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I. INTRODUCTION 

Monitoring the motion of the different components such as control 

rods, fuel rods, and structural elements of a nuclear reactor core is 

vital to the safety of the plant. If, f or example, one or more 

fuel rods or other components break due to vibration, they can block the 

flow channels of the coolant through the core, and cause the fuel to 

overheat . The vibrating component produces a time dependent 

perturbation of the neutron flux which can be observed with the reacto r 

neutron instrumentation. In order to get familiar with t he 

characteristics of the responses of a neutron detecto r located in 

different parts o f a nuclear reactor to a vibrating core component, many 

theoretical and experimental investigations related to this subject have 

been carried out over the past few years (1-18]. It has been found, 

however, that the response of a neutron detector to a moving component 

is a complex function of the detector location relative to the 

component, and also the direction of motion of t he component rel ative to 

the detector. To provide insight into the interpretation of neutron 

detector signals produced by a vibrating component, i t is necessary to 

perform "separate effects" tests using simple systems that make it 

possible to study these various effects independently. 

Most of the experimental research which has been done to date on 

the vibrations inside a nuclear reactor has been limited to motion of 

the vibrator relative to the detector in one or at most two directions, 

one perpendicular to the other (7, 9, 10 , 15-17]. Since actual 
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vibrations usually are stochastic, elements could vibrate in many 

dif f erent directions of motion simultaneously. The purpose of this 

research is to study the response of a neutron detector as a function of 

the direction of vibrator motion relative to the detector using an 

exper imenta l vibration system located in the Iowa State University 

UTR - 10 reactor. Procedures used, involved turning the vibrator to 

different directions of motion and obtaining detector responses for each 

angular position of the vibrator . To do this, the vibration apparatus 

used i n (10 ] was redesigned so that it could be remotely turned to 

different angular positions in the fuel tank. 

In order to have fine control over the direction of motion and to 

avoid shutting down the reactor and manually changing the direction of 

motion for each test, a stepping motor was used and a control system 

des igned which provided control by a computer. A reliable and 

economical control system was designed by the author and was built in 

the Enginee ring Research Institute shop at Iowa State Univers ity. 
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II. LITERATURE CITED 

Research on the topic of the response of a neutron detector to an 

osci l lat ing component has been carried out by many authors fo r years 

(1 - 18). One of the most important theoretical developments is that of 

Van Dam (11) and Behringer et al. (12) who were able to demonst r ate t hat 

the neutron fluctuations produced by a moving neutron absorber consist 

of two independendent effects : the ' local ' effect which is space 

dependent and the ' global' effect, which is space independent. The 

local effect changes rapidly with position in the reactor. 

Pazsit (13), working with one - dimensional, space-dependent one 

group theory, showed that the neutron noise generated by a v i b r a t ing 

neutron absorber is much different from the neutron noise which resu l t s 

from a stationary absorber of varying strength. Pazsit and Analytis 

[14) also developed a two - dimensional model for a system, which 

illustrated the dependence of the response of a detector on the 

direction of motion of the absorber. 

Experimental measurements at Iowa State University were initiated 

by Al - Ammar (15] who constructed an apparatus which could be i nserted 

into the UTR - 10 in place of the central vertical stringer between the 

core tanks in the graphite. His apparatus consisted of a one -

dimensional vibrating cadmium absorber and two neutron detecto rs. Al -

Ammar found that the local effect was about 3.7 times greater t han the 

global effect fo r an absorber vibrating in the North- South plane at a 

frequency of approximately 1.0 Hz. The detectors were located 4 . 5 Cm 

f r om t he vibrat or. 
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Al - Ammar's work was improved upon by Borland [16]. Borland 

constructed a vibrating absorber device which incorporated a better 

absorber position measuring system and a sturdier vibrator, thus 

eliminating some of the problems inherent in Al - Ammar's design. 

Borland's device also had the capability of measuring the flux response 

with different detector - vibrator configurations. His wo rk verified Al -

Ammar's results, and demonstrated the dependence of the response on the 

direction of motion of the absorber relative to the neutron detector. 

The two - dimensional Green's function technique was used by 

Hennessy (17] to model the reactor response to a moving absorber. 

Borland's apparatus was used to check the experimental model . The 

results obtained showed the long range global and the short range local 

components and their interaction. 

Sankoorikal (10) constructed an experimental apparatus consisting 

of a vibrating neutron absorber which could be located in a modified 

fuel assembly. His design was such that it was possible to have the 

absorber move in one of two perpendicular planes and measurements could 

be carried out with the thimble in which the absorber moved unflooded or 

flooded with water. He studied the local to global ratio, which he 

found to be an indicator of the distance of the vibrating absorber from 

the detector. He concluded that the detector response depends on its 

location as well as its relative orientation with respect to the 

direction of motion of the absorber. 
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III. REACTOR RESPONSE TO A VIBRATING ABSORBER 

In this chapter, the response to a moving absorber is developed 

using the detector adjoint function. The analysis includes one - and 

two- dimensional analytic models. 

A. One - Dimensional Model 

Written in operator notation, the two - energy group, one -

dimensional diffusion equation is (13, 15, 18 ] 

L(x,t ) +(x ,t ) = 0 (3.1) 

where L is a 2X2 neutron diffusion oper ator matrix and + is the flux 

vector. If it is assumed that only the the rmal absorption cross section 

is perturbed by the vibration, the cross section and flux vector may 

then be stated as [18] 

( 3.2 ) 

and 

+(x,t ) = +Cx , O) + 6t (x, t ) 

where raZO and +(x,O) repres ent the s t eady state components of the c r oss 

section and flux vector and ora2 (t) and 6t (x ,t) describe their time 

dependent components. The index 2 represents the the rmal group. The 

perturbed variables are substituted into Equat ion (3 .1 ) ; these equations 

are then linearized and convert ed to the frequency domain by applying 

the Fourier transform. This yields 
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L(x,w)~~(x,w) = S(x,w) ( 3 .3 ) 

where ~~ is the complex frequency dependent flux perturbation vector, 

and S describes the frequency dependent cross section perturbation and 

is given by the product of ~ta2 (x,w) and the steady state thermal flux 

~20 . Equation (3.3) has complex coefficients and can be solved for the 

real and imaginary components of ~~(x,w) (15, 18]. 

The adjoint function technique (12] is used to solve Equation 

(3.3). This gives 

+ + L (x,w)f (x ,w ) = td(x,w) ( 3 .4 ) 

where L+ is the complex 2X2 adjoint operator, f+ is the complex adjoint 

flux vector, and td is the cross section vector (considered real ) for a 

thermal detector of magnitude Q located at x=x0 . Thus, 

( 3 . 5 ) 

+ Next, the inner product of Equations (3.3) and (3 . 4) with f and 

~~. respectively, are calculated. From the definition of the adjoint 

function (19], it can be shown the left-hand sides of the two inner 

product equations are equal. Thus, the right-hand sides may be equated 

and, using an integral representation of the inner products (20], 

written as 

J x 
T + J S(x,w) f (x,w)dx . x ( 3.6 ) 
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Equation (3.5) is substitued into Equation (3 . 6), which is solved 

for the perturbed thermal flux, yielding 

( 3. 7) 

Equation (3.7) describes the response of a thermal detector 

located at x=x0 to a thermal absorption perturbation at point x in the 

reactor . 

In a one - dimensional analysis, the vibrating absorber may be 

described as a thermal neutron absorbing plate located at x , vibrating p 

with an amplitude of ±E, and having an absorption strength of r. Thus, 

or 2 (t) = r{o(x-x - E(t)j-O(x-x )} . (1 . 8) a p p 

Equation (3.8) is substituted into Equation (3 .7 ) and then the 

space integral is carried out which yields 

~+2 Cx0 ,w) = (r/Q)(+2 Cx )af2 Cx,x0 ,w ) / axl = +o p . X x
0

_ ... 

(3 . 9) 

Equation (3.9) describes the two basic components that comprise 

the detector response. The first component depends upon the static 

thermal flux and the gradient of the thermal adjoint function; it 

describes the response due to the movement of the local flux depression 

around the absorber and, consequently, it is called the "local" effect. 

The second term is dependent upon the thermal adjoint function and the 

thermal flux gradient; it describes the reactivity effect generated by 
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the absorber moving through a flux gradient. Since t his effect is 

slowly varying in space, i t is called the "global " effect . These two 

effects can add, or subtract, depending upon the signs of the gradient 

terms in Equation (3 . 9). 

B. Two- Dimensional Model 

For an absorber of strength r located at x=x , y=y , and vibrat i ng p p 
so that the vibration amplitude may be described by (14] 

E ( X ) = E ( t) + E ( t ) , x y 

the response of a detector located at x=x , y=v~ , and with 
0 - " 

magnitude Q is [15) 

2 ( r /(QM E 2)){[+ 2 ( x ,y ,w ) aG2 (x ,y ,x0 ,y0 ,w) / ax a p P P p p 

+G2 Cx ,y ,x0 ,y0 ,w ) a+ 2 (x ,y ,w )/ ax )E (w) p p p p p x 

+[+ 2 (x ,y ,w)aG2 (x ,y ,x0 ,y0 , w)/ ay p p p p p 

+G2 (x ,y ,x0 ,y0 ,w)a+2 cx ,y ,w) / ay ]E (w)} p p p p p y (3.10 ) 

where M2 is the thermal migration area and G2 refers to the two -

dimens ional Green's function solution to the original differential 

equation. 
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As in the case of the one-d imensional model, the detector adjoint 

. + + funtion '!' (x, w) and the adjoint operator L (x,w) are both complex, while 

the detector cross -section Ed(x), from a practical point of view, is 

real and frequency independent. Therefore, the adjoint Equation (3.4) 

can be written in the following form: 

(3 . 11 ) 

where 

+ + + L (x,w ) = ~(x,w) + jL1 (x,w) 

The real and imaginary parts of Equation (3.11) can be written 

separately as 

( 3.l~a ) 

The subscripts (x ,w ) have been dropped for simplicity. Assuming 

+ + that 'l'R is the main variable in (3.12a) and '1' 1 is the main variable in 
+ (3.12b), then L1'1'1 can be thought of as an "up scatter" term from 

+ (3.12a) to (3.12b) and L1'l'R i s a "down scatter" term in these coupled 

equations. For a two- group calculation, the matrix Equations (3 .12a) 

and (3.12b) will form four-"group" equations in the variables 'l'lR' 'l'
2

R' 

'1' 11 , '1' 21 and each of these equations will contain a coupling term 
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representing an " up scatter" or "down scatter" or both. To solve such 

equations using exist ing static codes , a code shou ld be selected that 

can handle up and down scatter terms for four "energy" gr oups . 

If the calculation is restricted to the plateau r egion of the 

global response , where A<<w<<~/ £, then LI=O. This will reduce the 

equations to 

In this form , the correspondence between f+ and f+ has been lost R I 
due to the missing coupling term. 

As theoretical Equation (3.10) predict s and experimental results 

confi rm, the detector response is a function of the directions of motion 

of the vibrator through the E and E functions. During the experiment x y 

performed in this study, the x(t) and y(t) components of the vibration 

amplitude change due to the rotation of the vibrator assembly, and the 

responses of the neutron detector s change accordingly. Experimental 

results are presented in section V of t his thesis which support these 

observations. 
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IV. EXPERIMENTAL EQUIPMENT AND PROCEDURES 

In this chapter, the equipment and computer software used in the 

study are discussed. Included are (A) the vibrator system, ( B) the 

stepping motor, (C) stepping motor control system, (D) the software 

programs, and (E) experimental procedures. 

A. The Vibrator System 

The experimental apparatus used in this research is basically the 

same as the one used by Sankoorikal (10]. The modifications to the 

apparatus , and the experiment plan, i nc luding the safety analsis r epor t , 

are explained in (21] . 

The vibrating absorber consists of a cadmium strip ( 2.54 cm by 

0.63 cm by 0.16 cm typical) secured in a slot at the end of an aluminum 

rod (66.04 cm by 0.63 cm dia., see Figure 1). The other end of t he 

aluminum rod is attached to an aluminum block (5, Figure 1) mounted on a 

horizontal pin. Power applied alternately to two 24v DC push - type 

coils, placed above the aluminum block, causes the armatures in t he 

coils to push the aluminum block alternately down and up. This results 

in a vibrating motion of the aluminum rod and the cadmium absorber. An 

aluminum rod ( 10.16 cm by 0.32 cm dia., see Figure 1) attached to t he 

aluminum block connects it to the core of a linear variable differential 

transformer (LVDT), which measures the vibrator position ( the signal 

from LVDT decreases as its core goes into LVDT). The coi l s , LVDT and the 

pivo ting aluminum bl oc k a r e mounted on an aluminum s t ruc t ure (Figur e 1) . 

This struc t ur e s its inside a n alumi num 
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2
1 ) Aluminun structure 

) LVDT 
3) LVDT connecting r od 
4) Coils 
5) Alu.I:linum block 
6) Aluminum rod 
7) Cadmium (absorber) 
8) Positio~ing ~a_~gers 

FIGURE 1 . Front and side views of the vib r ator assembly 
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enclosure (Figures 2 and 3) made of two different diameter tubes, the 

top one 20 . 32 cm long by 3 . 81 cm OD and the bottom one 71.12 cm 

long by 2.14 cm OD. A fuel element was reassembled leaving the third 

fuel plate out resulting in a gap of width 2 . 23 cm between the second 

and fourth fuel plates . The 2.14 cm OD tube containing the vibrator was 

located in this space (Figures 4 and 5 ) . Note that this tube extends 

below the mid elevation of the fuel element. A plastic s c rew at the 

bottom of the small tube can be tightened to make the tube water tight 

for "dry" operation or opened s lightly to fill the tube with water. The 

coil arrangement (Figure 6) was well above (about 10. 16 cm) the water 

leve l in the co re tank during normal ope ra t ion. The mounting plate 

rests on two separator plates in the co re ( Figure 4 ) . The norma l 

position of the neutron absorber is at the mid efevation of the fuel 

e lement. The aluminum v ibrator structure (Figure 1) (without 

positioning hangers on the top side ) can be rotated by increments o f 1.8 

degr ees in the range of 0 to 180 degrees resulting in 100 possible 

planes of vibrations. The maximum displacement of the absorber from the 

neutral position is approximately 0.95 cm. 

An aluminum tube ( 101.60 cm by 2 . 14 cm OD) with a water tight 

plastic screw at the bottom end, filled with Plexiglass "donuts" holds a 

(5.08 cm by 1.59 cm dia. ) BF - 3 det ector (N. Wood model G-5 - 3, 60 cm of 

Hg gas pressure). This tube is also l ocated between the second and 

fourth fuel plates (Figures 4 and 5) of the fuel element (this detector 

is located about 3.80 cm from the absorber ) . The BF - 3 detector was 
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FIGURE 2. Vibr a t o r t himble 



FIGURE 3. Detector cover 

16 

I I I I 

' ' ' 
~-= =-: T -;- I 

I ' 

I 

~.::.~_-;i 
I 

I 
I I I 

I I 

I I 

Plexiglass 11 donu ts 11 

detector 



17 

1 . Mounting pla~e 
2 . Teflon screw 
3. Tightening plate 
4 . Vibr ator thimble 
5. J etector th i oble 

7 6 . Plastic screw 
7 . :'uel element 

F IGURE 4 . The vib r a t or assembly -co~= tank configurat j on 
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operated as an ion - chamber . The detec t or and vibra tor enclosures are 

held securely i n position by two aluminum screws and al so by tightening 

the new ellip t ical shaped aluminum b l ock (Figure 7) which can slide on 

the mounting aluminum plate. The mounting plate is held in pos ition by 

t he aluminum " f ingers" extending down from it and can be secured by 

tightening a Teflon screw (see Figures 4 and 5) . 

The following pa r agraphs refer to Figures 7 and 8 and Table 1 . 

The DC - stepping motor ( 13 ) is held on the aluminum motor adapter 

( 1) by three nylon screws (16 ) , ( 18 ) . One of these sc r ews (18 ) plus one 

additional s c rew ( 17 ) are used to attach the aluminum moto r adapte r ( 1) 

t o the vibrator enclosure. A l a rger scr ew ( 19 ) , pas sing throu6h 1n 

a luminum washer ( 20 ), is als o us ed t o adjust the hor i zontal mot ion o f 

the aluminum mot or adapter ( 1) on the aluminum mounting plate (2). 

The vib r ator disc (5) of the r otatable vibrator s t ructure is connec t ed 

to the aluminum motor ~dapter ( 1) by an a luminum tube ( 7) , an aluminum 

round cyl i nder ( 11), a nylon set screw ( 14 ) and a spur gear (4 ) . By 

means of three equa l radius spur gears ( 10) , the torque of the motor is 

transferred to the vib r ator assembly ( Figure 1) . 

A thin aluminum d i sc ( 9) , with two s li t s on the diameter is 

located on the shaft of the motor . This is used to monito r the position 

o f the vibrator by the opto - electronic ( 12) instrument mounted (8) wi th 

two nylon screws ( 15) t o the a l uminum mot o r adapter ( 1 ) . 



FIGURE 7 . Motor adapter assembly sec tion, full sca l e 
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TABLE l . Bill o f materials for the added parts 

No. Qty. 

1 1 
2 1 
3 1 
4 1 
5 1 
6 1 
7 1 
8 1 
9 1 
10 2 
11 1 
12 1 
13 1 
14 4 
15 2 
16 5 
17 1 
18 1 
19 1 
20 1 

Names 

Motor Adapte r 
Main Block 
Shield Block 
Spur Gea r 
Vibrator Disc 
Delrin Round 
Alum. Tubing 
Delrin 
Delrin Round 
Spur Gear Delrin 
Aluminum Round 
Electric Eye 
Stepping ~lotor 
~ylon Set Ser. 
Nylon Scr ew 
Nylon Screw 
Nylon Screw 
Nylon Screw 
Nylon Screw 
Alum . Washer 

1All d i mensions in inches . 

Dimensions 1 

Alum. Flat 1X3 . 5X5.75 Long 
Existing 
Existing 
See Detail Delrin 
Exis ting (must be modified ) 
3/16 Dia.Xl / 3 Long 
3/ 8 O.D.X0.070 WallXl.5 Long 
0.5X0.5Xl Long 
1.75 Dia.X5 / 16 Long 
0.875 P .D.X3/ 16 Bore (42 teeth ) 
7/ 8 Dia.X0. 5 Long 
Existing 
Existing 
6- 32Xl / 4 Long 
10- 32X l / 2 Long Round Head 
10- 32X3 / 4 Long 
10- 32Xl.25 Long 
10- 32Xl . 5 Long 
3/ 8- 24NFX1 Long 
1 O. D. X3/ 8 P .D.Xl / 8 Thick 

The purpose of the DC-stepping motor is to rotate the vibrat ing 

s tructure to any angle between 0 and 180 degrees . Special control 

circuits (section -C) and software ( section- D) were developed to control 

the stepping motor with an HP-85 computer. 

The purpos e o f the opto-electronic device is to provide a fine 

refer ence point of the vibrator assemb ly angular position inside the 

reactor for the operator of the experiment . This electronic device 

sends signals to the stepping motor driver to light a refer ence light 

when one of t he sli t s passes through the opto- electronic device . No te tha t 

the detecto r and vibra t or positions can be inte r changed by removing 
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the apparatus from the reactor and exchanging them. This is done by 

rotating the elliptical shaped aluminum block by about 60 degrees . 

The cables to the detector, the coils, the DC - stepping motor, t he 

electronic eye and the LVDT are taken out by removing the shutdown 

closure plug above the fuel element. Plywood strips (2.50 cm thick) 

were used to raise the operating closure s o that the cables cou ld be 

brought out to the operating closure plug (Figure 6). The cables pass 

through a special shield plug, with curved conduit, which is located in 

the operating closure. The cables to the coils and the LVDT a re pas sed 

through the aluminum tube (7). 

B. Stepping Mo tor 

A SLO-SYN Stepping Motor (Superior Electric, M061-FC027) is a 

pe rmanent magnet motor that converts e lectronic s igna ls into mechanical 

motion. Each time the direction of the current in the motor windings is 

changed, the motor output shaft rotates a s pec ific angular distance. 

The motor shaft can be driven in either direction. 

These stepping motors have permanent magnet rotors and eight-pole 

stators . They have no brushes, ratchets or detents and use shielded 

ball bearings to insure maximum reliability and long life. The motors 

are totally enclosed, but are not sealed against direct splash of water, 

oil or other liquids. When the operating environment includes direct 

splash of water, oi l , cutting fluids , etc., the motor should be 

protected from such exposure . 



25 

These motors have Class B (130 degree celsius) winding insulation 

and may be operated at ambient temperatures from - 40 to +40 degree 

celsius. The continuous duty temperature rise is 65 degree celsius . 

They operate on phase - switch de power. The motor shaft advances 200 

s teps per revolution ( 1. 8 degrees per step) when a four - step input 

sequence ( full - step mode) is used. Power transistors connected to flip -

flops or other logic devices are normally used for switching as shown i n 

the wiring diagram, Figure 9. The four -step input sequence is also 

given in Table 2 . Since current is maintained on the mo tor windings 

when the motor is not being stepped , a high holding torque results . 

During use , it was found that the stepping motor would 

occasionally turn in the wrong direction . The reason for this is due to 

the following problem whic h was not known during the actual experiment. 

As the manufacturer of the DC-stepping motor points out, transient 

vo ltages are generated as current is s wi tched through the windings 

during stepping . These voltages can cause f au l ty operat ion (in 

rotation) and damage to the motor or drive components unless a means of 

limiting or removing them is provided . The most common method for 

suppressing transient voltages us es s hunting diodes as shown in the 

wiring diagram in Figure 10. The components which were used to correct 

the system we re four ( 1N4007, 1000 Vo l ts In Reverse , 1 Amp.) diodes 

(Figures 9, 10 and 11 components D). These modifications were done 

after the experiment. 
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FIGURE 9. DC stepping circuit 

FIGURE 10. Typ tcal transjent vo l tage suppression c i r cui t 

C. Stepping Motor Control System 

There are four windings in a stepping motor and a permanent magnet 

in the center , therefore, each winding should be energized and produce 

positive and negat ive polarities which can repel and/or attract the 

permanent magnet inside the structure of the motor and cause t he 

permanent magnet to rotate 90 degrees around its center line. This is 

the internal shaft of the motor which drives gearing inside the motor 

structure making the output shaft of the motor rotate only 1 . 8 degrees , 

while the permanent magnet turns 90 degrees. 
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To design the control system for such a motor (see Figures 11, 12, 

and 13), there was a need for a solid state logic circuit to make it 

possible to cont rol the moto r with the HP - 85 computer and the HP- 3497 

data acquisition system, or manually using the internal clock source, 

555 t imer integrated circuit. The speed of the motor also can be 

changed by adjusting the potentiometer nob on the stepping motor driver 

device when the system is in manual mode. Since there are four windings 

that make the moto r turn, there should be a t least fou r power transistor 

switches which can turn the power supply to these windings O~ and OFF 

(see Table 2). The state diagram and logic design ~hich would m1 ke the 

motor turn correctly were designed and are sho~n on Figures 11, 12, and 

13. 

TABLE 2 . Four - step input sequence 1 (fu ll -
step mode) 

STEP SWl SW2 SW3 SW4 

l ON OFF ON OFF 
2 ON OFF OFF ON 
3 OFF ON OFF ON 
4 OFF ON ON OFF 
1 ON OFF ON OFF 

1 Provides CW rotation as viewed from 
nameplate end of motor. To reverse 
direction of motor rotation perform 
switching steps in the following order: 1, 
4, 3 , 2, 1. 
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Figure 12 shows that each winding in t he motor, which makes up the four 

states, is labelled from 0 to 3 and at each moment two o f these windings 

( labelled A and B) should be energized, Table 2. In order to go through 

these states con t inuously , a solid state counter like a SN74 191 (see 

Figure 11) was used to count from 0 to 3, binary wise ( AB: 00 , 01 , 10, 

11) , cont inuously . 

The 5~74191 counter was chosen since it has the feature o f up / dm.;n 

control. Using that, one can control the direction of rotation of the 

stepping motor. The signals f r om the HP - 3497 data acquisition system 

are used for the clock and the directional cont rol of the stepping ~Q:or 

while the DC - stepping motor device is in the computer mode. 7he H? - 3~~; 

has two sof tware controllable outputs ; one is the TI~E OCTPCT ~ ~ich ~a~ 

used for direction level control and the other is OCTPUT A of the data 

acqusit ion frequen cy counter whi~h was used for the clock sequence. Due 

t o circuit constrain ts and t he shape of the outpu t signals from the 

HP - 3497, the signals had to be passed through the fi l tering and delay 

ci r cuits using inverters, capacitors and resistors as shown in Figure 

13 . In the same figure, one can see the locations of the manual 

s witches which were used to change the modes of the DC - s tepping motor 

driver device for compute r mode, manual mode, and direc t ion modes when 

the device is in the manual mode. The reset button or key is used to 

clear the SN74107 flip flops fo r initia lization of the system when the 

system is in compute r mode. This key is also used to block the s ignals 

f r om going through the motor and therefore , stopping the motor in an 
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emergency situation such as a mulfunction in the system where the mo tor 

tends to keep turning. 

D. Softwar e Programs 

The software program "AUTOMATION", whic h was designed to run t he 

motor automatica lly in the computer mode, is shown in Appendix A. Th is 

software program was designed based on the characteristics of the HP - 85 

computer, the HP- 82902M s torage system , the HP - 3497 da ta acquisi tion 

sys tem, the HP - 3582A spectrum analyzer and the DC - stepping motor driver 

dev ice. Using this program one can gather the follo~ing vibration 

measurement data using t he HP - 3582A spectrum analyzer: ( 1) the square 

roo t of the APSD o f the input A, ( 2) the square root o f the APSD of the 

input B, (3) the t r ansfer func tion of input B with respect to input A, 

(4 ) the phas P. and (4 ) the coherence function. To aid in record keeping, 

these da ta were labelled using the designations A, B, M, P, C. Data 

were stored on disc using the HP -82902~ dis c d rive. An indexing 

no tat ion was developed using a number between 1 and 11 with each data 

se t label, to indicate the angular position of the vibra tor apparatus. 

The angles from 0 to 180 degrees were divided into steps of 18 degrees. 

The vibrator apparatus was turned from 0 to 180 degrees, and then the 

program automatically makes the stepping motor rotate back t o 0 degrees, 

or t o the reference for the second run, when the two inputs to the 

spectrum analyzer (HP - 3582A) are changed. In this case, the combination 

of the inputs ( input A-input B) is as follows (1) LVDT-DETl, (2) LVDT-
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DET2, and (3) DET1-DET2. Since the typical time for a single step of 

the stepping motor is about 2 . 5 msec., enough waiting time was allocated 

between necessary sof tware instructions. The program "DATA READER" 

(Appendix B) was used to read and store the values of different data at 

a frequency of 1.52 Hz (the fundamental vibrator frequency) , for 

different angular positions. This program also made the data more 

understandable and useful for t he purposes of normalization and graphing 

of profiles of the vibrations in different angular positions . The 

program "NORMALIZER" (Appendix C) was used to normalize DETl, and DETZ 

data with respect to the LVDT and DETl with respect to DET2 . The 

program "PLOTTER" (Appendix 0) was used to graph most of the data 

gathered. 

For more information on the experimental appratus, the experiment 

plan (21] written for this research by the author may be referred to. 

E. Experimental Procedures 

An experimental plan, including the safety analysis report (21), 

was prepared for the experiment. This was appoved by the Reactor Use 

Committee, and the pre - experimental tests were performed as outlined in 

it. 

The locations of the modified assembly, the experimental 

appara tus, the i n- core detector DETl (BF3 detector, located about 3 .8 cm 

from the absorber) are shown in Figures 5 and 6. The detector high 

voltage of approximately 240 vol ts is supplied by batteries. The second 
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detector, DET2 (Figures 5 and 6), (compensated ion chamber (CIC ) , 

Westinghouse type 6377) was located in the position of the 19 - inch 

stringer in the thermal column at a distance of about 35 cm from the 

vibrator. The high voltage and the compensating voltage used were 600 

volts positive and 30 volts negative, respectively. As mentioned 

previously, the vibrator -detector positions could be interc hanged (east 

or west). Measurements were taken with the detector DETl on the east . 

By flooding the vibrator thimble, it was possible to change the 

magnitude of the flux gradient in the region in which the vibrator was 

moving. Two cases, thimble flooded and thimble unflooded, were studied. 

Another way of changing the flux gradient is by altering the regu lating 

rod positions. All measurements were obtained with the regulating r od 

at 99.5% and the shim -safety rod at 75.8% withdrawn . 

A 1 . 52 Hz square wave was used for the vibrator exci t ation . As 

mentioned before, for each experimental situation, three channels of 

data, viz . LVDT , DETl and DET2, were available. For different 

combinations of these three signals , five sets of data ( the square root 

of t he APSD for the two channels , the transfer function magnitude and 

phase, and the coherence between the two channels) were measured. Since 

the 1.52 Hz signal was strong and statistically invarient, 8 rms 

averages with the spectrum analyzer were used during data collection. 

The "Flat top" mode of the Pass Band Shape of the spectrum analyzer was 

used because of the trade-off criteria between the frequency ~ rd 
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amplitude resolution of the system. For all the runs, the reactor power 

was 200 W and the coolant inlet temperature was 80 degree Fahrenheit. 

The reactor was operated manually and the data were collected during the 

time the reactor power was not drifting. In the software program 

"AUTOMATION", enough waiting time (1 - 2 min.) was allocated (between 

instructions) for the operator of the reactor to make any required 

control rod position changes to stablize the power while data was not 

being collected. The sensitivity of the analyzer was adjusted to the 

maximum without overloading. The analyzer and filter were zeroed before 

data collection to reduce the DC component that appears at the analyzer 

input. 

As shown in Figure 14 and Table 3, the current output from the 

detector DETl is fed into a DC - coupled preamplifier (Ames Laboratory) 

which converts the detector current to an output voltage. The phase 

between the input and the output signal is almost zero. The detector 

DET2 current was measured using a ·high- speed picoammeter (Keithley model 

417) which was capable of giving an output voltage between zero and 

minus three volts for a meter deflection of zero to full scale on any 

range. This introduces a phase shift of 180 degree between the input 

and the output of the picoammeter. 

At any time, two out of three channels of available data were 

passed through two identical band-pass filters and then to the spectrum 

analyzer . Each band - pass filter was formed using a low - pass filter 

(Burr - Brown model UAFll) with cut-off at about 15 Hz and a high-pass 
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filter (Krohn-Hite model 3321) with a cut off at 0.1 Hz. Since each 

filter has a time constant, and the output of the filter is meaningless 

for a time equivalent to several time constants, enough waiting time 

(1 -2 min . ) was allocated between the instructions in the software 

program "AUTOMATION", so that the data stored were meaningful. 

For more information on the data acqusition and analysis system, 

the reader may refer to Sankoorikal's thesis (10] . 

Note that an exact way of obtaining the " physical" 0 degree 

position of the plane of vibrator motion relative to the detector was 

not available and that a small variation in angular placement position 

resulted in a significant r otation ( 36 degrees ) of the direction o f 

motion from physical 0 degree, Figure 15. Since for each set of inputs 

to the spectrum analyzer, the experiment had to be started from the 0 

degrees, there were six rotational cases from 0 to 180 degrees (Figure 

15). Referring to this figure, one can see the rotation direction of 

the s t epping motor as inferred from the data obtained from available 

inputs to the spectrum analyzer. It was found that for data sets 1-4 , 

the vibrator rotated CCW, and for data sets 5 and 6 it rotated CW. 

Figure 16 shows the assumed and experimentally obtained signal 

characterist ics of the input and output signals based on the data 

obtained (Figures 17-48 , chapte r V). 
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TABLE 3. Component numbers and their descriptions for Figure 14 

No. Desc r iptions 

1 Detec t or2 (CIC), DET2 
2 Detectorl (BF3 ), DETl 
3 LVDT 
4 Two 24 volt DC push- type Coil s 
5 DC-Stepping Motor and Electronic Eye 
6 Compensating voltage ( - 30 volts) 
7 High voltage ( 600 volts) 
8 High voltage ( 240 vo lts ) 
9 Picoammeter 
10 Preamplifier 
11 LPM210 Signa l Conditioner 
12 Square Wave Generator ( 1.52 Hz, clock) 
13 Coil Switching Unit 
14 Hig h pass fil t er (O. l Hz) 
15 High pass filter (0. 1 Hz ) 
16 24 - vol t DC Power Supply 
17 DC - Stepping Motor Drive r System 
18 Low pass filter . (15 Hz ) 
19 Low pass filter ( 15 Hz ) 
20 Frequency Spectrum Analyzer 
21 Square Wave Generator ( 400 Hz, clock) 
22 HP - 3497 Data Acquisition System 
23 HP-Plotter 
24 HP - 85 Computer · 
25 HP-Disc Storage 
26 HP-Pr i nter 
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V. DISCUSSION OF RESULTS 

Results obtained for the various combinations of signals studied 

are shown in Figures 17 to 46 . Figures 17 through 31 correspond to the 

unflooded case, and Figures 3Z through 46 correspond to the flooded case 

of the vibrating rod thimble. Every five consecutive figure numbers 

form a data set ( 1. normalization, Z. SQR. of APSD of t he input A, 3 . 

SQR. of APSD of the input B, 4. phase, 5. coherence) which were gathered 

from one of the input sets to the spec trum analyzer as follows: ( LVDT to 

I~PUT A @ DETl to I~PUT B) , (LVDT to INPUT A @ DETZ to I~PUT B), (DETl 

to INPUT A @ DETZ to I ~PCT B) . Results are presented i n the gene ral 

form of a particular output ( normalization , magnitudeA , magnitude3 , 

phase, coherence ) versus the angular direction of motion of the 

vibrato r. All measurements are for a vibrator frequency of l.5Z Hz. A 

complete analysis of the behavior shown for all cases studied has not 

been possible. The results for all data taken are p res ented, however, 

to show the sensitivity of the detector response to the direction of 

vibrator motion and to provide an indication of the scope of the problem 

for future research. 

Some explanation of notation is required befo re one looks at the 

figures of this chapter. To fully understand the meaning of the 

vertical axis label of these figures , one should also refer to the table 

of acronyms to check the meanings of some abbreviations used. 

The notation Anglel@AngleZ (e.g . 126@90) means that Angle! is 

equivalent to Angle2 ( always physical 90 degrees ) in the physical 
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environment of t he direction of motion o f the vibrator relative to DETl. 

The other notation is Signall@Signal2 (e .g., DETl@LVDT), which means the 

graph shown was obtained from Signall, and it also means that, at the 

same time ( 1~ 11 ), the other input to the spectrum analyzer was Signal2. 

As mentioned before, it was found that the s tepp ing motor would 

occasional ly turn in the wrong direction . This is illustrated in 

Figures 17 through 26, which show that the vibrator actually t urned .in 

the other direct ion relative to the other figures (Figure 15 ) . 

As mentioned before, the spectrum analyzer was used fo r collect ing 

and processing the data in this experiment . This sys t em was used t o 

calculate t he square root of the APSD of the two inputs, the transfer 

func tion magnitude and phd~~ . and the coherence between the two inputs. 

As also mentioned by Sankoorikal [10], it was cbserved t hat, due t o 

design limitations, the LVDT frequency spectrum (and therefore vibrator 

motion) varied slightly for different runs (Figures 18, 23, 33 , 38). In 

order to correct for this, and to compare the data f rom different runs , 

i t was necessary to normalize the data. This was done by normalizing 

the detector signals to the LVDT signal, and also the DET2 signal was 

normalized to the DETl signal to show the var iations of DET2 with 

respect to DETl (Figures 17, 22, 27, 32, 37, 42). The formula used was 

NORMALI ZED DATA= (UNNORMALIZED DATA) / (NORMALIZER DATA). 

By observation, it was found that as the vibrator cadmium i s 

moving away from DETl, by ass umption the reactivity increases and by 

exper iment the LVDT signal increases or decreases depending on the way 
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the LVDT is pos i tioned radially. Figure 16 shows the relationship among 

the LVDT, DETl, and DET2 signals, and the pattern of the motion of the 

vibrator. Since the LVDT device was also being rotated by the motor, 

the phase (Figures 20, 25, 30, 35, 40 , 45) show that the LVDT motion 

orientation changed to reverse motion around the physical 90 degrees of 

the vibrator relative to DETl. 

When the vibrator oscillates at an angular position of 90 degrees 

relative to DETl, the local response of the DETl is at double the 

fundamental frequency (16], and therefore zero at the fundamental 

frequency. Based on this, the dips shown in the data obtained from DETl 

show the physical 90 degrees angular direction (Figures 19 , 28, 34 , 43 ) . 

The response at 1.52 Hz for this case must therefore be that due to the 

global response only. As pointed out previously, the actual 0 degree 

direction of motion did not necessarily coincide with the physical 0 

degree position. These dips were used to establish the physical 0 

degree position and the global portion of the response . Figures 24, 29, 

39, and 44 which form cne response of DET2 also display these kind of 

dips, but at a different angular position from that of DETl. These 

could be due to the lack of the neutron flux gradient around those 

angular positions inside the UTR-10 reactor. Looking at the magnitude 

Figures 19, 24, 28, 29, 34, 43, and 44, one can see that as t he vibrator 

oscillates in different angular positions relative to the DETl, the 

responses of DETl and DET2 change according to the direction of the 

motion of the vibrator. One important point in these f igures is that 
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they illustrate that when the vibrator is oscillating at a physical 90 

degree angle relative to DETl, the response of DETl is due only to the 

global effect . These figures also illustrate that the vibrator 

reference point was offset from the original intended one by 

approximately 36 degrees (physical zero degree reference = vibrations in 

EW direction, Figure 15) 

The phase Figures 20, 25, 30, 35, 40, and 45 show that the 

orientation of the LVDT, with respect to the detectors, changed as the 

vibrating rod passed the physical 90 degree point. That is why one can 

see the DETl and DET2 signals increase to 180 degree phase shift 

relative to the LVDT signal when the vibrator rotates towards the 180 

degree angular position . The phase figures between the detectors show 

that there is an 18 degrees phase shift between the responses of DETl 

and DET2 which is equal to the phase angle of the reactor transfer 

function. Also at actual ~6 degrees, the DET2 response goes toward zero 

(explained latter) and the phase shift between the detectors goes to 

about 180 degrees . 

It is also known that the spectrum analyzer flips the angles by 

±360 degrees if the phase angles pass the ±180 degree limit of the 

system. This is why some of the phase angles show rapid changes in 

value. 

The coherence functions (Figures 21, 26, 31, 36, 41, and 46) show 

that the analyzer's two input signals are always coherent except at the 

angular position of 90 degree. This could mean that the DET2 response 
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dropped at that particular angle due to the flux orientation inside the 

reactor (reactivity effect). It may also be due in part to the loss of 

the local component of the response . Both the unflooded and the flooded 

cases show the same general behavior. 

Figures 47 - 48 show the calculated local and global responses of 

the unflooded case based on the method, which is explained in the 

following section. 

The global part of the response was obtained by using the fact 

that when the vibrator is in motion at physical 90 degree relative to 

DETl, the response of DETl at 1 . 52 Hz is only due to the global effect 

(16]. This is the only time that DETl sees the global effect without 

the local effect combined with it. Therefore, this point was used to 

scale the global effects monitored by both detectors . The assumption 

was made that DET2 responds to the global effect only. The response of 

DETl was divided by the response of DET2, at the physical 90 degree 

point only, and then this ratio was multiplied by the response of DET2 

at all points. This provided the scaled global effect seen by DETl due 

to the vibration. To estimate the local effect the scaled global effect 

was subtracted from the response of DETl. This calculation was based on 

the assumption that the phase angle of the reactor transfer function is 

negligible at 1.52 Hz frequency. 

Several different assumed 90 degree poin~s were tried (36 , 54, 72 , 

and 90 degrees), but the most consistent results were obtained using 54 

degrees as corresponding to the physical 90 degree point. The resulting 

L/ G ratios (Appendix E) are given in Table 4. 
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TABLE 4 . L/G ratio at different angular 
positions (A.P . ) (54@90) 

A.P. L/G 

0 3.9 
18 6.3 
36 6.4 
54 (physical 90) 0 
72 0.7 
90 1.1 
108 1 . 4 
126 1 .8 
144 (physical 180) 2.2 
162 2.8 
180 3.9 

To provide a check on these data, the results obtained by 

Sankoorikal [10] can be noted. For east -west vibrator motion he found 

an L/G ratio of 1 . 6 . East - west motion would correspond approximately to 

an angular position of 144 degrees (based on 90 degree corresponding 

exactly to 54 degrees) for the current work. A value of 2 . 2 was 

obtained for this direction. It should be pointed out that the 54 

degree direction may not correspond to the exact physical 90 degrees 

since the data from which it was estimated were obtained in 18 degree 

steps. It can be concluded, therefore, that the L/ G ratios for these 

measurements do not differ significantly from Sankoorikal's results for 

this direction of motion . 

Since one expects the global part of the response to be a constant 

value, the global effect (Figure 48) basically shows the gradient of the 
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neut ron flux in different angu l ar positions inside the UTR - 10 reactor . 

The local effect (Figur e 47 ) basically shows the orientation of the 

vibrating absorber wi t h respect to t he DETl. 



80 

VI. CO CLUSIONS 

Within the scope of this study, the following conclusions are 

justified: 

1) The direction of motion of the vibrator affects the detector 

response. 

2) The local and global components of the response can be 

isolated by using the physical 90 degree motion data. 

3) The suitability of a s t epping motor for remote control of an 

experiment in a reactor has been demonstrated and procedures for the 

automated control and data acquisition of the experiment via software 

programs developed. 

4) The responses for the flooded and unflooded cases, although 

showing somewhat the same behavior, require further study to clarify the 

trends observed . 

5) Additional studies are r equired to develop an explanation for 

the structure or detail found in the responses. 
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VII. SUGGESTIONS FOR FUTURE INVESTIGATIONS 

The following ideas are suggested as areas f or future research. 

1) Exchange the places of the vibrator and DETl and repeat these 

measurements. 

2) Repeat the flooded case fo r both orientations of the vibrator . 

3) Readjust the zero reference of the vibrat or system with 

respect to DETl, so that physical 90 degrees of the vibrator matches 90 

degrees of the sys t em' s software program. 

4) Insert more neutron detectors around the nuc l ear reactor core 

to obtain information required for locating t he vibrating element. 

5) Exc ite the vibrator with the pseudo random binary sequence 

(PRES) signal and r epeat t he experiment. 

6) Perform measurements at smal l er angu l ar steps t o obtain finer 

deta il of t he response as a f unction of the vib rat ion direction . 
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X. APPENDIXES 

A. Automation 

~. ! AUTOMATIOt~ 
10 REMOTE 70'3 
20 CLE AR 709 
30 T= O 
40 X=O 
50 Y=O 
50 Al=O 
70 A'3=0 
80 A3=0 
90 GOTO r:.5n 
100 IF A3 >180 OR A3 <0 THEN 110 E 
LSE 130 
110 DI SP "ERROR . . . ANGLE MU ST RE 
BETWEEN ( 0) AND ( 180) DEGREES. II 

120 GOTO 1270 
130 IF A3/1 .8 <> INTIA3/ 1 .81 THEN 
140 ELSE 160 
140 DISP "ERROR .. . ANGLE MUST BE 
A FACTOR OF 1 .8 ." 
150 GOTO 1270 
160 A2=UlT(A3/1 .8)*2 
170 IF A2-A 1=0 THEN 180 ELSE 270 
180 DISP "RIGHT ON THE MONEY ! II 
190 A9=A9+1 8 
200 DISP "PLEASE TURN OFF THE SW 
! CHING BOARD ,BECAUSE I AM GOING 

TO TURN THE VIBRATOR! (30Sec)" 
20 1 BEEP 
202 BEEP 
210 WAIT 30000 
220 A3=A9 
230 IF A9=198 THEN 240 ELSE 260 
240 A3=0 
250 T=1 98 
260 GOTO 100 
270 IF A2-A1 <> 0 THEN 280 
280 IF A2-A1 >0 THEN 290 ELSE 400 
290 Y=O 
300 IF X=O THEN 310 ELSE 340 
310 OUTPUT 709 :"T0400 " 
320 OUTPUT 709 :"TOO" 
330 X= 1 
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340 OUTPUT 7 09 : II CS3 . 2CF -:: • .::'." 
3SO WAI T 4 
.:lb 0 BEEF' 
370· A1=A1+ 1 
.3 8 o o rs P . s -~ A 1 ·* 1 • s : 11 o E GREE s " 
390 GOTO 500 
400 X=O 
410 IF Y=O THEN 420 ELSE 450 
420 OUTPUT 70'3 : II TC40D II 

430 OUTPUT 709 ;" TOO " 
440 Y=1 
i!SO OUTPUT 7 09 : '' CSJ . 2 1~F:· . 2 " 
LJ60 ~I AIT 4 
-17 0 BEEF' 
:~so A1 =A1- 1 
-! •j O D I SP . '.:. -H-l i -~ t • ;~ : " ~! E 1; REE ·~ " 
500 IF A1= A2 T H~N 510 ELSE 550 
i:.1 o DISP " RIGHT mi THE 11m1EY ! 11 

520 IF A3=0 THEN 530 ELSE 540 
i:.J(l (~OTO 190 
i:.40 (;OTO 560 
i:.~.O GO TO 270 
S5 0 REMOTE 711 
570 IF T=198 THEN 58 0 ELSE 590 
580 GOTO 1270 
i:. '.30 DISP "CALL OPERATOR TO SrE I 
F HE NEEDS TIME FOR REACTOR ADJU 
s TMENT ~, FOR AE:OIJ T 30 SEC:Dr-IDS ! II 

600 BEEP 
SO I DISP 11 TUR~J ON THE SWITCH " 
610 WAIT 30000 
520 BEEP 
630 DISP "CALL OPERATOR AND TtLL 

HIM HE I S OUT OF THIE SORRY ! II 

540 OUTPUT 7 11 : " RE II 

550 ~IAIT 90000 
E.60 OUTPUT 711 ; " AA1" 
570 N$="A"&VAL '.ll !A3/ 18+1 l 
580 Z=2 
f.'30 OUTPU T 71 1 ;" TAl " 
700 ~IAIT 1000 
710 OUTPU T 7 11 :" TAO" 
720 OUTPUT 711 : "T 81 " 
7"30 WAIT 1000 
740 OUTPUT 711 : "T BO" 
750 GOTO 920 
750 OUTPUT 711 : " A81" 
770 ~~$="8" ,\lJAL'5 1 A 3/18 +1 l 
1 ~=:n z=-:: 



8 7 

7 '~-:-. '~ OTO 92 0 
:j I_'. 01_I T ~· u T 7 1 1 : II Ax 1 ti 
•:; : '-' N s = II M II & ~)AL ·; ( A 3 I I ::: + 1 ) 
:32 0 Z=l! 
830 GOTO 920 
840 OUTPUT 711 : tlP }{ 1" 
8 5 0 N $ = II p II & ~)AL s ( A 3 I 1 8 + 1 ) 
:360 Z=S 
E:?O GOTO '320 
:~ 8 0 0 u T p u T 7 1 1 : II c H 1 II 
890 N$=" C" J:VALS <A3 / 18+1 l 
900 Z= 6 
91 0 GO TO ~~20 
920 OPTI ON BASE 1 
9:3 0 DIM AS[ 25E.O l . 8( ! ::!Ol 
'3 q 0 .J = 1 
'350 REMOT E 7 i 1 
'350 OU TPIJT 7; 1 : II Lr'::. ti 
370 EtlTER 7 1 i : A'::. 
'3 :3 0 0 u T p IJ T 7 1 1 : II L '=· F' II 

9 9 1) E t'IT E ~ 7 1 1 : r 
i 1:: i; n (: L c n? 
1 1 ·1 : n '~ R E n r E · 1 ·:. • : • • ::_i ·:: '°' 
~ 11:-:1"1 i-1 ·-. ·-. I'~ r 111 1 r r1 t : ·:. 
1 (: :: 11 r o R l -= i , o : -~~ ~:· n ·:. T r:.-- p 1 1_1 

10Mt S<~: ''-.1!-1!_( f1';.r [~ 1 

1 060 .J =._I + 1 
107 0 NEXT I 
10:3 0 F=F / 125 <-- 127 
1090 PRINT# I : F 
1100 As ~;I(;N 11 1 TO (-
11 10 IF Z= 2 THEN 11 20 ELSE 1 ' 40 
1120 OUTPUT 711 ; " AA O" 
11 30 GOTO 760 
1140 IF Z= 3 THEN 1 1 ~. 0 ELSE 1t70 
1150 OUTPUT 711 : " ABO " 
1160 GOTO 80 0 
1170 IF Z=4 THEN I 1 E: o EL~. E I ~· on 
11 80 OUTPUT 711 : "A )(() " 
1190 GOTO 840 
1200 IF Z=5 THEN 12 1 Cl ELSE 12'30 
12 10 OUTPUT 711 : "P XO " 
122 0 GOTO :380 
1230 IF Z=6 THEN 12l! O 
1240 OU TPUT 711 ;" CHO" 
1250 REMOTE 70'.3 
1260 GOTO 190 
1270 END 
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B. Data Reader 

S ! DATA READER 
10 OPTION BA';E 1 
20 DIM Al 128) .8 ( 12B ) ,C( 128l , G( 16 
) ,H$['30J 
30 CLEAR . 
40 DISP "INPUT NUMBER OF DATA EN 
TERIES" 
50 INP UT M 
50 DISP II INPUT NAME OF HlPUT FIL 
E" 
70 INPUT 0$ 
80 ON ERROR GOTO 40 
'30 FOR I=1 TOM 
100 S$=0$&VALS(1) 
110 ON ERROR GOTO 130 
120 GOTO 150 
130 DISP I 
140 INPUT Z 
1 ~.o GOTO 100 
160 ASS IGN# 1 TO S$ 
170 FOR L=1 TO 128 
180 READ# 1 ; A(L) 
190 NE XT L 
200 G(U =A (20 ) 
210 NEXT I 
220 DI SP ''E ~ITtR s TORAGE F IL.E II 

230 INF'IJ T R'.£ 
240 ON ERROR GOTO 220 
25 0 CREATE R~B, 4 
260 ASSIG N# 3 TO RS 
270 FOR K= 1 TO M 
280 PRINT# 3 : GCK) 
290 NEXT K 
300 ASSIG N# 3 T~ * 
31 0 DI SP "THE END" 
320 PLOTTER IS 705 
330 FRAME 
340 LOCA TE 20 .1 20 . 20 , 90 
350 FRAME 
36 0 DI SP "ENT ER XMIN.X MAX,YM IN,Y MA){ II 

365 INPUT A.B,C ,D 
38 0 SC ALE A.B. C. O 
390 CSIZE 3 ® FXD 0 
395 D ISP II E~ITER YOUR TI C-LAREL F 
or;• X& Y" 
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1'35 INPUT E. F 
400 LAXES -E.F . ~. ~ 
420 FOR X=A TO 8 STEP ~ 
.:i 3 0 PLOT )( . G C>UE + I ) 
44 0 NE )<T X 
460 MOVE 90 . -0/h 
470 LORG 4 ~ CSIZE S .. S. 10 
.:i GO LABEL "ANGULAR POSITIOMS OF 
""HE v I BRA T OR (DEGREE :: ) II 
...; '3 0 M 0 ~J E - I 8 • D I 2 
~ 00 DEG @ LDIR gn 
:: I 0 D I s p II w HA T ~ ~I y 01 1 F: y A~ I ·:. I - A E: 
=- : I II - '- . 

S20 INPUT HS 
S30 LABEL H·; 
540 DISP II DO YOIJ WANT TO REDRAl4 7 
<Y=1,N=0)" 
550 INPUT G 
560 IF G= 1 THEN ~.70 E~_S E I 0 
S70 GOTO 320 
S80 END 
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c. Normalizer 

S ! NO RMA LIZER 
10 OPTION RASE I 
20 DTM A( 128l . BC 128l , C( 128 l , G( 16 
) . HC1 1) ,0$[9 0J 
30 CLEAR 
40 BE EP 
50 DI SP II INPUT t~UME!ER OF DATA E t~ 
TER IES" 
60 INP UT M 
70 ON ERROR GOTO 50 
80 FOR J =l TOM 
90 BEEP 
100 S$= "8" ix~JALS< J) 
11 0 ON ERROR GOTO 100 
120 ASSIGN# 1 TO S$ 
130 FOR L=1 TO 12 :), 
140 READ # I : A<L) 
150 NE XT L 
160 BEE P 
1 7 0 Ts = II A II (\~} AL s ( j ) 
190 ASS IGN# 2 TO T$ 
200 FOR P=l TO 128 
210 READ# 2 : BCP ) 
220 NE XT F' 
230 N=128 
24 0 FOR 1=1 TO N 
250 IF I <1'3 OR 1>21 THO! 270 
26 0 CC I ) =A (Il/B< Il 
27 0 NE)<T I 
280 GtJ)=((:( 1~=J) + C (2 0l+C C2 1 l l/3 
285 H (.J) =G (.J l 
29 0 NE XT J 
300 BEEP 
3 10 DI SP "ENTF.R STORAC~E FILE NAM 
E" 
320 INPUT RS 
340 CREA TE RS,4 
350 ASSIGN# 3 TO Rs 
360 FOR K=1 TO M 
370 PRINT# 3 : G(Kl 
380 NE XT K 
390 BEEP 
400 DI SP "THE END" 
410 PLOTTER IS 705 
420 FRAME 
430 LO CA TE 20 . 120 . ?0,90 
440 FRAME 



4 5 0 D I s p II EN TE R y M I N . y MA x ' y D Tl) " 
460 INPUT Z,V . L 
470 SCALE 0, 1 8 0,Z, ~J 
480 LAXES -1 8 ,L,o.n 
490 MOVE 0 . 0 
SOO FOR U=1 TO M 
510 PLOT LJ418-18 . GCUl 
~. 20 NE XT U 
·;30 110VE 0 . 0 
~ 40 MOVE 90 . -V/4 
~50 LORG 4 ~ CSIZE 5 . . S . 1n 
S6 0 LABEL "APOV " 
570 MOVE -18.V/2 
580 DEG @ LDI R 90 
590 DISP "WHAT IS YO UR YAXIS LAB 
EL? " 
600 INPUT 0$ 
610 LABEL 0'£ 
620 DISP "DO YOU WANT TO REDRAW? 
(Y= 1 ,N =Ol " 
630 INPUT S 
640 IF 5= 1 THEN 650 ELSE 10 
650 GOTO 41 0 
660 t.ND 
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D. Plott er 

10 ! PLOTTER 
15 DIM G'.5(50] 
16 DTSP "ENTER YOUR DATA HlPUT " 
17 INPUT S:D 
18 ASSIGN# 1 TO SS 
20 PLOTTER IS 705 
SO LOCATE 30 . 13n . 2S 1 95 
5 0 D I ~; p II ENTER x M I N • x MA x . y M It I . HI 
A ){ II 

70 INPUT A.8.C . D 
80 SCALE A.B . C. D 
90 CSIZE 3 @ FXn 0 
100 DI SP "ENTER YOU R TIC-L ABEi_ F 
OR X&Y " 
110 HIPUT E.F 
120 LAXES -E.F . A.C 
130 FOR X=A TO B STEP E 
140 READ* 1 : Y 
1 SO PLOT ){. Y 
160 NEXT X 
170 MOVE 3'3,370 
180 CSIZE 4. I ® LORG S 
200 MOVE A.C 
210 MOVE B/2 , -D / 7 
220 DISP "ENTER }{-LABEL" 
23 0 INPUT G'.£ 
240 LABEL G$ 
250 MOVE -B /9 . 012 
260 DEG @ LDI R 90 
210 DISP "ENTER Y-L~rnEL" 
280 INP UT GS 
290 LABEL Gs 
300 END 
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E. L/ G Ratio 

~. ! L/G RATIO 
10 OPTION BASE 1 
20 DIM 8( I I> ,L ( 11l.G<11' 
30 DISP "LOCAL" 
40 INPUT L$ 
SO ASSIGN# 1 TO L$ 
60 FOR I=l TO 11 
70 READ# 1 : L(I) 
80 NE XT I 
90 DISP "GLOBAL" 
100 INPUT GS 
110 ASSIGN# 2 TO Gt 
I 20 FOR I= 1 TO 11 
130 READ# 2 : G(l) 
140 NEXT I 
150 FOR 1=1 TO 11 
160 BCI )=L<I>/GrJ) 
170 DISP B(ll 
1:30 NEXT I 
1 '30 END 


