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CHAPTER I. ABSTRACT 

The inherent magnetohydrodynamic (MHD) stability of cusp-

type plasma confinement systems, and the possibility of favor-

able charged particle confinement in magnetic or hybrid elec-

tromagnetic point cusp systems are the two principal motiva-

tions for this work. The scope of this thesis is limited to 

a particular cusped geometry known as an octahedrally sym-

metric magnetic well which will hereafter be referred to as 

Osmac (Octahedrally symmetric magnetic confinement) . A 

detailed description of Osmac geometry will be presented. In 

addition, a method for calculating the magnetic induction from 

eight filamentary current loops arranged in the Osmac con-

figuration will be developed. This development includes the 

necessary position and induction vector component transforma-

tions for calculating the total magnetic induction at a point 

from the superposition of the induction contributions from 

four current loop-pairs. A derivation of the vector potential 

and magnetic induction of a filamentary current loop, as well 

as a computer code (the OMIN code) useful for calculating the 

magnetic induction for Osmac geometry is included in the 

appendixes. 
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CHAPTER II. INTRODUCTION AND LITERATURE REVIEW 

The historical development of controlled thermonuclear 

fusion is replete with a number of unsuccessful confinement 

schemes in which plasma instabilities greatly diminished the 

ultimate viability of these approaches (1). Concern over the 

problem of plasma instabilities forced the development of 

magnetic confinement concepts in which the configuration of 

the magnetic field surrounding the plasma effectively dampens 

perturbations of the confined plasma which lead to instabili-

ties. 

In a cusped confinement scheme a plasma is surrounded by 

magnetic field lines everywhere convex to the trapped plasma . 

Thus, the center of curvature of the field lines for cusped 

confinement is nowhere enclosed by the confined plasma (2). 

A useful energy principle for the study of plasma stability 

states that the system composed of a plasma and confining 

magnetic field will seek a state of minimum potential energy 

if the system is perturbed (3) . A study of equilibrium cusp 

stability after a perturbation is applied shows that an over-

all increase in the potential energy of the system will 

develop (3, 4). Thus, by the energy principle, a cusped con-

finement system must return to its initial equilibrium state, 

the state of lowest potential energy available to the system . 

Many confinement concepts have be en advanced which take 

advantage of the stability of cusped magnetic fields. This 
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thesis is a continuation of research into a particular cusped 

confinement scheme known as an octahedrally symmetric magnetic 

well (Osmac) . Early investigations into the Osmac concept of 

plasma confinement by Chiu (5), and Valfells et al. (6) indi -

cated that the Osmac concept has a high degree of three 

dimensional symmetry combined with the stabilizing features 

of cusped geometries. Osmac is one of a class of confinement 

geometries in which the magnetic field forms a magnetic well. 

These magnetic well configurations are often referred to as 

minimum- B devices since the magnetic induction has a minimum 

field strength at the center of the device . Minimum- B 

devices can be divided into two subclassifications, those 

devices which are adiabatic at IBI . . and those that are minimum 
not. The correct classification is determined by the follow -

ing two criteria: 

IBI > 0, adiabatic min (a) 

IBI - 0, nonadiabatic min - (b) 

For the Osmac conductor configuration the magnetic field is 

zero at the center and increases radially in all directions. 

Under such an "absol ute" minimum-B condition the first 
2 abiabatic invariant , µ = mv1/2eB, of a charged particle 

rotating about its guiding center is not preserved near the 

center of the well. 
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Adiabatic magnetic wells 

The design of adiabatic magnetic wells, not necessarily 

of cusped geometry, is predicated on the expectation that any 

adiabatic perturbation which causes particles to move away 

from the minimum-B regio n will be suppressed by preservation 

of the first and second adiabatic invariants. If the first 

invariant is preserved then the translational kinetic energy 

of the perturbed particle is lost by increasing the gyration 

energy of the particle. If the second adiabatic invariant 

is also preserved then the perturbation energy is completely 

exhausted by increasing v 1 and v 11 , resulting in a stable 

particle oscillation between regions of maximum field strength 

(3). Typical examples of adiabatic magnetic wells are cusp 

stabilized mirrors (7)~the Baseball and Yin-Yang coil devices. 

Nonadiabatic magnetic wells 

Cusps Early theoretical work on cusped magnetic 

fields was initiated by Berkowitz et al. (8). Basic cusp 

configurations are shown in Fig. 2.1. For dense, high- 8 

plasmas a field free region exists within the cusp plasma . 

Particles in this region move in straight lines, i.e., they 

have an infinite gyroradius. At the plasma boundary a 

charged particle is returned to the plasma by interaction 
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Fig. 2.1 . Two basic cusp confinement configurations 
(a) A picket fence formed from a series of l ine 

cusps 
(b) A spindle cusp 
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with the magnetic field. For a sharply defined {S = 1) 

boundary, or "free boundary," the charged particle is bounced 

out of the cusp in a near billiard ball reflection {Fig. 2.2a). 

For S ~ 1 the plasma is surrounded by a sheath of finite 

thickness in which particles follow a cycloidal path back 

into the plasma (Fig. 2.2b). 

Cusp losses cusp systems have the characteristic of 

being leaky in the region of the cusps. For low-S plasma, 

or plasma away from the minimum-B region, charged particles 

stream out. adiabatically along the field lines at the cusp. 

For S ~ 1 particles stream out of the cusp if rL, the charged 

particle Larmor radius, is too small to turn the particles 

back into the field free region. An extensive review of cusp 

losses is contained in a review of cusp containment by 

Spalding (2). Since cusp containment is nonadiabatic theo-

retical approaches to cusp losses utilize well defined con-

tainment models in which the half-width of the particle loss 

hole is to be determined. These loss models assume a high- S 

nonadiabatic region away from the cusp which supplies isotropic 

plasma to the cusps. The plasma is assumed to be collision-

less. Particle losses through cusps, either the ring or point 

cusps of the spindle cusp, are calculated assuming the 

mechanism of simple effusion through the loss hole. For a 

point cusp 
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(b)B<l 

Fig. 2.2. Particle reflection in a two-dimensional cusp (8) 
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dN 1 
dt = 4 nv • 2 Tir p 

(2 - 1) 

where 

v = /SkT./Tim. 
1. 1. 

( 2 - 2 ) 

is the mean ion thermal speed, n is the ion density, and r p 

is the half-width (or radius) of the hole at the point cusp. 

In his review of cusp confinement Spalding (2) indicates 

theoretical and experimental results of cusp losses for two 

approaches to the formation of free boundary plasma equilibria: 

1) Injection of plasma from a field free region into 

a quasistatic cusp confinement field. 

2) Plasma is compressed by a rapidly rising confining 

cusp field. 

Stability experiments confirm the theoretical expectation 

that cusp confinement is MHD stable. 

From these experiments (performed primarily on cusped 

theta-pinches) the ring and point cusp loss hole half-width 

was found to be on the order of ri for 8 ~ 1 plasmas. More 

recent experiments by Kitsunezaki et al. (9) places rp at 

some value less than r. for a laser exploded deuterium pellet 
1. 

in a spindle cusp . Hershkowitz et al . ( 10) found r to be on p 
the order of 2~, the hybrid gyroradius, for a low- 8 

i e 
picket fence line cusp. These results are tabulated in Table 

2 .1. 
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Table 2 .1. Experimental determination of rp for a point cusp 

r p 

~ r . 
l. 

< r. 
l. 

Method of plasma formation 

Plasma injection into cusp field or 
compression by rising cusp field. 8 ~ l.a 

Laser explosion of deuterium ice pellet 
in spindle cusp. 8 ~ l.b 

Low 8 (8 << 1) discharge behind a cusp 
picket fence. Given rp is one-half the 
line cusp half-hole wiath.c 

aSpalding (2). 

bKitsunezaki et al. (9). 

cHershkowitz et al. (10). 

The octahedrally symmetric magnetic well (Osmac) The 

Osmac concept was initially d eve loped by Valfells et al . ( 6) and 

Chiu (5) to take advantage of the high stability of cusps and 

potentially favorable cusp losses. A concept similar to, but 

somewhat different from Osmac, employing higher order poly-

hedral symmetry was developed independently by Sadowski (11, 

12). The octahedral geometry of the Osmac concept is repre-

sentative of the simplest mode of magnetic wells (or minimum-B 

traps) discussed by Sadowski. The geometry of magnetic wells 

of this type, called spherical multipoles by Sadowski, are 

based on the increasing order of regular polygons--the 

tetrahedron, cube, octahedron, dodecahedron, and icosahedron. 
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Magnetic wells are established by arranging dipoles or current 

loops on a sphere circumscribing a particular polygon in a 

manner consistent with the polygonal geometry. For example, 

dipoles placed at the verticies and concentrically with 

normals to the geometric center of the faces of a tetrahedron 

inscribed in a sphere, or at the corners of a cube inscribed 

in a sphere, or concentric to normals which pass through the 

centers of the faces of an octahedron all form equivalent 

magnetic wells. 

Sadowski does not extensively treat lower order polygons, 

concentrating instead on equivalent dodecahedral and icosa-

hedral symmetries. Sadowski also considers only small radius 

solenoids generating very high fields at the center of the 

solenoid. With the Osmac geometry treated in this thesis only 

large radius and overlapping filamentary current loops are 

treated. 
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CHAPTER III. THE GEOMETRY OF OSMAC 

The geometric description of Osmac is based on the 

symmetry of an octahedron. It utilizes a principal rectan-

gular coordinate system with axes which intersect the vertices 

of an octahedron, and four secondary rectangular coordinate 

systems for each pair of parallel current loops. The sym-

metry axis of each loop-pair is normal to two parallel faces 

of an octahedron, and penetrates each triangular face at its 

geometric center. 

The symmetry axis of each loop-pair forms the z-axis of 

four right-handed rectangular coordinate systems. These posi-

tive z-axes are shown in Fig. 3.1. The fifth coordinate 

system, the principal axes (labeled x 0 ,y0 ,z0 in Fig. 3.1), 

define the coordinates to which the magnetic induction con-

tributed by each of the four loop-pairs is transformed and 

then added. This octahedral geometric description departs 

from Chiu's (5) tetrahedral description by the addition of a 

fifth set of axes, the principal set, which is independent 

from any loop-pair coordinate systems. In Chiu's analysis of 

the magnetic induction, based on the geometry of the tetra-

hedron, one of four loop-pair symmetry axes is used as the 

z-axis of the principal coordinate system. Thus, only three 

rotation matrices are needed to transform position and induc-

tion vector components to and from the remaining three co-

ordinate systems. These rotation matrices allow the magnetic 
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8 = 54.74° 

Fig. 3.1. Orientation of the positive zk-axes with the 
principal axes 
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induction vector components contributed by each loop-pair at 

a point in the principal system to be transformed to corre-

sponding components in the principal system. The total 

magnetic induction, contributed to by all four loop-pairs, is 

simply the superposition of the magnetic inductions contri-

buted by each loop-pair. 

With the present analysis the spatial relationship 

between the current loops is obviously unchanged by the addi-

tion of a fifth set of axes. By defining a fifth coordinate 

system which is independent of each of the loop-pair coordi-

nate systems greater clarity in visualizing the induction 

field of the magnetic well is achieved. The magnetic induc-

tion vector of each loop-pair is now transformed to this loop 

independent coordinate system. The superposition of the 

contributions to the total magnetic induction from all four 

loop- pairs requires four vector transformations. In the nota-

tion that follows the subscript zero refers to points or 

vectors in the principal coordinate system while the sub-

scripts one, two, three, and four refer to the four loop-pair 

coordinate systems . Table 3.1 shows how the loop-pair coordi-

nate systems are numbered based on the octant in which the 

positive z-axis of each loop-pair system is located with 

respect to the principal axes. 
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Table 3.1. Location of the positive z-axes with respect to 
the principal coordinate system 

Positive z-axis number 

1 
2 
3 
4 

Octant of the principal axes 

I 
III 
VI 

VIII 

The total magnetic induction at a point P 0 in terms of 

the contributions of the four pairs of current loops can be 

written 

- -1- -1-+ -1 .. -1-
BO = Rl Bl + R2 B2 + R3 B3 + R4 B4 (3-1) 

- - - -= BlO + B20 + B30 + B40 (3-2) 

4 -1-= E Rk Bk 
k=l 

(3-3) 

-1 where the Rk 's are orthogonal 3 x 3 matrices which transform 

the components of the four Bk induction vectors o f each coil 

pair to the corresponding components in the principal coordi-

nate system. The total induction vector in component form is 

just 
4 3 
E E a .. kb ' k 

k=l j=l lJ J 
i = 1, 2, 3. (3-4) 
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The subscript k indicates in which loop-pair coordinate system 

the vector bjk' j = 1, 2, 3 is located and which 3 x 3 matrix 

composed of a .. components transforms the vector components 1J 
bjk to the principal coordinate system. The a. 'k elements 1J 
form a 3 x 3 x 4 array in which the a . . k , k = 1 , 2 , 3 , 4 1J 
elements are the direction cosines of a rotation of the 

principle axes to form the four loop-pair coordinate systems. 

The induction vector at a point, resulting from the 

superposition of induction vectors contributed by the four 

loop-pairs, requires finding both the elements a . 'k of the 1J -transformation matrices and a suitable vector potential A for 

- --calculating B(= V x A) from each loop-pair. 

The Rk elements are calculated by knowing that the axes 

of the loop-pair coordinate systems must satisfy two condi-

tions. 

1. The axes of a loop-pair coordinate system are 

formed by a right-handed, or "proper," rotation 

of the principal axes. The determinant of the 

resulting transformation matrix Rk must be +l. 

2. The +zk-axis, or symmetry axis of each loop-

pair, must make an angle of 54.73561° with the 

+ z 0-axis depending on the octant in which the 

+z-axis is located (cf. Fig. 3.1). 

The second condition insures the zk-axis is normal to the 

face of the octahedron and passes through the geometric center. 
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Transformation of vector components from principal components 

(x,y,z) 0 to corresponding components in any one of the four 

loop-pair coordinate systems is equivalent to finding new 

components of the vector after an orthogonal rotation of the 

principal axes in three dimensions. Under such a rotation 

the magnitude of a vector remains unchanged. The four 

required rotations of the principal axes can be accomplished 

by the product of two plane rotations. 

1. Rotation of the x 0 , Yo plane counterclockwise 

around the z 0-axis to fix the new xk, k = 1, 2, 3, 4 

axes. 

2. Rotation of the y 0 , z 0 plane counterclockwise 

around the xk-axes to establish the position of the 

zk-axes under condition 2 above. 

The product of the matrices which mathematically accomplish 

these rotations can be written 

~ = MkNk I (3-5) 

where 

cos<j>k -sincj>k 0 

Mk = sincj>k coscj>k 0 (3-6) 

0 0 1 
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and ~k is the angle of rotation of the x 0 , Yo plane counter-

clockwise around the z 0 axis. 

1 0 0 

0 ( 3-7) 

0 

where ak is the angle of rotation of the z 0 , y 0 plane counter-

clockwise around the xk-axis. 

Taking the product, 

0 

The ~k and ak for each rotation is tabulated below. 

Table 3.2. 

~ 
1 
2 
3 
4 

Rotation angles for each loop-pair rotation 

80 
k 

54.73561 
234.73561 

54.73561 
234.73561 

(3-8) 

135 
225 
315 

45 
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By substitution of ~k and ek from Table 3.2 into Eq . 3-8 

the ~ can be explicitly evaluated. 

R = 1 

R -2 -

R -3 -

R = 4 

-0.707107 

-0.408248 

0.577350 

-0.707107 

-0.408248 

0.577350 

0.707107 

0.408248 

-0.577350 

0.707107 

0.408248 

-0.577350 

0.707107 0.000000 

-0.408248 0.816497 ( 3-9) 

0.577350 0.577350 

-0.707107 0.000000 

0.408248 -0.816497 (3-10) 

0.577350 0.577350 

-0.707107 0.000000 

0.408248 0.816497 (3-11) 

-0. 577350 0.577350 

0.707107 0.000000 

-0.408248 -0.816497 (3-12) 

0.577350 -0.577350 

Since detlRkl = +l , k = 1, 2 , 3, 4 the four rotations of 

the principal coordinate axes are right-handed . The 

orthogonality of the ~ implies the equivalence of the trans-

pose and inverse of ~ 

(3-13) 
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In order to find the components of a vector in any one of the 

four loop- pair coordinate systems in term of its principal 

coordinates requires multiplying that vector by the correct 

inverse transformation matrix -1 
~, so that 

(3-14) 

where the components of Bk are known. 

The procedure for finding the magnetostatic induction at 

any point in the Osmac geometry is now apparent. 

1. The (x , y,z)a ordered triplet specifying the 

position vector of a point Pa in the principal 

coordinate system is determined. 

2 . The (x,y , z)a components are transformed into the 

(x,y,z)k components of each loop-pair coordinate 

system by use of the proper ~ transformation matrix . 

3. The vector components of the magnetic induction 

vector Bk at the point specified in step 1 are 

determined. 

4. -The components of Bk for each loop-pair are 
-1 transformed by Rk into the corresponding components 

in the principal coordinate system. 

5. The total magnetic induction at Pa is the sum of the 

four inductions calculated for each loop-pair, 
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CHAPTER IV. THE MAGNETIC INDUCTION OF A CONCENTRIC 
PAIR OF CIRCULAR CURRENT LOOPS 

The calculation of the induction for a pair of axisym-

metric current loops requires an expression for Bk. To 

calculate the induction at a point resulting from Osmac 

geometry the current loops are assumed to be infinitly thin 

(filamentary). The potential of an arbitrary closed loop at 

a point P is 

-A p ·f ( 4-1) 

where IRI is the distance from loop element dS to the point 

-P. The method for finding A for a circular loop in a form p 
useful for computation can be found in most introductory 

texts on electromagnetism (13) . 

As shown in Fig . 4.1, 

- A A a= a(cos¢i + sin¢j) . ( 4-2) 

A differential element of the circular loop can be written 

as= a(-sin¢i + cos¢])d¢ ( 4-3) 

The vector potential can be rewritten as (cf. Fig. 4.1) 

-A p 

21T 

f (-sinpi 
2 2 0 ( p + a + 

A 

+ cos p j)dp 
z 2 - 2ap cos( ¢ -~ ))~ 

(4-4) 
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(a) 

p 

( b) 

Fig. 4.1. Coordinates and directions for the evaluation of 
the vector potential of a circular current loop 
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-Since AP is ~ symmetric AP at ~p = 0 can be generalized for 

any ~p · 

Let 

- Ao( ~ 0) A = = p 
( 4-5) 

k2 = 4aE 
[(a + p}2 + z2] 

( 4-6) 

- 2 2~ 2 . 2 ~ !RI= [(a+ p) + z ] (1 - k sin ct ) ( 4-7) 

where 

( 4-8) 

Eq. 4-4 can be written (cf. Appendix A), 

'IT - µQI 
(:) 12 "' I 2sinctcosctd ct "' 

AO = 41T"" i j 
l l-k 2sin2ct 'IT -2 

(4-9) 
"' The integral coefficient of i is zero. The coefficient of 

"' j can be rewritten in the form, 

(4-10) 

- "' where A0 has been generalized to show ~ symmetry. K(k) and 

E(k) are the complete elliptic integrals of the first and 

second kind respectively, k is the modulus and ct is the 
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amplitude of the elliptic integral. 

Taking the curl of AP, the magnetic induction at P is 

B" p z r ( k) - [ \ --k: ~2 1 E ( k} 
+pr (k) + [(a + p )k2 

2 p 

For p = 0 Eq. 4-11 reduces to the familiar expression 

-B . axis 
µor 

= -2- z 

(4-11) 

(4 -12) 

For an axisymmetric pair of current loops the magnetic 

induction at a point in space is the superpo sition of the 

magnetic induction contributed by each current loop (Fig. 4.2). 

For a p a ir of current loops, in cylindrical coordinates with 

both currents in the positive ¢ direction , t h e magnet ic induc-

tion has the form resulting from a simple mirror configuration . 

For currents anti-parallel in the ¢ direction the induction 

has the form of the familiar spindle cusp configuration . The 

-expression for B of two parallel, axisymmetric loops p 

satisfying the condition D = 12a , where D is the separation 

distance and a is the radius of each loop , is then 

- ... /! -- I! B( p ,z) = B(p,z - 2 a) ±. B( p , z +a 2). (4-13) 
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T 
D:a~ 

Fig. 4.2. Orientation of a loop-pair synunetric with the zk-
axis and the location of point P with respect 
to the origin 
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CHAPTER V. RESULTS OF THE OMIN CODE FOR CALCULATING 
OSMAC MAGNETIC INDUCTION 

Knowledge of the internal magnetic induction from cur-

rent loops arranged in the Osmac configuration on a contain-

ment sphere of radius R is useful for determining, at least c 
qualitatively, the plasma confining properties of the system. 

Utilizing Eqs. 3-4 and 4-11 a computer code, called OMIN, was 

developed which is capable of calculating the eight loop 

magnetic induction for a filamentary current loop approxima-

tion. Loop radii were based on a twelve liter sphere which 

will be used for plasma trapping experiments. The sphere 

gives a loop radius of 11.596 cm. The magnitude of the loop 

current is arbitrary . 

An objective of the code calculations was to compare the 

"depth" of various simple magnetic well configurations with 

parallel loops satisfying the relationship DL = /2" aL . The 

loop configurations compared were a simple mirror pair, a 

cusped pair , Osmac in the cusp mode with loop-pairs having 

currents in opposing directions, and Osmac in the mirror mode 

with loop-pairs having currents in the same direction (Eq . 

4-13). 

Fig . 5 . 1 shows the variation in IBI along the symmetry 

z-axis , or z 1-axis for Osmac, for the above four configurations . 

From Fig . 5.1 it is evident that the Osmac configuration sur-

passes both the two-loop mirror and cusp configurations in 



OSMAC MIRROR MODE - --------/ 
.12 

c OSMAC CUSP MODE 
g .10 
Cl 
8 -II 
-V') >< .08 c -....., 

c.:::I z 
Cl N ....J 

cc .0 O'I -cc 
....J 
V') 
i...i 
~ 

1CICI .04 

SIMPLE CUSP~ 

.02 

Re 

0 2 4 6 8 10 12 14 16 18 20 
RADIAL DISTANCE (CM) ALONG Z1 AXIS 

Fig. 5 .1. The variation of IB"I as a function of z1 for four loop configurations 
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peak field strength for identical currents. The location of 

the peak for the Osmac conductor configuration is also dis-

placed away from the plane of the current loops toward the 

containment surf ace at R . c 
Fig . 5 . 2 shows t he variation in magnitude of the peak 

for Osmac in the mirror mode along the zk, k = 1, 2, 3, 4 

axes as a function of current. As expected from Eqs. 4-11 

and 4- 12 the peak value varies linearly with current in the 

filamentary loops. Similar to the two loop cusp configuration 

the Osmac loop configuration, in either the mirror or cusp 

modes , has zero induction at the geometric center. Since the 

magnetic moment of charged particles is not preserved at the 

center of the configuration Osmac is a nonadiatatic magnetic 

well. 

A second objective of the code was to plot magnetic 

magnetic isobars , lines of constant magnetic induction Iii , 
in two planes of the principal coordinate system . The loca-

tion of these planes is best described in terms of a set of 

spherical coordinates {p , 8 , ¢) associated with the principal 

rectangular axes as shown in Fig. 5.3. 

The two mapping planes selected were the quarter-planes 

P1 (¢ = 45° , 8 = 0° + 90°) and plane P2 (¢ = 0° + 90° , 8 = 90°) . 

The P1 plane contains the z1 -axis and should indicate the 

presence of a cusp synunetric with the z 1-axis. This cusp 

arises from the triangular pattern of conductors axisymmetric 
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Fig. 5.3 . The location of point P0 with respect to both the 
cartesian and spherical coordinates of the 
principal axes 
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with the z 1- axis as shown in Fig. 5.4. Plane P2 is one of 

three quarter-planes which form the sides of the first octant 

of the principal coordinate system. The symmetry of the Osmac 

configuration insures that the induction is identical in these 

three quarter-planes . Iso-IBI lines generated by the two 

modes of Osmac, the cusp and mirror modes, were mapped. 

Figure 5.5 shows plane P1 in the cusp mode. As 

anticipated a cusp is formed symmetric with the z 1-axis 

(8 = 54.74°, ¢ = 45°). A second cusp is formed symmetric with 

the e = 90° , ¢ = 45° radius . This cusp results from the cur-

rents in loops symmetric with the z 1 and z 3 axes (See Fig . 

5 .9 ). Plane P2 in the cusp mode , shown in Fig. 5.6, shows 

the presence of a cusp at low field strengths which broadens 

and reverses direction at 0.3 tesla (I = 100000 amps) . It is 

not apparent from iso-IBI plots if the field line curvature 

favors stability since the two lines are not necessarily 

identical. However iso-IBI lines do show the location of 

cusps and the direction in which they point, either toward or 

away from the center of the Osmac configuration . Cusps which 

point away from the center can be considered stable for plasma 

confinement. Hence , for high field strengths , the Osmac 

configuration in the cusp mode favors stability. 

Figure 5.7 shows plane P1 in the Osmac mirror mode . 

Favorable although shallow cusping is obtained away from the 

z 0-axis. The cuspate= 54.74° is evident as well as a cusp 
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Fig . 5.4. The spatial arrangement of the eight Osmac current 
loops 
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at e = 90° formed by the z1 and z 3 axisymmetric loops. Figure 

5.8 shows the P2 plane in the mirror mode. The cusp at ¢ = 
45° is again evident. Unlike the previous mode this cusp does 

not change direction away from the center of the Osmac con-

figuration. The direction of the cusps favor stability away 

from the principal axes. In the P2 plane the maximum induc-

tion is located well inside R . This maximum is due to the c 
effect of overlapping current loops as shown in Fig. 5.9. 
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CHAPTER VI. CONCLUSIONS 

Osmac is an "open" cusped confinement system and as such 

suffers from particle losses characteristic of cusped systems. 

Using the model of filamentary current loops and the DL = 
12 aL constraint on loop-pair separation the Osmac conf igura-

tion has eight point cusps axisymmetric with the zk, k = 1, 

2, 3, 4 axes, as well as twelve line cusps associated with the 

loop overlap indicated in Figs. 5.4 and 5.9. Methods to 

eliminate the line cusps will be given in the recommendations 

for future work . An estimate of cusp losses for eight point 

cusps with line cusps eliminated can be made using Eq. 2-1 

and values of r from Table 2.1. We assume the following: p 

1 . Steady state plasma equilibrium 

2. B0 = 5 x 104 gauss (a reasonable value with current 

technology) 

3. T. = T = 10 keV 

4. 
i e 

D-T plasma with m. = 
l. 

5. n = 1 x 10 14 ions/cm3 

The equation for the Larmar radius of a charged particle is 

(6-1) 

where ± denotes the charged particle species, an ion (+) or 

electron (-) . 
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Using assumptions 1 through 5, Eqs. 2-1, 2-2, and 6-1 

charged particle losses through the cusps can be estimated 

for two cases. 

1. r = r. p l 

v = 1.42 x 108 cm/sec 

r. = 
l 

0.388 cm 

dN 
dt = 8 x 1 

4 n V7fr 

= 2152 amps. 

2 . r = lr.r p i e 

r = 7 . 54 x 10-3 
e 

2 1.34 = p 

cm 

~~ = 6.53 x 10 20 ions/sec 

= 42 amps. 

x 1022 ions/sec 

If r is closer to the geometric mean of the hybrid p 
gyroradius, and recent experiments tend to indicate this is 

near the correct value of r , then cusp losses are reduced p 

ninety- eight percent over losses with r = r .• This is a very p l 

impressive result. Since the first assumption is a steady 

plasma equilibrium these loss calculations define the required 

makeup to maintain constant ion density of the plasma. Injec-

tion in the worst case (r = r.) requires a makeup on the p l 

order of 270 amps per cusp, an impractical amount. For the 
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best case (r = lr.r ) a makeup injection of 5 to 6 amps per p 1 e 
cusp is certainly within the realm of feasibility. Which 

value on the makeup does pertain will depend on further 

research into point cusp losses. 

Any conclusions about confinement feasibility drawn from 

these estimates of charged particle losses are also tentative 

for the following reasons. 

1. No mention has been made of other mechanisms of 

particle particle losses, especially diffusion 

across the magnetic field. 

2. Ion losses are proportional to the steady state 

equilibrium plasma density. It may ultimately turn 

out that the steady state density requirement for 

fusion will entail an impractical makeup current. 

This point deserves careful attention since Osmac 

confinement has been suggested as a viable approach 

to target plasma fusion. 

3. No consideration was given to the ion injection 

energy and the effect ion slowing down would have on 

the plasma equilibrium. A departure of plasma 

equilibrium away from a Maxwellian energy distribu-

tion may upset the assumption of simple effusion out 

the cusp. 
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CHAPTER VII. RECOMMENDATIONS FOR FUTURE WORK 

Recommendations for further studies on the Osmac concept 

are ultimately geared toward reduction of charged particle 

losses by reducing the number of cusps generated by the loop 

configuration. An improvement in the adiabaticity of the con-

figuration should also result in improved particle confinement 

and a well understood loss mechanism. 

1. Reducing the number of cusps to eight results when 

the circular current loops are replaced by either plane 

triangular or spherical triangular current loops which share 

common borders. This new Osmac configuration is shown in 

Fig . 7.1. It should be noted that in the mirror mode adjacent 

conductor currents are additive. An alternative approach is 

to replace current loops or triangles with small radius 

dipoles. 

2 . Particle losses at the cusps may be reduced by 

utilizing Osmac geometry as a hybrid electromagnetic trap. 

This approach entails ''stoppering" with electrostatic fields 

the cusps produced by the magnetostatic field. 

3. A study should be undertaken to look into the effect 

of "stuffing" the system with a mirror field. This approach 

to improved confinement, utilized by Sadowski (14) in his 

research on higher order spherical multipoles, removes the 

field zero at the center of the geometry. The result of 

stuffing is to preserve the charged particle magnetic moment 
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(a) 

(b) 

Fig . 7 . 1 . Two new Osmac configurations 
(a) Osmac configuration using plane triangular coils 
(b) Osmac configuration using spherical triangular 

coils 
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across the center of the geometry. This hybrid Osmac trap, 

in combination with recommendation one, essentially functions 

as a stabilized mirror. 

4. The OMIN code (Appendix B), should be modified to 

calculate the magnetic inductions of finite dimension coils. 

However accurate away from the loop, the filamentary conductor 

model has a singularity in the neighborhood of the filamentary 

conductor. 

Graphical analysis of any of the above modifications to 

the current Osmac model would be greatly expedited by in-

corporating the OMIN code into a search routine to perf orrn a 

point-by-point mapping of iso-IBI lines. The increased compu-

tation costs would more than offset the time spent for tedious 

graphical techniques currently used to produce iso-IB I plots. 
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APPENDIX A: DERIVATION OF THE VECTOR 

POTENTIAL (EQ. 4-10) 

By the fol l owing algebraic manipulations the coefficients 

of the i and j unit vectors of Eq. 4-9 can be derived from the 

coefficients of the i and j unit vectors in Eq. 4-4. Since 

A0 (; = 0) can be generalized for any AP, 

-a sin¢ = -a sin¢ (A-1) 
lp2 + a 2 + z 2 - 2apcos¢ / [(a+p) 2 + z 2 ) - 2a p (l-cos¢ ) 

where 2ap has been added and subtracted in the denominator. 

Factoring [(a+p ) 2 + z 2 ) out of the denominator and using 

Eqs. 4-6 and 4-8, Eq. A-1 can be written 

-a sin~ -a sin¢ (A-2 ) = 
/p2 2 2 2apcoscp 2 z 2 ) [l-k2 sin 2 + a + z - / [ (a+p) + a. ) 

Again using Eq. 4-6 

-a sin~ -k l a/ lsin2¢ (A-3) = 
/p2 + 2 + 2 2apcos¢ 211 k2 . 2<P a z - - sin 

-kla/~14 sin 2 2 
Cl cos a. (A-4) = 

l l - k2 2 sin a. 



Finally, 

-a sinp = 
2 2 2 ./p + a + z - 2apcos~ 

48 

-k/alP 2 sina cosa 

./1 - k2 . 2 sin a 

(A-5) 

"' By a similar manipulation of the coefficients of j the 

result is Eq. 4-9, 

7T 7T 

µ0rk-{f -2 -2 
(2sin2a - "' I 2sina cosada "' I - l)da 

AO = i - j ( 4-9) 4 7T p 
1 k2 . 2 7T ./l-k2sin2a 7T - sin a 

2 2 

To calculate the first integral let x = sina , dx = cosada . 

Then, 
7T 

-2 

I 2sinacosa d a 

./1 k2 . 2 7T - sin a 
2 

For the second integral, 

(2sin2a-l )da 

./l-k2sin2a 

= 2 . 

1 = 
k2 

= 0. 

-1 

{ xdx (A-6) 
2 2 ./1-k x 

-1 
2 ./1-k x 2 

1 

7T 

- 2 
2 

I d a 

0 ./ 2 . 2 1-k sin a 
(A-7) 
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The second integral on the right hand side of Eq. A-7 is the 

complete elliptic integral of the first k i nd, K(k). By 

adding and subtracting 1 to the integr and of the first 

integral on the right hand side of Eq. A- 7 we get, 

The first integral on the RHS of Eq. A-8 is the complete 

(A-8) 

elliptic integral of the first kind and the second integral 

on the RHS of Eq. A-8 is the complete elliptic integral of the 

second kind, E(k). Combining elliptic i ntegrals, the coeffi-
A 

cient of j reduces to, 

7T -2 
(2sin2a -l)da [(~2 - l]K(k) E(k]. 1 = 2 2 (A-9) -

k2 
l l-k2sin2a 

2 

Equation 4-9, in terms of complete ellipti c integrals, can be 

written as 

- - ll olk ~ Q2 l 2 J A A 0 - -- - - - 1 K (k) - - E (k) j. 2 7T p k2 k2 
(A-10) 
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Factoring out 2 a 2/ k term, and generalizing for any angle ~ , 

- µor ~ A = p TTk p ul k2] l - ~ K(k) - E(k) ¢ . (A-11) 
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APPENDIX B: THE OMIN CODE 

The OMIN code has been developed to calculate the 

magnetic induction at any point in the principal coordinate 

system of Osmac geometry. OMIN is an accronym for Osmac 

Magnetic INduction. 

The OMIN code has been designed to compute the magnetic 

induction along any radius of Osmac at a constant specified 

interval. Required inputs are the $ and e directions of the 

radius in degrees, the radial interval length in centimeters , 

and the initial and final points along the radius between 

which the point-by-point magnetic induction is to be computed . 

The OMIN code also has the capability of computing the 

magnetic induction along a specified series of radii in planes 

which contain either the z 0-axis (a P1 plane) or the z 0 = 0 

(P 2 ) plane . A particular P1 plane is fixed by it $ angle. 

Radii in that plane are separated by the constant e increment 

fi8 . For the P 2 plane e = 90° and radii are separated by the 

constant $ increment fi $ . 

Also included as input are the loop current I(amps), the 

loop radius R(cm), and an option for printing the vector 

components of the total induction vector in rectangular 

components. 

OMIN input thus consists of two cards with the following 

format : 
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(2Fl0.4,IS)CURRNT,RADIUS,JOPT 

(9F8.S)PHI,DPHI,EPHI,THETA,DETHETA,ETHETA,RHO,DRHO,ERHO 



cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
C FU~CTIC~ OF PRCGRAM 
C OMIN COMPuT ES THt MAGNETIC INDUCTI ON AT ANY POINT FOR THE OSMAC CURRENT 
C LOCP C O ~FIGU~ATI ON 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
ccccccccccccccccccccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccccccc 
c 
C DEFINITION CF MPRGM A~C SUBROUT INE LIN E ARR AY S AN D VARIABLES 
c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
ccccccccccccccc 
C ARR AY S C 
ccccccccccccccc 
c 
c ARRAY = TEN ELE ~E~T hOLDlN G ARRA Y F OR TE N COLUMN FOR~AT CF INDUCTI ON 
C MAG NITUDE ( SEE 'TOTA L') 
C OTOTAL = THREE ELE ~ ENT ARRAY CONTAINING CO ~PGNENTS OF TOTAL INDUCTI ON 
C VECTO~ 

C FIELD = 3 X E ARR AY WHICH CON TAINS T HE COMPONENTS OF THE MAGNETIC I NDUC TI ON 
C VECTOR POR CACh LOOP-P AI R COORDINATE S YSTE ~ ( COL UMNS 1,2,3,4) AND 
C THESE L OCP-PAIR COMPONENTS IN T ERMS OF THE PRINCIPLE COORDINAT E 
C SYSTEM (COLUMN S 5 ,6,718) 
C VEC TOR = 3X5 AqR AY CONTAINING Th E COORDINATES OF A POINT FOR EACH OF THE 
C FIV E COORDINATE SYSTEMS(PRINCIPLE + FOUR LOOP-PAIR SYSTEMS) 
C TRANSF = 3X3X4 ARRAY F OP TRAN SFO~MI NG POSITICN OR INDUCTION VECT ORS 
C TO/FROM PRINCIPLE AND LOOP-PAIR S YSTEMS 
cccccccccccccccccc 
C VA R IABLE S C 
ccccccccccccccccc c 
C CPHI = COS OF TH E AZIMUTHAL ANGL E PHI IN S PH ER ICAL COORD INATES 
C CTH ETA = COS OF THE POLAR ANGL E TH E TA IN SPHER ICAL COORD INATES 
C CURRNT = FIL~ME~TARY LOOP CURRENT 

U1 
w 



C DPHI = INCREMENTAL PHI ANGLE 
C DRHO = INCREMENTAL RADIAL ELEMENT IN SPHERICAL COORDINATES 
C DT~ETA = INCREMENTAL THETA ANGLE 
C ERHO = TERMINAL LE~GTH OF RADIUS IN SPHERICAL COORDINATES 
C EP~I = TERMINAL ANGLE IN PHI DIRECTION 
C ETHETA = TERMINAL A~GLE IN THETA DIRECTION 
C GTHETA = DUM~Y VARIABLE. RETAINS INITIAL VALUE OF THETA FOR RECYCLE 
C AT THE E~D OF A DO LOOP 
C ICNTR = SPECIFIES l~DEX FOR DO LOOP ON THETA ANGLE 
C INDEX = SPECIFIES l~OEX FOR DO LOOP FOR POINT BY POINT CALCULATIONS ALONG 
C RHO 
C JOPT = CPTIC~ TO PRI~T COMPONENTS OF TOTAL POINT MAGNETIC INDUCTION 
C JOPT = o. NO PRINT 
C JOPT = l• PRINT 
C KC~TR = l~DEX FOR DC LOOP ON PHI ANGLE 
c 
c 
c 

PHI = INITIAL AZIMUTHAL ANGLE OF RADIUS VECTOR IN SPHERICAL COORDINATES 
WHICH IS THE PCSITION VECTOR CF A POINT IN PRINCIPLE RECTANGULAR 
COORDINATES 

C RADIUS = RADIUS OF FILAMENTARY CURRENT LOOF 
C RHO =RADIAL DISTANCE OF A POINT IN PRINCIPLE COOROINATES FROM ORIGIN AND 
C INITIAL POINT FCR INDUCTION CALCULATIO~ ALONG A RADIUS 
C SPHI = SINE CF PHI 
C STHETA = SINE OF THETA 
C THETA= l~ITIAL POLAR ANGLE OF POSITION VECTOR IN SPHERICAL COCRDINATES 
C TOTAL= MAGNITUDE OF THE TOTAL INDUCTION VECTOR AT A POINT IN THE 
C PRI~CIPLE COORDINATE SYSTEM 
C XRH O = DU~MY V~RIABLE TO RETAIN INITIAL VALUE OF RHO WHEN PASSING RHO 
C BETWEEN ~PRGM AND SUtiROUTINE LINE 
c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
C-----DIMENSION ARRAYS. SPECIFY COMMON DATA LOCATIONS 
c 

DIMENSION ARRAY(10)e ~TOTAL(3). FI EL0(3e8)eVECTOR(3.5),TRANSF(4 
1.3.~) 

cc~~ON/STORE/ BTOTAL.FlELD.TRANSF.VECTOR 

COMM ON/A/ARRAY 



c 

CC~MON/INPUT/CURRNT,RADIUS.JOPT 

CCMMON/T/T OTAL 
COMMON/R/RHC 
COM~ON/PARA~/DRHQ,ERHO.PHl.THETA 

COMMON/DEGREE/SPHI ,CPHl .STHETA.CTHETA 

C-----SPECIFY ELE~ENTS CF TRANSF1 SET VARIABLES TC ZERO 
c 

c 

DATA TRANSF/-.70711.-.70711 •• 70711 •• 70711.-.40825.-.408251e408251 
s.4oe2s •• 57735,.57735.-.57735,-.57735,.70111.-.10111,-.10111 •• 10111 
$,-.40825 •• 40825 •• 4oe25,-.40825,.57735,-.51135,-.51735,.s113s,.o,.o 
s,.o,.o •• a 165o.- .81650,.81650,-.81650 •• 57735,-.51735,.57735,-.57735 
$/ 

DATA ARRAY, BTOTAL1 FIELD. VECTOR /52*0e0/ 
DATA CURRNT 1RADIUS1TOTAL,RHO.DRHQ,ERh01PHl1DPHl1EPHl1THETA1 

lDTHETA.ETHETA1SPHl1CPHl1STHETA1CTHETA,JOPT/l6•0.o.o/ 
DATA RCT5,RADS,QUC/3•0.0/ 
DATA KCNTR,ICNTR,l~DEX/3*0/ 

C-----WRITE ELEME~TS CF TRANSF 
c 

c 

WF<ITE(6,605) 
605 FORMAT(•o•,4ox,•••TRANSFORMATION MATRICES**') 

WF<ITE(6,606) 
60 6 FORMAT( 1 0•,9x,•P(O)-P(l)•.18X1'P(0)-P(2)' .11x.•P(O)-P(3)•,11x.•P(O 

1)-P(4) 1 ) 

DC 35 J=l ,3 
WR IT E ( t, 6 0 7 ) ( ( TRAN SF ( I , J, K) , K = 1 , 3) , I= 1 , 4) 

607 FORMAT{' 1 1 4( 2X ,3FEe5)) 
35 CONTINUE 

C-----REAO/WRITE CUKRENT, RADIUS, JOPT 
c 

REA0(5,301)CURRNT.~AOIUS,JOPT 

301 FCR~AT( 2Fl0e4115) 
WRITE(6,608)CURRNT,RADIUS,JOPT 



c 

608 FORMAT{•o•,•cuRRENT =•.F10.4,1x,•AMPS•,sx.•RADIUS =•.F10.4,1x. 
1 ' CM• , 5 X, ' J 0 FT' , 1 X , I 1 ) 

C~---READ/WRlT E PHl,DPHleEPHl,THETA,CTHETA,ETHETA,RHO,DRHOeERHO 
c 

c 

RE~C(5,77)PhI,OPHI,EPHieTHETA,OTHETA,ETHETA,RHO,ORHC,ERHO 

77 FC~"ATC9F8.5) 
W~ITEC6.t77) 

177 FC~MAT(•o•.•PHI•,7x,•DPHI•,6x,•EPHl'.6X.•ThETA'.5X.•OTHETA'.4X 
1, ' E THE TA•• 4 x, • RHC •, 7X, 'ORHO' ,6X, • ERHC•) 

WRITE(6ol78)PHloOFHl,EPHl,THETAtOTHETA,ETrETA,RHO,ORHO,ERHO 
178 FC~'°'ATC' •,9(F5.2,5X)) 

IF(DPHI + DTHETA."E•Oe)GO TO 333 

c-----IF DETrETA = DPHI = o.o. COMPUTATION IS AL C"G A LINE ONLY 
c 

c 

CALL LINE 
GC TO 713 

333 CONTINUE 
IF(OPHI.EO.Q,)GOTO 213 

c-----IF OPHI ONLY IS EQUAL TO o.o.COMPUTING IS IN ONE P(l) PLANE ONLY 
c 

c 

KC"TR = (EP~I-PHl)/DPHI + 1 
IFCOTHETA.EO.O.) GCTO 214 

C~---IF DTHETA ONLY IS EQUAL TO o.o, COMPUTING IS IN THE PC2) PLANE OR A CONE 
C-----IF ~OTH DTHETA ANC OPHI ARE NOT O,Q, COMPUTATION IS IN MORE THAN ONE P(l) 
C PLANE 

ICNTR = ( ET~ETA-TH ETA)/OTHETA + 1 
GTHETA = o.o 
GTHETA=THETA 
PH I = PH I - OPH l 
DC 513 M = 1,KCNTR 
THETA=GTHETA 
PHI = PHI + OPHI 



WRITE(6 o 82 )FHI 
82 FO~MAT( 1 Q 1 , 1 PHI = •,Fl Q .7) 

TH ET A = TH ET A-DTHETA 
DO 613 N=lolCNTR 
TrET A = THETA + DTHETA 
WRITE(c,73)THE TA 

73 F O~MAT (' 1 •'THETA =• oF S 1 2 ) 

CALL LINE 
6 1 3 C C fli TI N UE 
5 1 J C Cl\ TI NUE 

GC TO 71 3 
2 1 3 CONTINUE 

ICNT R = (ETrETA-THETAJ/DTHETA + 1 
T~ETA = THE TA - DTHETA 
DO 313 M = l1IC NTR 
TrETA = THET A + OTHETA 
WR I TE ( c , 7 2 ) TH E TA 

72 FORMAT(' '•'TH ETA =• , F5 o2) 
CALL LINE 

3 1 3 C C NT I N UE 
GC TO 71 3 

2 14 PHI = FHl-DFHI 
DO 913 N = laKCl\T~ 

P H I = PH I + DP H I 
WIHTE(c , 82 )PHI 
C ALL LINE 

913 CONTINUE 
7 1 3 C 0 I\ T I N UE 

S TOP 
El\O 



c 
C FUNCTION OF SUBROUTINE LINE 
C CONVERTS TH E P HI ANO THETA ANGLES TO RADIANS. COMPUTES THE SI~E AND COSINE 
C OF TH ETA ANC PHI. PASSES POINTS INTO SUBROUTINE BFIELD FO R INDUCTI ON 
C CALCULATION 

c 

S t.;BROUTI NE LI NE 
CC MMON/DE GREE/SPHI.CPHl.STHETA.CTHETA 
C CMMON /~/RHO 
C O M~ON/T /T OT AL 
CCMMON/A/AR RAY(10) 
CO MM ON/PARAM/ DRhO. ERHO,PHl.THET A 
PHI = PHl*•0174532~ 
TH ETA = THETA•.0174532 9 
SPH I =SIN ( Pt-'I ) 
C PH I = C 0 S ( PH I ) 
STHETA = S l~(THETA) 
CTHETA = COS(THETA) 

C-----CON VER T THETA ANO PHI T O DEGREES FOR PASSING BACK TC MPRGM 
c 

c 

P H I = PH I * 5 7 • 2 9 5 7 7 9 5 1 
THETA = THETA•57.2~577951 
XR~C = RHO 
N = 1 

c~~-co~PUTE THE NUMBER OF POINTS ALONG RHO WHERE THE INDUCTION WILL BE 
C COMPUTEC 
c 

c 

INDEX = < ER ~C-RHG )/ORHO + 1 
RHO = F'HO - DRHO 
DO 41 3 M = I.INDEX 
RHC = ~HO + DRHO 

C-----CALCULATE INDUCTICN AT EACH POINT ALONG RHO AND PLACE MAGNITUDE INT O ARR AY 
c 

C ALL BFI ELD 

lJ1 
CX> 



c 

ARRAY(N) = TOTAL 
N = N + 1 
IF( 10-N) l e413e413 

c~---WRITE AR RAY WHEN FULL 
c 

c 

1 W R I TE ( 6 , 3 ) ( AR R A Y ( I ) • I = l , l 0 ) 
3 FORMAT(• •.tOFto. :n 

C-----R ESET ARRAY T Q ZE~C 
c 

DC .39 J = 1.10 
ARRAY( J) = O.O 

39 CONT I NLE 
N = 1 

413 CCt-.TINUE 
IF(ARR AY(t) .N E . O.)WRITEC6 e 3 )(ARRAY(l)el=lel0) 
DC 97 .J = 1 • 1 0 
A~RAY(.J) = O.O 

97 COl\TINUE 
RHO = XRHO 
RETURN 
E f\D 

C FUNCTION OF THE SUBROUTINE BFIELD 
C CC~PUTES THE ~AGNETIC INDUCTION AT A POINT P(O) CONTRI BUTED BY EACH CURREN 
C LOOP ANC SUMS THE CONTR IBUTIONS 
C DEFll\ITION OF S UBRCUTINE BF IELD VAR IABLE S 
c 
C NOTE: SINGLE • REFERS TO CURRENT LOOP AXI SYMM ETRIC WITH THE POSITIVE Z 
C AXIS OF A LOOP-PAIR. DOUBLE •• REFERS TO CURRENT LOOP AXISYM~E TRIC WITH 
C THE NEGATIVE Z ~XIS OF A LOOP-PAIR 
C ASUBP =RADIAL POSITION OF P(N) IN A CYLINDER COORDINATE SYSTEM FOR EACH 
C COIL PAI~. 
C BEEPA = d '(f\) IN T~E RADIAL DIRECTION OF A POS ITIV E CURRENT LOOP. 
C BEEPPA = B''( N ) IN THE RADIAL DIRECTION OF A NEGATIV E CURRE"'T LOOP. 
C BEEPZ = 8 '(1\) IN T~E Z-DIRECTI ON OF A P OS ITIVE CURREl\T LOOP . 



C BEE PPZ = B' '( N ) IN THE Z-DIRECTION OF A NEGATIVE CURRENT LOOP. 
C BEET A = ~EEPA + BEEPPA 
C BEE TX = B (N) IN TH E X-OIRECTICN 
C ~EETY = ~ (N) IN THE Y-DIRECTION 
C 9EETZ = BEEPZ + BEEPPZ 
C COEFF = ( 0 .00l*CUR RNT)/( SQRT( RAC IUS )). 
C DE ~CM = ASUEP*•l . 5 
C EKP = ELIPT IC INTEGRAL OF TH E SECOND KIND CF K' • 
C EKPP = ELIPTIC INTEGRAL OF THE SECOND KIND CF K'•• 
C E PA= THE VALU E OF E (N)e N = le2o3o4 IN T~E RAD IAL DIRECTION OF A 
C CYLINDRICAL SYSTEM FOR A POSITIVE LOOP . 
C EPP A =THE VALU E OF 8 (N), N = 1. 2 , 3 ,4 IN THE RAD IAL DIRECTION OF A 
C CYLINDR ICAL SYSTEM FOR A NEGATIVE CURRENT LOOP. 
C EPPZED = THE VALU E CF 8(N ), N = 1. 2 , 3 , 4 lN THE Z- DIRECTI ON OF A CYLe COOR . 
C SYSTEM FOR A NEG~TIYE CURRENT LOCP . 
C EPZED =THE VALU E CF B(N ), N = 11 2 1314 IN THE Z-DIRECTION OF CYL . COOR, 
C SYSTEM FOR A POSIT IV E CURRENT LOOP. 
c 
c 
c 
c 
c 

FACTP =COEFFICIENT OF THE SUM OF EL IPTI C INT EGR AL TE RMS OF A POSITIVE 
LOOP. 

FACTPP = COEFFICIENT OF THE SUM OF ELIPTIC INTEGRAL TE RMS OF A NEGATIVE 
CURHENT LOOP. 

KKP = ELIPT I C INTEGRAL OF THE FIRST KIND OF MODULUS K•e 
C KKPP = ELlPT I C INTEGRAL OF THE FIRST KIND OF K••. 
C SMODP = SQRT(XMODP ), 
C SMODPP = SQRT(XMODPP). 
C TH ETA = ANGLE OF ASUBP WITH RESPECT TO X(N) AXIS 
C XMODP = MODULUS K '**2 OF A POSIT IV E LOOP. 
C X~ODPP = MODULUS K''**2 OF A NEGATIVE LOOP 
C XSUBP = X-VALU E OF P (N) IN N = 11 213 14 COCRDINATE SYSTEM. 
C VSUBP = Y-VAL UE OF P(N) INN = 1,2,3,4 COORD INATE S YSTEM 
C ZETAP = z•, THE DISTANC E OF P (N) FROM THE POSIT IVE CURRENT LOOP 
C AXIALLY SYMME TRIC WITH THE + Z ( N) AXIS, N = l 12t314 • 
C ZETAPP = z • '• THE DISTANCE OF P(N) FROM NEGATIVE CURRENT LOOP AXIALLY 
C SYMMETRIC WITH THE -Z(N) AXIS , N = 11 2 13 14 
c 
c 

°' 0 



c 

S~BROUTINE eFIELO 
CC~MON/OEGREE/SPHl .CPHI.STHETA .CTHE TA 

CCMMON/STORE/BTOTAL(3 ).FIEL0( 3 . 8) .TRANSF(4.3 . 3 ).VECTOR(3•5> 
COMMON/T/TOTAL 
C CM,,,ON/R/RHC 
CCMMON/INPUT/CURRNT.RAOIUS.JOPT 
REAL KKP.KKPP 

C-----CCNVERT PRI~CIPLE SPHERICAL COORDINAT ES TO PRINCIPLE RECTANGULAR 
C CO ORD INATES 
c 

c 

VECTOR(l.l) =R HC*SThETA*CPHl 
VECTORC 2 .l)=RHO*SPhl*STHETA 
VECTORC 3 .1) = RHC * CTH ETA 

C-----CCMPUTE THE COORDl~ATES OF P(O) FOR EACH LOOP-PAIR COORDINATE SYSTEM 
c 

c 

DO 70 LEVEL=l o4 
DO 80 IR0\111-=l,3 
SU M=O. O 
KCGL=O 
DC c;o JC OL= 1. 3 
PROD= VECTOR (J COL .l)*TRANSF(LE VEL.I ROW ,JCOL ) 
SUM = SUM + P ROD 

90 CC~TI NUE 

KCCL = LEVE L + 1 
VECTOR( I R0 \111, KCOL ) =SUM 

80 CONTINUE 
70 CONT INUE 

DC 11 K= 2 • 5 
L =l 
M=2 
N=3 

c-----cc~PUTE THE COORD l~AT ES OF P(O) FOR EACH LOOP OF TH E LOOP-PAIR WITH 
C RESPECT TO TH E LOOP-PAIR COORD INATE S YS TEM 



c 

ZETAP = VECTOR(NeK) - (.707ll•RADIUS) 
ZETAPP = VECTOR(NeK) + (.7071l•RADIUS) 
XSUBP = VECTOR(LeK) 
YSUHP = VECTOR(MeK) 
ASUBP = SQRT(XSUBP•XSUBP + YSUBP•YSUBP) 
IF(ASUBP.LE.1.0E-02)ASUBP=o.o 

C~~-CALCULATE THE MODULUS K OF K(K) ANO E(K) FOR EACH LOOP OF THE LOOP-PAIR 
c 

c 

XMOOP = (4.o•qADILS•ASUBP)/((ASUBP + RADIUS)••2.o + ZETAP•ZETAP) 
XMODPP=(4.0*RADIUS•ASUBP)/((ASUBP+RADIUS)**2•0+ZETAPP*ZETAPP) 
SMODP = SQRT(X~GDP) 
S,.,OOPP = SORT(XMOOPP) 
AK = SfllODP 
A = leO 
8 = 1.0 

C-----CALL CEL(2) TO CO~PUTE THE VALUES OF K(K) A~D E(K) FOR EACH LOOP 
c 

CALL CEL2(RESeAKeAeBelER) 
KKP = RES 
AK = S~GDPP 
B = 1•0 
C ALL CEL2(REStAKoAeBtlER) 
KKPP = RES 
AK = S fllO DP 
B = 1.0 - (AK*A K) 
CALL CEL 2 CRESeAKe AeB.IER) 
EKP = RES 
AK = SfltODPP 
B = 1.0 - (AK*AK) 
CALL CEL2(RESeAKoAtBelER) 
EKPP = RES 
COEFF = (0.1*CURRNT)/(SQRT(RADIU5)) 
DE~GM = ASU8P*•t.5 



IF(DENCM)Bl18l18S 
c 
C-----IF ASUBP = O.O CO~PUTE INDUCTION ALONG Z-AXIS ONLY FOR EACH LOOP ANC ADO 
c 

c 

81 COEFF = (.6283*CURRNT•RADIUS*RAOIUS) 

85 

BEE PZ = COEFF/((RAOIUS*RADIUS + ZETAP*ZETAP)**le5) 
dEEPPZ = COEFF/((R~DIUS*RADIUS + ZETAPP*ZETAPP)**l.5) 
BEE TZ = BEEPZ + 8EEPPZ 
BEETX = o.o 
BEE TY = o.o 
L = K - l 
J = 1 
GC TO 87 
CONTINUE 

C-----C O~PUTE INDUCTION ALONG LOOP-PAIR Z-AXIS AND ASUBP AXIS IN THE X-Y PLANE 
c 

c 

FACTP = SMOCP/DENC~ 
FACTPP = SMCDPP/DE~OM 
EPA= -ZETAP•(KKP-((1.0-XMODP/2.0)*EKP)/( 1.0-XMODP)) 
EPP A = -ZETAPP*(KKPP-((1.0-XMODPP/2.0)*EKPP)/(1.0-X~ODPP)) 
EPZED = ASUBP*CKKF+(((RADIUS+ASUBP)*XMODP)/C2.0*ASU8P)-le0)* EKP 
l/ ( 1 .O-XMOOP)) 
EPP ZED = ASUBP*(KKPP+(((RAOIUS+ASUBP)*XMODPP)/(2.0*ASUBP)-leO)* 

lEKPP/( i.o-x~ODPP)) 
L=K-1 
J =l 
BEETA = COEFF*CFACTP*EPA + FACTPP*EPPA) 
BEETZ = COEFF*(FACTP*EPZED + FACTPP*EPPZED> 
IF(ABS(XSUBP).GT.O.OOl)GO TO 76 

75 BEETX .:: O.O 
BEETY ::: BEETA 
GO TO 87 

76 CONTINUE 

C-----COMPUTE THE X AND Y COMPON ENTS OF INDUCTION IN RECTANGULAR COORDINATES 

O'I 
w 



c 

c 

IF(XSUBP.LT.O.) GO TC 5 
IF(YSUEP.GE.O.> GCT07 
Tr ETA = 6.2 e 31 853 0e +ATAN(Y S UEP/XSUBP) 
GCTG 8 

7 T HE TA = ATA,..(YSl.BP/XSUBP) 
GC T C 8 

5 IF(YSUBP.LE.O.)G OTC 6 
TH E TA = 3 .141 592c54 + ATAN(Y SUBP/XSUBP) 
GCTC 8 

6 Tr E TA = 3.141592t=4 +ATA N(Y SUBP/XSUBP) 
8 C C" TI NUE 

BEE TX = BEE TA*C CS(ThETA) 
QEE TY = JEETA*SIN(THETA ) 

87 CO "TlNUE 
FIELD(J ,L) = gEE TX 
J = J+ 1 
FIELD(J ,L) = 9EE TY 
J = J+l 
FIELO (J,L) = BEETZ 

11 CCl\TINUE 

C-----TR~NSFORM ThE FOUR LOOP -PAI R INCUCTI ON COMPONENTS INTO TH E CORRESPONDING 
C PR I NCI PLE CO MPCNENT S AND ADD. 
c 

17 

1 6 
1 5 

55 

DC 15 LE VEL = 1,4 
DC 16 JC CL = l , 3 
SUM = O. O 
DC 17 IROW = 1,3 
PQOC = FI ELC( I ROW,LEV EL)*TRANSF(LEVEL,IROW,JCOL) 
S l.~ = SUM+ PROD 
C O"' T I NUE 
FIELD(JCOLoLEVEL + 4) = SU"4 
CCN T INUE 
C Cl\ TI NUE 
DC 55 1 = 1 • 3 
9 TGTAL(I) = o .o 
C 0 1\ Tl NUE 



DO J 1 1 = 1 • 3 
DC 32 J=5o 8 

-
~ TOTAL(l) = B TOTAL(I) + FIELD(loJ) 

3 2 CONTINUE 
31 COl\TINUE 

IF(J OPT .EO. O) GOTO 4120 
WRITE ( 6 o25 )( 8 TCTAL(l)ol = lo3) 

25 FOl',.. AT(' •. ~Fto . :n 

4120 CO NTINUE 
c 
C-----CO~PUTE THE MAGNIT UDE OF THE TOTAL INDUCTIO" VECT OR 
c 

T CT AL = 0 • 0 
0 C 33 I = 1 , 3 
TOTAL= TOTAL+ BTCTAL(l)*BTOTAL(l) 

33 CCI\ Tl NUE 
T OT AL = SO~T(TOTAL ) 

~ETURN 

E 1\0 O'I 
V'I 


