECHNIQUES

Overview of Methods

This chapter outlines the algorithms used to solve the optimal control problems

presented in Chapter 2. Classifying the various methods needs a further distinction

between the problem formulation and the numerical algorithm used .

• The problem formulation depends on on whether the necessary conditions are

applied to the direct or the indirect problem. The indirect version can be solved

by implicitly satisfying a combination of the necessary conditions. This gives

rise to three major forms [3]. Parameterization of the control defines the form

in the direct method. Any form can use all of the m"athematical models of the

problem falling in its domain of definition.

" " "

• Two examples of the numerical algo~ithm used are SQP (Sequential Quadratic

Programming) and collocation schemes. Each algorithm can be used to solve

more than one problem arising from more than one problem formulation. Con-

versely, more than one algorithm can be used to solve the same problem.

Figure 3.1 gives an overview of the possible formulations, along with the scope

of various algorithms. Figure 3.2 summarizes the possible algorithms. "The follow

ing sections describe the salient features of the formulations and related algorithms

22

PRoB~FoRMroLAnoN

f
DIrect

f
I

C~ I'cwametwalcn
Q(odenf r-j __ -.,_--1..'--.-, __ ---.,

SplIne Fourier Taylor I'oIyrIcrftal
SerIes SerIet

I
I
I
I

f
HEM

arJ.ect
f

I I •
I I I
I --------,---------
I ,

Y BVP ScIvetI
Dyncm/c Progrr:mf'fIInQ

• _________________________ ~--------------------------- __ I

ConthlJClW
Graci.", AJQottttYm

I ,
Ncnn.a ProgammlnQ

HEM: Ne~ EJdremd Melhod.

Figure 3.1: Overview of problem formulation

tested with the low thrust problem. Others are defined briefly. Since, genetic search

algorithms represent a relatively new field and apparently have not been explored for

optimal trajectory problems, this topic is dealt with in more detail in Chapter 4.

Parameterization

The direct problem objective is to minimize a performance index while satisfying

the state constraints. However, u(t) = 0(t) is a function of time and generally cannot

be represented with a finite number of real values. This necessitates representing

0(t) as a combination of known continuous functions with unknown coefficients or

parameters. These parameters now become the design variables. The control space is

hence discretized with the associated artificial stiffness or restrictions on the control

space, hence loss of optimality. The choice of these functions is of primary importance

since it affects:

I I

23

I ALGORI1BMS I
I

NonIntar Optnlzalon Gradtnt AlgOlllms
I

IVPScIvtIs

Ftoible DlrlClm

I
SQP

I

I
Lagrmgt
Newtm

I
Gradtnf
Projtellon

(1st mel 2nd order)

I
IFGS

BVP Two row IMdIIy Vcilt PrOblem

SQP Sf4Jt*I QJoctaie Pr(9C1n

I
C~Groctm

I
~erelztd Starch

I
Gentle
Stcrch

!loothg
I

(fdplt)

I
Exttrtof

CW.td hicld)

I
~

I

I

Figure 3.2: Overview of possible Algorithms

I
L1 Exact

24

• Accuracy. The truncation error due to finite degrees of freedom of control. If

for example the first five terms of the Taylor series are chosen, the terms in the

optimal control corresponding to the higher order terms are lost. This places a

theoretical bound on the accuracy of the solution.

• Precision. Adverse scaling of the coefficients due to improper function choice

results in ill conditioning due to finite machine precision. For example, two·

fifth order polynomials represent the same control space from 0 < t < 10000.

Let one of polynomial be normalized with respect to [0,1] and the other be as

is. The first three terms of the latter representation are lost on a machine with

eight significant digits with half of the fourth term ineffective.

• Convergence. The problem may become very sensitive to changes III some

coefficients and insensitive to others. For example, in u(t) = a(b+ct), a change

in: a may result in loss of effectiveness of band c. The apparent scaling of the

control space may translate to an entirely different change in the solutions space

due to high problem nonlinearity.

Mainly two parameteri~ations were tested:

1. Normalized polynomial in t' with t' = t/(tf - to). This method converges but

shows poor convergence as compared to splines. One reason is that the higher

the order the mbre weighting that is given to the right end of the time domain

since a high degree polynomial is close to 0 until it is near 1.0 . Another reason .

seems to be that each coefficient affects the entire control space.

2. Free cubic spline; a spline with unspecified boundary slopes. This representa- .

tion showed good convergence properties for the problems tested. But subop-

25

timality in representing the escape trajectory was observed since the optimal

escape trajectory shows a large number of oscillations indicating the need for

incorporating sinusoidal functions, like sin(~ + bi), in the control.

Other parameterizations may easily be tested in the program framework. The results

indicate that a carefully chosen set of functions can show sufficient optimality and

good convergence.

The Indirect Method

The necessary conditions [2.1 (state DE), 2.3(costa~e DE), 2.4(SC), 2.5&2.6(BC)]

constitute the two point· boundary value problem (2PBVP). This problem can be

solved by' iterating on a nominal solution which implicitly satisfies one to three of

these conditions. However, only three of the fifteen possibilities [3] have been con

ventionallyexplored. All the known algorithms iterate using successive linearization.

The only other alternative is dynamic programming which can only solve very simple

continuous domain problems du~ to exponential computation increase with refine

ment of domain discretization. Of the three aforementioned possibilities, two are

indirect methods:

1. Neighboring Extremal Methods. The nominal solution satisfies the SC and DEs,

leaving the Bes to be satisfied by iteration. Each trajectory is an extremal for

some other problem in the neighborhood and hence the name. Guessing the

initial unknowns in the states, costates-, time intervals, and iterating to satisfy

the terminal BCs are known as shooting methods. Several modifications like

rilUltiple shooting with discretized domains, unit solutions by perturbation and

26.

backward sweep enable more stability, accuracy and other improvements. In

general, these algorithms are highly sensitive but do give accurate results.

2. Quasilinearization. The nominal solutions satisfies theSC and possibly the

BCs. The starting point is a guess for the state and/or costate history while

satisfying some/or all the BCs. The resulting perturbation equations in state

and costates give a sequence of lillear two point boundary value problems.

The third possibility the continuous gradient method, is normally classified as

a direct method ... The nominal ,solution only satisfies the state and costate DEs.

This involves a guessed control time history and iterating by integrating the state

DEs forward and the costate DE backward to get a continuous gradient (Hu), which

is used to satisfy the SC and BCs. High initial convergence is a property of these

methods.

Boundary Value Problem Solvers

These are a class of algorithms which solve ordinary differential equations with

constraints specified at more than one point of time. The necessary conditions derived

for an optimal control problem iead to a 2~BVP, and hen~e fall in their domain. The

collocation code, Colsys from Ascher, Christiansen and Russell [9] was the only two

point boundary problem solver tested. It would be classified as a Quasilinearization

scheme. However, such a method has an inherent drawback of requi~ing a fixed

final time. For example, to solve the variable time Earth-Mars transfer problem, the'

following scheme was used to change the end time tf to meet the constraint of final

radius. Each subproblem maximizes end radius, using a specified t f :

27

1. Guess two end times and solve the subproblem for each of them.

2. Obtain a first estimate by linear interpolation against the constraint, as de

scribed in Moyer's [5] generalized Newton-Raphson approach. Solve for this

estimate.

3. Use the two guesses and the first estimate solutions to get the next estimate

for t f by quadratic interpolation of constraint vs t f , the generalized Newtons

method. Solve using this estimate.

4. Check for convergence in steps 2 and 3. Otherwise continue from step 3.

The generalized Newton's method reduced execution time by more tha'n half that

obtained using the generalized Newton-Raphson technique. Other modifications, like

using the previous solution as the initial solution for the new t f , did not bring about

major changes. Colsys failed to converge on the minimum energy escape problem. A

suboptimal solution was obtained by splitting the [to, tf] time interval into a specified

number (4 here) of parts. The problem was then solved for each of these intervals with

the final state of the previous interval supplying the initial state for the next time

interval. All the modifications described can be generally applied to other problems.

Nonlinear Constrained Parameter Optimization

This refers to a class of algorithms which minimize an objective function subject

to linear and nonlinear, equality or inequality constraints. They are very flexible with

r'espect to problem formulation modifications. Incorporating changes like variable

initial and end times and bounds on state or control is easier when compared with

28

formulating these changes into an indirect problem or solving them using boundary

value solvers. Conventional algorithms, however, need the objective function to be at

least twice differentiable and convex in the region of the initial guess for guaranteed

convergence. Extensive research [8] has made many problems solvable, regardless.

The algorithms fall into two broad categories:

• Unconstrained minimizers where constraints are handled by penalty functions.

These include descent methods like conjugate gradient and quasi-Newton meth

ods like BFGS. BFGS is more widely used because of its superlinear local con-

vergence, scaling properties enabling global descent and an efficient Hessian (the

ma.trix of second derivatives) p.pdating scheme which needs only the gradient

to be evaluated at each step. BFGS was hence chosen for the penalty method.

The objective is to find the design vector X to minimize F(X) subject to the

constraints Ge(X) =.0 and Gi(X) ?:: O. The following variants achieve the

objective by minimizing a new unconstrained function <P:

1. Sequential penalty functions:

. 1
<l>(X) = F(X) + 2GTW,;G, G = 0 if Gi ?:: 0; k = 1..00 (3.1)

Here, G includes both Ge and Gi, ~Vk is positive definite and the second

norm IWk l 2 > IWk - 112 • This sequence of unconstrained subproblems gives

linear convergence and gives a theoretical optimum as IWk l
2

uniformly

tends to 00. Usually, and for this study, ~Vk is chosen to be a diagonal

matrix with equal coefficients in which case the penalty function reduces

to:

29

1 "
<I>(X) = P(X) + -(TkCT C; k = 1..00, (Tk > (Tk-l (3.2)

2 .

2. Short cut penalty function. Using a single, large (T to solve a single sub-

problem:

<I>(X) = F(X) + ~CTWC (3.3)

For the ~V chosen above, this translates to:

1?(X) = F(X)j (T + ~CT C (3.4)

3. Multipller penalty function:

Where (Tk is increased only if the com, raint satisfaction rate drops. This

is known as the Powell-Hestenes multiplier update. Others, like Fletcher's

update, use the BFGS Hessian to provide superlinear local convergence.

The multiplier penalty function gives the advantage of obtaining the op

timum in a finite number of subproblems with finite (T. This property [8]

is affected by inducing an origin shift for the"constraints which also moves

the discontinuity in second derivatives due to inequality constraints away

from the optimal solution.

4. L1 exact penalty function:

30

For a sufficiently high (T, this function gIves single step-convergence to the

constrained optimum [8]. Discontinuities in the gradient prevent the use of

conventional algorithms. However, this function is ideally suited for genetic

search algorithms, which does not use gradient information .

• Feasible direction schemes. Using a local quadratic model with linear con

straints, we can either reduce the variable set by elimination to span the con

straint free hyperspace or equivalently solve the problem using Lagrange mul

tipliers [8]. A sequence of such problems is required· for nonlinear function

also These include Sequential Quadratic Programming (SQP) .and the gradient

projection methods: These algorithms, unlike the penalty functions possess

quadratic (or superlinear) convergence properties by definition. Each subprob

lem is a quadratic model instead of a general nonlinear function. SQP, a well

used and readily available code, was used for solving some of the defined prob

lems.

Numerical Integration

All the non1inea~ programming schemes and shooting methods require integrat-.

ing a system of ordinary differential equations over the time domain for each value

of the design vector or each iteration. In solving a full problem, this signifies a large

number of these integrations, with stringent accuracy requirements to provide gra

dient information when required. Gear [10] gives an extensive discussion on various

methods. Different· problems have different ·lengths of time and accuracy require

ments. Hence, to have both efficiency and flexibility, we need some kind of error

control. Further efficiency accrues if the step size is changed dynamically. This is

31 .

possible by modifications to the widely used Runge-Kutta methods or the more recent

. multivalue methods~ For this study, a variable step size and variable order multi value

method was coded for the following reasons:

• They are strongly stable, since they are predictor-corrector schemes.

• Unlike Runge-Kutta methods, an increase in order does not increase the number

of evaluations per step. Even for orders as high as eight, the number of function

(differential equation) evaluations is only three compared with four for a fourth

order Runge-Kutta method.

• The overhead computation is comparable with Runge-Kutta. Step and order

changes are computationally inexpensive.

• Increasing the maximum order entails adding additional coefficients only. The

same code can also solve higher-order differential equations.

Error and Tolerance Scheduling

Some of the numerical methods applied require solving a set of ~ubproblems to

arrive at the solution, besides ~arrying out a numerical integration for each design

vector. Since the subproblems are not the solutions, it is not necessary to solve them

with the same accuracy and constraint tolerance. And the required accuracy for each

integration can also. be correspondingly scaled. Hence, a method was developed to

start with coarse error and tolerances and later refine them until the required values

are achieved. The initial value is chosen to at least yield convergence. However, very

coarse initial tolerances will mean an increase in the number of subproblems. The

method is outlined as follows:

32

1. Initialize the permissible error (in constraints or gradients). Set the integration

error corresponding to this level. For example, a required gradient level of 10-2

means an integration error of 10- 5 or lower. The constraint tolerances can

be set independently but must be greater by at least one magnitude than the

integration accuracy. Using penalty functions would change this strategy since

the constraints and gradients are being scaled.

2. Solve the subproblem and estimate the errors. Decrease the error levels for the

next subproblem by a determined amount (usually 0.1). If the error level is less

than the required final level, set it to the specified level.

This method has been applied for some problems as a proof of concept, though the

code structure allows a complete investigation. Similar strategies could be applied

inside each subproblem. This was not done since it would constitute rewriting parts

of standard code and would require extensive work and would detract from the focus

of this thesis.

33

CHAPTER 4. GENETIC ALGORITHMS

Genetic algorithms (GAs) are randomized population based search techniques

closely emulating the natural process of evolution. They are predominantly string or

. integer-hased searches with each member of the popu~ation represented by a string

of bits (alleles), alphabets or other enumerated for~s. This string or member is

known as the chromosome. The evolution process is punctuated by evolving a new

population set from the previous set. Each of these population sets is known as

a generation. Each member of the new population is derived from one or more

members from the previous set. Hence, the new chromosome is the child of the

parent chromosome(s) from the previous generation. This process of reproduction

is driven 'by a fitness value associated with each chromosome. 'In this context, the

, chromosome is known as the genotype and the fitness which is the genotype's physical

manifestation, is known as the phenotyp~. ,The problem sp~cifics playa role in genetic

algorithms only in decoding the chromosome and constructing its fitness value or

phenot'ype. There are no, restrictions on the domain of the decoded design space

or the solution space. This flexibility and the robust nature of genetic algorithms

makes them very powerful tools. Unlike dynamic programming and similar methods,

they do not possess the curse of dimen'sionality. However, they are not as efficient

as some of the specialized schemes like BFGS or SQP when applied to problems in

34

their domains. Hybridization or using specific problem properties to enhance GAs is

known to restore efficiency without sacrificing too much robustness or flexibility.

The adaptive nature of these algorithms is used to:

• Search the solution space for a minimum (optimization).

• Continually adapt to a changing environment (Classifier Systems) like games

or steady-state optimal control.

Hence, they can be used for a variety of problems like minimizing noisy functions,

playing chess, designing gas turpines, and robot arm trajectory following. The pri

mary references in this field are due to Holland [11] and his student Goldberg [13].

Dejong [12] did an extensive study on optimizing real-valued functions including near

singular and discontinuous ones. Davis [14] gives a commentary on optimizing real

valued functions and a compilation of papers. One of first applications of GAs was

in real time optimal control of pipeline scheduling [13]. There seems to be little work

in the area of optimal control however, except for ongoing research on optimal robot

arm trajectory following [14]. Rao [15] and Hajela [16] are investigating applications

in aerospace design.

There are predominantly two processes which form the core of the evolutionary

process:

• Crossover. A child produced using this process will have part(s) of its chro

mosome from one parent and the rest from the second parent. More than two·

parents are rarely used.

• Mutation. Mutation is a allele-based process, where the mutation of an allele·

implies replacing the existing value with a random value.

35

Both processes or operators are carried out with a specified probability of success.

They affect a child only if they pass the probability test. Typical crossover probability

is 0.8 per two children and a typical mutation pI:obability is 0.01 per allele. ·Which.

means that on average 8 out of 10 children have been produced by the mating of more

than one parent and lout of 100 alleles are mutated. The selection of parents is a

weighted probability of their fitness. This process of evolution 'and the population-

based nature is what differentiates genetic algorithms from the rest of the search and

optimization techniques.

If pure crossover is used, the algorithm degenerates into a combinatorial search.

If pure mutation is used, it degenerates into a random s~arch. Theprimary construct

being searched for by the GA is the best schema. A schema is a similarity template

which can match more than one chromosome. For example, a bit string chromosome

100110 matches the schemata 10 * * * *, 100 * 10, 100110 and 61 more. The '*' repre-

sents the "don't care" logical value. Given a string of length l, there are 31 possible

schemata. A given chromosome matches 21 schemata. The best solution is repre

sented by a set of one or more best schema. Hence, the GA evolves th~ population

by mixing s~hema of ~he superior individuals and weeding out unwanted schemata by
. . "

assigning low survival to weak individuals. It is assumed that the superior individuals
. .

have more parts of the best schema~ However, .some good schemata may be masked

in the weak individual and lost. Hence, mutation (and recently diploidy) is primarily

responsible for maintaining a diver~e pool of schemata. Crossover is used to combine

existing ones. A host of operators based on t~ese two basic ones have been developed

to enhance ·reproduction.

36.

Genetic Algorithms in Optimization

Our interest in genetic search is restricted to optimizing nonlinear functions with

low noise. The solution is the best individual obtained from the entire search. By

tradition, as in the code presented, GAs are used to maximize a function. A GA for

optimization is described as follows:

1. Get an initial population from the user or by random string generation.

2. Decode the genotypes (strings) of the population and evaluate the fitness value

{-phenotype). In the GA code, a chromosome is a composite string where each

binary substring represe~ts a real number. The binary substring is decoded to

an integer and then mapped to a given domain of real numbers.

3. Scale the fitness values so they are all positive. Several scaling techniques exist.

Assign a survival probability to each individual in the population based on

fitness. Usually, this probability is the fraction of an individual's fitness to

total fitness.

4; Generate a new population. In generaL a part of the population is cloned

from the best of the previous population. The rest of it is generated by the

reproduction process described above. The parents for reproduction are selected

by random selection with probability as assigned in Step 3 .

. 5. Check the termination criteria, for example, the number of new individuals

produced, fitness difference betweeri the best and the weakest, or computation

time elapsed. If the process is not terminated, continue from step 2. Otherwise,

return the best individual as the solution.

37

The GA code used in this study was written in C usmg a framework and data

structures similar to ones used by Goldberg [13]. Several modifications were made to

improve efficiency, mostly as suggested by Davis [14]:

• Reproduction. Steady state [14], without duplicate individuals. Using overlap

ping generations· (delete last) to copy a fixed number of the best individuals

alive from the previous generation~ Also, making sure that no two individuals

in the population are identical by string matching.

• Fitness scaling. Windowing (adding a constant to all the fitnesses), to make

all fitnesses positive and to remove large common .denominators. Optionally

making the fitness difference between each two adjacent individuals uniform

. (linear normalization) .

• ' Operators. Separation of mutation and crossover as separate operators. Adding

new operators like two-point cross over and uniform list crossover [14].

• Parameterization. Interpolate operator fitness using given values.

Note that testing a genetic code involves averaging several runs of the code for' the

same initial parameters, because of their randomized, probabilistic nature. Further

modifications to the genetic code were developed and tried during this investigation.

Their efficacy could not be de~onstrated because of limited computational power

and time. The modifications are as follows:

1. To promote keeping the best individuals, sorting of the population based on

fitness was done, and a specified number of superior individuals were retained

as IS.

38

2. Mutation rate in the literature refers to the average number of mutations per

allele. However, empirical performance of GAs indicates the number of muta

tions per individual to be a better index. The rationale is that this index would

give a consistent performance across a range of string lengths.

3. Reproduction without duplication. In the scheme described by Davis, each

child has to be searched against the rest of the already produced population

before being accepted. The high number of duplicates produced indicates a

large number of searches of the order of the square the population size. This

is justified when the fitness evaluation time is long, since the benefits accrued

are outweighed by the extra computation. To get similar benefits for fitness

functions with small evaluation times, a set of rules was developed to eliminate

most of the duplicates. A survey of duplicates indicated that most duplicates

are produced by crossover of parents without mutation when the crossed over

material is identical. This can be detected in three stages:

(a) Check if mutation occurs. If it does not and crossover has not taken place

. or .both the parents were the same, then a duplicate child is found, and a

sibling is discarded; both are discarded if the pp.rent has been kept alive.

(b) Next step is to do a string comparison against the parents and discard

them if the parents are being kept alive.

(c) Compare the child against all children produced by the parents.

The last test has not been implemented. It is observed that a majority of

duplicates are eliminated using the first two techniques. Or alternately, if du

plication is allowed; the fitness value of the duplicate can be copied on to the

39

child, saving decoding and function evaluation. These tests, when performed

before a full search, decreases the number of full searches. Further investigation

as to' the source of duplicates seems to be a promising field.

4. Fitness scaling by modified windowing. Windowing has the disadvantage that an

individual very superior relative to the rest dominates reproduction, and soon

brings about premature convergence. However, linear normalization makes con-

vergence e~traordinarily slow by destroying relative inform.ation, which is not

acceptable due to high computation cost. Hence, a scaling method which uses

the basic windowing and introduces an' additional specified difference between

each individual may prove beneficial. Typically, the difference is the average

fitness. Table 4.1 demonstrates the effect of such a change. Hence,.the modi-

Table 4.1: Comparison of fitness scaling methods

·1 A set of population fitnesses

Original Fitness -4.50 -3.20 0.00 10.10 100.00
Windowing. 0.10 1.40 4.60 14.70 104.60
Selection Probability % 0.08 1.12 3.66 11.72 83.41
Linear Normalization 1.00 2.00 3.00 4.00 5.00
Selection Probability % 6.67 13.33 20.00 26.67 33.33
Modified Windowing 25.18 51.56 79.84 115.02 230.00
Selection Probability % 5.01 10.27 15.91 22.93 45.85

fied windowing scheme retains the distribution without completely suppressing

the weak individual's selection chances.

5. Combined operators. Instead of using segregated operators as suggested by .

Davis [14], combined operators like mutation with uniform list crossover were

40

tried out. Preliminary tests did not reveal any significant differences.

A new operator, named the adaptive template operator, was conceived by the

author. First a template is generated by using the XOR binary operator on

the best two (or more) chromosomes. The crossover is now carried out by

random exchange of corresponding bits between two parents wherever the cor

responding template bit is 1 and exchanging whole blockS of strings wherever

a contiguous string of Os appears in the template. The rationale is that the

better chromosomes, especially in the later stage of evolution, show similarities

due to accumulation of good schema or due to domination of a particular in

dividual. And hence this process may promote the exchange of better schema

whil~ suppressing their disruption. A more rigid operator would be to retain

all the bits corresponding to Os and exchange the rest at random. This would

also help maintain schema separated by other alleles, which would otherwise be

disrupted. A more logical choice in this context would be to treat the chromo

some as a circular string [13], since the string ends are arbitrary positions fixed

by· the chosen coding scheme.

None of these ch·ang~s have been thoroughly tested. Since proving GA changes is an·

arduous task, extensive testing across a variety of problems is required to validate or

reject the suggestions.

GAs in Optimal Control

The optimal trajectory problems presented in Chapter 2 present an opportunity

to apply GAs to develop a general algorithm for generating initial trajectories for the

41 '

indirect method. The objective is to find ,a solution close enough to the optimal solu-

,tion with enough digits of accuracy (normally two or three) to enable more efficient

codes like SQP or one of the NEM codes' to converge to the optimal solution. This

objective has been successful with GAs. The literature surveyed so far fails to reveal

a (general) method for obtaining the indirect solution.

Finding a feasible trajectory for optimal control problems in general, let alone the

one under consideration, is reported [3J to be very difficult due to the sensitive natur,e

of the costate equations. GAs also have the ability to find more than one optimal

solutions or niches. This leads to. the three chief uses of GAs for such problems:

• To find solutions to the .given problem with practically no coding except for

objective function evaluation. This can save enormous investigative and devel

opment time for sensitive problems.

• To add specific enhancements and code hybrid GAs to gIve robustness and

superior local convergence.

• To aid in better problem understanding. Analytic tools have long been the

major source for problem understanding, using simplified problems. Hence,

there is limited meaning to be found. (except by long experience) on quanti ties

like costates. Genetic codes by virtue of finding several solutions and allowing

ad hoc problem modifications can enhance this process. A demonstration is

given in Chapter 5.

In solving the optimal trajectory problem, the unknown initial states, costates

and time intervals are taken as the design variables. Each variable is represented by

a string of a specified number of bits. It was found that using slightly more bits than

42

required for the anticipated accuracy gave better performance. Given a length of Ii

bits for the ith variable, its domain is discretized to 2li uniformly spaced real numbers.

Goldberg's [13] simple genetic algorithm is not suitable for real world applications

because of its low efficiency. However, if we incorporate the enhancements described

above, the GA starts rivalling conventional algorithms in efficiency. However, unlike

other methods, there was no problem the GA did not converge for. Some paramet

ric adjustments were required to get more performance. Constraints are handled by

the L1 exact penalty function (Equation (3.6)) described by Fletcher [8]. The uncon

strained minima of this function have been proved to be the constrained minima of the

problem. These functions exhibit slope discontinuities and therefore cannot be min

imized us"ing gradient based techniques. The constraints were sufficiently weighted

by trial and error, in order to ensure boundedness of the function. Bounds on the

domain of the design vector are implicitly handled by the decoding scheme used.

Numerical integration is carried out with much lower accuracies as compared to the

requirements of nonlinear programming methods, since gradient information IS no

longer required.

Incomplete" simulation for efficiency

Genetic search permits function discontintiities and hence allows incomplete or

coarse trajectory simulation using the physical know how of the problem. Hence·

the following modifications gave significant performance increase with no change in

convergence:

• Terminate trajectory after the first engine on phase if the radius is less than the

initial radius or if the radius is less than five times planet radius. The.former

43

truncates trajectories spiraling down and the latter conservatively weeds out

non-escape conditions .

• Terminate trajectory after the coast phase if the radius is more than half the

'interplanetary' distance d1 •

• For the escape problem, terminate the trajectory if the control angle has ex-

ceeded 0.3 radians before (if - i o)/10 has elapsed, since the optimal escape is

known to be very close to zero for aimost the entire trajectory.

These modifications, by no means extensive, were deemed safe in terms of not re-

stri~ting the flexibility of the genetic code.

Testing the GA

Validation of the GA coded was done using a few representative functions as

shown in Table 4. The third column gives the range and the number of bits used for

each variable. The functions include nonconvex, discontinuous, large search space and

bad scaling properties to demonstrate some of the robustness and efficiency properties . "

Of the GA. Figures 4.1-4.6 show the performance of the various functions versus the

number of function evaluations. All the performance curves were generated using the

seed random number 0.1678943251 and are reproducible. Two performance indices

are used. One is the average of the log of the difference between the optimal solution

and the best solution at that point and the other is the average of the best solution

in the population. The performance was averaged over fifty runs. The best possible

value using the given discre"tization is also shown in the figures as a solid horizontal

line. All except Goldberg's test function were solved using a population size of 100

44

Name -Function Xi range
3

Dejong's l· t function L X7 [-5.12,5.12] 10
I

Dejong's 2nd function (2 f 2 100 Xl - X2 + (1 - xd [-2.048,2.048] 12

5

Dejong's 3rd function L integer(xd [-.5.12,5.12] 10
I

30

DeJong's 4th function Lix; [-1.28,1.28] 8
I

Modified binary, F6
cos2

(Jx2 + y2)
[-100,100] 22

1.0 + 0.001 (x 2 + y2)2

I Goldberg's example [0.0,1.0].30 I

and a steady state population size of 95. The first generation is produced by random

initialization." Figure 4.1 shows the linear convergence rate on the logarithmic scale.

At the end of 1000 evaluations an approximate log index of 3 implies that on average,

the solution rapidly converges to within 0.001 of the optimal solution. Figure 4.2 gives

the log performance for "a badly scaled nonconvex function. The convergence is hence

slightly slower (2.5 digits) since variable range and search spaces are much larger.

Figure 4.3 shows the avera,ge performance for a five dimensional step function. Note

that there is no local information available since the function is constant except at

the discontinuities. A verag~ performance was chosen since the function can only

assume integer values. Observing the solutions showed that 24 and 25 were the

only solutions produced, the latter (optimal) solution appearing more frequently.

Figure 4.4 demonstrates the property of GAs in being able to efficiently search large

45

design spaces. The average solution produced is approximately -0.6 as compared to

the optimal of 0.0. Figure 4.5 gives the log performance of the modified 'Binary

. F6' [14] function. This function is a two di~ens~onal trigonometric function with a

large number of local minima and maxima near the optimal solution (0.0,0.0). This

function has been extensively tested by Davis [14]. The best performance given in

these tests using binary representation was 3.5 digits versus 5 digits of accuracy given

by this algorithm. This comparison indicates the efficiency of the algorithm being

used. However real number encoding is noted to give higher. convergence of up to

6.5 digits. Figure 4.6 demonstrates the high accuracy to which GAs can converge to.

The design variable is very finely discretized and the function lies close to 0 in most

of its domain and hence supplies very little information. It was seen that for 4000

evaluations, the GA always converged to the exact solution.

" I

.r
r

4.50

3.50

2.50

1.50

0.50

-0.50

46

--------:---------t-lAax~x--------:---------:--------:---------t---------:--------1---------
• • • I I I • I I
I I • , I I I I I
• • I , I , I I I
• I I I I I I I I

--------i·-~-·----}---------~--------4---------~--------,---------+---------~--------~---------I I , , I I I I I
I I f I I \ I I I
I • I I I I
I It. , I
I I I I I I
, I I I I I I I I

--------~---------T---------r--------~---------~--------~---------T---------~--------,--------f • I I I , I I I
, , 1 I I I I I I
f I " I I I
I I t I I
I I I I I
I I • I I , , I

, ,
--------~---------~---------~--------~------------------~---------+.--------~--- ---.---------I I I I I , I I

I I , I I I I I
I I I , I I I I
I I I I I

,
I
I
I

I I I I , , I
I t I I I I f , , ________ J _________ ~ ________ ~ ________ ~ _________ ~ _______ _ ~ _________ 1_ _ ____ ~ ________ J ____ ~_~ __

I • I • I I I , ,
I I I , I , , , , , , , , , , , ,
I I I , I
I • I I ,

--------~---------t---------~--------i---------~------- :----·----t---------~--------i---------
l 1 I I I , I I I
I I I I I , I 1
, t I I , , ,
I I I I I I
• t I I

, I I I

• I • I
, , I , I

--------,---------r---------~--------,-- -----r--------~---------r---------r--------,---------, , I , , I I ,
I I I I I I , r
, , I , , ,
I I I , , , , , , , I I I I
I I I , I I , I

--------,---------~------- --------~---------~--------~---------T---------r--------~---------, I • I , I I I I , , I " I I ,
• I I I
I I I ,

t I 'I'
I
I
I
I I • 'I I I I

--------~-
_____ • _________ ~--------~------ ___ P--r----- --- _____ • _________ ~--------.----.----

, , 'I I I ,
I I I I I
I • I I I
I , , , I
I , f I I
f • f I I

o. 200. 0400. 800. 800. 1000.

Figure 4.1: Average log performance of DeJong's first function

1\
I

r
r

5.50

4.50

3.50

2.50

1.50

0.50

47

I I I , I , • I I

--------~---------t---------~-----~--~---------~--------~---------t---------~--------i---------
I I I I I I , I I
I I I I , I I , t
I I , I , I I • I

, " • I I
I I I ,. t

I , I I I I I I ,

--------~---------r---------~--------~---------~--------~---------T---------r--------,---------I I I I I I • I I
I 1 I t I I
I I I I I •
I I • , I I
I I I I I •
t I I I I \ 1 I I

--------~---------p---------~--------~---------~------ --~---------.---------r--------,---------I t I I I I' t
I , • I I I I I
I I I I I I I
f , I I I I I
I I I I I I ,
I I I I I I I I I

--------~---------.--------~--------.---------.--------~---------.--------~--------~---------I I I I I I"
I I • I I f I I
I I I I I I I I
I I I I • t •

t " " I I t , f I I I I I I •

--------~---------~---------~--------~---------~--------~---~-----~--------~--------~---------, I t I I I I • I
• I I I I I t I f
I I • I I .1 I I
, , I , I I
, I I I I I
I I I I I I I I ,

--------~---------~---------~--------i---------r--------~---------t---------~--------i---------
• I I I ! I • I
I I I I I I , •
, • I 4

• , I I I t I I I I

I
I
I
I

I I I

--------~---------t---------~--------~---------r------ --~- ---,---------r--------,---------
• I I I I I I I
I • I I I I I I
I • , I I , I , , , I I I
, I I I ,
I I ! I I I

--------~---------~-------- ----~---------~--------~---------~---------~--------~- --------I ,
I I
I I , ,
I I
I

I I I , • I
I I I I I I
I I I ,

I
I

I I \ I I • I

--------~--------
• _________ ~--------4 _________ ~ ________ ~- ________ .---------~--------i---- ____ _

o.

I
I
I
I

Figure 4.2:

• I I I I , I I
I I I I I I I I
I I I I I I I ,
I I I I I
I I I I I
t I I • I

200. 400. 800. 800. 1000.
N.".. ->

Average performance of DeJong's second function

28.0

2".0

t
!:II
~ 20.0

18.0

12.0

I
I
I
I
I
I
I

48

I I I I I ")

---.----~---------.---------~--------.---------~-------.~---------.--------~--------~---------I I I I I I I I ,
I I , I I I I , I
I I I I I t I I
I I I I I I I I

I

: .
--- ... -- i- ~ -- -:- i .. '" -- ~ ;- ~- ~--------~---------I I I I I I I I I

I • I I I I I I
I I I I I •
I I' I I I
I I I .
I I I I
I I I .
I I I I I , , t

--------~---------~--- .. -----~--------~----- --~--------~---------~---------~--------~---------I I I I I I I I I
I I t f I I I I I
• I I ,

• I I I I · . I I I I I
I I I · . I I I I I
I I I · . I I I I I I I I

--------~---------~--------- -------~---------~--------~---------~---------~--------~---------I I I I , I , ,

: ! I I I I I I
I I I I t

I I I I' I I

: : · . · . I I • I I
I I I , I I I I ,

--------~--------- --- ... :- .. _ - ... , -- r-"''''''''''''''''' ~-- ... - t - ---- - -r"'''''''·''' -- ... i -
I
I
I
I
I
I
I
I

I I I I I I I
I I I I I I I
f I I I
I I I I
I I I I
, I I I
I t I I

I t I I I I I --------..f---- -... -.+---- ... -- ... -~ --- -.---- ... ----~- ... ---- ... -~-~-- ... ----+-- ... -... -... -... ~------ ... -.-------- ...

o.

I
I
I
I
I
I
I
I
I

I I I I I I I I
I I ,I I, I
f I I f I I
, I I I I
I I , f I
fit I t

I I I I I
• I I I It'
, , I I I I I I --------r---------,---------j---------r--------,---------r---------r--------,---------
t I I , If, I
t I I I f I I
I , t I I I I
I I I I I
I f I , ,
, , Itt
I I I I I
I , I I I

200. <400. 800. 800. 1000.

Figure 4.3: Avera.ge performance of DeJong's third function

o.

-<40.

-80.

-120.

49

,
o
I
o
I

: , ,
I •

___ ~ ______ ~L __________ L ___________ ~ ___________ ~ ___________ ~ ___________ ~ ___________ ~ __________ _

I • I I , I I
I I I I I I I
I • • I

: : : :
I I , I
I I I ,
I I I I
I • • I

: : : , I : : ___________ L ___________ ~ ___________ ~ ___________ ~ ______ _____ L ___________ L __________ _

I It' I I
I I I I I
I I I.
I • • , , ,
, • 0
I I , , . ,
, 0 0
, I I

I' I I I , ____ L. __________ L ___________ L ___________ L ___________ L ___________ L ___________ L __________ _
I I I I I I I
I • I I I I
I I , I
I I I •
I I I I
I I I I
I I I I
I • t I
I I I I
I I I I
I ,I I I I _______ L ___________ L ___________ L ___________ L ___________ L ___________ L ___________ L __________ _
I , I I I • I
t • I I
, I I I
I I I I
I I I I
I I I I
1 I I I
I • I ,
I , I I
I I t I
I t I I I , I ________ L ___________ L ___________ L ___________ L ___________ L ___________ L ___________ L __________ _

, • , I , , ,

, • I I I I
I I • I 'I
I , t \ I I
I I I I I
I I' • I
I I' I I
I I I ,
I I I I
I I I I
I I I I

o. 1000. 2000. 3000. 4000.
Nev",->

Figure 4.4: Average performance of Dejong's fourth function

10.0

8.0

6.0

2.0

0.0

I
I
I
I

50

" ,
I I I I I I I 1 I

--------i---------t---------:---------~---------~--------~---------t---------~--------1---------
I , I I r I • I •

I
I

, , 1 I I I I I t

--------~---------}---------~--------~---------~--------~---------~---------~--------~-------
I I ' r , I I , ,
I , I I I I
I I I I 1 I
I I I I
I I I ,
I , 1 I I r , I I

--------~---------~---------~----~---~---~-----~--------~---------.---------~--------~---------I I 1, I I I
I I , I
I I I I
I I , I
I I I I
I I I I I I I , I

--------~---------.---------~--------.---------~--------~---------.---------~--------~---------I " I ,
I
I
I ,

, I I I I I I I ________ ~ _________ ~ _________ ~ ________ ~ _________ ~ ______ __ J _________ L _________ ~ ______ _

, , I I I
I I I I ,
I I I
I I I
I I I
I I I I I I , , I

--------~---------t---------~--------i--------- -------~---------~---------~--------i---------
I 'I I
I , I
I I I
I I ,
I I I
I I , I I I , I I

~-------,---------T---------j-------- ---------r--------~---------T---------I--------l---------
I • I I I I I t I

• 1 , ., I I
I • I \ I
, I I I I
I I I 1 I
I 1 , I I I

--------~---------p------- --------~---------~--------~---------T--------_r------- -,---------I 1 I I I I

t I' 1
I , I
I I 1
I I
• I I I

----.-------------------------------------~---------.---------~--------.---------I I , I I I

I
I
I
I
I

o. 800. 1800. 20400. 3200. 04000.
N EvaIa->

Figure 4.5: A verage log performance of the modified F6 function

7.0

5.0

3.0

1.0

51

, , , , , , , , , ,
I , I I \ I I I f ________ ~ _________ , _________ ~ ____ ~ ___ ~ _________ L ________ ~ _________ • _________ ~ ________ ~

I I I I I \ I I I
I I I I I I I I
I I I I I , I t , , , ,

I I , , , , ,
I I I I I I I

I
I ________ J _________ L _________ ~ ________ ~ _________ ~ ________ ~ _________ ~ __ ______ L ________ ~ ________ _

I , I I I I , , ,
I , I I I I , I

" , , ,
" , I I

" , , I

" , , I , , I
, I I
, I I · , ,
" , I I I I

--------~---------~---------~--------~---------~----- -~---------~---------~--------~---------I • I I I I I I I , , , , , ,
• • , , · , , ,

I , , ,

,
I , ,
I
I
I , , ,

I t \ , I ________ ~ _________ , _________ ~ ________ 4 ________ ~ ________ ~ _________ • _________ ~ ________ J _______ _ _ · , , I I I , I · . , I I I I I , ,
I I
I ,
, I
I ,
I ,
I I , , ,
, I I I I I I ________ ~ _________ L __

• • ------~---- --~-- -----~----.-- __ ..,1, __ ----- t - ---!'"'--" -----1- -- .. -- -

o.

, I
I
I

200.

I I I I I I
I I I I I I , , ,

I , ,
I ,
I , ,

0400. 600. 800. 1000.
N .vaI,->

Figure 4.6: Average log performance of Goldberg's test function

.52

CHAPTER 5. COMPARISON OF MODELS AND METHODS

This chapter gives numerical comparisons for the various models and algorithms

discussed. The index of comparison was chosen to be the number of function eval

uations. Here, 'function' refers to an evaluation of the right-hand sides of the state

equations or the combined state-costate equations for the ~ndirect models. This gives

a good estimate of efficiency since most of the computation is in integrating· the

equations; this means a fixed overhead per function evaluation. However, the indi

rect problem when compared to the direct one requires integration of twice as many

equations. This approximately translates to double the cost (of a direct method) for

an indirect solution with an equal number of evaluations. Table 5.1 gives a compar

ison of CPU times and this ind~x for the direct Mars transfer problem with various

algorithms and number of spline points. Table 5.2 validates our choice of polar c~or

dinates. for numerical integration using the multi value method descri bed in Chapter 3.

Effect of Models

In comparing the efficacy of the mathematical models for the p~oblems described

in Chapter 2, a·single algorithni will be used; usually the algorithm giving the best

results for the particular problem is chosen.

·53

Table 5.1: Comparison of CPU times and function evaluations

PFM, 5 PFM, 6 PFM, 10 SQP, 10
CPU time (s), DEC 5000 42.92 46.485 69.37 78.812
Number of Evaluations 553088 599680 897840 1112630
Ratio x 1000 (s/eval) 0.077 0.077 0.077 . 0.070

Table 5.2: . Comparison of Polar and Cartesian coordinates for integration

Low Accuracy (10- 4
) High Accuracy(10-9)

Polar 1484 5670
Cartesian 2255 6167

Continuous thrust Mars transfer

The Mars transfer problem can be solved using any of the models (2.11-2.13).

However the original problem (2.11) cannot be solved using Colsys [9] since tf is not

fixed. Table 5.3 compares the other models. The three best strategies of tolerance

scheduling are listed alongwith. The performance values of the overall better strategy

(1), are listed. Performances with other strategies used are lIsted if better. The

. variant (2.13).with strategy (1) shows faster convergence against the best performance

of variant (2.12) and shows that the former is superior. All Colsys solutions use two

collocation points per interval and two initial intervals. The best overali formula

for choosing initial intervals for subsequent subproblems was the lower of 16 and·

half the int~rvals required for the previous subproblem to converge. Table 5.4

compares direct .and indirect formulations. (2.11-2.13), using the multiplier penalty

function (3.5). The initial guess provided was t f = 2.0 and linearly interpolated

control points between 1.0 and 6.0 radians. Note that the exact solution given by

54

Table 5.3: Comparison of indirect models for Mars transfer

I Tolerance II 10-,-3 I 10-5 10- 7

Equation (2.12) 7072 38704 51060 51060
2:6800 3:16080 3:19296 2:49612-

Equation (2.13) .5488 11098 19498 26298
2:2520 3:7660 3:19168

Tolerances Initial Increment
(1) 0.01 0.1
(2) 0.1 0.1
(3) 0.1 0.01

Colsysis 3.319309, which corresponds to 193.05 days. Choosing a lower end time than

anticipated gives remarkable increases in performance due to reduction in integration

per simulation. Integration accuracy of 10-6 (8 digits) was used. With a tolerance

of 10-2 , it is possible to get performance of the order of 14000. This is however

not useful since Colsys with the generalized Newton's iteration provides far higher

accuracy with lower computation. Table. 5.4 demonstrates the superior convergence

and accuracy of using spline interpolation. But even using a 10-point spline does

not give the accuracy of an indirect solution and takes far more computation. Hence

we can conclude that direct solutions need only be used when indirect ones are not

present. Since spline interpolation is continuous only up to its second derivative, the

multivalue integrator halts due to use of higher derivatives. To overcome this problem,

the step size was arbitrarily reduced by half each time the step size estimator using -

higher order derivatives failed more than once to bring error within tolerance, at the

same time point.

55

Table -5.4: Comparison of direct and indirect formulations of the Mars transfer prob
lem

. Tolerance: 10 3

Perf. tf
IN : Equation (2.13) 153066 3.28
D : Polynomial, O(4) 505664 4.22
D .: Taylors Series, 0(4) 179868 3.55
D : Normalized Poly,· O(4) 169151 3.49
D : Normalized Poly, O(5) 125619 3.46
D : Spline , 5 point 49647 ·3.38
D :. Spline , 6 point 61370 3".33
D : Spline, 7 point 52733 3.33
D : Spline , 10 point 144139 3.32

IN: Indirect model; D: Direct Model

Maximum energy Earth e.scape

The four variations of the indirect model are compared in Table 5.5 using BFGS

or the multiplier penalty method. The variation used is indicated along side. The

state equations and initial conditions are unchanged. All the solutions used a 10-4

. .

integration .error and had a tolerance of 10-3 on gradient and constraints. The third

set of initial costates~ ACo/y' refers to the suboptimal solution obtained.from Colsys.

as described in Chapter 3. As the table shows, the performance ofColsys is very high.

For the optimal solution, the minimizing index (2.14) using costate Equation (2.19)

. evidently gives the best results and the fastest convergence. The modified costate

has hence reduced sensitivity to i~itial values, increased the convergence rate, and

gives the same solutions. However, the lower final energy obtained by satisfying

constraints (2.17) is not expected since by definition of the necessary conditions,

the solution is optimal. Note that even using tight tolerances and high precision

56.

integration, the bes~ solution by satisfying constraints (2.17) is 2.33 x 10-3
•

Direct solutions obtained for increasing number of spline points is given by Ta

ble 5.6. This shows the suboptimal nature of such solutions, even for a twenty point

spline. Though there is marginal improvement with number of spline points, the

increase in computational cost is not acceptable.

Table 5.5: Comparison of indirect formulations of Maximum Energy Escape

>'0 = (1.00 x 3) >'0 = (0.01 x 3) >'0 = >'Col.sy.s
Perf. E .103 . Perf. E·103 Perf. E .103

Co.: 2.10, C : 2.17 NjC NjC 2:90285 2.34
NjG NjG 3:78754 2.33

. Co : 2.10, M : 2.14 NjC 2:551668 -3.50 2:57189 2.96
NjC 3:383788 -1.83 3:57151 2.96

Co : 2.19, C : 2.17 NjC '2:79020 2.72 2: 97176 1.64
NjC 3:79088 2.72 3:115001 1.64

Co : 2.19, M : 2.14 2:63282 2.96 2:46209 2.96 2:25546 2.96
II 3:54663 I 2.96 I 3:59409 I 2.96 I 3:24535 I 2.96 I

Co: Costate, C: Constraints, M: Minimization index
2: Dog Step line search, 3: Hookstep line search [8]

>'Col.sy.s = (0.55714, -0.0046112,0.61079), Performance=4560
ECol.sy.s = 2.126 X 10-3 , E = 6.75 X 10-4

Energy in ~: (per unit mass) as described in Chapter 2.

. .

Table 5.6: Direct solution's using BFGS and free cubic splines

Degree 5 6 7 10 20
Energy.103 2.647 2.637 2.642 2.718 2.811
Performance 2:22907 2:29938 2:79427 2:54344 2:210034

II 3:31315 I 3:49824 I 3:39326 I 3:53050 I 3:189636 I

57

Single coast Earth-Moon transfer

This problem could only be solved using the genetic code. Using the genetic

algorithm's output for the initial guess and the modified three body model (Chapter 2),

the multiplier method gave a small improvem~nt. The solution did not improve

after the first subproblem indicating that the multipliers are not helpful in this case.

This solution used 3,34,519 function evaluations and satisfied the constraints to' an

accuracy of 8 .10- 2
• Using other algorithms or the original set of constraints gave no

improvement.

Algorithm Comparison and Maximum Accuracies

Table 5.7 lists the maximum accuracies successfully obtained for the Mars trans

fer problem using various algorithms and models. SQP gives the best accuracy with

the indirect method. However, the best accuracies for the direct method are ob

tained from the multiplier penalty method. The multiplier method uses a constant

but small increment in (T. The' degeneration of SQP with increase in spline points

can be attributed to the increase in the number of free variables in the constrained

hypersl>ace. This causes SQP to do an unconstrained local search at each step using

more variables. The extreme nonlinearity of the problem prevents such a search from

being effective. Table 5.8 lists. the best possible constraint satisf~ction for the es

cape problem. As described above, maximum accuracy for the Earth-Moon problem

is 2 . 10-2 • These restrictions on maximum accuracy are due to the limited gradient

~ccuracy (which is half the possible integration accuracy) and possihly due to ill con

ditioning of the Hessian estimate. The question of maximum accuracy is not relevant

to genetic algorithms since given sufficiently accurate integrals, they will eventually

58

evolve to the desired accuracy. Instead we look at the performance graphs of the GA

in Chapter 6: We now list the best performance and the algori thm(s) used for all the

three problems:

• The Mars transfer problem can be solved to five digit accuracy using Colsys in

7800 function evaluations.

• The Earth escape problem can be solved to four digit accuracy using Colsys

and then the multiplier method, and the modified model in 19000 function

evaluations.

• The Earth-Moon transfer problem can be solved to three digit accuracy usirig

GAs and the multiplier method in about a million evaluations. Note that the

constraint accuracy is in terms of the quantities normalized with respect to

Earth radius and /Le (Chapter 2).

Table 5.7: Maximum accuracies using different models and methods

Colsys PFM Multiplier SQP
Eq 2.13 10 8 2.10 3 4.10 6 3. 10 11

3.319308 3.304817 3.319"298 3.319308
Spline, 5point NjA 2.10 6 5.10 9 1 . 10 8

3.379104 3.379114 3.379114
Spline, 6point· NjA 1 . 10-7 6.10-9 10-3

3.29548 3.329549 4.5
Spline, 10point NjA 1 . 10-7 2.10-7 10-3

3.320988 3.320988 3.83

Multiplier: Multiplier PFM.

59

Table 5.8: Best constraint tolerances using different models and methods

II Multiplier I SQP I
Co : 2.10, Con: 2.17 1. 10-2 NjC
Co : 2.19, Con: 2.17 3·10 3 NjC

GAs and Low Accuracy Solutions

It was observed that most of the computation time required by the nonlinear

optimization techniques is lost in reaching a convex region containing the optimal

solution. GAs were found to be an efficient ·and robust tool for such low accuracy

solutions. Hence we briefly mention the relevant GA solutions obtained for the three

problems. The Mars transfer problem was solved to two digit accuracy in about

5000 evaluations. Since this problem is well behaved, GAs are not relevant for this

case. The Earth escape energy was optimized to 2.26 x 10-3 in 7588 evaluations.

These figures are averaged over 50 runs with different initial random numbers. As

discussed in the section above, the GA solution to the Earth-Moon problem is our

only option. We now describe how the global property of GA solutions helped in

developing a transformation for the initial costate representation which resulted in

faster convergence.

Model enhancement through GAs solutions

For computation, the initial costate ·vector was conventionally represented as

Ai == X(i). X is the variable set used in optimization. Solving the maximum energy

Earth escape problem using the genetic algorithm gave different solutions from dif

ferent runs. These solutions had the property of having similar energy values with

60

significantly different initial costates. Comparing the solutions however revealed a

remarkable property of the optimal initial costates.

Though the first costate assumed a range 9f values, the corresponding third

costate was always near this value. This implied a coupling between the first and

third costates. Though desirable, this coupling is broken by the crossover process,

slowing convergence. Hence a transformation of the variable set to the effect

A,. = x(l); Av = x(l) + x(3) (5.1)

decoupled the variables. The genetic algorithm showed remarkably increased per

formance after this change. This can be attributed to·the fact that now x(3) has a

lesser domain and is decoupled from x{ 1). For the escape problem, GAs can now be

directly used to give a solution of requested accuracy. For instance we need 75880

function evaluations to arrive at an average final energy of 2.934 . 10-3
• The low

accuracy solution mentioned above used this transformation.

61 '

CHAPTER 6. PRESENTATION OF SOLUTIONS'

This Chapter presents the optimal trajectories obtained. Figure 6.1 shows the

optimal trajectory for the Earth-Mars transfer problem in polar coordinates. Fig

ure 6.2 shows the optimal control time history. The optimal initial costate is given by

Ama1"3 = (1.87706,0.928998,2.02450) and a final time of 3.319308 (193.05 days). The

control is observed to be accelerating the spacecraft in the first half of the trajectory

and decelerating in the next half.

Figure 6.3 gives the optimal Earth escape trajectory. Figure 6.4 gives the optimal

control time history and Figure 6.5 compares the indirect and the direct control

solution histories using 20 spline points. As we can observe, the direct solution is

trying to emulate the indirect, optimal solution but remains unsuccessful due to its

restricted nature. However, towards the end when the oscillations reduce, the direct

solution is very close to the indirect one. This 'also accounts for the energies being

similar, since initially the control is near zero and has little effect on the final energy.

F,igure 6.6 gives the average performance of genetic algorithm using the original

Earth-Moon model.' Figure 6.7 gives the performance for the modified model. The

modified model shows improved convergence. The optimal trajectory for the initial,

thrust-to-weight ratio of 10-3 is given in Figure 6.8. It was observed that the multi

plier method gave marginal improvement over the GA solution. The control history

62

in Figure 6.9 indicates that the Earth escape phase of the control is similar to the

solution of the maximum energy escape problem. The optimal trajectory takes 2.252

days of initial thrusting, 0.479 days of final thrusting and 4.795 days of coasting. The

optimal angles of departure (B(t = 0)) and arrival (B1(t = 7.526)) are6.128 and 5.569

radians, respectively. The Earth and Moon escape cosatates are, respectively, given

by).E = (0.9953,0.03895,1.1186,0.0) and AM = (0.6804,0.05938,0.8760,0.0).

1.50

1.00

0.50

0.00

./ . ,

,,'
...... i

""... :

63

... , I I

"... I I
I • , :: :
, ... I t
I " I I , . . · , · '.

" . . . _____ ~ _____ ~ ________ ,!-L

· ,
I , t" I
~ ___________ L ___________ L_~ _________ L __________ _

, I, I

: ' · , · ,
• I
• I
• I • · ·

I I,,'
I I, •

: ! " : If' I
, I \ I
I I \ I
I • \ I

--- .. -------~ I I I I • \ I

---------~-----------~----:-:~---7---:~------~- _________ L _________ ~-L-----------
I I,'" I'" : \: · I I... I I 't
1 ,... I I 1\

: ,,': I !: \
: ,': :: \
I ... I I I \

I I... I' I I \
, I I, I , I' I I \

------~*---~-----------~--;~-------~-----------~-----------~------~\ -:-----------:---~-------
': : " I : : \ I \
'I I I I \ \

'/: r : \~ \
': ,': I' \
I I I' , f I I \ I'

---~------:--------~~-:-----------:-----------:-----------:-----------:- \---------:------~----
, I I I I I I t I'
, , , I 'I I I' : : I': I I : : ~
: ! :: : "
, I " I I I I : 1

-;L--------:------r ----:-----------;-----------;-----------~-----------:---- ------~--------~-
t • ,I I I I:'
t : ': : : !
: ::: : : I

I : f : : : ;

: ::: : : I

-1.80 -0.10 0.00 0.10 1.10

Figure 6.1: Optimal Mars transfer trajectory

320.

220.

120.

20.

· · · • :
I · :

64

I I , I

,
:
I .
I

, I
, • I

~ __________ L ___________ L ___________ ~ ___________ ~ __ _ _ _____ L ___________ L ___________ L __________ _

I I I , · . . , I I I
• , I · . , .

I I I • · . · . I • , .
• I

, . · . · . I I I ,

• I • · . · . , I I I I
___________ L ___________ L ___________ ~ ________ _ _ L ___________ L ___________ L ___________ L __________ _ · . , I I I I

I I , I I I , · . . , I , I · . · , I I I • · . , .
I • , . · , · . · , · . · . I I I I · . , I I I I

___________ L ___________ L ___________ L _______ _ __ L ___________ L ___________ L ___________ L __________ _ · , , · . : : : : · , , , · . · . , I , . · , · . , , , , · . · . · . · . , . · . · . , I I I I
___________ L ___________ L ___________ L _____ _ ____ L ___________ L ___________ L ___________ L __________ _

, , , I I t I · , , · , . I I • , I , · , · , I I I , , . , . · . · . · . · . · . , . · , , " , , I , I I I ___________ L ___________ L ____ _ ____ L ___________ L ___________ L ___________ L ___________ L. _________ _ · . · . I · : ·
0.00 MO

I , I I I
, I I I
I I I I

1.80
t -->

· . l : · . I I · . : :
2.70 3.80

Figure 6.2: Control angle vs time for the optimal Mars transfer problem

18.0

8.0

0.0

-8.0

65

, ,
I I , ,
I I
, I , ,
I I , ,
, I , ,

I • 1 I ___________ L ___________ L ___________ ~ ___________ ~ ______ __ • ____________ L ___________ L __________ _

I , I I I.
I 1 I I I I
I I I I

• I I , I I I I
I I 1 I

: : : :
! : 1 :
I I I I I I I

-----------~-----------~-----------~-----------~-----------~-----------~- ---------~-----------
1 1 I I I , I
I I I 1
I , I I
I I I I
t I , I

: : : :
• I I •
" I ,t
I I I I I I I ___________ L ___________ L ___________ ~ ___________ L ______ _____ L ___________ L________ .L __________ _
I' I I • •

I I f I , , , , , , , , ,
, , I , , ,

· , ,
, , , ,

: :
, I , , , ___ L ___________ L __________ L __________ _ . . , , , , , , , , , , , , , , , , ,

I 1 I I I , _____ ~ _____ L ___ _ ____ L ___________ L ___________ L ___________ ~ __ _ • _____ L ___________ L __________ _

-8.0

: , , , · , , · :

I I
I ,

I I : I , I ,
I I
I ,
I I
I I , ,
I I , ,
I I

-2.0 2.0 8.0 10.0

Figure 6.3: Optimal Earth escape trajectory

<4S.0

28.3

11.7

-5.0

66

I
I
I
I
I
I
I
I
I

, I
I, I

I
I
I

: .
I
I
I
I
I ___________ ~ ___________ L ___________ ~ ___________ ~ ______ _____ L __________ .L _____ _

, , I I I , ----~-----------
, I I I I I

• I I I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I I I ,

I
I
I
I
I
I
I
I
I
I

___________ ~ ___________ ~ ___________ ~ ___________ L ______ _____ L ___________ L __

• I I I , 1 --------~-----------, f I I I I
I I, ,
I I I
I I I
I I I
I I I
I I
I I
I I ,

I
I
I
I
I , , , ,

I , I I , , ___________ ~ ___________ ~ ___________ L ___________ L ______ _____ L _________ _ L ___________ L __________ _
f I I I I
I , I I I
I I

• I I I
I •

: :
I I
I I
I I , ___________ L ___________ ~ ___________ L ___________ L ______ _____ L _____ _

I I I I I

I I I I I
I I I I
I I
I I
I I
I I
I I
I I
I I
I I

, ,
, I ,
I

:
: ,
I , , ____ L ___________ L __________ _
I I
• I , ,
I I
, I . .
I ,

: ,
I I ___________ L __________ _ ________ L ___________ ~ _____ ~ ____ _

O.

I
I
I

Figure 6.4:

75. 1SO.
t -->

I I
I I , ,
I ,
I I
I I
I I
I I
I I , ,
I I

225.

Control angle vs time for the optimal escape problem

300.

45.0

28.3

11.7

·5.0

I
I
I
I

:
I
I

:

67

I I , ___________ L ___________ L ___________ ~ ___________ ~ ______ _ ._. __________ _

I I I I
I I I ,
I I
I I
I I
I I
I I
I I
I I
I I
I I I t ___________ L __________ .L ___________ L ___________ L ______ _

• I • I I , I I
I I I I
I I ,
I I ,
I • ,
I I I · . ,
• I ,
I I I I
, • I I ___________ L ___________ L ___________ L ___________ L ___ _
I I I I
I I I I
I I
I I
I I
I I
I I
I I
I I
I I
I " I

-----------~-----------~-----------~-----------~- ---------~-----------I I ,
I I ,
I I
I I
I I
I •
I I
I •
I I I. , __ ~ ________ L_____ L__ _ _________ L __________ _

I , ,

o. 100. 200. 300.
t->

Inchct

DIrect

Figure 6.5: Comparison of control histories for direct and indirect methods

o.

-100.

-200.

-300.

I

:
I
I
I
I
I
I
I

I I

68

I
I
I ,
I ,
I
I _._._. _____ ~ ___________ L __________ .~. __________ ~

--------~-----------~-----------~-----------I I I I I I
I I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I , I I I I ___________ L ___________ L ________ _

_ ~ ___________ ~ ___________ ~ ___________ L ___________ L ____ ______ _

I I

: :'.---------
I ,
I ,
I
I

I I I , I
I I I , I
I I I , I

, I I
I I I
, I I

I I
I I
I I
I I : , \ I I • • ___________ L _____ _ ___ L ___________ ~ ___________ ~ ___________ ~ ___________ L __ _________ L __________ _

I
I
I
I
I
I
I
I
I
I
I ___________ L. __ _

I
I
I
I
I
I
I
I
I ,
I

I 4 I I I I
, I , I , I

, I It'
I I I I I
I I I I I
I I I I I
I • I
I I I
I I I . , ,
f J' " _______ L ___________ L ___________ L ___________ L ___________ L ___________ L __________ _
I I It' I
I I I I
I I • I
I I I
I I •
I I I
I I I
I I
I I
• I
I I , I I I __________ .-.L ... _________ L ___________ L ___________ ~ ___________ L ___________ L ___________ L __________ _

I I I I I I I
I I I • I
, I I
I I I , . ,
I I •
I I I , , ,
, I I , , ,
I I I

o. 250. 500. 780. 1000.
EvakJdon

Figure 6.6: Average performance of the Earth-Moon problem

" I
IL

f

0.0

-5.0

-10.0

-15.0

69

I I
I I
I I
I I

: :
I I
I I
I I I _____ ~ _____ L ___________ L _____________________ ~ ___________ ~ __ ~ ________ ~ ___________ L ______ ____ _

I I 1 I I I
I I I'"
I , 1 •
, I , 1
, t I I
I I I I
I I I
I I I
I I I
I I I

• I I I I I
___________ L______ _L ___________ L ___________ L ___________ L~ __________ ~ ____ _______ L __________ _

t I I I , I I
I til I I f
I I I I I • ,

• , I I
I I • I

• I f I I I • •
I I I I
I I , I
I I I I I
'I I I t ___________ L____ _ ___ L ___________ L ___________ L ___ ~ _______ L ___________ L _ __________ L __________ _

I I I , I I I
,I I I I I

I , • I
I I I I

• I I I I , I •

• • I I I I • I
I I I I
I I • I
I I r I I ___________ L __________ L ___________ L ___________ L ___________ L ___________ L ___________ L __________ _
I I I I I f I
•• I I I I

I I " I •
I' I I I I

I I I I , I
I I I t

• I I I
I I I I

• • I I I I t I
t • I I I I • ___________ L _________ ~_~ ___________ L ___________ L ____ • ______ L ___________ L __________ _

, \ I I , I

I "I'
I I I I I
Itt ,
I I I
I I I
I I I
I I I
I I I
I I I
I I •

o. 250. 500. 750. 1000.
EvUldon

Figure 6.7: A verage performance of the modified Moon model

70.

50.

30.

10.

'10.

70

I
I
I
I
I
I
I

I I I I I I I I I I ,

-----L-----L-----~-----~-----L-----L~----L-----L-----L ____ ~~ ____ _
I I I , I ___ .- I I I I I
I I I , __ - - T - I , I I I I
I I t _--, I I I I I I I

: L --' - j- : : : : : : : ;
: " ... ,: : : : : : : : : :
.... I I I I I I I I I I

--;L~~-----~-----t-----~-----~-----~-----~-----~-----~ _____ ~-----~-----
I I I I I I I I I I f I

I I t I I I I 1 I I I I

I : : : : : : : : : ; :
\ I I t I I I I I I I I
\ I I I I I I t I I I I
,I , I I I I , I I I I

" I I I I I I I I I)

---~~~-----~-----~-----~-----~-----~-----~-----~-----~-----~-----~-----
~ I I I I , I I I I I
I.... I t I I I t I I , I
I.... I I I I I I I , t I
I """" I I f I I I I I
I 's.... I I I I I, I
I , I I I I I I ,
I I I I I I I I I
I I I I I I I I I I

·-----~-----r-----r--,--r-----r-----r-----r-----r-----r-----r-----r-----
I I 1 ' I I I I I I I
I I I ,......... I I I , I 1 1
I I I I '_ I I I I I I J
I It. ...,.... It. I I I
I I I I I I I I I I ,

: : : : :;'...: : : : :
I I I I I I I I I I I

-----t-----t-----~-----~-----~-----~-----1_~---~-----t- ----~-----~-----
t I • I I I I ' I I I I
I I I I I • I "l.... I I I
1 I I , I I I I I I I

! : : : : : : : "'of, ! :
, I , I I I I I I , I I
I I • • I , I • I • I

-----L-----~-----~ _____ L-----~- ____ ~-----L- ____ L _____ ~ -----1, ---t----_
I I I I I I • I I I •
I I I I I I I I I I I

I I I I I I I , I I
I I I f I I I I ,
• I I I I I I r I
I I I I I I I
I I I I I I

I • • • , t
I I I I I 1 --r-----r-----r-----r-- -r-----r----
I , , I I I
I I It. I
I I I I I
I I I I 1
1 I I I
I • I t
I I I I
I I I I

'14.0 -10.0 -6.0 -2.0 2.0 6.0 10.0

Figure 6.8: Optimal Earth-Moon transfer trajectory

100.

60,

20.

-20.

I
I
I
I
I
I
I
I
I
I

71

• I I I
___________ ~ ___________ L ___________ ~ ___________ ~ ___________ ~ __________ _

f I I I I
, I • I I
I I ,

'. I I
" . ,I I

"

I
I I

, I I I I I
I I I t I , _________ l_L ___________ L ___________ ~ ___________ ~ ___________ ~ __________ _

, I I I I I
, I I I I I
, " I I I I
, I I
1 I I
, I I

I I
1 I I
, 1 • I I I
, I • I I I

-------1---~-----------~-----------~-----------~-----------~-----------
I I I I I I
,I I I I I

I I
1 I I
1 I I
1 I I

• I
'I I

" I " , \

------r----~-----------~-----------~- -
, I I I
, I I I

t: :
" I 1 I , :

I

o. 100. 200. 300.
1->

Figure 6.9: Opti~al Earth-Moon control histories

72

CHAPTER 7. CONCLUSIONS AND SUGGESTIONS

In concluding the study; the objective of a constructing a general code for com

puting optimal trajectory estimates has been successful. However an equally if not

more arduous task remains before the objective of a general code for optimal trajec

tory planning is realized. This would involve modifying t.he state and costate equa

tions for -three .dimensional equations, using a standardized ephemeris ~nd further

hybridization along with better nonlinear optimization codes. We now summarize

the relevant conclusions and observations of this investigation along with suggestions

in light of the above objective.

Conclusions

• Genetic algorithms proved to be the only successful general solver of the optimal

trajectory problems considered here.·

• Conventional algorithms c~>uld not improve upon the solution· of GA using the

original model. However using the modified constraint set, we were able to

obtain convergence of the conventional algorithms starting with the GAs esti-·

mate. As problems get more complex, dependence on hybrid GAs arid modified

models for the optimal solution is likely to increase.

73

• Though GAs can be used to completely solve the problem, conventional algo

rithms give faster convergence near the solution. But genetic search is inher

ently parallel since the new generation of individuals only depends on its prede

cessors, completely independent of the other individuals in the new population.

Hence, on any parallel machine with sufficient processors, genetic algorithms

will outperform conventional algorithms.

• Making ad hoc changes in the simulation (integration) module, does not effect

convergence of the GA but does give better performance due to reduction in

integration cost.

• Making modeling changes to "tightly couple the problem objective into the

costate equations desensitizes the problem. An example is the optimal Earth

escape problem. The three-body model was rederived to incorporate the sec

ondary body parameters as opposed to conventionally including only the pri

mary body's effect. This model needs to be compared with a conventional

model to test its efficacy.

• Constraint modifications improve <;onvergence and performance as demonstrated

by all three problems.

• When solving a ser~es of subproblems, tolerance scheduling gIves highly in

creased performance.

• The multiplier penalty method is robust relative to SQP and gives faster con

vergence wh~n compared to the PFM. It requires lesser magnitude penalty con- "

stants and increments. This saves a lot of computation in increased integration

74

accuracy, since high weights require more significant digits.

• Splines offer suitable parameterization for problems without oscillations in the

optimal control.

• SQP gives very high performance for the indirect method, at high accuracies.

However, a close initial estimate is required.

Observations

• For low to medium integration accuracies (up to 10-8), the number of signifi

cant digits for gradient evaluati0!l can be assumed to be two greater than the

specified local accuracy. This property was observed on all the three problems,

indicating the stable nature of the state equations. This enables sufficient gra

dient accuracy with reduced computation.

• Colsys adapts by doubli~g or halving of the mesh size. This can give con

vergence problems. In solving the optimal e~cape problem the mesh size was

repeatedly halved with. no further decrease in the error. A better approach

would have been t'o identify intervals of maxim urn error and adapt the mesh.

• Saving in significant digits is also achieved by multiplying the objective function

by a constant less than 1, instead of weighting the coU:straints ..

• The SQP and Collocation codes used are not state-of-the-art. Using better

routines if available should yield better results.

75

Suggestions

.• The genetic code needs to be further refined and is likely to give even better

performance. Some untested variants are proposed in Chapter 4. Extensive

testing of GAs is required to improve performance. Testing the GA needs

averaging over a large number of seed random numbers. The machine used

(DEC 5000) proved to be unsuitable for this task due to its computational

limitations. The task is made further difficult by the plethora of options which

can improve or destroy convergence.

• Investigation of better SQP and BVP solving codes is required to realize their

full potential. The tlvlSL SQP code and the. finite difference BVP solver are

two such candidates.

• Using a parameterization of the form 8(t) = a + bt + ct2 + d sin(e + it) is likely

to improve the performance fOT the direct method on problems similar: to the

escape pro.blem.

• A method for: getting initial estimates to control angles usmg a control law

failed. This might be achieved using neural nets. But this is now not relevant·

to the current problem since optimal estimates are possible.

• The cylindrical coordinates seem tobe the logical choice for the three dimen

sional problem. This would enable the current form of control definition and

minimal changes in the state and costate equations.

• Though limited study was done to arrive at the reference normalization con

stants, a more analytic study along with a systematic comparison of the effect

76 .

of strategies to fix or vary the origin and normalization parameters needs to be

carried out.

77

REFERENCES

[1] Borowski, S.K., "The Rationale/Benefits of Nuclear Thermal Rocket Propulsion
for N ASA'a Lunar Space Transportation System," Proceedings of 27th Joint
Propulsion Conference, AIAA Paper 91-2052, Jun 1991. .

[2] Nitta, Keiji, and Ohya, Haruhiko, "Lunar base extension program and closed
loop life support," Acta Astronautica, Vol 23, Humans in Earth orbIt and plan
etary exploration missions, Pergamon press, Oct 1990, pp. 253-262.

[3] Bryson, Arthur Earl Jr., and Ho, Yu-Chi, Applied Optimal Control: Optimiza
. tion, Estimation and Control, Hemisphere Publishing Corporation, Washington,
D.C., 1975.

[4] Lewis, Frank 1., Optimal Control, John Wiley & Sons, New York, 1986.

[5] Moyer, Gardner H. and Pinkham, Gordon, "Several trajectory optimIzation
techniques (Part II: Application)," Computing Methods on Optimization Prob
lems, edited by Balakrishnan and Neustadt, Academic Press, New York, 1~64.

[6] Battin, Richard H.,An Introduction to the Mathematics and /vlethods of Astro-
dynamics, AIAA Education Series, New York, 1987.

[7] Kleuver, Craig Allan, "Optimal and sub-optimal, low thrust, Earth-Moon tra
jectories using Sequential Quadratic Programming," M.S. Thesis, Iowa State
University, Ames, 1990.

[8] Fletcher, R., Practical Methods in Optimization, John Wiley & Sons, New York,
1987.

[9] Ascher U., Christiansen J. and Russell R.D., "Colsys - A collocation code for
boundary value problems," proceedings, Conference for codes for bvp-s in ode-s,
Houston, Texas, 1978.

78

[10] Gear, William C.,Numerical initial value problems in ordinary differential equa
tions, Prentice Hall, New Jersey, 1972.

[11] Holland, J. H., Adaptation in Natural and Artificial Systems, The University of
Michigan Press, Ann Arbor, 1975.

[12] De Jong, K.A., "An analysis of the behavior of a class of adaptive systems,"
Doctoral Dissertation, University of Michigan, Ann Arbor, 1975.

[13] Goldberg, David E., Genetic algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Massachusetts, 1989.

[14] Davis, Lawerence, Handbook of Genetic Algorithms, Van Nostrand Reinhold,
New York, 1991.

[15] R~o, S.S., Pan, T.-S., Venkayya, V.B., "Optimal placement of actuators in
actively controlled structures using genetic algorithms,;' AlA A Journal, Vol 29,
Jun 1991, pp. 942-943.

[16] Hajela, Prabhakar, "Genetic search- An approach to the Nonconvex Optimiza
tion problem," AlA A Journal, Vol 28, Jul 1991, pp. 1205-1210.

79

APPENDIX A. SOLAR AND SPACECRAFT PARAMETERS

The following numerical values were used for the problems solved in this thesis:

It· 1.0

Rref 1.0Au

This was the system chosen to compare results with the reference problem [5]. One

time unit then implies 58.16 days.

Earth

J.le

Mean semi - major axis

6378.14453125km

315km + Re

4670.71094km·

3.986011875 x 105 km3
/ S2

1.0Au

\Vhere Re refers to the mean Earth radius and Rb refers to the position of the Barycen- .

ter of the Earth-Moon system. Ro refers to the position of the low parking orbits

80

from which the escape trajectory begins. The final time for the maximum energy

escape problem is 2.38 days.

Moon

Rm 1738.0km

Ro 100km + Rm, (for Moon parking orbit)

JlI

Spacecraft

384400.0km

Rb .
Jl' dl - Rb

m

Thrust

0.0299kgj s

2942.0N

For the Mars transfer problem, the spacecraft ·parameters in the normalized coordi-

nates chosen above are:

i.o

m 0.07487

Thrust 0.1405

81 .

APPENDIX B. DERIVATION OF OPTIMAL ESCAPE MODELS

The state equations of the satellite; ~scaping orbit, are given by Equations (2.7).

The time rates of the kinetic energy k and potential energy .il are given by:

. K uu + vv

u J.L --u
r2

(B.1)

Hence the time rate of change of specific energy, e is given by:

(B.2)

Substituting Equations (2.7 ,B.1) in the above gives:

e = a(t) . (u sin e + v cos e) (B.3)

U ~ing e as the functional whose integral has to be maximized and adding the total

energy as an end time functional, we get the new performance index:

u 2(t) + v 2(t) J.L. it! J = f f - -- + a(t) . (u sin e + v cos e)dt
. 2 r(tf) to

(BA)

The performance index is inciuded twice to enable more stable costates and suit

able terminal ~onstraints.Substituting (BA) in Equations (2.7) and (2.3) gives the·

governing new costate equations:

tane =

82

Ar --2- ·A --·A
(

V2 Jl) 'UV

r2 r3 u r2 u

-A r + ~ . Au - a(t) . sin e
r

A .
u

. v u .
- 2 - Au + - . Au - a(t) . cos e

r . r .
(B.5)

Noting that the final time is fixed and applying the boundary conditions (2.6) gives

the same terminal constraint's:

Ar(tf)

Au(tf)

Ar(tf)

Jl
r 2(t f)

u(tf)

v(t f) (B.6)

83

APPENDIX C. DERIVATION OF THE THREE-BODY MODEL

The three-body sy~tem is defined by a small mass under the influence of two large

point-mass bodies. We refer to one of the large bodies as the p~imary and the other as

. the secondary. The coordinate system is defined by Figure 2.2. The primary body's

parameters are defined without any subscript, and th~ secon'dary body is referred to

by the subscript \ '. The origin is at the primary. The motion of the satellite with

respect to the rotating reference frame, fixed to the primary is given by adding the

gravitational forces of the two bodies in the polar frame. To obtain its accelerations

with respect to an inertial frame fixed to the primary, the acceleration of the origin

(primary) is subtracted to give:

r u

u (
J1 . A J11 A J11 dA

) A -r + -r1 +.- 1 • r r2 . rl dl r

v - - - -i1 + -d1 . e uv (Ill III A) A
r r2 d2

v e.= -
r

1 1

(C.1)

Here the vectors i and d~ are pointing away from the origin. Hence, the vector

quantities are given by:

--r rr

84

d~ d1 cos er - d1 sin ee

(r - d1 cos e) r + d 1 sin ee (C.2)

Substituting vectors (C.2) in Equations (C.l) gives:

r u

u

2 .
v J.L J.L1 J.L1 - - - - - (r - d1 cos e) - -d1 cos e
r r2 r3 d3

1 1

UV ·J.L1. J.L1 -- - -d1 sme+ -d1 cose
r r3. d3

1 1

v

e v

r
(C.3)

The centripetal and Coriolis acceleration components due to the barycenter rotation

are given by:

-r
-w wk

-w Q

J J.L + ILl [6] d3 ,.
1

w

ur + ve -r
(CA)

Substituting Equation (C.3) in Equation (CA) and adding terms for the thrustac-

celeration of the engine gives:

r u

u
2 .

v J.L J.L1 . J.L1 2 •
- - - - 3 (r - d1 cos e) - d3 d1 cos e + rw + 2vw + a(t) sm e .
r r2 rl1 ..

v
uv J.L1. J.L1 .

- - - 3 d1 sm e + 3 d1 cos e - 2uw + a(t) cos e
r r 1 d1

v

r
(C.5)

85

The costate equations are obtained from Equations (2.3) and (C.5) as follows:

Ar (UV ori) -Av - +T2·-r2 or

(C.6)

where

Tl
3 JLl
- . 5"" (r - dl cos ())
2 r l .

3 JLl d . (J .:..... - Ism
2 r 5

1

T2

2 (r - dl cos (J)

2rdl sin ()

These equations will· be regrouped in a compact form in Chapter 2. If we need to

swit.ch to the secondary as our new primary, the velocity a.nd position components

need to be transformed. This done by choosing the connecting line between the

. primary and the secondary as the reference axis and grouping all quantities with

respect to this. Now an additional d'l is added to the horizontal component of position

and an additional dlw is added to the vertical component of the velocity. These

quantities are then resolved with respect to the new (J (previously (Jl), which is found

by vect'or transformation. The resulting set of equations becomes (2.20). Using these

86 .

equations and swaPI?ing the values of J1 and J1I switches the origin from the primary

. to the secondary which then becomes the new primary.

8i

APPENDIX D. CODE LISTING

The code is modular in' nature and allows rapid modifications and experimen-

tation. During its development the necessity for object oriented syntax was felt.

The genetic algorithm is written in C rather than FORTRAN to enable the use of

structured variables and due to ease of string manipulati~n.

Main Program

This module is responsible for initializing data, ensuring data flow between the

other modules, and unifying different problems and algorithms. It consists of the main

program and input modules for GA (SGAINP), SQP (SQPINP), penalty methods

using BFGS (PENINP), Colsys (COLSINP) and common data (GENINP).

C**
C
C

*
AUTHOR: LALITESH KUMAR KATRAGADA * SEP 10, 1991

*
*

C*******~*****************~**
C NERVE CENTER FOR CONTROLLING DATA FLOW
C CAN SOLVE ALL PROBLEMS WITH ANY ALGORITHM, AND INITIAL VALUES
C POSSIBLE TO PIPE OUTPUT OF ONE PROGRAM TO INPUT OF OTHERS
C MODULES CAN BE ADDED INDEPENDENT OF OTHERS
C

C

C
PROBLEMS
ALGORITHMS

MARS TRANSFER, ESCAPE, EARTH-MOON TRANSFER
COLSYS, PFM, MULTIPLIER, GENETIC ALGORITHM

88

C PLOTTING DATA OPTIONAL
C**

C
C
C

C
C

C
C

C

C
C
C
C
C

C
C
C
C
C
C
C

C

C
C

C

C

C
C
C

C

C
C
C
C
C

C

PROGRAM CONTROL
IMPLICIT NONE

INITYP
PROBTYP
METHOD
FNTYPE

EPSO
EPSI

. EPSMIN
DYNEPS

DYNPROB
NPROBS

TOLO
TOLl
TOLMIN
DYNTOL

DYNTIME

FTOL
CTOL
GTOL

FNTYPE
CONTYPE

·PARTYPE

NOTE

INITIALIZATION TYPE
PROBLEM TYPE.
METHOD TO BE USED TO SOLVE IT.
MATH MODEL to USE. ; BCIS TO USE.

INITIAL EPSILON (FOR INTEGRATION) .
EPS INCREMENT (IF·D~NEPS)

MIN EPS TO USE.
DYNAMIC EPS CHANGE IF .TRUE ..

> 1 SUBPROBLEMS if true
No. of SUBPROBLEMS

INITIAL TOLERANCE
SAME AS ABOVE (IF DYNTOL)
MIN TOLERANCE.
DYNAMIC TOLERANCING IF .TRUE.

End TIME is NOT fixed.

Tolerance on functi9n
Tolerance on gra4ient
Gradient· Toleran.ce

State-Costate equation set.
Constraint Type
Type.of Parameterization for Direct Method.
1 Polynomial
2 Normalized Polynomial
3 Taylors Series Polynomial
4 Spline
5 Normalized Taylors Series ?
6 Mo·dified Sin .Series ?

SET any unused value to O. so that inadvertent

C
C

89

usage will generate error messages.

INTEGER PROBTYP, INITYP, METHOD, OUTYP, ~ODEL, FNTYPE,CONTYPE,
+ PARTYPE, PINDEX ,NMAX , I, CMAX, MAXOPS, NiMAX

PARAMETER (NMAX=40,CMAX=20,NiMAX=30)
PARAMETER (MAXOPS=10)

DOUBLE PRECISION TOLO,TOLI,TOLMIN, EPSO,EPSI,EPSMIN, EPS,
+ FTOL,CTOL,GTOL

INTEGER IFCNT,IGCNT,IGDCNT,NDIF,NRIGHT,MAXINT,NINT;IPR,K,
+ INITSOL,SENSE,FLAG,NPROBS,NOUTPTS, Ni,N,MCON,
+ IFCNTi,IGCNTi,IHCNTi, SKIP,NSKIP,
+ ITER,ITNLIM, DIGITS, MAXITR, NIN,NOUT,
+ POPSIZ, NELITE, MAXGEN, NEVAL,NODUP,SCALE,NRUN

DOUBLE PRECISION MEPS,mu, delta, TF, RF, RO,Thrust,mo,mdot,
+ To,Uo,Vo,t2init,DX(3,2),TDELTA,
+ Too,TFF,Xi(NiMAX),SCOEF(4,NiMAX),TX(NiMAX),
+ Mui,Di,OMEGA,DAY,Re,Rm,
+ X (NMAX) ,FPLS,GPLS(NMAX) ,GRADTL,STEPTL,STEPMX,CNORM,CONTL ,
+ LINETA,BL(NMAX+CMAX),BU(NMAX+CMAX+l),
+ BOUNDS(O:3*NMAX),OPFITS(O:3*MAXOPS),PCROSS,PMUT,
+ SCMIN,SCMAX,RANDSEED

LOGICAL DYNEPS,DYNTOL,START,MULINTS,DONE,DYNTIME,DYNPROB,
+ STORE, PLOT

CHARACTER*20" FILENAME
INTEGER*l CHR(20)
EQUIVALENCE (FILENAME,CHR)
COMMON /MVCOUNT/ ifcnt,igcnt, igdcnt
COMMON /COUNT / IFCNTi,IGCNTi,IHCNTl
"common /EXMARS / mu, delta, TF, RF, RO,Thrust,mo,mdot
COMMON /PLANET /" Mul,Di,OMEGA,DAY,Re,Rm
COMMON /escape / To,Uo,Vo
COMMON /FNSPECS/ FNTYPE,CONTYPE,PARTYPE,PINDEX,METHOD,PLOT
COMMON /ERSPECS/ EPS,FTOL,CTOL,GTOL
COMMON /DIRCOMN/ Xl,TX,SCOEF,Too,TFF,Nl
COMMON /COUT / SKIP,NSKIP,STORE
COMMON /CINOUT / NIN,NOUT

NIN = 5

NOUT = 6
ifcnt = 0
igcnt = 0
igdcnt = 0

·IFCNTl = 0
igcntl = 0
ihcntl = 0
N = 0
MC.ON = 0

MEPS=4.D-16
delta = sqrt(meps)
NSKIP=4

EPSI=O.l
EPSO=1.D-2
EPSMIN=l. D-5·
EPS=EPSO

START=.TRUE.

DYNEPS=.FALSE.
DYNPROB=.FALSE.
DYNTIME=.FALSE.
NOUTPTS=301

90

CALL GENINP (NIN,NOUT,N,N1,MCON,PROBTYP,FNTYPE,PINDEX,
+ METHOD, CONTYPE,INITYP,PARTYPE)

GOTO (1,2,3) INITYP
WRITE(NOUT,*)· 'INVALID INITIALIZATION CODE'
STOP

1 CALL MARINIT (Mu ,ro.' to, rf, tf , t2ini t, Thrust ,mo ,mdot)
GOTO 10

2 CALL EARINIT (Mu,ro,to,rf,tf,t2init,Thrust,mo,mdot)
Uo=O.O
Vo=SQRT(Mu/Ro)

GOTO 10
3 CALL MOONINI (Mu,Mu1,D1,OMEGA,Ro,Rf,Thrust,mo,mdot

91 '

+ ,DAY,Re,Rm)
10 CONTINUE

WRITE(NOUT,*) 'GIVE EPS, NDIGITS'
READ(NIN,*) EPS, DIGITS

IF (METHOD. NE .4) .THEN
Write (NOUT,*) 'Give initial values ' ,N
READ (NIN, *) (X(I)" ,I=1,N)

ENDIF

PLOT=.FALSE.
if (method.eq.6) THEN

PLOT=.TRUE.
Method=,2

ENDIF
GOTO (21,22,23,24,22) METHOD
WRITE(NOUT,*) 'INVALID METHOD CODE'
STOP

21 CONTINUE
CALL COLSINP (NIN,NOUT,DYNPROB,DYNTlME,NPROBS,

+ NINT,K,MAXINT,EPSO,EPSI,EPSMIN)
EPS=EPSO
NDIF=6
NRIGHT=NDIF/2
IPR=O
INITSOL;;'l
SENSE=1

C .DEFINE INITIAL AND TWO END TIME APPROXIMATIONS
IF (DYNPROB) THEN

TDELTA=(T2INIT-To)*1.00001/DBLE(NPROBS)
TF=To+TDELTA
Rf '= Rf*Tf/(T2init-To)

END IF
DX(l,l)=TF

GOTO 30
22 CONTINUE

ITER=O
CALL PENINP(NIN,NOUT,GRADTL,STEPTL,STEPMX,CONTL,

92

+ ITNLIM,MAXITR)
GOTO 30

23 CONTINUE
CALL SQPINP (NIN,NOUT,N,BL,BU,STEPTL,CONTL,LINETA)
GOTO 30

24 CONTINUE
WRITE(*,*) 'Give filename 10char ~ong in quotes'
READ(* ,*) FILENAME
CHR(11) =0
CALL SGAINP(NIN,NOUT,N,BOUNDS,OPFITS,POPSIZ, NELITE,

+ MAXGEN, NEVAL,PCROSS, PMUT, RANDSEED,
+ NODUP, SCALE, SCMAX, SCMIN, NRUN)

30 CONTINUE

. DONE=.FALSE.
FLAG=1

100 CONTINUE
GOTO (11,12,13, 14,12) METHOD

11 CALL EXM1(EPS,NDIF,NRIGHT,MAXINT,NINT,K,IPR,INITSOL,
+ SENSE,START,FLAG)

GOTO 20
12 CONTINUE

110

+

CNORM=10*CONTL
IF «CNORM.GT.CONTL).AND.(ITER.LT.MAXITR» THEN

CALL PENSUB(N,MCON,X,FPLS,GPLS,DIGITS,
GRADTL, STEPTL, STEPMX, CNORM,ITER,ITNLIM,START)

WRITE(* ,*) 'ITER,CNORM.,FPLS, TFN' ,iter, cnorm, fpls, ifcnt
write(*,*) 'gradient', (GPLS(i) ,i=l,n) .
write(*,*) 'X ' ,(X(i),i=1,ri)
IF «ITER.EQ.MAXITR) .AND.(CNORM.GT.CONTL» THEN

WRITE(NOUT,*) '**ERROR MAX ITERATIONS EXCEEDED'
·FLAG=-1

ELSE
FLAG=1

ENDIF
GOTO 110

ELSE
DONE=.TRUE.

C

ENDIF
CLOSE(1)

GOTO 20
13 CONTINUE

FLAG=O

93

CALL EXM3(N,X,BL,BU,MCON,DIGITS,MAXITR,
+ LINETA,STEPTL ,CONTL ,FLAG)

DONE=.TRUE.
GOTO 20

14 CONTINUE"
CALL FSGA(X,BOUNDS,OPFITS,POPSIZ,NELITE,MAXGEN,NEVAL,PCROS

+ S,PMUT,RANDSEED,NODUP,SCALE,SCMAX,SCMIN,FILENAME,NRUN,MCON)
DONE=.TRUE.

20 CONTINUE

IF (FLAG.NE.1) THEN
WRITE(NOUT,*) 'DOES NOT CONVERGE, FLAG=' ,FLAG
DONE=.TRUE.

ELSE
IF (DYNPROB) THEN

IF (METHOD.EQ.1) CALL OUTCSYS(NOUTPTS,NDIF)
CALL ADAPESC (NINT,DONE,T2INIT,TDELTA) " "

ELSE
IF (DYNTIME)

+ CALL TADAPT (DX,EP.S,NINT,DONE,T2INIT,EPSO,EPSI,EPSMIN)
IF «DONE).AND.(METHOD.EQ.1)) "CALL OUTCSYS(NOUTPTS,NDIF)

ENDIF
ENDIF
IF (. NOT. (DO"NE)) GOTO 100

stop
end

94

C**

+
+

SUBROUTINE SGAINP(NIN,NOUT,N,BOUNDS,OPFITS,POPSIZ, NELITE,

IMPLICIT NONE

MAXGEN, NEVAL,PCROSS, PMUT, RANDSEED,
NODUP, SCALE, SCMAX, SCMIN, NRUN)

INTEGER N,POPSIZ,NELITE,MAXGEN,NEVAL,NODUP,
+ SCALE,NRUN,MAXOPS,NOPS,I,NIN,NOUT

PARAMETER (MAXOPS=20)
DOUBLE PRECISION BDUNDS(O:3*N) ,OPFITS(O:3*MAXOPS) ,PCROSS,PMUT,

+ RANDSEED,SCMAX,SCMIN
CHARACTER*20 FILENAME

WRITE (*, *) , Gi ve Fi.le in quotes for Operators and bounds'
READ(*,*) FILENAME
OPEN(UNIT=l,FILE=FILENAME,STATUS='OLD')
READ(l,*) I, NOPS
IF (I.NE.N) THEN

WRITE(*,*) 'Improper file'
STOP

ENDIF
BOUNDS(O)=N
OPFITS(O)=NOPS
READ(l,*) (OPFITS(I),I=l,NOPS)
READ(l,*) (OPFITS(I+NOPS),t=l,NOPS)
READ(l,*) (OPFITS(I+2*NOPS),I=1,NOPS)
READ(l,*)
READ(l,*) (BOUNDS(I),I=l,N)
READ(l,*) (BOUNDS(I+N),I=l,N)
READ(l,*) (BOUNDS(I+2*N),I=1,N)
CLOSE(l)
RANDSEED=O.1678943251

SCALE=3
NODUP=3
SCMAX=1.0
SCMIN=O.Ol
NELITE = 95
NEVAL=1000
POPSIZ=100

MAXGEN=1000
PCROSS=O.80
PMUT=O.004

95

write(NOUT,*) 'Give rand seed .,
read(NIN,*) randseed

WRITE(NOUT,*) 'Number of times to run (for averaging) .,
REAP(NIN,*) NRUN

Write(NOUT,*) 'Give POPSIZE,NELITE,MAXGEN,MAXEVAL'
Read(NIN,*) POPSIZ,NELITE,MAXGEN,NEVAL
Write(Nout,*) 'Give Pcross, Pmut'
Read(*,*) pcross,pmu~
Write(Nout,*) 'Give fitness scale'type, Scale Max,'
Write(Nout,*)' Scale min, Duplication type'
Read(Nin,*) SCALE,SCMAX,SCMIN,NODUP

RETURN
END

SUBROUTINE SQPINP (NIN,NOUT,N,BL,BU,STEPTL,CONTL,LINETA)
IMPLICIT NONE
INTEGER NIN,NOUT,N,I
DOUBLE PRECISION BL(N),BU(N+1),STEPTL,CONTL,LINETA,BIG

C.. Relaxed Line search. O:strict, 1:relaxed.
,WRITE(NOUT,*) 'GIVE'Func Tol, Constr. Tol,',

+ ., Line search. O:strict -) 1:relaxed.'
READ(NIN,*) STEPTL,CONTL,LINETA

WRITE(NOUT,*) 'GIVE LOWER, UPPER BOUNDS ON SEPERATE LINES'
WRITE(NOUT,*) 'EQUAL BOUNDS WILL BE TREATED AS INFINITE'
BIG=1.D10,
READ(NIN,*) (BL(I),I=1,N)
READ(NIN,*) (BU(I),I=~,N)

DO 10 I=1,N
IF (BL(I).EQ.BU(I» THEN

BL(I)=-BIG
BU(I)=BIG

ENDIF
10 CONTINUE

96 .

BU(N+1)=BIG
RETURN
END

SUBROUTINE PENINP(NIN,NOUT,GRADTL,STEPTL,STEPMX,CONTL,
+ ITNLIM,MAXITR)

IMPLICIT NONE
INTEGER NIN,NOUT,ITNLIM,MAXITR
DOUBLE PRECISION GRADTL,STEPTL,STEPMX,CONTL

WRITE(NOUT,*) 'Give Gradient Tol, Step tol, ,
+ 'Ma~ step allowed, Constraint Tol'

READ (NIN, *) GRADTL, STEPTL, STEPMX, CONTL
WRITE(NOUT,*) 'Giv~ Max iterations for each Subproblem .J

READ (NIN, *) ITNLIM
WRITE (NOUT,*) 'Give max penalty subprobs to solve: '
READ (NIN,*) MAXlTR

RETURN
END

SUBROUTINE COLSINP (NIN,NOUT,DYNPROB,DYNTIME,NPROBS,NINT,
+ K,MAXINT,EPSO,EPSI,EPSMIN)

LOGICAL DYNPROB,DYNTIME
INTEGER NPROBS;NINT,K,MAXINT
DOUBLE PRECISION EPSO,EPSI,EPSMIN

WRITE(NOUT,*) 'GIVE (T/F) O~NTIME, DYNPROB,NPROBS'
READ(NIN,*) DYNTIME~DYNPROB,NPROBS
WRITE(NOUT,*) 'GIVEN INTERVALS ,MAX INTERVALS'
READ(NIN,*) NINT,MAXINT

. WRITE(NOUT,*) 'GIVE NO. OF COLLOCATION PTS/INTERVAL'
READ(NIN,*) K

RETURN
END

WRITE(NOUT,*)' 'GIVE EPSo, EPSinc, Min EPS'
READ(NIN,*) EPSO,EPSI,EPSMIN

SUBROUTINE GENINP (NIN,NOUT,N,N1,MCON,PROBTYP,FNTYPE,PINDEX,
+ METHOD,CONTYPE,INITYP,PARTYPE)

97

IMPLICIT NONE
INTEGER NIN,NOUT,PROBTYP,FNTYPE,METHOD,N,N1,

+ PINDEX,CONTYPE,INITYP,PARTYPE,MCON
. WRITE(NOUT,*) 'GENERALISED TRAJECTORY PLANNER & OPTIMIZER '

WRITE(NOUT,*) 'Give Problem type (1:EMARS,2:ESCAPE,3:EMOON)'
READ(NIN,*) PROBTYP
WRITE(NOUT,*) 'GIVE FUNCTION TYPE M:~,2, E:3,4,5 M:6-8 '
WRITE(NOUT,*)' COLSYS 1) e-mars, 2) Escape'
READ(NIN,*) FNTYPE
WRITE(NOUT,*) 'Give Algorithm to use: "

+ '1:Colsys, 2:Multiplier PFM, 3:SQP, 4:GA, 5:PFM'
READ(NIN,*) METHOD
WRITE(NOUT,*) 'Give Constraint Type (for colsys)'
WRITE(NOUT,*) '1) E-Mars 2) Version 2., 3) Escape'
WRITE(NOUT,*) 'For Esc: 1) TSC, 2) NONE'
READ(NIN,*) CONTYPE

. WRITE (NOUT , *) , Give initial Data code (1 : Mars ,2 :Earth,3 :EM)'
READ(NIN,*) INITYP
WRITE(NOUT,*) 'Give Parameterization (Direct Problems) &',

+ 'No. of control parameters (in direct)'
WRITE(NOUT,*) '1 : Polynomial 2 Normalized Polynomial'
WRITE(NOUT,*) '3 : Taylors Series 4 : Spline, 0 : NONE'
READ(NIN,*) PARTYPE,N1

GOTO (41,42,43,44;45,46,47,48,49) FNTYPE
WRITE(*,*) 'MAIN:INVALID FNTYFE ' ,FNTYPE
STOP

41 MCON=3
goto 60

42 N=4
MCON=3

GOTO 50
43 MCON=O

GOTO 60
44 N=3

45

MCON=3
GOTO.50

N=3
MCON=3

GOTO 50

46 N=12
MCON=3

GOTO 50
47 N=l1

MCON=3
GOTO 50

48 N=l1
MCON=4

GOTO 50
49 N=l1

MCON=3
GOTO 50

60 CONTINUE
GOTO (31,32) PROBTYP

98

WRITE(NOUT,*) 'DIRECT METHOD INVALID, PROB ',PROBTYP
STOP

31' N=N1+1
PINDEX=2

GOTO 40
32 N=N1

PINDEX=l
40 CONTINUE
50 CONTINUE

RETURN
END

SUBROUTINE GMOON
WRITE(*,*), DUMMY SUB,GMOON'
'STOP
END.

99

Initial Data Module

The three routines MARINIT, EARINIT and MOONINI, respectively supply

initial data for the Mars transfer, the Earth escape and the Earth-Moon transfer.

C--
C INITIALIZATION MODULES
C-----------------------~--~---

SUBROUTINE MARINIT (Mu,ro,to,rf,tf,t2init,Thrust,mo,mdot)
IMPLICIT NONE
DOUBLE PRECISION Mu,ro,to,rf,tf,t2init,Thrust,mo,mdot

TO=O.O
tf=3.0
T2INIT= 4.0
rf=1.525
ro=1.0
mu = 1.0
Thrust = 0.1405
Mo = 1.0
Mdot = 0.07487

RETURN
END

SUBROUTINE EARINIT (Mu,ro,to,rf,tf,t2init,Thrust,mo,mdot)
IMPLICIT NONE·
DOUBLE PRECISION MU,ro,to,rf,tf,t2init,Thrust,mo,mdot,

+ Re,Day,Mass,Len
Re = 6378.14453125
Len = Re
Day = DBLE(0.5*24*3600)
Mass = 1.0D05
Ro = (315.0+Re)/Len
mu = 3.986011875D05
DAY = SQRT(Len**3/Mu)

Mu = Day*Day/Len**3 * Mu
TO=O.O

100

T2INIT=2.38*24.*3600./Day
TF=2.38*24.*3600./Day
rf=15.0*Re/Len
Mo = 1.D5/Mass

. Thrust = 2942. O/Mass* Day*Day/Leon/l.D03
Mdot = 0.0299*Day/Mass

RETURN
END

SUBROUTINE MOONINI (Mu,Mul,Dl,W,Ro,Rf,
+ Thrust,rno,rndot,DAY,Re,Rrn)

+

IMPLICIT NONE
DOUBLE PRECISION Mu,Mul,Dl,W,Ro,Rf,Thrust,rno,rndot,

Rrn,Re,Day,Mass,Len~TR

Re = 6378.14453125
Rrn = 1738.0
01 = 384400.0
TR = 4670.71094
Len = Re
Mass = 1.0005
rnu = 3.986011875005
Mul = Mu * (TR/(Dl-TR))
W = SQRT«Mu+Mul)/Dl**3)
DAY = SQRT(Len**3/Mu)

Ro = (315.0+Re)/Len
Rf = (100.0+Rrn)/Len
Re = Re/Len
Rrn = Rrn/Len
Mu = Day*Day/Len**3 * Mu
Mul= Day*Day/Len**3 * Mul
W = W*DAY
01 = Dl/Len
Mo = 1.D5/Mass
Thrust = 2942.0/Mass* Day*Day/Len/l.D03
Mdot = 0.0299*Day/Mass

. RETURN
END

101,

C--

Simulation Module

This module contains the routine FPLANET which controls the other simula-

tion routines for different problems. This enables problem specification in inpuL

The routines FMARS, FMARS2, FESCAPE, FESCAPE2, FESCAPE3, E_MOON and

E_MOON(2,3,4) setup the variables to call SOLPATH which calls the multivalue in-

tegrator, and evaluate the object~ve functions and constraints. These routines pass

on the state or costate equations (MARS through ALLBODY) to be used as an ar

gument to SOLPATH. Routines for parameterizing the control time history for the

direct methods are THANGLE and INITAN'G. The other routines (OUT*) are the

output routines called by the integrator at each successful step.

C**
C PROBLEM SIMULATIONS

C**

FUNCTION FPLANET (N,X,I) .
C NOTE: FPLANET (N,X,O) MUST BE 'CALLED BEFORE ANY OTHER CALLS.

IMPLICIT NONE
INTEGER FNTYPE,CONTYPE,PARTYPE,PROBTYP,N,I,j,

+ IFCNT,IGCNT,IHCNT,TFCNT,THTYPE
DOUBLE PRECISION X(N),C(20),FPLANET,TMP(30),TMP1(30),

+ FMARS,FMARS2,FESCAPE,FESCAPE2,E_MOON,E_MOON2,E_MOON3,

+ FEscape3 ,THETA ,E_MOON4

CHARACTER*20 FILE
LOGICAL IN IT
COMMON /FNSPECS/ FNTYPE,CONTYPE,PARTYPE,PROBTYP

COMMON /CLOCAL / C
COMMON /COUNT / IFCNT,IGCNT,IHCNT

1

2

3

4

5

6

7

8

9

10

11

102

COMMON /MVCOUNT/ TFCNT
COMMON /POUT/ THETA,INIT,THTYPE,File
COMMON /EXTEMP / TMP,TMP1

FILE='plot.dat'
IF (1. EQ. 0) THEN

IFCNT=IFCNT+1
GOTO (1,2,3,4,5,6,7,8,9) FNTYPE
WRITE(* ,*) 'INVALID FUNCTION' ,FNTYPE
STOP

THTYPE=1
FPLANET = FMARS (N,X,C)

GOTO 10
THTYPE=3
FPLANET = FMARS2(N,X,C)

. GOTO 10
THTYPE=1
FPLANET = FESCAPE (N,X,C)

GOTO 10
THTYPE=3
FPLANET = FESCAPE2 (N,X,C)

GOTO 10
THTYPE=2
FPLANET = FESCAPE3 (N,X,C)

GOTO 10
THTYPE=4
FPLANET = E_MOON (N,X,C)

GOTO 10
THTYPE=4
FPLANET = E_MOON2 (N,X,C)

GOTO 10
THTYPE=4
FPLANET = E_MOON3 (N ,X,C)

GOTO 10
THTYPE=4
FPLANET = E_MOON4 (N,X,C)

CONTINUE
do 11 j=1,n

tmp (j) =x(j)

C

103

write(*,*) FPLANET,' ',C(l) ,c(2) ,c(3)
ELSE

do 12 j=l,n
IF (tmp(j).NE.x(j)) then

write(*,*) 'function mismatch' ,x(j),tmp(j)
stop

end if
t2 continue

FPLANET = C(I)
ENDIF

RETURN
END

FUNCTION FMARS (N,X,C)
C S~t N=Nl+l, MCON=3

IMPLICIT NONE
INTEGER N,NDIF,MAXK,i,FNTYPE,CONTYPE,PARTYPE,PINDEX,METHOD
PARAMETER (NDIF=3,MAXK=20)
DOUBLE PRECISION X(N), MU, DELTA, tf,rf, ro,

+ FMARS, Y(NDIF,MAXK), Thrust,mo,mdot,C(3)
EXTERNAL MARS,OUT
COMMON /FNSPECS/ FNTYPE,CONTYPE,PARTYPE,PINDEX,METHOD
COMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,mo,mdot

C TMP CHECKS FOR ILLEGAL CALLS TO FMARS. MAY BE REMOVED.

Tf = X(t)
Y(l,t)=RO
Y(2,l)=0.0
Y(3,l)=SQRT(MU/RO)
CALL SOLPATH (Y,NDIF,MAXK,N,X,MARS,OUT, .FALSE.)

C ... for Penalty Problem.
IF (METHOD.EQ.3) THEN

Fmars = X(t)*X(l)*O.l
ELSE

Fmars = X(t)*X(l)*O.OOl
ENDIF

C(t) = (Y(l,l)-RF)

C(2) = Y(2,1)
C(3) = (Y(3,1)-SQRT(MU/RF»
RETURN
END

FUNCTION FMARS2 (N,X,C)
C Set N=Nl+l

IMPLICIT NONE

104

INTEGER N,NDIF,MAXK,j,TFCNT,FNTYPE,CONTYPE,
+ PARTYPE ,PINDEX ,METHOD

PARAMETER (NDIF=6,MAXK=10)
DOUBLE PRECISION X(N), MU, DELTA, tf,rf, ro,

+ FMARS2, Y(NDIF,MAXK), Xl(10),
+ Thrust,mo,mdot, C(3)

EXTERNAL ALSTAT1,OUT
COMMON/MVCOUNT/TFCNT
COMMON /FNSPECS/ FNTYPE,CONTYPE,PARTYPE,PINDEX,METHOD
COMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,mo,mdot

Y(l,l)=Ro
Y(2,1)=0.0
Y(3,1)=SQRT(MU/RO)
Tf =X(l)
Y(4,1)=X(2)
Y(5,1)=X(3)
Y(6,1)=X(4)
CALL SOLPATH (Y ,NDIF ,MAXK,N ,Xl ,ALSTATl, OUT, . FALSE.)
IF (METHOD.EQ.3) THEN

Fmars2 = Tf*Tf*O.l
ELSE

Fmars2 = T£*Tf**O.OOl
ENDIF

c(1) = Y(2,1)
C(2) = Y(3,1) - SQRT (MU/RF)
C(3) = (Y(l,l)- RF)*4.
RETURN
END

FUNCTION FESCAPE (N,X)
C Set N=N1+1, MCON=O

IMPLICIT NONE
INTEGER N,NDIF,MAXK,TFCNT
PARAMETER (NDIF=3,MAXK=10)

105

DOUBLE PRECISION X(N), MU, DELTA, tf,rf, ro,
+ FESCAPE, Y(NDIF,MAXK),
+ Thrust,rno,rndot

EXTERNAL MARS,oUT
CoMMON/MVCOUNT/TFCNT
CoMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,rno,rndot

Y(1,1)=Ro
Y(2,1)=O.O
Y(3,1)=SQRT(MU/RO)
CALL SoLPATH (Y,NDIF,MAXK,N,X,MARS,OUT, .FALSE.)
FESCAPE = -O.5*(Y(2,1)*Y(2,1) + Y(3,1)*Y(3,1)) + MU/Y(1,1)
RETURN
END

FUNCTION FESCAPE2 (N,X,C)
C Set 'N=N1+1, MCoN=O

IMPLICIT NONE
INTEGER N,NDIF,MAXK,j,TFCNT,FNTYPE,CoNTYPE,PARTYPE,PINDEX
PARAMETER (NDIF=6,MAXK=10)
DOUBLE PRECISION X(N), MU, DELTA,.tf,rf, ro,

+ FESCAPE2,Y(NDIF ,MAXK), Xi(10) ,
+ Thrust,rno,rndot, C(3)

EXTERNAL ALSTAT1,oUTESC~,out
COMMON/MVCoUNT/TFCNT
COMMON /FNSPECS/ FNTYPE,CoNTYPE.PARTYPE,PINDEX
COMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,rno.rndot

V(1,1)=Ro
Y(2,1)=O.O

Y(3,1)=SQRT(MU/RO)
Y(4,1)=X(1)
Y(5,1)=X(2)
Y(6,1)=X(3)

106.

CALL SOLPATH (Y ,NDIF ,MAXK, N ,Xl ,ALSTAT1, OUT ,. FALSE.)
FESCAPE2 =-0.5*(Y(2,1)*Y(2,1)+Y(3,1)*Y(3,1»+MU/Y(1,1)
IF (CONTYPE.EQ.l) THEN

C(1)=Y(4,1)-MU/(Y(1,1)*Y(1,1»
C(2)=Y(5,1)-Y(2,1)
C(3)=Y(6,1)-Y(3,1)
Fescape2=0.0

ELSE
c(l)=O.O
c(2)=0.O
c(3)=0.0

ENDIF
RETURN
END

FUNCTION FESCAPE3 (N,X,C)
C Set N=Nl+l, MCON=O

IMPLICIT NONE
INTEGER N,NDIF,MAXK,j,TFCNT,FNTYPE,CONTYPE,PARTYPE,PINDEX
PARAMETER (NDIF=6,MAXK=10)
DOUBLE PRECISION X(N), MU, DELTA, tf,rf, ro,

+ FESCAPE3, Y(NDIF,MAXK), Xl(10),
+ Thrust,mo,mdot, C(3)

EXTERNAL ALSTAT2,OUT,OUTESC2
COMMON/MVCOUNT/TFCNT
COMMON /FNSPECS/ FNTYPE,CONTYFE,PARTYPE,PINDEX
COMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,mo,mdot

Y(l,l)=Ro
Y (2 , 1) =0 . 0 .
Y(3,1)=SQRT(MU/RO)
Y(4,1)=X(1)
Y(5,1)=X(2)
Y(6,1)=X(3)
CALL SOLPATH (Y,NDIF,MAXK,N,Xl,ALSTAT2,OUT, .FALSE.)
FESCAPE3 =-0.5*(Y(2,1)*Y(2,1)+Y(3,1)*Y(3,1»+MU/Y(1,1)

107

Write(*,*) 'e=',Fescape3
IF (CONTYPE.EQ.l) THEN

C(1)=Y(4,1)-MU/(Y(1,1)*Y(1,1))
~(2)=Y(5,1)-Y(2,1)

C(3)=Y(6,1)-Y(3,1)
Fescape3=O.O

ELSE
c(1)=O.O
c(2)=0;0
c(3)=O.0

ENDIF
RETURN
END

FUNCTION E_MOON2 (N,X,C)
C Set N=ll, MCON=3.

IMPLICIT NONE
INTEGER N,NDIF,MAXK,j,NDIF2
PARAMETER (NDIF=8,NDIF2=4,MAXK=10)
DOUBLE PRECISION X(N), MU, DELTA, tf,rf, ro,

+ E_MOON2, Y(NDIF,MAXK), X1(20), R1,TH1,U1,V1,
+ Thrust,mo,mdot, C(3), Mu1,D1,W, Y2(NDIF2,MAXK),
+ Smo,SMU,Smu1,DAY,DAY1,ENERGY,E,EO,Rs, Hamilt, Re,Rm

EXTERNAL ALLBODY,OUT
COMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,mo,mdot
COMMON/PLANET/Mul,D1,W,DAY,Re,Rm
ENERGY(W) = 0.5*(Y(2,1)**2+(Y(3,1)+W*Y(1,1))**2)-MU/Y(1,1)

Smo =Mo
Smu =Mu
Smu1 =Mu1
Day1 =DAY/(24.*3600.)
Tf =X(2)/DAY1
Y(l,l)=Ro
Y(2,1)=0.0
Y(3,1)=SQRT(MU/RO)-W*Ro
Y(4,1)=X(1)

Y(5,1)=X(3)
Y(6,1)=X(4)*(X(3)+X(5»
Y(7,1)=X(3)+X(5)
Y(8,1)=0.0
EO=ENERGYOn
Rs=Y(l,l)

108

CALL SOLPATH (Y,NDIF,MAXK,N,Xl,ALLBODY,OUT, .FALSE.)

E=ENERGY(W)
IF «(E.LT.EO) .OR.(Y(l,l).LT.Rs».OR.

+ (Y(1,1).LT.Ro*5.0» THEN
Rl=Y(l,l)
Ul=Y(2,1)
Vl=Y(3,1)
TH1=Y(4,1)
CALL TRANSFORM(Rl,THf,Ul,Vl,Dl,W,

+ Y(l,l) ,Y(4,1) ,Y(2,1) ,Y(3,1»
GOTO 100

ENDIF
RS=Y(l,l)

Mo = Mo-X(2)*Mdot
Tf = X(6)/DAYl
Y2(l,l)=Y(1,1)
Y2(2,l)=Y(2,1)
Y2(3,l)=Y(3,1)
Y2(4,l)=Y(4,1)
CALL SOLPATH (Y2 ,NDIF2 ,MAXK,N ,Xl ,ALLBODY ,OUT,. FALSE.)

CALL TRANSFORM(Y2(1,1) ,Y2(4,1) ,Y2(2,1) ,Y2(3,l) ,Dl,W,
+ Y(l,l) ,Y(4,1) ,Y(2,1) ,Y(3,1»
'IF «Y2(1, 1) . Lt .. RS) . OR. (Y(l, 1) .GT. Dl*O. 75)

+ .OR.(Y(l,l).LT.Rrn» THEN
GOTO 100

ENDIF
Mu =SMul
Mul =Smu
Tf =X(11)/DAYf
Y(5,l)=X(7)
Y(6,1)=(X(9)+X(7»/X(8)

Y(7,1)=X(9)+X(7)
Y(8,1)=0.33

109

CALL SOLPATH (Y,NDIF,MAXK,N,Xl,ALLBODY,OUT, .FALSE.)
100 continue

Mo=Smo
Mu=Smu
Mul=Smul

E_MOON2 = X(2)+X(11)
C(1)=Y(1,1)-Rf
C(2)=Y(2,1)
C(3)=ABS(Y(3,1)+W*Y(1,1»-SQRT(MU1/Rf)
C(1)=C(1)*20.
C(2)=C(2)*5.
C(3)=C(3)*5.
RETURN
END

FUNCTION E_MOON (N,X,C)
C Set N=12, MCON=3

IMPLICIT NONE
INTEGER N,NDIF,MAXK,j,NDIF2
PARAMETER (NDIF=8,NDIF2=4,MAXK=10)
DOUBLE PRECISION X(N), MU, DELTA, tf,rf, ro,

+ E_MOON, Y(NDIF,MAXK), X1(20),.Rl,TH1,Ul,V1,
+ Thrust,mo,mdot, C(3), Mu1,D1,W, Y2(NDIF2,MAXK),
+ Smo,SMU,Smu1,DAY,DAY1,ENERGY,E,EO,Rs, Hamilt

EXTERNAL ALLBODY,OUT
COMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,mo,mdot
COMMON/PLANET/Mu1,D1,W,DAY
ENERGY(W) = 0.5*(Y(2,1)**2+(Y(3,1)+W*Y(1,1»**2)-MU/Y(1,1)

Smo =Mo
Smu =Mu
Smul =Mu1
Dayl =DAY/(24.*3600.)
Tf =X(2)/DAY1
Y(1,1)=Ro
Y(2,1)=0.0
Y(3,1)=SQRT(MU/RO)-W*Ro

Y(4,1)=X(1)

Y(5,1)=X(3)
Y(6,1)=X(4)*(X(3)+X(5))
Y(7,1)=X(3)+X(5)
Y(S,1)=X(6)
EO=ENERGY(W)
Rs=Y(1,1)

110

CALL SOLPATH (Y,NDIF,MAXK,N,Xl,ALLBODY,OUT, .FALSE.)

E=ENERGY(W)
902 FORMAT (,y , ,S(G9.3,lX»

IF «E.LT.EO) .OR. (Y(l,l) .LT.Rs» THEN
.. Rl=Y(1,1)

Ul=Y(2,1)
Vl=Y(3,1)
TH1=Y(4,1)
CALL TRANSFORM(Rl,TH1,U1,Vl,Dl,W,

+ Y(l,l) ,Y(4,1) ,Y(2,1) ,Y(3,1»
GOTO 100

ENDIF
RS=Y(1,1)

Mo = Mo-X(2)*Mdot
Tf ,= X(7)/DAYl
Y2(1,1)=Y(1,1)
Y2(2,1)=Y(2,1)
Y2(3,1)=Y(3,1)
Y2(4,1)=Y(4,1)
CALL SOLPATH (Y2,NDIF2,MAXK,N,X1,ALLBODY,OUT,.FALSE.)

CALL TRANSFORM(Y2(1,1) ,Y2(4,1),Y2(2,1),Y2(3,1),Dl,W,
+ Y(1,1),Y(4,1),Y(2,1),Y(3,1»

IF «Y2(1,1) .LT.RS).O~.(Y(i,1).GT.D1» THEN
GOTO 100

ENDIF
Mu =SMul

. Mul =Smu
Tf =X(12)/DAYl
Y(5,1)=X(S)

Y(6,1)=(X(10)+X(8))/X(9)
Y(7,1)=X(10)+X(8)
Y(8,1)=X(11)

111.

CALL SOLPATH (Y,NDIF,MAXK,N,Xl,ALLBODY,OUT,.FALSE.)
100 continue

Mo=Smo
Mu=Smu
Mul=Smul

C (1) = Y (1 , 1) - Rf
C(2)=Y(2,1)
C(3)=ABS(Y(3,1)+W*Y(1,1))-SQRT(MU1/Rf)
E_MOON:= X(2)+X(12)
C(1)=G(i)*10.
C(2)=C(2)*5.
C(3)=C(3)*5.

RETURN
END

FUNCTION E_MOON3 (N,X,C)
C Set N=ll, MCON=3

IMPLICIT NONE
INTEGER N,NDIF,MAXK,j,NDIF2
PARAMETER (NDIF=8,NDIF2=4,MAXK=10)
DOUBLE PRECISION X(N), MU, DELTA, tf,rf, ro,

+ E_MOON3, Y(NDIF,MAXK), Xl(~O), Rl,TH1,Ul,Vl,
+ Thrust,mo,mdot, C(4), Mul,Dl,W, Y2(NDIF2,MAXK),
+ Smo,SMU,Smul,Smdot,DAY~DAY1,ENERGY,E,EO,Rs, Re,Rm
EXT~NAL ALLBODY,OUT
COMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,mo,mdot
COMMON/PLANET/Mul,Dl,W,DAY,Re,Rm
ENERGY(W) = 0.5*(Y(2,1)**2+(Y(3,1)+W*Y(1,1))**2)-MU/Y(1,1)

Smo =Mo
Smu =Mu
Smul =Mul
Smdot=Mdot
Dayl =DAY/(24.*3600.)

Tf =X(2)/DAY1
Y(1,1)=Ro
Y(2,1)=0.0

. Y(3,1)=SQRT(MU/RD)-W*Ro
Y(4,1)=X(1)

Y(5,1)=X(3)
Y(6,1)=X(4)*(X(3)+X(5))
Y(7,1)=X(3)+X(5)
Y(8,1)=0.0
EO=ENERGY(W)
Rs=Y(1,1)

112

CALL SDLPATH (Y,NDIF,MAXK,N,X1,ALLBDDY,DUT, .FALSE.)

E=ENERGY(W)
Y2(1,1)=Y(1,1)

. Y2(2,1)=Y(2,1)
Y2(3,1)=Y(3,1)
Y2(4,1)=Y(4,1)
Mo= Mo-X(2)/Day1*Mdot
Tf = X(6)/DAY1
CALL SDLPATH (Y2,NDIF2,MAXK,N,X1,ALLBDDY,DUT,.FALSE.)
CALL TRANSFDRM(Y2(1,1),Y2(4,1),Y2(2,1),Y2(3,1) ,D1,W,

+ R1,Th1,U1,V1)

Mu =SMu1
Mu1 =Smu
Mdot =-Smdot
Tf =X(11)/DAY1
Mo =Mo-X(11)/Day1*Smdot
Y(1,1)=Rf
Y(2,1)=0.0
Y(3,1)=SQRT(MU/Rf)-W*Rf
Y(4,1)=X(10)
Y(5,1)=X(7)
Y(6,1)=(X(9)+X(7))*X(8)
Y(7,1)=X(9)+X(7)
Y(8,1)=0.0
CALL SDLPATH (Y,NDIF,MAXK,N,X1,ALLBDDY,DUT, .FALSE.)
CALL NDRMANG(Y(4,1))

100 continue
Mo=Smo
Mu=Smu
Mu1=Smu1
Mdot=Smdot
C(1)=Y(1,1)-R1
C(2)=Y(2,1)-U1
C(3)=ABS(Y(3,1)-V1)
C(4)=ABS(Y(4,1)-Th1)

113

E_MOON3 = (X(2)+X(11))*0.01
RETURN

. END

FUNCTION E_MOON4 (N,X,C)
C S~t N=11, MCON=3

IMPLICIT NONE
INTEGER N,NDIF,MAXK,j,NDIF2
PARAMETER (NDIF=8,NDIF2=4,MAXK=10)
DOUBLE PRECISION X(N), MU, DELTA, tf,rf, ro,

+ E_MOON4, YCNDIF,MAXK), X1(20), R1,TH1,U1,V1,
+ Thrust,mo,mdot, C(4), Mu1,D1,W, Y2(NDIF2,MAXK),
+ Smo,SMU,Smu1,Smdot,DAY,DAY1,ENERGY,.E,EO,Rs, Re,Rm

EXTERNAL ALLBODY,OUT
COMMON/EXMARS/MU,DELTA, TF, RF, RO,Thrust,mo,mdot
COMMON/PLANET/Mu1,D1,W,DAY,Re,Rm
DOUBLE PRECISION THETA
INTEGER THTYFE
LOGICAL INIT
CHARACTER*20 FILE

·COMMON /POUT/ THETA,INIT,THTYPE,File
ENERGY(W) = 0.5*(Y(2,1)**2+(Y(3,1)+W*Y(1,1))**2)-MU/Y(1,1)

Smo =Mo
Smu ·=Mu
Smu1 =Mu1
Smdot=Mdot
Day1 =DAY/(24.*3600.)
Tf =X(2)/DAY1

Y(l,l)=Ro
Y(2,1)=0.0
Y(3,1)=SQRT(MU/RO)-W*Ro
Y(4,1)=X(1)

Y(5,1)=X(3)
Y(6,1)=X(4)*(X(3)+X(5»
Y(7,1)=X(3)+X(5)
Y(8,1)=0.0
EO=ENERGY(W)
Rs=Y(l,l)
FILE='plot1.dat'

114

CALL SOLPATH (Y,NDIF.,MAXK,N,X1,ALLBODY,O"UT, .FALSE.)

E=ENERGY(W)

Y2(1,1)=Y(1,1)
Y2(2,1)=Y(2,1)
Y2(3,1)=Y(3,1)
Y2(4,1)=Y(4,1)
Mo = Mo-X(2)/Day1*Mdot
Tf = X(6)/DAY1

C------------------------~------
THTYPE=l
THETA=O.O
FILE='plot2.dat'
CALL SOLPATH (Y2,NDIF2,MAXK,N,X1,ALLBODY,OUT,.FALSE.)
CALL TRANSFORM(Y2(1,1),Y2(4,1),Y2(2,1),Y2(3,1) ,D1,W,

+ R1,Th1,U1,V1)

Mu =SMu1
Mu1 =Srnu
Mdot =-Smdot
Tf =X(11)/DAY1
Mo =Mo-X(11)/Day1*Srndot
Y(l,l)=Rf
Y(2,1)=0.0
Y(3,1)=SQRT(MU/Rf)-W*Rf
Y(4,1)=X(10)
Y(5,1)=X(7)

Y(6,1)=(X(9)+X(7»*X(8)
Y(7,1)=X(9)+X(7)
Y(8,1)=0,0

C-~---~--------------------------
·THTYPE=4
FILE='plot3,dat'

11,5

CALL SOLPATH (Y,NDIF,MAXK,N,X1,ALLBODY,OUT, ,FALSE,)
CALL NORMANG(Y(4,1»

100 continue
Mo=Smo
Mu=Smu
Mu1=Smu1
Mdot=Smdot
C (1) =SQRT((Y(1,1) *COS (Y (4,1» -R1*COS (TH1) **2

+ +(Y(1,1)*SIN(Y(4,1»-R1*SIN(TH1»**2)
C(2)=Y(2,1)-U1
C(3)=Y(3,1)-V1

E_MOON4 = (X(2)+X(11»*0,01
RETURN
END

SUBROUTINE TRANSFORM (R,THETA,U,V,D,W,R2,THETA2,U2,V2)
IMPLICIT NONE
DOUBLE PRECISION R,THETA,U,V,D,W,R2,THETA2,U2,V2,

+ RSIN2,RCOS2,SINT,COST

SINT=SIN(THETA)
COST=COS(THETA)
RSIN2=R*SINT
RCOS2=D-R*COST·
R2 = DSQRT(RSIN2*RSIN2 + RCOS2*RCOS2)
THETA2= -ATAN2(RSIN2,RCOS2)
CALL NORMANG(THETA2)
RCOS2=V*SINT-U*COST
RSIN2=-(U*SINT+V*COST)+D*W

. SINT=SIN(THETA2)
COST=COS(THETA2)

U2=COST*RCOS2+SINT*RSIN2
V2=-SINT*RCOS2+COST*RSIN2

RETURN
END

SUBROUTINE NORMANG (THETA)
IMPLICIT NONE

116.

DOUBLE PRECISION THETA, TWOPI
TWOPI=8.*ATAN(1.0DO)
DO WHILE (THETA.GT.TWOPI) .

THETA=THETA-TWOPI
ENDDO
DO WHILE (THETA.LT.O.O)

THETA=THETA+TWOPI
ENDDO

RETURN
END

SUBROUTINE SOLPATH (Y,NDIF,MAXK,N,X,MARS,OUT,STORE1)
IMPLICIT NONE
INTEGER N,J,NDIF,MAXK,FAIL,P,K,FNTYPE,CONTYPE,PARTYPE,THTYPE,

+ FACTORIAL,TFCNT, SKIP,NSKIP, INDEX,PINDEX,METHOD
DOUBLE PRECISION T, X(N), MU, DELTA, MEPS,

+ tf,rf, ro,Thrust,mo,mdot, EPS,FTOL,CTOL,GTOL,
+ Y(NDIF,MAXK), DY(20), H,HMIN,HMAX,THETA

LOGICAL EXIT, STORE, STORE1, PLOT,INIT
PARAMETER (MEPS=1.2E-16)
COMMON /MVCOUNT/ TFCNT
COMMON /EXMARS / MU,DELTA, TF, RF, RO,Thrust,mo,mdot
COMMON /COUT / SKIP,NSKIP,STORE
character*20 file
COMMON /POUT / THETA,INIT,THTYPE,file

COMMON /ERSPECS/ EPS,FTOL,CTOL,GTOL
COMMON /FNSPECS/ FNTYPE,CONTYPE,PARTYPE,PINDEX,METHOD,PLOT
EXTERNAL OUT, FACTORIAL, MARS, OUTP

STORE= STORE1
P = 1
K = P

T = 0.0
H = EPS
HMIN = MEPS*100.
HMAX = (Tf-T)/10.

117

IF (PARTYPE.NE.O) CALL INITANG (X(PINDEX),T,TF)

CALL MARS (P,NDIF,T,Y,DY)
DO 20 J=1,NDIF

Y(J,P+1)=H**P/FLOAT(FACTORIAL(P))*DY(J)
20 CONTINUE

IF (STORE) CALL STOREINIT (NDIF,NDIF,O)
EXIT=.FALSE.

SKIP=NSKIP

IF (PLOT) THEN
INIT=.TRUE.
CALL OUTP (NDIF,K,NDIF,Y,T,EXIT)
CALL MVAL (NDIF,NDIF,Y,T,Tf,H,HMAX,HMIN,EPS,K,P,

. + MARS,OUTP,FAIL)
ELSE

CALL OUT (NDIF,K,NDIF,Y,T,EXIT)
CALL MVAL (NDIF,NDIF,Y,T,Tf,H,HMAX,HMIN,EPS,K,P,

+ MARS,OUT;FAIL)
ENDIF

IF (STORE) THEN
CALL STOREINIT (NDIF,NDIF,1)
CALL GETXVAL (TF,Y,1)

ENDIF
IF (PLOT) THEN

WRITE(*,*) 'PLOT DONE' ,TFCNT
write(*,*) (y(j,1),j=1,ndif)
CLOSE(10)
IF «File.eq.'plot.dat') .or.(file.eq.'plot3.dat')) STOP

·ENDIF

DO 30 J=l,NDIF
Y(J,2)=Y(J,2)/H**P*FLOAT(FACTORIAL(P))

118

30 CONTINUE
IF (FAIL.NE.O) THEN

WRITE(*,*) 'INTEGRATION MULTIVAL FAILS:' ,FAIL, tfcnt
C STOP

ENDIF
RETURN
END

SUBROUTINE MARS (P,MAX,T,Y,DY)
implicit NONE
COMMON /MVCOUNT/IFCNT
INTEGER P,MAX,IFCNT
DOUBLE PRECISION T, Y(MAX,P),DY(MAX), ThAngle,

+ THR, MU, DELTA, THETA, TF, RF, RO, SIN, COS,
. + Thrust ,mo ,mdot

CPMMON /POUT/ THETA
common /EXMARS/ Mu, delta, tf, rf, ro,Thrust,mo,mdot

IFCNT=IFCNT+1
C ... CALCULATE SPECIFIC THRUST = "THRUST"

+

THR=Thrust/(Mo· - Mdot*t)
Theta = THANGLE (T)
DY(1) = Y(2,1)

. DY(2) = (Y(3,1)*Y(3,1) MU/Y(1,1»/Y(1,1)

DY(3)
return
End

=
+ THR*SIN(THETA)
-Y(2,1)*Y(3,1)/Y{1,1)

SUBROUTINE COSTATE (P,MAX,T,Y,DY)

+ THR*COS(THETA)

. implicit NONE
COMMON /MVCOUNT/IFCNT
INTEGER P,MAX,IFCNT
DOUBLE PRECISION T, Y(MAX,P),DY(MAX),X(20),Th,

+ Mu, delta, tf, rf, ro,Thrust,mo,mdot
common /EXMARS/ Mu, delta,· tf, rf, ro,Thrust,mo,mdot

IFCNT=IFCNT+1
CALL GETXVAL (T,X,1)

119

TH=THRUST/(Mo-Mdot*t)
OY(1) = -(Y(2,1)*(-X(3)*X(3)+2*MU/X(1» +

+ Y(3,1)*X(2)*X(3»/(X(1)*X(1»)
OY(2) = -Y(1,1) + Y(3,1)*X(3)/X(1)
OY(3) = -2*Y(2,1)*X(3)/X(1) + Y(3,1)*X(2)/X(1)

RETURN
ENO

SUBROUTINE ALSTAT1 (P,MAX,T,Y,OY)
implicit. NONE
COMMON /MVCOUNT/IFCNT
INTEGER P,MAX,IFCNT
OOUBLE PRECISION T, Y(MAX,P),OY(MAX), TH,SQ,a,b,

+ Mu , delta, tf, ·rf, ro, Thrust ,mo ,mdot
common /EXMARS/ Mu, delta, tf, rf, ro,Thrust,mo,mdot

IFCNT=IFCNT+1
TH=THRUST/(Mo - Mdot*t)
a=Y(5,1)
B=Y(6,1)
SQ = SQRT(A*A + B*B)

OY(1) = Y(2,1)
OY(2) = (Y(3,1)*Y(3,1) - MU/Y(1,1)}/Y(1,1) + TH*A/SQ
OY(3) = -Y(2,1)*Y(3,1)/Y(1,1) + TH*B/SQ
OY(4) = -(Y(5,1)*(-Y(3,1)*Y(3,1)+2.*MU/Y(1,1»

+ + Y(6,1)*Y(2,1)*Y(3,1»/(Y(1,1)*Y(1,1»
OY(5) = -Y(4,1) + Y(6,1)*Y(3,1)/Y(1,1)
OY(6) = -2.*Y(5,1)*Y(3,1)/Y(1,1) +Y(6,1)*Y(2,1)/Y(1,1)

. RETURN
ENO

SUBROUTINE ALSTAT2 (P,MAX,T.Y,OY)
implicit NONE
COMMON /MVCOUNT/IFCNT
INTEGER P,MAX,IFCNT

C Note : Alstat2 differs from alstat1 only in definition
C of A,B & OY(5),OY(6): 1 extra term at end.

120

DOUBLE PRECISION T, Y(MAX,P),DY(MAX), TH,SQ,a,b,
+ Mu, delta, ·tt, rt, ro,Thrust,mo,mdot

+

common /EXMARS/ Mu, delta, tt, rt, ro,Thrust,mo,mdot

IFCNT=IFCNT+1
TH=THRUST/(Mo - Mdot*t)
a=Y(2,1)+Y(5,1)
B=Y(3,1)+Y(6,1)
SQ = SQRT(A*A + B*B) . . .

DY(1)
DY(2)
DY(3)
DY(4)

DY(5)
DY(6)

RETURN
END

= Y(2,1)
= (Y(3,1)*Y(3,1) - MU/Y(1,1»/Y(1,1) + TH*A/SQ
= -Y(2,1)*Y(3,1)/Y(1,1) + TH*B/SQ
= -(Y(5,1)*(-Y(3,1)*Y(3,1)+2.*MU/Y(1,1»

+ Y(6,1)*Y(2,1)*Y(3,1»/(Y(1,1)*Y(1,1»
= -Y(4,1) + Y(6,1)*Y(3,1)/Y(1,1' - TH*A/SQ
= -2.*Y{5,1)*Y(3,1)/Y(1,1)+Y(6,1)*Y(2,1)/Y(1,1)-TH*B/SQ

SUBROUTINE ALLBODY (P,MAX,T,Y,DY)
implicit NONE
COMMON /MVCOUNT/IFCNT
INTEGER.P,MAX,IFCNT
DOUBL~ PRECISION T, Y(MAX,P),DY(MAX), TH,SQ,a,b,

+ Mu, delta, tt, rt, ro,Thrust,mo,mdot,
+ MU1,R1,SQR1,COS1,SIN1,D1,D1SQ,W,SINT,COST,
+ DR1R,DR1T,T1,T2

common /EXMARS/ Mu, delta, tt, rt, ro, Thrust ,mo·,mdot
COMMON /PLANET/ MU1,D1,W

IFCNT=IFCNT+1
IF (MAX.GT.4) THEN

TH=THRUST/(Mo - Mdot*t)
a=Y(6,1)
B=Y(7,1)
SQ = SQRT(A*A + B*B)

ELSE
TH=O.O

A=O.
B=O.
SQ = 1.

ENDIF
COST = COS(Y(4,1))
SINT = SIN(Y(4,1))
COS1 = Y(1,1)-D1*COST
SIN1 = D1*SINT

121.

SQR1 = COS1*COS1+SIN1*SIN1
R1 = SQRT(SQR1)
D1SQ = D1*D1

DY(1)=Y(2,1)

DY(2)=(Y(3,1)*Y(3,1)-MU/Y(1,1))/Y(1,1)
+ - MU1*(COS1/SQR1/R1 + COST/D1SQ)
+ +W*(W*Y(1,1)+2.*Y(3,1)) + TH*A/SQ

DY(3)=-Y(3,1)*Y(2,1)/Y(1,1)+MU1*SIN1*(-1./SQR1/R1+1./D1SQ/D1)
+ -2.*Y(2,1)*W + TH*B/SQ

DY(4)=Y(3,1)/Y(1,1)

IF (MAX.LE.4) RETURN

DR1R = 2.*COS1
DR1T = 2.*Y(1,1)*SIN1
T2 = MU1/(SQR1*SQR1*R1)*1.5
T1 = T2*COS1

DY(5)=-Y(6,1)*«-Y(3,1)*Y(3,1)+2.*MU/Y(1,1))/Y(1,1)/Y(1,1)
+ +T1*DR1R + W*W)
+ -Y(7,1)*(Y(2,1)*Y(3,1)/Y(1,1)/Y(1,1)+T2*SIN1*DR1R)

DY(6)=-Y(5,1) +Y(7,1)*(Y(3,1)/Y(1,1)+2.*W)

DY(7)=-Y(6,1)*2.*(W+Y(3,1)/Y(1,1)) +Y(7,1)*Y(2,1)/Y(1,1)
+ -Y(8,1)/Y(1,1)

122

+ -MU1*(-D1/SQR1/R1+1./D1SQ)*(Y(6,1)*SINT+Y(7,1)*COST)

RETURN
END

FUNCTION ThAngle (T)
C ... RETURNS THRUST ANGLE OF THE THRUSTOR AT
C ... THE GIVEN TIME. USES HORNERS ALGORITHM.

IMPLICIT NONE
INTEGER I,N, IER,N1MAX,FNTYPE,CONTYPE,PARTYPE
PARAMETER (N1MAX=30)
DOUBLE PRECISION T,To,TFF, THANGLE, X(N1MAX) ,Ts,

+ SCOEF(4,N1MAX) ,TX(N1MAX) ,SPEVAL
COMMON/DIRCOMN/X,TX,SCOEF,To,TFF,N
COMMON /FNSPECS/ FNTYPE,CONTYPE,PARTYPE·
.EXTERNAL SPEVAL
GOTO (1,2,3,4)PARTYPE
WRITE(*,*) 'IMPROPER PARTYPE' ,PARTYPE
STOP

1 ThAngle = X(N)
DO 11 I=N-1,1,-1

ThAngle = ThAngle*T + XCI)
11 CONTINUE

RETURN.
2 Ts = (T-To)/T££

ThAngle = X(N)
DO 10 I=N-1,1,-1

ThAngle = ThAngle*Ts. + XCI)
10 CONTINUE

RETURN
3 ThAngle = X(N) .

DO 12 I=N-1,1,-1
ThAngle = ThAngle*T/DBLE(I+1) + XCI)

12 CONTINUE
RETURN

4 ThAngle = SPEVAL (SCOEF,TX,N-1,T,IER)
IF (IER.EQ.O) RETURN
WRITE(*,*) 'IMPROPER XDATA : SPEVAL ',T,ier,TX(1),TX(N)
STOP

123

END

SUBROUTINE INITANG (X,TOO,Tff)
IMPLICIT NONE
INTEGER N1,I,IER,NINT,N1MAX,FNTYPE,CONTYPE,PARTYPE,PINDEX
PARAMETER (N1MAX=30)
DOUBLE PRECISION X(N1) ,To,TF,X1(N1MAX) ,TFF,SCOEF(4,N1MAX) ,

+ TX(N1MAX),DT,TOO
COMMON/DIRCOMN/X1,TX,SCOEF,To,TF,N1
COMMON /FNSPECS/ FNTYPE,CONTYPE,PARTYPE,PINDEX
to=tOO
tf=tff

DO 10 I=1,N1
X1(I)=X(I)

10 . CONTINUE

IF (PARTYPE.EQ.4) THEN
NINT=N1-1
DT=(TF-TO)/NINT
TX(1)=TO
DO 20 I = 2,N1-1

TX(I) = TX(I-1)+DT
20 CONTINUE

TX(N1)=TF
CALL SPLINE (TX,X1,NINT,SCOEF, IER)
IF (IER.NE.O) THEN

WRITE(*,*) 'UNSUCCESSFUL SPLINE' ,IER
STOP

ENDIF
ENDIF
RETURN
END

SUBROUTINE OUT (YMAX,K,N,Y,T,EXIT)
IMPLICIT NONE
INTEGER K,N,YMAX,I,SKIP,NSKIP
DOUBLE PRECISION Y(YMAX,K+.1), T, THeta,PI
LOGICAL EXIT,STORE,MODIFY
COMMON /COUT/ SKIP,NSKIP,STORE

10

END

124

IF (STORE) CALL STOREVAL (K,Y,T)
IF «SKIP.GE.NSKIP).OR.(EXIT)) THEN

SKIP=O
ELSE

SKIP=SKIP+1
ENDIF

RETURN

SUBROUTINE OUTP (YMAX,K,N,Y,T,EXIT)
IMPLICIT NONE
INTEGER K,N,YMAX,I,SKIP,NSKIP,THTYPE
DOUBLE PRECISION Y(YMAX,K+l),T,THeta,PI,THETA1,

+ ANGLE,TOLD,H,TEMP
LOGICAL EXIT,STORE,MODIFY,INIT
Character*20 file
COMMON /COUT/ SKIP,NSKIP,STORE
COMMON /POUT/ THETA,INIT,THTYPE,File
COMMON /PLOCAL/ ANGLE,TOLD,H,TEMP

IF (INIT) THEN
OPEN(UNIT=10,FILE=file,STATUS='UNKNOWN')
INIT=.FALSE.
IF «YMAX.EQ.4).OR.(YMAX.EQ.8)) THEN

ANGLE=Y(4,1)
ELSE

ANGLE=O~O

TOLD=T
ENDIF

ELSE
H=T-TOLD
TEMP=O.O
DO 10 I=1,K+1,2

TEMP=TEMP+Y(3,I)/DBLE(I)
IF(I.LT.K+1) TEMP=TEMP-Y(3,I+1)/DBLE(I+1)

CONTINUE
ANGLE=ANGLE+TEMP*H/Y(1,1)
TOLD=T

ENDIF
Pi=4.*ATAN(1.)

125

IF (THTYPE.EQ.1) THEN
THETA1=THETA

ELSEIF (THTYPE.EQ.2) THEN
THETA1=ATAN2((Y(5,1)+Y(2,1)),(Y(6,1)+Y(3,1)))

ELSEIF (THTYPE.EQ.3) THEN .
THETA1=ATAN2(Y(5,1),Y(6,1))

ELSEIF (THTYPE.EQ.4) THEN
THETA1=ATAN2(Y(6,1) ,Y(7,1))

ELSE
WRITE(*,*) 'oUTP ERROR' ,THTYPE
STOP

ENDIF
THETA1=THETA1*180/Pi
IF ((YMAX.EQ.4) :oR. (YMAX.EQ.8)) THEN

WRITE(10,910) T,Y(1,1) ,Y(2~1) ,Y(3,1),
+ Y(4,1),ANGLE,THETA1

ELSE
WRITE(10,910) T,Y(1,1),Y(2,1),Y(3,1),ANGLE,THETA1

END IF
910 FoRMAT(10(G20.10,1x))

END

IF ((SKIP.GE.NSKIP).oR.(EXIT)) THEN
SKIP=O

ELSE
. SKIP=SKIP+1
END IF

RETURN

SUBROUTINE oUTESC2 (YMAX,K,N,Y,T,EXIT)
IMPLICIT NONE
INTEGER K,N,YMAX,I,SK~P,NSKIP
DOUBLE PRECISION Y(YMAX,K+1),T,THeta,PI,B,EINT,THMAX
LOGICAL EXIT,SToRE,MoDIFY
COMMON /CoUT/ SKIP,NSKIP,SToRE
COMMON /MVoUTL/ B,EINT
COMMON /oUTCLOC/THMAX,MoDIFY

IF (T.LE.O.00001) THEN

END

THMAX=O.O
MODIFY=.TRUE.

ENDIF

126.

IF (STORE) CALL STOREVAL (K,Y,T)
IF «SKIP.GE.NSKIP).OR.(EXIT)) THEN

SKIP=O
Theta=ATAN«Y(2,i)+Y(5,i))/(Y(6,i)+Y(3,i)))
THMAX=MAX(THMAX,ABS(THETA))
IF «MODIFY).AND.(T.GT.B*O.i)) THEN

MODIFY=.FALSE.
IF (THMAX.GT .. 3) EINT=EINT*i0.

END IF
ELSE

SKIP=SKIP+i
ENDIF

RETURN.

SUBROUTINE OUTESCi (YMAX,K,N,Y,T,EXIT)
IMPLICIT NONE
INTEGER K,N,YMAX,I,SKIP,NSKIP
DOUBLE PRECISION Y(YMAX,K+i),T,THeta,PI,B,EINT,THMAX
LOGICAL EXIT,STORE,MODIFY
COMMON /COUT/ SKIP,NSKIP,STORE
COMMON /MVOUTL/ B,EINT
COMMON /OUTCLOC/THMAX,MODIFY

IF (T.LE.O.OOOOi) THE.
THMAX=O.O
MODIFY=.TRUE.

ENDIF
IF (STORE) CALL STOREVAL (K,Y,T)

. IF «SKIP.GE.NSKIP).OR.(EXIT)) THEN
SKIP=O
Theta=ATAN(Y(5,i)/Y(6,i))
THMAX=MAX(THMAX,ABS(THETA))
IF «MODIFY).AND.(T.GT.B*O.i)) THEN

MODIFY=.FALSE.

END

127

IF (THMAX.GT .. 3) EINT=EINT*10.
ENDIF

ELSE
SKIP=SKIP+l

ENDIF
RETURN

Colsys Interface

This module sets up and calls Colsys. Routines for the differential equations,

constraints, initial solution and output are also included. The routines for the gen-

eralized ~ewton's method and tolerance scheduling are also present.

C**
C Colsys interface Modules
C**

SUBROUTINE EXM1(EPS,NCOMP,NREC,NMAX,NINT,K,IPR,INITSOL,
+ SENSE,START,IFLAG)

c

c problem Mars transfer - see Lewis: 247, Bryson & Ho : 66-68
c & Balakrishnan arid Neustdat : pl00
c

c TO,TF,RO,RF : Initial,final times and radii
c Tl,Rl, rold, told: store previous values of final time, radius
c z(l .. ncomp): vector storing variables,
c See input description for further details.
c eps, epso, epsi, epsmin : Tolerances for heuristic control
c of tol.
c m(l.:ncomp): stores derivative orders, 1 in our case
c delta: stores diff. for derivative evaluation.
c
C

128

implicit None
integer maxdif,MAXF,MAXI
parameter (maxdif=20, MAXF=120000, MAXI=6000)
double precision zeta(maxdif), fspace(MAXF), tol(maxdif),

+ z(maxdif), mu, x, fixpnt, Tfl,
+ TO, TF, RF, RO, DELTA,
+ EPS, FSAVE(MAXF), TSAVE, TOSAVE,
+ Thrust,mo,mdot, Uo,Vo
integer m(maxdif), ipar(ll), ispace(MAXI), ltol(maxdif),NREC,

+ mstar, ncornp, iflag, I, KD,KDM, ISAVE(MAXI),NDIMI,NDIMF,
+ niter, NMAX, NINT, IPR,SENSE,
+ INITSOL, K
. LOGICAL DONE,DYNAMIC,START

common /EXMARS/ mu, delta, TF, RF, RO,Thrust,mo,mdot
COMMON /INITSOL/ FSAVE,ISAVE,TSAVE,TOSAVE,NTTER
COMMON/escape/To,Uo,Vo
COMMON /LARGE/fspace,ispace
COMMON /LOCALCS/ ZETA,TOL,LTOL,MSTAR,IPAR,M
external solutn,fsub,dfsub,gsub,dgsub

C ... note No. of Function evaluations slightly1ncreases
C
C

~hen delta is decreased to 5.e-13

c NCOMP no. of differential equations.
c NREC: no. of right end bc's
c K no. of collocation points per subinterval
C nmax {max intervals)

IF (START) THEN
C . DEFINED REQUIRED FINAL RADIUS AND INITIAL RADIUS.

TOSAVE=TO

c orders
mstar=O
DO 10 I=l,NCOMP

M(I)=l
MSTAR=MSTAR+M(I)

10 CONTINUE

129

c a nonlinear problem
ipar(l) = 1

·ipar(2) = K
c initial uniform mesh of NINT subintervals, See ipar(3)

ipar(8) = 0
c dimension of real work array fspace

KD=K*NCOMP
KDM=KO + MSTAR
NDIMF = NMAX*(4+k+2*kd+(4+2*k)*mstar+(kdm-nrec)*(kdm+l))
ipar(5) = NOIMF

cdimension of integer work array ispace is CALCULATED.
NDIMI=NMAX*(3 + KOM .- NREC)
ipar(6) = NOIMI .
IF «NOIMI.GT.MAXI).OR.(NDIMF.GT.MAXF)) THEN

WRITE(*,*) 'NOIMF,NDIMI' ,ndimf,ndimi
WRITE(*,*) 'ERROR IN NMAX'
STOP

ENOIF

c print (-l)full, (O)LITTLE, (l)NO output.
ipar(7) = IPR

c initial approximation for nonlinear iteration is provided
c in solutn

ipar(9) = INITSOL
c a sensi ti·ve problem

ipar(10) = SENSE
c no fixed points in the mesh

ipar(l1) = 0

c

NITER = 0
START=.FALSE.

ENDIF

ipar(3) = NINT
... locations

zeta(1) = TO
zeta(2) = TO
zeta(3) = TO
zeta(4) = TF

of side conditions

zeta(5) = TF
zeta(6) = TF

130

c tolerances on all components
ipar(4) = ncomp
do 20 i=l,ncomp

ltol(i) = i
tol(i) = eps

20 continue

C ... only place' tfl is used (bec tf is in common)
Tfl=Tf

c call colsys
call colsys encomp, m, TO, TF1, zeta, ipar, It'ol,

tol, fixpnt, ispace, fspace, iflag,
fsub,dfsub,gsub,dgsub,SOLUTN)

NITER=NITER+l
if (iflag.eq.l) then

C ... SAVE CURRENT SOLUTION
DO 30 I=l,NDIMI

ISAVE(I)=ISPACE(I)
30 CONTINUE

DO 40 I=l,NDIMF
FSAVE(I)=FSPACE(I)

40 CONTINUE
endif
TSAVE=TF
ToSave=To

RETURN
end

c , .. .

SUBROUTINE SOLUTN (T,X,DMVAL)
IMPLICIT NONE
INTEGER FNTYPE,CONTYPE
DOUBLE PRECISION T, X(l), DMVAL(l)
COMMON /FNSPECS/ FNTYPE,CONTYFE

GOTO (1,2) FNTYPE
WRITE(*,*) 'INVALID FN TYPE' ,FNTYPE

STOP

1

2

END

131.

CALL MSOLUTN (T,X,DMVAL)
RETURN

CALL ESOLUTN (T,X,DMVAL)
RETURN

subroutine Msolutn (t,x, dmval)
c Initial estimate of solution for Mars transfer Problem.

implicit none
INTEGER MAXF,MAXI
PARAMETER (MAXF=120000, MAXI=6000)
INTEGER ISPACE(MAXI),NITER,ISS,IS6
double p~ecision x(6), t, dmval(6), Mu, delta, tf,rf,ro,

+ FSPAqE(MAXF),TSAVE,TOSAVE,Tl
C 'Not used

+ ,Thrust,mo,mdot
COMMON /INITSOL/ FSPACE,ISPACE,TSAVE,TOSAVE,NITER
common /EXMARS/ Mu, delta, tf, rf, ro,Thrust,mo,mdot

IF (NITER.GE.O) THEN
x(l)=ro + (rf-ro)*t/tf
dmval(l)=(rf-ro)/tf
x(2)=O.O
dmval(2)=O.O
x(3)=sqrt(mu/x(1»)
dmval(3)=-O.S*sqrt (mu/x(1)**3) *dmval(l)
x(4)=1.0
dmval(4)=O.O
if (t.le.tf/2.0) then

x(S)=O.S2
x(6)=O.3

else
x(S)=-O.S
x(6)=O.O

end if .
dmval(S)=0 .0
dmva1(6)=0 .0

ELSE
IS6 = ISPACE(6) + 1
ISS = ISPACE(l) + 2
Tl=(T-TOSAVE)/(TF-TOSAVE) * (TSAVE-TOSAVE)

132

CALL approx (ispace(5) , T1, X, fspace(isS),fspace,ispace,
1 fspace(is5), ispace(2) , ispace(3) , ispace(8) ,
2 ispace(4), 1, DMVAL, 1)

ENDIF

return
end

subroutine Esolutn (t,x, dmval)
c Initial estimate of solution for Mars transfer Problem.

implicit none
INTEGER MAXF,MAXI
PARAMETER (MAXF=120000, MAXI=SOOO)
INTEGER ISPACE(MAXI),NITER,IS5,ISS
double precision x(S), t, dmval(S), Mu, delta, tf,rf,ro,

+ FSPACE(MAXF),TSAVE,TOSAVE,T1,
+ To,Uo,Vo

C Not used
. + ,Thrust ,mo ,mdot
. COMMON /INITSOL/ FSPACE,ISPACE,TSAVE,TOSAVE,NITER

common /EXMARS/ Mu, delta, tf, rf, ro,Thrust,mo,mdot
COMMON/escape/To,Uo,Vo

IF (NITER.GE.O) THEN
x(1)=ro + (rf-ro)*t/tf
dmval(1)=(rf-ro)/tf
x(2)=O.O
dmva1(2)=0 . 0
x(3)=sqrt(mu/x(1»
dmval(3)=-O.5*sqrt(mu/x(1)**3)*dmval(1)
x(4)=1.0
if (t.le.tf/2.0) then

x(5)=O.52
x(S)=O.3

else
x(5)=-O.5
x(S)=O.O

endif
dmval(4)=O.O

dmval(S)=O.O
dmval(6)=O.O

ELSE
IS6 = ISPACE(6) + 1
ISS = ISPACE(l) + 2
T1=T-To + TOSave

133

CALL approx (ispace(S), Tl, X, fspace(is6),fspace,ispace,
1 fspace(isS), ispace(2), ispace(3), ispace(8),
2 ispace(4), 1, DMVAL, 1)

ENDIF

return
. end

c · .. .

subroutine fsub (t, x, f)
implicit NONE
DOUBLE PRECISION T, X(6), f(6)
integer ifcnt, igcnt, igdcnt, FNTYFE,CONTYFE
common /MVcount/ifcnt,igcnt, igdcnt
COMMON /FNSPECS/ FNTYPE,CONTYFE
ifcnt=ifcnt+l

GOTO (1,2) FNTYPE
WRITE(*,*) 'INVALID FUNCTION TYPE' ,FNTYPE

STOP
1 CALL FMARSIN (T,X,F)

2

RETURN
CALL FESC

RETURN
END

(T,X,F)

subroutine fmarsin (t, x, f)
·implicit NONE
DOUBLE PRECISION T, X(6), f(6), TH, MU, DELTA, SQ, TF, RF, RO,

+ THRUST, MO, MDOT
common /EXMARS/ mu, delta, TF, RF, RO,Thrust,mo,mdot

TH=THRUST/(Mo - Mdot*t)
SQ = SQRT(X(S)*X(S) + X(6'*X(6»

F(l) = X(2)
F(2) = (X(3)*X(3) - MU/X(l»/X(l) + TH*X(S)/SQ

134

F(3) = -X(2)*X(3)/X(1) + TH*X(6)/SQ

F(4) = -(X(5)*(-X(3)*X(3)+2.*MU/X(1»
+ + X(6)*X(2)*X(3»/(X(1)*X(1»

F(5) = -X(4) + X(6)*X(3)/X(1)
F(6) = -2.*X(5)*X{3)/X(1) + X(6)*X(2)/X(1)
RETURN

END

subroutine fesc (t, x, f)
implicit NONE
DOUBLE PRECISION T, X(6), F(6), TH, MU, DELTA, SQ, TF, RF, RO,

+ THRUST, MO, MDOT,a,b
cornmon /EXMARS/ mu, delta, TF, RF, RO,Thrust,mo,mdot

TH=THRUST/(Mo - Mdot*t)
a=X(5)+X(2)
b=X(6)+X(3)
SQ=SQRT(A*A+B*B)
F(1) = X(2)
F(2) = (X(3)*X(3) - MU/X(1»/X(1) + TH*A/SQ
F(3) = -X(2)*X(3)/X(1) + TH*B/SQ

F(4) = -(x"(5)*(-X(3)*X(3)+2.*MU/X(1»
+ + X(6)*X(2)*X(3»/(X(1)*X(1»

F(5) = -X(4) + X(6)*X(3)/X(1) - TH*A/SQ
F(6) = -2.*X(5)*X(3)/X(1) + X(6)*X(2)/X(1) - TH*B/SQ

RETURN
end

c
subroutine dfsub (t, x, df)
implicit none
double precision t, x(6), dfe6,6), temp, FX(6), F(6), MU,DELTA,

C ... not used
+ tf, rf, ro,Thrust,mo,mdot

INTEGER I,J
cornmon /exmars/ MU, DELTA, tf, rf, ro,Thrust,mo,mdot

CALL FSUB (T, X, FX)

DO 20 J=1,6
TEMP=X(J)
X(J)=X(J) +DELTA
CALL FSUB (T, X, F)
DO 10 1=1,6

135

DF(I,J) = (F(I)-FX(I))/DELTA
10 CONTINUE

X(J)=TEMP
20 CONTINUE

return
end

c .. .

1

2

3

SUBROUTINE GSUB (I, X, G)
IMPLICIT NONE
INTEGER I,FNTYPE,CONTYPE
DOUBLE PRECISION X(1), G
COMMON /FNSPECS/ FNTYPE, CONTYPE

GOTO (1,2,3) CONTYPE

END

WRlTE(*,*) 'INVALID CONSTRAINT TYPE' ,CONTYPE
STOP

CALL MARGSUB (I,X,G)
RETURN

CALL MARGSB2 (I,X,G)
RETURN

CALL EARGSUB (I",X,G)
RETURN

subroutine MARgsub (I, X, G)
implici t NONE
DOUBLE PRECISIONX(6), G, MU, DELTA, TF, RF, RO

C Not used
+ ,Thrus~,mo,mdot

integer i, ifcnt,igcnt, igdcnt "
COMMON /MVCOUNT/ifcnt,igcnt, igdcnt
COMMON /exmars/ MU, DELTA, TF, RF ,RO, Thrust,mo,mdot
IGCNT=IGCNT+1
go to (1, 2, 3, 4, 5, 6), i

1 g = X(l)- RO

2

3

4

5

6

136.

return
g = X(2)
return
g = X(3) - SQRT(MU/RD)
return
G = X(2)
return
G = X(3) - SQRT(MU/Rf)
return
G = X(4)- 1. - X(6)*SQRT(MV)/(2*Rf**1.5)
return
end

. subroutine MARgsb2 (I, X, G)
implicit NONE
DOUBLE PRECISION X(6), G, MU, DELTA, TF, RF, RO

C Not used

1

2

3

4

5

6

+ ,Thrust,mo,mdot
integer i, ifcnt,igcnt, igdcnt
COMMON /MVCDUNT/ifcnt,igcnt, igdcnt
COMMON /exmars/ MU, DELTA, TF, RF ,RO, Thrust,mo,mdot
IGCNT=IGCNT+l
go to (1, 2, 3, 4, 5, 6), i
g = X(l)- RO
return
g = X(2)
return
g = X(3) - SQRT(MU/RD)
return
G = X(2)
return
G = X(3) - SQRT(MU/X(l»
return
G = X(4)- 1. - X(6)*SQRT(MU)/(2*X(1)**1.5)
return
end

subroutine EARgsub (I, X, G)

13i

implicit NONE
DOUBLE PRECISION X(6), G, MU, DELTA, TF, RF, RO,

+ To,Uo,Vo
C Not used

1

2

3

4

5

+ ,Thrust,mo,mdot
integer i, ifcnt,igcnt, igdcnt
COMMON /MVCOUNT/ifcnt,igcnt, igdcnt
COMMON /exmars/ MU, DELTA, IF, RF, RO,Thrust,mo,mdot
COMMON/escape/To,Uo,Vo
IGCNT=IGCNT+1
go to (1, 2, 3,4,5,6), i
g = X(1)- RO
return
g = X(2)- Uo
return
g = X(3) - Vo
return
G = X(4) + MU/(X(1)*X(1))
G = X(4) - MU/(X(1)*X(1))
return
G = X(5) + X(2)
G = X(5) - X(2)
return

6 G = X(6) + X(3)
G = X(6) .- X(3)
return
end

c
subroutine dgsub (i, X, dg)
implicit NONE
DOUBLE PRECISION X(6),dg(6), G, TEMP, MU, DELTA, GX, TF, RF, RO

C Not used
+ ,Thrust,mo,mdot
integer i,j , ifcnt,igcnt, igdcnt
COMMON /MVCOUNT/ifcnt,igcnt, igdcnt
common /EXMARS/ Mu, delta, tf, rf, ro,Thrust,mo,mdot

CALL GSUB (I,X,GX)
do 10 j=1,6

TEMP=X(J)

X(J)=X(J)+DELTA
CALL GSUB(I,X,G) .
DG(J)=(G-GX)/DELTA
X(J)=TEMP

10 CONTINUE
IGDCNT=IGDCNT+1
return
end

138

c--

C

FUNCTION ZERO (X1,Y1,X2,Y2,X3,Y3)
. IMPLICIT NONE

DOUBLE PRECISION ZERO,X1,Y1,X2,Y2,X3,Y3, DX,A,B,C,
+ Y21,X21,Y32,X32, TMP,S21,S32

lNTRINSIC SIGN,MAX,MIN .

Y21=(Y2-Y1)*1.e2
Y32=(Y3-Y2)*1.e2
X32=(X3-X2)*1.e2
X21=(X2-X1)*1.e2

TMP = (X21*Y32-X32*Y21)
IF (ABS(TMP) .LE.1.E-S) THEN

write(*,*) 'straight line inter .,

. .. SLOPE DY/DX
OX = Y32/X32
ZERO = -(Y3-DX*X3)/DX

ELSE
S21 = Xil*(X2+X1)
S32 = X32*(X3+X2)
DX=X21*S32-X32*S21
B=(Y21*S32-S21*Y32)/DX
A=TMP/DX
C=Y3-(B+A*X3)*X3
ZERO = (-B+SQRT(B*B-4*A*C))*0.5/A
WRITE(*,*) 'QUADRATIC INTERP'

ENDIF

139

c$$$
c$$$ 900
c$$$

WRITE(*,*) Xl,Yl,X2,Y2,X3,Y3, A,B,C,ZERO
FORMAT(lX,3(G12.6,lX,G12.6,2X),lX,4G12.6)
read(*,*)

return
END

c--

C

c

C

c

SUBROUTINE TAD APT (DX,EPS,NINT,DONE,T2INIT,EPSO,EPSI,EPSMIN)
IMPLICIT NONE
INTEGERMAXF,MAXI,MAXDIF
PARAMETER (MAXDIF=20, MAXF=120000, MAXI=6000)
INTEGER NITER,NINT,ISPACE(MAXI),ISAVE(MAXI)
DOUBLE PRECISION DX(3,2) ,Z(MAXDIF),T2INIT,mu, delta, TF,RF,RO,

+ Thrust,mo,mdot, TOSAVE,TSAVE,FSPACE(MAXF) ,FSAVE(MAXF),
+ EPSO,EPSI,EPSMIN,EPS,ZERO

+

LOGICAL DONE
EXTERNAL ZERO
common /EXMARS/ mu, delta, TF, RF, RO,Thrust,mo,mdot
COMMON /INITSOL/ FSAVE,ISAVE,TSAVE,TOSAVE,NITER
COMMON /LARGE / FSPACE,ISPACE

CALL APPSLN (TF,Z,FSPACE,ISPACE)
wr i t e (* , *) , R ; U ,V : " z (1) ,z (2) ,Z (3)
DX(3,2)=Z(1)-RF
IF (ABS(Z(l)-RF) .LE.EPSMIN) THEN

DONE=.TRUE.
ELSE

IF (NITER.GT.l) THEN
TF = Tl + (Tl-TFOLD)*(RF-Rl)/(Rl-ROLD)

the newton raphson method above has been
.. replaced by quadratic interpolation.

TF = ZERO(DX(1,1),DX(1,2),DX(2,1),DX(2,2),
DX(3,1),DX(3,2))

CALL ADAPEPS(EPS,EPSO,EPSI,EPSMIN,Z(l)-Rf)
WRITE(*,*) 'NEW TF, EPS =' ,TF,EPS
... set no. of interv to prev values
NINT = min(ispace(1)/2,16)
DX(1,1)=DX(2,l)
DX(1,2)=DX(2,2)

140

DX(2,l)=DX(3,l)
DX(2,2)=DX(3,2) .

ELSE
DX(l,2)=Z(1)-RF
DX(2,l)=DX(l,l)
DX(2,2)=DX(l,2)
TF = T2INIT
EPS=EPSO

ENDIF
DX(3,l)=TF

ENDIF
RETURN
END

SUBROUTINE ADAPEPS (EPS,EPSO,EPSI,EPSMIN,ERR)
IMPLICIT NONE .
DOUBLE PRECISION EPS,EPSO,EPSI,EPSMIN,ERR

EPS=MAX(EPSI*ABS(ERR),EPSMIN)
EPS=MIN(EPS,EPSO)

RETURN
END

SUBROUTINE ADAPESC (NINT,DONE,T2INIT,TDELTA)
IMPLICIT NONE
INTEGER MAXF,MAXI,MAXDIF
PARAMETER (MAXDIF=20, MAXF=120000, MAXI=6000)
INTEGER NITER,NINT,ISPACE(MAXI);I
DOUBLE PRECISION DX(3,2),Z(MAXDIF),T2INIT,mu, delta, TF,RF,RO,

+ Thrust,mo,mdot, FSPACE(MAXF.),TDELTA,To,Uo,Vo
LOGICAL DONE
COMMON/escape/To,Uo,Vo
common /EXMARS/ mu, delta, IF, RF, RO,Thrust,mo,mdot
COMMON /LARGE / FSPACE,ISPACE .

IF (TF.GE.T2INIT) then
DONE=.TRUE.

ELSE
CALL APPSLN (TO,Z,FSPACE,ISPACE)

141.

WRITE(*,*) 'SUBPROBLEM'
Wr~te(*,*) To,(Z(i),i=1,6) .
CALL APPSLN (TF,Z,FSPACE,ISPACE)
Write(*,*)TF,(Z(i),i=1,6)
Ro=Z(1)
IF (Rf.LT.Ro) Rf=Ro+Rf

TO=TF
TF=TF+TDELTA
IF (TF.GT.T2init) TF=T2INIT
Uo=Z(2)
Vo=Z(3)

ENDIF

RETURN
END

SUBROUTINE OUTCSYS (NPTS,NDIF)
IMPLICIT NONE
INTEGER MAXF,MAXI,MAXDIF,NPTS,NDIF
PARAMETER (MAXDIF=20, MAXF=120000, MAXI=6000)
INTEGER ISPACE(MAXI),I,J,ifcnt,igcnt, igdcnt,NITER,

+ FNTYPE,CONTYPE,is5,is6 .
DOUBLE PRECISION FSPACE(MAXF),TF~,TO,X,Z(MAXDIF),PI,dmval(6),

+ rnu, delta, TF, RF, RO,Thrust,rno,rndot,DEL, THETA,ANGLE
COMMON /INITSOL/ FSPACE,ISPACE,TFS,TO,NITER
cornmon /EXMARS/ rnu, delta, TF, RF, RO,Thrust,rno,rndot
COMMON /MVCOUNT/ifcnt,igcnt, igdcnt
COMMON /FNSPECS/ FNTYPE,CONTYPE

c print values of the obtained approximate solution at points
x = TO
del = (TF-TO-1.e-S)/DBLE(NPTS-1)
Pi = 4.0*ATAN(1.0)
ANGLE=O.O
CALL APPSLN (TF,Z,FSPACE,ISPACE)
write(*,*) 'Energy = ',(Z(2)*Z(2)+z(3)*z(3))/2.0-Mu/z(1)

write (6,201)
do 555 i=l,NPTS

IS6 = ISPACE(6) + 1
IS5 = ISPACE(l) + 2

142

CALL approx (ispace(5) , x, z, fspace(is6), fspace, ispace,
1 fspace(is5), ispace(2) , ispace(3) , ispace(8) ,
2 ispace(4) , 1, DMVAL, 1)

C call appsln (x,z,fspace,ispace)
IF (FNTYPE.EQ.2) THEN

Theta = ATAN2«Z(2)+Z(5)) ,(Z(6)+Z(3)))
ELSE

Theta = ATAN2(Z(5) ,Z(6))
IF (Theta.LT.O) THETA=THETA+2.*Pi

ENDIF
THETA = THETA*180./Pi
if (i.gt.l) Angle=Angle+(z(3)-dmval(3)/2)/z(1)*del
write (6,202) x, (z(j),j=1,6),THETA,Angle
x = x + del

555 continue
write(*,900) igcnt, igdcnt,IFCNT

RETURN
900· format ('no. G, GD, F = , ,3(I7))
201 format (, t r

Lr
Theta')

202 format (F9.4, lx, 8G15.6)
END

Lu

SQP Interface

u

Lv
v

The main routine sets up and calls the NAG SQP code. It supplies routines for

gradient evaluation which are listed below.

143

C**
C Interface modules for NAG SQP, v.14c
C**

SUBROUTINE EXM3(N,X,BL,BU,NCNLN,NDIGITS,ITMAX,
+ ETA,FTOL,NCTOL,IFAIL)

C E04VCF EXAMPLE PROGRAM TEXT
C .. Parameters

IMPLICIT NONE
INTEGER

*
PARAMETER

N, NCLIN, NCNLN, NCTOTL, NROWA, NROWJ, NROWR,
LIWoRK, LWoRK, NMAX, NCMAX, NDIGITS
(NMAX=25,NCMAX=20,NRoWA=NCMAX,

* NRoWJ=NCMAX,NROWR=NMAX,
*. LIWoRK=3*NMAX+2*NCMAX,LWoRK=1000)

DOUBLE PRECISION ZERO, ONE
PARAMETER (ZERo=O.ODO,oNE=1.0DO)·
INTEGER NIN, NoUT

C .. Local Scalars ..
DOUBLE PRECISION EPSAF, EPSMCH, ETA, FToL, OBJF
INTEGER I, IFAIL, ITER, ITMAX, MODE, MSGLVL, NSTATE
LOGICAL COLD, FEALIN, ORTHOG

C .. Local Arrays
DOUBLE PRECISION A(NROWA,NMAX), BL(NCMAX), BU(NCMAX), C(NROWJ),

* CJAC(NROWJ,NMAX), CLAMDA(NCMAX),FEAToL(NCMAX),
* oBJGRD(NMAX), R(NROWR,NMAX) ,WORK(LWORK) ,
* X(N) ,tmpp(20).,NCTOL,BIGBND

INTEG.ER ISTATE(NCMAX), IWORK (LIWoRK)
INTEGER NiMAX, IFCNT,IGCNT,.IHCNT, TFCNT, Ni
PARAMETER (NiMAX=20)
DOUBLE PRECISION DELTA,FVAL(O:20)

·COMMON /COUNT I IFCNT,IGCNT,IHCNT
COMMON /MVCoUNT/ TFCNT
COMMON /EOLoCAL/ FVAL,DELTA,tmpp
COMMON /CINoUT / NIN,NoUT

C .. External Functions ..
DOUBLE PRECISIONX02AJF
EXTERNAL X02AJF

C .. External Subroutines

144

EXTERNAL OBJFUN, E04VCF, E04ZCF, CONFUN, X04ABF
C .. Intrinsic Functions ..

INTRINSIC ABS, SQRT
C .. Executable Statements

EPSMCH = 10.**(-NDIGITS)
C ... Initialize Common

C

C

NCLIN=O
NCTOTL=N+NCLIN+NCNLN

DELTA= SQRT(EPSMCH)

WRITE (NOUT,FMT=99999)

CALL X04ABF(1,NOUT)
BIGBND = BU(N+1)

C * CHANGE MSGLVL TO A VALUE .GE. 5 TO GET INTERMEDIATE OUTPUT *
MSGLVL = 20
DO 20'1 = 1, N+NCLIN

FEATOL(I) = FTOL
20 CONTINUE

do 50 I=N+NCLIN+1,NCTOTL
FEATOL(I) = NCTOL
BL(I)=O.O
BUC!) =0.0

50 . CONTINUE

C SET THE ABSOLUTE PRECISION OF THE OBJECTIVE AT THE STARTING
C POINT.

NSTATE = 1
MODE = 1

EPSAF = EPSMCH
COLD = .TRUE.
FEALIN = .TRUE.

14.5

ORTHOG = .TRUE.
C

C SOLVE THE PROBLEM FROM A COLD START.
C

C

IFAIL = -1
CALL E04VCF(ITMAX,MSGLVL,N,NCLIN,NCNLN,NCTOTL,NROWA,NROWJ,

* NROWR,BIGBND,EPSAF,ETA,FTOL,A,BL,BU,FEATOL,CONFUN,
* OBJFUN,COLD,FEALIN,ORTHOG,X,ISTATE,R,ITER,C,CJAC,
* OBJF,OBJGRD,CLAMDA,IWORK,LIWORK,WORK,LWORK,IFAIL)

IF (IFAIL.EQ.O) THEN
WRITE(NOUT,*) 'SUCCESSFUL SOLUTION'
IFAIL=l

ELSE
. WRITE (NOUT ,FMT=99994) IFAIL

IF (IFAIL.GT.O) IFAIL=IFAIL+l .
END IF
write(NOUT,*)· 'x=',(x(i) ,i=l,n)
~rite(NOUT,*) 'NFN, NO. FN :' ,ifcnt,tfcnt

ENDIF
STOP

99999 FORMAT (, MARS TRANSFER VERSION 3 ',/1X)
99996 FORMAT (I' INITIAL X.' ,/(lX,7Fl0.2))
99995 FORMAT (I' E04VCF TERMINATED WITH IFAIL =' ,13)
99994 FORMAT (I' INCORRECT GRADIENTS. IFAIL =' ,13)

C
END

SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE)
IMPLICIT NONE
INTEGER MODE, N, NSTATE, I,j
DOUBLE PRECISION OBJF,.OBJGRD(N), X(N), FVAL(0:20), DELTA,

+ TMP(20),c,CJac(10)
COMMON IEOLOCALI FVAL,DELTA,TMP.

c ... for direct escape problem
C CALL CONFUN(MODE,O,N,MAX(l,O),X,C,CJac,NSTATE)

do 20 i=l,n

146.

if (tmp(i) .ne.x(i)) then
write(*,*) 'error,obj ',(x(j),tmp(j),j=l,n)
stop

endif
20 continue

C Executable Statements
OBJF = FVAL(O)
DO 10 I=l,N

OBJGRD(I) = (FVAL(I)-OBJF)/DELTA
10 CONTINUE

+

RETURN
END

SUBROUTINE CDNFUN(MODE,NCNLN,N,NROWJ,X,C,CJAC,NSTATE)

IMPLICIT NONE
INTEGER MODE, N, NCNLN, NROWJ, NSTATE,

I, J
DOUBLE PRECISION C(NROWJ), CJAC(NROWJ,N), X(N), FVAL(0:20) ,

+ TMPX, FPLANET ,DELTA , TMP(20)
COMMON /EOLOCAL/ FVAL,DELTA,tmp
EXTERNAL FESCAPE, FESCAPE2, FMARS, FPLANET

do 40 i=l,n
tmp(i)=x(i)

40 continue
FVAL(O) =FPLANET(N ,X ,0)
DO 10 J=l,NCNLN

C(J)=FPLANET (N,X,J)
10. CONTINUE

DO 20 I=l,N
TMPX=X(I)
X(I)=X(I)+DELTA
FVAL(I)=FPLANET(N,X,O)
DO 30 J=l,NCNLN

CJAC(J,I)=(FPLANET(N,X,J)-C(J))/DELTA

147

30 CONTINUE
X(I)=TMPX

20 CONTINUE
RETURN
END

Penalty Interface

This modules contain the skeleton functions supplied to the mInImIzer. The

main routine, PENSUB calls an implementation of BFGS. PENSUB also optionally

calculates the penalty multipliers and(or) accelerates the ?olution using the Hessian.

C**
C *
C By : Lalitesh Kumar Katragadda *
C
C To m~n~~ze a given function subject to a set of equality and
C inequality Constraints Using the Penalty Function Method.
C The library routine UNCMIN is used to solve the penalty
C subproblems.
C
C User documentation : To minimize a given function read protocol
C in FPSKEL, follow examples given and create your routine.
C Modify 1) PENSUB calling routine in main program,change MCON;N
C 2) Replace the function cailed IN FUNC by your own Func
C Assume That FUNC(N,.X,O) will be called before any calls to
C get the constraints. This gives one flexibility to
C -set constants and optimize constraint evaluation.
C
C

C

C
C

C

Interface Some of the keyboard inputs have been.suppressed
for convenience, The user can (un)comment them any
time if (repeated)no change is required. To comment
a input, comment both prompt & read statement
& make sure default is defined (or use values given

C

C

148

by the default routine, see UNCMIN user's guide.

C**

C**
C CHANGES
C

1) DLT = STEPMX
2) TYPSIZ = INITIAL X - Does not work

C

FUNCTION FUNC (N,X,I)
IMPLICIT NONE
INTEGER N,I,MCON,IFCNT,IGCNT~IHCNT
DOUBLE PRECISION X(N),SIGMA,FUNC,FPLANET,LAMBDA(10)
COMMON/PFCOUNT/IFCNT,IGCNT,IHCNT
COMMON/PENAL1/SIGMA,LAMBDA,MCON

IF ((I.LT.O).OR.(I.GT.MCON)) THEN"
WRITE(*,*) '**********E R R 0 R**********'
WRITE(*,*)' IMPROPER CONSTRAINT NUMBER, FUNC,' ,MCON
STOP

ENDIF
FUNC = FPLANET (N,X,I)

RETURN
END

SUBROUTINE FPSKEL (N,X",F)
IMPLICIT NONE

C Skeleton Routine for formulating a Constrained Minimization
C problem as a Penalty Problem.
C

C

C
C

C

Expected Name
MCON
SIGMA

FUNC : FUNC(X,N,I), function to be optimized.
No. of Constraints.
Constraint weight.

INTEGER IFCNT,IGCNT,IHCNT,MCON,I,N
DOUBLE PRECISION X(N) ,F ,SIGMA", LAMBDA(10) ,FUNC, TEMP,C
COMMON/PFCOUNT /IFCNT, IGCNT ,"IHCNT
COMMON/PENAL1/SIGMA,LAMBDA,MCON

C FUNC : Function to be Optimized.

149

C 1) If equality constr. => Value returned.
C 2) If inequu Constr => 0 or Value if not satisfied.
C Function Value FUNC(X,N,O), Gives Function value.
C
C
C

C

C

C

Constraint
MCON
SIGMA

F=O.O
TEMP= FUNC(N,X,O)
DO 10 I=l,MCON

FUNC(X,N,I), Gives Ith Constraint.
No. of Constraint equations
Penalty weight.

C= FUNC(N,X,I)
F=F+C**2
TEMP=TEMP-C*LAMBDA(I)

10 CONTINUE
F= TEMP + SIGMA*0.5*F
IFCNT=IFCNT+1
RETURN
END

SUBROUTINE PENSUB(N;M1,X,FPLS,GPLS,DIGITS,
+ GRADTL, STEPTL, STEPMX, CNORM,ITER,ITNLIM,START)

IMPLICIT NONE

C Refer to Uncmin Handout for explanation
C of variables. 'Rest explained by input prompts.
C

C CNORM Norm of the constraint vector C
C SINC Factor by Which Sigma is incremented each iteration.
C N No. of variables.
C M1,MCON Total No. of Constraints
C

LOGICAL UPDATE, START
INTEGER ITNLIM,N,M,I,LINMETH,HESMETH,

$ IFCNT,IGCNT,IHCNT,METHOD,IEXP,MSG,NDIGIT,ILIM,
$ IAGFLG,IAHFLG,IPR,ITRMCD, M1,MCON, ITER,
$ IFCN, ICASE,J, DIGITS, NIN,NOUT,
$ FNTYPE,CONTYPE,PARTYPE,PINDEX,FMETHOD

PARAMETER (M=40)
INTEGER IPVT(M)

1.50

CHARACTER*15 LINC(3),HESC(0:1),FNAME
DOUBLE PRECISION X(N),TYPSIZ(M) ,XPLS(M),GPLS(N),

$ A(M,M), WRK(M, 8) ,GRADTL, STEPTL, S'TEPMX, FSCALE ,DLT ,DUM,
$ STP,FPLS,Yl(100),Y2(100),Y3(100) ,SINC,SIGMA,
$ CONTL, FUNC, CNORM, F, TEMP, TMP2,
$ RNOISE,RCOND, DELTA,LAMBDA(10)

EXTERNAL FCN
COMMON Yl, Y2, Y3
COMMON /PFCOUNT/ IFCNT, IGCNT, IHCNT
COMMON /PENAL1/SIGMA,LAMBDA,MCON
COMMON /PSUB1/IFCN
COMMON /LOCALPN/ TYPSIZ,LINMETH,HESMETH, UPDATE
COMMON /CINOUT / NIN,NOUT
COMMON /FNSPECS/ FNTYPE,CONTYPE,PARTYPE:PINDEX,FMETHOD
DATA LINC/'LINE' SEARCH' ,'DOG STEP' ,'HOOKSTEP'/
DATA HESC/'NEWTONS METHOD' ,'BFGS METHOD'/
EXTERNAL D1FCN,D2FCN,FPSKEL,FUNC

MCON=Ml
IF (START.EQ .. TRUE.) THEN

START = .FALSE.
DO 11 I = l,N

TYPSIZ(I) = 0.0
11 CONTINUE

Write(NOUT,*) 'Give Global Step Strat 1) Lin Srch. '
+ '2)'Dogleg 3) Hookstep'

READ (NIN,*) LINMETH

Write(NOUT,*) 'Give Hessian method 0) Finite Diff, 1) BFGS'
READ (NIN,*) HESMETH

WRITE(NOUT,*)'Sigrna w~ll be increased by SINC each iteration'
Write (NOUT,*) 'Give Starting .SIGMA value & SINC : '
READ (NIN,*) SIGMA, SINC

. WRITE(NOUT,*) 'Give output file name in quotes
READ (NIN,*) FNAME
WRITE(NOUT,*) 'ACCELERATE? (TRUE/FALSE) ,

READ (NIN,*) UPDATE
DO 15 I=l,MCON

LAMBDA(I)=O.O
15 CONTINUE

1.51.

C Set Update (.true.) => acceleration step used else skippped.
OPEN(UNIT=l,FILE=FNAME,STATUS='UNKNOWN')

ENDIF

WRITE (NOUT, 900)
C ADJUST INITIAL VALUES OF X
C

C

CALL DFAULT(N, X, XPLS, FSCALE, METHOD, IEXP, MSG,
+ NDIGIT, ILIM, IAGFLG, IAHFLG, IPR, DLT, DUM,
+ STP, DUM)

IF(STEPMX .GT. O.ODO) STP = STEPMX
METHOD = LINMETH
IAGFLG = 0
IAHFLG = 0
IEXP = HESMETH
ILIM = ITNLIM
Tl = SECOND(DUM)
NDIGIT=DIGITS
DLT=STEPMX
CALL OPTIF9(M, N, X, FPSKEL,

+ D1FCN, D2FCN, TYPSIZ, FSCALE,
+ METHOD, IEXP, MSG, NDI~IT, ILIM, IAGFLG, IAHFLG,
+ IPR, DLT,· GRADTL, STP, STEPTL,
+ XPLS, FPLS, GPLS, ITRMCD, A, WRK)

IF ((ITRMCD.NE.l) . AND. (ITRMCD.NE.2)) THEN
WRITE(*,*)'************ ERROR **********', itrrncd,rnsg

ENDIF
WRITE (NOUT, 901) IFCNT, IGCNT, IHCNT
WRITE(l,*)
WRITE(l,902) LINC(METHOD),

';' ,HESC(IEXP) " NEVAL= , ,IFCNT
DO 20 I=l,N

X(I)=XPLS(I)
XPLS(I)=O.O

152

20 CONTINUE
C XPLS IS THE RIGHT HAND SIDE FOR ACCEL. EQUATION

CNORM=O.O
F = FUNC(N,X,O)
WRlTE(l,*) I F = I,F
DO 10 I=l,MCON

TEMP = FUNC(N,X,I)
IF (FMETHOD.EQ.2) THEN

LAMBDA(I)=LAMBDA(I)-SIGMA*TEMP
ELSE

LAMBDA(I)=O.O
ENDIF
WRITE(l,*) I C(X) ',1, ':',TEMP
XPLS(N+I)= TEMP
CNORM=MAX(CNORM,ABS(TEMP))

10 CONTINUE
C CNORM=CNORM**0.5

ITER=ITER+1
WRITE (1,903) ITER, SIGMA, CNORM
WRITE (1,*) (X(I), I=l,N)
IF (UPDATE.EQ .. TRUE.) THEN

C********** START ACCELERATION, XPLS CONTAINS THE RIGHT HAND SIDE.

C

C

C

C

RNOISE=1.0E-10
DO 30 J=l,N

delta=sqrt(rnoise)*Max(x(j),l./Typsiz(j))
IFCN=O
ICASE=l
TEMP=X(J)
X(J)=X(J)+DELTA
. .. INITIALIZE BY CALLING FOR IFCN=O
CALL FCN (N,X,FPLS)
Set up -A,-A(t)
DO 40 I=l,MCON

IFCN=I
CALL FCN (N,X,FPLS)
TMP2=(FPLS-XPLS(N+I))/DELTA
... Transpose(A)
A(N+I,J)= -TMP2
... Set up A
A(J,N+I)=-TMP2

40

30

110

120

CONTINUE
X(J)=TEMP

CONTINUE
IFCN=O
FPLS=O.O

153

DO 110 I=1,MCON
FPLS=FPLS+XPLS(N+I)**2

CONTINUE
FPLS= F + SIGMA*0.5*FPLS

DO 120 I=1,N
Y1(I)=(rnoise**(1./3.))*Max(x(I),1./Typsiz(I))
TEMP=X(I)
X(I)=X(I)+Y1(I)
CALL FPSKEL (n,X, Y2 (I))
X(I)=TEMP

CONTINUE
DO 130 I=1,N

TEMP=X(I)
X(I)=X(I)+Y1(I)
DO 140 J=1,I

TMP2=X(J)
X(J)=X(J)+Y1(J)
CALL FPSKEL(N,X,F)
A(I,J)=«FPLS-Y2(I))+(F-Y2(J)))!(Y1(I)+Y1(J))
X(J)=TMP2

140. CONTINUE
X(I)=TEMP

130 CONTINUE

C lo~er triang hessian in place

60
50

DO 50 -1;=1,N
DO 60 J=I+1,N

A(I,J)=A(J,I)
CONTINUE

CONTINUE

DO 80 I=N+1,N+MCON
DO 80 J=N+1,N+MCON

C

C

C

80

70

90

91

RETURN

A(I,J)=O.O
CONTINUE

154

HESSIAN IN PLACE
SOLVE TO GET UPDATE
CALL DGECO(A,M,N+MCON,IPVT,RCOND,Yl)
CALL DGESL(A,M,N+MCON,IPVT,XPLS,O)
DO 70 I=l,N

X(I)=X(I)+XPLS(I)
CONTINUE
write(NOUT,*) 'SOLVER FINISHED'
CNORM=O.O
F = FUNC(N,X,O)
DO 90 I=l,MCON

TEMP = FUNC(N,X,I)
CNORM=CNORM+TEMP*TEMP

CONTINUE
WRITE(l,*) 'UPDATE, F= , ,F,' ;F*= , ,F+0.5*CNORM*SIGMA
WRITE(l,*) (X(I), I=l,N)
cnorm=O.O
do 91 i=l,rncon

ternp=func(n,x, i)
cnorm=rnax(cnorrn,abs(ternp))

continue
CNORM=CNORM**0.5

WRITE (1,*) 'CNORM= , ,CNORM
WRItE(l,*)

ENDIF
SIGMA=SIGMA*SINC

900 'FORMAT(lHl)
901 FORMAT(23H OPTEST

+ 23H OPTEST
+ 23H OPTEST

#FCN EVAL = , 110/
GRAD EVAL = , 110/
HESN EVAL = 110)

C. + 23H OPTEST EXEC TIME = , lP, D12.4, 4H SEC)
902 FORMAT (lX,All,Al,A15,A8,I4)
903 FORMAT (lX,I3,'th Iter, Sigma =',Fl1.2,

+ '; Norrn(C) = , ,f16. 9)
904 FORMAT (5(lX,F15.8))

END

SUBROUTINE D1FCN
END

SUBROUTINE D2FCN
END

SUBROUTINE FCN (N/X,F)
IMPLICIT NONE
INTEGER N,I

155

DOUBLE PRECISION X(N),F,FUNC
COMMON /PSUB1/1
IF (I.EQ.O) THEN

CALL FPSKEL(N,X,F)
ELSE

F = FUNC(N ,'X, I)
ENDIF
RETURN
END

FORTRAN Interface for the GA

This routine sets up calls to the genetic algorithm written in C. This routine

can also determine the average performance over a specified number of GA runs and

output the history.

C**
C FORTRAN INTERFACE FOR GENETIC ALGORITHM
C************************************~*******************************

SUBROUTINE FSGA(X,BOUNDS,OPFITS,POPSIZ, NELITE, MAXGEN,
+ NEVAL,PCROSS, PMUT, RANDSEED, NODUP,
+ SCALE, SCMAX, SCMIN, FILENAME,NRUN,MCON1)

1.56.

IMPLICIT NONE
INTEGER IFCNT, IGCNT, IHCNT, TFCNT,NEVAL,STATSON, NODUP,

+ MAXN, MAXOPS, I, MCON,MCON1
INTEGER POPSIZ, MAXGEN, NELITE, SCALE, NRUN, TOTALF, TOTALIF
PARAMETER (MAXN=40, MAXOPS=20)
DOUBLE PRECISION PCROSS, PMUT, RAND SEED , SCMAX, SCMIN,

+ HISTORY(0:5000),HISTORY2(0:5000),SIGMA,LAMBDA(10) ,
+ BOUNDS(0:3*MAXN),OPFITS(0:3*MAXOPS),GPLANET,X(1)

CHARACTER*20 FILENAME
COMMON/MVCOUNT/TFCNT
COMMON/COUNT/IFCNT,IGCNT,IHCNT
COMMON/PENAL1/SIGMA,LAMBDA,MGON
EXTERNAL GPLANET

MCON=MCON1
DO 10 I=l,NRUN

HISTORY(O)=FLOAT(I)
HISTORY2(0)=0.0
IF (I.GE.NRUN) THEN

STATSON=2
ELSE

STATSON=l
ENDIF
CALL SGA (GPLANET,X,BOUNDS,OPFITS,

+ POPSlZ, NELlTE, MAXGEN, NEVAL,
+ PCROSS, PMUT, RANDSEED,
+ NODUP, SCALE, SCMAX, SCMI~, STATSON,
+ HISTORY, HISTORY2, FILENAME)

RANDSEED=RANDSEED+1.E-5*2.·**10
TOTALF=TOTALF+TFCNT
TOTALIF=TOTALlF+IFCNT

10 CONTINUE
Write(*,*)· 'Runs completed, avg performance TFN, IFN:',

+ FLOAT(TOTALF)/NRUN,FLOAT(TOTALIF)/NRUN
RETURN
END

SUBROUTINE GAPLANT (F,X,N)
IMPLICIT NONE

1.57

INTEGER N,I,IFCNT,TFCNT,MCON
DOUBLE PRECISION X(N), F, FPLANET,sigma,larnbda(10)
COMMON/COUNT/IFCNT
COMMON/MVCOUNT/TFCNT
EXTERNAL FPLANET
COMMON/PENAL1/SIGMA,LAMBDA,MCON

F=-FPLANET(N,X,O)
do 10 I=l,MCON

F=F-ABS(FPLANET(N,X,I))
10 CONTINUE

C WRlTE(*,*) 'EARTH MOON---) ',F,' ',IFCNT,' ',TFCNT
RETURN
END

Integration Module

This is an implementation of Adams multivalue method described by Gear [10].

This implementation can also solve for higher order equations. A set of routines

to store and efficiently interpolate the solution history are also included. A sam-

pIe output routine explains the calling sequences. The output routine supplied to

MULTIVAL is called at each successful step.

C--
C NUMERICAL INTEGRATION MODULE
C--

SUBROUTINE GETMVAL(K,P,L)
IMPLICIT NONE
INTEGER K,P,I,J
DOUBLE PRECISION SL(3,7,7+4),L(K+4)

158

LOGICAL 5TART
COMMON /MVLOCAL/5L,START

C K ORDER OF THE METHOD =>K+1 COEFF5
C CODE THE DERIVATIVE ORDER OF THE METHOD
C P=l=> F=Y', 2=>F=Y" ... F=Y-(P)
C IF 5TART I5 TRUE L I5 NOT INITIALIZED, 5L I5 5ET UP.

C

IF (5TART.EQ .. TRUE.) THEN
... INITIALIZE IF FIR5T TIME.

5L(l,l,l)=1.
5L(l,2,l)=0.5
SL(l,2,3)=0.5
5L(l,3,l)=5./12.
5L(l,3,3)=3./4.
5L(l,3,4)=1./6.
5L(l,4,l)=3./8.
5L(l,4,3)=11./12.
5L(l,4,4)=1./3.
5L(l,4,5)=1./24.
5L(l,5,l)=251./720.
5L(l,5,3)=25./24.
5L(l,5,4)=35./72.
5L (1,5,5) =5./ 48.
5L(1,5,6)=1/120.
SL(l,6,l)=95./288 ..
5L(l,6,3)=137./120.
5L(l,6,4)=5./8 ..
5L(l,6,5)=17./96.
5L(l,6,6)=1./40.
5L(l,6,7)=1./720.
5L(l,7,l)=19087./60480.
5L(l,7,3)=49./40.
5L(l,7,4)=203./270.
5L(l,7,5)=49./192.
5L(l,7,6)=7./144 ..
5L(l,7,7)=7./1440.
5L (1,7,8) =1. /5040.

C veriry below values.
5L(2,2,l)=1.0

c

1.59

SL(2,2,2)=1.0
SL(2,3,1)=1.0007
SL(2,3, 2)=5./6.
SL(2,3,4)=1./3.
SL(2,4,1)=1./6.
SL(2,4 ,·2) =3./4.
SL(2,4,4)=.5
SL(2,4,5)=1./12.
SL(2,5,1)=19./20.
SL(2,5,2)=251./360.
SL(2,5,4)=11./18.
SL(2,5,5)=1./6.
SL(2,5,6)=1./60.
SL(2,6,1)=3./20.
SL(2,6,2)=665./1008;
SL(2,6,4)=25./36.
SL(2,6,5)=35./144.
SL(2,6,6)=1./24.
SL(2,6,7)=1./360.
SL(2,7,1)=863./6048.
SL(2,7,2)=19087./30240.
SL(2,7,4)=137./180.
SL(2,7,5)=5./16.
SL(2,7,6)=17./240.
SL(2,7,7)=1./120.
~L(2,7,8)=1./2520.

SL(3,4,1)=.25
SL(3,4,2)=.5
SL(3,4,3)=1.25
SL(3,4,5)=.25
SL(3,5,1)=3./80.
SL(3,5,2)=19./40.
SL (3,5·,3) =9. /8.
SL(3,5,5)=3./8.
SL(3,5,6)=1./20 .

.. . INITIALIZE ERROR CONSTANTS
SL(1,1,3)=2.0
SL(1,1,4)=12.
SL (1,1 ,5) = 1.

160

SL(l,2,4)=12.
SL(l,2,5)=24.
SL(l,2,6)=1.
SL(l,3,5)=24.
SL(l,3,6)=37.89
SL(l,3,7)=2.
SL(l,4,6)=37.89
SL(l,4,7)=53.333
SL(l,4,8)=1.
SL(l,5,7)=53.333·
SL(l,5,8)=70.08
SL(l,5,9)=0.3157
SL(l,6,8)=70.08
SL(l,6,9)=87.97
SL(l,6,10)=0.07407
SL(1,7,9)=87.97
SL(t,7,10)=1.
SL(l,7,ll)=0.0139

C VERFIY BELOW VALUES.
SL(2,l,3)=1.
SL(2,l,4)=12.
SL(2,l,5)=1.
SL(2,2,4)=12.

C 2,2,5 IS 1/0.0, 6000 TAKEN AS KLUDGE.
SL (2,2, 5r=6000.
SL(2,2,6)=0.5

. SL(2,3, 5) =6000.
SL(2,3,6)=240.
SL(2,3,7)=2.0
SL(2,4,6)=240.
SL(2~4,7)=240.

SL(2,4,8)=250.
SL(2,5,7)=240.
SL(2,5,8)=273.66516.
SL(2,5,9)=2.0
SL(2,6,8)=273.66516
SL(2,6,9)=318.31579
SL(2,6,10)=0.333333
SL(2,7,9)=318.31579

C

C

C

C

10

20

161,

SL(2,7,10)=369.1932
SL(2,7,11)=0.0542986

DO 10 1=1,3
DO 10 J=1,7

SL(I,J,I+1)=1.0
START=.FALSE.
RETURN

ENDIF

.. . Db INPUT ERROR CHECK
IF (K.LT.P) THEN

ADD CONSTS FOR K=P+1,CHECK CONSTS, REFER GEARS COMMENT
WRITE(*,*) "NO. OF VALUES (K) INSUFFECIENT K>=P'
STOP

ELSEIF «P.LT.1) .OR. (P.GT'.3» THEN
WRITE(*,*) 'UNAVAILABLE DERIVATIVE ORDER IN MULTIVAL'
STOP

ELSE IF ««P.EQ.1) .OR.(P.EQ.2».AND.(K.GT.7».OR.
+ «P.EQ.3).AND.(K.GT.5») THEN

WRITE(*,*) 'UNAVAILABLE ORDER IN MULTIVAL'
STOP

ENDIF

... INITIALIZE ARRAY L AND ERROR CONSTANTS 1 .. K+1 CORRECTORS
K+2 .. K+4 : ERROR EVALUATION COEFFS.

DO 20 I=1,K+4
L(I)=SL(P,K,I)

CONTINUE

RETURN
END

SUBROUTINE MVAL (N,MAX1,Y,T,B,H,HMAX,HMIN,EPS,K,P,F,OUT,FAIL)

C**

162

C AUTHOR: LALITESH KUMAR KATRAGADDA. DATE: JUNE 11, 91 *
C *
C ROUTINE TO SOLVE A SET OF N ORDINARY DIFFERENTIAL EQUATIONS*
C OF PTH ORDER, WITHIN AN ACCURACY OF EPS, USING VARIABLE STEP,*
CORDER MULTIVALUE METHOD. *
C RECOMMENDED INITIALORDER=P, SIZE·H:SMALL(EPS) *
C**
C

C
C

C

C

C

C

C

C

C

N : NO OF.Y'S, NC : NO OF CORRECTION STEPS
T,B : INITIAL AND FINAL TIME
H,HMAX,HMIN : INITIAL, MAX AND MIN STEP SIZES.
K STARTING ORDER, THAT MANY DERIVATIVES REQUIRED.
MAX1: FIRST DIM FOR Y, GIVES MAX VECTOR SIZE.
P DERIVATIVE ORDER, >= 1

NO. OF CORRECTORS.

*
*

'*

*
*
*
* NC

L CORRECTOR COEFF ARRAY(INCLUDEs ERROR EVALUATION COEFFS)*
F
OUT

FUNCTION, GIVES USER SUPPLIED DERIVATIVES. *
OUTPUT ROUTINE CALLED AT EACH STEP. *

C IMAX: LOCAL MAX., >= DIMENSIONS OF MAX AND SECOND Y DIMENSION. *
C DMAX: MAX DERIVATIVE ORDER, MAX VALUE OF P POSSIBLE. *
C DYP : LOCAL l-D ARRAY TO STORE PREDICTOR PTH DERIVS. *
C

C

C

C

C

C

C

C

C

DY LOCAL l-D ARRAY TO STORE CURRENT DERIVATIVES.
YMAX: l-D ARRAY OF SCALING FACTORS FOR ERROR CHECKS.
EPS : APPROX ERROR OVER THE WHOLE INTERVAL.
ERR : MAX LOCAL TRUNCATION ERROR PERMITTED= EPS*H/(B-To)
ER, ERUP., ERDN : CEOFFECIENTS FOR STEP SIZE ESTIMATION
EINT: REL INTERVAL ERROR = EPS/(B-To)
EMAX: MAX LOCAL ERROR.
ALPHA: FACTOR BY WHICH H IS DIVIDED:

. FAIL : ERROR CODE. 0 IF SUCCESSFUL.

*
*
*
*
*
*
*
*
*

C**

C TO DO :
C ASSOCIATE ZERO WITH MEPS.
C ASSOCIATE OTHER CONSTANTS HMIN, CONVERGENCE WITH MEPS

IMPLICIT NONE
INTEGER N,K,P,I,J,M,NC,MAX1,FACTORIAL,IMAX,NMAX,

+ NSTEP,KMAX, FAIL,KNEW,NFAIL
PARAMETER (NMAX=40)

PARAMETER (IMAX=15)
PARAMETER (KMAX=7) .

163

DOUBLE PRECISION Y(MAX1,KMAX+1),L(IMAX) ,T,B,H,HMAX,HMIN,EPS,
+ DYP(NMAX) ,DY(NMAX) ,G(NMAX) ,FACP, STOREL(3,7,7+4),
+ ERR, ER,ERUP,ERDN, BND, ALPHA, YMAX(NMAX), EINT, EMAX,
+ TALPHA,ALMIN,AL1, NK,NKDN,NKUP, HNEW,OLDDYP(NMAX),
+ YOLD(NMAX,IMAX),TOLD,TF

PARAMETER (ALMIN=1.E-2)
LOGICAL START, CNVRG, EXIT
COMMON /MVLOCAL/STOREL,START
COMMON /MVOUTL/TF,ERR
EXTERNAL OUT,F

. TF=B
IF (B-T.LT.O.O) then

WRlTE(*,*) 'INValid time input'
FAIL = -6
return

endif
START=.TRUE.
CALL GETMVAL (K,P,L)
DO 10 I=l,N

10 YMAX(I)=l.
C EINT=EPS/(B-T)

EINT=EPS
ALPHA=1.0
KNEW=K
K=K-1
ERR=EINT

C ERR=EINT*H

C

NSTEP=KNEW+1
EXIT = . FALSE ..

INITIALIZATION COMPLETE, BEGIN MAIN LOOP.

DO WHILE (1.LT.2)

FACP=H**P/FLOAT(FACTORIAL(P»
IF (KNEW.NE.K) THEN

K=KNEW

170

C

20
40
30

C.

C

164

CALL GETMVAL(K,P,L)
ER = (L(K+2)*ERR)
ERUP = (L(K+3)*ERR)
ERDN = (L(K+4)*ERR)
NK = 1./FLOAT(K+1)
NKUP=· 1. /FLOAT(K+2)
NKDN= 1./FLOAT(K)
BND = ERR*.5*NKUP/FLOAT(N)
IF (ERDN.EQ.O) THEN

WRITE(*,*) 'ERROR OR STEP SIZE TOO SMALL'
WRITE(*,*) 'k,p,err,1(k+4) = ',k,p,err,l(k+4)
FAIL=-5
RETURN

ENDIF
ENDIF

FAIL=O

DO WHILE ((NSTEP.GT.O) .AND.(FAIL.GE.O»
NSTEP=NSTEP-1
TOLD=T
T=T+H
DO 170 I=l,N

DO 170 J=l,K+1
YOLD(I,j)=Y(I,J).

... GET PREDICTOR BY PASCAL'S TRIANGLE
'DO 30 J=2,K+1

DO 40 M=K,J-1,-1
DO 20 I=l,N

Y(I,M)=Y(I,M)+Y(I,M+1)
CONTINUE

CONTINUE
CONTINUE

. .. SAVE PREDICTOR DERVIATIVES FOR ERROR EVALUATION.
DO 70 I=l,N

OLDDYP(I)=DYF(I)
DYP(I)=Y(I,P+1)

70

C

+

C
60

80

c

C

100

90

c

16.5

CONTINUE

CNVRG=.FALSE.
NC=O
DO WHILE «CNVRG .EQ. :FALSE.) .AND. (NC .LT. 3»

CALL F(P,MAX1,T,Y,DY)
... DERIVATIVES EVALUATED, APPLY CORRECTOR.

CNVRG=.TRUE.
DO 80 I=1,N

DY(I)=FACP*DY(I)
G(I) =DY(I)-Y(I,P+1)
CNVRG= «CNVRG. EQ .. TRUE.) . AND.

(ABS(G(I».LE.(BND*YMAX(I»»
DO 60 J=1,P

.G IS CORRECTOR REFERRED IN GEAR
Y(I,J)=Y(I,J)+G(I)*L(J)

Y(I,P+1)=DY(I)
CONTINUE
NC=NC+1 .

END DO
IF (CNVRG.EQ .. FALSE.) THEN

ELSE

write(*,*) 'convergence fails'
ALPHA=4.0
AL1=0.25
FAIL=-2

... COMPLETE CORRECTION
EMAX=O.O
DO 90 I=1,N

DYP(I)=Y(I,P~1)-DYP(I)

DO 100 J=P+2,k+1
Y(I,J)=Y(I,J)+DYP(I)*L(J)

EMAX=MAX(EMAX,ABS(DYP(I)/YMAX(I»)
CONTINUE

IF (EMAX.GT.ER) THEN
FAIL=-1
write(*,*) 'step fails'

ELSE

+

180

120

FAIL=O
NFAIL=O

166.

IF (B-T.LE.EPS/l000.) then
EXIT = .. TRUE .

ENDIF
CALL OUT(MAX1,K,N,Y,T,EXIT)
IF (EXIT.EQ .. TRUE.) RETURN

ENOIF
ENOIF

END DO

IF (FAIL.LT.O) THEN
NFAIL=NFAIL+l
IF (H.LT.HMIN*1.0001) THEN

WRITE(*,*) 'FATAL ERROR IN MULTI VAL ,
IF (FAIL.EQ.-l) THEN

'WRITE(*,*)'T,H=' ,T,H,
'DIVERGENCE, EPS TOO SMALL'

ELSE
WRITE(*,*) 'ERROR - CORRECTOR INCONVERGANT'

ENOIF
RETURN

ENOIF
DO 180 I=l,N

DO 180 J=1,K+1
Y(I,J)=YOLO(I,J)

T=TOLO
ENDIF

KNEW=K
IF (FAIL.GE.-l) THEN

ALPHA~ 1.2*(EMAX/ER)**NK
AL1=1./ALPHA
IF «K.LT.KMAX).ANO.(FAIL.EQ.O» THEN

EMAX=O.O
DO 120 I=l,N
EMAX=MAX(EMAX,ABS«OYP(I)-OLOOYP(I»/YMAX(I»)
TALPHA=1.4*(EMAX/ERUP)**NKUP

190

130

C

167

IF (TALPHA.LT.ALPHA) THEN
KNEW=K+1
ALPHA=TALPHA

ENDIF
ENDIF
IF (FAIL.EQ.-1) THEN

DO 190 I=l,N
DYP(I)=OLDDYF(I)

CONTINUE
ENDIF

IF (K.GT.P) THEN
EMAX=O.O
DO 130 I=l,N

EMAX= MAX(EMAX,ABS(Y(I,K+1)/YMAX(I)))
TALPHA=1.3*(EMAX/ERDN)**NKDN
IF (TALPHA.LT.ALPHA) THEN

KNEW=K-1
ALPHA=TALPHA

ENDIF
ENDIF

ENDIF

IF ((NFAIL.GT.2) .AND.(FAIL.EQ.-1» THEN
WRITE(*,*) 'MVAL,NF,K,KN,AL' ,NFAIL,K,KNEW,ALPHA

ALPHA=MAX(ALPHA,2.0DO)
AL1=0.25

ENDIF

ALPHA = MAX(ALPHA, ALMIN)
ALPHA=l./ALPHA
HNEW=H*ALPHA

IF (HNEW.GT.HMAX) THEN
HNEW=HMAX
ALPHA=HNEW/H

ENDIF

IF (HNEW.LT.HMIN) then
HNEW=HMIN

+

160

150

140

END DO
RETURN
END

ALPHA=HNEW/H
ENDIF

168

IF «(ALPHA-1.).GT.0.1).OR.
«ALPHA.LT.1.0) .AND.(AL1.LT.0.95») THEN

ELSE
ALPHA=1.0
KNEW=K
HNEW=H

ENDIF

IF (hnew*(knew+l)+t.gt.b) THEN
HNEW = (B-T)/float(KNEW+1)
ALPHA = HNEW/H

ENDIF

IF (ALPHA.NE.1.0) THEN
H=HNEW
TALPHA=ALPHA
DO 150 J=2,K+1

DO 160 I=l,N
Y(I,J)=Y(I,J)*TALPHA

TALPHA=TALPHA*ALPHA
CONTINUE

ENDIF
NSTEP=KNEW+1

IF (KNEW.GT.K) THEN
DO 140 I=l,N
'. Y(I,KNEW+1)= DYP(I)*L(K+1)/FLOAT(K+1)*TALPHA

CONTINUE
ENDIF

FUNCTION FACTORIAL(P)

IMPLICIT NONE
INTEGER FACTORIAL,TEMP,P
TEMP=P
FACTORIAL=l

169

DO 10 TEMP = 2,P,1
FACTORIAL=FACTORIAL*TEMP

10 CONTINUE
RETURN

END

C***********SAMPLE OUTPUT ROUTINE
c$$$

c$$$
c$$$
c$$$
c$$$
c$$$
c$$$
c$$$
c$$$
c$$$C
c$$$
c$$$
c$$$
c$$$
c$$$10
c$$$
c$$$
c$$$
c$$$
c$$$
c$$$

SUBROUTINE OUTDAT .(MAX,K,N,Y,T,EXIT)
IMPLICIT NONE
INTEGER SKIP,NSKIP,U1,U2,N;I,K,MAX,TSTEP
DOUBLE PRECISION Y(MAX,K+1),T
LOGICAL EXIT
COMMON /OUTC/SKIP,NSKIP,U1,U2,TSTEP

TSTEP=TSTEP+1
CALL STOREVAL(MAX,K,N,Y,T)

IF ((SKIP.GE.NSKIP).OR.(EXIT» THEN
SKIP=l
WRITE(U1,10) T,(Y(I,l) ,I=l,N)
WRITE(U2,10) T, (Y(I ,1) , I=l ,N)
FORMAT (5X,G13.6,3X,100(G17.9,2X»

ELSE
SKIP=SKIP+1

ENDIF
RETURN
END

C~--------------------------------~-------------~--------------------
C MODULES FOR STORING, RETRIEVING INTERPOLATIOn DATA
C-------------------------------------~------------------------------

SUBROUTINE STOREINIT (NN,MAXY,CODE)
IMPLICIT NONE
INTEGER XMAX,TMAX, N,MAX,NN,MAXY, NSTEP, CODE

C

C

C

C

C

C

C

C

C

PARAMETER (XMAX=40000)
PARAMETER (TMAX=5000)
INTEGER TI(0:TMAX,3), TEMP
DOUBLE PRECISION X(XMAX)

liO

COMMON /HISTORY/ X,TI,NSTEP,N,MAX,TEMP

XMAX
TMAX
X
TI

MAX SIZE OF VECTOR= N*TMAX*(AVGK+1)
MAX NO. OF TIME STEPS ANTICIPATED
1-D ARRAY STORING THE TRAJECTORY HISTORY
ARRAY CONTAINING TIME HISTORY

IF (CODE.EQ.O) THEN
N=NN
MAX=MAXY
NSTEP=O
TI(O,l)=O
TI(0,2)=0

.TI(0,3)=1
X(1)=-1.D20
TI(1,3)=2

ELSE
TEMP=l
X(TI(NSTEP+1,3»=X(TI(NSTEP,3»+1.D20

ENDIF
RETURN.

END

SUBROUTINE STOREVAL (K,Y,T)
IMPLICIT NONE
INTEGER MAX,K,N,XMAX,TMAX, NSTEP, INDEX, I,J
PARAMETER (XMAX=40000)
PARAMETER (TMAX=5000)
INTEGER TI(O:TMAX,3),TEMP
DOUBLE PRECISION Y(MAX,K+1) ,T, X(XMAX)
COMMON /HISTORY/ X,TI,NSTEP,N,MAX,TEMP

XMAX
.TMAX
X

TI

MAX SIZE OF VECTOR=.N*MAXT*(AVGK+1)
MAX NO. OF TIME STEPS ANTICIPATED
1-D ARRAY STORING THE TRAJECTORY HISTORY
ARRAY CONTAINING DATA ON ACCESSING X

C

C

C

171.

(1,1) : K (order), (1,2): no. of values for Ith step
(1,3) : Starting Index for ith step in XC)

NSTEP=NSTEP+1
TI(NSTEP,l)=K
INDEX=TI(NSTEP,3)
TEMP=INDEX
X(INDEX)=T
INDEX=INDEX+1

DO 10 J=l,K+1
DO 10 I=l,N

X(INDEX)=Y(I,J)
INDEX=INDEX+1

10 CONTINUE.
c ... set index for·start of next step.

TI(NSTEP+l,3)=INDEX
TI(NSTEP,2) =INDEX-TEMP

RETURN
END

SUBROUTINE GETXVAL (T,Y,ND)
IMPLICIT NONE
INTEGER MAX,N, ND,XMAX,TMAX, TEMP, NSTEP, INDEX, I,J,K
PARAMETER (XMAX=40000)
PARAMETER (TMAX=5000)
INTEGER TI(0:TMAX,3) .
DOUBLE PRECISION Y(MAX,ND),T, X(XMAX), DT; ALPHA
COMMON /HISTORY / X, TI, NSTEP , N°, MAX, TEMP

IF (T.GE.X(TI(TEMP,3») THEN
DO WHILE (T.GE.X(TI(TEMP+l,3»)

TEMP=TEMP+l
END DO

ELSE
DO WHILE (T.LT.X(TI(TEMP,3»)

TEMP=TEMP-1
END DO

ENDIF

C

10

40

20
30

+

INDEX=TI(TEMP,3)
K=TI(TEMP,l)
DT=T-X(INDEX)
IF (DT.LT.O) THEN

172

... THIS IF BLOCK to be elimnated after full testing.
WRITE(*,*)'ERROR-IMPROPER VALUE pF TEMP OR T IN GETXVAL'

,index
ELSEIF (DT.LT.1.E-11) THEN

DO 10 J=l,ND
DO 10 I=l,N

INDEX=INDEX+1
Y(I,J)=XCINDEX)

CONTINUE
ELSE

IF «TEMP.LT.1).OR.(TEMP.GE.NSTEP)) THEN
WRITE(*,*) 'GETXVAL ERROR ',T,TEMP,

+ X(1),X(TI(NSTEP,3)),NSTEP
. IF (TEMP.EQ.NSTEP) THEN

WRITE(*,*) 'GETXVAL WARNING, RANGE EXCEEDED, ,
ELSE

STOP
ENDIF

ENDIF

ALPHA=DT/(X(TI(TEMP+1,3))-X(INDEX))
INDEX=TI(TEMP+1,3)
DO 40 I=N,l,-l

INDEX=INDEX-1
Y(I,l)=X(INDEX)

CONTINUE

DO 30 J=K,l,-l
DO 20 I=N,l,-l

INDEX=INDEX-1
Y(I,l)=X(INDEX)+Y(I,l)*ALPHA

CONTINUE
CONTINUE

ENDIF
RETURN
END

173

The Genetic Algorithm

This algorithm implements the genetic algorithm. Each of the modules is com-

mented and separated. The comments can be better understood by referring to

Goldberg [13]. The data structure is more comprehensive and all parameters and

. variants are accessible through input. The specified· include files are listed below

alongwith comments.

/***/
/* Genetic Algorithm with interface for Real valued functions */
/* AUTHOR: LALITESH .KUMAR KATRAGADDA */
/* See Goldberg for basci data structures */
/***/

#include <math.h>
#include <float.h>
#include <stdio.h>
#include <stdlib.h>
#define GAmaxpop 100
#define GAmaxstring 250
#define GAmaxn 30
#define GAmaxops 6
#define rinp "Yolf"

typedef double real;
typedef struct { real v [GAmaxn+1] ;} vartype;
typedef unsigned char boolean;
typedef boolean allele;

174

typedef allele chromosome [GAmaxstring+l] ;
/* notice that means that the index [0 .. GAmaxstring], c- pah */
typedef struct {

chromosome chrom;
vartype x;
real
int

fitness,funcval;
parentl,parent2,xsite,optype;

} individual;
typedef individual population [GAmaxpop+2] ;
typedef real oparray[GAmaxops+l] ;

population oldpop, newpop;
int
real
int

boolean
real

oparray
real

popsize, nelite, lchrom, gen, maxgen,maxeval, GAnvars;
pcross, pmutation;
nmutation, ncross, nf.unc, scale, noduplicate,
noperators, ops[GAmaxops+l] ,nbits[GAmaxn+l];
statson,output;
avg, max, min, sumfitness,
scalemax, scalemin, scalesum,
*history, *history2,
llim[GAmaxn+l] ,rlim[GAmaxn+l] ;

opfitness, opfitini, opfitend;
(*objfunc)(vartype x);

/* scale 0 (no scaling), 1 (windowing),
2 (interpolation by increment) */

/* opfitness should sum to 1 */

#include </home/lalit/genetic/random.c>

#include </home/lalit/genetic/utility.c>

#include </home/lalit/genetic/interfac.c>

#include </home/lalit/genetic/stats.c>

#include </home/lalit/genetic/report.c>

175

#include </home/lalit/genetic/triops.c>

#include </home/lalit/genetic/sort.c>

#include' </home/lalit/genetic/generate.c)

#include </home/lalit/genetic/initial.c>

void sga_ (real (*objfunc1) (vartype x),
real x[], real bounds[], real opfits[],
int *popsiz1, int *nelite1, int *maxgen1, int *rnxev11,
real *pcross1, real *pmut1, real *randseed,

int *nodup, int *scale1, real *scmax, real *scrnin,
int *stats1,real *hist1, real *hist2. char filenarne[10])

/* A Genetic Algorithm - GA - v2.0 */
{ FILE *out;

int ;i,j,ngen;
gen=O;
j=O;
GAnvars =bounds[O];
for (i=1; i<= GAnvars; i++)

{ nbits[i] = bounds[i];
j = j+nbits [i] ;
llim[i] = bounds [i+GAnvars] ;
rlim[n = bounds [i+2*GAnvars] ;

}; .

if (j>GArnaxstring)
{ printf("******ERROR, string exceeded %d %d\n",GArnaxstring,j);

exi.t;
};

noperators=opfits[O];
for (i=1; i<= noperators; i++)

{ ops[i] = opfits[~];
opfitini[i] = opfits[i+noperators];
opfitend[i] = opfits[i+2*noperators];.

};

objfunc=objfunc1;
popsize = *popsiz1;

maxgen = *maxgenl;
maxeval= *mxevll;
pcross = *pcrossl;
pmutation = *pmutl;
nelite = *nelitel;
scale = *scalel;
scalemax = *scmax;
scalemin = *scmin;
history = histi ;
history2 = hist2;
statson= *statsl;
noduplicate = *nodup;

176.

output= «*statsl > 1) I I (*statsl <= 0»;
if (output) out = fopen(filename,ltwt lt);
initialize(out, *randseed);
do {

gen = gen+1;
generationO;
statistics(popsize, popsize-nelite, nfunc, statson,

&max, &avg, &min, &sumfitness, newpop,
history, history2);

if (output) report(gen,out);
1* first sort according to fitness upto nelite individuals *1
sort (nelite, popsize, newpop);
1* scale population as desired,full sorting may be required*1
scalepop(scale,popsize,max,avg,min,sumfitness,scalemax,

::;calemin,&scalesum, newpop); .
setopfitness (noperators, maxeval,nfunc~

opfitness, opfitini ,opfitend); .
for (i=1; i<=popsize; i++) oldpop[i]=newpop[i];

}

while «gen<maxgen)&&(nfunc<maxeval»;

if (nelite==O) sort (1, popsize, newpop);
for (i=O;i<GAnvars; i++) x[i]=newpop[l] .x.v[i];
x[GAnvars]=newpop[l].funcval;

if (statson)
{

if (output) {

177

fprintf(out,"\n\n\n HISTORY\n\n") ;
for (i=l; i<=maxeval;i++)

fprintf(out,"%d %13.10g
(h1story),(history2+i)/

%13.10g\n",i,*(history+i)/
*(history»;

};

printf ("X : ");
for (i=l;i<=GAnvars;i++)

printf("%9.7g ",newpop[l] .x.v[i]);
printf("%13.10g \n",newpop[l] .funcval);

};

if (output) fclose(out);
}

/***/
/* Random Number generation Module

including 1) advance_random, 2) warmup_random, 3) random,
4) randomize, 5) flip, 6) rnd

/* Global vari~bles - don't use these var names in other code */

real oldrand[56];
int jrand;

void advance_random()
/* create next batch of random numbers */
{

int jl;
real new_random;

for (jl=l; jl<=24; jl++)
{new_random = oldrand[jl] - oldrand[jl+31];
if (new_random < 0.0) new_random = new_random+1.0;
oldrand[jl] = new_random;
}

}

178

for (jl=25; jl<=55; jl++)
{new_random = oldrand[jl] - oldrand[jl-24];
if (new_random < 0.0) new_random = new_random+1.0;
oldrand[jl] = new_random;
}

void warmup_random (real random_seed)
/* Get random off and runnin */
{

}

int jl,ii;
real new_random, prev_random;

oldrand[55] = random_seed;
new_random = 1.0e-9;
prev_random = random_seed;
for (jl=1; jl<=54; jl++)

{ii = (21*jl) 'l. 55;
oldrand[ii] = new_random;

};

new_random = prev_random - new_random;
if (new_random<O.O) new_random = new_random+1.0;
prev_random = oldrand[ii];

advance_random(); advance_random(); advance_random();
jrand=O;

real randomO
/* Fetch a single random number between 0.0 and 1.0 - Subtractive

Method See Knuth, t>. (1969) J v. 2 for details */
{

}

jrand++;
if (jrand<55)

{jrand=i; advance_random(); };
return(oldrand[jrand]) ;

{

return (random(»;
}

179

boolean flip (real probability)
/* Flip a biased coin - tru if heads */
{

}

if (probability==1.0)
return(1) ;

else
return (random() <= probability);

int rnd (int lo~, int high)
/* Pick a random integer bet~een lo~ and high */
{

}

int i;

if (lo~ >= high)
i = lo~;

else
{i = . (high-lo~+1)*random()+lo~;
if (i>high) i=high;

};

return(i);

void randomize(real randomseed)
/* Get seed number for random and start it up */
{

/* AUTOmate this using- ftime, milliseconds */
~arrnup_random(randomseed);

}

/* Utility Contains pause, page, repchar, skip, po~er */

void pause(int pauselength)
1* p~use a while *1

{

.#define maxpause 2500
int· i,jl;
real x;

180

for (i=1; i<=pauselength; i++)
for (jl=1; jl<=maxpause; jl++) x=x*1.0+0.1;

}

void page(FILE *out)
{fprintf(out,"\f\n\n\n");

}

void repchar (FILE *out, char ch, int repcount)
I*repeatedly write ch to output device *1

{int j;
for (j=1; j<=repcount; j++)

{fputc(ch,out);}
}

void skip (FILE *out, int skipcount)
1* Skip Skipcount lines on device out *1

{int j;
for (j=1.; j<=skipcount; j++, fprintf(out,l/n"));}

real power (real x, real y)
1* Raise x to the yth power *1

{return(exp(y*log(x)));}

1***/
1* INterface module : contains objfun~, decode */
1* change these for different problems *1

real goldberg_ (vartype x)

181.

/* Fitness function f(x)=x**n */
/* lower lim: 0.0, ul : 1.0, 30 bits */

{

}

nfunc++;
return(power(x.v[l] ,10»;

real objfunc2_ (vartype x)
/* Fitness function f(x)=x**n+y**2 */
/* same as for.objfuncl, 30bits for y */
{

nfunc++; .
return(power(x.v[l] ,10)+power(x.v[2] ,2»;

}

real binf6_ (vartype x)
/* Binary F6 f(x,y)= */
/* lower lim -100.0, ul 100.0 */
/* x,y : 22 bits */

{ real temp,templ;
nfunc++;

}

temp = x.v[l]*x.v[l] + x.v[2]*x.v[2];
templ = cos(sqrt(temp»;
return(templ*templ/(1.0+0.001*temp*temp» ;

real dejongl_ (vartype x)
/* De Jong test function 1 */
/* Bounds [-5.12, 5.12] */
/* Ganvars 3, string length 10 for each */

{ nfunc++;
return (-(x.v[l]*x.v[l] + x.v[2]*x.v[2]+x.v[3]*x.v[3]»;

}

real dejong2_ (vartype x)
1* De Jong test function 2 *1
1* Bounds [-2.048, 2.048] *1

182

1* Ganvars 2, string length 12 for each *1

{ real temp,templ;
nfunc++;

}

temp = x.v[1]*x.v[1]-x.v[2];
templ = l-x.v[l];
return (-100*temp*temp-templ*templ);

real dejong3_ (vartype x)
1* De Jong test function 3 *1
1* Bounds [-5.12, 5.12] *1
1* GAnvars 5, string length 10 for each *1

{ int i;
real temp;
nfunc++;
temp=O;

}

for(i=l; i<=GAnvars; i++)
temp=temp+ceil(x.v[i]);

return (-temp);

real dejong4_ (vartype x)
1*·De Jongtest function 4 *1
1* Bounds [-1.28,1.28] *1
1* GAnvars 30, string length 8 for each *1

{ int i;
real temp,templ;
nfunc++;
temp=O;
for(i=l; i<.=GAnvars; i++)

{ templ = x.v[i]*x.v[i];
temp=temp+i*templ*templ;

};

return (-temp);
}

real dejong5_ (vartype x)
1* De Jong test function 5 *1
1* Bounds [-65.536,65.536] *1

183

1* GAnvars 2, string length 17 for each *1

{ int i,j;

{

};

}

real temp,ternp1,temp2;
nfunc++;
temp=0.002;
for(j=1; j<=25; j++)

{

for (i=1; i<=GAnvars; i++)

if (i~=j) temp1 = 1.0;
else temp1= 0.0;
temp1 = x.v[i]-temp1;
temp1 = temp1*temp1*temp1;
temp2 = temp1*temp1+ j;

temp = temp + 1.0/temp2;
};

return (-temp2);

real gplanet_ (vartype x)
1* Fortran Planetary function *1
1* uncornrnent gescape_ *1

{ real f,y[GArnaxn];
int n,i;

}

nfunc++;
n=GAnvars;
for (i=1; y[i-1]=x.v[i], i<=~; i++);
gaplant_ (&f,y,&n);
return(f);

184

real emoon_ (vartype x)
1* Fortran Earth Moon transfer function *1
1* GAnvars 12, bits 15,*1
1* uncomment gmoon_ *1

{ real f,y[GAmaxn];
int n,i,j;
nfunc++;
n=GAnvars;
for (i=l,j=O; j <= n-l; j++)

{

y[j]=x.v[i]; i++;

}

};

gmoon_ (&f,y,&n);
return(f);

vartype decode (chromosome chrom, int lbits)
1* Decode string as unsigned binary integer- true=l, false=O *1
{

int i,j,bit;
long int temp,powerof2;
vartype accmn;

powerof2=1.0;
bit=O;

for (i=l; i<=GAnvars; i++)
{

temp=O;
powerof2=1;

{
for (j=l; j<=nbits[i]; j++)

bit++ ;
if (chrom[bit])

temp=temp + powerof2;

powerof2=powerof2*2;
};

powerof2=powerof2-1;

18.5

accum.v[i]= (real)templ (real)powerof2*
(rlim [i] -llim [i]) + llim [i] ;

};

return(accum);
}

1***1
1* stats : Statistics module */

int GAkfunc=O;
1* dejong1,2,4 *1
real GAsolution =0.0;·
int GAmaxdig = 9;

1* dejong3
real GAsolution =25.0;
int GAmaxdig = 9;
*1

1* dejong5
real GAsolution = -1.2;
int GAmaxdig = 9;·
*1

void statistics (int popsize, int ngen,. int nfunc, boolean statson,
real *max, real *avg, real *min,
real *sumfitness, population pop,
real ptr[] , real ptr2[])

1* calculate population statistics *1

{int j,k;
re.al temp;
1* initialize *1
*sumfitness=pop[l] .funcval;

*min
*max

=pop[1] .funcval;
=pop[1] .funcval;

186.

/* loop for max, min, sumfitness */
for (j=2; j<=popsize; j++)

{*sumfitness = *sumfitness+pop[j] .funcval;
if (pop[j] .funcval>*max) *max=pop[j] .funcval;

else if (pop[j] .funcval<*min) *min=pop[j] .funcval;
}

/* calculate average */
*avg = *sumfitness /popsize;
if (stat son)

{

if (GAkfunc>nfunc) {GAkfunc=O;};
/* lawerenceDavis's criteria */
ptr2[O]= *max;
for (k=GAkfunc+1 ,j=popsize-ngen+1; k<=nfunc; j++ ,k++)

{

};

temp = GAsolution-ptr2[0];
if (temp<=O) ptr[k] =ptr[k] +GArnaxdig;
else

ptr[k]=ptr[k]-log10(temp);
ptr2 [k] =ptr2[k] +ptr2 [0] ;

GAkfunc=nfunc;
};

}

char *GASCALE[4] = {"None.","Windowing",
"Constant increment", "Window & Increment"};

void scalepop (int scale, int popsize, real max, real avg,
real min, real sumfitness, real scalemax,
real scalemin, real *scalesurn, population pop)

/* scales population fitness from scalemax to scalsmin */
{

int i;
real scalefactor;

switch (scale) {

187

case 1 :
scalefactor=(scalemax-scalemin)/(max-min);
*scalesum = 0.0;
for ({=1; i<=popsize; i++)

{

pop[i] .fitness=(pop[i] .funcval-min)*scalefactor
+scalemin;

*scalesum = *scalesum+pop[i].fitness;
};

/*note: *scalesum = scalefactor*(sumfitness-min*popsize)
+scalemin*popsize; try this and check */

break;

case 2 : /* use only if fully sorted */
scalefactor = (scalemax-scalemin)/popsize;
pop [popsize] .fitness=scalemin;
*scalesum = pop[popsize].fitness;
for (i=popsize-1;i>=1; i--)

{

}

pop[i] .fitness=pop[i+1] .fitness+ scalefactor;
*scalesum = *scalesum+pop[i] .fitness;

break;

case 3 : /* use only if fully sorted */
scalefactor = (max-min)/popsize*scalemax;
pop [popsize] .fitness=scalemin*(max-min)/popsize

+scalefactor;
*scalesum = pop [popsize] . fitness;.
for (i=popsize-1; i>=1; i--)

{

}

pop[i] .fitness=(pop[i] .funcval-pop[i+1] .funcval)
+ pop[i+1] .fitness+scalefactor;

*scalesum = *scalesum+pop[i] .fitness;

break;

case 0 :
*scalesum=sumfitness;
for (i=l; i<=popsize; i++)

188

pop[i] .fitness = pop[i] .funcval;
break;

};
}

void setopfitness (int noperators, int maxeval, int nfunc,
oparray opfitness, oparray opfitini,oparray opfitend)

{int i;

}

real factor,sum;
sum=O.O;
factor= (real) nfunc/ (real) maxeval;
for (i=l; i<noperators; i++)

{

};

opfitness[i]=opfitini[i] + (opfitend[i]-opfitini[i])*factor;
sum=sum+opfitness[i] ;

opfitn~ss[noperators] = 1.0-sum;

/* Output module */
/* report.c : containswritechrom, report */

void writechrom(FILE *out, chromosome chrom, int lchrom)
/* Write a chromosome as a string of l's (true's) &O's(false's)*/
{

}

int
for

j;
(J= lchrom; j>=l;
if (chrom[j])

fputc(' l' ,out) ;
else

fputc('O' ,out);

j--)

void report (int gen, FILE *out)
/* Write the population report */
#define linelength 132
{ int j,k;

repchar (out, ' -, ,linelength); fprintf (out, "\n") ;
repchar(out,' , ,50); fprintf(out,"Population Report\n");

189

repchar(out,' , ,23);
repchar(out,' ',57);
fprintf(out,"\n");

fprintf(out,"Generation %2d",gen-l);
fprintf(out;"Generation %2d\n",gen);

fprintf(out," # x fitness");
fprintf(out," # parents xsite");
fprintf (out," string

" fitness \n");
repchar(out, ,_, ,linelength); fprintf (out, II \n");

if (! statson)
for(j=l; j<= pops~ze; j++)

{

fprintf(out," %2d
fprintf (out, II %9g %8g
oldpop[j] .fitness);

" ,j); -I*old string*/
!",oldpop[j] .x.v[l],

I*new string*/
II • ,J, fprintf(out,"%2d) %ld:(%2d,%2d) %2d

newpop[j] .optype,newpop[j] . parent 1 ,
newpop[j] .parent2,newpop[j] .xsite);
writechrom(out,newpop[j] .chrom,lchrom);
fprintf(out," %9g %8g \n",newpop[j] .x.v[l],
newpop[j] .funcval);

}

else
for(j=nelit~+l; j<= popsize; j++)
{

fprintf(out,"Y.2d) Y.ld:(Y.2d,Y.2d) Y.2d
newpop[j] .optype,newpop[j] . parent 1 ,
newpop[j] .parent2,newpop[j] .xsite);
for (k=1;k<=GAnvars;k++)
fprintf(out," Y.9g ",newpop[j] .x.v[kJ);
fprintf (out, II Y.8g \n'l ,newpop [j] . funcval) ;

}

II • ,J,

repchar(out, 1 _1 ,linelength); fprintf (out," \n");

x "

1* Generation statistics and accumulated values *1
fprintf(out," Note: Generation Y.2d &: Accumulated Statistics: "

gen);
fprintf (out," max= %6. 4f, min= Y.7. 5f, avg=%6. 4f" ,max ,min, avg) ;

}

190

fprintf(out,", sum=%6.4f, numutation=%d, ncross= %d, NFN=%d \n",
. sumfitness, nrnutation,· ncross, nfunc);
repchar(out,' -, ,linelength); fprintf (out," \nlt);
page(out) ;

1* Triops module *1
1* Reproduction (select), Crossover (crossover), Mutation (mutatio*1
1* Plus four others *1

int select(int popsize, real sumfitness, population pop)
1* select a single individual via roulette wheel selection *1

{ real rand, partsum; I*random point on wheel, partial sum*1
int.j; I*population index*1
partsum=O.O; j=O; I*zero out pointer & accumulator*1
rand = random()*sumfitness;

1* wheel point calc. uses random[O . . 1]*1
do{/*find wheel slot *1

j=j+1;
partsum = partsum+pop[j] .fitness;

}

} whi~e«partsum<rand)&&(j<popsize));
1* return individual nUmber *1
return(j) ;

into selectop(int noperators, real opfitness[])
/* select an operator via roulette whee~ selection */

{ real rand, partsum;
int j;
partsum=O.O; j= 0;
rand = random();
do{ j++;

part sum· = partsum+opfitness[jJ;
} while«partsum<rand)&&(j<noperators));

return(ops [j]) ;

191.

}

allele mutationCallele alleleval, real pmutation, int *nmutation)
1* Mutate an allele wi pmutation, count no. of mutations *1
{ boolean mutate;

mutate = flipCpmutation);
if (mutate) {

*nmutation= *nmutation+i;
return(!alleleval); I*change bit value*1

}

}

else
return(alleleval);

1**1

1** Operator : 0 **1
void crossover(chromosome parenti, chromosome parent2,

chromosome child1, chromosome child2,
int *lchrom, int *ncross, int *nmutation, int *jcross,
real *pcross, real *pmutation,

boolean *new1, boolean *new2)
1* Cross two parent strings, place in two child strings *1
{ int j, temp1, temp2;

if (flip(*pcross)) {
*jcross = rnd(1,*lchrom-1); /*cross between 1 & 1-1 */

*ncross = *ncross+1;
}

else
{

*jcross = *lchrom; I*force mutation */
*new1 = 0;
*new2 = 0;

};

tempi = *nmutation;
temp2 = *nmutation;
/*1st exchange 1-1, 2-2 *1
for (j=1; j<=*jcross; j++)

192

{

chi1d1[j] = mutation(parent1[j] ,*pmutation, &temp1);
chi1d2[j] = mutation(parent2[j] ,*pmutation, &temp2);

};

{

/* 2nd exchange, 1-2, 2-1 */
if (jcross != 1chrom) /* skip if xsite i~ 1chrom--no xover*/

for (j = *jcross+1; j <= *lchrom; j++)

chi1d1[j] = mutation(parent2[j] ,*pmutation, &temp1);
chi1d2[j] = mutation(parent1[j] ,*pmutation, &temp2);

};

}

*ne~1 = (*new1 I I (temp1 > *nmutation»;
*new2 = (*new2 I I (temp2> *nmutation»;
*nmutation = temp1 + (temp2-*nmutation);

/** Operator :1 **/
void pure_cross(chromosome parent 1 , chromosome parent2,

chromosome chi1d1, chromosome chi1d2,
int *lchrom, int *ncross, int *jcross)

/* Cross two parent strings, place in two child strings */
{ int j;

*jcross = rnd(1,*lchrom-1); /*cross between 1 & 1-1 */
*ncross = *ncross+1;

/*1st exchange 1-1, 2-2 */
for (j=1; j<=*jcross; j++)

{

chi1d1[j] = parent1[j];
chi1d2[j] = parent2[j];

};

/* 2nd exchange, 1-2,2-1 */
for (j = *jcross+1; j <= *lchrom; j++)

{

chi1d1[j] = parent2[j];

child2[j] = parentl[j];
};

}

/** Operator : 2 **/

193

void mutate (chromosome parent, chromosome child, int *lchrom,
int *nmutation, real *pmutation, boolean *new)

/* Mutate parent and produce a child~ Clone with random changes */
{ int j,temp;

temp = *nmutation;
. for (j=1; j<=*lchrom; j++)

~hild[j] = mutation(parent[j] ,*pmutatio~, &temp);

}

*new = (temp> *nmutation);
*nmutation = temp;

/** Operator : 3 **/
. void. uniform_cross (chromosome parent1, chromosome parent2,

chromosome child1, chromo.some child2,
int *lchrom, int *ncross)

/* Cross two parent strings, place in two child strings */
{ int j;

{

}

*ncro.ss = *ncross+l;

for (j=l; j<=*lchrom; j++)
if (flJ.p(O.5»

child1[j] = parent1[j];
child2[j] = parent2[j];

else
{

child1[j] = parent2[j];
child2[j] = parent1[j];

};

}

/** Operator : 4 **/

194

void uniform_cross2(chromosome parent1, chromosome parent2,
chromosome child1, chromosome child2,
int *lchrom, int *ncross, int *jcross)

/* Cross two parent strings, place in two child strings */
{ int j;

{

}

{

*jcross = rnd(1,*lchrom-1); /*cross between 1 & 1-1 */
*ncross = *ncross+1;

for (j=1; j<=*lchrom; j++)
if ((j <= *jcross)I I (flip(O.5)))

child1[j] = parent1[j];
child2[j] = parent2[j] ~

else

child1[j] = parent2[j];
child2[j] = parerit1[j];

};

}

/** Operator : 5 **/
void multi_cross (chromosome parent1, chromosome parent2,

chromosome child1, chromosome child2,
int *ncross, real *pcross,
boolean *new1, boolean *new2)

/* Cross two parent strings, place in two child strings */
{ int i,j,jcross,bit;

boolean new;

bit=l;
?ew=O;
for (i=l; i<=GAnvars; i++)

{

if (flip(*pcross»
{

19.5

jcross = rnd(l,nbits[i]-l); I*cross between 1 & 1-1 *1
new=l;

}

else
jcross = nbits[i];

l*lst exchange 1-1, 2-2 */
for (j=i; j<=jcross; j++,bit++)

{

childl[bit] = parent 1 [bit] ;
child2 [bit] = parent2 [bit] ;

};

1* 2nd exchange, 1-2, 2-1 *1
for (j = jcross+l; j <= nbits[i]; j++,bit++)

{

childl[bit] = parent2[bit];
child2[bit] = parent 1 [bit] ;

};

}

};

*new1 = (*newl && new);
*newl = *new2;

1** Operator : 6 **1
void uniform_cross3(chromosom~ parentl, chromosome parent2,

chromosome childl, chromosome.child2,
int *lchrom, int *ncross, int ~nmutation,
real *pcross, real *pmutation,

boolean *newl, boolean *new2)
{ int j,templ,temp2;

{

}

{

temp1 = *nmutation;
temp2 = *nmutation;
for (j=1; j<=*lchrom; j++)

if (flip(0.5»

196

child1[j] = mutation(parent1[j] ,*pmutation, &temp1);
child2[j] = mutation(parent2[j] ,*pmutation, &temp2);

else

childl[j] = mutation(parent2[j] ,*pmutation, &temp1);
child2[j] = mutation(parentl[j] ,*pmutation, &temp2);

};

}

*new1 = (*newl I I (temp1> *nmutation»;
*new2 = (*new2 I I (temp2> *nmutation»;
*nmutation =templ + (temp2-*nmutation);

/***/
/* Sorting Module */

int GAcompare(individual *a, individual *b)
{

if «*a) .funcval> (*b) .funcval)
return (-1) ;

else
{

}

if «*a).funcval«*b).funcval) return(l);
else return(O);

}

void sort (int nelite, int popsize, population pop)
{

int best,i;
individual temp;

if (nelite <= 0) exit;

if (nelite==l) {
best=l;
for (i=2; i<=popsize; i++)

197

if (pop[i].funcval > pop[best].funcval) best=i;
temp = pop [1] ;
pop[l] = pop [best] ;
pop [best] = temp;

}

else
qsort(&(pop[l]),popsize,sizeof(individual),GAcornpare);

}

/***/
/* Generation module */

boolean GAnotequal (individual *test, individual *kid)
{

}

int i,notequal;
notequal=O;
for (i=l;«i<=lchrom)&&(!notequal) ;i++)

notequal = «*test).chrom[i] - (*kid) .chrom[i]);
return(notequ~l);

boolean deliver_child(individual *kid,
boolean newchild, int jcross,.
int matel, int mate2, int npop)

/* inoldpop : true => match found in oldpop, not new */
{int i,j,notequal,jeq;

boolean inoldpop;
inoldpop = 0;
notequal=l;
switch (abs(noduplicate)

{

case 1
case 2
case 3

jeq=mate1 ;
if (! newchild)

if (rnate1<=nelite)
{notequal=O; break;}

else
inoldpop=1;

if (abs(noduplicate)<2) break;

198

if (!GAnotequal(&oldpop[rnate1] ,kid»
{if (rnate1<=nelite)

{inoldpop=O; notequal=O; break;}
else

inoldpop=1;
};

if (mate1 != mate2)
if (!GAnotequal(&oldpop[mate2] ,kid»

{jeq=mate2;
if (mate2<=nelite)

{notequal=O; inoldpop=O; break;}
else

inoldpop=1;
};

};

if (abs(noduplicate)<3) break;

for (j=npop; «j>=1)&&(notequal»; j--)
if «j>nelite) I I «j!=mate1)&&(j!=mate2»)

notequal = GAnotequal(&newpop[j] ,kid) ;
if (!notequal) jeq=j;

if «notequal)&& (! inoldpop»
{

/* decode string, evaluate fitness */
(*kid).x = decode«*kid).chrom,lchrom);
(*kid) . funcval = objfunc « *kid). x) ;

}

else
{

{

}

{

199

if (inoldpop)

(*kid) .x = oldpop[jeq] .x;
(*kid) .funcval = oldpop[jeq] .funcval;

else

if (noduplicate > 0) return(O);
(*kid).x = newpop[jeq] .x;
(*kid) .funcval = newpop[jeq] .funcval;

};

}

};

/* record parentage data on both children */
(*kid) .parent1 = mate1;
(*kid) . parent 2 = mate2;
(*kid) .xsite = jcross;
return(l) ;

void generation()
1* Create a new generation through select, crossover, and mutation *1
1* Note : Generation does not assume an even numbered popsize
/* however if nelite>=l, sorted oldpop is assumed
{

{

int j,mate1, mate2, jcross, op;
boolean newch~ldl,newchild2;

/* copy to save the elite individuals from oldpop (sorted)*/
for (j=l; j<=nelite; j++)

newpop[j] = oldpop[j];

/* generate the rest of the individuals */
j=nelite+l ;
do {

op = selectop (noperators, opfitness);
matel = select (popsize, scalesum, oldpop);
jcross=O;
newpop[j] .optype=op;
switch (op)

200

case 2 :
br.eak;

default :
mate2 = select (popsize, scalesum, oldpop);
newchildl = (matel != mate2);
newchild2 = newchildl;
newpop[j+l] .optype=op; break;

};

switch (op)
{

case 0 :
/* Crossover and mutation */
crossover(oldpop[matel] .chrom, oldpop[mate2] .chrom,

newpop [j] . chrom, newpop [j+l] .chrom,
&lchrom,&ncross,&nmutation,&jcross,&pcross,
&pmutation,&newchildl,&newchild2);

break;
case 1 :

pure_cross (oldpop[matel] .chrom, oldpop[mate2] .chrom,
newpop[j] .chrom, newpop[j+l] .chrom,
&lchrom,&ncross,&jcross);

break;
case 2 :

mutate (oldpop[matel] .chrom, newpop[j] .chrom,
&lchrom,&nmutation,&pmutation,&newchildl) ;
break; .

case 3 :
uniform_cross (oldpop[matel] .chrom, oldpop[mate2] .chrom,

newpop[j] .chrom, newpop[j+l] .chrom,
&lchrom,&ncross);

break;
case 4 :

uniform_cross2 (oldpop[mat~l] .chrom, oldpop[mate2] .chrom,
newpop[j] .chrom, newpop[j+l] .chrom,
&lchrom,&ncross,&jcross);
break;

case 5 :
multi_cross (oldpop[matel] .chrom, oldpop[mate2] .chrom,

newpop[j] .chrom, newpop[j+l] .chrom,

201.

incross, &pcross, &newchild1,&newchild2);
break;

case 6 :
uniforrn_cross3(oldpop[mate1] .chrom, oldpop[mate2] .chrom,

newpop[j] .chrom, newpop[j+1] .chrorn,
&lchrom,&ncross,&nrnutation,&pcross,
&prnutation,&newchild1,&newchild2) ;
break;

default :
printf ("invalid operator %d \n",op); break;

};

switch (op)
{

case 2 :
if (deliver_child(&newpop[j] ,newchild1,

o ,rnate1 ,rnate1, j -1)) j ++;
break;

default :

};

if (deliver_child(&newpop[j] ,newchild1,
jcross,rnate1,rnate2, j-1))
{j++;}

else
newpop[j] = newpop[j+1] ;

if «j<=popsize)&&
deliver_child(&newpop[j] ,newchil~2,

jcross,rnate2,mate1, j-1)) j++;

} while(j<=popsize);
}

/* initial: contains initdata, initpop, initreport, initialize */

void initdata (int *popsize, int *lchrom, int *maxgen,
real *pcross, real *pmutation)

202

1* Interactive data inquiry and setup *1
{

}

printf (" I--------------------------------I\n");
printf (" I Genetic Algorithm v2.0 GAI\n");
printf (" I--------------------------------I\n\n\n");
printf (11***** Data entry and Initialization *****\n");
printf ("Enter population size ").;
scanf ("'l,d",popsize);
printf ("Enter elite population size ,,);
scanf ("'l,d" ,nelite);
printf ("Enter chromosome length ,,) ;
scanf ("'l,d",lchrom);
printf (IIEnter max generations ") ;
scanf ("'l,d",maxgen);
printf ("Enter crossover probability");
scanf (rinp,pcross);
printf ("Enter mutation probability");
scanf (rinp,prnutation);

voidinitreport(FILE *out, real randseed)
{ int i;

fprintf
fprintf
fprintf

(out,"--------------------------------\n") ;
(out,"A Genetic Algorithm, V 2.0 \n");
(out,"--------------------------------\n\n");

fprintf (out," GA Parrnaters \n");
fprintf (out," ------------ \n\n");
fprintf (out," Population size 'l,d\n",popsize);
fprintf (out," Elite population size 'l,d\n",nelite);
fprintf (out," Fitness Scaling 'l,s\n",GASCALE[scale]);
fprintf (out," Chromosome length 'l,d (lI,lchrom);
for (i=l; i<=GAnvars; i++) fprintf (out," 'l,d",nbits[i]);
fprintf (out, II)\n");
fprintf (out," Domain : ");
for (i=l; i<=GAnvars; i++)

fprintf (out, "x'l,d: ['l,g,'l,g] ",i,llim[i],rlim[i]);
fprintf (out,"\n");

}

203

fprintf (out," Noduplicate mode
fprintf (out," Max generations
fprintf (out," Max evaluations

%d\n" ,noduplicate) ;
%d\n",maxgen);
'l,d\n",maxeval) ;

fprintf (out," Crossover probability %g\n",pcross);
%g\n",prnutation); fprintf (out," Mutation probability

fprintf (out," Operator fitnesses tI) ;

for (i=1; i<=noperators; i++)
fprintf (out, "'l,d: [%g, %g] ", ops [i] ,op£i tini [i] ,opfi tend [i]) ;

fprintf (out,"\n");
fprintf (out," Random seed : %11.9g\n\n\n\n",

randseed);

fprintf (out," Initial Generation Statistics\n");
fprintf (out," -----------------------:------\n") ;
fprintf (out," Initial population maximum fitness = %g\n" ,max) ;
fprintf (out," Initial populatiop average fitness = %g\n",avg);
fpri~tf (out," Initial populatiop minimum fitness = 'l,g\n" ,min) ;
fprintf (out," Initial populatiop sum of fitness = %g\n",

surnfitness);
£printf (out,"\n\n\n\n\n\n\n\n");

/*************** Population initialization routines ~****.*********/

void ini tpop ()
1* Initialize a population at random */
{

}

int j ,jl;
for (j=1; j<=popsize; j++)

{for Ul=1; jl<=:lchrom; jl++) oldpop[j] .chrom[jl]=flip(O.5);
oldpop[j].x = decode(oldpop[j].chrom, lchrom);
oldpop[j] .funcval = objfunc(oldpop[j] .x);
oldpop[j] .parentl=O; oldpop[j] .parent2=O; oldpop[j] .xsite=O;

};

/* geneinp initialization by file */

{

204

void sinitpopO
1* Initialize a population at random *1
{ FILE *inp;

}

int j,jl;
char schrom[31] ;
inp = fopen("gene.ini","rt");
for (j=l; j<=popsize; j++)

1**1

void initialize(FILE *out, real randseed)
1* Initialization coordinator */
{ int i;

lchrom=O;
for (i=l; i<= GAnvars; i++)

lchrom=lchrom+nbits[i] ;
for (i=l; i<=noperators; i++)

opfitness[i] = opfitini[i];
/* initdata(); *1

randomize(randseed);
nmutation=O;
ncross=O;
nfunc=O;
ini tpop 0 ;

}

205

statistics(popsize, popsize, nfunc, statson,
. &rnax, &avg, &rnin, &sumfitness, oldpop,

history, history2);
sort (nelite, popsize, oldpop);
scalepop(scale,popsize,rnax,avg,rnin,sUmfitness,scalemax,

scalernin,&scalesum, oldpop);
if (output) initreport(out,randseed);

