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INTRODUCTION 

Moraxella bovis, a small, gram-negative, nonfermenting cocco-

bacillus , is recognized as the primary etiologic agent of infectious 

bovine keratoconjunctivitis (IBK), or pinkeye . IBK may result in 

temporary or permanent blindness of affected eyes, as well as reduced 

feed conversion, and so is a disease of humanitarian consideration and 

economic importance (Marshall et al . , 1985; Horsnell and Teale, 1987). 

Although o ther factors, such as ultraviolet irradiation (Kopecky et 

al., 1980) and infection wi th Mycoplasma bovoculi (Rosenbusch, 1983) and 

infectious bovine rhinotracheitis virus (Pugh et al ., 1970), have been 

shown to contribute to l esion produc tion, ~ · bovis has two recognized 

virulence factors . These are the beta hemolysin and pili, both of which 

are outer membrane constituents and are required for virulence (Sandhu et 

al . , 1977; Pedersen et al . , 1972) . Most attempts to develop a vaccine for 

IBK have met limited success in the field (Pugh et al., 1982) . Many of 

these trials have involved whole cell bacterins (from hemolytic and 

nonhemolytic strains) or pili preparations; however, although there is 

some protection against homologous challenge, heterologous protection is 

variable at best (Pugh et al ., 1976). Additionally, treatment for IBK may 

be time consuming and expensive, especially when considering reports that 

all animals in an infected herd are most likely exposed to ~ · bovis within 

several days (Ostle and Rosenbusch, 1985) . 

The outer membrane has been the principal site for investigation of 

M. bovis virulence factors because of the importance of the gram-negative 
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outer membrane interface with t he hos t environment (Ostle and Rosenbusch , 

1986 ) . The outer membrane is t he si te f or many virulence and res i s tance 

fac tors fo r g r am- negative or ganisms ; it is a l so accessible fo r recognition 

by the host immune system and thus , outer membrane antigens may be 

valuable f or diagnosis. One major component of the outer membrane of 

gr am- negative bacteri a is the lipopolysaccharide (LPS) , which is 

r esponsible for a l a r ge number of pa thophysiologic effects. Li popol y-

saccharide may a lso be protective to the organism, s ince it is impor t ant 

in serum resis tance. Due t o its s truc t ure and outer membrane location, 

LPS i s highl y i mmunogenic . To date, t hough , research on t he LPS of 

Mor axella bovis and it s po t en tia l r ole as a v irulence or resis t ance factor 

in IBK has been limi t ed. Few data on the LPS of Moraxella spp . are 

available (Adams e t a l., 1970; Ves lemoy e t al . , 1980; Horis berger and 

Dentan, 1980) , a lthough t he pi lin gene has already be c l oned (Marrs e t 

a l., 1985 ) . 

The purpose of this wor k was t o l ay t he foundation fo r ascerta ining 

t he r ole of M. bovis LPS in the pa thogenesis of I BK by cha r ac t erization 

of i t s LPS , which included analysis of i t s chemical composi t ion , 

polya c r yl amide gel pr ofile , and a numbe r of biological assays . 
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LITERATURE REVIEW 

Perspective 

Bacterial products may often have a profound effect on their hosts. 

One such class of bacterial products are endotoxins, which are part of the 

cell wall of gram- negative bacteria. This designation serves t o 

distinguish endotoxins from excreted toxic bacterial products which are 

termed "exotoxins ". Endotoxins are composed of lipopol ysaccharide (LPS) 

and associated protein . Endotoxin (and LPS) may cause a tremendous 

varie t y of reactions in the whole animal and on many different cell t ypes, 

which include the induction of cytokines and causing massive changes in 

the blood coagulation sys tem. LPS has also been shown t o have a role in 

the pathogenicity of some gram-negative microorganisms. 

LPS Structure and Reac tivi t y 

Before delving into the biological effects of LPS and endotoxin , it 

is perhaps wor thwhile to discuss the struc ture of the molecule and relate 

it to the biological activity of the molecule . To begin such a review, it 

is important t o distinguish clearl y the difference between endotoxin and 

LPS . Lipopolysaccharide is comprised of three distinct regions, t he " 0-

antigen", the core polysaccharide and lipid A. Endotoxin is LPS plus 

associated protein; this protein contributes to differences in biological 

ac t ivity seen between LPS and endotoxin (Morrison and Ulevitch , 1978; 

Br adley, 1979) . The amount of protein extracted along with the LPS 

depends upon the method employed for extraction (Morrison and Ulevitch , 
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1978) . So-called Boivin LPS is extracted using trichlor oace tic acid a nd 

produces LPS contaminated with proteins (endotoxin) (Staub, 1965), while 

so-called Westphal LPS i s extracted with phenol and yields r elatively pure 

preparations of LPS (Westphal and Jann, 1965) ; LPS may also be extracted 

successfully using aqueous butanol (Morrison and Leive , 1975) . In 

addi t ion, endot oxin-associ a t ed protein (EAP) has been f ound t o exhibi t 

interleukin 1 ( Il-1 ) properties , such as the direct stimula t ion of serum 

amyloid A production by res ting human T cells; its activity is no t blocked 

by polymyxin B (Johns et al . , 1988), an antibiotic polypeptide which binds 

the lipid A moiety of LPS and ab r oga tes its ac tivity. Ot her s tudies have 

demonstrated that EAP has a gr anulopoietic colony- s timula ting activity on 

human peripheral blood lymphocytes and bone marrow precursor cells 

(Bjornson et al . , 1988). 

The lipid A regi on of LPS is generally considered t o be the mos t 

conserved part of the molecule and usually consis t s of a diglucosamine 

backbone with amide and ester-linked l ong cha in fatty acids, as well as 

pyrophosphate groups (Wilkinson, 1977) . The amide linked fa tty acids 

appear to be uniformly beta-hydroxy substituted. There appeared to be no 

particular significance, in terms of r eac tivi t y , for chain length of 

ester-linked fatty acids and bo th odd and even numbered chains are fo und; 

however, it has been recently fo und that fa tty ac id substituents of 

synthetic lipid A are importan t in imparting immunoreactivity (Kumazawa e t 

al ., 1988) . In these s tud ies , different length acyl gr oups (Cl2-Cl6) and 

different s t ereoisomers for lipid A subunit analogs (4- 0- phosphono- D-

glucosamine derivatives) were used t o s tudy the mitogenicity, 
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pyrogenici t y , le t hal toxicity, local Shwartzman reaction, as well as 

cytokine induction (e . g . , TNF-inducing activity); it was found that fatty 

acid substituents wi t h the (RR) configuration had greater endotoxic 

activi t ies than the corresponding (SS) stereoisomers and tha t acyl chain 

l ength also affected reactivity. 

Some investigations have sugges t ed that protein may be covalently 

bound to the lipid A region (Wilkinson, 1977). Lipid A is also the most 

internal moie t y of LPS and is probably int ercalated in the lipid bilayer 

of the ou t er leaflet of t he cell (Osborn, 1979) . Lipid A is linked 

through a unique sugar to the core region . This unusual sugar is 2- keto 

3- deoxy- octulosonate (KDO). The core itself may be divided into inner and 

outer core regions. The inner core contains KDO and heptose with 

ethanolamine and phosphat e as additional constituents . The outer core 

consis t s usually (for the Enterobacteriaceae) of glucose, galactose and 

ocasionally N- acety l -glucosamine (Wikinson, 1977; Galanos and Luderitz, 

1984) . The core region may be quite similar for different strains or 

groups of bac t eria. The most external fraction of LPS is the 0- antigen, a 

long polysaccharide chain consisting of repeating oligosaccharide units. 

The repeating units may contain from one to as many as 7 sugars and many 

rare or novel sugars have been found in this region (Wilkinson, 1977 ) . 

The basic oligosaccharide unit may be repeated 30- 40 times and perhaps as 

many as 60-70 times for some organisms (Wilkinson, 1977). So- called rough 

mu t ants lack various amounts of the 0- antigen and core regions . Because 

it extends beyond the cell wall, antibodies are most often directed 

against 0- polysaccharide epitopes (Galanos and Luderitz, 1984). E. coli 
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0-antigens often contain mannose, rhamnose, glucose, N-acetyl glucosamine 

and N-acety l galactosamine as constituent monosaccharides (Wilkinson, 

1977). Lipopolysaccharide, then, is an amphipathic molecule responsible 

for many pathophysiological effects. Both regions of the molecule are 

responsible for some of these effects, such as complement activation, 

while many are attributed to the lipid A moiety, such as tumor necrosis 

factor induction. 

LPS-Cellular Interactions 

While the effects of LPS on different, isolated organs have not been 

clearly delineated (Morrison and Ulevi tch, 1978), some of the effects of 

LPS on a plethora of cell types have been determined, including platelets, 

neutrophils, mast cells/basophils, macrophages/monocytes, endothelial 

cells and lymphocytes (Morrison and Ulevitch, 1978; McCartney and Wardlaw, 

1985). The interactions of LPS with each of these cells t ypes will be 

considered below. 

Platelets 

Platele ts may react with LPS depending upon whether or not they 

possess immune adherence receptors, or receptors for the C3b component of 

complement on the cell membrane (McCartney and Wardlaw, 1985). Des Pres 

and co-workers were able to show aggregation of rabbit platelets, 

generation of platelet factor 3 , and serot onin release upon interaction of 

platelets with LPS (Des Pres, 1967); additionally, it had been shown that 

the response depended on the presence of divalent cations (Des Pres and 
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Bryant, 1966) and that the terminal components of complement were required 

for lysis of platelets (McCartney and Wardlaw, 1985). Morrison and his 

co-workers proposed tha t the alternative pathway of complement activation 

was involved in this response, and this group further demonstrated that 

the lipid A moie t y of the LPS was involved in the binding of LPS to t he 

platelets (Morrison and Oades, 1979). Primate and human platelets, which 

lack immune adherence receptors, appear t o respond in a complement-

independent manner t o lipid A by secretion of granule constituents 

(Nagayama et al ., 1971; Hawinger et al., 1975 , 1977). 

Polymorphonuclear leucocytes 

Polymorphonuclear leucocytes (PMN) have been shown by Wilson et al . 

(1987) to bind LPS in vitro, but without demonstrable consequential 

effect . Morrison and Ulevitch, though , were able t o provide evidence that 

the presence of LPS could enhance t he phagocytic activity of PMN , in 

addition to increasing glycolysis and the ability t o reduce nitroblue 

tetrazolium, in vitro (Morrison and Ulevi t ch, 1978). In vi vo , LPS induces 

a leucopenia followed by a leucocytosis (Athens et al., 1961). It was 

also demonstrated that the leucopenia was due to sequestration of PMNs in 

capill ary beds, while release of granulocytes from bone marrow reserves 

was responsible for the leucocyt osis (Athens et al., 1961) . 

Neutrophils may also be affec ted by a neutrophil chemotactic factor , 

which is different from Il- 1 and synthesized by human mononuclear 

leukocytes upon stimulation with LPS (Yoshimura et al., 1987). Thus , 

neutrophils may be recruited to sites of gram- negative sepsis or LPS-
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induced biological reactions, such as the local Shwar tzman reaction, 

through this 10 kilodalton chemotactic factor. 

Recently, it was found that binding of a cationic antimicrobial 

protein, CAP57 from human neutrophils, to ~· typhimurium was dependent 

upon the length of the 0-polysaccharide chain of the LPS. In these 

studies, the longer the 0-antigen and core oligosaccharide of the LPS, the 

less sensitive the Salmonella strain was to the effects of cationic 

granule proteins (Farley et al., 1988). It was also found that in 

polymyxin B-resistant mutants with substituents that block anionic groups 

on lipid A (such as 4-aminoarabinose on the 4' phosphate of lipid A) show 

increased resistance to CAP57 through the loss of hydrophobic binding 

sites which stablize the interaction of CAP57 with the bacterial surface 

(Farley et a l . , 1988). These studies give insight into the mechanisms by 

which some gram-negative microorganisms are able to resist host defenses 

as well as why or ganisms with a smooth LPS tend to be pathogenic and rough 

organisms nonpathogenic. 

Macrophages and monocytes 

LPS has a profound effect on macrophages and a varie t y of mediators 

a re released from such cells upon incubation with LPS . Among the products 

secreted are tumor necrosis factor (TNF), IL-1, colony stimulating factor 

(CSF), collagenase, endogenous pyrogen , prostaglandins, lymphocyte 

activating facto r and plasminogen activator . Endotoxin has also been 

found to have an inhibitory effect on the expression of cer t ain cell-

surface proteins (termed immune response associated antigens , or Ia 
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antigens) on murine macrophages by Steeg et al . (Steeg e t al ., 1982) . 

These investigators believe that LPS inhibits gamma-interferon (INF- gamma) 

stimulation of macrophage Ia antigen expression through the induction of 

prostaglandin E2 (PGE2) synthesis and the resulting increase in 

intracellular cAMP (Steeg et al., 1982). Indomethancin abrogated these 

inhibitory effects of LPS, thus indicating a role for a cyclooxygenase 

pathway product; additionally, PGE2 was able to induce the same inhibitory 

effects as LPS (Steeg et al . , 1982). Complementing this work are recent 

studies by Koerner and co-workers which suggest that the LPS controls the 

regulation of Ia expression at t he level of accumulation of mRNA (Koerner 

et al., 1987). In the se studies, INF-gamma was shown to induce, in a 

dose- and time-dependent manner, the accumulation of mRNA for Ia in murine 

peritoneal macrophages; LPS suppressed this induction in a dose-dependent 

manner, from 40- 80 %, and the suppression correlated with decreased 

amounts of s urface Ia protein (Koerne r et al ., 1987) . 

A n ew r ole for macrophages in the catabolic pathway of LPS and as a 

host defense mechanism is suggested by the recent work of Peterson and 

Munford who were able to demonstra t e dephosphorylation of lipid A from 

the rough~· coli D2lf2 mutant; however, there was no evident difference 

in the ability of LPS- responsive C3H/HeN or LPS-hyporesponsive C3H/HeJ 

murine macrophages to dephosphorylate lipid A (Peterson and Munford, 

1987). Lipid A anal ogs lacking phosphate at either the 1 or 4' position 

have been shown to have reduced toxic effects and pyrogenicity, thus 

dephosphorylation may be a mechanism by which macrophages are able to 

modulate LPS immunoreactivity (Peterson and Munford, 1987). 
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One of the early responses to LPS by macrophages may be the 

elicitation of ma crophages which ar e specialized for antigen degradation 

and associated func t ions , and consequently have a nega t ive regulatory 

effec t on acquired immuni t y t o LPS (Cluff and Ziegler, 1987) . In these 

studies, the catabolism of macrophages elicited t hree days af t e r LPS 

injection was three t imes greater than that of resident macrophages; in 

addition, these macrophages exhibited low Ia antigen levels, were able t o 

r apidly destroy the antigenici t y of Lis teria monocytogenes antigens 

studied, and were s low to process and present antigen in vitro. Cluff and 

Ziegler also believe t ha t this catabolic r esponse is under t he control of 

the~ gene l ocus (Wa t son, 1979), as elicited macrophages from LPS-

hypopresponsive C3H/HeJ mice did not show an enhanced rate of catabolism. 

The authors speculate tha t t he impact of LPS treatment is a decrease in T 

cell responses due t o reduced antigen presentation, a manifestation of the 

down regulation of immune responses through elimination of ant igen . 

Obviously, t he unleashing of this array of enzymes and c y t oki nes from 

macrophages exposed t o LPS can have far reaching effects on other immune 

media t ors or cells. For instance, TNF released f r om human macr ophages 

stimulated by LPS has been demonstrated t o induce TNF r ecep t or s on human T 

cells and augment T cell responses, such as increasing the expression of 

high affini t y Il-2 r eceptors and HLA- DR antigens (Scheurich et al ., 1987) , 

or cause the down regu l a t ion of T cell responses as mentioned above . 
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Lymphocytes 

Lipopolysaccharide effects on lymphocytes and the result ant impact on 

t he immune response have recieved substantial attention over the last 

t wenty years. Lipopolysaccharide can initiate both antibody secretion and 

polyclonal pr oliferat ion from B cells . Gery et al. (1972) demonstrated 

t ha t LPS is a B cell mitogen, but only for murine B cells . Lipopoly-

sacchar ide has also been shown to augment human B cell differentiation by 

ac t ing direc t ly upon B cells which are pokeweed mitogen (PWM) - responsive , 

while 11- 1 did not exhibit a similar effect (Anderson and Lawton, 1987). 

Other r esearchers have shown that B cell stimulatory factor-1 (BSF- 1) or 

int e r leukin 4 preincubated with murine B cells was able to enhance t he 

secre t ion of IgGl when t he B cells were subsequent ly stimulated with LPS 

(Snapper and Paul, 1987) . This team believes that BSF-1 may act upon the 

IgGl constant heavy gene or its switch region thus enhancing the 

likelyhood of a selective recombination af ter a second stimulus, i.e., 

LPS . 

T cells do not appear to respond t o LPS by proliferat ion, and their 

interaction with LPS is not well defined. However , new r oles for T cell 

s ubsets, such as natural killer cells, are be ing discovered in 

interactions with LPS . Natural killer cells have been found recently to 

be activated by surface LPS and show enhanced cytotoxicity (Lindemann , 

1988). Suppressor T lymphocytes have been s hown by Baker and co-workers 

(1988) to be inactivated by monophosphoryl lipid A from the Re mutant of 

~ · typhimurium, while the ac tivity of other T cell subsets (e.g., T- helper 

cells) was not inhibited . In addition, it appear s t ha t LPS may ac t 
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indirectly on T cells via t he immunomodulators it induces, such as TNF . 

Epithelial cell s 

Epithelial cells a r e a l so affected by endot oxin, and may also be 

induced t o elabor a t e various immunomodulat ors, similar t o some of those 

secreted by macrophages. One such cy tokine is called corneal epitheial 

cell-derived thymocy t e activa t ing fac t or (CETAF) and is synthesized by the 

established corneal cell line, SIRC, as well as primary rabbit corneal 

epithelial cells incubated wi th LPS (Grabner et al ., 1983) . This cytokine 

is similar t o a muri ne epidermal cell-derived thymocyte activating fac t or 

(ETAF; Sauder et al., 1984). Interleukin 1 , CETAF and ETAF (human and 

murine) all st i mulate thymocyt e prolifer a tion . Epidermal cell-derived 

thymocyte activa t ing fac t or and CETAF both appea r t o by chemotactic for 

PMNs as well (Grabner et al ., 1982) . Grabner and co-worke r s be lieve as 

well that CETAF may be pyrogenic, which has been shown by Saude r et al . to 

be true for ETAF. In contrast t o macrophages, the epithelia of cilia ry 

body and i ris a re induced by LPS to express Ia antigens (Kim et al ., 

1986) . Kim and co-workers bel eive that this enhancement of Ia antigen 

express ion may lead t o be tter a ntigen presentation by ciliar y body 

epithel ial ce l ls t o lymphocytes , thus enhancing the immune response (Kim 

e t al., 1986). 

Endothelial cell s 

Endothe l ial cells may a l so t ake up endotoxin af ter intravenous 

injec tion, as well as being damaged in a manner which is not dependent 
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upon complement ac tivation by-products (Morrison and Ulevit ch, 1978) . 

After detachment of endothelial cells, exposure of a vascular basement 

membrane may provide a suitable site for activation of the Hageman fac t or, 

leading t o localized coagulation and elaboration of vasoac tive substances 

(e.g., bradykinin) , t hus exacerbating the initial endothelial cell injur y 

(Morrison and Cochrane, 1974). 

Basophils 

The effects of LPS on mast cells or basophils a re unclea r. Some 

i nvestigators have been unable t o demons trate any deleterious effec t of 

LPS on mas t cells , while some r esearchers have no t ed degranulation and a 

decrease in the number of mast cells recovered from the peritoneum af ter 

intraperitonea l injec tion of LPS (Morrison and Ulevitch, 1978) . Lipid A 

associated protein, however, has been fo und by Morrison and Betz t o be 

cyto t oxic at high concentrat i ons to mast cells, as well as causing the 

induction of nonc yt o t oxic vasoamine secretion (Morrison and Be t z, 1977) . 

LPS cellular activation 

Little i s s till known a bout how LPS binds to cellular membra nes and 

the exis tence of an LPS receptor per se is perhaps unresolved (Kabir e t 

a l . , 1978 ; Morrison and Rudbach , 1980). However, upta ke of LPS may depend 

upon the particular cell t ype and its location. While examining the 

uptake of endo t oxin by Kupffer ce lls and peritoneal macrophages, Fox and 

co- workers were able t o confirm earlier re ports of an LPS receptor on 

rabbit peri toneal macrophages ; in contras t, however, their data s uppor ted 
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an absorbtive pinocytic process for endo t oxin up take in Kupffer cells (Fox 

e t al ., 1987) . 

One hypothesis for the cellul a r action of LPS has been proposed by 

Bradley . In this model, LPS binds t o the cell membrane , is t aken up by 

endocytos i s and is transferred in a vacuo l e t o a prima r y l ysosome which 

then transfers the LPS t o a specif ic receptor on t he mitochondrial 

memb r ane . LPS caus es the mitochondrial pro t on gr adient t o be des troyed , 

causing accumulation of ADP a nd NADH , which r esults in increased 

glycol ysis . Lysosomal enzymes a re induced, causing au t ophagy and the 

release of lysosomal hydr olases. The release of t hese enzymes would be a 

pivo t al event leading t o the char ac teristic pathophysiologic effects of 

LPS (Bradley , 1979) . 

LPS and Bi ol ogical Reac tions 

As well as ac ting upon many different cell t ypes , LPS is recognized 

as causing a varie t y of pa t hophysiologic effects, such as pulmonary 

hypotension and disseminated intravascular coagula t ion (DIC) . LPS a lso 

induces the r elease of a variety of cy t okines and enzymes , as indicated 

above . 

Limulus amoebocy t e gela tion 

Endotoxin a nd LPS can cause the ge l a tion of the horseshoe crab, 

Li mulus polyphemus , amoebocy t es . The earliest r eport of intravenous 

coagula tion in~ · polyphemus was in 1902 by Loeb (Mills , 1978) , while Bang 

reported in 1956 on a disease in L. polyphemus tha t resulted in complete 
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intravascular coagulation and death (Bang, 1956) . Levin and Bang , in the 

1960s, were able t o show that endo t oxin was responsible for this vascular 

coagulation, and tha t gela t ion of the Li mulus amboecyte l ysa t e resulted 

f r om an enzymat ic reac tion involving clot t able proteins from t hese cells 

(Levin and Bang, 1968). The mechanism of this r eaction was demonstrated 

to entail the activation of a pro-clotting enzyme by LPS in the pr esence 

of Ca++ (Young e t al . , 1972; Tai and Lui, 1977) . The activa t ed enzyme i s 

a serine protease (Niwa et al . , 1975 ; Tai and Lui , 1977) which causes t he 

proteolysis of a clo ttab le protein , " coagulogen" . The coagulogen is 

cleaved into peptides A and B, which a re polymerized and incor por a ted in t o 

the c l ot; a third peptide , C, is produced and is insoluble (Tai and Lui , 

1977). The ac tive moiety of LPS in this scheme is lipid A (Levin et al ., 

1970 ; Niwa et al . , 1975) . The Limulus amoebocy t e l ysa te (LAL) assay has 

been accepted by the US Food and Drug administration fo r t es ting for t he 

presence of endo t oxin in various biological products, dr ugs and medical 

devices (McCartney a nd Wardlaw, 1985) . However, some substances 

inac tivate the reaction, and include complement (Johnson and Ward, 1972), 

es t erases (Skarnes, 1970), l ipoprotein (Freundenber g e t a l., 1980) and 

antibody (Levin e t al ., 1970 ; Young, 19 75) ; thus some researchers find the 

use of LAL for clinical blood s pec imens dubious . Also , some resea r chers 

question the specificity of LAL for de t ection of endotoxin or LPS , as 

peptidoglycan f r om gr am- posi tive bacteria has been shown to produce 

ge lation , albeit at ac tivities 1000-40,000 times less than tha t of LPS 

(Elin a nd Wolff, 1973 ; Wi l dfleuer, 1974 ; Brunson and Watson, 1976) . 

Still, LAL i s ab le t o detect minute quantities (0 . 1 ng/ml ) , and recent 
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modifications, s uch as the use of a chromogenic s ubstrate ( Iwanaga et al . , 

1978 ; Scully e t a l., 1980) have increased the sens itivity of the assay as 

well as giving a more objec t ive or quantitative endpoint (McCar tney a nd 

Ward law , 1985) . 

Disseminat ed intravascular coagulation 

Dissemina ted intravascular coagulat ion (DIC) , is an important 

pathophysiol ogic effect of LPS . LPS can ac tiva te both the intrinsic and 

extrinsic coagulation pathways (Morrison and Ulevitch, 1978) , most likely 

by causing the ac tivation of the Hageman factor of the intrinsic pathway, 

and by ac ting upon mediator cells , such as monocytes, by the extrinsic 

pathway (Morrison and Ulevi tch, 1978). Again, lipid A is important in the 

ac tivation of monocytes (Niemetz and Morrison, 1977; Rickles and Rick, 

1977) , and LPS appears t o provide the appropriate, negatively charged 

surface t o initiate the activa t ion of the Hageman factor (Morrison and 

Cochrane, 19 74) . LPS activation of the Hagema n factor also res ults in 

fib rinolysis , through the activation of plasma prekallikrein t o its 

proteol y tic fo rm, kallikrein; kallikre in causes the proteolysis of 

plasminogen t o plasmin, and plasmin i s active in fibrinolysis (Revak et 

al ., 1977). DIC can be induced with a single injec tion of sufficient LPS 

dose in LPS-sensi t ive species. 

Shwartzman reaction 

Coagula tion also plays a role in the pathological lesion pr oduced by 

the Shwartzman reaction, which can take a gene r alized or l ocal form . 



17 

These require two injections of LPS gi ven 24 hr apart; however, the 

generalized Shwartzman requires two i ntravenous injections of sublethal 

doses of LPS (usually administered t o a rabbit), while in the local 

Shwar t zman reaction, the first (priming) dose i s administered 

intradermally while the second (provocative) dose i s gi ven intravenously . 

Generalized Shwartzman The generalized Shwartzman reaction 

results in the developmen t of bilateral renal cortical necros is in the 

rabbit. The role of intravascular coagula tion in this reac tion is 

demons t rated by an t icoagula tive therapy, which prevents the formation of 

lesions (Good and Thomas, 1953) . However, the r oles of cell t ypes s uch as 

platelets and granulocytes are somewha t controversial . Margaretten and 

McKay used t hrombocy t openic and normal rabbits given heparin one hour 

prior t o adminis tration of anti-pla telet ant ibody and several hours prior 

t o the provocative dose of LPS . They found that none of the 

thrombocytopenic rabbits deve l oped glomerular capilla r y thrombi , while 6 

of 10 control r abbits given antise rum previously absorbed with platelets 

developed t ypical lesions . These author s concluded that platelets were 

necessar y for the induc tion of the generalized Shwar t zman reaction 

(Margaretten and McKay, 1969) . Other workers, however, have concluded 

that platelets a r e not essential for t he development of this r eac tion ; 

these inc lude t wo teams that a l so used an t i -rabbi t pla telet ant ibody t o 

deple te circulating pla t elets (Levin and Cluff , 1965 ; Muller- Berghaus and 

Kr amer, 1976) . Levin and Cluff fo und that the induced thrombocyt openia 

did not inhibit the localized Shwar tzman reaction (see below), while 

Muller-Berghaus and Kramer found that pla t elets did not contribute t o 
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precipitation of soluble fibrin. Other evidence for a nonessential role 

of platelets was provided by a se t of experiments utilizing rabbits that 

were both thrombocytopenic and neutropenic. Disseminated int ravascular 

coagulation was not induced in these rabbit s upon the appropria t ely spaced 

injections of endo t oxin; however, transfusion to replace granulocytes 

restored ability of the rabbits to generate microthrombi , which was not 

the case when platelets were replenished by transfusion (Bohn and Muller-

Berghaus , 1976; Muller- Berghaus et al ., 1976). Currently, neutrophils and 

particularly monocy t es appear to have a major r ole in the development of 

the generalized Shwart zman reaction (Morrison and Ulevitch, 1978) . This 

role is suppor t ed by recent work using TNF to induce many of the 

pat hobiologic effec t s induced by LPS (Beulter and Cerami, 1986) . 

Local Shwar t zman In the local or dermal Shwartzman reaction, the 

priming injection can produce erythematous lesions a t t he injection site 

consis ting of platelet and leucocytic aggregates (McCartney and Wardlaw, 

1985) . The provocative dose induces edema , necrosis, some fibrin 

deposition and hemorrhage at the site of the priming injection. The 

localized Shwar t zman reaction may also be prevented by administration of 

anticoagulant s and a prominent role for neutrophils and monocytes is 

sugges ted (McCartney and Wardlaw, 1985). Recently, Beck et al. have 

proposed that Il-1 serves as the common mediator of the inflammatory 

response and tha t 11-1 may a l so have the same role in priming and 

provocation of the l ocal Shwartzman reaction. These workers showed that 

11-1 can produce characteristic lesions when used as the priming agent or 

to provoke the reaction 24 hr after intradermal injection of either E. 
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col i Olll:B4 LPS or Il-1 (Beck et al ., 1986) . Furthermore, these au t hors 

demonstrated the accumulation of neu trophils in less than one hour at t he 

site of intradermal Il-1 injection , with the migratory activity of the 

neutrophils peaking at 4 hr . Based upon their results and the findings of 

o thers (Taichman , 1971 ; Fleming and Dunn, 1985) , Beck and co- workers 

pos tula t e a mechanism for the local Shwartzman reaction . The priming 

injec tion induces a transient hypersensitivity to the provocative agen t . 

Because of the diversity of agent s t ha t can provoke the reaction 

(Taichman , 1971) , Beck et al. believe that t here is a common endogenous 

mediator of these changes, namely Il- 1, that is produced locally . 

Increased expression for Il-1 receptors, then, on target cells such as the 

endothelia l cells lining small venules or leukocy tes migrating in r esponse 

t o Il- 1, may account for the transient hypersensitivity t o the provoca tive 

agen t (s). Il-1 from t he provoking dose may induce PMN to discharge their 

granules , initiating skin necrosis , or lesion development may occur 

because of increased adhesiveness of endothelial cells for PMN in response 

t o Il-1 (Fleming a nd Dunn , 1985) . Other work has demonstrated an essen-

tial r ole of complement in the development of the local (and generalized) 

Shwar t zman reaction by use of cobra venom factor (Fong and Good , 1971) , 

while r ecent work by Ito (I t o , 1985) has refuted the notion t hat the local 

Shwart zman r eac tion was a special case of hypersensitivity (Stetson and 

Good , 1964) . Ito, using ge rm free rabbits, demons trated t hat pre- exis t ing 

na t ur al antibody to endotoxin was no t required fo r the development of the 

lesions. In his work, 11 of 11 germfree rabbi t s developed lesions , while 

8 of 11 conventional r abbi t s developed lesions in response t o E. coli 055 
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LPS (Boivin preparation). 

Pyrogenicity 

Pyrogenicity has long been recognized as a property of endotoxin and 

LPS. After intravenous administration of LPS, a biphasic rise in 

temperature is usually observed in LPS-sensitive rabbits. Humans and 

rabbits are the most sensitive animals t o the pyrogenic effects of LPS and 

because humans respond similarly t o the same dose of LPS, the rabbit 

pyrogenicity test is currently used for detection of endotoxin in drugs, 

etc. by the US and European Pharmacopeias (McCartney and Wardlaw, 1985). 

However, because of its cost and imprecision (Bangham, 1971) , the LAL 

assay (see above) is an attractive alternative. The minimum dose of LPS 

pyrogenic for man is 1- 5 ng/kg and a monophasic febrile r esponse is 

observed within 90-120 minutes (Smith, 1981). Repeated daily injection of 

LPS in the rabbit will result in the loss of the second febrile peak; in 

man this induced tolerance leads to a decrease in febrile response (Smith, 

1981 ) . This state of tolerance can be overcome by increasing the dose of 

LPS; in rabbits, human INF-beta has been shown t o restore the febrile 

response (Kawasaki et al., 1987b). The mechanism of the pyrogenic 

response may be due t o LPS acting directly on the hypothalamus and also 

through the induction of various "endogenous pyrogens" by LPS effects on 

cells such as leukocytes or monocytes . LPS has been shown to induce PGE2 

synthesis from monocytes and PGE2 has been implicated by Skarnes and co-

workers as the mediator of the fi r s t phase of LPS fever . Also, 

prostaglandin inhibitors, such as aspirin and indomethacin suppress the 
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feb r ile r esponse (Skarnes , 1970) . Recen t ly , Kawasaki et al . were able to 

demons tra t e t he a ugmen t a t ion of endo t oxin- induced feve r by recombinant 

huma n be t a inte r f eron (INF- B) in rabbits . In this wor k , nonpyr ogenic 

doses of endo t oxi n (0.1- lng/kg) produced a feve r of a bout 1 C when 

i n jec t e d wi t h a nonpyr ogenic dose of r ecombinant human beta inte r fe r on 

(Kawasaki e t al . , 1987a) . These author s also demons tra ted significant ly 

higher PGE2 levels in plasma from rabbi t s injec t ed with bo t h LPS and IFN-

B. In t e r leukin 1 and TNF have also been implica t ed in t he media t ion of 

t he fever r esponse t o LPS . The febrile response to LPS , t hen , is a good 

example of t he di rec t and indirec t effec t s of LPS t ha t cause a physiologic 

r esponse . 

Le tha lity 

Le t hality i s perhaps t he end result or sum of t he effec t s of LPS on 

an animal , al t hough l ymphoid cell involvement in t he terminal s t ages of 

le t hali t y appea r t o be impor tant, as gene t ically r es i s t an t C3H/HeJ mice 

can be sensi t ized t o t he lethal effec t s of LPS by transfe r of spleen cells 

f r om the his t ocompa t i ble , endo t oxin sensi t ive C3H/HeN s t rain (Wa t son, 

1979). Suscep t ibili t y t o t he l ethal effec t s of endo t oxi n in mice can be 

increased a t housand- fold or more with t he admi nis tra tion of inhibi t or s of 

pro t ein synthes i s , s uch a D- gal ac t osamine (Galanos et al., 1979) . 

However , this s t a te of hype r sensitivi t y is shor t-lived , and Galanos et al . 

have shown t hat i njec t ion of LPS one hour prior or 4 hr af t e r t he 

administra t ion of D- gal ac t osamine was not le t hal . The same group 

demons t rated t ha t D- galac t osamine increases sensi t ivi t y of rats and 



22 

rabbits to t he lethal effects of LPS, as well as for mice . In addition, 

Lehmann et al . have shown that LPS and TNF were identical in their lethal 

effects on D-galactosamine-treated mice, and that TNF was lethal for D-

galac t osamine- sensitized, LPS-resistant C3H/HeJ mice. In this wor k, in 

the absence of D- ga l actosamine, C3H/HeJ mice were equally as suscept ible 

t o TNF as endotoxin- sensi t ive CJH/TifF mice, and these resul ts support to 

the hypothesis that TNF is an important mediator of endotoxin lethality 

(Lehmann et al . , 1987). 

LPS and Cyt okine Induction 

Interleukin-1 (IL- 1) 

It is obvious that one of the consequences of LPS is the release of a 

wide varie ty of cytokines and other mediators which impact or exacerbate 

the effects of LPS on cells directly. One such cy t okine already mentioned 

is Il-1, whose release from monocytes is s timula ted by LPS . Bakouche et 

al . have recently examined Il-1 release from human monocytes treated with 

LPS encapsulated in liposomes . They observed Il-1 release by macrophages 

which had phagocytosed LPS associated with lyophilized liposomes, while 

LPS in classical liposomes or f r ee IL-1 did not inhibit nor increase the 

amount of IL-1 released (Bakouche e t a l., 1987). Additionally, this group 

hypothesizes that LPS interaction with the monocyte membrane may be 

required for activation leading to IL-1 release; the results of their work 

indicate that LPS density a t the liposome surface may also pl ay a r ole in 

monocyte responsiveness: low LPS density may lead to the accumulation of 

intracellular IL- 1, while high LPS density leads to the release of IL-1 . 
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There were other intriguing findings in this s tudy, namely that liposomes 

containing media only or LPS did not stimulate the release of IL- 1, which 

would indicate that phagocytosis alone is not sufficient for stimulation 

of IL-1 secretion and that encapsulated LPS l os t its abili t y t o s timulate 

IL-1 release. Interestingly, the polysaccharide moiety of Haemophilus 

actinomyce t emcomitans LPS was found t o block the release of Il-1 from 

murine macrophages ; however, the production of intracellular Il- 1 and 

membrane-bound Il-1 was not suppressed (Nishihara et al ., 1988). 

Fuhlbrigge and his co- workers have shown that while resting peptone-

elicited peritoneal exudate cells (PEC) and resident PEC do not express 

biologically active Il-1, stimulation of such PEC by adherence or 

incubation with LPS induce similarly increased levels of mRNA for Il-1-

alpha and Il-1-beta ; these results imply that the regulation of Il- 1 mRNA 

is important in the produc tion of increased amount s of bioactive Il-1 

(Fuhlbrigge et al . , 1987). Other studies on the gene tic regulation of 

LPS- induced Il- 1 production have demonstrated that the Il- 1 response 

appears not t o be linked t o the major histocompatibility complex, as high 

and l ow Il- 1- responder mouse strains were used which share the same H-2 

haplotype (Brandwein et al . , 1987) . Additionally, these studies showed 

that a major gene locus cont rols the Il-1 response to LPS and that one or 

more loci mod i fy t he magnitude of the response (Brandwein et al., 1987) 

The release of IL-1 from macrophages by LPS stimulation is bound t o 

affect o ther aspects, cells and mediators of the immune system. Indeed, 

IL-1 possesses seve ral properties in common with LPS, including the 

induction of IL- 2, PGE2, fever and inflammation (Dinarello et al . , 1984 ; 
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Dinarello e t al . , 1986a) and this fact increases the complexity of 

dissecting LPS effec t s from those caused by LPS- induced Il-1 . 

Tumo r necrosis fac t or (TNF) 

Tumor necrosis fact or, or cachectin, i s another cy t okine released by 

macr ophages in response t o LPS. LPS alone in sufficient concentra t ions 

can activate mac r ophages t o r e lease TNF , bu t INF- gamma has been shown by 

Gifford a nd Lohmann- Ma thes t o pr i me mac r ophages for ac t ivation by very 

small amounts of LPS (O . l ng, i nsufficient for ac t iva t i on by LPS alone) 

(Gifford a nd Lohamann- Mat thes , 1987) . A cen tral role for TNF in endotoxin 

s hock is sugges t ed by the demonstration that BALB/c mice passively 

immunized agains t TNF become res i s t an t t o LPS (Beutler et al ., 1985 ) . 

Further work by this gr oup gives ins i ght into the mechanism of endo t oxin 

resis t a nce. In s tudies utilizing macrophages from the LPS-sens itive 

BALB/c and C3H/HeN mouse s trains and the LPS-resistant C3H/HeJ mouse 

s train, Beul t er e t al. were able t o s how tha t t ranscription levels of mRNA 

for TNF were increased t hreefold in the pr esence of endotoxin in 

responsive s tra ins ; C3H/HeJ macrophages did no t s how similar 

transcript ional ac tiva t ion of TNF mRNA a t l ow concentrations 

of LPS (10 ng/ml) (Beutler et al . , 1986 ) . At high LPS concentrations 

( 1 ug/ml) , C3H/ HeJ macrophages did express large amo un t s of TNF mRNA , 

a lthough these cells failed t o produce detec t able quantities of TNF , 

s ugges t i ng tha t a post-transla tional defect occurs in t hese mice 

(Beutler e t a l ., 1986) . These researchers speculate tha t under normal 

ce l lular condi t ions , mac r ophages con t ain small pools of TNF mRNA which 

a re not tra nsla t ed ; endo t oxin mobilizes this mRNA for t ransla tion as well 
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as inducing the synthesis of more TNF mRNA. Finally , Beutler and co-

workers note the presence of a conserved octameric sequence in the 3 ' 

untranslated reg ion in a number of genes for e ndo toxin-inducible 

mediators, such as lymphotoxin , TNF, 11-1, the interferons and others. 

This group speculates that the conserved sequence may be involved in 

translational regulation of TNF gene expression (Beutler et al . , 1986; 

Beu tler and Cerami , 1986) . 

TNF , like 11- 1 , also has several biological effects tha t are similar 

t o those caused by LPS. These include a monophasic or biphasic febrile 

response in rabbits; this febrile r esponse is caused by TNF acting 

directly on the hypothalamus and through the induction of IL-1 (Beutler 

and Cerami , 1986) . TNF also increases the production of PGE2 and 

collagenase by human fibroblasts a nd synovial cells (Dayer et a l., 1985 ; 

Beutler a nd Cerami, 1986; Dinarello e t al., 1986b), stimulates the 

production of procoagulant activi t y by vascular endothelial cells (Nawroth 

and Stern, 1986), and activates neutrophil adherence , degranulation 

(Beulter and Cerami, 1986) and phagocytosis (Shalaby , 1985), in addition 

t o causing the activation of eosinophils (Beu tler and Cerami, 1986) . I t 

is apparent that these TNF effects may mediate or syner gize with LPS 

effects in LPS- caused pathobiology, such as the generalized and local 

Shwar t zman reaction . In fact, mounting evidence suggests tha t TNF is the 

pr i ncipal mediator of lethal endotoxic shock . Tracey and co-workers were 

able to show that recombinan t TNF, administered in quantities similar to 

those produced endogenously in response to LPS , produced 

pa thophysiological changes akin t o those induced by LPS, including 
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hypotension, metabolic acidosis, and diffuse pulmonary inflammation and 

hemorrhage (Tracey et al., 1986). Bauss and co-workers were also able to 

show mimicry of LPS effects by TNF . They demonstrated decreased plasma 

glucose levels, leucopenia, and increases in hematocrit and plasma lactate 

levels (Bauss, Dr age and Manne!, 1988). However, this team did not detect 

11-1 in plasma of mice injected with TNF in contrast to the results of 

Dinarello et al. Dinarello's group, using high doses (10 ug/kg) of 

recombinant TNF-alpha induced biphasic pyrogenic responses in rabbits. 

This group attributed the second febrile peak to 11-1 production induced 

by TNF, and suppor ted their observation by using an anti-human 11-1 

monoclonal antibody and heating to 70 C for 30 minutes, which destroys the 

pyrogenic activity of 11-1, but not of recombinant TNF- alpha; also, the 

recombinant TNF-alpha had been shown to induce 11-1 from human mononuclear 

cells in vitro (Dinarello et al ., 1986b). 

Current Advances 

Much remains to be elucidated about the biosynthesis and gene 

regulation of LPS. Some steps in this direction are already being taken. 

For instance, Palermo and co-workers were recently able to clone 

what they speculate is a gene for a core biosynthetic enzyme(s) of 

Neisseria gonorrhoeae and obtain its expression in E. coli K-12-- that is, 

the cloned gene was able to modify ~· coli core LPS moieties such that 

they contained gonococcus-like epitopes recognized by antigonococcal serum 

on western blots (Palermo et al ., 1987). Stein and co-workers, also 

working with N. gonorrhoeae, have been able to use transformation to 
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alter the LPS of several ~ · gonorrhoeae strains, producing LPS wi th donor 

phenotype, donor and recipient phenotype, as well as new LPS molecules 

different from either the donor or recipient, exhibit ing novel SDS- PAGE 

profiles (Stein et al., 1988). 

The lipid A moiety of LPS is responsible for many of the biological 

reactions of the molecule, and lipid A antiserum has been previously shown 

t o be pr otective against fever and skin necrosis (Shwartzman reaction) 

(Reitschel and Galanos, 1977). The use of synthetic LPS or LPS precusors 

for treatment or prophylatic purposes of gram-negative sepis is an a r ea of 

LPS research holding some promise for the future. Studies by Golenbock 

and his colleagues s how that lipid X may of fer protection from the le thal 

efect s of endotoxin (Golenbock e t al . , 1987, 1988). Li pid Xis a 

monosaccharide precur sor of lipid A and has some of the properties of 

lipid A and LPS, but no toxicity . Lipid X can cause t he gelation of 

Limulus amoebocyte l ysates, murine B cell mitogenesis as well as ac tivate 

mac rophages, albei t to a much lesser ext ent than LPS or lipid A (Golenback 

et al. , 1987). Pretreatment wi t h lipid X has also been shown to protect 

sheep f r om t he deleterious effect s of endotoxin (Golenbock et al . , 1987), 

in addition t o protecting neutropenic ICR mice , alone or in combination 

wi th the antibio tic ticarcillin, from lethal infection with E. coli 

(Golenbock et al . , 1988) . 

Discerning which of its effects are t ruly direc t and which are due to 

immunomodulators, such as Il 1, TNF and PGE2, already has shown protective 

benefits, since mice given anti-TNF antiserum are protected from t he 

le t hal t oxicity of LPS (Beutler et al . , 1985) . Furt her s tudies examining 
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the genetic regulation of such cytokines and how LPS is able to induce 

their increased production at the mRNA level may yield new intervention 

strategies in preventing the pathobiological effects of LPS. 

Regardless of how LPS binds to and initiates cellular changes, it is 

still evident that much work remains to be done to resolve which 

pathophysiologic effects are attributable t o LPS alone, and which result 

from the complex interplay of mediators, enzymes and factors induced by 

the direct effects of LPS. Developing the full pharmacologic benefits of 

its derivatives also presents contemporary researchers with a practical 

challenge. 

Lipopolysaccharide has been extensively studied for many years. It 

has been found to cause some sort of effect in nearly every system 

studied. LPS acts on an amazing varie t y of cells types and induces an 

a rray of cytokines, enzymes, and immunomodulatory responses which result 

in pathophysiologic phenomena such as the Shwartzman reaction and 

lethality . LPS also possesses adjuvanticity, can increase nonspecific 

resistance t o infection, and can induce nonspecific LPS-tolerance; despite 

the cornucopia of litera ture on this bacterial product, much remains to be 

uncovered about its biosynthesis, potential of synthe tic derivatives as 

therapeutic agents, as well as sifting through its direct and indirect 

effects t o elucidate the mechanisms involved in LPS pathobiology . 
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MATERIALS AND METHODS 

Organisms 

Four Moraxella s trains were used in this work : ~ · bovis 62L , a field 

isol a t e , a nd three othe r s ob t ained f r om the Ame r ican Type Culture 

Collec t ion (ATCC): M. bovis ATCC 10900 , ~ · ovis ATCC 33078, and~ · 

phenylpyruvica ATCC 23333 . LPS from Escherichia coli K235 and JS and 

Salmonella t yphimur ium prepared by phenol- water ex t raction were 

commercial ly ob t aine d (Sigma Chemi cal Company , St. Louis , Mo . ) S. 

minneso t a Rd LPS was also commercially obtained (Lis t Bi ological 

Labor a t or ies , Cambell , Ca . ) , and Bact eroides fragilis LPS was prepared by 

phenol - wa t er ex t rac tion in the labor a t or y of Dr . M. J . Wannemuehler , 

Ve terina r y Medicine Research Insti tute, Iowa St ate Unive r si t y , Ames, Ia . 

Animals 

Female New Zealand White rabbi t s weighing 3.0- 3 . 5 kg were ob t ained 

f r om Small St ock Indus t ries , Pearidge , Ar . , and housed a t t he Labora t or y 

Animal Resource fac ility in t he College of Veterinar y Medicine, Iowa St a t e 

Uni versity , Ames , Ia . C3H/HeJ and BALB/c/ByJ mice, 8- 16 weeks of age when 

used , were obtained f r om the Jackson Laboratories, Bar Harbor , Me . 

C3H/HeN mice, 8- 16 weeks of age when used, were obtained from Harlan 

Spr ague Dawley , Mad i son, Wi . 
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Hot Phenol-water Extraction of LPS 

LPS was extracted as described by Hanson and Phillips (Hanson and 

Phillips, 1981). Cultures were grown in PNB broth, composed of 20 g/l 

pro t eose peptone #3 (Difeo, Detroit , Mi . ), 5 g/ l sodium chloride, and 0 .5 

% bovine serum albumin (BSA; Uni ted States Biochemical Cor por ation, 

Cleveland, Oh.) a t 37°C in a shaking water bath for 18 hr. Cultures were 

har vested by centrifugation, washed once in s t erile phosphate buffered 

sali ne (PBS), pH 7.4 and stored at - 70°C until used . Thirty ml of 90 % 

phenol was added t o 10 g of cells (wet weight), suspended in 60 ml of 

distilled water heated t o 68°C with vigorous s tirring. This mixture was 

kept at 68°C for 15 min, then cooled to 10°C in an ice ba t h . To separate 

t he LPS-containing aqueous layer, the cooled mixture was centrifuged at 

10,000 x g for 30 min . The aqueous layer was removed and retained, while 

the bottom protein pellet and the middle phenol layer were extracted once 

more, as jus t described, by adding another volume of hot water . The 

aqueous layers were pooled and dialyzed for three days against distilled 

wa t er containing 0 . 2% sodium azide to inhibit microbial contamination, 

wi t h several changes of dialysate per day to remove any remaining phenol. 

The water extract was then digested in 2 ug/ml DNase with 3 ug/ml MgC1 2 by 

incubation at 37°C fo r 2.5 hr, followed by digestion with 2 . 5 ug / ml RNase 

and 1 ug/ml pro t einase K for 1 hr at 37°C . The LPS was r ecovered by 

centrifuga tion at 100,000 x g for 4 hr and resuspended in pyr ogen f r ee 

saline. Relative purity of the preparation was assessed by scanning 

spectrometer readings from 240 nm to 300 nm, and repeating t he centri-

fugation until the absorbance readings were close t o 0. Finally, the 



31 

LPS was resuspended in py r ogen- free distilled water , quick frozen in a 90% 

e thanol- dry ice bath and l yophilized. Protein con t en t of the lyophilized 

prepara tion was determined by using a 0 .1 ml aliquot of a 1 mg/ml solu t ion 

and subjec ting it t o a commercial assay . LPS was s t ored lypophilized at 4 

C with desiccant . Confirmation tha t LPS had been ex tracted was performed 

by silver s taining, mild acid hydrolysis and the t he detection of the 

presence of 2- ke t o- 3-deoxy-octonate (KDO) . 

Compositional Analysis of LPS 

The composi tional analysis of LPS was performed using several 

different preparations for each strain, whi l e the biologi cal assays 

described below were performed using only one prepara tion from each 

s train . 

The absence of DNA or RNA in LPS preparations was confirmed by 

reading the absorbance of the LPS f r om 240nm to 300nm and determining if 

any peaks at 260nm and 280nm existed , indicating the pr esence of nucleic 

acids, and possibly pro t ein . 

Pr o t ein de t erminations were performed according t o the Bio- Rad 

method , using commer cial r eagents (Bio- Rad , Richmond , Ca . ) and bovine 

serum albumin as t he protein s t anda rd. 

Hexose con t en t was de t ermined co l orime trically by t he method of 

Ashwell (Ashwell, 1966 ) by adding 0 . 05 ml 80% phenol t o 2 ml of LPS 

solut ion (con t aining 0 . 1 mg LPS in 2 ml pyrogen free wa t er) , incuba ting at 

r oom t empera ture fo r 30 minutes , then adding 5 ml concent rated H SO to 

the sample and mixing. Absorbance of each sample was read at 485 nm and 
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the percent carbohydrate determined using the plo t of a standard curve of 

D- galac t ose (Sigma Chemical Company , St. Louis, Mo.) . 

The KDO (Sigma Chemical Company , St. Louis , Mo . ) content was 

determined by the method of Karkhanis e t al . (Karkhanis et al., 1978), by 

adding 1 ml of 0.2 NH SO t o a tube con t aining 0 . 1 mg LPS . This mixture 
2 4 

was heated at 100°C for 30 min, then centrifuged at maximum speed in a 

clinical centrifuge for 5 min. After centrifugation, the clear , upper 0.5 

ml of each sample was pipetted into ano ther tube , leaving the hydrolyzed 

LPS behind . The samples were trea t ed with 0 . 25 ml of 0.04M HI04 in 0 . 125 

N H
2
so

4 
was added, the mixture vortexed and allowed to incubate at room 

temperature for twenty minutes before the addition of 0 . 25 ml of 2 . 6% 

NaAs02 in 0 . 5 N HCl . Af ter vortexing and all owing the brown color t o 

disappear , 0 . 5 ml of 0.6% 2-thiobarbituric acid (TBA) was added, and the 

mixtures vor t exed and heated at 100°C for 15 min . While the samples were 

stil l hot, 1 ml of dimethyl sulfoxide (DMSO) was added , and the samples 

were cooled t o room t emperature before reading absorbance a t 548 nm . A 

s t andard curve was simul t aneously prepared using appropria t e 

concentrations of KDO t aken in 0 . 5 ml of 0 . 2 N H2so4 . Percent KDO was 

calculated as t wice the amount interpolated from the gr aph divided by the 

amount of s t ar ting material, and multiplied by 100 . 

De t ermina tion of endotoxin units for each Mo r axe lla LPS was performed 

using a commercial Limulus amoebocy te lysa t e (LAL) assay kit (Mallinkrodt 

Inc . , St . Louis , Mo.) . The assay was performed according to the 

manufacturer ' s instructions. One standard endo t oxin unit (E. U. ) was 

equal to 0 . 2 ng of E. coli endotoxin. 
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Sodi um Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS- PAGE) 

SDS- PAGE analysis of the LPS was performed using 12.5 % 

polyacrylamide (Bio- Rad, Richmond, Ca . ) gels with 4M ur ea . Ten ul of 1 

mg/ml solutions of LPS were boiled for 1 . 5 min in a t r ea t ment buffer 

con t aining 2- mercap t oe t hanol prior to loading . Gels we r e run at 40 mA for 

2 . 5 hr , or un t il the dye front was 1 cm from the bottom of t he slab . Gels 

were silver stained, or transferred to nitrocellulose for western 

blo t t i ng , as descr ibed below. 

Silver Staining of LPS 

Gels were stained using t he Hitchcock modification of the Tsai and 

Fr asch me t hod (Hi t chcock and Brown , 1983) . Gels we r e fixed overnight with 

25% i sopropanol in 7% ace t ic acid, t hen oxidized fo r five minu t es in 150 

ml dis t illed wa t er with 1.05 g periodic acid plus 4 ml of fixative 

solution . The gels were then washed eight times in distilled wa t er with 

gent l e shaking fo r t hirty minutes each t ime . The washes were followed by 

10 minutes of s t aini ng in 0 . 1 N NaOH, 1 . 2 ml of concentra t ed ammonium 

hydroxide, and 5 ml 20% silver nitrate in 150 ml dis t illed water, followed 

by 4- ten minute washes in distilled wa t er . Gels were allowed t o develop 

for 5- 15 minutes in developer containing 25 mg citric acid and 0 . 25 ml of 

37% formaldehyde in 500 ml distilled water, then developmen t was stopped 

by shaking i n 200 ml water with 10 ml 7% acetic acid fo r one hour . 
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Western Blo t Analysis 

1ipopolysaccharides were transferred overnight in a 20% methanol-

25 mM sodium phosphat e buffer, pH 6.8, onto nitrocellulose (Schleicher & 

Schuell, Inc., Keene, N. H. ) at 20 mV. The nitrocellulose was then washed 

3 t imes in tris saline buffer (1.2 g/l THAM, 0.9 g/l NaCl , and 0 . 02 g/l 

sodium azide, pH 8.6) with 0 . 05% tween 20, then blocked with 1% gelatin in 

the tris saline buffer. The 1PS samples were then allowed t o react with a 

1.5% solution of bovine globulins from a gnotobiotic calf that had been 

infected with M. bovis 621. Outer membrane preparations from ~ · bovis 621 

were also reacted wit h the bovine globulin solution. Epitopes recogn ized 
125 by the gl obulins wer e visualized by reaction with 1. 5 uCi of I -labeled 

protein G (Amersham, Arlington Heights, Il.) and subsequent 

autoradiography. Western blot analysis was also performed using a 4 . 3 % 

solution of a monoclonal antibody developed against ~· bovis 621 . The 

monoclonal antibody was tested against all 1PS preparations and against an 

outer membrane preparation of M. bovis 621 (Ostle and Rosenbusch, 1986). 

Epitopes recognized by the monoclonal antibody were visualized by reaction 

with 1.5 uCi of rabbit anti- mouse 125 I -labeled IgG (Ame r sham, Arling t on 

Heights, Il.) and subsequent autoradiography. 

Pyrogenicity Assay 

Female New Zealand White rabbits weighing 3.0 to 3 . 5 kg were used fo r 

pyrogenici t y assays. Rabbits were preconditioned t o rectal probing by 

handling several days prior to the start of the experiment . Baseline 

rectal temperatures for each r abbit were established before administration 
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of LPS. Two or three rabbits were randomly assigned to receive each 

Moraxella LPS dilut ion, given intravenously in the marginal ear vein in 

0 . 5 ml pyrogen free saline. As controls, two rabbits received either 0.5 

ml pyrogen free saline or 0 . 01 mg ~· coli K235 LPS . Tempera t ures were 

moni t or ed rectally wit h e l ectronic probes (Norelco, Stamford, Ct.) every 

fif t een minutes af t er the injection of LPS for t he first hour, and every 

20 minutes thereafter until biphasic increases in temperature were 

observed and t emperatures returned to near baseline (about 5.5 hours). 

Means and SEM for t empera t ure changes were determined for each time poin t . 

Local Shwartzman Reaction 

Female New Zealand White rabbits weighing 3 . 0 to 3 . 5 kg were used for 

t he induction of a local Shwartzman reaction , using a pro t ocol similar to 

that described by Beck et al . (1986). Rabbit backs were shaved 24 hr 

prior to the start of the experiment, at which time the rabbits received 

priming intradermal injections of the Moraxella LPS dilutions (100, 50, 25 

and 10 ug in 0 . 5 ml pyrogen free saline), plus control sites of saline 

only or E. coli K235 LPS (10 ug) . After 24 hr (day 2), the rabbits were 

then given a provocative intravenous dose of homologous LPS (50 ug) and 

after 48 hr (day 3), the external morphology of the lesions was described 

(e . g . , diameter of swelling , degree of redness or necrosis). The rabbits 

were then euthanized and the lesions were excised, fixed in 10% buffered 

formalin and subjected to hematoxylin and eosin staining, then examined 

microscopically to assess the degree of inflammation as evidenced by such 
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hallmarks as polymorphonuclear leukocyte infilt r ation, coagulation, 

hemorrhage and edema. Lesions were scored based on their external 

morphology, as well as on the extent of neutrophil infiltration, edema, 

hemorrhage, and fibrin deposition. Sites with no apparent redness or 

swelling were scored as -; lesions with a slight swelling (diameter of 5 

mm or less) a nd some redness were scored as +; lesions with moderate 

swelling (diame ter of 6-1 2 mm) and redness were scored as ++; lesions with 

substantial swelling (diameter of 15-19 mm) and erythema were scored as 

+++; lesions with maximum swelling (diameter of 20 mm or grea t e r ) , 

erythema and necrosis were scored as ++++. 

Stimulation of Murine Peritoneal Exudate Cells 

BALB/c/ByJ mice 8-16 weeks old were injected intraperitoneally with 

2 . 0 ml of ster ile thioglycollate 3 days prior to cul turing of the 

peritoneal exudate cells (PEC). Mice were sacrificed by cervical 

dislocation, and the peritoneal cavi t y subjected t o lavage using 8- 10 ml 

PBS with 1% fetal bovine serum (FBS; KC Biological, Inc . , Lenexa, Ks.) and 

5 units heparin (Lypho-Med, Inc., Chicago, Il . ) with a 20 gauge needle. 

The body cavity was vigorously massaged to loosen macrophages, then the 

wash containing the PEC was withdrawn and the lavage repea ted. PEC were 

washed twice in RPMI 1640 (Gibco, Grand Island, N. Y. ) supplemented with 

100 units 1-glutamine, 100 units/ml penicillin, 100 ug/rnl s treptomycin and 

10 mM HEPES. PEC were then counted using a model ZF Coulter counter 

6 (Coulter Electronics , Hialeah , Fl.) and plated a t 10 cells/ml, 1 ml per 

well, in a 12- well Cos t ar plate (Cos t ar, Cambridge, Ma . ). Harvested PEC 
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were allowed t o adhere for 2 hr, then nonadherent cells were removed by 

vigor ous washing wi th RPMI 1640 three t imes. To the adherent cells 

r emaining (macrophages), LPS dilutions were added in l ml RPMI , and the 

plat es were incubat ed at 37°C in 5% co2 for 24 t o 72 hr. Supernat ants 

were harvested , cells were removed by centrifugation and the cell- free 

supernatant s were s t or ed in 0.2 t o 0.5 ml aliquo ts a t - 70°C until used in 

TNF and IL- 1 assays (see below) . 

Peritoneal Exuda t e Ce l l Toxicity 

The po tential t ox i ci t y of Moraxella LPS on mur ine PEC was assessed 

using BALB/c/ByJ PEC elici t ed as described above, as well as resident PEC 

which wer e s imilar l y ob t ained , bu t without any prior s timula t ion . Cell s 

were r esuspended t o one million cell s/ml in RPMI 1640 with t he same 

supplemen t s as above . Different doses (0 . 5 , 5 , and 50 ug in 50 ul of RPMI 

1640) of each Moraxe l la LPS , or E. coli K235 LPS were added t o l ml of 

cells in polypropylene tubes ( Fisher Scientific , Pittsburgh , Pa . ) a nd 

incubat ed overnight with rotation (to prevent adherence) at 37°C . Each 

samp le was s t ained with 10 ul of a s t erile 0 . 5 mg/ml solution of propidium 

iodide (indica t es dead cells) and 10 ul of 0 . 5 % fluoroscein diacetate in 

ace t one, dilu t ed 1:1000 in PBS (indicates viable cells) . The percentages 

of live and dead cells were determined using an Epic 7 , model 752 Coulter 

fluorescence ac tiva ted cell sor ter (FACS ; Coulter Elec tronics , Hialeah, 

Fl . ) ; five thousand cells pe r sample were counted . 
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Interleukin 1 Assay 

To ascertain the ability of Moraxella LPS to stimulate 11-1 secretion 

from murine PEC, proliferation of the 11-1 dependent T cell line Dl0.G4.l 

(Kaye et al . , 1984 ; American Type Culture Collection, Washington, D. C. ) 

was measured by up t ake of tritiated thymidine. Briefly, Dl0 . G4.l cells 

depleted of 11- 1 were centrifuged through a density gradient (Ficoll- Paque 

1077, Sigma Chemical Company, St. Louis, Mo . ) at 1000 rpm in a clinical 

centrifuge for 30 min, then washed twice in RPMI 1640 supplemented with 

10% FCS, 5 ug/ml concanalvin A, 100 u/ml penicillin, 100 ug/ml 

streptomycin, 100 u/ml L- glutamine and 10 mM HEPES. The Dl0 . G4.l cells 

6 were then resuspended to a density of 10 cells/ml in t he same medium, and 

0 . 1 ml per well of this suspension was plated in a flat bottom 96- well 

microplate . Supernatants from stimulated PEC were added at various 

dilutions (e . g., 1 : 10, 1:20, 1:40) in triplicate and the plates incubated 

for 48 hr at 37°C in 5% co 2, then pulsed by adding 0 . 5 uCi of tritiated-

thymidine in RPMI 1640, and incubated an additional 16 hr. Samples were 

harvested onto filter paper using a multi-well cell harvester . The filter 

paper was allowed to dry, and then the sample discs placed in 

scintillation vials with 2.5 ml scintillation fluid, and counted using 

standard liquid scintillation techniques . 

Tumor Necrosis Factor Assay 

To determine if Moraxella LPS was capable of stimulating the 

production of tumor necrosis factor (TNF) from murine PEC, the TNF-

sensitive fibroblast cell line, 1929 (American Type Culture Collection , 
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Washington, D. C.), was used. Briefly, the L929 cells were harvested by 

scraping with a cell scraper into RPMI 1640 supplemented with 10% horse 

serum (HS; Hyclone, Logan, Utah), L-glutamine, 10 mM HEPES and 100 

units/ml penicillin and 100 ug/ml streptomycin and counted using a model 

ZF Coulter counter, then plated at a density of 10 5 cells per well of a 

96-well microplate in the same RPMI (O.l ml). The L929 cells were then 

incubated overnight at 37°C in 5% co 2 before serial dilutions (1:10 to 

1:31250, final dilution) of LPS- stimulated cell-free PEC supernatants were 

added. All dilutions were performed in quadruplicate, and a 0.1 ml volume 

supplement of RPMI 1640 medium containing 5 ug / ml actinomycin D was added 

before incubating the cells for an additional 18 hr at 37 °C in 5% co2. 

After incubation, supernatants were discarded by shaking the inverted 

plates, and the remaining cells were washed twice with 0.1 ml PBS with 2% 

normal buffered formalin (NBF), then stained for 20 minutes using 0.1 3 % 

crystal violet in 5% ethanol with 2 % NBF, according t o a published 

procedure (Gentry and Dalrymple, 1980). The plates were then washed 5 

times in tap water and allowed t o air dry . The stain was resolubilized 

wit h 100 ul of 50% ethanol before the samples were read on an automated 

ELISA reader (Microplate model EL310, Bio-Tek, Winooski, Vt . ) at 595 nm. 

The percent cyto t oxicity wa s dete rmined by dividing the mean absorbance 

obtained with stimulated supernatants f or each dilution by the absorbance 

ob t ained by control wells incubated with RPMI 1640 only . To confirm that 

the cytotoxicity of the supernatants was due to TNF, some cultures were 

incubated with rabbit anti-mouse TNF antisera (Genezyme Corporation, 

Boston, Ma. ) . 
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Splenic Blas togenesis Assay 

To assess the ability of Moraxella LPS t o induce B cells t o undergo 

blas t ogenesis, responder C3H/HeN and BALB/c/ByJ a nd hypor esponsive C3H/HeJ 

mice were used as described by Wannemuehler et al. (1984) . Spleens from 

these mice were asep t ically removed and minced, using a 100 mesh screen, 

as a source of B cells . Ce l ls were a llowed t o se ttle, and were then 

washed in RPMI 1640 by centrifugation at 1000 r pm in a clinical 

centrifuge . Washed cells were resuspended in RPMI 1640 , 2 ml per s pleen, 
5 and counted using a model ZF Coulter counter. Cells were plated a t 10 

cells per well in a 96- well flat bo ttom microplate. Dilutions of 

Mo raxella LPS or control mitogens (e.g ., phytohemagglutinin (PHA) and 

concanalvin A (Con A) at 1 . 0, 0 . 5 , 0.1, and 0 . 01 ug /ml) were added t o the 

wells in triplicate, along with additiona l controls of RPMI 1640 only and 

various concentrations of E. co li K23 5 and JS LPS , Salmonella minnesota Rd 

and Bacteroides fragilis LPS . Cells were incubated a t 37°C fo r 40 hr with 

5% co2, then pulsed with 0 . 5 uCi of tritia ted-methyl-thymidine and 

incubated another 6- 8 hr . Samples were harves ted on t o filter paper using 

a multiwel l cell harvester; the paper was allowed t o dry , and t he discs 

placed into scintillation vials with 2 . 5 ml cocktail and counted using 

standard scintilla tion techniques . The mean CPM +/- SEM was de t ermined 

for each sample . The stimulation index was determined by dividing mean 

sample CPM by the CPM of the control containing RPMI 1640 onl y . 
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Lethality in Galac tosamine-sensitized Mice 

The lethal dose required to kill 50% of the sensitized mice (LD50 ) 

for each Moraxella LPS was determined using BALB/c/ByJ mice sensitized t o 

the lethal effects of LPS by trea tment with 2 mg/ml D-galac t osamine in 

their dr inking wa t er ad libitum for 48 hr prior t o LPS injection (Galanos 

et al., 1979) . After sensitization, LPS doses (from 0 . 1 ug t o 40 ug) were 

given to groups of 6 mice i . v . via the tail vein in 0 . 2 ml pyrogen free 

saline followed by an i . p . injection of 16 mg of D- galac t osamine in 

pyrogen- free saline . As controls , one group of 6 mice received saline 

only i . v . with the i . p . D-galactosamine, while another group received 0 .1 

ug of ~· coli K235 LPS. The mice were observed for 3 days following LPS 

adminis t ration and deaths were recorded. 
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RESULTS 

Moraxella LPS Compositional Analysis 

Confirmation that LPS had been extracted was evidenced by successful 

silver s taining (see below) and lack of Coomasie blue staining of the 

preparations, as well as the presence of KDO (see below) and the 

pr oduction of a white precipitate upon mild acid hydrolysis. 

The protein content of each Moraxella LPS prepara tion was 

undetectable by the protocol employed; these results are given in Table 1 . 

The KDO content of each Moraxella LPS preparation is presented in Table 1, 

and represents the mean % KDO +/- SD for at leas t three independent 

determinations . The hexose content of the preparat ions indicated in Table 

1 represent the mean % hexose for a t least five separate determinations. 

As also indicated in Table 1, all Moraxella LPS preparations were found to 

have 2 E.U . per ng LPS (Table 1) . ' 

SDS-PAGE Analysis 

The silver s t ain SDS- PAGE profile of Moraxella LPS is presented in 

Figure 1 . M. bovis 62L exhibits a smooth type LPS (Figure 1, Lane E) , 

wi th a " ladder" such as those produced by(· coli K235 and S. typhimurium 

(Figure 1, Lanes B and D, respectively) while M. bovis ATCC 10900 has a 

rough profile (F i gure 1, Lane F) . Both M. ovis ATCC 33078 and M. 

phenylpyruvica ATCC 23333 exhibit rough profiles (Figure 1, Lanes G and H, 

respectively), similar t o that produced by the rough~ - coli JS (Figure 1, 

Lane C) . Secondary staining of a silver stained gel with Coomassie blue 
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failed t o stain any of the LPS preparations, although it did stain an 

outer membrane preparation of M. bovis 62L (no t shown) . 

Western Blot Analysis 

The results of western blot anal ysis using a l.S % solution of 

globulins from convalescent serum from a gnotobio tic calf infected with M. 

bovis 62L are presented in Figure 2 . The globulins reacted with bo th the 

smoo th and rough ~ · bovis 62L and M. bovis ATCC 10900 LPS (Figure 2 , Lanes 

D and E, respectively), as well as with t he rough~· ovis LPS (Figure 2, 

Lane F). The globulins failed t o react with M. phenylpyruvica LPS 

(Fi gure 2, Lane G) . These globulins recognized many de t erminants on an 

outer membrane prepar ation from~ · bovis (Figure 2, Lane H) . Also , ~ · 

coli K23S, JS, and ~· typhimurium LPS were recognized (Figure 2, Lanes A, 

B, and C, respectively) . The epitopes recognized were located on 

molecules with various relative mobilities (Mr). 

The r esults of western blot analysis using a 4 . 3 % solution of a 

monoclonal an t ibody reactive with a M. bovis 62L LPS moiety or epitope 

are shown in Figure 3. The monoclonal antibody reacted only with ~ · 

bovis 62L and ATCC 10900 LPS (Figure 3 , Lanes E and D, respectively) 

and an ou ter membrane preparation from M. bovis 62L (Figure 3 , Lane A) . 

The monoclonal antibody failed t o react with M. ovis or ~ · phenylpyruvica 

LPS (Figure 3, Lane C and B, respectively). LPS from E. coli K23S and 

JS and ~· t yphimurium also failed to react with this monoclonal antibody 

(Figure 3 , Lanes H, G, and F, respectively). The epitope recognized was 

loca t ed on bands of t he same Mr fo r M. bovis 62L and ATCC 10900 LPS and 
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Table 1. Compositional Analysis of Moraxella LPS 

Strain 

M. bovis 621 

M. bovis ATCC 10900 

M. ovis 

M. phenylpyruvica 

10 . 2 +/ - 2. 3 

5 . 3 +/ - 1.9 

5 . 6 +/- 0.4 

10.8 +/ - 3 . 9 

aKDO = 2-ke to-3-deoxy-octonate . 
b Standard was D-galactose. 

b %Hexose 

20 . 8 +/ - 5 . 8 

9.7 +/ - 4.2 

14.0 +/ - 3.6 

17 . 2 +/ - 5.2 

cE . U. 

d n.d . 

endotoxin unit per ng LPS. 

not detected. 

Protein E. u. c 

n .d. d 2 

n . d. 2 

n.d. 2 

n .d. 2 



Figure 1. SOS-PAGE analysis of Mo raxella LPS using a 12. 5% poly-
acrylamide gel with 4M urea 
Lane A, LMW; Lane B, ~ · coli K234 ; Lane C, ~· col i JS ; 
Lane D, ~· typhimurium; Lane E, ~ · bovis 62L ; Lane F, 
~ · bovis ATCC 10900 ; Lane G, ~ · ovis ATCC 33078; Lane H, 
~· phenylpyruvica ATCC 23333 . 10 ug of each LPS was 
subjected t o electrophoresis . 
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for t he ou t e r membrane prepara t ion of M. bovis 62L . 

Pyrogenici t y 

M. bovis s train s 

The resul t s of pyrogenici t y studies per fo r med i n r abbi t s wi t h M. 

bovis 62L and ATCC 10900 LPS are represen t ed by Figure 4 . Typical 

biphas i c peaks a r e observed wi t h both LPSs , as well as wi t h t he E. coli 

K235 cont rol . The f irs t peak occurred wi t hin 45- 60 mi n of LPS injection 

and t he second peak occur red about 180 min af t er LPS injection . No 

py r ogenic effec t was observed i n pyrogen free saline controls. The 

maximum mean t emper a ture i ncrease for~· bovis 62L a t 100 ug was 3 . 9 °F , 

whi l e the max i mum tempera t ure i ncrease for M. bovi s ATCC 10900 a t 100 ug 

was 1 . 6 °F . E. coli K235 LPS a t 10 ug pr oduced t he grea t es t mean maximum 

pyrogenic r esponse , 4 . 6 °F . 

Non- M. bovis str ains 

The results of pyrogenici t y studies performed in r abbi t s using M. 

ovis and M. phenyl pyruvica LPS , and run simultaneously wi t h the M. bovis 

s t rains are shown i n Figure 5 . Bi phasic peaks in t empe r a t ure increase 

we r e obser ved wi th bo t h LPSs , occur ring 45- 60 min and 180 min after LPS 

injection. M. ov i s LPS a t 25 ug gave a maximum t emper a ture increase of 

3 . 8 °F, while~· pheny l pyruvica LPS a t 25 ug gave a maximum t emperature 

increase of 3.0 °F . Again , t he pyrogenic response t o E. co l i K235 LPS at 

10 ug was a maximum 4 . 6 °F . 



Figure 2. Autoradiograph of western blo t anal ysis using globulins 
from convalescent gnot obio tic calf s erum 
A 1.5% solution of immunoglobulins from a gnotobio tic 
calf was reac t ed wit h LPS transferred to ni trocellulose 
af t e r SOS- PAGE elec trophor esis using a 12 . 5 % gel with 4 
M urea . Lane A, ~ · coli K235; Lane B, ~· coli JS ; Lane 
C, ~· t yphimurium; Lane D, ~· bovis 62L ; Lane E, ~ · 

bovis ATCC 10900 ; Lane F, M. ovis ATCC 33078; Lane 
G, ~· phenylpyruvica ATCC 23333 ; Lane H, ~ · bovis 62L 
ou ter membrane preparation (10 ug protein) . Epi t opes 
recognized by the globulins we r e visualized using 1. 5 
uCi of 1251- labeled protein G and autoradiography. 
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ABC DE 



Figure 3 . Autoradiograph of western blot analysis using monoclonal 
antibody 29.6 
A 4 . 3% solution of monoclonal antibody 29 . 6, reactive 
with an ~· bovis 62L LPS moiety, was reacted with LPS 
transferred t o nitrocellulose after SDS- PAGE electro-
phoresis using a 12.5 % gel with 4 M urea . Lane A, M. 
bovis 62L outer membrane preparation; Lane B, ~· 

phenylpyruvica ATCC 23333 ; Lane C, ~· ovis ATCC 33078 ; 
Lane D, ~· bovis ATCC 10900; Lane E, ~· bovis 62L ; Lane 
F, ~ · typhimurium; Lane G, ~ · coli JS; Lane H, ~ · coli 
K235. Epitopes recognized by the monoclonal antibody 
were visualized using r abbi t anit-mouse 1251-labeled 
IgG and autoradiography . 
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Local Shwartzman Reaction 

Ext ernal morphology 

The external morphology of the lesions provoked during the local 

Shwar tzman reaction is presented in Figure 6. Although no lesions , 

swelling or redness were apparent 18 hr after the priming, i . d . injections 

of LPS, 24 hr after the provocative dose, lesions were produced with 

necrotic centers at the highest i.d. doses (100 ug) . Saline control sites 

never developed lesions. E. coli K235 LPS (10 ug) i.d . sites sometimes 

had no external evidence of reaction (e . g.,~· bovis ATCC 10900/ ~· bovis 

ATCC 10900 rabbi t and ~· phenylpyruvica/ ~· coli rabbit; Table 2), or 

exhibited lesions with swelling only (~. bovis 62L/ ~ · bovis 62L rabbit 

and all LPS/ saline rabbit; Table 2) and sometimes gave lesions fifteen mm 

in diameter with some redness (~. ovis/ ~· ovis rabbit; Table 2) . The 

sites primed with 10 ug Moraxella LPS showed little or slight swelling (up 

to 6 mm diameter swelling with redness; Table 2). Similarly, the 25 ug 

pr iming sites of all Moraxella LPS showed little or slight swelling (up to 

5 mm in diameter with slight redness; Table 2). However, nearly all the 

priming i.d. sites of higher doses showed reaction . At 50 ug, all but one 

Moraxella LPS (that of ~· bovis ATCC 10900; Table 2) showed substantial 

swelling (up to 15 mm in diameter) with redness; on the ~ · phenylpyruvica/ 

E. coli rabbit the lesion at this dose had a necrotic center. At 100 ug, 

all Moraxella LPSs produced lesions with substantial swelling (from 15 to 

22 mm in diameter) and erythema. Again, at this dose, the ~ · 

phenylpyruvica/ ~· coli rabbit had a lesion with a necrotic center . The 

rabbit primed with all Moraxella LPSs and "provoked" with saline had 



Figure 4 . Pyrogenicity with M. bovis s t rains 
3. 0- 3 .5 kg female New Zealand White r abbits were used t o 
assess Moraxella LPS pyrogenici t y . M. bovis 62L (....,) 
and ~ · bovis ATCC 10900 (-i:!'t ) LPS was- given i . v . a t 100 
ug in 0 . 5 ml saline. Control rabbits received 10 ug E. 
coli K235 ("11r) LPS in 0.5 ml saline or t he same volum; 
of saline (-(':)-) alone . Mean change in t emperature was 
recorded over t he indica ted time course . 

Figur e 5. Py r ogenici t y with non-~. bovis strains 
3 . 0- 3.5 kg f emale New Zealand White r abbits were used t o 
assess Moraxella LPS pyr ogenicity . M. ovis ATCC 33078 
( ... ) and ~ · phenyl pyruvica ATCC 23333 (~) LPS was given 
i . v . at 25 ug i n 0 . 5 ml saline . Control rab bit s 
received 10 ug E. coli K235 (,._) LPS i n 0 . 5 ml saline or 
the same volume-of saline (-Ef-) a l one . Me an change in 
tempera ture was recor ded over the indica t ed t i me course. 
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little or no reaction with saline, ~ · coli K235 LPS or with M. ovis LPS at 

100 ug. However, some swelling and redness was observed at the i.d. sites 

of the other Moraxella LPSs at 100 ug (from 12 mm in diameter for the M. 

bovis 62L site to 28 mm in diameter for the M. phenylpyruvica site). The 

resul ts of the external morphology of the local Shwartzman reac t ion are 

summarized in Table 2 . 

Microscopic morphology 

None of the saline control sites showed PMN infiltration, congestion, 

hemor rhage or any other inflammatory effects (Figure 7; Table 2) . The E. 

coli K235 priming sites usually showed PMN infiltration and occasionally 

hemor rhage (Figure 8; Table 2). The i.d. injection si t es of the higher 

doses showed multiple foci of PMN infiltration (Figures 7-10; Table 2), 

fibrin deposition (Figures 9 and 10), hemorrhage and congestion (Figures 8 

and 9; Table 2), as well as edema (Figure 10) and micro thrombi . The 

microscopic morphology of the stained sections was indistinguishable from 

rabbi t to rabbit. These results are summarized in Table 2. 

Splenic Blastogenesis 

C3H/HeN mice 

All the Moraxella LPS preparations induced C3H/HeN splenocytes to 

undergo blastogenesis (Table 3) . Some proliferative activity was seen 

with concentrations of 0 . 01 ug and 0.1 ug, although the effect was much 

greater at amounts of 1, 5, 10, 20 and 50 ug LPS . For~· bovis 62L, 

maximum activity occurred a t 5 ug , while f or M. bovis ATCC 10900 and M. 



Table 2. Resul t s of the local Shwartzman reaction 

Lesion Moq~hology a 
b c Agent/Dose Provoking Agent External Microscopic 

E. coli K235 10 M. bovis 621 LPS + PMNd, He ---Saline same 
M. bovis 621 10 same - --M. bovis 621 25 same + PMN 
M. bovis 621 50 same ++ PMN,Hf 
M. bovis 621 100 same +++ PMN , C , H, 

MTg 
E. coli K235 10 M. bovis ATCC 10900 LPS ---Saline same 
M. bovis 10 same + PMN -
ATCC 10900 25 same 
M. bovis 50 same 
ATCC 10900 100 same ++++ PMN,C,H,MT 

E. coli K235 10 M. ovis ATCC 33078 +++ PMN , C,H 
Sal ine same 
M. ovis 10 same -M. ovis 25 same + PMN , C, H --M. ovis 50 same ++ PMN,C , H,MT 
M. ovis 100 same +++ PMN , C, H,MT , 

Eh 

aLesions scored on size and appearance of necro t ic centers . 

b ug LPS given in 0 . 5 ml pyrogen-free saline as the priming dose . 

c50 ug of indicated LPS given in 0.5 ml pyrogen-free saline. 

dPMN = Polymorphonuclear leukocyte infiltra t ion ; indicates 
inflammation . 

eH hemorrhage; lesion charact eristic. 

fc congestion; lesion charact eristic . 

gMT = rnic r othrombi; lesion characteristic. 

hE = edema ; indicates inflammation . 
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Lesion Moq~hologi 
Agent/Dose Provoking Agent External Microscopic 

E. coli K235 10 E. coli K235 LPS - --Saline same 
M. phenil- 10 same ++ PMN,H -
E:t:ruvica 25 same + PMN,C 
ATCC 50 same +++ PMN,C,H,MT 
23333 100 same ++++ PMN,C,H , MT, 

E 
E. coli K235 10 Saline - --Saline same 
M. bovis 621 100 same ++ PMN,C,H 
M. bovis 100 same +++ PMN,C,H,MT -ATCC 10900 
M. ovis 100 same + PMN,C -M. Ehenil- 100 same ++++ PMN,C,H , MT, -
12iruvica E 



Figure 6. Local Shwartzman reaction: external morphology 
2. S- 3 . 0 kg female New Zeal and White rabbits were used t o 
assess the ability of Moraxella LPS to provoke the loca l 
dermal Shwartzman reaction . M. bovis ATCC 10900 LPS was - ~~-injected i . d. into the shaved r abbit back in O.S ml 
saline, a l ong with ~ · coli K23S LPS and saline only 
controls . The reaction was pr ovoked 18 hr af t er i.d . 
injection by i.v . injec tion of SO ug M. bovis LPS in O. S 
ml saline . Upper left,~ · coli K23S LPS~ug) ; upper 
right, saline only control ; middle lef t, 10 ug ~ · bovis 
ATCC 10900 LPS; middle right, 2S ug ~ · bovis LPS ; lower 
lef t, SO ug ~· bovis LPS ; lower right, 100 ug ~ · bovis 
LPS. 
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Figure 7 . Local Shwartzman reac t ion: histological examination 
Example of saline control site wi t h no evident reac tion . 
Rabbit was injected with 0.5 ml saline 18 hr prior t o 
i . v . injec tion of 50 ug ~ · bovis 62L LPS . Section was 
s t ained with hematoxylin and eosin. Magnification 160X. 

Figure 8. Local Shwar t zman r eaction : histological examination 
Example of vascular coagula tion. Rabb it was injected 
i.d. with 10 ug ~ · coli K235 LPS 18 hr prior t o i . v . 
i njection with 50 ug ~ · bovis 62L LPS . Section was 
s tained with hematoxyl in and eosin . Magnification 160X. 





Figure 9. Local Shwartzman reaction : histological examination 
Example of PMN focus. Rabbit was injected i . d. with 100 
ug ~ · phenylpyruvica ATCC 23333 LPS 18 hr prior to i . v . 
injection of 50 ug ~ · coli K235 LPS. Section was 
stained with hematoxylin and eosin. Magnification 400X. 

Figure 10. Local Shwartzman reaction: histological examination 
Example of fibrin deposi t ion and edema. Rabbit was 
injected i.d. with 50 ug ~· phenylpyruvica ATCC 23333 
LPS 18 hr prior t o i . v. injection with 50 ug ~· coli 
K235 LPS. Section was stained with hematoxylin and 
eosin. Magnification 400X. 
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ovis, maximum proliferative effects were seen a t 10 ug and 20 ug, 

respectively. For ~· phenylpyruvica LPS, the maximum effect seen on the 

C3H/HeN cells was at SO ug . ~ · fragilis, and S. minnesot a control (rough) 

LPSs induced greatest proliferation at S ug; the greates t proliferation 

for the rough ~· coli JS LPS was a t 20 ug. The smooth E. coli K23S LPS 

op timum dose was 1.0 ug. These results are summarized in Table 3 for all 

doses and illustrated in Figure 11 for the S ug dose. 

C3H/HeJ mice 

The smoo th LPS f r om M. bovis 621 did not induce a proliferative 

response in C3H/HeJ splenocytes, al t hough the rough LPS from~· bovis ATCC 

10900, ~· ovis and ~· phenylpyruvica at high doses (SO ug) induced 

moderate proliferation in these hyporesponsive splenocytes (Figure 11, 

Table 3). Generall y , the proliferative response of C3H/HeJ cells to 

these rough Moraxella LPSs was greater than that to the rough control 

LPS (~. coli JS, ~· fragilis and~· minnesota) at all doses (Figure 11, 

Table 3). The smooth E. coli K23S LPS failed to induce a proliferative 

response in these cells. These results are summarized in Table 3 for all 

doses and illustrated in Figure 11 for the S ug dose. 

BALB/c/ByJ mice 

All the Mor axe lla LPS were able t o induce a proliferative response in 

BALB/c/ByJ mice comparable t o that of E. coli K24S LPS at similar doses. 



Table 3. Splenic bl as t ogenesis 

C3H/HeJ C3H/HeN 

Dose, ug CPMa s. I. b CPM s. I. 

RPM! only 698 +/ - 84 1.0 922 +/- 40 1.0 

ConA 0.5 53603 +/ - 1791 76.8 48487 +/- 877 52.6 
ConA 0.1 1813 +/ - 75 2.6 1848 +/ - 126 2 . 0 

M. bovis 62L -50 . 0 1145 +/ - 55 1.6 43607 +/- 1673 47 . 3 
20.0 970 +/ - 21 1.4 75017 +/- 1662 81.4 
10.0 690 +/ - 21 1.0 71909 +/- 1132 78 . 0 
5.0 541 +/ - 57 0.8 73224 +/- 1884 79.4 
1.0 584 +/ - 15 0.8 54586 +/ - 3458 59 . 2 
0 . 1 734 +/ - 64 1. 1 13831 +/ - 536 15.0 
0.01 1311 +/ - 409 2. 9 5290 +/ - 606 5 . 7 

M. bovis ATCC 10900 
24622 +/ - - -- 33253 +/ -50.0 1791 35 . 3 1541 36 . 1 

20 .0 3563 +/- 282 5. 1 55824 +/ - 12928 60 . 5 
10.0 1957 +/ - 65 2.8 66429 +/ - 1335 72 .0 
5.0 1309 +/ - 65 1. 9 55848 +/ - 3900 60 . 6 
1.0 868 +/ - 61 1. 2 56892 +/ - 4363 61. 7 
0 . 1 619 +/ - 23 0.9 20241 +/ - 3323 21. 9 
0 .01 817 +/ - 172 1. 2 5785 +/- 159 6 . 3 

M. ovis ATCC 33078 
50 . 0 8276 +/ - 1235 11. 9 33430 +/- 1324 36.3 
20". 0 271 5 +/ - 79 3.9 38601 +/ - 2175 41. 9 
10.0 1660 +/ - 95 2 . 4 36033 +/- 1691 39 . 1 
5.0 1380 +/ - 222 2 . 0 32095 +/ - 2113 34 .8 
1.0 1007 +/ - 105 1. 4 16289 +/ - 1420 17.7 
0 . 1 632 +/ - 11 0.9 5505 +/ - 247 6 . 0 
0 . 01 529 +/ - 23 0 . 8 4338 +/ - 153 4 . 7 

aMean CPM +/ - SD for triplicate cul t ur es. 

b S. I. = Stimula tion index; calcula t ed a s mean CPM of sample/ mean 
CPM RPM! onl y control . 
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C3H/HeJ C3H/HeN 

Dose , ug CPM s. I. CPM s. I. 

~ · Ehenyl Eyruvica ATCC 23333 
50 . 0 17937 +/ - 164 25 . 7 70405 +/ - 2097 76 . 4 
20 . 0 9014 +/ - 819 12 . 9 22287 +/ - 892 22 . 2 
10 . 0 4993 +/ - 373 7. 2 14292 +/ - 1348 15.5 
5 . 0 2875 +/ - 103 4 . 1 8892 +/ - 856 9 . 6 
1.0 1392 +/ - 64 2. 0 5059 +/ - 478 5 . 5 
0 . 1 736 +/ - 83 1. 1 3863 +/ - 141 4 . 2 
0 . 01 647 +/- 54 0 . 9 2707 +/ - 585 2. 9 

E. coli K235 -10 . 0 1093 +/ - 28 1. 6 13689 +/ - 152 14 . 8 
1.0 590 +/ - 11 0.8 14165 +/ - 759 15 . 4 
0 . 01 764 +/ - 41 1.1 9499 +/ - 340 10 . 3 

E. coli J S 
50.0 3705 +/ - 475 5 . 3 2231 1 +/- 1372 24 . 4 
20 .0 1721 +/- 18 2. 5 54909 +/- 559 59 . 6 
10 . 0 1235 +/- 88 1.8 4966 1 +/ - 23 16 53 . 9 
5 . 0 880 +/ - 56 1. 3 51390 +/ - 2846 55 . 9 
1.0 832 +/ - 45 1. 2 39837 +/ - 653 43 . 2 
0 . 1 608 +/- 58 0 . 9 11042 +/ - 621 12 . 0 
0 . 01 638 + / - 48 0 . 9 5266 +/- 523 5 . 7 

s. minnesota Rd 
20 . 0 5399 +/- 564 7. 7 19284 +/- 709 20 . 9 
5.0 493 +/ - 37 0 . 7 29641 +/- 966 32 .1 
1.0 2142 +/ - 320 3 . 1 18436 +/ - 1042 19 . 9 
0 . 1 1325 +/ - 158 1. 9 9869 +/- 442 10 . 7 

B. fragilis -25 . 0 2274 +/ - 58 3 . 3 18797 +/ - 868 20 . 4 
5 . 0 1560 +/- 121 2. 2 22754 +/- 648 24 . 7 
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Tumor Necrosis Factor Assay 

Controls 

Cell- free 24, 48, and 72 hr supernatants from LPS- s timulated 

BALB/c/ByJ PEG were used measure the TNF activity induced by Moraxella LPS 

by determining their cytotoxicity on the fibroblast cell line, 1929 . 

Supernatant s from PEG stimulated only with RPMI contained little TNF 

activity, which was quickly diluted out (i.e., 1:50 dilution). In 

addition, the greatest activity from these supernatants was observed after 

24 hr incubation, and declined with the length of incubation. Thus, a t 24 

hr, maximum RPMI supernatant ac tivity was seen with the 1 : 10 dilution and 

was equal to 53 .1% cytotoxicity; by 48 hr the activity seen wi th the 1 :10 

dilution was only 19.5% cytotoxicity. Supernatants from PEG incubated 

with 0.1 ug ~· coli K235 LPS showed the least TNF activity at 24 hr, while 

maximum TNF activi t y from the ~ · coli K235 supernatant was observed at 48 

hr. The 72 hr supernatants were nearly equal to the the 48 hr supernatants 

in activity at low dilutions, but this activity was more quickly diluted 

out . 

Moraxella strains 

Moraxella LPS TNF activity was measured using PEG incubated with 0 . 5 

and 5 . 0 ug of each Moraxella LPS for 24 , 48 and 72 hr. Similar to the 

supernatnats from ~ · coli K235 LPS-treated PEG, all the supernatants from 

Moraxella LPS-treated PEG showed maximum TNF activity at 48 hr . However, 

the optimum dose of Moraxella LPS was 5 ug, while 0.1 ug was the dose used 

for E. coli K235 LPS. The activity from 24 hr supernatant s was less than 

that of the 48 and 72 hr supernatant s. The TNF activity from the 72 hr 



Figure 11 . Splenic blastogenesis assay 
LPS r esponsive C3H/HeN (open) or hyporesponsive C3H/HeJ 
(striped) splenocytes (S x lOS) were incubated with S ug 
of LPS for 48 hr, then pulsed with tritiated thymidine 
(O.S uCi) to assess B cell blastogenesis induced by 
Moraxella LPS. Mean CPM +/-SD for triplicate cul t ures 
are shown . Rd LPS = ~· minneso t a Rd LPS; E- LPS JS = E. 
coli JS LPS ; M. ovis = ~ · ovis ATCC 33078 LPS; M. phenyl 
= M. phenylpyruvica ATCC 23333 LPS; 10900 = ~· bovis 
ATCC 10900 LPS; 62L = M. bovis 621 LPS; E-LPS K23S = E. 
coli K23S LPS (1.0 ug); RPMI = RPMI only control. Mean 
CPM for Concanal vin A controls (O.S ug) were S3600 +/ -
1791 and 48SOO +/- 877, for C3H/HeJ and C3H/HeN cells, 
respectively. 
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supernatants was diluted out more quickly than that from the 48 hr 

supernatants . Figure 12 shows the TNF activity of supernatants from PEC 

treated with 5 ug of ~- bovis 62L and ATCC 10900 LPS for 48 hr, while 

Figure 13 presents the results for supernatants from PEC treated for 48 hr 

with 5 ug of ~- ovis and ~ - phenylpyruvica LPS. 

Confirmation that cytotoxicity was attributable to TNF was determined 

by using anti- TNF rabbit antisera, which was able to block the cyto-

toxicity of supernatants from~- coli K235 (O.l ug LPS, 48 hr stimulation, 

all dilutions) and ~- bovis 62L (5.0 ug LPS, 48 hr stimulation all 

dilutions) by up to 87% (data not shown). 

Interleukin 1 Assay 

Preliminary studies showed that while supernatants from BALB/c/ByJ 

PEC tended to decrease in 11-1 production over a 24-72 hr incubation 

period, the 11-1 activity of supernatants from macrophages stimulated with 

Moraxella LPS generally increased over the same incubation period. 

Maximum 11-1 activity for supernatants from PEC treated with 5 ug of M. 

bovis 62L LPS was seen at 72 hr and was only somewha t greater than of 

supernatants from RPMI 1640-treated PEC . Somewhat more substantial 11-1 

activity was seen with supernatants from PEC treated with 5 ug of M. bovis 

ATCC LPS for 72 hr. Supernatant s from PEC treated with 0.5 or 5 . 0 ug ~ 

ovis or ~· phenylpyruvica LPS for any time period did not contain 11-1 

activity beyond that of the supernatants from RPMl 1640- treated PEC. 

Figure 14 shows the results of the 11-1 assay using supernatants from PEC 

treated for 72 hr wi th 5 ug of each of the Moraxella LPS preparations. 



Figur e 12 . TNF assay with~ · bovis strains 
The cytotoxicity of superna t an t s from BALB/c/ByJ PEC 
incuba t ed wi t h 5 . 0 ug of M. bovis 62L (s triped) or M. 
bovis ATCC 10900 (shaded)-LP~O . l ug E. col i K23S 
(solid) LPS for 48 hr agains t TNF- sensitive L929 
fib r obl as t s i s s hown. Superna t an t s from BALB/c/ByJ PEC 
incubated with RPMI only for 48 hr showed l ess than 20 % 
cytotoxicity at all dilutions. 

Figure 13 . TNF assay wi th non-~. bovis strains 
The cyt oxoci t y of superna t an t s from BALB/c/ByJ PEC 
incubat ed with 5 . 0 ug ~· ovis ATCC 33078 (striped) , M. 
phenylpyruvica ATCC 23333 (shaded) LPS , or 0 .1 ug ~ · 

coli K235 (solid) LPS for 48 hr agains t TNF- sensi t ive 
L292 fibroblas t s is shown . The cy t o t oxici t y of 
s upernatant s incubated with RPMI only for 48 hr was less 
than 20 % a t all dilu t ions . 
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Figure 14 . Interleukin-! assay 
The mean CPM +/ - SD for triplica te cultures of 11-1-
dependent Dl0 . G4 .l cells incubated with supernatants 
(1 :10 dilution) from BALB/c/ByJ PEC treated with 5 ug 
Mor axella LPS for 72 hr is shown. 
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Lethality in Galactosamine-sensitized Mice 

The le t hal dose required t o kill SO % of the mice (LOSO) for 

Mor axella LPS was found to be approxima t ely SOO times that of the LOSO for 

E. coli K23S LPS (0.1 ug). 

Peritoneal Exudate Cell Toxici t y 

The resul t s of t he PEC t oxici t y assay indicat e t hat Moraxella 

LPS is moderately t oxi c for elicited BALB/c/ByJ PEC a t doses of S and SO 

ug , al t hough a few cultures exhibited greater sensi t ivi t y t o LPS (e . g . , ~ · 

bovi s ATCC 10900 a t S ug and~· ovis a t SO ug) . In addition , ~ · coli K23S 

LPS was no t t oxic a t SO ug for elicited PEC, although slight toxicity was 

seen using S ug of t h i s LPS . With a few exceptions , all the LPS we r e non-

t oxic for r esident PEC (e . g . , M. ovis at SO ug) . These resu l ts are 

summarized in Table 4 . 
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Table 2. Peritoneal exudate cell toxicity 

% Viabilit,l'. of BALB/c/B,l'.J PECa 
Treatment Dose b residentC elicitedd 

PBS control n.d. 
e 65.7 

E. coli K235 50 .0 61. 6 61. 1 
5.0 67.6 48.7 
0.5 65.7 57 .3 

M. bovis 621 50.0 66.9 49.6 
5.0 70.2 63.0 
0.5 70.1 48.6 

M. bovis ATCC 50.0 56.9 42.4 
10900 s.o 63.9 29.6 

o.s 69.9 64.7 

M. ovis ATCC 50 .0 18.9 35.S 
33078 5 . 0 62 . 4 62.0 

0.5 54 .1 68.4 

M. phen,l'.1- 50 . 0 57 . 9 51.0 -
E.l'.ruvica ATCC 5 .0 59 . 6 54 .5 

23333 0.5 44 .1 54 . 1 

a 
Viabili t y determined by counting 5000 cells per sample . 

b 
ug LPS added in 50 ul RPMI. 

c 
Ob tained by peritoneal lavage of unstimulated mice. 

d 
Obtained by peritoneal lavage of mice stimulat ed by i . p . injection 

of 2 ml 3 .0 % thioglycollate 3 days prior to peritoneal lavage. 
e 

n.d . = not determined. 
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DISCUSSION 

Compositional Analysis and SOS-PAGE Profiles 

The absence of detectable protein by chemical and spec t ro-

photometric analysis, and Coomassie blue staining, as well as the absence 

of detectable nucleic acids indicates that relatively pure preparations 

of lipopolysaccharide were obtained from these four Moraxella strains by 

t he hot phenol- water me t hod of extraction employed here (Table 1) . The 

per cent hexose determined colorimetrically for these organisms, 

particularly ~· bovis ATCC 10900, is low compared to some strains of 

Salmonella or E. coli (Wilkinson, 1977). In addit i on, the KOO content of 

t hese LPSs was found to be quite high, especially for ~ · bovis 621 and M. 

phenylpyruvica ATCC 23333 (about 10 % for each strain) and contradicts an 

earlier report by Adams et al., who did not detect any KOO in M. 

osloensis . However , a somewhat more recent r eport examining Neisseria 

gonorrhoeae stated that this or ganism's LPS contained 9.0 % KOO (Kar khanis 

e t al . , 1979) using the same method employed fo r the present work 

(Karkhanis et a l . , 1978). As the genus Moraxella is in the family 

Ne isseriaceae it may be r easonable t o assume that similar ly high amounts 

of KOO exist in both gene r a ; Adams ' gr oup a lso notes that the s trains used 

in their work differ from true neisserias, while resembling so-called 

false neisserias such as ~· (Branhamella) catarrha l is . 

The variability in s uga r composition can be a ttributed t o the 

microheterogeneity within a particular LPS pr epar a t ion (Morrison and 

Ul evitch, 1978) and t o variation from preparation t o preparation because 
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of incompletely synthesized LPS molecules (Wilkinson, 1977). The high 

variability found in the sugar composition of ~· phenylpyruvica may be due 

to phase variation wi th respect to oligosaccharide chain lengt h, as has 

been found with Coxiella burnetii (Vishwanath and Hackstadt, 1988) . In 

addition, it has been demonstra ted, using monoclonal antibodies, that the 

lipooligosaccharide phenotype is unstable for ~ · gonorrhoeae (Schneider, 

et al., 1988). These authors believe that within a population of 

gonococcal cells from a single s train there exist several variants, each 

of which produce a phenotypically different lipooligosaccharide (LOS) and 

which may interconvert. Although the proportion of each LOS would reflect 

t he relative proportion of variants within that population producing each 

LOS, the au thors state that populations of variant cells large enough to 

permit extraction of analyzable material could con t ain revertants which 

produce unique LOS molecules (Schneider et al., 1988). Thus, it is 

possible that ~ · phenylpyruvica may contain similar revertants, resulting 

in high variability of LPS composition . 

The SDS-PAGE profiles (Figure 1) indicate that the M. bovis 62L LPS 

is smooth while the other three Moraxella LPSs are rough. As the per cent 

hexose for M. bovis 62L is low, there may be fewer repeating 0-poly-

saccharide units than has been found with strains of the 

enterobacteriaceae; the polysaccharide side chain of Moraxella LPS may 

therefore resemble the oligosaccharide moiety of some Neisseria species 

(Karkhanis et al . , 1978; Schneider et al., 1984) . The low hexose content 

and relatively high KDO content of M. bovis ATCC 10900, ~· ovis and M. 

phenylpyruvica are consistent with rough pheno t ypes or the lack of 
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repeating oligosaccharide side chain units (Schneider et al ., 1984). 

Western Blo t Analysis 

The results of western blot analysis using immunoglobulins prepared 

from convalescent serum from a gno tobiotic calf infected wi th M. bovis 621 

(Figure 2) show tha t Moraxella 1PS shares some epitopes common t o both 

smooth (e . g ., E. coli K235 and~· typhimurium) and rough (e . g .,~· coli 

JS) LPSs from other groups of gram-negative microorganisms . That the 

immunoglobulins recognized determinants with different relative mobilities 

is most likely a reflection of the degree of aggregation for each 

particular 1PS preparation (Bradley, 1979), as well as the 

microheterogeneity of the preparation where some LPS core and lipid A 

regions may not contain fully synthesized 0-side chains (Wilkinson , 1977). 

In addition, the epitopes recognized are in the fas t est migrating region 

of the 1PS, most likely the more conserved lipid A or core regions which 

may account for the cross-reaction of the immunoglobulin preparation used 

(Bogard e t al ., 1987). 

The results of western blot analysis using a monoclonal ant ibody 

reactive with a M. bovis 621 1PS moiety show that the recognition is 

species specific and that the monoclonal antibody is recognizing both 

smooth and rough 1PS (Figure 3). The failure of this monoclonal antibody 

to react with the non-M. bovis strains indicates that there are some 

interspecies differences among the Moraxella LPSs, as well as intergeneric 

differences between M. bovis 1PS and the 1PS of E. coli or Salmonella. 

Again, the determinants reactive with the monoclonal antibody appear to be 
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in the lipid A or inner core region indicating that there i s a unique 

epi t ope present in the ~ · bovis strains . Of course, the species- specific 

recognition of this determinant may become useful as a diagnostic t oo l for 

the identification of bovine isolates of M. bovis . 

Pyrogenicity 

The results of the pyrogenicity studies s how t ha t the M. bovis 

strains are indeed capable of provoking a t ypical biphasic febrile 

response in rabbits (Figure 4) . However, 10 times the amount of E. coli 

K235 1PS did not produce as great a fever response with t he M. bovis 

strains (e.g., 10 ug for E. coli K235 vs . 100 ug for~· bovis strains ) . 

The M. bovis ATCC 10900 1PS did no t induce as gr eat a response as the ~· 

bovis 621 1PS , especially fo r the second peak in tempera ture inc rease . 

This may be a re f le ction of a lesser ability of M. bovis ATCC 10900 r ough 

1PS to induce so- called endogenous pyr ogens , s uch as 11- 1 , in vivo 

compared t o M. bovis 621 1PS . However, in vitro studies (see below) do 

not bea r this out, as similar 11-1 and TNF activ ities are seen with bo t h 

M. bovis s tra ins. The aggregation s t a t e of t he preparations used may have 

influenced the pyrogenic r esponse to some degree . Thus , the 1PS from t he 

~· bovis s tra i ns i s pyrogenic, with~ · bovis 621 1PS be i ng more pyrogenic 

than ~ · bovis ATCC 10900 bu t subs t an tia lly less so than ! · coli K235 1PS . 

The results of pyrogenicity s tudies using ~· ovi s and ~ · phenyl-

pyruvica 1PS s how that these str ains are also capable of i nducing a 

biphasic feb rile response in rabbits (Figure 5) . The amount of 1PS (25 

ug) used for these non-M. bovis strains was 4 t imes less t han t hat used 
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for the M. bovis s tains a nd 2.5 times grea t e r than that used f or E . coli 

K235 LPS . The febrile response that was provoked was nearly equal t o tha t 

produced by the control E. coli K235 LPS and was grea ter than that induced 

by ~- bovis ATCC 10900. That the non-M. bovis LPS was more pyr ogenic tha n 

the M. bov is LPS may again be due to interspecies differences in lipid A 

fatty acid composition or aggregation s tates which cause M. ovis and M. 

phenylpyruvica LPS t o induce more endogenous pyrogens which mediate the 

second phase of the feve r response; however, LPS from these two s trains 

did not induce 11-1 activity above that caused by stimulation due to 

adherence (Figure 14) and TNF activity was s imilar among all four 

Moraxella species (Figures 12 and 13). 

Local Shwart zman Reac t ion 

All the Moraxella LPS preparations were capable of inducing a local 

Shwartzman react ion in rabbits, using homologous LPS fo r the priming and 

provoking doses (Figure 6; Table 2). While small priming doses of E. coli 

K235 LPS (10 ug) were able to induce l esions with some erythema and s light 

swelling, large r priming doses of Moraxella LPS were generall y required to 

provoke lesions with subs t antial swelling and necrosis. Microscopically, 

no differences in the reaction could be discerned among the various LPSs: 

s t a ined sec tions from the l esions consis tently showed PMN infiltrat ion , 

intravascular coagula tion, hemorrhage, fibrin deposition a nd edema 

(Figures 7-10). However , a dose-dependent rela t ionship exis ted in terms 

of the degree of PMN i n f iltra tion, hemorrhage , and o the r lesion 

pathologies in that lesions from low dose priming si t es (10 and 25 ug) had 
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less hemorrhage , micr o t hrombi and fibrin deposi t ion than lesions from 

si tes o f highe r priming doses (SO and 100 ug) , where there were also mor e 

int ense multiple foc i of PMN accumula tion . There appear s t o be no 

difference in the ability of s mooth or r ough Moraxella LPS t o pr ovoke a 

l ocal Shwartzman reaction, thus i t would appear tha t lipid A moieties of 

these LPSs are equally efficient in ac t iva t ing the coagulative pathways 

important in t he development of the lesions. In addi t ion, TNF and 11- 1 

levels induced by Moraxella LPSs are simila r and these cy t okines have been 

found t o i nduce the local Shwar t zman reaction or tissue injury independent 

of LPS (Beck et al . , 1986 ; Tracey e t al., 1986; Beut ler and Cerami , 1986) . 

Splenic Blas t ogenesis 

Mor axella LPS was able t o induce LPS-responsive murine splenocy t es t o 

undergo blas t ogenes is (C3H/HeN and BALB/c/ByJ s trains) . M. bovis 621 and 

ATCC 10900 LPS we r e able t o s t imulate the r esponder splenocytes t o a 

higher degree than several cont r ol LPSs a t the same dose for CJH/ HeN 

splenocytes (S ug; Figure 11) . However , only the r ough LPSs f r om M. bov i s 

ATCC 10900, M. ovis, and ~ · phenylpyruvica were able t o stimula t e LPS-

hyporesponsive splenocytes from CJH/HeJ mice and induced mo re ac tiv i t y 

than the control r ough LPS f r om E. col i JS, ~ · minneso t a Rd and B. 

fragilis a t the same dose (S ug) . The ability of t hese r ough Moraxella 

LPSs t o induce mode r a t e blas t ogenesis , especially at hi gh doses (SO ug) , 

in LPS- hyporesponsive splenocytes may be due t o unique or especially 

potent combination of fa tty acid s ubstituents on the diglucosamine 
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backbone of the lipid A, as recent work emphasizes the importance of fatty 

acid s ubstituent s in the reactivity of synthet ic lipid A derivatives 

(Brade e t al ., 1988; Kumazawa et al ., 1988). Alternatively , these 

prepar a tions may have serendipitously had the op timum degree of 

aggregation and bound cations for the induction of a blas t ogenic response 

(Galanos and Luderitz, 1984). 

Overall, the Moraxella LPS was able to s timula t e responsive murine 

splenocytes t o undergo blastogenesis to a degree a t leas t as great as that 

of E. coli K235 LPS at nearly all doses and rough Moraxella LPS was able 

t o induce modest blastogenesis in hyporesponsive murine splenocytes. 

Tumor Necrosis Factor Assay 

Supernatants from PEC stimulated with Moraxella LPS for 24 to 72 hr 

contained greater TNF activity than those from E. coli K235 (Figures 12 

and 13), even when considering the modest TNF activity induced from 

a l lowing the PEC to adhere, thus ac t ivating them (although 5 to 50 times 

more Moraxella LPS was incubated with the PEC); Supernatant s stimulated 

with RPM! only had moderate activity which was quickly diluted out and 

which decreased to less than 20 % cytotoxicity by 48 hr, indicating that 

the stimulus was not sustained in these cultures . However , in PEC 

cultures incubated with LPS , TNF activity increased from 24 to 48 hr and 

leveled off thereafter (72 hr). In addition, 5 ug of Moraxella LPS 

induced more TNF activity than 0.5 ug of Moraxella LPS or 0 . 1 ug of E. 

coli K235 LPS (at 48 hr) . If peritoneal macrophages take up LPS in a 

receptor-media t ed process as has been proposed (Fox et al . , 1987), this 
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dose- dependent increase in TNF activity may be proportional t o the 

LPS/receptor ratio: more LPS may induce expression of more LPS receptors 

and subsequently increase the amount of LPS taken into the cell, resulting 

in increased production of TNF, with the most empirical effects at the 

level of transcription a nd translation of the TNF genes (Beutler et al., 

1986). 

As with the local Shwartzman reaction, no differences were observed 

in the induction of TNF activity between rough and smooth Moraxella LPSs . 

This result might imply that the lipid A portion of these LPSs is very 

similar from strain t o strain, as the lipid A region has be found t o be 

responsible of the induction of TNF activity (McCartney and Wardlaw, 

1985). 

Interleukin 1 Assay 

In contrast t o the high amount of TNF ac tivity found in supernatants 

from murine PEC stimulated with Moraxella LPS, Il-1 activity from these 

supernatants was modest at best (Figure 14). The highest Il-1 ac tivi t y 

was observed in culture supernatants from PEC treated with the M. bovis 

621 and ATCC 10900 LPS, indicating tha t there is no difference in the 

abili t y of smooth or rough Moraxella LPS to induce Il-1. The Il- 1 

activity of supernatants from PEC stimulated with RPMI only decreased 

af t e r 24 hr, reflective of the transient stimulation of PEC by adherence . 

Interleukin 1 ac tivi t y of the Moraxella LPS-stimulated PEC culture 

supernatants generally increased over the 72 hr incubation period for the 

M. bovis strains, while E. coli K235 LPS-stimulated PEC culture 
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supernatants exhibited t he highest 11-1 activity at 48 hr . The 11- 1 

activity from the M. ovis and ~ · phenylpyruvica LPS- s timulated PEC cul ture 

supernatants increased with increasing the dose of LPS, suggesting that 

the optimum amount of these LPSs required for stimulating PEC to release 

IL-1 has not been tes ted. It may also be that the LPS was somewhat toxic 

to the PEC cultures during incubation and that 11- 1- producing macrophages 

were killed, since 5 and 50 ug amounts of Moraxella were moderately t oxic 

t o murine PEC in toxicity assays (see below). Alternatively, the duration 

of s timula t ion of PEC by LPS may also need t o be lengthened as recent 

research on the gene t ic regulation of 11-1 activity has shown that 

adherence- stimulated PEC synthesize IL-1 mRNA more quickly than LPS-

s timulated PEC (Fuhlbrigge et al., 1987), al t hough E. coli K235 LPS-

s timula t ed PEC had the most 11-1 activity at 48 hr . The high amount of 

TNF activity induced relative t o 11-1 ac tivity by Moraxella LPS suggests 

that there may be some mechanism controlling increased production of one 

cytokine at the expense of the other. However, both TNF and 11- 1 share a 

conse rved octameric sequence a t the DNA level which Beutler and his co-

workers believe may be involved in their regulation by LPS (Beu tler et 

al . , 1986); t hus , other sequences may also be involved in the independent 

regulation of these cytokines. 

Le thal Toxicity in Galactosamine-sensitized Mice 

The amount of Moraxella LPS required t o kill 50 % of BALB/c/ByJ mice 

sensitized t o the t oxic effects of LPS was more than 500 times t ha t 

required for E. coli K235 LPS (O . l ug) , although death in some Moraxella 
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LPS-treated mice were seen with as little as 1 ug LPS. After the admin-

istration of Moraxella LPS, the mice of ten showed signs of endotoxemia, 

such as ruffled fur, ocul ar exudate and dia rrhea but did no t s uccumb t o 

the lethal effects o f LPS. Moraxe lla LPS may be subs t antiall y less t oxic 

than E. coli K235 LPS due t o its composition , al though it is a ble t o 

induce TNF activity similar t o E. coli K235 LPS a t comparable doses, and 

TNF has been recently found t o mediate many of the lethal effects of LPS 

and endot oxin (Beutler and Cerami , 1985 ; Bauss e t al., 1987). The 

Moraxella LPS is perhaps degraded or detoxified more rapidly than t he E. 

coli LPS in v i vo , resulting in less stimulation of the mediators of 

endotoxin toxicity . For instance, dephosphorylation of LPS by macrophages 

has recently been shown and lipid A analogs lacking phosphate r e sidues 

have decreased t oxicity and pyrogenicity (Peterson and Munford, 1987). 

Peritoneal Exudate Cell Toxicity 

Although ~ · coli LPS has been reported t o be t oxic fo r macrophages at 

50 ug/ml (Bradley, 1979), no t oxicity was observed at this dose fo r 

elicited PEC from BALB/c/ByJ mice, although slight t oxici t y for elicited 

PEC was observed a t 5 ug (Table 4). Moraxella LPS showed modest toxicity 

a t 50 and 5 ug doses, but only for elici t ed PEC (with the excep t ion of 50 

ug M. ovis LPS whi ch was toxic fo r resident PEC) . Resident PEC were rela-

tively res i s tant t o the toxic effects of LPS at all doses, as might be 

anticipated as they a r e not as metabolically active and thus less suscept-

ible t o the effects of LPS on mitochondria and glucose metabolism 

(Br adley , 1979). 
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SUMMARY AND FUTURE DIRECTIONS 

Relatively pure preparations of LPS were obtained by a hot phenol-

water method of extract ion for M. bovis 621 and ATCC 10900, ~· ovis ATCC 

33078, and ~ · phenylpyruvica ATCC 23333 . The SDS- PAGE profile of M. bovis 

621 LPS was smoo th while the LPS from the ot her three Moraxella species 

was rough . The hexose content for the Moraxella LPSs was low, while t he 

KDO content was high, indica ting that these LPS moieties more closely 

resemble those of Neisseria spp ., rather t han E. coli . The Moraxella LPS 

contained epitopes cross-reactive with LPS from enteric gram- negative 

microor ganisms, bu t M. bovis LPS must cont ain unique epitopes since a 

monoclonal an tibody reacted with it in a species- specific manner . This 

monoclonal antibody certainly holds promise as a diagnostic agent for the 

presence of ~ · bovis. 

Moraxella LPS was pyrogenic, al though a t doses 2 . 5 t o 10 times 

grea t er than the dose required for a s i milar response t o ~· coli K235 LPS . 

Moraxella LPS was also capable of provoking a dermal Shwar tzman r eac tion 

in rabbits , induced TNF and caused the blastogenesis of LPS-responsive 

murine splenocytes , all a t doses somewhat grea t er than , but comparable t o , 

E. coli K235 LPS . However, Moraxella LPS was 500 times less t oxic t han E. 

coli K235 LPS t o sensi t ized BALB/c/ByJ mice . Little I l-1 activi t y and 

moderate PEC t oxicity were observed for the LPS f rom these four species . 

Western blot anal ysis with the monocl ona l an tibody showed that it reacted 

in a species - specific manner with the M. bovis 621 and ATCC 10900 LPS , as 

opposed to the cross-reactivity of the bovine immunoglobulins seen among 
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the Moraxella species, ~· coli JS and K23S, and ~· typhimurium LPS . Aside 

from the stimulation of LPS-hyporesponsive C3H/HeJ splenocytes by the 

rough Moraxella LPSs, no differences in reactivity between rough and 

smooth Moraxella LPS were detected . 

The s tudy of these LPSs could be aided by detailed chemical analysis, 

which would indicate chemical differences that could account fo r 

differences in pyrogenicity and reactivity with antiserum. Knowledge of 

the chemical makeup would also confirm or refute that Moraxella LPS has 

oligosaccharide side chain structures similar to those of Neisseria; core 

and lipid A composition may also have taxonomic value . 

As of yet, no clear cut role for M. bovis LPS in pathogenicity has 

been established, since the LPS from pathogenic ~ · bovis 621 and 

nonpathogenic ~· bovis ATCC 10900 reac t very similarly in the biological 

assays described here. However, examining the effects of each of these 

LPSs on natural killer cells, examining the release of CETAF from a 

corneal cell line (e.g., SIRC) and studying serum resistance may further 

delineate such a r ole. Additionally, using normal and neutropenic mice t o 

examine the effects of LPS from pathogenic and nonpathogenic ~· bovis on 

the development of corneal lesions may also illuminate any role of M. 

bovis LPS in pathogenicity. 

As previously mentioned, the monoclonal antibody reactive with M. 

bovis holds promise as a diagnostic tool; in addition, it may be valuable 

as a protective agent . Previous studies have demonstrated a protective 

effect of antiserum to the lipid A moiety of E. coli JS in preventing 

subsequent infection (Reitschel and Galanos, 1977; Zeigler et al ., 1982). 
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Since the monoclonal antibody appears t o be recogniz ing an epitope in the 

core or lipid A r egion of ~· bovis LPS, a similar pr o tective effect may 

a lso be afforded upon ins t i l lation of this monoclonal antibody . 

Cattle suffering f r om the ear ly stages of pinkeye may experience a 

slight fever . The pyrogenicity noted with the ~ · bovis species , 

especially 62L, offers a logical explana t ion for t his fever ; thus it may 

be desirable t o include inhibi t or s of pr os t aglandin synthesis (e . g ., 

indomethacin or aspirin) in treatment for IBK, as PGE2 has been implica t ed 

as mediating the pyr ogenic response t o LPS (in addition t o 11-1) . 

This work has desc ribed the SDS- PAGE profiles and biological 

reac tivi t y of LPS fr om sever al heretofore unchar acterized species of 

Moraxella. The precise role of this LPS in the pa t hogeni ci t y of IBK has 

not been determined, although the LPS f r om these Moraxe l la spp . i s 

reactive is most biological assays t ested . The spe c ies - specific 

recognition o f M. bovis LPS by a monoclonal an t ibody , however , may yield 

improvements in t he diagnosis of IBK . 
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