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CHAPTER 1. INTRODUCTION 

Speech Recognition 

Brief History 

Research in automatic speech recognition has been going on since the 1950s. In 

the 1950s and 1960s much of the work on speech recognition focused on recognizing 

distinct syllables or monosyllabic words. Techniques for performing the recognition 

were mainly based on analog methods of spectral measurements. Elaborate hardware 

systems were developed to accomplish these tasks. 

In the 1970s research into the area of isolated word recognition improved. 

Pattern recognition techniques also advanced. Isolated word recognition systems 

became usable. Linear predictive coding (LPC) techniques began to be used in 

recognition systems as an accurate spectral distance pa rameter . Also, dynamic 

programming techniques began to be developed as a tool for solving speech recognition 

problems. 

In the 1980s the direction of research shifted to connected word recognition. 

Recognition techniques adva nced from template based approaches to statistical 

modeling methods, especially the hidden Markov model approach . Neural networks 

also began to be applied in a widespread manner to speech recognition proble ms. The 

advanced computation power available through improvements in computer technology 

also helped to advance speech recognition research. 

In the 1990s resear ch in speech recognition is building on many of the same 

areas made popular in the 1980s. New techniques in hidden Markov models a nd 

neural networks are continuously being researched. Applications of speech recognition 

systems are s preading to ma ny differe nt fields. The widespread use of the personal 

computer is helping to make speech recognition availa ble to more people. 

One of the dreams of many researchers has been to develop a machine that can 

recognize and understand human speech. Ideally this machine would be able to 
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communicate with different people in their own la nguage in any environment. 

However, there are many obstacles that stand in the way of accomplishing this goal. 

Difficulties 

Much of the difficulty encountered in developing an effective speech recogni tion 

system stems from the fact that it is an interdisciplinary problem. Among the 

disciplines involved in speech recognition are signal processing, pattern recognition, 

linguistics, a natomy, and physiology. Each discipline presents its own group of 

problems and its own approach to speech recognition . 

The core of any speech recognition system is signal processing which is the 

process of extracting relevan t information from the speech signal. There are many 

problems that can arise in the signal processing stage of a recognition system. First of 

all, no two people pronounce the same word in exactly the same way a nd the duration 

of the word is variable. Signal processing techniques need to account for these 

differences. It is also essential for the computer to know when the actual speech signal 

begins. This is accomplished through a process known as endpoint detection. Endpoint 

detection becomes difficult when the speech input is a continuous stream of words as 

opposed to isolated words. In addition, a noisy interface makes it difficult to get a n 

accurate signal. 

Pattern recognition can be described as a set of algorithms designed to classify a 

certain feature or set of features a nd assign it to a particula r class. Pattern recognition 

techniques common in speech recognition use today are hidden Markov models and 

neural networks. These methods are computationally intensive and can require a la rge 

amount of time to implement. However, when these techniques work properly they can 

be valuable tools for building effective speech recognition systems. 

Linguistics, the study of language, encompasses the relationship between sounds 

a nd words as well as the meaning of different words. One obstacle in speech 

recognition associated with linguistics is homonyms, when there are two words that 

sound the same but have different meanings. For example, the words two, too, a nd to. 

Linguistic techniques can be applied to choose the correct word based on context. 
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Recogni tion of phonemes, the basic unit of speech in a language, can create problems as 

well. Similar sounding phonemes, such as Isl, /sh/, /z/, a nd /zh/, have similar properties 

and can be misinterpreted. These sounds may be mispronounced by an individual 

because they were never learned correctly, are unfamiliar to the speaker, or perhaps 

because of a n anatomical or physiological reason. Another major obstacle involved with 

speech recognition is coarticulation. Coarticulation can be described as overlapping 

vocal tract shapes during the pronunciation of a word. This can cause changes in the 

acoustic properties of a phoneme due to its phonetic context. Examples of these are the 

words sue a nd say. When the phoneme Isl is pronounced in sue the lips are exte nded in 

anticipation of the ens uing vowel sound. However, when pronouncing say, the lips are 

retracted slightly to prepare for a different vowel sound. The resulting change in vocal 

tract sh ape e ffects the acoustic proper ties and makes the pattern recognition phase of 

speech recognition more difficult. 

Knowledge of the a natomy and physiology that contribute to speech production 

is helpful in developin g approaches to speech recogni tion. By examining th e a natomy 

involved with speaking, models can be developed which describe speech production. 

Through these models more effective speech recognizers can be developed. Modern 

techniques try to pattern their functionality after the body's own physiological methods 

for speech production and percep tion. One common technique patterned after 

physiology is the neural network. 

As seen from above speech recognition draws from a variety of fields and it also 

can be applied to a broad range of topics. This research project concentrates on speech 

recognition applications in the field of speech therapy. 

Applications to Speech Therapy 

Speech Therapy Using the Computer 

P a rt of the job for a speech therapist is to work with a client to help him/her 

form his/her vocal tract into the shape necessary to produce correct sounds . This can 

be a very tedious experience for both parties involved. With recent advances in speech 

recognition techniques and persona l computer power it is hoped that the computer can 
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be used as a tool for the speech thera pist. Ideally, the computer could allow the client 

to practice pronunciation of sounds or words by himself/herself and then provide useful 

feedback. Appropriate feedback would allow the user to improve his/her pronunciation 

without the full-time assistance of a speech therapis t. 

Many people would pote ntially benefit from computer aided speech therapy. 

There are an estimated 22 million people in the United States with speech and/or 

hearing disorders [Boone a nd Elena, 1993]. Additionally, there are nearly two million 

people who immigrate into this coun try every year [Statistical Abstracts of the United 

States, 1988]. Of these immigrants, only a small fraction speak E nglish well enough to 

function effectively in society. Many of these people need remedial spoken English 

progr a ms to help them integrate into the American society. From these figures it is 

evident that there is a need for methods to help people improve their speaking skills. 

Present Products Available 

There are presently a number of products on the market designed to improve a 

person's speech and pronunciation ; however, only a couple of these products use 

modern sign al processing techniques. What follows is a brief description of some of 

these products. 

Perfect English Pronunciation [Skills International, 1995] is a set of lessons on 

two videotapes which reviews forty-six of the most common sounds of the English 

language. It demonstrates how to form the sounds through the use of animations and 

actual video clips. Each demonstration is also accompanied by captions so the viewer 

can read as they practice. One obvious drawback of this product is the lack of feedback 

provided to the user , thus he/she will be less able to gauge his/her performa nce. 

Video Voice is a p roduct that provides graphic displays of pitch, a mplitude, 

duration, a nd forman t location. I t cannot store and play back a user's speech pattern. 

It is more effective when working with vowels as opposed to consonants. Even with 

vowels it is highly speaker independent which makes this program unrelia ble 

[Ramabadran and Venkatagiri, 1993]. 
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Another product, Speech Viewer, provides more information than Video Voice. 

For example, it allows playback of the user's speech patterns. However, it does not 

allow play back of the target speech sound that the user is trying to emulate. Also, its 

performance is unsatisfactory a s it produces too many false alarms and misses. 

Finally, there is no feedback provided to the user as to where the problem in his/her 

pronunciation is [Ramabadran and Venkatagiri, 1993]. 

The final product to be discussed is Say & See: Articulation Therapy Software, a 

program that runs on Macintosh computers [Hutchins, 1992] . In response to speech 

input through a microphone, it clisp lays an animated mid-sagittal view of the vocal 

tract. The purpose of the animation is to give an example of the correct positioning of 

the vocal tract to produce certain sounds. One drawback of the program is that it uses 

a sampling rate of 11 kHz which may be too low to capture some higher frequency 

producing sounds in the English language. 

Goal of this Project 

As quoted in a recent publication, Bill Meisel, the editor of Speech Recognition 

Update newsletter , said "we have not yet approached the science-fiction ideal of 

unconstrained continuous-speech dictation or of wide ranging voice conversations with 

a computer. Noneth eless, applications with more modest objectives are beginning to 

h ave a major impact on mains tream markets" [Sweeney, 1995). One of these 

mainstream markets is rehabilitation engineering. Voice recognition is used in many 

devices to aid the physically clisabled: keyboard and mouse replacements for data 

entry, wheelchair and even appliance control. Another branch of rehabilitation 

engineering deals with speech therapy. 

The goal of this project was a "more modest objective" in the field of speech 

therapy. A common problem among all of the programs described previously is a lack of 

adequate feedback to the user. The goal of this project was to develop an interactive 

computer program that would provide adequate feedback to the user. The program was 

to be developed to run on an IBM compatible personal computer, equipped with a 

generic sound card and microphone, in the WindowsrM environment. By adhering to 
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these specifica tions it was the goal of the researcher to produce a product that could be 

ea sily used by people in the privacy of their own homes. The scope of this project was 

limited to individual sounds, or phonemes. A future goal would be to h ave the option of 

allowing the user to practice pronouncing these sounds in a syllable, word, or even 

sentence. 
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CHAPTER 2. SPEECH PRODUCTION, PERCEPTION, AND 
PROCESSING 

Introduction 

When two people communicate through speech , one person produces a speech 

signal a nd, ideally, the other listens. The speech signal is in the form of pressure 

waves. Variations in the sound waves are produced by positioning the different parts of 

the vocal system in certain ways. The sound waves are picked up by the listener's ears 

where they are converted into neural firings in the inner ear. Finally the auditory 

nerve transmits these messages to the brain where they are converted into some 

meaningful information. 

Speech Production 

Anatomy and Physiology of Speech Organs 

The organs tha t produce speech are also used for other bodily functions such as 

breathing, eating, a nd smelling. Speech is generally produced by exhaling air through 

the vocal system. The vocal system can be divided in to three main groups: lungs, 

larynx, and vocal tract. Sometimes the term vocal tract can refer to the complete vocal 

system; however, in this paper vocal tract will only refer to the one group of the vocal 

system. 

Lungs and the Thorax. The lungs are the source of airflow for the speech 

process. Their primary purpose is for breathing, inspiring and expiring air. Expiring 

constitutes about 60% of the breathing cycle for normal breathing. The breathing cycle 

is accomplished through the use of the diaphragm, the intercostal and the abdominal 

muscles. The diaphragm contracts as the external intercostals pull the rib cage up and 

outward. This expands the volume of the intrathoracic cavity creating a pressure 

gradient which allows air to be inspired. As the diaphragm relaxes and the internal 

intercostal muscles pull the ribs inward the intrathoracic volume decreases and air is 
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exhaled. It is during the exhalation process that sounds in virtually all la nguages are 

produced. 

The lungs influence the amplitude (loudness) of speech because amplitude is 

related to airflow rate a nd volume. The volume velocity of exhaled air during speech is 

controlled by the chest and abdominal muscles at about 0.2 liter/second during 

sustained sounds. Total lung capacity for a normal adult male is about 6.0 liters. For a 

female this value is about 4.2 liters. The residual volUTne is the air left in the lungs 

after a maximal expiratory effort. Normal values for this volume are 1.2 liters for men 

and 1.1 liters for women. Finally, the vital capacity is the largest amount of air that 

can be expired after a maximal inspiratory effort. Normal values for this volume are 

4.8 liters for men and 3.1 liters for women. Ordinary speech uses up to half of the vital 

capacity while very loud speech uses as much as 80% [Ganong, 1991]. While the lungs 

can help to produce different volumes and velocities of air passing through the vocal 

system, the larynx and vocal t ract help to vary and modulate the airflow rate. 

Larynx and Vocal Folds. After air leaves the lungs it passes through the 

bronchi and then through the trachea to the larynx. The larynx contains nine 

cartilages stabilized by ligaments and/or skeletal muscles [Martini, 1992]. Four notable 

cartilages in the larynx are the thyroid, cricoid, arytenoid, and epiglottis. The epiglottis 

seals off the larynx when eating. Within the larynx are vocal folds, a pair of elastic 

structures of tendon, muscles, and mucous membrane that lie in an anterior-posterior 

direction behind the thyroid cartilage (Adam's apple). Another structure located just 

above the vocal folds, called the ventricular folds, are not so elastic, these help to 

protect the vocal folds . Because the vocal folds are involved with speech production 

they are known as the true vocal cords, while the ventricular folds are often called the 

false vocal cords [Martini, 1992]. The vocal cords are typically 15 mm long in men and 

about 13 mm long in women. The glottis is the variable opening between the vocal 

cords. This opening is about 8 mm wide at rest [O'Shaughnessy, 1987]. 

During normal breathing the vocal cords are in an open position allowing air to 

freely move in and out. Generally there is no a udible sound while breathing. Sound 
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occurs when there is an obstruction somewhere in the vocal system. If the vocal cords 

are adducted s ufficiently, the air passing through the glottis vibrates the vocal cords 

and produces sound waves. When the vocal cords vibrate during speech this is called 

voiced speech . The vocal cords can be compared to the s trings of a musical instrument. 

For example: short, thin, a nd tense strings produce higher frequency sounds, whereas 

long, thick, a nd loose strings produces lower frequency sounds. The true vocal cords of 

an a dult m ale are thicker a nd longer and they produce lower tones than those of an 

adult female. The tension in the vocal cords is controlled by skeletal muscles that are 

under voluntary control. Although sound can be produced with the vocal cords in the 

larynx, clear speech requires further a rticulation by the vocal tract. 

Vocal Tract. The vocal tract begins at the opening of the vocal cords and ends 

a t the lips (see Figure 2.1). After air passes through the glottis, it next passes through 

the pharynx, the oral cavity, and finally through the lips. When the velum (a moveable 

tissue structure at the back of the mouth cavity) is lowered, the nasal cavity is also 

coupled to the vocal tract to produce the n asal sounds of speech . In the average male, 

th e total length of th e vocal tract is a bout 17 cm. For females, this value is about 15 

cm. [Parsons, 1986]. 

Alveolar Ridge 

Upper Up 
A>='"---- Teeth 

Lower Up 

Figure 2.1. Simplified an atomy of the vocal tract. 
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Classes of Sou n d s 

Every la nguage has a cer tain set of linguis tic uni ts called phonemes to describe 

its sounds . A phoneme is the smallest meaningful unit of speech in a language. The 

number of phonemes varies from language to language, but is typically between 20-40. 

Phonemes can be classified into three main groups: fricatives, plosives, and sonorants. 

Fricatives. Fricatives can be either voiced or unvoiced sounds. They are 

ch ar acterized by a narrow fixed obstruction of the vocal tract beyond the vocal cords . 

The obstruction usually involves either the tongue and the roof of the mouth or the lips 

a nd teeth. Examples of frica tives a re the /sh/ in shoe, the /v/ in valve, and the /th/ in 

thin. 

S tops or Plosives. Stops or plosives a re produced when the vocal tract or 

glottis is closed comple tely, allowing pressure to build up , and then opened to allow the 

air to be released. Examples of s tops are /p/ in pop, It/ a s in tot, a nd !kJ as in kick . 

Sonorants . Sonora nts a re perhaps the most important class of sounds. 

Sonorants result from a n excita tion of the vocal folds. Air leaving the lungs is 

interrupted by periodic opening and closing of the vocal cords. The ra te of vibration of 

the vocal cords is called the fundamental frequency (fO). Exa mples of sonora nts include 

most vowels, such as le/ as in bet and the /u/ sound in boot, and ma ny consonants also. 

Although mos t sounds can fit into one of the above classes there a re s till many 

different approaches to analyzing speech sounds. These include: a r ticulatory, acoustic, 

phonetic, and perceptual. The remainder of this section will focus on articula tory 

phonetics. Following sections in this chapter will discuss the other approaches . 

Articulatory Phonetics 

The articulatory phonetics approach to analyzing speech sounds relates certain 

phonemes to positions a nd movements of the speech organs. There is little da ta in this 

area because it is difficult to obtain an accura te picture of the exact motion of the 

speech organs. Visual observation does not allow a full view of all the speech organs, 

and X-ray observation does not provide a complete three-dimensional model. When 
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describing the position a nd movements of the speech organs there are three basic 

categories of description. 

Manner o{Articulation. Manner of articulation describes the airflow through 

the vocal system and is concerned with the path air takes and the degree to which 

airflow is impeded. Vowels, diphthongs, and sonorants are ch a racterized by air flow 

through the vocal system which meets no obstruction narrow enough to cause turbulent 

flow (frication) [O'Shaughnessy, 1987]. 

Glides a nd liquids are similar to vowels. The difference in glides is that they are 

caused by a narrow constriction in the vocal tract that sometimes can cause frication . 

Liquids use the tongue as an obstruction for the air to pass around. Nasals are 

produced when the velum is lowered and the oral cavity is completely closed off. In the 

English language all nasals are consonants. Other languages use nasalization to 

differentiate between different vowels . However , in English , nasality is not a 

distinctive feature of vowels. 

Fricatives, affricates, and stops can also be characterized by their manner of 

articulation. As previously discussed, stops are produced by a complete closure of the 

vocal tract which allows air to build up a nd then released. Frica tives occur when the 

vocal tract is narrowly constricted at a certain location, causing turbulent flow. 

Affricates can be described as a stop followed by a fricative. Examples are shown in 

Table 2.1. 

Voicing. Voicing is the second basic category of description in articulatory 

phonetics. Speech production can result from a periodic source, resulting in voiced 

speech, or from a noisy and aperiodic source, resulting in unvoiced speech . Voiced 

speech occurs when the vocal cords are drawn together close enough to cause them to 

vibrate as a result of the air passing through them. The fundamental frequency that 

the vocal cords vibrate a t corresponds to the perceived pitch. If the speech is unvoiced, 

then there must be an obstruction of the vocal system in another location causing the 

speech sound. The location of this obstruction, or place of articulation, described next. 
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Place of Articulation. While the ma nner of articulation and voicing help to 

separate phonemes into broad classes, the place of ar ticulation provides finer 

differe ntiation between phonemes. For example, the place of a rticulation for the Isl in 

sea is a t the tongue a nd hard palate just behind the front teeth, termed alveolar 

strident, while the place of articulation for the /sh/ in shell is at the tongue and middle 

of the alveolar ridge, te rmed palatal strident. For the vowel sounds the place of 

articulation is not necessarily at a cer tain location but can be described as a cha nge in 

the vocal tract shape. For example the /u/ sound in boot is described as having it's place 

of ar ticulation as "high back tense rounded" [O'Shaughnessy, 1987]. See Table 2.1 for 

more examples of the terminology used in describing the location of articulation. 

Speech Perception 

Articulatory phone tics provides a precise manner in terms of speech organ 

positioning to describe each phoneme. However, there are times when the speech 

organs are not in, what would be considered, the correct position and yet speech can 

still be under stood. Speech perception is the method of understanding the speech 

message once it has left the source. 

Many times in communication there are other cues that communicate meaning 

besides just the speech sound itself. The context of the speech may help one to 

understand the message. For example, homonyms such as to, two, a nd too all sound 

alike. It is only by the context of the sen tence in which they a re spoken that the 

meaning of the word is realized. In a like ma nner , the speaker can play a large role in 

communication . The speaker 's personality, actions, geogr aphic background and other 

factors can all influence the meaning of the spoken message. 

By incorpor ating certain principles from the speech perception area of study, one 

can gain a fuller understanding of speech . A speech recognition device that does not 

account for these factors will not be as effective. 

The purpose of this project, however, was not to construct a pure speech 

recognition device. Therefore the role of speech perception was limited. The focus of 

this project was to help a person practice producing isolated sounds. 
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Table 2.1. English phonemes a nd corresponding classifications [O'Shaughnessy, 1987). 

Phoneme Manner of Articulation Place of Articulation Voiced Exa mple 
1 vowel high front tense yes beat 
I vowel high front lax ves bit 
e vowel mid front tense ves bait 
E vowel mid front lax yes bet 
CE vowel low front tense yes bat 
a vowel low back tense ves cot 
~ vowel mid back lax rounded ves caught 
0 vowel mid back tense rounded yes coat 
u vowel hie:h back lax rounded ves book 
u vowel high back tense rounded ves boot 
/\ vowel mid back lax ves but 
3 vowel mid tense (retroflex) yes curt 
a vowel mid lax (schwa) yes about 

a j (al) diphthong low back ~high front yes bit 
:Jj (~I) diphthong mid back ~high front yes boy 

aw (aU) diphthong low back~high back yes bout 
j glide front unrounded yes you 
w glide back rounded ves wow 
1 liquid alveolar ves lull 
r liquid retroflex ves roar 
m nasal la bial yes maim 
n nasal alveolar ves none 
YI nasal velar ves bang 
f fricative labiodental no fluff 
v frica tive labiodental yes valve 
e fricative dental no thin 
8 fricative dental ves then 
s fricative alveolar strident no sass 
z frica tive alveolar s trident yes zoos 

J fricative palatal strident no shoe 
zh fricative palatal striden t ves measure 
h fricative glottal no how 
p stop labial no POP 
b stop labial ves bib 
t s top alveolar no tot 
d s top alveolar ves did 
k s top velar no kick 
g s top velar yes gig 

tsh affrica te alveopalatal no church 
dzh affricate alveopalatal ves iudge 
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Speech Processing and Acoustic Phonetics 

Acoustic refers to hearing, thus acoustic phonetics deals with describing speech 

by what it sounds like. Each sound has certain audible properties which can help 

identify it. Most speech recognition systems use the acoustic phonetic method as the 

basis for their operation. 

Perhaps the most common way that people are used to seeing a plot of a speech 

signal is the time domain representa tion. In the time domain a speech signal is 

represented as a waveform on a plot of amplitude versus time (see Figure 2.2). Time 

domain plots can provide information about the loudness of the signal. They can also 

give the observer of the plot an rough idea of the frequency content of the signal. 

In speech processing applications another common representation of speech 

signals is in the frequency doniain. The frequency domain provides additional 

information a bout the speech signal. Often by examining the freq uency domain of a 

speech signal certain characteristics are noticeable that may not have been as easily 

discernible in t he time domain (see Figure 2.3). 

The different frequencies that are present in a speech signal result from the 

shape of the vocal tract. The vocal tract can be modeled as an acoustic tube. Whe n air 

is passed through a tube it resonates at certain frequencies. If the tube changes length 

Time Domain Waveform Plot of Isl 

1.00 

Q) 0.50 
"'O ;:s _.., 
;.::I 0.00 
0.. 

~ -0.50 

-1.00 
0.00 

Time (seconds) 

Figure 2.2. Time domain plot of the phoneme Isl. 
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Frequency Domain Waveform Plot of Isl 

2736 5470 

Frequency (Hz) 

8205 

Figure 2.3. Frequency domain of Isl usin g FFT. 

11000 

the resonating frequencies change also [Halliday and Resnick, 1986). In the vocal tract 

these resonating frequencies a re called fonnant s (abbreviated Fi, where Fl is the 

formant with the lowest frequency). As the organs of the vocal tract ch a nge position to 

form new sounds the formants also change. 

Spectral Characteristics of Phonemes 

Vowels are often ch aracterized by their first two formant frequencies, Fl and F2. 

Diagrams such as the one shown in Figure 2.4 show the range of values for Fl and F2 

in different vowel sounds. There is some overlap between certain vowel sounds, 

however , by using F3 in a three-dimensional plot the separation between sounds is 

fairly distinct. Diphthongs consist of a changing vowel sound as the vocal tract changes 

position to produce the sound. Likewise, the represen tation of a diphthong in the 

frequency domain can be described in terms of formant frequencies that are rising or 

falli ng. 

Fricatives and s tops need to be separated in terms of whether they are voiced or 

unvoiced when describing th eir spectral ch aracteristics. Fricatives that are unvoiced 

are not described in terms of their formants because low frequencies are not excited. 

Instead they are ch aracterized by a high frequency spectrum proportional to the length 

of the vocal tract cavity. For example, palatal fricatives can have frequency spectrums 
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Figure 2.4. Fl-F2 chart for several vowels [Kent, and Read, 1992]. 

beginning at around 2.5 kHz, while labial and dental fricatives can have much of their 

energy present around 8 kHz. Voiced fricatives are produced using two acoustic 

sources, the periodic glottal source (voicing) and the frication noise produced by the 

vocal tract constriction. Thus the frequency spectrum of a voiced fricative will have 

both low frequency energy present due to the voicing as well as high frequency energy 

due to unvoiced fricatives. Stops can be characterized as an absence of energy (or low 

frequency energy if voiced) followed by an sudden excitation of the frequencies that 

would be present in a fricative h aving the same place of articulation. 

In the production of all phonemes it is important to realize that the vocal tract 

can change shape very quickly, sometimes in less than 20 milliseconds. As the vocal 

tract changes shape, the frequency characteristics also change . Therefore it is 

important to accurately capture the true spectral characteristics of the speech sample. 

Obtaining Frequ e ncy Information 

Analog to Digital Conversion. When using a digital computer to analyze the 

speech information, the speech signal needs to be converted from its usual analog form 

to digital form that can be stored in a computer. Three important factors in converting 
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this information accurately are the microphone, the sampling rate, and the sampling 

resolution. 

Microphone. The microphone used in the analog to digital (A/D) 

conversion process us ually introduces undesired side effects, s uch as 60 Hz line noise. 

It also can cause nonlinear distortion and loss of low and high frequency information 

[Picone, 1993). Higher quality microphones are designed to minimize these undesired 

side effects. 

Sampling Rate. Also of importance in obtaining accurate frequency 

information is the sampling rate at which the speech is obtained. The sampling rate is 

the number of samples of the original analog signal taken each second. If the sampling 

rate is too low it will be impossible to accurately represent the true speech signal. 

However, if the speech signal is sampled at or above the Nyquist• sampling rate then no 

frequency information will be lost. 

Sampling Resolution. Sampling resolution refers to the number of bits 

used to describe each sample. A bit is a binary value which can be either a one or a 

zero. The more bits that are u sed to describe each sample, the better the resolution of 

the speech sample will be. For example, many sound boards use either 8-bit or 16-bit 

sampling resolution. 8 bits can be used to describe values from 0 to 255 units, while 16 

bits can be u sed to describe values from 0 to 65536. 

AJD Conversion Methods u sed in this Project. A high quality 

microphone was used in this project to acquire all of the test sounds. Windows TM 

programming provides support for sampling rates of 11, 22, a nd 44 kHz, therefore, in 

this project a sampling rate of 22 kHz was used. Finally, a sampling resolution of 16 

bits was used in order to capture as much information as possible. Many sound cards 

that presently exist in many computers today are only equipped to handle 8-bit 

·The Nyquist sampling rate is twice the highest frequency that is present in the original signal. 
Some fricatives such as Isl can have frequencies of up to 8 kHz present. 
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resolution and lower sampling rates. Therefore, the program was also designed to 

operate at an 8-bit sampling resolution and 11 kHz sampling rate. 

Digital Filtering. Once the signal has been converted to digital form the next 

step that is often executed is filtering the signal using a Finite Impulse Response (FIR) 

filter . Normally this is a one coefficient digital filter , known as a preemphasis filter, of 

the form in Figure 2.5, where a typical range for a pre is between a nd including 0.4 to 1.0 

[Picone, 1993]. 

IH(z) = l - aprez-11 

Figure 2.5. Preemphasis filter transfer function. 

There are two common explanations for using this filter [Picon e, 1993]. The first 

is that voiced sections of speech naturally have a negative spectral slope of 

approximately 20 dB per decade due to physiological characteristics of the speech 

production system. The preemphasis filter serves spectrally flatten the signal and thus 

improve the signal analysis. 

The second explanation is tha t hearing is more sensitive above the 1 kHz region 

of the spectrum. The preemphasis filter amplifies this section of the spectrum, thus 

giving greater emphasis to the perceptually important parts of the spectrum. 

Digital Filter used in this Project. The digital filter used in this project 

was a preemphasis filter as shown in Figure 2.5. The user is given th e option to choose 

a value for a pre in order to suit the circumstances. The u ser is also given the option to 

use the preemphasis filter or not. For certain applications the preemphasis filter may 

not be necessary. 

Segmentation . The next s tep in obtaining any frequen cy information about a 

speech signal is to segment the time domain signal into small enough sections where 

the vocal tract can be considered to be in a constant position . Then the signal can be 

considered stationary and can be an alyzed appropriately. A signal can be considered 
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stationary if its statistical characteristics do not change with time. However speech 

signal properties vary considerably during the pronunciation of a word, and thus are 

considered to be nonstationary. The practical solution to this problem is to divide the 

nonstationary signal into blocks of short segments, in which each segment can be 

assumed to be stationary. However , the problem with this method is the length of the 

desired segment. Choosing a short segment may cause poor frequency resolution. 

However, if the segment chosen is too long, it can no longer be considered stationary. 

Segmentation used in this Project. The proper segmentation period is 

ultimately dependent on the rate of change of the vocal tract. As the vocal tract 

changes shape, the spectral characteristics change also. Some speech sounds, such as 

stop consonants or diphthongs, exhibit sharp spectral transitions which can result in 

spectral shifts of as much as 80 Hz/ms. However , segmentation periods less than 8 

milliseconds are not normally used [Picone, 1993] . Speech signals are often segmented 

into 10 millisecond sections and that is the segmentation period used in this project. 

Fourier Transform,. The principle behind the Fourier transform is that any 

series can be represented by a sum of sine and cosine functions . When the series is a 

sequence of discrete values the process is called the discrete-in-time, continuous -in-

frequency Fourier transform (DTFT). The equations governing the DTFT are presented 

in Figure 2.6. 

However, in many practical situations the discrete Fourier transform (DFT) is 

employed because it uses both discrete time and frequency components which allows 

easier implementation. The equations governing the DFT are given in Figure 2.7. 

x[n] =_I [ X~1w } 1w" dro 
2n " 

In verse Fourier Transform 

ao 

x~JW )= L x[n]e -JWll Fourier Transform 
11=-<IJ 

Figure 2.6. Equations governing the DTFT. 



I N-1 
x[n] = - L X[k]W"k 

N k=O 

N-1 

X[k] = I x[n ]W-"k 

j2n 

20 

Inverse DFT 

DFT 

N 2n . 2n where, WN = e = cos-+ j sin -
N N 

Figure 2. 7. Equations governing the DFT. 

Linear Predictive Coding CLPC). Another method of representing the signal is 

through the use of linear prediction. Linear prediction tries to predict the current 

output based on a knowledge of a cer tain number of previous outputs. The number of 

previous outputs u sed in the prediction is called the prediction order. The linear 

prediction equ ations are given in Figure 2.8. In these equations y is the predicted 

output, y[n] a re the previously known outputs, -a[ij are the predictor coefficients, pis 

the prediction order, and e[n] is the prediction error. 

When the Fourier transform is performed on the LPC coefficients , the result can 

be considered as the spectral envelope of the speech signal. As can be seen in Figure 

2.9 the LPC spectrum is much smoother than the FFT spectrum which often makes it 

easier to work with. Figure 2.10 shows the LPC spectrum of the same speech sample 

for different prediction orders (p). As can be seen from the figure, the higher the 

prediction order the more accuracy is obtained. However, after a certain order the 

prediction error increases significantly. The optimal prediction order for speech 

samples is in the range of ten to fifteen, depending upon the sampling rate a nd the 

characteristics of the signal. While the LPC coefficien ts provide a smooth er spectrum 

than the FFT, their main advantage is the compression of information into a smaller 

set of data. 

Features 

After processing the speech sample it is then necessary to develop a set of 

features which will represent the speech sample in a more compact form. For example, 
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p 

y [n] = - _La[i]y [n - i] 
1= 1 

p 

e[n] = y[n] - j/[n] = _La[i]y[n - i] 
i=O 

Figure 2.8. Equations describing linear prediction. 
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Figure 2.9. LPC frequency waveform versus FFT frequency waveform . 
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if one second of speech is digitized at 22.05 kHz there will be 22050 samples. 

Furthermore, if the sampling resolution is 16 bits/sample then th ere will be 44100 

bytes of information for the computer to process. Using LPC techniques it is possible to 

represent the same information using the LPC coefficients. Assuming that LPC 

coefficients are derived from a 10 millisecond block of data, or 220 samples, then a 

prediction order of 11 would provide a compression ratio of 220: 11. Therefore, the LPC 

coefficients of a speech sample can be considered a feature for tha t sample. 

Features used in this Project. The features developed for this project were 

based solely on th e LPC coefficients. A prediction order of fifteen was used for all the 

tests in this project, however , the user h as the option to ch a nge the prediction order. 

As previously mentioned, only single sounds, assumed to be constant, were used in this 

project. Th is ma de it possible to select a ny 10 millisecond block of data in the 

recording. The LPC coefficients were then found for this block . The user of the 

progr a m is also given the option to choose a few successive blocks of data and aver age 

the resulting LPC coefficients. This helps in obtaining more robust estimates. The 

resulting fea ture vector for each phoneme produced was a sequence of fifteen numbers . 

These feature vectors were used in the program to determine the phoneme tha t was 

produced. The method of classifyin g each phoneme is described in the next ch ap ter . 
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CHAPTER 3. CLASSIFICATION TECHNIQUES 

Over the past 25 years, four main classification techniques have been used for 

speech recognition: templa te matchers, rule-based systems, neural networks, and 

hidden Markov model (HMM) systems [Roe a nd Wilpon, 1993]. Common among all 

techniques is that the classifier must align the unknown feature vector with the 

optimum feature vector representing a speech unit (a phoneme for this project) . In this 

project three of these classification techniques were implemented to determine which 

would be best s uited for operation in the computer program for this project. 

Template Matchers 

The main idea behind template matche rs is that each speech unit can be 

represented by a feature vector, or a series of feature vectors, called templates. A 

feature vector is then obtained for the unknown speech unit and compared to the 

templates for the known speech units. The template with the closest match is 

considered the correct result. A number of distance measures have evolved that are 

employed to determine which template is closest to the unknown feature vector . 

Among these distance measures are least mean square (LMS) distance, Mahalanobis 

distance, and even distance measures designed with LPC coefficients in mind: Itakura-

Saito measure, a nd Itakura's minimum prediction residual [Parsons, p. 174]. 

In most speech recognition problems individual words are often being classified. 

The rapidity with which the words are spoken may vary from speaker to speaker and 

from ins tance to instance. This may cause problems with aligning the features 

correctly. When this is a concern, a Dynamic Time Warping (DTW) technique may be 

used to s tre tch or shrink the time axis to assist in alignment with the reference signal 

[Roe and Wilpon, 1993]. This project has avoided this problem because the sounds 

being a nalyzed are individual phonemes. 

In this project an LMS distance measure was used as one of the classifying 

techniques. This was implemented in two different ways. In each method templates 

were first developed for the correct phoneme. Then, in the first method of 
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implementation, templa tes were also developed for the incorrect phonemes. Incorrect 

phonemes are those which the user substitutes in place of the correct ones. A feature 

vector from the test phoneme was then created and compared to all of the templates. 

The test phoneme was classified as the phoneme corresponding to the template it was 

closest to. In the second method of implementation, the feature vector from the test 

phoneme was compared only to the template for the correct phoneme. The LMS 

distance was then supplied as feedback to the user. This guides the user to pronounce 

his/her sounds closer to the correct phoneme. 

Rule-Based Systems 

Rule-based systems set up a series of criteria in a decision tree to determine 

which of the units of speech is present in the speech signal. One problem with this 

method is that if an incorrect decision is made early in the decision tree it is hard to 

recover from that error. In addition, it has been difficult to develop a comprehensive 

set of criteria for large and complex speech recognition tasks. The differences be tween 

the template and the rule-based approaches resulted in a philosophical split in the 

research community until the early 1980s when both a pproaches were surpassed by a 

more powerful theory, the hidden Markov model [Roe and Wilpon, 1993]. 

Hidden Markov Models 

Hidden Markov model (HMM) systems are currently the most successful speech 

recognition algorithms [Rabiner, 1989] . They are so successful because they use a 

statistical approach to model the speech unit. Additionally, HMMs automatically 

incorporate time normalization into their methodology. 

The HMM assumes that the speech signal can be modeled as a parametric 

random process and that the parameters of the stochastic process can be determined in 

a precise, well-defined way [Rabiner and Juang, 1993]. An ensemble of speech data is 

used to train the HMM, thus developing a probabilistic model which characterizes the 

entire ensemble. This resulting model is generally more effective for recognition 

purposes than a template based method. 
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Example of an HMM 
As a simple example of a Markov model consider the following example. 

Suppose a model has been developed to describe the weather in Arizona, where it is 

usually sunny and dry. Suppose another model has been developed to describe the 

weather in Seattle, where it rains a lot. Hypothetical models for these two conditions 

are shown in Figures 3.1 and 3.2. 

1 

Figure 3.1. Markov model of the weather 
in a dry environment. 

1 

Figure 3.2. Markov model of the weather 
in a we t environment. 

In this example there are three sta tes, each describing a possible weather 

condition at a certain time once a day: s ta te 1 is rainy, sta te 2 is cloudy, and state 3 is 

sunny. Each s tate has three arrows leaving it; one gives the probability of the next day 

remaining in that same s tate, the other two give the probabilities of the next day being 

in one of the other s ta tes. For the model in Figure 3. 1, it can be seen that much of the 

time will be spent in state 3 as it has a rela tively high probability of remaining in its 

present state. F or the model in Figure 3.2, much of the time will be spent in either 

states 1 or 2. 

Now, if a record is kept of the observa tions of the weather for a one week period 

it may look something like [sunny, s unny, rainy, rainy, cloudy, rainy, cloudy]. Then, by 

comparing the observation sequence to both models developed, a probability of the 
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sequence resulting from each model can be developed. The model with a higher 

probability would give the location that the observation sequence would match . 

This same principle is used for speech recognition purposes. A distinct model is 

developed for each word in the recognizer 's vocabulary. Then, a feature vector from a 

test word is compared to each model. Whichever model generates the highest 

probability is considered the matching word. 

Notation for an HMM 

In order to character ize a n HMM it is necessary to first describe the 

terminology. The following terms, originally used by Rabiner a nd Juang [1986], help to 

describe a n HMM: 

1. N is the number of states in the model. Often the states have some physical 

meaning attached to them. Also, they are interconnected so that any state can be 

reached from any other state; however, different configurations are possible which may 

suit different applications, such as speech processing. The individual states are la beled 

as {q1, q2, ... , QN}. 

2. Mis the number of distinct observation symbols per state. For example, if each 

state represented a coin that was being tossed for heads or tails, M would be two. The 

individual symbols a re labeled as {v1, v2, ... , UM} . 

3. A is the probability of moving to any state from the present state, or the state 

tra nsition proba bility. A= {a1i} where a 1J = P[q,+1 = Jlq, = i] , I ~ i,j S N. 

4. The probability distribution for the symbols in state j, where j = 1, 2, ... , N, is given 

by: B = {bi(k)}, where bJ(k) = P[ot = vk lq, = j], I ~ k ~ M , where 01 is the observation at 

time t. 

5. The initial state distribution is the probabili ty of starting in a certain state. It is 

represented by n = {ni}, in which 7ti = P[q1 = i], 1 ~ i ~ N. 
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Using these five values i t is possible to re present a ll the parameters necessary to 

describe a n HMM. Ofte n the compact notation A. = (A, B, n:) is used to r epresent an 

HMM [Ra biner and Juang, 1986] . 

Practical Applications for the HMM 

In order to apply the HMM to practical applications it is necessary to solve two 

problem s. The first problem is training. When given several observation sequences 

(feature vector s from the sam e sound) th e HMM that maximizes t he probability of 

generating those observations mus t be created. The model parame ters are found by a n 

i terative procedure known as the B aum-Wels h reestima tion formula [Rabi ner a nd 

Juang, 1986]. An ou tline for the Baum-Welsh reestimation procedure is sh own in 

Figure 3.3. This process of re-estimation is equivalen t to a s teepest-descent gradient 

search procedure [Roe a nd Wilpon, 1993]. 

Baum-Welsh r eestimation formulas 

Step 1: Recalculate the initial state distribution using the formula: 

a (i)p (i) . 
I ~ i ~ N , where y 1 (i) = 1 

' • The equations for 
Pr(OI A. ) 

a 1 (i),p 1 (i),andPr(OIA.) are given in the forward-backward procedure (Figure 

3.4). 

Step 2: Recalculate the state transition probabilities using the formula: 

aij = L~t (i,j) L Y I (i)' where ~ I (i , j) = I I) J t+ I t+I . Equations for 
r-1 ;r-1 a (i)a b (0 )p (j) 

t= I i =I Pr(OIA.) 

the other values ar e given in the forward-backwa rd procedure . 

Step 3: Recalcula te the symbol proba bility dis tribution using the formula : 

Figure 3.3. Baum-Welsh reestimation formulas. 
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The second problem is classification. When given a set of several HMMs and an 

observation sequence it must be determined which model generated that sequence. The 

forward-backward algorithm [Rabiner a nd Juang, 1986] may be used to do this. An 

outline for the forward-backward algorithm is shown in Figure 3 .4. 

The forward-backward procedure 

Given an observation sequence 0, define the forward variable as 

a,(i) = Pr(0 1,0 2 , ... ,0,,i, = q,1/1.). Or in other words, it is the probability of 

the partial observation sequence (until time t) and state Qi at time t, given 

the model /.... It is then possible to solve for a, (i) inductively, as follows : 

Step 1: a 1(i) = n,b,(0 1) , l ~ i ~ N; 

Step 2: cx,.1{)) = [t,a,U)a, },(0,.1 ), I ~j ~ N, and t = 1,2, ... , T- 1. 

N 

Step 3: then, Pr(OI/... ) =Ia rCi). 
1=1 

The backward variable can a lso be defined as: 

f3,(i) = Pr(0,+1,0,+2 , •.• ,0rl i1 =q, ,A.). Or in other words, the probability of 

the partial observation sequence from t+ 1 to the end, given state Qi at time 

t and the model A.. Again, it is possible to solve for f3, (i) inductively, as 

follows: 

Step 1: f3 r(i)= l, l ~ i ~ N; 

N 

Step 2: f3, (i) = L aiibJ (0 i+I )f3 1+ 1 ()) , I ~ i ~ N, and t = T - 1, T - 2, ... , 1. 
j = I 

Figure 3.4. The forward-backward procedure. 
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For most speech recognition applications a left-to-right HMM is used, see Figure 

3.5. This type of HMM has the property that as time increases, the state index 

increases or stays the same. This can be easily related to signals that change over time 

in a successive manner , such as speech . Constraints on this type of model are often 

modified to allow transitions to skip a s ta te or two. 

Figure 3.5. 3-state left-to-right HMM. 

HMM Used In This Project 
The type of HMM used in this project was a left-to-right HMM as shown in 

Figure 3.5. The number of states in the model was left as a n option for the user to 

specify. The flexibility in specifying the number of states can be used as a tool for 

improving the overall performance. The feature vector for a particular sound was 

normalized to have values between -1 a nd 1. These values are rounded off to the 

nearest tenth, providing twenty-one distinct observations (-1.0, -0.9, -0.8, ... , 0.0, ... , 

0.8, 0.9. 1.0]. The model was then trained using the Baum-Welsh re-estima tion 

formula . Training was considered complete when a user specified error value was 

achieved. The Baum-Welsh forward-backward procedure was then used for 

classification purposes. 

The left-to-right HMM was then implemented in two different ways, similar to 

the LMS dis tance measure. In each method a n HMM was first developed for the correct 

reference phoneme. Then, in the first method of implementation, HMMs were also 

developed for the incorrect reference phonemes. A feature vector from the test 

phoneme was then created and compared to all of the HMMs using the Baum-Welsh 
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procedure. The test phoneme was classified as the phoneme corresponding to the HMM 

that gave the highest probability for producing that test vector. In the second method 

of implementation the feature vector from the test phoneme was compared only to the 

HMM for the correct phoneme. The resulting probability for the correct HMM 

producing the test vector was then supplied as feedback to the user. This helps the 

user to pronounce his/her sounds closer to the correct phoneme. 

Ne ural Networks 

The motivation behind neural networks comes largely from an attempt to model 

the networks of real neurons in the brain. The brain has many features that are 

desirable to incorporate into a computation system. To begin with, it is powerful, 

tolerant, and flexible. Also, it adjusts easily to new conditions by learning. It can 

handle information that is inconsistent, probabilistic, or noisy. In addition the brain is 

also highly parallel, small, and compact [Hertz et al. , 1991] . Neural networks began to 

be applied to speech recognition applications in the mid-1980s. However it has proven 

difficult for neural networks to achieve the same time normalization that HMMs have. 

For this reason neural networks are often used as static pattern classifiers, often in 

conjunction with HMMs. 

The brain is composed of about 1011 neurons. A simplified drawing of a single 

neuron is shown in Figure 3.6. Neurons transmit information to other neurons through 

synapse 
axon 

cell body 

dendrites 

Figure 3.6. Simplified schematic drawing of a typical neuron 
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th eir synapses. The initiating neuron releases a specific neurotransmitter which has 

the effect of ra ising or lowering the electrical potential of the recipient cell. If the 

potential reaches a certain threshold, then an action potential, or an electric pulse, of 

fixed s trength a nd duration is fired down it's axon. This action potential then branches 

out to syn aptic junctions with other cells. 

The basic neuron, or node, in a neural ne twork works in a similar fashion . 

Figure 3. 7 shows a basic node in a neural network. The node computes a weighted sum 

of its inputs from other units and then outputs a one or a zero depending if the s um is 

above a certain threshold, or bias. In Figure 3. 7 the weights are labeled as w l , w2, a nd 

w3. The bias is la beled as b. When appropriate weights and biases are found, the 

neural network can be applied to many applications. 

Multi-layer Perceptron 

There are many types of neural networks. A picture of a two-layer perceptron is 

shown in Figure 3.8. Multi-layer perceptrons (MLP) have proven to be effective pattern 

classifiers. They are able to form complex decision regions in order to classify different 

sets of features. However, before an MLP is able to perform, it needs to be t rained. 

Training is accomplished in an MLP by using a procedure known as th e back -

propagation training algorithm. The training process begins by presenting feature 

w l 

0--
b 

Figure 3.7. Schematic diagram of a s ingle node in a neural network. 
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vectors as inputs to the network. The network then proceeds to calculate the ou tput 

based on the initial values for weights and biases at each individual node. The final 

output is then compared to the desired ou tput for each pa rticular feature vector . Based 

upon the resulting error, th e weights a nd biases are changed in a n effort to help the 

network produce the correct output. This process is repeated until the error is below an 

acceptable value. A detailed description of this process can be found in Lippmann 

[1987]. 

Two-Layer Perce ptron Used in this Project 

A two-layer perceptron was used in this project to classify the speech sounds. 

The network has sixteen nodes in its input layer . This is where the LPC feature vector 

is presented to the network. The user then has the option to specify the number of 

hidden nodes. More hidden nodes will result in improved performance but will also 

cause calculations to be more time consuming. The number of output nodes is also a 

variable number depending upon h ow the n eural ne twork is being implemented. 

There are two different ways that the neural network was implemen ted. In the 

first method, the ne ural network was used to classify the test phoneme as either the 

correct phoneme or one of the incorrect phonemes. In this case the number of output 

nodes was equal to the number of incorrect sounds plus one node for the correct sound. 

Each ou tput node represented one of the sounds. In the second method of 

Outputs 

Inputs 

Figure 3.8. A two-layer perceptron. 
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implementation the neural network was used to let the user know how close the test 

sound was to the correct phoneme. In this case the number of output nodes was chosen 

to be ten. With this method the network was trained to produce ones at all output 

nodes when the feature vector of the correct sound was presented to the network. All 

other sounds would then produce an output a certain distance away from the correct 

output. This distance was used to provide feedback to the user. 

As has been mentioned in this chapter, each of the classification techniques was 

implemented in two different ways. The reason for both methods of implementation 

will be discussed in the next chapter. Also, the method for developing and 

implementing the computer program which uses these classification techniques will be 

discussed. 
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CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION OF 
THE COMPUTER PROGRAM 

The purpose of this chapter is to explain how the computer program was 

developed. Details concerning the program and the strategy employed in developing 

the code are presented. Finally, this chapter will discuss the manner in which the 

program can be used for practical applications. 

Overview of the Program 

The computer program is the interface between the user and the speech 

recognition techniques embedded in the program; therefore , the program was designed 

to be easy to learn and simple to use. The visu al feedback was designed to be helpful 

and visually appealing. Many parameters were left available for the user to specify, 

thus making the program flexible for different situations. 

Technical Overview 

The program was written using Borland® C++. One advantage of Borland® C++ 

is it offers many functions which are helpful for programming in th e Windows TM 

environment. An additional software package called TegoMM. VBX' is used to play, 

record, and process the audio files. The TegoMM. VBX functions are compatible with 

Borland® C++, enabling all of the programming to be done with Borland® C++ . All of 

the audio files were saved in .wav format which is the standard format used by 

Windows™. This makes the program portable among computers running Windows™. 

System Requirements 

In order for the program to operate on a personal computer a few requirements 

must be met. First of all, the computer must have Windows™ loaded and running. 

Also, the computer must be equipped with a sound card if the user intends to record 

new sounds (if the user is planning on using only prerecorded sounds then a sound card 

is not necessary) . It is recommended that the sound card be capable of 16 bit sampling 

* TegoMM.VBX is a product of TegoSoft Inc., Box 389, Bellmore, NY, 11710. 
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resolution and a sampling frequency of 22050 Hz. Most sound resident in modern 

computers meet these specifications. Another peripheral necessary to record sounds is 

a microphone. A high quality microphone is a prerequisite for good performance. 

Organization of the Progr am 

Previous chapters h ave detailed the operation of individual parts of the program. 

The final computer program is a combination of all of the individual parts: data 

acquisition, signal processing, and classification techniques. Figure 4.1 shows a 

flowchart of the organization of the program. 

Using the Program 

This program was designed to help people improve their pronuncia tion. It is 

capa ble of this because errors a re often similar among mispronounced sounds. In fact, 

mispronunciation of a phoneme can be considered to fit into one of three classifications: 

substitution, distortion, and omission. Substitution occurs when a person substitutes a 

different phoneme in the place of the correct phoneme . An example of this is when a 

person pronounces the /sh/ phoneme in place of the Isl phoneme. A listener might hear 

the word she instead of see. Distortion occurs when a person substitutes a different 

sound, which is not another phoneme, in the place of the correct phoneme. Omission, 

as the name s uggests, is when a phoneme is simply left out of a word. 

Modes of Operation 

The specific purpose of this program was to deal with the first two cases, 

substitution a nd distortion. Isolated sounds are the only sounds being considered, thus 

the omission case does not apply. The program can be operated in one of two different 

modes, the substitution rnode or the distortion nwde. These two modes provide the 

basic outline for the progra m. When operating in the substitution mode the user 

records the correct sound and also a user defined number (up to four) of incorrect 

sounds. The test sound is then recorded and compared to both the correct a nd 



36 

!speech Sample 
l 

High Quality Windows Data Acquisition Endpoint 
Microphone r----t Compatible r----t 22 kHz ,.... ..... Detection H 

Sound Card 16 bits/sample • ICan also work with Preemphasis l lkHz, 8bits/sample 
~ Filter, H 

adjustable 

Segmentation into Amplitude LPC Feature LPC Feature L..-t H ~ t---i ,_ 
10 rnsec blocks Normalization Extraction. LPC Norma lization 

order = 15, 
however, it is 
adjustable 

2 layer MLP Neural 

1--f 
Network. Adjustable 
number of hidden nodes Substitution Mode 
and other pa rameters Recognized Sound 

Left-to-Right Hidden 

1---i 
Markov Model. Adjustable Analysis number of s ta tes and other 
parameters 

Distortion Mode 
How close to desired Minimum Distance 

'--t Classi fier, lms distance sound 

Figure 4.1. Technical flowchart of the program 
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incorrect sounds using the signal processing and classification techniques described in 

previous chapters. The resulting match is returned to the user as feedback. When 

operating in the distortion rnode only two sounds are recorded and compared; the 

correct sound and the test sound. Using the signal processing and classification 

techniques previously described the test sound is compared to the correct sound and a 

resulting difference score is returned. As the user pronounces the test word closer to 

the correct sound the difference score becomes smaller. The overall method for 

operating the computer program in each of the modes is diagrammed in Figure 4.2. In 

order to better understand how the program is designed to operate in each of the modes 

it is helpful to know the layout of the program. 

Layout of the Computer Program 

When the computer program is started it checks to see if there is a sound card in 

the computer and, if present, it checks the sound card's sampling rate options and its 

sampling resolution. Once this is completed, the program is ready to begin operation. 

The initial layout of the program is shown in Figure 4.3. 

When using the program for the first time, one can follow the pull-down menus 

(along the top of the display) from left to right. The menus of the program provide all of 

the necessary functions to execute the program. For example, the Graph menu options 

(shown in Figure 4.4) provide options to graph any previously recorded sound as a time 

plot, LPC spectrum plot, or an FFT spectrum plot. A complete description of each menu 

option and its function is given in the on-line help file included with the program. A 

text version of this help file is also included in the Appendix. 

The Quick Menu is a group of buttons which will perform some helpful functions 

quickly. It is expected that the user will spend much of his/her time working with the 

test sound and the correct sound. Thus, buttons are provided for the user to quickly 

record or play back either of these sounds. The pull-down menus also provide options 

to perform these functions; however, two important functions that are not available 

through the pull-down menus are the Use Endpoint Detection button and the Use 

Preemphasis Filter button. These two choices are optional, and can be u sed if the user 
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Figure 4.2. Flowchart for using the computer program. 
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so desires. Both of these options take addition al time to execute, although they may be 

required in some cases. For example, if the user can not sustain the test sound for the 

duration of the recording period then endpoint detection is necessary. 

Visual a nd Audio Feedback 

Regardless of th e mode of operation, visual or audio feedback is always an 

option. Visual feedback consists of a plot of the signal in the time domain and/or the 

frequency domain (see Figure 4.5). The frequency domain is particularly helpful in 

providing feedback. For this reason there is an option in the program to allow the 

frequency spectrum plot of the correct sound to remain on the screen as a goal for the 

user. Test recordings can be plotted on the screen and compared to the goal. It is 

hoped that the user will be able to use this feedback to modify his/her pronunciation in 

Sound S eak 
file .Be cord I raining Performance f valuation !!raph f lay Parameters tlclp 

QUICK MENU 

RecardB--. 

ID u .. Endpoint Detl!CitiOij 
ltJ u .. ~Fil• I 

0 kHz. 

Time Plot SiiiMlll 

® Clear Graph Each Time 0 Do Not Clear Graph 11 kHz. 

Figure 4.5. Visual feedback of a speech sound. 
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order to approach the ta rget frequency spectrum. The test frequency spectrum will 

never exactly match the tar get frequency spectrum even if the pronounced sounds are 

correct because of individ ual variations. It is only used as a tool for qualita tive 

evaluation. 

Audio feedback, available as a n option from the Play menu, allows the user to 

playback a ny speech sample being used in the program (see Figure 4.6). This allows 

the user to listen to the correct sound in a n effor t to match the sound. Audio feedback , 

combined with visual feedback will hopefully be beneficial to the user. 

..... , Sound Speak l~T~ 

f ile Be cord Training Performance .Evaluation ~raph J::ltl'l I Parameters Help 

I Time Plot li1 'llP ~•~ -.._-, 1 llt1TIJ 
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Correct Sou nd 
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l.::J a .. fiiH ..... filer I 

0 kHz. @1f 1eal .. 6.iapii. Ea.~ti-tin;·e1 0 Do Not Clear Graph 11 kHz. 

Figure 4.6. Audio feedback option from the menu 
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User's Manual 
An on-line user's ma nual was developed as part of the software package. It is 

organized according to the menu options and it gives a description of each menu choice. 

The text version of this ma nual is included in the Appendix. 

If the compu ter program is to be an effective teaching tool for speech therapy 

purposes, the n not only must it be aesthetically pleasing, it must also be technically 

accurate. For example , if the user is trying to correctly pronounce the Isl sound, but is 

instead pronouncing the /sh/ sound, it would not be helpful if the feedback from the 

computer said that the user was pronouncing the /z/ sound. Likewise, if the user were 

actually pronouncing the Isl sound correctly and the computer returned with feedback 

saying that th e user was not close to the correct sound then the user would get 

discouraged. Accurate feedback can be helpful and motivational to the user . The next 

ch apter describes the results of some tests run with this program. 
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CHAPTER 5. RESULTS AND CONCLUSIONS 

In order to assess the technical accuracy of the computer program many tests 

were run. Initial tests were performed with the program operating in the substitution 

mode. The phonemes Isl, /sh /, /z/, and /zh/ were chosen a s the test data. These 

phonemes were chosen because they are ar t icula ted in a similar manner and location 

within the vocal tract. Additionally, in practical speech situations these phonemes are 

often subs tituted for each other erroneously. Following these tests, further testing was 

performed with the program operating in the distortion mode. More information about 

how these tests were performed is described in this chapter. 

Results 

Tests Results for the Substitution Mode 
A total of five different tests were run on the four phonemes mentioned above. 

In each of these tests one of the phonemes was chosen as the correct sound and other 

phonemes were compared to it. For four of the tests, only one other phoneme was 

chosen as the incorrect sound. For the fifth test, all four phonemes were included; one 

as the correct sound a nd the other three as incorrect sounds. 

For each of these five situations the program was trained using three different 

classification schemes: minimum distance, neural network, and the hidden Markov 

model. The purpose of the training was to teach the program to classify the test sound 

as either the correct sound or an incorrect sound. The effectiveness of each of the 

classification schemes for correctly classifying test sounds was evaluated on a group of 

test sounds. 

The test sounds used were recordings from six different people, three males and 

three females. Each person recorded five samples of each of the four phonemes, for a 

total of twenty recordings. This resulted in a total of thirty recordings of each 

phoneme. After listening to all of the recordings, it was determined that, for various 

reasons, some of the phonemes recorded were incorrect and were therefore excluded. 

Thus, the overall total of recordings of each phoneme was reduced to twenty-five. 
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Using this test data, training tests were run using each type of classification 

scheme. With each test, parameters were adjusted in an effort to achieve better 

classification results. Although it was impossible to try every single combination of 

parameters, the training tests were considered complete when the performance of the 

classification scheme did not appear to improve with further adjustments of the 

parameters. Tables 5.1 - 5.5 show the results of the five main tests that were 

performed. An explanation of the parameters listed in these Tables is contained in the 

on-line help available in the Appendix. 

Discussion of Test Results for the Substitution Mode 
As can be seen from the results, all three classification schemes work fairly well 

when t he test phoneme was compared to only two phonemes. However, when the test 

phoneme was compared to four phonemes the overall recognition performance 

decreased slightly. In the test using all four phonemes, the hidden Markov model 

(HMM) approach proved to be most reliable although there was room for improvement. 

Recall that the HMM used for this computer program was a left-to-right one shown in 

Figure 3.3. By modifying the HMM to allow jumps of sta tes [Ra biner a nd Juang, 1986], 

as shown in Figure 5.1, more flexibility would be incorporated into the HMM and, most 

likely, better recognition accuracy would result. 

Further understanding of the differences in the results of the three classification 

schemes can be gained by examining how each is designed to perform. The minimum 

distance method is similar to the HMM method because for each new sound to be 

Figure 5.1. Modified left-to-right hidden Markov model. 
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recognized it develops a new template, or in the case of the HMM a new model. 

However , the neural network method uses only one network, no matter how many 

different sounds are being compared. In order to increase the capacity of the network 

to differentiate between more sounds it a dds additional nodes to the output layer of the 

network. Thus, the training phase of the ne ural network becomes more complicated. 

One problem encountered in this project with the neural network was that the 

error level could not be reduced to an acceptable level. The first attempt to solve this 

problem was to increase the number of nodes in the hidden layer of the neural network. 

By so doing, it was hoped to produce a decision boundary which would allow the ne ural 

network to accurately classify all four phonemes correctly. Despite attempts with many 

different hidden node numbers, the neural network was still not able to train to an 

acceptable error level, and consequently it could not consistently classify the phonemes 

correctly. To rectify this situation only two sets of training da ta were included, as can 

be seen in Table 5.5. This enabled the neural ne twork to train to an acceptable error 

goal. However , by using only two training se ts, an accurate representation of each 

phoneme was not developed, resulting in lower recognition ra tes than those obtained 

with the other two classification schemes. 

Tests Results for t h e Distortion Mode 
The purpose of operating the computer program in the distortion mode is to 

provide accurate feedback telling the user how close he/she is to the correct sound. The 

following test process was followed to see if the program was achieving this goal. The 

phoneme Isl was chosen as the correct sound. An acoustically and a rticulately correct/sf 

sound from a speech pathologist was first recorded. Next, five dis tortions of the Isl 

sound were recorded. These five different distortions were ranked by the speech 

pathologis t according to their perceptual level of closeness to the correct Isl sound. 

Then , these same five distortions were introduced to the program as the test sound. 

Each of the three classification techniques was used on each of the test sounds in order 

to determine how close to the correct sound it was. The results of these tests are shown 

in Table 5.6. 
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Table 5.1. Classification results for the phonemes Isl and /sh/. 

Classification Results for Two Phonemes: Isl and /sh/ 

Classification Model P arameters Recognition Accuracy 
Scheme 

Isl /sh/ Overall 
Minimum training sets: 30 96.0% 100.0% 98.0% 
Distance 

Hidden Markov training sets: 30 100.0% 100.0% 100.0% 
Model states: 15 

iterations: 50 
error goal: .001 
preemphasis 
filter : off 

Neural training sets: 10 100.0% 100.0% 100.0% 
Network hidden nodes: 15 

iterations: 500 
error goal: .001 
preemphasis 
filter: off 

Table 5.2. Classification results for the phonemes Isl and /z/. 

Classification Results for Two Phonemes: Isl and /z/ 

Classification Model Parameters Recognition Accuracy 
Scheme 

Isl /zl Overall 
Minimum training sets: 30 96.0% 92.0% 94.0% 
Distance 

Hidden Markov training sets: 50 88.0% 100.0% 94.0% 
Model states: 15 

iterations: 300 
error goal: .001 
preemphasis 
filter: off 

Neural training sets: 10 100.0% 96.0% 98.0% 
Network hidden nodes: 15 

iterations: 500 
error goal: .001 
preemphasis 
filter: off 
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Table 5.3. Classification results for the phonemes /z/ and /zh/. 

Classification Results for Two Phonemes: lzl and /zh/ 

Classification Model Parameters Recognition Accuracy 
Scheme 

/z/ /zh/ Overall 
Minimum training sets: 50 92.0% 72.0% 82.0% 
Distance 

Hidden Markov training set s: 50 84.0% 100.0% 92.0% 
Model states: 15 

iterations: 300 
error goal: .001 
preemphasis 
filter : off 

Neural training sets: 10 96.0% 80.0% 88.0% 
Network hidden nodes: 15 

iterations: 500 
error goal: .001 
preemphasis 
filter: off 

Table 5.4. Classification results for the phonemes /sh/ and /zh/. 

Classification Results for Two Phonemes: /sh/ and /zh/ 

Classification Model Parameters Recognition Accuracy 
Scheme 

/sh/ /zh/ Overall 
Minimum training sets: 50 64.0% 92.0% 76.0% 
Distance 

Hidden Mark ov training sets: 50 84.0% 96.0% 90.0% 
Model states: 15 

iterations: 300 
error goal: .001 
preemphasis 
filter: off 

Neural training sets: 10 100.0% 100.0% 100.0% 
Network hidden nodes: 15 

iterations: 500 
error goal: .001 
preemphasis 
filter: off 
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Table 5.5. Classification results for the phonemes Isl, /sh/, /z/, and /zh/. 

Classification Results for Four Phonemes: Isl, /sh/, lzl , a nd /zh/ 

Classification Model P ar ameters Recognition Accuracy in Percentages (%) 
Scheme 

Isl /sh/ /zl /zh/ Overall 
Minimum training se ts: 50 84.0 92.0 88.0 52.0 79.0 
Distance 

Hidden Markov training sets: 50 96.0 80.0 88.0 100 91.0 
Model s ta tes: 15 

iter ations: 300 
error goal: .001 
pre-filter: off 

Neural Network training sets : 2 88.0 16.0 88.0 40 .0 59.0 
hidden nodes: 20 
iterations: 5000 
error goal: .001 
pre-filter : off 

Table 5.6. Test res ults for oper ation in the distortion mode. 

Level of Closeness to the Isl Phoneme. l =closest, 5=farthest 

Method of Classification 

Type of Dis tortion Speech Minimum Hidden Neural 
Pa thologis t Distance Markov Model Network 

high frequency 1 2 2 1 

general distortion 2 3 3 4 

cleft distortion 3 5 5 3 

lateral lisp 4 4 4 5 

interdental lisp 5 1 1 2 
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Discussion of Test Results for the Distortion Mode 
The results from the classification techniques were not totally consistent with 

those of the speech pathologist. However, there was some consistency between the 

different techniques, especially between the minimum distance method and the HMM. 

In each of the three methods of classification the same two distortions were ranked as 

the two closest sounds to the correct Isl phoneme. It was interesting to note that the 

interdental lisp mispronunciation of the Isl phoneme was ranked as the farthest away, 

perceptually, by the speech pathologist but one of the two closest by the other 

techniques. By examining the LPC frequency plot of these two sounds (Figure 5.2) one 

can see why this would occur. 

LPC frequency plots of the other distortions compared to the correct Isl sound 

are shown in s ubsequent plots (Figures 5.3 - 5.6). Visual examination of these plots 

lends support to the level of closeness r anking by the classification techniques as shown 

in Table 5.6. This would indicate that the classification techniques may have correctly 

ranked the distortions on the basis of the LPC coefficients. However, the perceptual 

ranking of the distortions is s till different. This indicates that LPC coefficients, by 

themselves, are not sufficient to correctly rank the distortions of the Isl phoneme. 

Perhaps by using another feature , or a combination of features, the computer would be 

able to rank the distortions in accordance with their perceptual rankings. 
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Conclusions and Future Work 

The objective of this project was to develop a computer progra m which can be of 

assistance in certain aspects of speech therapy. The computer program proved to be 

successful in providing visual and audio feedback to the user . It also demonstrated 

that it could provide appropriate feedback when operated in the substitution mode. The 

program was most accurate when operating in this mode with two different phonemes 

utilizing the neural network as the classification scheme. The computer program also 

showed consistency. However, it was not always accurate while functioning in the 

distortion mode. 

In order to improve the performance of the program, work could proceed in a few 

directions. By incorporating additional features more information about each speech 

signal could be utilized in the classification scheme. This can potentially lead to 
improved performance. Also, more elaborate classification schemes involving the use of 

such tools as the time-delay neural network or more sophisticated hidden Markov 

models could be used. Finally, in order to be a more effective aid in speech therapy, 

work needs to be done with regard to providing feedback on the pronunciation of 

phonemes in syllables, words, a nd even sentences. 
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APPENDIX 

The appendix contains the text version of the on-line help available for the 

computer program. The code of the computer program and the executable program is 

available on disk in the Electrical and Computer Engineering Department. 

The text version of the on-line help was written in rich text format (rtf) and 

compiled into a Windows™ help file using the Borland® help file compiler. Each new 

page in the text file represents a new help topic. 
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# $ K + Brief Overview 
This program was written by Richard M. Johnson as part of his thesis project for EcEn/BME at 
Iowa State University. It was completed under the direction of Ors. Swift, Ramabadran, and 
Venkatagiri. May, 1995. 

This program is designed to be used as a tool for speech therapy. It is designed to work with 
isolated sounds, such as /s/, /sh/, /z/, /zh/, etc. It's goal it to provide visual and audio 
feedback to the user in order to help him/her improve his/her pronunciation of these isolated 
sounds. 

# brief_overview 
:s Brief Overview 
K overview of program, summary of program 
+ 00 
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# $ K + How to Use this Program 
This program was designed to help people improve their pronunciation. It is capable 

of this because errors are often similar among mispronounced sounds. In fact, 
mispronunciation of a phoneme can be considered to fit into one of three classifications: 
substitution, distortion , and omission. Substitution occurs when a person substitutes a 
different phoneme in the place of the correct phoneme. An example of this is when a person 
pronounces the /sh/ phoneme in place of the /s/ phoneme. A listener might hear the word she 
instead of see. Distortion occurs when a person substitutes a different sound, which is not 
another phoneme, in the place of the correct phoneme. Omission, as the name suggests, is 
when a phoneme is simply left out of a word . 

Modes of Operation 
The specific purpose of this program was to deal with the first two cases, substitution 

and distortion. Isolated sounds are the only sounds being considered, thus the omission case 
does not apply . The program can be operated in one of two different modes, the substitution 
mode or the distortion mode. These two modes provide the basic outline for the program. 
When operating in the substitution mode the user records the correct sound and also a user 
defined number (up to four) of incorrect sounds. The test sound is then recorded and 
compared to both the correct and incorrect sounds using the signal processing and 
classification techniques described in previous chapters. The resulting match is returned to 
the user as feedback. When operating in the distortion mode only two sounds are recorded 
and compared; the correct sound and the test sound. Using the signal processing and 
classification techniques previously described the test sound is compared to the correct sound 
and a resulting difference score is returned . As the user pronounces the test word closer to 
the correct sound the difference score becomes smaller. The technical flowchart of operation 
for the program is shown in Figure 1. The overall method for operating the computer program 
in each of the modes is diagrammed in Figure 2. In order to better understand how the 
program is designed to operate in each of the modes it is helpful to know the layout of the 
program. 

# using_program 
$ How to Use this Program 
K using program, getting started, beginning program 
+ 01 



59 

# $ K Figure 1. Technical Flowchart of the 
Program 
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# $ K Figure 2. Flowchart for using the computer 
program. 

s Figure 2. Flowchart for us ing the computer prog1·am 
K flowchart, using the program 
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# $ K + File Menu 

Presently the File menu only performs one useful function. It will let you exit the program by 
cl icking on file/exit. 

# file_menu 
s File Menu 
K opening files; closing files; files ; exit 
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# $ K + Record Menu 

Baseline 
The first step in using Sound Speak is to record the baseline. The baseline is a recording of 
the ambient conditions in the general vicinity of the microphone. When recording the baseline 
try to be silent. 

Record Test Sound 
Use this menu selection to record a test sound. This test sound can then be compared to a 
correct sound or to a number (1-4) of incorrect sounds. 

Load Test Sound 
Instead of recording a test sound, this option is available to load a previously recorded test 
sound. It must be stored either on a floppy disk or on the hard disk in WA V format. When the 
dialog box prompts you for a filename please type out the complete path and filename. 

Record Correct Sound 
Use this menu selection to record a correct sound. The therapist will usually be the one to 
record this sound. Before recording the correct sound a dialog box is presented to allow text 
to be associated with the correct sound for identification purposes only. The user will then 
record test sounds in an effort to match the correct sound. 

Load Correct Sound 
Similar to Load Test Sound, this option is available to load any WAV file from disk as the 
correct sound. 

Record Incorrect Sounds 
Similar to Record Correct Sounds, this option will consecutively record all of the incorrect 
sounds. 

Load Incorrect Sounds 
Similar to the other Load options, selecting this menu choice will allow the user to load any 
WA V file from disk as an incorrect sound. 

# record_menu 
s Record Menu 
K recording sounds; loading sounds 
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# $ K +Training Menu 
This program is set up to work in two different modes. Distortion Mode is used when the 
subject distorts the correct sound. The resulting distortion is not necessarily a identifiable 
phoneme, but a distortion of the correct phoneme. If the distortion mode is desired you need 
to train the program to work with correct sound only. Substitution Mode is used when the 
subject substitutes incorrect sounds in place of the correct sound. If the substitution mode is 
desired you need to train the program to work with correct and incorrect sounds. 

To Work with Correct Sound Only 
Use this option if you are working on a distortion of a specific sound. There are three different 
methods to choose from: 

Minimum Distance Method 
This is the simplest and fastest of the three methods. 

Hidden Markov Model 
This method is more complex than the Minimum Distance Method. Be sure to specify 

the parameters that are desired in the Parameters Menu. 

Neural Network 
This method is also complex. Specify desired parameters in the Parameters Menu. 

To Work with Correct and Incorrect Sounds 
Use this option if you are working on substitutions of a certain sound. The three methods 
described above also apply to this option. 

# trainin g_menu 
$Training Menu 
K training; hidden Markov model (HMM); Neural Networks 
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# $ K + Performance Evaluation Menu 
Before you use this menu you first need to train (see Training Menu) the program. If using the 
program in distortion mode then choose the menu selection Compare test sound to correct 
sound only. If using the program in substitution mode then choose the menu selection 
Compare test sound to correct and incorrect sounds. 

Compare Test Sound to Correct Sound Only 
Use this option if you are working in the distortion mode. Be sure that you have trained the 
program to work with the method that you plan on using to do the comparison. The program 
will return a difference from the correct sound score. This score will be different value for 
each method doing the comparison. However, each method should give the user a 
quantitative evaluation of how close the test sound was to the correct sound. 

Compare Test Sound to Correct and Incorrect Sounds 
Use this option if you are working in the substitution mode. Be sure that you have trained the 
program to work with the method that you plan on using to do the comparison. The program 
will tell the user which sound the test sound was closest to. If the user has input text 
associated with the correct and incorrect sounds, the program will display the text associated 
with that sound. If there was no text entered to be associated with the sounds, then the 
default text is as follows: cs corresponds to the correct sound, inc1, inc2, inc3, inc4, 
correspond to incorrect sounds 1-4, respectively. 

Batch Comparison of Test Sound to All Sounds 
This is another option to use if you are working in the substitution mode. This option is used if 
you have a number of previously recorded sounds saved on disk. In order to tell the program 
which sounds to compare they all need to be in the same directory. Also in that directory you 
need to create a text file listing the name of each sound file on a separate line. In addition you 
need to include a hard return at the end of the last filename in the text file. The program will 
prompt you for the name of this text file and then return the results in a new file. 

# performance_evaluation_menu 
s Performance Evaluation Menu 
K evaluation; performance; recognize; compare; 
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# $ K + Graph Menu 
This menu selection provides options to graph any previously recorded or loaded sound (see 
Record Menu). The user has the option to graph the sound in the time domain or in the 
frequency domain. Frequency domain plots are available by plotting the LPC (linear 
predictive coding) spectrum or the FFT (fast Fourier transform) spectrum. 

Time Plot 
This option provides a plot of time versus amplitude (of a speech sample). It can be helpful to 
make sure that a sample does exist, or that the endpoint detection algorithm performed 
correctly. It can also provide some simple visual feedback. 

LPC Spectrum Plot 
This option provides a plot of frequency versus normalized amplitude. Frequency content of a 
speech sample is often a distinguishing feature of the sound produced. Thus, this plot 
provides visual feedback to the user. Notice the option below the graph "Do Not Clear Graph" 
or "Clear Graph Each Time". In order to provide useful feedback it is possible to plot the 
correct sound and then click on "Do Not Clear Graph" and then plot the test sound. The user 
can then directly compare the test speech sample to the correct speech sample in the 
frequency domain. 

The LPC Spectrum Plot results from the LPC coefficients derived from the particular speech 
sample. These LPC coefficients are also used in the training and performance evaluation 
phase of the program. 

FFT Spectrum Plot 
This option also provides a plot of frequency versus normalized amplitude. For more 
information about spectrum plots see the listing under LPC Spectrum Plot. 

# graph_menu 
s Graph Menu 
K plot; graph; frequency; spectrum; linear predictive coding (LPC); LPC spectrum; Fast Fourier 
Transform (FFT); 
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# $ K + Play Menu 
This menu selection allows the user to play back any of the sounds that have been previously 
recorded or loaded (see Record Menu). Simply single click on the sound that you want to 
hear and the computer will play the sound through the sound card and speakers. 

Test Sound 
Use this option to play back the test sound. 

Correct Sound 
Use this option to play back the correct sound. 

Incorrect Sound 1 
Use this option to play back the first incorrect sound, if it exists. 

Incorrect Sound 2 
Use this option to play back the second incorrect sound, if it exists. 

Incorrect Sound 3 
Use this option to play back the third incorrect sound, if it exists. 

Incorrect Sound 4 
Use th is option to play back the fourth incorrect sound, if it exists. 

# play_menu 
s Play Menu 
K play; audio; listen 
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# $ K + Parameters Menu 
This menu selection allows the user to fine-tune the program to a desired specification by 
adjusting the parameters of the program. 

Hidden Markov Model 
This option gives the user the options to specify certain parameters relating to the hidden 
Markov model (HMM) method of classifying the speech samples. 

Number of States 
Use this option to specify how many states in the HMM. The default value is 10. A 

value close to the LPC order generally provided good results. 

Maximum Iterations 
Use this option to specify the maximum number of training iterations. If the minimum 

error goal has not been reached by this time, then the HMM will discontinue training. 
Otherwise, the HMM may continue training for a very long time. 

Minimum Error Goal 
Use this option to specify the minimum error goal desired. After training, iteration the 

HMM calculates the error. When the error is below the specified goal the train ing is 
considered complete. The HMM trains itself by changing its various probabilities after each 
iteration. The error is a function of how much each probability changes. When the 
probabilities do not change much after an iteration, then the probability will also be small. 

Neural Network 
Number of Hidden Nodes 
Use this option to specify how many hidden nodes in the Neural Network. The default 

value is 10. Generally , the more number of hidden nodes, the greater the accuracy of the 
network. 

Maximum Iterations 
Use this option to specify the maximum number of training iterations. If the minimum 

error goal has not been reached by this time, then the Neural Network will discontinue 
training. Otherwise, the Neural Network may continue training for a very long time. 

Minimum Error Goal 
Use this option to specify the minimum error goal desired. After training iteration the 

Neural Network calculates the error. When the error is below the specified goal the training is 
considered complete. The error in a the neural network is a function of the desired output 
compared to the actual output. When the neural network is trained correctly, its output should 
be very close to the desired output, resulting in a small error value. 

Overall Performance 
Several parameters, which affect all classification methods, are adjustable with this menu 
option. 

# paramet ers_menu 
s Par ame ters Menu 
K training sets; options; LPC order ; para me ters; number of hidden nodes; number of states; 
minimum error goal; number of training e pochs; precision 
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LPC Order 
Use this option to specify the desired LPC order to use on the speech samples. The 

default value is 15. Larger values often give a more accurate representation of the speech 
sample, but also take more time to process. 

Sets of Training Data 
This option is used to specify the number of training sets that are extracted from each 

speech sample. Generally, the more sets available to be trained, the higher the accuracy. 
However, more sets also take more time. 

Each set of training data is extracted from the same speech sample. For example, 
assume that there is one second of a sound recorded . Each set of training data is a 
rectangularly windowed segment 10 milliseconds in length. Therefore, for a one second 
recording there are 100 possible sets of training data. However, the program is designed to 
take the first set of training data after 250 milliseconds of the speech sample have already 
elapsed. This is to ensure the sample is a true representation of the sound, and not an initial 
fluctuation of the sound which may be present at the beginning of a sample. Therefore, a safe 
number of training sets to use is often around 50. 

Filter Value 
This value is only used if the "Use Preemphasis Filter" checkbox is checked in the 

"Quick Menu" of the program. It is advisable to use a preemphasis filter at all times, 
especially when the quality of the microphone is low. The effect of the fi lter is to attenuate the 
lower frequency components in a signal. A common value for the filter value is between .9-
1.0 

Enter Number of Incorrect Sounds 
Upon selection of this menu option, a dialog box will prompt the user to enter the 

number of incorrect sounds. 



# $ K +Help Menu 
Contents 
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This file you are reading now is the help contents. 

About 
A dialog box pops up explaining about the program. 

# help_menu 
$Help Menu 
K help; about 
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# $ K + Quick Menu 
The quick menu is a group of buttons and checkboxes visible when the program begins. The 
play and record buttons function exactly like their counterparts in the Record Menu. Endpoint 
detection should be checked whenever the recorded sound does not last for the duration of 
the recording time. For example, if the recording time is set to 10 seconds, and the speech 
sound is only recorded for 1 second then endpoint detection should be checked. Endpoint 
detection tends to be time consuming, so it is often better to do without it. The preemphasis 
filter is used to attenuate the lower frequency components. This is especially useful when the 
microphone being used is not of the highest quality. The preemphasis filter value can be 
adjusted in the Parameters Menu. 

11 quick_menu 
s Quick Menu 
K quick menu, endpoint detection, preemphasis filter , baseline, test sound, correct sound 
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