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1. INTRODUCTION

In recent years, fluidized bed combustors (FBCs) have become an attractive
means for meeting future power generation and process heat requirements in an en-
vironmentally acceptable manner. Among many favorable characteristics, fluidized
bed combustors are capable of burning low-grade, variable quality fuels at low com-
bustion temperatures. Coal-fired FBCs, for example, typically operate in the range
of 1400 °F to 1800 °F, to be compared with temperatures of 3500 °F for boilers that
utilize cyclone furnaces. [20]. The lower combustion temperatures result in a reduction
of NOz emissions, elimination of ash clinkering, and elimination of slag fouling. In
addition, an écceptor stone, such as dolomite or limestone, is often used in the bed
material to reduce the sulfur content of the product gases. However, because of in-
herent nonlinear dynamics arising from fluidization, radiation, and chemical kinetics,
classical linear control schemes may be inappropriate. Consequently, new algorithms
to control temperature in FBCs should be examined.

Traditionally, many dynamic systems are regulated using simple linear feedback
controllers. From step inputs, a linear model can be formulated, a root locus con-
structed, and a proportional-integral-derivative (PID) controller designed. Alterna-
tively, PID control may be designed through heuristic techniques, such as the Ziegler-

Nichols method [9]. Although predicated on linear system theory and design, PID



controllers have a robust nature such that the closed-loop system will usually remain
stable even though weakly nonlinear dynamics may be present. Fluidized bed com-
bustors, on the other hand, are highly nonlinear systems [27,32] and have transient
natures that are not well understood. When highly nonlinear systems are controlled
using linear techniques, they may be poorly tuned in the desired operating range
as nonlinear behavior is often compensated through excessively conservative design
[17]. To improve system performance, several strategies have been developed which
attempt to contend with nonlinear system dynamics. One particularly successful
approach has been the use of adaptive control design techniques. Controllers built
upon these techniques not only promise to improve system performance, but also lend
themselves well to applications in process control.

This investigation explores the temperature control of a two-bed fluidized com-
bustor using an adaptive optimal-control algorithm to vary air flow rate. The con-
troller consists of a recursive least-squares parameter estimator, an observer, and a
linear quadratic Gaussian (LQG) control design procedure. This combination enables
the controller to estimate system parameters and update feedback gains when neces-
sary. Further, this study addresses the tracking form of optimal-control, accomplished
by augmenting the state vector with an integrator. Finally, as a reference, the adap-
tive control algorithm is compared with a PI controller tuned by the Ziegler-Nichols

method.



2. FLUIDIZED BED COMBUSTOR OPERATIONS

This chapter reviews the fundamentals of fluidization as related to fluidized bed
combustor operations. Included are discussions of conventional temperature control
" techniques and their corresponding limitations. The chapter concludes with a discus-

sion of temperature control using a two-bed combustor design'.

2.1 The Nature of Fluidization

Fluidization is the proéess by which a gas or liquid passes vertically through a
bed of fine solids, setting the pa.rtfcles in motion. If agitated sufficiently, the aggregate
motion of solids resembles that of a turbulent fluid. The term fluidization, then, is
simply an appellation, intended to draw parallels with turbulent fluid flow. However,
aside from some visual similarities, the analogy with turbulent fluid flow is weak
as fluidization exhibits many unusual characteristics associated with gas-solid and
liquid-solid interactions.

Fluidization progresses through many stages, each dependent on the flow velocity
of the fluidizing medium. At low flow velocities, the bed remains quiescent (a “dead
bed”) as fluid merely percolates through voids between particles. A slight rise in the
flow rate will expand the bed, and localized packets of particles will begin to vibrate.

As the flow velocity increases, the bed passes through a state of incipient flu-



idization. At this stage, particle weight is counterbalanced by frictional forces from
the fluidizing medium, resulting in the suspension of solids. A further increase in the
flow rate above the point of incipient fluidization produces a heterogeneously fluidized
bed, characterized by formation of bubbles as the fluidizing medium travels upward
through the bed material.

At very high flow velocities, solid particles become entrained in the fluidizing
medium and are elutriated from the bed. This loss of bed material is undesirable
in most bubbling bed designs. However, characteristics associated with elutriation
can be advantageous when utilized in circulating fluidized bed (CFB) designs. CFB
designs capture and recirculate entrained bed material and, more importantly, recir-
culate unburned (solid) fuel back into the combustion chamber.

Most fluidized beds and fluidized bed systems are of bubbling bed design, circu-
lating bed design, or hybrids of circulating and bubbling bed designs. Of the numerous
design possibilities, this study investigates adaptive control as applied to a coal-fired,

bubbling bed combustor with a fluidizing medium of air and bed material of sand.

2.2 Fluidized Bed Operations

References to fluidized beds are scattered throughbut history; however, the first
important commercial development was by Fritz Winkler for powdered coal gasifica-
tion. Patented in 1922 and operational by 1926, the first unit stood 39 ft tall and
had a cross sectional area of 108 ft2 [21]. A few years later, a (spouting) fluidized
bed was developed for combustion of coal. Designed by J.F.O. Stratton, this unit was

installed at a U.S. Gypsum Company paper mill in 1928 and had a capacity of 5000



b coal/hr [28].

Through the 1940s and 1950s, substantial progress in unit designs and efficiencies
were made by many firms in the process industries, viz., Badische Anilin und Soda-
Fabrik (BASF), Dorr-Oliver, Sumitomo Chemical Manufacturing Company (Japan),
Union Carbide, Combustion Engineering, and Standard Oil Company (New Jersey)
(21,28]. Developments in fluidized bed designs led to applications as diverse as cat-
alytic cracking, drying and sizing of powdery materials, coating of metals, ore roasting,
microencapsulation, coal gasification, and coal combustion.

Of particular interest is the application of coal-fired bubbling beds for steam gen-
eration. Bubbling beds have many distinct édvantages over the conventional mechan-
ical stoker, pulverizer-burner, and cyclone furnace combustion systems. For example,
the turbulent nature of fluidized beds encourages mixing of oxygen with carbon,
léading to an efficient combustion process. If a sulfur sorbent, such as limestone or
dolomite, is fed into the bed, the turbulent environment allows for effective in situ
desulfurization of the product gases [30]. In addition to favorable mixing characteris-
tics, the large surface area associated with the bed material provides for improved heat
transfer rates between combustion gases and the bed. Furthermore, high heat transfer
rates, coupled with efficient combustion and vigorous mixing, create an isothermal

combustion chamber, which is ideal for uniform temperature control.

2.3 Temperature Control and the Two-Bed Concept

Nonlinear and nonstationary behavior is inherent in virtually all aspects of flu-

idized bed combustors, and nowhere is this more apparent than in the temperature of



the bed. Wide variations in temperature can be attributed to nonlinear heat transfer
coefficients as well as to the highly variable (and unpredictable) composition of coal.
However, slight fluctuations in temperature significantly reduce sorbent effectiveness,
adversely affect NO_ emissions, and diminish combustion efficiency {10]. Therefore,
constant and uniform bed temperature is essential for optimal fluidized bed perform-
ance.

Control of bed temperature must be accomplished without extensive equipment
modifications during combustor operation. For a fixed coal feed rate, bed temperature

_can be adjusted by one or a combination of the following [10,28]:

e recirculating flue gases

discharging bed material

varying air flow rates

immersing heat exchanger tubes in the bed

slumping sections of the bed

This list is not comprehensive, although it does present some of the more effective
means by which bed temperature can be controlled. Most of these methods influence
the bed temperature by changing the surface-to-bed heat transfer coeflicient. How-
ever, the first two methods — recirculating flue gases and discharging bed material
— are notable exceptions. The first of these alters bed température by recirculating
flue gases back into the combustion chamber. Since flue gases are predominantly
composed of nitrogen and carbon dioxide, they do not react with the fuel, but they
do absorb energy released from the combustion process. The result is a decrease in
bed temperature with a corresponding increase in gas temperature at the combustor

exit.



Instead of recirculating flue gases, temperature control can be accomplished by
discharging and accumulating hot bed material, allowing it to cool, and then reinject-
ing the cooler material back into the bed. However, this process requires considerable
capital with accompanying technical, reliability, and maintenance difficulties.

A more effective approach to temperature control involves regulation of the flu-
idizing air velocity. As illustrated in Fig. 2.1, velocity of the fluidizing medium sub-
stantially alters the magnitude of the surface-to-bed heat transfer coefficient. At low
flow velocities, the bed is fixed and changes in the heat transfer coeflicient are slight.
However, at the onset of fluidization, the heat transfer coefficient increases markedly,
rising bsr one or two orders of magnitude for a fluidizing medium of gas and two to four
orders of magnitude for a fluidizing medium of liquid [12,21]. The rapid rise in the
heat transfer coefficient at the onset of fluidization can be attributed to an increase
in pé.rticulate circulation. At a certain point, the heat transfer coefficient reaches a
maximum and then decreases as the fluidization velocity increases. Decreases beyond
the maximum can be explained by lower solid material concentrations associated with
vigorous bubbling within the bed [12,21]. Therefore, changing fluidization velocities
will change the rate heat is absorbed by the combustor wall, especially if the heat
transfer process is augmented with a water jacket or water wall.

Heat can also be removed from the system by immersing heat exchanger tubes
in the bed material. Comprehensive analyses of the heat transfer process with tubes
immersed in fluidized beds are presented by Gelperin and Einstein [12] and by Kunii
and Levenspiel [21]. In addition to heat transfer characteristics, studies have been

conducted which investigate the integrity of tubes located within the abrasive bed en-



Convection Coefficient

Superficial Gas Velocity

Figure 2.1: Convection heat transfer coefficient in a fluidized bed

vironment. For example, Nack et al. [28] reviewed a study conducted by the National
Coal Board of England (1971) regarding tube corrosion, erosion, and ash deposition
in coal-fired, bubbling bed combustors. In brief, the study did not find significant
tube degradation due to ash penetration, indicating that the bed environment was
not sufficiently erosive to remove the protective oxide layer and expose clean metal.
In fact, erosion rates diminished with time, suggesting the formation of a stable pro-
tective oxide layer. Low erosion rates were to be expected as fluidization velocities
(<11 ft/sec) were much less than flow velocities of 100 ft/sec encountered in con-
ventional furnaces where impacting particles just begin to erode tubes. However,
the study did find that tubes located in the freeboard region were more susceptible

to erosion, although erosion rates were under the acceptable criterion of 1.5 pin/hr.



In addition, data concerning ash deposition, surface attack, and sulfide penetration
suggested that few material problems were present for tubes located within bubbling
beds. A notable exception was AISI 321 steel at 1500 °F, which experienced severe
pitting and intergranular sulfide penetration.

With or without immersed tubes, adjustments of fluidization velocity are limited
to a lower value prescribed by stoichiometric air flow requirements, and an upper
limit prescribed by elutriation characteristics. Furthermore, temperature control is
restricted to manipulation of the fluidizing medium as heat transfer coefficients tend
to be fire-side limited. That is, adjusting flow velocity in a water jacket, water
wall, or immersed tube bundle has little effect on heat transfer from the combustion
chamber. Control of bed temperature through regulation of fluidization velocity is
further complicated by highly nonlinear radiation effects, nonuniform coal properties,
and heat géneration/ air flow interactions.

Heat transfer rates and bed temperature can also be altered by slumping sections
of the bed [5,10,28]. Slumping, or defluidization, is accomplished by partitioning
the air plenum and selectively discontinuing air flow to regions of the bed. When
defluidized, the higher heat transfer rates associated with solids circulation collapse
to the lower heat transfer rates associated with conduction. The result is a reduction
in the overall heat transfer rate from the combustion chamber. Although the rate at
which heat can be removed from the bed ;:an be altered, the slumping process has a
formidable drawback; namely, the defluidized regions allow fuel to smolder, producing
localized hot-spots that tend to sinter ash particles [5,10].

These procedures have had limited success in controlling bed temperature, the
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effectiveness of which may be characterized by the load turndown ratio. Defined as
the ratio of maximum to minimum energy output of the combustor, load turndown
ratios in fluidized beds are modest at best, with most processes attaining ratios under
four [6,7].

An alternative approach — where load turndown ratios greater than ten have
been obtained [6,7] — utilizes a two-bed fluidized combustor. A schematic of a
two-bed combustor is shown in Fig. 2.2. The combustor is comprised of a central,
fluidized combustion bed and an annular, fluidized heat transfer bed. Each bed has
an independent air plenum by which air flow rates can be adjusted separately so as
to decouple combustion and heat transfer processes.

Temperature control is achieved by changing the air velocity in the annularv bed.
When no air is supplied to the annular bed, heat transfer from the central bed to
the water jacket is by conduction through the bed material. As the air velocity
increases to a point just before incipient fluidization, heat transfer is augmented by
gas convection. A further increase in air velocity will fluidize the annular bed, adding
particulate convection to the entire heat transfer process. The result is a dramatic
increase in the rate at which heat is removed from the central bed and a corresponding
decrease in the temperature of the central bed.

Heat transfer from particulate convection in the annular bed can be modified
by changing the particle size distribution [29]. Heat transfer is enhanced with a
smaller particle distribution due to an increased surface-area-to-volume ratio, but
the advantage is bounded: a point is reached where the heat transfer coefficient on

the central bed side becomes rate limiting [10,11]. Hence, large reductions in the
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size distributions have little effect on the overall heat transfer characteristics of the

system.
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Figure 2.2: Schematic of a two-bed fluidized combustor
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3. REVIEW OF CONTROL THEORY

Materials presented in this chapter review some of the fundamental concepts
in both classical and modern control theory. Section 3.1 briefly examines classical
control in the continuous time domain with an emphasis on Ziegler-Nichols tuning
rules. Section 3.2 examines ﬁodern control theory in the discrete-time domain as
applied to self-tuning controllers. Topics discussed in this section include system

identification, state reconstruction, and optimal-control design procedures.

3.1 Classical Control Theory

Perhaps the most effective means by which systems can be regulated, guided,
or otherwise commanded is through application of feedback control. A feedback
controller generates a system command signal based on a function of an error signal.
where error is defined as the difference between a reference signal (desired quantity)
and a system output signal (actual quantity).

Feedback control can be traced as far back as Hellenistic period to Ktesibios.
A mechanician who lived in Alexandria during the first half of the third century
B.C. [26], Ktesibios is credited with developing the first feedback device in recorded
history: a water clock where near-constant flow rates were obtained through use of a

" float valve controller.
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Throughout history, various water clocks, oil lamps, and furnaces incorporating
feedback controllers in their designs were developed, many of which remain obscure.
However, the importance of feedback control was to come to light with the devel-
opment of the flyweight governor. Although the flyweight governor was originally
patented by Thomas Mead (1787) for speed control of windmills [4,26], Matthew
Boulton and James Watt used the governor to control the speed of steam engines.
Their success bro‘ught feedback control to the forefront of technology [4].

After the introduction of the flyweight governor, theory and design of feedback
control grew enormously. As the field grew, proportional-integral (PI) control emerged
as one of the most widely accepted methods of feedback control. From an error signal,
e(t), PI control generates an input signal, u(t), which is comprised of components
proportional to the error and proportional to the integral of the error. In the Laplace
domain, with zero initial conditions, PI control may be described through the transfer

function

wherein Kp and K;; are proportional and integral gains, respectively. If the dynamics
of the plant are well known, Kp and K; may be specified through root-locus, Nyquist
or Bode design techniques. On the other hand, if the system dynamics are too
complicated or not well known, as is the case with fluidized beds, data from an open-
loop step response can be used to establish coefficients of an approximate system
model. This model may be used in conjunction with heuristic design techniques, such
as the Ziegler-Nichols (Z/N) method, to specify controller parameters. For PI control,

the Z/N method specifies controller coefficients based on an assumed process model
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consisting of a first-order system with a time lag, i.e.,

u(s) s+a (3.2)

From an open-loop step response, estimates for the apparent dead time, 7, and the
reaction rate, R, can be assessed (see Fig. 3.1). These two coefficients characterize

the system whereby the Z/N method suggests a PI controller of the form [9]

u(s) 100 [ o1
e(s) 1107R T 3375

3.2 Adaptive Control Theory

The designation “Adaptive Control” is an umbrella for an array of algorithms
including Self-Oscillating Adaptive S-ystems (SOASs), Gain 'Scheduling, Auto Tuning,
Model-Reference Adaptive Control (MRAC) and Self-Tuning Regulators (STRS) (2],
to name but a few. Although the adaptive schemes are different, all adjust the
controller in an attempt to conform with changing system parameters.

Interest in adaptive control theory began in the early 1950s with the need to im-
prove the response of autopilots in high performance aircraft (2,17]. As the flight en-
velope for aircraft expanded, conventional, constant-gain control systems that might
work well in one region would be unsatisfactory in other regions. The need for a more
flexible control scheme provided an impetus for adaptive control; however, early ap-
plications were not successful. Failure occurred for two reasons: (1) a lack of progress
in hardware_ required to implement the algorithms and (2) a lack of a comprehensive

theory in adaptive control [2,17].
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In the 1960s, space programs in both the United States and the Soviet Union fo-
cused many resources on the development of control systems for tracking and guiding
spacecraft. Many contributions to control theory, including advances in system iden-
tification, parameter estimation, state-space theory, and stability theory, provided
the basis for subsequent successful adaptive algorithms.

Interest in adaptive control surfaced again in the 1970s, although early applica-
tions were limited in scope. In the late 1970s and early 1980s, progress in stability
theory [e.g., 1] and a microelectronics revolution allowed for several successful appli-
cations of adaptive control [2]. Today, the field of adaptive control is by no means
a complete or even a well developed discipline. Although much progress has been
made, many advances are currently being made in both the commercial and univer-
sity sectors.

Over the past 30 years, many adaptive controllers have been developed and
many have lent themselves well to the field of process control; indeed, most successful
applications of adaptive control have come about in this area [17]. Of the wide variety
of adaptive algorithms, gain scheduling, model-reference adaptive control, and self-
tuning regulators (controllers) have received the most attention [17]. To date, though,
self-tuning control methods have far outstripped both gain scheduling and model
reference methods in process control [17].

This study examines the performance of a self-tuning controller on a fluidized bed
combustor. The controller, as described by Astrém and Wittenmark (2] and Goodwin
and Sin [13], consists of three components: (1) a recursive least-squares parameter

identification procedure, (2) an observer, and (3) a linear quadratic Gaussian (LQG)
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optimal-control design procedure. LQG control design was chosen because closed
loop stability is guaranteed, provided the system is either (a) uniformly completely
controllable and uniformly completely reconstructible or (b) exponentially stable [24].
A schematic of a self-tuning controller is shown in Fig. 3.2. Note that the controller
consists of two loops: an outer feedback loop and an inner controller adjustment
loop. An overview of the self-tuning controller algorithm is presented for a second-

order model; extensions to higher-order models_are straightforward..

Y o—— u(t
Y _| Controller ® > FBC y(t)
A
%gtri]rt?al _| Parameter |_
Desi : ~1 Estimator
esign
A
Estimated State
Parameters

Figure 3.2: Block diagram of an adaptive controller

3.2.1 System Model

In the discrete-time domain, systems are described through a difference operator
representation. The forward shift operator and backward shift operator are written as
q and ¢!, respectively. For a function y(t), where ¢ is a sequential time index, qy(t)

references the function y at time (¢ + 1); similarly, ¢~'y(¢) references the function y
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at time (¢ — 1). In general,

gy(t) = y(t+i), >0 (3.4)
g y(t) = y(t-1), t >
and
g y(t) =0 0<t<i

In terms of addition and multiplication, the shift operator, with constant coefficients,
satisfies all the algebraic laws of polynomials.

Using left difference operator representation, systems are modeled through linear
combinations of past outputs, y(¢), and past inputs, u(t). Following the notation of
Goodwin and Sin [13], systems are expressed in the discrete-time domain through a

deterministic autoregressive moving-average (DARMA) model of the form

Alghy(t) = B(g lu(t) +4 - (35)

t € [0,1,2,3,...]

where A and B are the scalar polynomials

Ag™hH = 1+ a1q"1

B¢ = b1q

+...tang "

and d is an offset parameter. Previous values of y are autoregressive components
whereas previous values of u are moving-average components. The qualifier “deter-

ministic” has been introduced to suggest an input signal that is not a white noise
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process. For a second-order system, Eq. (3.5) may be expanded and rearranged to

obtain

y(t) = —ayy(t—1)—agy(t —2) +bju(t —1) +bgu(t —2) +d (3.6)
t € [0,1,2,3,...]

where, for the FBC, y(¢) denotes a deviation central bed temperature and u(t) denotes
a deviation annular bed air flow rate. Deviations were taken about initial conditions,
e.g., y(t) = T(t) — T(to), to enforce zero initial conditions. The offset parameter d
has been incorporated in the DARMA model to account for nonsteady-state initial
conditions.

Alternatively, the DARMA model may be written in state-space form. Using left
difference operator representation, the DARMA model may be described through the

. set of linear difference equations

zi(t+1) —ay 1 z1(t) b d
| 1( _ | ma 1 N N P 31
zo(t +1) —ag 0 z9(2) boy 0

in which y(¢) is described through an output equation, a linear combination of state

variables z1(t) and z9(t). For this case, the output equation takes the form

xq(t
y(t) = [ 1, 0 ] li ; (3.8)
z9 t

This particular state variable representation (SVR) is in an observer form since the
system is uniformly completely observable [13]. In matrix notation, Eqgs. (3.7) and
(3.8) can be abbreviated as

c(t+1) = Az(t)+ Bu(t)+ D (3.9)

y(t) = Cz(t)
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where
—at 1 b d
A = 1 B=| 1 D= (3.10)
| —ag 0 bo 0
¢ = |1, o]
- T
z(t) = | zq(¢), w2(t)]

Additional considerations concerning SVRs, including discussions pertaining to nec-
essary and sufficient conditions for system controllability and observability, are pre-

sented by Goodwin and Sin [13] and Kwakernaak and Sivan [24].

3.2.2 System Identification

The coefficients of the DARMA model — ay, a9, by, 62? and d — may be esti-
mated through off-line identification procedures, such as least-squares {2]. However,
for a fluidized bed combustor, the coefficients of the model tend to drift since the
model is a liﬁear approximation of the nonlinear system about the current operating
point. In other words, as the temperature changes, the coefficients of the DARMA
model also change. In addition, coefficients from one run may not match the coef-
ficients of another run, especially if different types of fuel or bed material are used
between runs. Hence, better coefficient estimates may be obtained through on-line
procedures, such as a recursive least-squares algorithm with exponential data weight-
ing.

The method of least-squares is built upon dividing the DARMA model between

variates and coefficients in the manner

y(t) = o(t — 1) T8 (3.11)
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where

T
#(t-1)= [ —y(t =1), —y(t—2), u(t—1), u(t—-2), 1] (3.12)

and
T
§ = [ ay, a9, by, b9, d ] (3.13)
In keeping with the notation presented by Astrdm and Wittenmark [2] and Goodwin
and Sin [13], ¢ has been indexed with respect to the most recent component of the
variate vector, y(¢t — 1). Accordingly, for ¢ observations, the DARMA model may be

collectively written as

o] [ s J[a] [ew]

y(2) o(1)T as e(2)

y3) | = | @7 by | + | e3) (3.14)
by

vty | |- || 4| [ew) ]

Y = dxb+e

wherein ® is the “model matrix” (8], and e is a column vector of residuals, defined
as the difference between the actual output Y and the predicted output Y. By

minimizing the residual sum of squares, J, where

J =

M,,,
4]
o~
-,
e’
™o

o
I
—

(3.15)

(y(@) — o(i — 1)T6)2

f
.M“

~
Il
—

best estimates of the partial regression coefficients can be established. The minimal

‘of J is found through an elementary application of matrix calculus [3] from which the
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normal equations

Ted =Ty (3.16)

are obtained. Provided the nonnegative, symmetric matrix 373 is nonsingular, the

solution of Eq. (3.16) is simply
i=0Te"leTy (3.17)

Of particular interest is the relationship between [@Tq?]—l and partial regression
coefficient variances and covariances. For the regression vector § = [61,609,03,.. .]T

b

covariance of §; and 0]' is defined as
CV(9;,6;) = E{(d; — 6;)(6, — 6,)} Vi # j (3.18)

When i = j, Eq. (3.18) is simply an expression for the variance of #;. On the assump-
tion that residuals are normally and independently distributed about a mean of zero

2

and variance of ¢“, variances and covariances of the partial regression coefficients can

be calculated from

E{[6-0)6 - 6T} = o207 3]~ ] (3.19)

Additional considerations concerning the covariance matrix, along with a derivation
of Eq. (3.19), are presented by Cox [8].

Because large quantities of data are recorded, calculations for [<I>T<I>]—1 become
prohibitively cumbersome. Consequently, to reduce computation time, standard least-
squares estimates are expressed recursively so that new results for 4 and [@TQI-I
are obtained from old results, corrected for new data. For the single input, single

output (SISO) case, least-squares estimates are calculated through the sequential
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equations [17,25]

P(t - 2)é(t — 1)
1+t —1)TP(t-2)p(t —1)

B(t) = B(t — 1) + w(t) - ot~ DTH - 1)) (3.20)

. in which
P(t - 2)g(t - 1)é(t — )T P(t — 2)

P(t—-1)=P(t-2) - 1+¢(t..1)TP(t—2)¢(t~l)

(3.21)

For brevity, [@T@]_l is denoted by P, where P has been indexed with respect to the
most recent set of data, ¢(¢ — 1). With these equations, recursive least-squares gives
equal weight to all sampled data. However, since cpefficients may change over time,
old data, and corresponding old coeﬁcients, diminish the ability of the algorithm
to track new, changing coefficients. Therefore, on the assumption that the most
recent data are the most informative, old data are discarded through an exponential
“forgetting” factor. Such exponential discarding is accomplished by assigning the
most recent data a unit weight and assigning data received. n samples ago a weight
proportional to A" for 0.00 <« A < 1.00 [2,17,25]. With an exponential forgetting
factor, Egs. (3.20) and (3.21) are modified slightly [17,25]:

P(t — 2)¢(t ~ 1)
At - 1) + ¢t = )T P(t — 2)(t — 1)

d(t) = 6(t—1)+ w(t)-o(t~1)Té(t—1)] (3.22)

in which

P(t — 2)¢(t — )g(t - )T P(t — 2)
At —1)+ ot — )T P(t - 2)(t — 1)

P(t—1)= P(t-2) - (3.23)

At —1)

Typically, values for A range from 0.95 to 1.00, where a value of 1.00 retains all data.
Caution must be exercised when specifying A. If ) is much less than 1.00,-0ld data are

discarded too quickly, and system noise becomes a problem. In addition, exponential
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forgetting may cause difficulties in parameter estimation if the system reaches steady-
state. Since steady-state data are deficient in information and old, information-rich
data are discarded, P diverges as a function of A~L If P has grown sufficiently
large and new information or observation noise is suddenly introduced, a “burst phe-
nomenon” results, which produces deceptive parameter estimates. The increase in P
due to a lack of persistently exiting (PE) conditions is known as estimator wind-up.

Several attempts have been made to keep P bounded and prevent deterioration
of the parameter estimation algorithm. Ljung and Soderstrdm [25] propose that A
be} allowed to vary as a function of time so that it asymptotically approaches 1.00
from some specified initial value. For example, a time dependent A described by the

function

0

AoA(t — 1) + (1 = Ap) (3.24)

1.00

n.b., lim (%)
t—o0

imposes exponential data weighting during the initial tuning period. However, ad-
justing A does not guarantee a bounded P. Other methods, which do guarantee a
bounded P, include termination of the parameter estimation algorithm after initial
convergence, enforcing a constant trace of P, or forgetting information only when
new information is available [2].

This study takes cognizance of limitations associated with exponent.ial forgetting,
but the dynamics of an FBC are such that the least-squares algorithm is nearly
always sufficiently excited, making a constant forgetting factor appropriate. For the
combustor used in this investigation, a constant forgetting factor of 0.99 was found

to be satisfactory.
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In addition to weighting data, consideration must be given to initial values for ¢
and P. Initial values for 6 were obtained through an off-line analysis of an early test

run. Initial parameter coefficients were specified as

~

T
9(0)=[—1.19, 0.228, —0.05, —0.30, 1.4] (3.25)

The P matrix, on the other hand, was initially set to

(150 0 0 0
0 15 0 0 0
PO)=j0 0 15 0 0 (3.26)
0 0 0 15 0
| 0 0 0 0 15|

Large values were specified along the diagonal to reflect the uncertainty of the off-line
estimates. Because the initial P matrix was set so-large, initial convergence dynam-
ics often resulted in large, spurious variations in parameter estimates. Difficulties

stemmed from convergence problems associated with the characteristic equation

A bty = o (3.27)

Alq7l) = (1+a1g7 +a9q7?)

Occasionally, A(q—l) was estimated as unstable (i.e., roots outside the complex unit
disk). To prevent such results, Eq. (3.27) was analyzed with Jury’s stability test
(Appendix A). If the roots were estimated as unstable, § was not updated. By
using Jury’s stability test, parameters converged quickly and smoothly as absurd
estimates were discarded. Typically, A(q—l) was estimated as unstable two to fifteen

times during initial parameter convergence. Further discussions concerning system
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stability, including a statistical analysis of the temperature response, are presented

in Section 5.1.

3.2.3 System Reconstruction

The underlying assumption regarding the state-space model of Subsection 2.3.1
is that the state vector z(t) is completely known or measurable. In this case, the state
is partially measurable insofar as the central bed temperature, z(t), is measurable.
In contrast, the state variable z9(¢) is a dummy parameter — created for convenience
— and cannot be directly measured. Hence, the state vector must be approximgted
(i.e., reconstructed) through a function of the observed variable, z1(t).

The state vector may be approximated through a full-order observer, a dynamical
system whose output approaches the state to be reconstructed. Illustrated in Fig. 3.3,

‘a full-order observer may be expressed through the equation [13,14,18,22,24]
#(t+1) = Az(t)+ Bu(t)+ D + K[y(t) — Cz(¢)] (3.28)
T
= [k b]
For adaptive control, SVR observer coefficients are replaced by estimates obtained
from the recursive least-squares algorithm. That is,
—ay 1 by d

A= B = D = (3.29)
—ag 0 b2 0

Dynamics of the observer are characterized by a difference equation of the reconstruc-
tion error [24]
e(t+1) = (A—- KC)e(t); (3.30)

e(t) = z(t)—z(t)



27

u(t)

|

B

|

Q

Y

+ +
y) —=( | k (= +G““”‘- q! |2
- A

+

y(t)

Figure 3.3: Block diagram of a full-order observer

Observer eigenvalues (poles) are specified through an appropriate choice of values
for the gain vector K. The gain vector may be specified using a pole assignment
technique in which the difference equation is first transformed to a canonical. form
[13]. The gain vector is then specified such that the coefficients of the canonical
characteristic equation match the coefficients of a desired characteristic equation.
However, for low-order systems, no transformation is required; the gain vector can
be directly specified by matching appropriate coefficients of the system characteristic
equation with coefficients of a desired characteristic equation. For observer design,
eigenvalues are placed such that the reconstruction error is asymptotically stable and

approaches zero for large time [24]. The characteristic equation of the reconstruction
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error can be found by evaluating
detfg] — A+ KC|=0 (3.31)

Collecting like coefficients, the determinant for a second-order system reduces to the
polynomial

g2 + (a1 + k1)q + (ag + ko) =0 , (3.32)

For stability, poles must be placed within the interior of the unit disk on the complex
plane. To enable the observer to track system performance, observer dynamics should
be faster than closed-loop system dynamics but not so fast that system noise becomes
a problem. Therefore, observer poles should be placed just to the left of closed-loop
system poles. Off-line analysis and simulation of adaptive control performance on the
FBC suggested that both observer poles placed at 0.3 would effect adequate observer
‘response. With these c;igenva.lues, the desired characteristic equation of the observer
is simply

g% —0.6g+0.09 =0 (3.33)

Comparison of Eq. (3.32) with Eq. (3.33) requires that observer gains satisfy the set

of equations

aj+ky = —06 (3.34)

&2+k2 = 0.09

As a final note, for systems with an order much greater than two, calculations
pertaining to full-order observers become burdensome. In such cases, the state vec-

tor can be reconstructed through a reduced-order observer. Theory and dynamics of
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reduced-order observers are discussed by Kwakernaak and Sivan [24] and are men-

tioned here for completeness.

3.2.4 Linear Quadratic Gaussian Optimal Control

The estimated state matrix, along with the corresponding state observer, may
be incorporated directly into an LQG control design, which is a regulator form of
optimal-control. Since a variable set point is often required, the regulator problem is
converted to a tracking problem through an integral action. Integral action was chosen
over precompensation to enforce zero steady-state error conditions. The conversion
to a tracking problem is accomplished by augmenting the SVR with a function z(¢),
which integrates the difference between the set point y*(¢) and the system output

y(t). The integral (i.e., sum) of the differences

t—1 : : '
2(t) = (¥ () - y(d) (3.35)
. =0
can be expressed recursively as
Ht+1) = =(8) +y7(2) — y(t); (3.36)
:(0) = 0

By augmenting Eqgs. (3.7) and (3.8) with Eq. (3.36), the new, third-order state can

be written as [13,34]

1 - ;
A T
z(t+1) | _ 0 © u(t) + (3.37)
z(t+1) ] ] -C I ] z(t) 0 y*
W [ C [ T
we) | 0 (t) (3.38)
=(t) ] I 0 I I =(t)
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In matrix notation,
X(t+1) = AaugX(t) + Bougtt) + Dayg (3.39)
Y(t) = CaugJY(t) (3.40)

wherein X(t) is the column vector [z;(t), z5(t), z(t)]¥ and Y (¢) is the column vector

[y(t), z(¢)]F. A block diagram of the augmented state-space model is shown in Fig. 3.4.

2O TP s O e 0

)
—

Ly K== Observer

Figure 3.4: Block diagram of augmented state feedback control

Feedback gains for the augmented state, L(t), are obtained from a third-order

LQG algorithm, which minimizes the performance index
J=F {X(N)TRNX(N) + NZ_I (X(t)TRzX(t) + u(t)TRuu(t))} (3.41)
t=0
subject to
X(t+1) = AwgX(t) + Baugt(t) + Daug + 01
Y(t) = CaugX(t)+v2
u(t) = -—L(t)X(t)

xY ( to ) = JYO
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where v] and v9 are system and measurement disturbances, assumed to be normally

and independently distributed about a mean of zero and covariance of

(t 2 9
") vr{(r) vg(r) = 5 §(t—r) (3.42)
vo(t) 0 o5

The feedback gain vector, L(t), is optimized by minimizing Eq. (3.41), which is
weighted by the symmetric, positive definite matrices Rz, Ry, and Rp;. Solution

of the LQG optimal-control problem requires [13]
- T -1 ,T
L(t) = [Ry + BaugS(t +1)Baug]™ ~BaugS(t + 1)Aaug. (3.43)
where 5(t) satisfies the matrix Riccati equation

5(t)= Rz + L(t)TRuL(t) + (Aaug - BaugL(t))T S(t+1) (Aaug - BaugL(t))

' (3.44)
A steady-state solution of the feedback gain vector, L, is obtained by iterating
Egs. (3.43) and (3.44) backwards in time. Subject to weak assumptions [13,24],
L(t) converges to L; convergence is usually achieved within five to ten iterations.
Note that, because the optimization horizon is made sufficiently large, steady-state
feedback gains are independent of the terminal condition X(N )TR NX(N). Finally,
by replacing the state vector X(t) with state estimates obtained from the observer,

the secondary air flow rate can be calculated from the equation

B} T
u(t)=—L[.~;:1, 9, z(t) (3.45)
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4. EXPERIMENTAL PROCESS DESCRIPTION

The purpose of this investigation was to use an adaptive control algorithm to
regulate the central bed temperature of a two-bed fluidized combustor. As a refer-
ence, the performance of the adaptive control algorithm was compared with that of
a classical PI controller tuned by the Ziegler-Ni.chols method. In both cases, bed
temperatures were measured with thermocouples and secondary air flow rates were
adjusted accordingly. Because a SISO control objective was specified, primary air flow
and coal feed rates were maintained at 'constaht values during combustor operation.

This chapter describes the fluidized bed system and accompanying computer
hardware, sta,'rt-up procedures, sampling time specifications as well as statistical pro-
cedures used to determine DARMA model adequacy. The chapter concludes with a

presentation of data used to determine Z/N coefficients for the PI control algorithm.

4.1 Combustor Design

A process diagram of the fluidized bed system is shown in Fig. 4.1. The central
and the annular fluidized beds are separated by a %-in thick stainless steel insert,
which is welded to a common distributor plate. The gas distributor is a simple
multiorifice plate constructed from %-in thick stainless steel stock. The plate has

250 evenly spaced orifices, each with a diameter of 332-in. A large number of orifices
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Figure 4.1: Piping and instrumentation diagram of test rig
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prevent gas channeling and provide for uniform fluidizing characteristics within the
bed. An 80 mesh stainless steel screen is spot-welded to the upper surface of the
distributor plate to restrict backflow of sand into the air plenums. In addition to
retaining sand, the screen functions as flame arrestor [23], preventing unaided flame
propagation of liquefied petroleum gas (LPG) into the primary air supply line during
the start-up procedure.

Air supplied to the annular bed is exhausted through nozzles to the combustor
freeboard. Four %-in nozzles are evenly spaced on the dividing wall circumference,
and a stainless steel screen is placed across each nozzle to prohibit effusion of annular
bed sand into the central bed. These nozzles are located in a manner such that
annular bed air is directed into the freeboard region, thereby promoting combustion
of unreacted gases and coal fines released from the central bed [10].

A freeboard constructed of mild steel is placed above the combustion and heat
transfer beds, The inner wall of the freeboard is insulated with a 1-in layer of Kao-
cast RFT castable refractory. From the freeboard, flue gases pass through a high-
efficiency cyclone where entrained particles are removed. Finally, combustion gases
are exhausted from the fluidized bed system through a roof mognted, induced draft

fan.

4.2 Fuel Supply

Experiments were performed using bituminous coals of variable quality and com-
position, including Illinois No. 6 and Iowa “Cherokee” seam coals as well as various

weathered Iowa coals. Neither proximate nor ultimate analyses were performed to



35

characterize the coals as such information was not required for proper controller per-
formance.

Coal was crushed and screened to a top size of %-in, meeting feeder clearance
requirements, and screened to a bottom size of %-in, thereby reducing the quantity
of elutriable fines in the fuel supply. The crushed coal was metered into the fluidized
bed by an AccuRate dry chemical feeder (Model 602), equipped with a %-in diameter,
variable speed helix and a 5 gallon vinyl hopper. The feeder held approximately 30 Ib
of coal and could accurately meter fuel into the bed at 1 to 50 Ib/hr. To prevent hot
combustion gases from circulating through the fuel supply and into the laboratory,
the hopper was sealed during test runs. However, a 30 1b sealed fuel supply restricted
combustor operation to a two hour maximum.

Occasionally, the coal supply — notably, the weathered Iowa coal — had a high
moisture content and would create metering difficulties. Water drawn out of the coal
by the hot helix formed a sticky amalgamate that could not be feed into the bed.
Consequently, to remove water from the coal, high moisture coals were allowed to dry

in the open for 24 hours.

4.3 Bed Material

Experiments were performed on a two-bed combustor using fluidized beds of
sand. The central bed had a static height of 6 inches and contained a general purpose
sand, sieved to a 16 x 20 mesh particle distriimtion. Heat was removed from the central
bed by an annular, fluidized heat transfer bed with a static height of 9 inches. The

outer bed contained a fine silica sand, sieved to a 50 x 70 mesh particle distribution.
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To ensure effective heat transfer, the annular bed sand height was kept above the
central bed sand height. The converse — a central bed with a sand height greater
than that of the annular bed — reduces the effectiveness of the heat transfer bed,

making temperature control of the central bed difficult.

4.4 Data Acquisition and Digital Control Hardware

Temperature and flow rate data were acquired and digital control was executed
with a Zenith Z-158 microcomputer. The Z-158 is based on an Intel 8088 CPU at
4.77 Mhz. The unit was configured with an Intel 8087 math coprocessor, 640 K
of addressable memory, and a 20 Mb hard drive. The data interface consisted of a
Metrabyte DAS-8 A/D converter and a Metrabyte DDA-06 D/A converter. The DAS-
8 is an 8-channel, 12-bit, successive approximation A/D converter with conversion
times of 25 microseconds. The DDA-06 is a 6-channel, 12-bit analog output interface
with 24 parallel digital I/O lines. Both data acquisition and digital control codes
were written and compiled with Microsoft QuickBASIC 4.0.

Temperature data were obtained from three type-K (chromel/alumel) thermo-
couple probes in the central bed, and one type-K thermocouple probe in the annular
bed. To protect them from the abrasive bed environment, the thermocouples were
enshrouded in a 304 stainless steel casing. The probes were connected to a Metrabyte
sub-multiplexer board (Model EXP-16), which amplified thermoelectric voltages and
provided cold junction compensation. Analog signals from the sub-multiplexer board
were sent to the DAS-8 A/D interface board.

Both primary and secondary air flow rates were calculated from pressure drops
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across orifice flow meters. Pressure drops across the meters were measured with
‘a Schaevitz LVDT pressure transducer (Model P3061).and were calibrated against
a laminar flow meter. Analog signals from the pressure transducer were sent to the
DAS-8 A/D converter, whereupon air flow rates were interpolated from the calibrated
pressure drop data.

Air flow rates into the fluidized bed were adjusted by a Fisher Design GS valve
(%-in port) with a Fisher Type 513R reversible diaphragm actuator. Plumbed to a
60 psig air supply line, the Design GS valve could admit a maximum air flow rate
of 50 scfm into the annular bed. However, a 27 scfm saturation limit was set within
the digital control programs as high flow rates and concomitant high fluidization
velocities promoted elutriation of bed material and fuel from the combustor. The
Fisher valve assembly was regulated by a Bellofram Type 1000 E/P Transducer, which
" was connected to the DDA-06 analog output interface. Considerable difficulties were
encountered with the Fisher valve assembly due to packing friction and flow forces
on the valve plug. To improve valve performance, a position feedback control loop
was installed on the system. Details of controller hardware and valve performance

are presented in Appendix B.

4.5 System Start-Up

Primary air flow was set and maintained at 20 scfm throughout the entire test
run. During start-up, secondary air flow was set and maintained at 4 scfm. A nominal
secondary air flow rate was maintained during system start-up to fluidize the annular

bed and allow the stainless steel insert to expand in the transverse direction. After
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start-up, a lower limit of 4 scfm was enforced on secondary air as flow rates below 4
scfm were neither accurate nor repeatable (see Appendix B).

Before coal could be metered into the combustor, the bed temperature had to be
raised, by external means, to a temperature where coal combustion was autogeneous.
To do this, the bed was preheated to 1200 °F by burning LPG. The gas was introduced
into the primary air plenum and fed into the bed along with combustion air. To ignite
the LPG, energized electrodes were placed above the combustion bed. Although LPG
flames are self-propagating, the electrodes were charged during the entire start-up
procedure to re-ignite flames which may have been blown off, thereby prohibiting
gas build-up in the combustor. When the combustor temperature reached 1200 °F,
LPG was progressively decreased as coal was metered into the bed. Continuous and
spontaneous combustion of coal was verified by visual inspection, at which time LPG
into the unit was discontinued.

Coal feed rates were set and maintained at 12 I1b/hr. Primary and secondary air
flow rates were maintained at 20 and 4 scfm, respectively. Under these conditions,
the bed was allowed to reach an arbitrary temperature, whereupon an adaptive or

classical controller algorithm was invoked.

4.6 Sampling Period Specifications

Goodwin and Sin {13] suggest a control update time equal to one-fifth of the
fastest time constant. The combustor used in this investigation had a dominant time
constant of 200 seconds; however, a sampling interval of 20 seconds — or one-tenth

of the dominant time constant — was specified. Sampling intervals much smaller
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than 20 seconds resulted in parameter identification difficulties. Specifically, to avoid
estimating system parameters on measurements predominated by noise, a sufficient
change in temperature had to occur between data samples. On the other hand,
sampling intervals much larger than 20 seconds resulted in poor regulation as bed
temperatures tended to stray between control updates.

A separate sampling interval was specified for the inner digital control loop,
which was used to adjust the Fisher control valve assembly. Within this loop, flow
rate data were acquired from the pressure transducer and command signals were
issued to the Bellofram pressure regulator at 150 millisecond intervals. In addition to
pressure data, temperature data were acquired at the 150 millisecond intervals. To
prevent spurious measurements from corrupting the parameter estimation procedure,
temperature data were filtered. Filtering consisted of a comparison between two
successive temperature measurements. If the difference between the measurements
exceeded 5 °F, the procedure was repeated. Averaging techniques were ineffective as
false measurements were inclined to be several hundred degrees from the actual bed
temperature. Filtered temperature data were continuously updated on the computer
display so that system performance could be directly monitored; however, only the
temperature data sent to the adaptive control or classical control algorithms at 20

second intervals were recorded.

4.7 Statistical Procedures

To determine a suitable system order for the DARMA model, data from sam-

ple runs were analyzed with the General Linear Models (GLM) procedure on SAS
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(Statistical Analysis System). Statistical procedures included a multiple regression
ANOVA (analysis of variance) in which F-tests were computed for both sequential
(Type I) and partial (Type III) sums of squares. In the GLM procedure, a Type I
analysis is a forward sequential examination of variances associated with the individ-
ual predictor variables. For this analysis, DARMA model variables were arranged by
increasing model order, i.e., y(t — 1), u{t — 1), ..., y(¢t — 6), u(t — 6). A Type III
variance partition is included in the ANOVA to assess the importance of including
each variable in the statistical model [8,31]. The Type III variance partition tabulates
sums of squares associated with individual predictor variables if those Yariables had
been placed in the final position of the Type I sequence.

Parameter estimates were also calculated with the GLM procedure and signifi-
cance was determined through t-tests. Finally, using the multiple regression procedure

 PROC REG on SAS, covariance and partial regression matrices were calculated and

tabulated for the DARMA model estimates.

4.8 PI Control Design

A PI controller with gains specified by the.Z/N method was used to reference
the performance of adaptive control. To obtain Z/N coefficients, a step response was
performed on the two-bed combustor. An Illinois No. 6 coal, crushed and screened to
% x 8 mesh, was fed in