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CHAPTER I. ABSTRACT

The inherent magnetohydrodynamic (MHD) stability of cusp-
type plasma confinement systems, and the possibility of favor-
able charged particle confinement in magnetic or hybrid elec-
tromagnetic point cusp systems are the two principal motiva-
tions for this work. The scope of this thesis is limited to
a particular cusped geometry known as an octahedrally sym-
metric magnetic well which will hereafter be referred to as
Osmac (Octahedrally symmetric magnetic confinement). A
detailed description of Osmac geometry will be presented. 1In
addition, a method for calculating the magnetic induction from
eight filamentary current loops arranged in the Osmac con-
figuration will be developed. This development includes the
necessary position and induction vector component transforma-
tions for calculating the total magnetic induction at a point
from the superposition of the induction contributions from
four current loop-pairs. A derivation of the vector potential
and magnetic induction of a filamentary current loop, as well
as a computer code (the OMIN code) useful for calculating the
magnetic induction for Osmac geometry is included in the

appendixes.



CHAPTER II. INTRODUCTION AND LITERATURE REVIEW

The historical development of controlled thermonuclear
fusion is replete with a number of unsuccessful confinement
schemes in which plasma instabilities greatly diminished the
ultimate viability of these approaches (l). Concern over the
problem of plasma instabilities forced the development of
magnetic confinement concepts in which the configuration of
the magnetic field surrounding the plasma effectively dampens
perturbations of the confined plasma which lead to instabili-
ties.

In a cusped confinement scheme a plasma is surrounded by
magnetic field lines everywhere convex to the trapped plasma.
Thus, the center of curvature of the field lines for cusped
confinement is nowhere enclosed by the confined plasma (2).

A useful energy principle for the study of plasma stability
states that the system composed of a plasma and confining
magnetic field will seek a state of minimum potential energy
if the system is perturbed (3). A study of equilibrium cusp
stability after a perturbation is applied shows that an over-
all increase in the potential energy of the system will
develop (3, 4). Thus, by the energy principle, a cusped con-
finement system must return to its initial equilibrium state,
the state of lowest potential energy available to the system.

Many confinement concepts have been advanced which take

advantage of the stability of cusped magnetic fields. This



thesis is a continuation of research into a particular cusped
confinement scheme known as an octahedrally symmetric magnetic
well (Osmac). Early investigations into the Osmac concept of
plasma confinement by Chiu (5), and Valfells et al. (6) indi-
cated that the Osmac concept has a high degree of three
dimensional symmetry combined with the stabilizing features
of cusped geometries. Osmac is one of a class of confinement
geometries in which the magnetic field forms a magnetic well.
These magnetic well configurations are often referred to as
minimum-B devices since the magnetic induction has a minimum
field strength at the center of the device. Minimum-B
devices can be divided into two subclassifications, those

devices which are adiabatic at |B]| and those that are

minimum
not. The correct classification is determined by the follow-

ing two criteria:

-_—

|B|min > 0, adiabatic (a)

|§|min = 0, nonadiabatic (b)
For the Osmac conductor configuration the magnetic field is
zero at the center and increases radially in all directions.
Under such an "absolute" minimum-B condition the first
abiabatic invariant, py = mvi/ZeB, of a charged particle
rotating about its guiding center is not preserved near the

center of the well.



Adiabatic magnetic wells

The design of adiabatic magnetic wells, not necessarily
of cusped geometry, is predicated on the expectation that any
adiabatic perturbation which causes particles to move away
from the minimum-B region will be suppressed by preservation
of the first and second adiabatic invariants. If the first
invariant is preserved then the translational kinetic energy
of the perturbed particle is lost by increasing the gyration

energy of the particle. If the second adiabatic invariant

is also preserved then the perturbation energy is completely
exhausted by increasing v, and v,,, resulting in a stable
particle oscillation between regions of maximum field strength
(3). Typical examples of adiabatic magnetic wells are cusp

stabilized mirrors (7)—the Baseball and Yin-Yang coil devices.

Nonadiabatic magnetic wells

Cusps Early theoretical work on cusped magnetic
fields was initiated by Berkowitz et al. (8). Basic cusp

configurations are shown in Fig. 2.1l. For dense, high-8
plasmas a field free region exists within the cusp plasma.
Particles in this region move in straight lines, i.e., they
have an infinite gyroradius. At the plasma boundary a

charged particle is returned to the plasma by interaction



(b)

Fig. 2.1. Two basic cusp confinement configurations
(a) A picket fence formed from a series of line

cusps
(b) A spindle cusp



with the magnetic field. For a sharply defined (B = 1)
boundary, or "free boundary," the charged particle is bounced
out of the cusp in a near billiard ball reflection (Fig. 2.2a).
For B < 1 the plasma is surrounded by a sheath of finite
thickness in which particles follow a cycloidal path back

into the plasma (Fig. 2.2b).

Cusp losses Cusp systems have the characteristic of

being leaky in the region of the cusps. For low-f8 plasma,
or plasma away from the minimum-B region, charged particles
stream out adiabatically along the field lines at the cusp.

For B < 1 particles stream out of the cusp if r the charged

L’
particle Larmor radius, is too small to turn the particles
back into the field free region. An extensive review of cusp
losses is contained in a review of cusp containment by

Spalding (2). Since cusp containment is nonadiabatic theo-
retical approaches to cusp losses utilize well defined con-
tainment models in which the half-width of the particle loss
hole is to be determined. These loss models assume a high-R8
nonadiabatic region away from the cusp which supplies isotropic
plasma to the cusps. The plasma is assumed to be collision-
less. Particle losses through cusps, either the ring or point

cusps of the spindle cusp, are calculated assuming the

mechanism of simple effusion through the loss hole. For a

point cusp
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Fig. 2.2. Particle reflection in a two-dimensional cusp (8)
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H-_E—4HV TTrp (21)
where

v o= /ﬁkTi7wmi (2-2)

is the mean ion thermal speed, n is the ion density, and rp
is the half-width (or radius) of the hole at the point cusp.

In his review of cusp confinement Spalding (2) indicates
theoretical and experimental results of cusp losses for two
approaches to the formation of free boundary plasma equilibria:

1) Injection of plasma from a field free region into
a gquasistatic cusp confinement field.

2) Plasma is compressed by a rapidly rising confining
cusp field.

Stability experiments confirm the theoretical expectation
that cusp confinement is MHD stable.

From these experiments (performed primarily on cusped
theta-pinches) the ring and point cusp loss hole half-width
was found to be on the order of r, for 8 ¥ 1 plasmas. More
recent experiments by Kitsunezaki et al. (9) places rp at
some value less than r, for a laser exploded deuterium pellet
in a spindle cusp. Hershkowitz et al. (10) found rp to be on
the order of 2/?;?;, the hybrid gyroradius, for a low-B
picket fence line cusp. These results are tabulated in Table

2¢1,



Table 2.1. Experimental determination of rp for a point cusp

rp Method of plasma formation

N r, Plasma injection into cusp field or 5
compression by rising cusp field. B « 1.

< r, Laser explosion of deuterium ice pellet
in spindle cusp. B % 1.

%/rire Low B(R << 1) discharge behind a cusp
picket fence. Given rp is one-half the
line cusp half-hole width.€

a .
Spalding (2).
bKitsunezaki et al. (9).
“Hershkowitz et al. (10).
The octahedrally symmetric magnetic well (Osmac) The

Osmac concept was initially developed by Valfells et al. (6) and
Chiu (5) to take advantage of the high stability of cusps and
potentially favorable cusp losses. A concept similar to, but
somewhat different from Osmac, employing higher order poly-
hedral symmetry was developed independently by Sadowski (11,
12) . The octahedral geometry of the Osmac concept is repre-
sentative of the simplest mode of magnetic wells (or minimum-B
traps) discussed by Sadowski. The geometry of magnetic wells
of this type, called spherical multipoles by Sadowski, are
based on the increasing order of regular polygons--the

tetrahedron, cube, octahedron, dodecahedron, and icosahedron.
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Magnetic wells are established by arranging dipoles or current
loops on a sphere circumscribing a particular polygon in a
manner consistent with the polygonal geometry. For example,
dipoles placed at the verticies and concentrically with
normals to the geometric center of the faces of a tetrahedron
inscribed in a sphere, or at the corners of a cube inscribed
in a sphere, or concentric to normals which pass through the
centers of the faces of an octahedron all form equivalent
magnetic wells.

Sadowski does not extensively treat lower order polygons,
concentrating instead on equivalent dodecahedral and icosa-
hedral symmetries. Sadowski also considers only small radius
solenoids generating very high fields at the center of the
solenoid. With the Osmac geometry treated in this thesis only

large radius and overlapping filamentary current loops are

treated.
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CHAPTER III. THE GEOMETRY OF OSMAC

The geometric description of Osmac is based on the
symmetry of an octahedron. It utilizes a principal rectan-
gular coordinate system with axes which intersect the vertices
of an octahedron, and four secondary rectangular coordinate
systems for each pair of parallel current loops. The sym-
metry axis of each loop-pair is normal to two parallel faces
of an octahedron, and penetrates each triangular face at its
geometric center.

The symmetry axis of each loop-pair forms the z-axis of
four right-handed rectangular coordinate systems. These posi-
tive z-axes are shown in Fig. 3.1. The fifth coordinate
system, the principal axes (labeled Xg1¥grZg in Fig. 3.1),
define the coordinates to which the magnetic induction con-
tributed by each of the four loop-pairs is transformed and
then added. This octahedral geometric description departs
from Chiu's (5) tetrahedral description by the addition of a
fifth set of axes, the principal set, which is independent
from any loop-pair coordinate systems. In Chiu's analysis of
the magnetic induction, based on the geometry of the tetra-
hedron, one of four loop-pair symmetry axes is used as the
z-axis of the principal coordinate system. Thus, only three
rotation matrices are needed to transform position and induc-
tion vector components to and from the remaining three co-

ordinate systems. These rotation matrices allow the magnetic
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6= 54.74°

Fig. 3.1. Orientation of the positive z,-axes with the
principal axes
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induction vector components contributed by each loop-pair at
a point in the principal system to be transformed to corre-
sponding components in the principal system. The total
magnetic induction, contributed to by all four loop-pairs, is
simply the superposition of the magnetic inductions contri-
buted by each loop-pair.

With the present analysis the spatial relationship
between the current loops is obviously unchanged by the addi-
tion of a fifth set of axes. By defining a fifth coordinate
system which is independent of each of the loop-pair coordi-
nate systems greater clarity in visualizing the induction
field of the magnetic well is achieved. The magnetic induc-
tion vector of each loop-pair is now transformed to this loop
independent coordinate system. The superposition of the
contributions to the total magnetic induction from all four
loop-pairs requires four vector transformations. In the nota-
tion that follows the subscript zero refers to points or
vectors in the principal coordinate system while the sub-
scripts one, two, three, and four refer to the four loop-pair
coordinate systems. Table 3.1 shows how the loop-pair coordi-
nate systems are numbered based on the octant in which the
positive z-axis of each loop-pair system is located with

respect to the principal axes.
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Table 3.1. Location of the positive z-axes with respect to
the principal coordinate system

Positive z-axis number Octant of the principal axes
1 I
2 IIT
3 VI
4 VIIE

The total magnetic induction at a point P,y in terms of
the contributions of the four pairs of current loops can be

written

- _ -] = -1= =1= -]
B0 = Rl B1 + R2 B2 -+ R3 B3 -+ R4 B4 (3-1)
= Blo + By + 1330 + 13‘,‘10 (3-2)
4 .
= ¥ R.B (3-3)
Y| k "k

where the Ril's are orthogonal 3 x 3 matrices which transform

—

the components of the four Bk induction vectors of each coil
pair to the corresponding components in the principal coordi-

nate system. The total induction vector in component form is

just
4 3
B.. = I z

b. i =1, 2, 3. «
6L =1 4=1 g 4 55 T B e

8i 4k
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The subscript k indicates in which loop-pair coordinate system
the vector bjk' j =1, 2, 3 is located and which 3 x 3 matrix
composed of aij components transforms the vector components

bjk to the principal coordinate system. The a; elements

jk
form a 3 x 3 x 4 array in which the aijk' k=1, 2; 3; 4
elements are the direction cosines of a rotation of the
principle axes to form the four loop-pair coordinate systems.

The induction vector at a point, resulting from the
superposition of induction vectors contributed by the four
loop-pairs, requires finding both the elements aijk of the
transformation matrices and a suitable vector potential A for
calculating B(= V x &) from each loop-pair.

The Rk elements are calculated by knowing that the axes
of the loop-pair coordinate systems must satisfy two condi-
tions.

l. The axes of a loop-pair coordinate system are

formed by a right-handed, or "proper," rotation
of the principal axes. The determinant of the
resulting transformation matrix Rk must be +1.
2. The +zk—axis, or symmetry axis of each loop-
pair, must make an angle of 54.73561° with the
+ zo-axis depending on the octant in which the
+z-axis is located (cf. Fig. 3.1}.

The second condition insures the z, -axis is normal to the

k
face of the octahedron and passes through the geometric center.
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Transformation of vector components from principal components
(x,y,z)0 to corresponding components in any one of the four
loop-pair coordinate systems is equivalent to finding new
components of the vector after an orthogonal rotation of the
principal axes in three dimensions. Under such a rotation
the magnitude of a vector remains unchanged. The four
required rotations of the principal axes can be accomplished
by the product of two plane rotations.

1. Rotation of the x Yo plane counterclockwise

0’
around the zo—axis to fix the new Xy k=1, 2, 3, 4
axes.

2. Rotation of the yo, ZO plane counterclockwise
around the X, -axes to establish the position of the
z, —axes under condition 2 above.

The product of the matrices which mathematically accomplish

these rotations can be written

R, = MN, , (3-5)
where
I cos¢k -sin¢k 0 §
Mk = sin¢k cos¢k 0 (3-6)




L7

and ¢k is the angle of rotation of the Xogr Yo plane counter-

clockwise around the zo axis.

1 0 o |
Nk = 0 cosBk -sinek (3=-7)
L_ 0 31n8k cosﬁk

where ek is the angle of rotation of the 244 Yo plane counter-

clockwise around the xk—axis.

Taking the product,

cosek 81n¢k 0
Rk = Mka== -sin¢k8k cos¢>k cosek sinek . (3-8)
sin(bk Slnek —cos¢k sinek cosek

The ¢k and Bk for each rotation is tabulated below.

Table 3.2. Rotation angles for each loop-pair rotation

Ry 8 by
1 54.73561 135
2 234.73561 225
3 54,73561 315
4 234.73561 45
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By substitution of ¢k and Bk from Table 3.2 into Egq. 3-8

the Rk can be explicitly evaluated.

— —

-0.707107 0.707107 0.000000
Rl = -0.408248 -0.408248 0.816497 (3-9)
i 0.577350 0.577350 0.577350
-0.707107 -0.707107 0.000000
R2 = -0.408248 0.408248 -0.816497 (3-10)
0.577350 0.577350 0.577350
0.707107 -0.707107 0.000000—
R3 = 0.408248 0.408248 0.816497 (3-11)
-0.577350 -0.577350 0.577350
0.707107 0.707107 0.000000T
R4 = 0.408248 -0.408248 -0.816497 (3-12)
=0.577350 0.577350 -0.577350
Since det|Rk| =+1, k=1, 2, 3, 4 the four rotations of

the principal coordinate axes are right-handed. The
orthogonality of the Rk implies the equivalence of the trans-

pose and inverse of Rk

=1

R~ = R;I(‘ (3=13)
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In order to find the components of a vector in any one of the

four loop-pair coordinate systems in term of its principal

coordinates requires multiplying that vector by the correct

. : ; -1
inverse transformation matrix R

K ! so that

- _ e el _ T =
B = = RkBk

X0 k Pk (3=14)

—

where the components of Bk are known.

The procedure for finding the magnetostatic induction at

any point in the Osmac geometry is now apparent.

1 1P

The (x,y,z)0 ordered triplet specifying the

position vector of a point P in the principal
coordinate system is determined.

The (x,y,z)0 components are transformed into the
(x.y,z)k components of each loop-pair coordinate
system by use of the proper R, transformation matrix.
The vector components of the magnetic induction
vector ﬁi at the point specified in step 1 are
determined.

—

The components of By for each loop-pair are
transformed by R;l into the corresponding components
in the principal coordinate system.

The total magnetic induction at Py is the sum of the

four inductions calculated for each loop-pair,

Ok

Wy
o
Il
o
o
-
3
o
o
L]
e
o}
&
Wy
|
[ ae I3
(o}
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CHAPTER IV. THE MAGNETIC INDUCTION OF A CONCENTRIC
PAIR OF CIRCULAR CURRENT LOOPS

The calculation of the induction for a pair of axisym-
metric current loops requires an expression for E%. To
calculate the induction at a point resulting from Osmac

geometry the current loops are assumed to be infinitly thin

(filamentary). The potential of an arbitrary closed loop at

a point P is

-  WI 1=
R, W e s ds_ (4-1)

where [ﬁl is the distance from loop element ds to the point
P. The method for finding Ké for a circular loop in a form

useful for computation can be found in most introductory

texts on electromagnetism (13).

As shown in Fig. 4.1,
a = a(cos¢£ - sin¢§). (4-2)
A differential element of the circular loop can be written
ds = a(-sinéi + coséj)dé (4-3)

The vector potential can be rewritten as (cf. Fig. 4.1)

5 27 ~ A
.l _ [ (-sin¢i + cos¢dj)de (4-4)
P 4m 5 (02 + a?'+ 22 - 2ap cos(fb-«‘;))35
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2

122 324 2 -Zapcus(¢-(p)

(b)

Fig. 4.1. Coordinates and directions for the evaluation of
the vector potential of a circular current loop
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Since EE is ¢ symmetric K; at Ep = 0 can be generalized for

any Ep
Let
Ap = Ao(g = 0) (4=5)
2 dap
kK = (4-6)
[(a + 0)2 + zz]
|R|= [(a + p) + z ];5(1 - k% sin a)’ﬁ (4-7)
where
sinza = %(l + cos¢) (4-8)

Eq. 4-4 can be written (cf. Appendix A),

n m
£ = Mol 2 2sinacosada _ - (2sin2a - l)da
B f [r“z—r
<y /1 k%sin’a 1-k“sin“a
2 2

(4-9)

The integral coefficient of i is zero. The coefficient of

j can be rewritten in the form,

~ u0I a % k2 &
Ap .- [E-] [1 - -2—] K(k) - E(k)|9¢ (4-10)

where Kb has been generalized to show $ symmetry. K(k) and
E(k) are the complete elliptic integrals of the first and

second kind respectively, k is the modulus and o is the
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amplitude of the elliptic integral.

Taking the curl of Kb, the magnetic induction at P is

- k%/2

Hal

> 0 1 A
B_ = %37 - z|K(k) - |———=5—| E(k)|p
p 4ma p3 ‘ ! [ 1l = k2 ]

2 &
+0 |K (k) +[12{§JﬁlL-- 1]-515%— .
g (1-k“)
(4-11)
Forp = 0 Egq. 4-11 reduces to the familiar expression
sl 2
B ... = zZ (4-12)
axis 2 (R2 % 22)3/2

For an axisymmetric pair of current loops the magnetic
induction at a point in space is the superposition of the
magnetic induction contributed by each current loop (Fig. 4.2).
For a pair of current loops, in cylindrical coordinates with
both currents in the positive ¢ direction, the magnetic induc-
tion has the form resulting from a simple mirror configuration.
For currents anti-parallel in the ¢ direction the induction
has the form of the familiar spindle cusp configuration. The
expression for Eb of two parallel, axisymmetric loops
satisfying the condition D = v/2a, where D is the separation
distance and a is the radius of each loop, is then

Blp,z) = Blp,z - %Z a) + Blp, z + a %z). (4-13)
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Fig. 4.2. Orientation of a loop-pair symmetric with the 2, -
axis and the location of point P with respect
to the origin
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CHAPTER V. RESULTS OF THE OMIN CODE FOR CALCULATING
OSMAC MAGNETIC INDUCTION

Knowledge of the internal magnetic induction from cur-
rent loops arranged in the Osmac configuration on a contain-
ment sphere of radius Rc is useful for determining, at least
qualitatively, the plasma confining properties of the system.
Utilizing Egs. 3-4 and 4-11 a computer code, called OMIN, was
developed which is capable of calculating the eight loop
magnetic induction for a filamentary current loop approxima-
tion. Loop radii were based on a twelve liter sphere which
will be used for plasma trapping experiments. The sphere
gives a loop radius of 11.596 cm. The magnitude of the loop
current is arbitrary.

An objective of the code calculations was to compare the
"depth" of various simple magnetic well configurations with
parallel loops satisfying the relationship D

L

loop configurations compared were a simple mirror pair, a

= /2 ay . The

cusped pair, Osmac in the cusp mode with loop-pairs having
currents in opposing directions, and Osmac in the mirror mode
with loop-pairs having currents in the same direction (Eqg.
4-13).

Fig. 5.1 shows the variation in |B| along the symmetry
z-axis, or zl—axis for Osmac, for the above four configurations.
From Fig. 5.1 it is evident that the Osmac configuration sur-

passes both the two-loop mirror and cusp configurations in
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Fig. 5.1. The variation of |B| as a function of z, for four loop configurations
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peak field strength for identical currents. The location of
the peak for the Osmac conductor configuration is also dis-
placed away from the plane of the current loops toward the
containment surface at R..

Fig. 5.2 shows the variation in magnitude of the peak

for Osmac in the mirror mode along the z k=1; 2, 3; 4

k!
axes as a function of current. As expected from Egs. 4-11
and 4-12 the peak value varies linearly with current in the
filamentary loops. Similar to the two loop cusp configuration
the Osmac loop configuration, in either the mirror or cusp
modes, has zero induction at the geometric center. Since the
magnetic moment of charged particles is not preserved at the
center of the configuration Osmac is a nonadiatatic magnetic
well.

A second objective of the code was to plot magnetic
magnetic isobars, lines of constant magnetic induction |B],
in two planes of the principal coordinate system. The loca-
tion of these planes is best described in terms of a set of
spherical coordinates (p,0,¢) associated with the principal
rectangular axes as shown in Fig. 5.3.

The two mapping planes selected were the quarter-planes
Pl(¢ = 45°, 6 = 0° » 90°) and plane P2(¢ = 0° » 90°, 6 = 90°).
The Pl plane contains the zl-axis and should indicate the
presence of a cusp symmetric with the zl-axis. This cusp

arises from the triangular pattern of conductors axisymmetric
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Fig. 5.3. The location of point P, with respect to both the

cartesian and spherical coordinates of the
principal axes
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with the zl-axis as shown in Fig. 5.4. Plane P, is one of
three quarter-planes which form the sides of the first octant
of the principal coordinate system. The symmetry of the Osmac
configuration insures that the induction is identical in these
three quarter-planes. Iso-|B| lines generated by the two
modes of Osmac, the cusp and mirror modes, were mapped.

Figure 5.5 shows plane P, in the cusp mode. As

1

anticipated a cusp is formed symmetric with the zl—axis

(6 = 54.74°, ¢ = 45°). A second cusp is formed symmetric with

the 6 = 90°, ¢ 45° radius. This cusp results from the cur-
rents in loops symmetric with the zq and z, axes (See Fig.
5.9). Plane P2 in the cusp mode, shown in Fig. 5.6, shows
the presence of a cusp at low field strengths which broadens
and reverses direction at 0.3 tesla (I = 100000 amps). It is
not apparent from i50*|§| plots if the field line curvature
favors stability since the two lines are not necessarily
identical. However iso-|B| lines do show the location of
cusps and the direction in which they point, either toward or
away from the center of the Osmac configuration. Cusps which
point away from the center can be considered stable for plasma
confinement. Hence, for high field strengths, the Osmac
configuration in the cusp mode favors stability.

Figure 5.7 shows plane Pl in the Osmac mirror mode.

Favorable although shallow cusping is obtained away from the

zo—axis. The cusp at 6 = 54.74° is evident as well as a cusp



Fig. 5.4. The spatial arrangement of the eight Osmac current
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5.5. The Pl plane in the cusp-mode
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Fig. 5.6. The P2 plane in the cusp-mode
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Pig. 5.7. The Py plane in the mirror-mode
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at 6 = 90° formed by the zq and z., axisymmetric loops. Figure

3
5.8 shows the P2 plane in the mirror mode. The cusp at ¢ =
45° is again evident. Unlike the previous mode this cusp does
not change direction away from the center of the Osmac con-
figuration. The direction of the cusps favor stability away
from the principal axes. In the P, plane the maximum induc-

tion is located well inside Rc. This maximum is due to the

effect of overlapping current loops as shown in Fig. 5.9.
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Fig. 5.8. The P, plane in the mirror-mode



37

Zg

“

25 SYMMETRIC LOOP
IBI
0 : ¢=45"
RBmax Re
2y SYMMETRIC LOOP
_za

Fig. 5.9. The effect of overlapping current loops on the
induction in plane P, in the mirror mode
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CHAPTER VI. CONCLUSIONS

Osmac is an "open" cusped confinement system and as such
suffers from particle losses characteristic of cusped systems.
Using the model of filamentary current loops and the D; =
V2 ap constraint on loop-pair separation the Osmac configura-
tion has eight point cusps axisymmetric with the 2y k=1,

2, 3, 4 axes, as well as twelve line cusps associated with the
loop overlap indicated in Figs. 5.4 and 5.9. Methods to
eliminate the line cusps will be given in the recommendations
for future work. An estimate of cusp losses for eight point
cusps with line cusps eliminated can be made using Eg. 2-1
and values of rp from Table 2.1. We assume the following:
l. Steady state plasma equilibrium
2. B0 = 5 104 gauss (a reasonable value with current
technology)
i

3. T. =T_ = 10 keV
e

m
4. D-T plasma with m, = -
F mD + mT

B m= 1 % 1014 ions/cm3

The equation for the Larmar radius of a charged particle is

Y, = (6-1)

where *+ denotes the charged particle species, an ion (+) or

electron (-).
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Using assumptions 1 through 5, Egs. 2-1, 2-2, and 6-1
charged particle losses through the cusps can be estimated

for two cases.

v = 1l.42 x lO8 cm/sec

0.388 cm

R
Il

aN _ 1 2 22 .
e = 8 x In vwrp = 1.34 x 10 ions/sec

2152 amps.

2. r = \/rire

9.54 % 1072 an

H
]

20

6.53 x 10 ions/sec

42 amps.

It rp is closer to the geometric mean of the hybrid
gyroradius, and recent experiments tend to indicate this is
near the correct value of rp, then cusp losses are reduced
ninety-eight percent over losses with rp =r;. This is a very
impressive result. Since the first assumption is a steady
plasma equilibrium these loss calculations define the required
makeup to maintain constant ion density of the plasma. Injec-

tion in the worst case (rp - ri) requires a makeup on the

order of 270 amps per cusp, an impractical amount. For the
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best case (rp = /?I?;) a makeup injection of 5 to 6 amps per
cusp is certainly within the realm of feasibility. Which
value on the makeup does pertain will depend on further
research into point cusp losses.

Any conclusions about confinement feasibility drawn from
these estimates of charged particle losses are also tentative
for the following reasons.

1. No mention has been made of other mechanisms of
particle particle losses, especially diffusion
across the magnetic field.

2. Ion losses are proportional to the steady state
equilibrium plasma density. It may ultimately turn
out that the steady state density requirement for
fusion will entail an impractical makeup current.
This point deserves careful attention since Osmac
confinement has been suggested as a viable approach
to target plasma fusion.

3. No consideration was given to the ion injection
energy and the effect ion slowing down would have on
the plasma equilibrium. A departure of plasma
equilibrium away from a Maxwellian energy distribu-
tion may upset the assumption of simple effusion out

the cusp.
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CHAPTER VII. RECOMMENDATIONS FOR FUTURE WORK

Recommendations for further studies on the Osmac concept
are ultimately geared toward reduction of charged particle
losses by reducing the number of cusps generated by the loop
configuration. An improvement in the adiabaticity of the con-
figuration should also result in improved particle confinement
and a well understood loss mechanism.

1. Reducing the number of cusps to eight results when
the circular current loops are replaced by either plane
triangular or spherical triangular current loops which share
common borders. This new Osmac configuration is shown in
Fig. 7.1. It should be noted that in the mirror mode adjacent
conductor currents are additive. An alternative approach is
to replace current loops or triangles with small radius
dipoles.

2. Particle losses at the cusps may be reduced by
utilizing Osmac geometry as a hybrid electromagnetic trap.
This approach entails "stoppering" with electrostatic fields
the cusps produced by the magnetostatic field.

3. A study should be undertaken to look into the effect
of "stuffing" the system with a mirror field. This approach
to improved confinement, utilized by Sadowski (14) in his
research on higher order spherical multipoles, removes the
field zero at the center of the geometry. The result of

stuffing is to preserve the charged particle magnetic moment
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Fig. 7.1. Two new Osmac configurations
(a) Osmac configuration using plane triangular coils
(b) Osmac configuration using spherical triangular
coils
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across the center of the geometry. This hybrid Osmac trap,
in combination with recommendation one, essentially functions
as a stabilized mirror.

4. The OMIN code (Appendix B), should be modified to
calculate the magnetic inductions of finite dimension coils.
However accurate away from the loop, the filamentary conductor
model has a singularity in the neighborhood of the filamentary
conductor.

Graphical analysis of any of the above modifications to
the current Osmac model would be greatly expedited by in-
corporating the OMIN code into a search routine to perform a
point-by-point mapping of iso-|B| lines. The increased compu-
tation costs would more than offset the time spent for tedious

graphical techniques currently used to produce iso-|B| plots.
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APPENDIX A: DERIVATION OF THE VECTOR

POTENTIAL (EQ. 4-10)

By the following algebraic manipulations the coefficients
of the i and 5 unit vectors of Eq. 4-9 can be derived from the
coefficients of the i and 3 unit vectors in Eq. 4-4. Since
Kb(g = 0) can be generalized for any ﬁ;,

-a sing¢ -a sing

= (A-1)
/pz + a2 + z2 - 2apcosd /[(a+p)2 + zz] - 2ap(l-cosd)

where 2ap has been added and subtracted in the denominator.
Factoring [(a+p)2 + 22] out of the denominator and using

Egs. 4-6 and 4-8, Eg. A-1l can be written

-a sing ” -a sing (A-2)
/p2 - a2 + 22 - 2apcos¢ /[(a+p)2 + 22][1-k2 sinza]
Again using Eg. 4-6
-a sing _ :Eya7p/sin2¢ (A-3)
/pz + a2 + 22 - 2apcos¢ 2/1 - k2 sin2¢
-kva/pv4 siﬁfa cos?q
= (A-4)

V1 - k2 sinza
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Finally,
-a sing _ -kva/p 2 sina coso (A-5)
/;2 - a2 - 22 - 2apcosd /1 - k2 sinza

By a similar manipulation of the coefficients of ﬁ the

result is Eg. 4-9,

T i
2 "2
- uOIk a % 2sinacosada A (251n2a - 1l)da
A, = = | i -3 (4-9)
0 47 o) 5
LS
2

/l-k 51n o T 1- k sin“a
2

To calculate the first integral let x = sina, dx = cosada.

Then,
T
2 -1
f 2sinacosade  _ 5 | [ xdx (A=6)
T /1 - k%sin’a 1 /1-kx?
2
-1
- 3 /1-k %2
k 1
= 0.
For the second integral,
_m m T
| 2 2 2 2
_ f (2sin“a-1)da _ f _sin“ada _ 5 . f da
e
% V1- k281n a 0 /l k 51n o 0 Jl-kzsln o
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The second integral on the right hand side of Eq. A-7 is the
complete elliptic integral of the first kind, K(k). By
adding and subtracting 1 to the integrand of the first

integral on the right hand side of Eq. A-7 we get,

.3 i A
2 2 2 2 2 2
~/‘( l+k sin"a)do _ 4 da _ (1-k"sin"a) da
2 . -
0 k%/1-k%sin’a x 0 v1-k%sin’a 0 v1-k%sin’a
(n-8)

The first integral on the RHS of Eq. A-8 is the complete
elliptic integral of the first kind and the second integral
on the RHS of Eq. A-8 is the complete elliptic integral of the

second kind, E(k). Combining elliptic integrals, the coeffi-

cient of j reduces to,

L2
(2sin“0-1) da 1lK(k) - Ef E(k)|. (A-9)

k

- [zf _
Ji-%k%sinle k

1
hﬂg““\nﬁd

Equation 4-9, in terms of complete elliptic integrals, can be

written as

P Mo Ik
A, = =g = 1

K(k) - %5 E(k)}'\. (A-10)
K
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Factoring out a 2/k2 term, and generalizing for any angle £,

~ _ Mol [a k2 E
Ap = = J; Hl - B K(k) = E(k) P . (A-11)
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APPENDIX B: THE OMIN CODE

The OMIN code has been developed to calculate the
magnetic induction at any point in the principal coordinate
system of Osmac geometry. OMIN is an accronym for Osmac
Magnetic INduction.

The OMIN code has been designed to compute the magnetic
induction along any radius of Osmac at a constant specified
interval. Required inputs are the ¢ and 6 directions of the
radius in degrees, the radial interval length in centimeters,
and the initial and final points along the radius between
which the point-by-point magnetic induction is to be computed.

The OMIN code also has the capability of computing the
magnetic induction along a specified series of radii in planes
which contain either the zo—axis (a Py plane) or the zg = 0
(PZ) plane. A particular Py plane is fixed by it ¢ angle.
Radii in that plane are separated by the constant 6 increment
AB. For the 92 plane 6 = 90° and radii are separated by the
constant ¢ increment Ad.

Also included as input are the loop current I(amps), the
loop radius R(cm), and an option for printing the vector
components of the total induction vector in rectangular
components.

OMIN input thus consists of two cards with the following

format:
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(2F10.4,I5)CURRNT,RADIUS,JOPT

(9F8.5) PHI,DPHI ,EPHI, THETA, DETHETA, ETHETA, RHO,DRHO, ERHO



Ao draqasdaiadadunddaddadddaddiddadradeasdrasddaadadddadadaaediaddeadddedaduosncsassas
G
C FUNCTICN CF PRCGRAM

C OMIN CUMPUTES THE MAGNETIC INDUCTION AT ANY POINT FOR THE OSMAC CURRENT

\
C LOCP CCNFIGURATION
C
CECECEC GECCEGCECCEUCEECECCULCECECEECCLCECCECCECECEECCECCECCCEECCECELCCLELCCoCECCCC
C

CCcCccccorcocecccecccccoceroecococcceoccecceccceeccecoceccioccececcecececccececcaccccciec

C

C DEFINITION CF MPRGM ANC SUBROUTINE LINE ARRAYS AND VARIABLES

C

CCCCCCCCCCCCLcLEC CcCeecCoccroaCecccCoocereceaceccoccecoctocceccececececececeeeceocccececec

C

cCccececcoececccece

C ARRAYS c

CCCCCCTLCCeCCCe

ARRAY = TEN ELEMENT HOLDING ARRAY FOR TEN COLUMN FORMAT CF INDUCTION
MAGNITUDE (SEE *TOTAL®')

BTOTAL = THREE ELENMENT ARRAY CONTAINING COMPCNENTS CF TOTAL INDUCTION
VECTOR

FIELD = 3 X E ARRAY WHICH CONTAINS THE COMPONENTS OF THE MAGNETIC INDUCTION
VECTOR FOR EACH LOOP-PAIR COORDINATE SYSTEM (COLUMNS 1,2+354) AND
THESE LOCP-PAIR COMPONENTS IN TERMS OF THE PRINCIPLE COGRDINATE
SYSTEM (COLUMNS 5,6,7+8)

VECTOR = 3X5 ARRAY CONTAINING THE COCRDINATES OF A POINT FOR EACH OF THE
FIVE COORDINATE SYSTEMS(PRINCIPLE + FOUR LCOP-PAIR SYSTEMS)

TRANSF = 3X3X4 ARRAY FOR TRANSFORMING POSITICN OR INDUCTION VECTORS
TO/FROM PRINCIPLE AND LOOP-PAIR SYSTEMS
Cecececeecececcececec
VARIABLES C
gcCcLccercccoccece

CPHI = COS OF THE AZIMUTHAL ANGLE PHI IN SPHERICAL COORDINATES
CTHETA = C0OS UOF THE POLAR ANGLE THETA IN SPHERICAL COCRDINATES
CURRNT = FILAMENTARY LOOP CURRENT

noNnNONANNODODONODONDO NN

£5



= INCREMENTAL FHI ANGLE

ORHO = INCREMENTAL RADIAL ELEMENT IN SPHERICAL COORDINATES

DTHETA = INCREMENTAL THETA ANGLE

ERHO = TERMINAL LENGTH OF RADIUS IN SPHERICAL COORDINATES

EPFI = TERMINAL ANGLE IN PHI DIRECTION

ETHETA = TERMINAL ANGLE IN THETA DIRECTION

GTHETA = DUMMY VARIABLEs, RETAINS INITIAL VALUE OF THETA FOR RECYCLE
AT THE END OF A DO LOOP

ICNTR = SPECIFIES INDEX FOR DG LOOP ON THETA ANGLE

INDEX = SPECIFIES INDEX FOR DO LOGCP FOR POINT 8Y POINT CALCULATICONS ALONG
RHO

JOPT = CPTICN TO PRINT COMPONENTS OF TOTAL POINT MAGNETIC INDUCTION
JOPT = 0y NO PRINT
JOPT = 1+ PRINT

KCNTR = INDEX FOR DC LOOP ON PHI ANGLE

PHI = INITIAL AZIMUTHAL ANGLE OF RADIUS VECTOR IN SPHERICAL COORDINATES

WHICH IS THE PCSITION VECTOR CF A POINT IN PRINCIPLE RECTANGULAR

COORDINATES

RADIUS = RADIUS OF FILAMENTARY CURRENT LOOF
RHO = RADIAL DISTANCE OF A POINT IN PRINCIPLE COORDINATES FROM ORIGIN AND

INITIAL POINT FCR INDUCTION CALCULATION ALONG A RADIUS

SPHI = SINE CF PHI

STHETA = SINE OF THETA

THETA = INITIAL POLAR ANGLE OF POSITICON VECTOR IN SPHERICAL COCRDINATES

TOTAL = MAGNITUDE CF THE TOTAL INDUCTION VECTOR AT A POINT IN THE
PRINCIPLE COORDINATE SYSTEM

XREO = DUMMY VARIABLE TO RETAIN INITIAL VALUE OF RHC WHEN PASSING RHO
BETWEEN MPRGM AND SUBROUTINE LINE

N0
o
0
4 4

daddddddddddddadddaddddadddoadddaddadddaddddaddaddddadaddaddaddadddadadaaddod oo oelaesfofoooeaofs

AnOONoOOOnNOnoOnNONOONDONNNANOANODAHADODDODONNONO

sy DIMENS ION ARRAYS, SPECIFY COMMON DATA LOCATIONS
C

DIMENSION ARRAY(10)s, BTOTAL(3), FIELD(3,8)sVECTOR(3,5) +TRANSF (4
1+3:3)

CCMMON/STORE/BTOTALF IELDs TRANSF,VECTOR

CCMMON/Z7A/ARRAY

12°]



CCMMON/INPUT/CURRNT sRADIUS, JOPT
CCMMON/T/TOTAL
COMMON/R/RHC
CCMMON/PARAM/DRHOERHO,PHI , THETA
CCMMON/DEGREE/SPHI +CPHI +STHETALCTHETA

C

C====-=SPECIFY ELEMENTS CF TRANSF,s SET VARIABLES TC ZERO

C
DATA TRANSF/—e70711 3= e70711+e707114e70711+-440825+-+40825,.40E25,
$.4808253s5773543 4577359 =aS577353=e577353e70711 9= e70711+=e707114+70711
$9=0840B255+40825440825+-e408255 57735+ —e57735+—e57T35+e57735+404.0
S..0..0..81650.-.81650.-Bl650.-.81650..5?735.—.57735..57735.—.5?735
$/
DATA ARRAY, BTOTAL, FIELDs VECTCR /52%0,.,0/
DATA CURRNT 2RADIUSsTOTAL +RHUO+DRHO+ERKFO+PHI sDPHI EPHI+THETA,
10THETASETHETAs SPHI +CPHI +STHETAZCTHETA+JOPT/16%0.0,0/
DATA RCTSsRADS+QUC/3%0.,0/
DATA KCNTR, ICNTRsINCEX/3%0/

C
C—————wWRITE ELEMENTS CF TRANSF
C
WRITE(6+605)
605 FORMAT('0® ,40X,"*%xTRANSFORMATION MATRICES*%*")
WRITE(6.,606)
606 FORMAT("0*sSX s *P(C)=P(1)"18Xs"P(O)=P{2)*317X+"P(O)-P(3)*:17Xs"P(O
1)-P(4) )
DC 35 J=1.,3
WRITE(ELBO07T)I((TRANSF(I +JesK)sK=143)sI=1,4)
607 FORMAT(®* '",4(2X,3FE.5))
35 CONTINUE
C
Comm—m== READ/WRITE CURRENT., RADIUS, JOPT
C

READ(5+301) CURRNT »sRADIUS,,JOPT
301 FCRMAT(2F1044,15)
WRITE(6,608)CURRNT,RADIUS,»JOPT

Ss



608 FORMAT(*2', "CURRENT ='"3F10e4+1X, *AMPS®* 45X *RADIUS =",F10.4+1X»
1°CM* s SXes " JOFT' 4, 1Xe11)
C
C————-REAC/WRITE PHI +DPHI+EPHI, THETAsCTHETAZETHETAsRHO,DRHO, ERHO
C
REAC(S5+77)PHRI+DPHISEPHI s THETAZOTHETALETHETA +RHO «DRHC, ERHO
77 FCRNAT(SFB.5)
WRITE(6,177)
177 FCRMAT(0® s "PHI® s 7X+"DPHI* 36X "EPHI " 36X+ *"THETA" 45X "DTHETA* ;4 X
1o "ETHETA® 34X "RHC '+ 77X+ "DRHO® s 6X s *ERHC" )
WRITE(6+17B)PHI+DFHIZEPHI y THETA,DTHETALETHETA,RHO,DRHO+ ERHO
178 FCRMAT(* *,9(FS5.2,5X))
IF(DPHI + DTHETANE.O«)GO TO 333
C
C====<-1F DETHETA = DPHI = 0,0y, COMPUTATION IS ALCNG A LINE ONLY
Cc
CALL L INE
GC TO 713
333 CONTINUE
IF(DPHI«EQ.Ce)GOTO 213

C
Cmmm== IF DPHI ONLY IS EQUAL TO 0.0,COMPUTING IS IN CONE P(1) PLANE ONLY
%

KCNTR = (EPFI-PHI)/DPHI + 1

IF(DTHETA.ECe0.) GCTO 214
C
C—---1F DTHETA ONLY IS EQUAL TO 0.0, COMPUTING IS IN THE P(2) PLANE OR A CONE
C--—-=-1F 80TK DTHETA ANC DPHI ARE NOT 0.0, COMPUTATION IS IN MORE THAN ONE P(1)
C PL ANE

ICNTR = (ETHETA—-THETA)/DTHETA + 1
GTHETA = 0.0

GTHETA=THETA

PHI = PHI - DPHI

DC €13 M = 1,KCNTR

THETA=GTHETA

PHI = PHI + DPHI

9s
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73

613
513

213

913
713

WRITE(E,82)FHI
FORMAT(*0*, "PHI = *,F10.7)
THETA = THETA-DTHETA

DO €613 N=1, ICNTR

THETA = THETA + DTHETA
WRITE(E,73) THETA

FORMAT (* ', *THETA ='.F5.2)
CALL L INE

CCNTINUE

CCANTINUE

GC TO 713

CONTINUE

ICNTR = (ETHETA-THETA)/DTHETA + 1
THETA = THETA - DTHETA

DO 313 M = 1+JCNTR

THETA = THETA + DTHETA
WRITE(€,72) THETA

FORMAT(* *,*'THETA =',F5.2)
CALL L INE

CCNTINUE

GC TOo 713

PHI = FHI-DFHI

DO S13 N = 1.KCNTE

PHI = PHI + DPHI
WRITE(E+82)PHI

CALL L INE

CONTINUE

CCNTINUE

STOP

END

LS



FUNCTION OF SUBROUTINE LINE

CONVERTS THE PHI AND THETA ANGLES TO RADIANS, COMPUTES THE SINE AND COSINE
OF THETA ANC PrHIs, PASSES POINTS INTO SUBROUTINE BFIELD FOR INDUCTION
CALCULATION

SUBROUTINE LINE

CCMMON/DEGREE/SPHI yCPHI +STHETALCTHETA

CCMMON/R/RHQO

CCMMON/T/TOTAL

CCMMON/A/ARRAY (10)

COMMON/PARAM/DRROZERHOWPHIZTHETA

PHI = PHI*.0174532¢

THETA = THETA*,01745329

SPHI =SIN(PKI)

CPHI = COS(PHI)

STHETA = SIN(THETA)

CTHETA = COS(THETA)

aAanOO0Nn

C
C===—-CCONVERT THETA AND PHI TO DEGREES FOR PASSING BACK TC MPRGM
C
PHI = PHI*57.265776851
THETA = THETAX57,25$577951
XRHC = RHO
N =1
C
C—————CCMPUTE THE NUMBER OF POINTS ALONG RHO WHERE THE INDUCTION WILL BE
C COMPUTEC
c
INDEX = (ERFC—RHC)/DRHO + 1
RHO = KHO - DRHO
DO 413 M = 1,INDEX
RHC = RHO + DRHO
C
C===--CALCULATE INDUCTICN AT EACH POINT ALONG RHO AND PLACE MAGNITUDE INTC ARRAY
o

CALL BFIELD

8S



ARRAY(N) = TOTAL
N = N + 1
IF(10=N)14+413,413

c
C————-WRITE ARRAY WHEN FULL
C
1 WRITE(6s3)(ARRAY(I)sI = 1,10)
3 FCRMAT(* *,10F10.2)
C
C--=-=--RESET ARRAY T9O ZERC
£
DC 29 J = 1,10
ARRAY( J) = 0.0
39 CONTINLE
N =1

413 CCNTINUE
IF(ARRAY (1) «NE+OIWRITE(6+3)(ARRAY(I)sI=1,10)
DC S7 J = 1,10
ARRAY(J) = 0.0
97 CONTINUE
RHC = XRHO
RETURN
END

FUNCTION OF THE SUBROUTINE BFIELD
CCMPUTES THE MAGNETIC INDUCTION AT A POINT P(0) CCNTRIBUTED BY EACH CURREN

LOQOP ANC SUMS THE CONTRIBUTIONS
DEFINITION OF SUBRCUTINE BFIELD VARIABLES

NOTE: SINGLE * REFERS TO CURRENT LOOP AXISYMMETRIC WITH THE POSITIVE 2Z
AXIS OF A LOOP-PAIR. DOUBLE ** REFERS TO CURRENT LOOP AXISYMMETRIC WITH
THE NEGATIVE Z AXIS OF A LOOP-PAIR

ASUBP = RADIAL POSITION OF P(N) IN A CYLINDER COORDINATE SYSTEM FOR EACH
COIL PAIFR.

BEEPA = 8*(N) IN TFHE RADIAL DIRECTICN OF A POSITIVE CURRENT LOOP.

BEEPPA = B**(N) IN THE RADIAL DIRECTION OF A NEGATIVE CURRENT LOOP.

BEEPZ = B*(N) IN TrE Z-DIRECTION OF A POSITIVE CURRENT LOOP.

NOOOHOODOODODOONNN

6S
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SEEPPZ = B*'(N) IN THE Z-DIRECTION OF A NEGATIVE CURRENT LOOP.
BEETA = SEEPA + BEEPPA

BEETX = B(N) IN THE X-DIRECTICN
BEETY = 8(N) IN THE Y-DIRECTION
BEETZ = BEEPZ + BEEPPZ

COEFF = (0.001 *CURRNT)/(SAQRT(RACIUS) ).

DENCM = ASUEPxXx¥] ,%

EKP = ELIPTIC INTEGRAL OF THE SECOND KIND CF K'.

EKPP = ELIPTIC INTEGRAL OF THE SECOND KIND CF K"*,

EPA = THE VALUE OF B(N)s N = 1+2+3,4 IN THE RADIAL DIRECTION OF A
CYL INDRICAL SYSTEM FOR A POSITIVE LOOP.

EPPA = THE VALUE OF B(N)s N = 1+2+3¢4 IN THE RADIAL DIRECTION QOF A
CYLINDRICAL SYSTEM FOR A NEGATIVE CURRENT LOOGCP.

EPPZED = THE VALUE CF BI(N)s N = 1,2+3:4 IN THE Z-CIRECTION OF A CYL. COCR.
SYSTEM FCR A NEGATIVE CURRENT LQOCP.

EPZED = THE VALUE CF B(N)s N = 14+42+3+4 IN THE Z-DIRECTICON OF CYLe. COOR.
SYSTEM FOR A POSITIVE CURRENT LOCP.

FACTP = CCEFFICIENT OF THE SUM OF ELIPTIC INTEGRAL TERMS OF A POSITIVE
LOOP.

FACTPP = COEFFICIENT OF THE SUM OF ELIPTIC INTEGRAL TERMS OF A NEGATIVE
CURRENT LODP.

KKP = ELIPTIC INTEGRAL OF THE FIRST KIND CF MODULUS K*®*,

KKPP = ELIPTIC INTEGRAL OF THE FIRST KIND OF K'*,

SMODP = SQRT(XMODF).

SMODPP = SQRT( XMODPF) .

THETA = ANGLE OF ASUBP WITH RESPECT TO X(N) AXIS

XMOCP = MODULUS K'"**2 OF A PCSITIVE LOOP.

XMODPP = MOCULUS K'""x%x2 OF A NEGATIVE LOOP

XxsuBpP X=VALUE OF P(N) IN N = 1+2+32,4 COCRDINATE SYSTEM.

Y SuBP Y-VALUE OF P(N) IN N = 1+2+3+4 COCRDINATE SYSTEM

ZETAP = Z*, THE DISTANCE OF P(N) FROM THE POSITIVE CURRENT LOOP
AXTALLY SYMMETRIC WITH THE +Z(N) AXISs N = 1429394

ZETAPP = Z'*, THE DISTANCE OF P(N) FROM NEGATIVE CURRENT LOOP AXIALLY
SYMMETRIC WITH THE —Z(N) AXISs N = 1,2.:3+4

]
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SUBROUTINE EFIELD
CCMMON/DEGREE/ SPHI 4CPHI s STHETAL,CTHETA
CCMMON/STORE/BTOTAL(3) +FIELD(3+8) s TRANSF(44343)3VECTOR(3,5)
COMMON/T/TOTAL
CCMNMON/R/RHC
C CMMON/INPUT/CURRNT sRAD IUS 4 JOPT
REAL KKP,KKFP
C
C-=-~==CCNVERT PRINCIPLE SPHERICAL COORDINATES TO PRINCIPLE RECTANGULAR
C COCRDINATES
C
VECTOR(1,1)=RHC*STHETA*CPHI
VECTOR(2,1)=RHO*SPHI*STHETA

VECTOR(34+1) = RHC*CTHETA
€
C——=——CCMPUTE THE COORDINATES OF P(0) FOR EACH LOOP-PAIR COORDINATE SYSTEM
C
DC 70 LEVEL=1.,4
DC 80 IROW=1,3
SUM=0,0
KCCL=0
DC GO0 JCOL=1,3
PROD = VECTOR(JCOL+1)*TRANSF(LEVELsIROW.JCOL)
SUM = SUM + PROD
90 CCNTINUE
KCCL = LEVEL + 1
VECTOR(IRDOW +KCCOL) = SUM
BO CONTINUE
70 CONTINUE
DC 11 K=2,5
L=1
M=2
N=3
¢
C=====CCMPUTE THE COORDINATES OF P(0) FOR EACH LOOP OF THE LOOP-PAIR WITH

C RESPECT TO THE LOOP-PAIR COCRDINATE SYSTEM
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ZETAP = VECTOR(NsK) = (.70711%RADIUS)
ZETAPP = VECTOR(N+K) + (.70711%RADIUS)

XSUBP = VECTOR{L.K)
YSuBP = VECTOR(MsK)
ASUBP = SQRT(XSUBP*XSUBP + YSUBPx*YSUBP)
IF(ASUBP «LE 41 +0E=-C2)ASUBP=0.0
C
C————=CALCULATE THE MODULUS K OF K(K) AND E(K) FOR EACH LOOP OF THE LOOP-PAIR
C
XMODP = (4.0%*RADIUS*ASUBP)/((ASUEBP + RADIUS)**2.,0 + ZETAPXZETAP)
XMODPP=(4.0*RADIUS*ASUBP) /( (ASUBP+RADIUS ) **2 .0+ ZETAPP*ZETAPP)
SMCDP = SQRT(XMCDF)
SVMODPP = SQRT(XMCDPP)
AK = SMODP
A = 1.0
B = 1.0
C
C==m== CALL CEL(2) TO COMPUTE THE VALUES OF K(K) AND E(K) FOR EACH LOOP
C

CALL CEL2(RESyAKsA,BsIER)
KKP = RES

AK = SwCDPP

8 = 1.0

CALL CEL2(RES+AKsA+B,s IER)
KKPP = RES

AK = SM;0ODP

B = 1.0 - (AK%AK)

CALL CEL2(RESsAKs A3BsI1ER)
EKP = RES

AK = SMODPP

B = 160 = (AKxXAK)

CALL CEL2(RESsAK.:A+B,s IER)

EKPP = RES

COEFF = (0+1%CURRNT)/Z(SQRT(RADIUS))
DENCM = ASUBPX%XxX1,5
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IF(DENCM) 81 481,85

C
C--=--1IF ASUBP = 0.0 COMPUTE INDUCTION ALONG Z-AXIS ONLY FOR EACH LOOP ANC ADD
C
81 COEFF = (.6283*CURRNT*RADIUS*RADIUS)
BEEPZ = COEFF/((RADIUS*RADIUS + ZETAPXZETAP)X%X%*],.5)
3EEPPZ = COEFF/((RADIUS#RADIUS + ZETAPP*ZETAPP)*%1,5)
BEETZ = BEEFZ + BEEPPZ
BEETX = 0.0
BEETY = 0.0
L =K -1
J =1
GC TO &7
85 CONTINUE
€
== COMPUTE INDUCTION ALONG LOOP-PAIR Z-AXIS ANC ASUBP AXIS IN THE X-Y PLANE
C
FACTP = SMOCP/DENCWM
FACTPP = SMCDPF/DENCM
EPA = -ZETAP*(KKP=((1.0=-XMODP/2.0)*EKP)/(1.0-XMODP))
EPPA = -ZETAPP* (KKPP=((1.0-XMODPP/2.0)*EKPP)/(1.0=-XMODPP)})}
EPZED = ASUBP*(KKF+(((RADIUS+ASUBP)%*XMODP)/(2.0*%ASUBP)=1.0)*EKP
1/(1.0-XM0ODP))
EPPZED = ASUBP* (KKPP+{{({RADIUS+ASUBP)*XMODPP)/(2.0%ASUBP)-1.0)x%
1IEKPP/( 1+ 0-XNMODPP))
L=K-1
=1
BEETA = COEFF*(FACTP*EPA + FACTPPX*EPPA)
BEETZ = COEFFx(FACTPXEPZED + FACTPP*EPPZED)
IF(ABS(XSUBP).GT.0.001)G0 TO 76
75 BEETX = 0.0
BEETY = BEETA
GC TO 87
76 CONTINUE
C

C-—---COMPUTE THE X AND Y COMPONENTS OF INDUCTION IN RECTANGULAR COORDINATES

£9



IF(XSUBP.LT.0.)GCTC 5
IF(YSUEP«GE.0s) GCTO7
THETA = 6.283185308 +ATAN(YSUEP/XSUEP)
GCTC 8
7 THETA = ATAN(YSUBF/XSUBP)
GCTC 8
5 IF(YSUBP.LE.0.)GCTC 6
THETA = 3.141592€654 + ATAN(YSUEBP/XSUBP)
GCTC 8
6 TRETA = 3.141592€E54+ATAN(YSUBP/XSUBP)
8 CCANTINUE
BEETX = SEETA*CCS(THETA)
BEETY = 3EETAXSIN(THETA)
87 CCONTINUE
FIELD(JsL) = BEETX

J = J+1
FIELD(J.L) = BEETY
d = & ]
FIELDO(JsL) = BEETZ

11 CCNTINUE

----- TRANSFORM THE FOUR LOQOP-PAIR INCUCTION COMPONENTS INTO THE CORRESPONDING
PRINCIPLE COMPCNENTS AND ADC.

DC 1S5 LEVEL = 1.4
ODC 16 JCCL = 13
SUM = 0.0
DC 17 IROW = 1,3
PROC = FIELC(IROWSLEVEL)®*TRANSF (LEVEL.IROW, JCOL)
SLM = SUM+PROD
17 CONTINUE
FIELD(JCOL.LEVEL + 4) = SUM
16 CCNTINUE
15 CCNTINUE
DC S5 I = 1,3
STCTAL(I) = 0.
55 CCNTINUE

0
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DO 21 I = 1.3

DC 32 J=5.,8

BTOTAL(I) = BTOTAL(I) + FIELD(I,J)
CONTINUE

CONTINUE

IF(JOPT.EQ.0)GOTC 4120
WRITE(6+25)(BTCTAL(I)sI = 1,3)
FORMAT (' ', 2F10.2)

CONTINUE

COMPUTE THE MAGNITUDE OF THE TOTAL INDUCTICON VECTOR

TCTAL = 0.0

DC 33 1 = 1,3

TOTAL = TOTAL + BTCTAL(I)*BTOTAL(I)
CCNTINUE

TCTAL = SQRT(TOTAL)

RETURN
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