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1. INTRODUCTION 

In the '90s, the electric utility industry has changed greatly in its 

mode of operation. These changes are: 

• Shift in generation pattern: Since the 1973 oil embargo there has been a 

shift in the pattern of generation from oil fired located near the loading site 

to hydro, mine mouth coal, and nuclear plants located at long distances. 

There has been a lack of subsequent growth in transmission facilities, due 

to constraints in acquiring right-of-way from land owners and heightened 

environmental constraints, leading to loss of congruency between 

generation and transmission facilities. 

• Non-utility generation: Significant changes in regulatory philosophy in 

the electric utility industry has led to non-utility generation, over whi~h 

operating utilities have little or no control. 

• Open access transmission: Owners are now required to .sell transmission 

service to any organization requesting it for the purpose of energy transaction 

as long as capacity is available. 

Further recent growth of the industry and an Increase In society's 

dependency on electricity have caused a moderate increase in demand for 

electric energy. 

Such changes have resulted in a highly interconnected and heavily 

loaded power system network operating closer to limit conditions. There have 

been increaseed problems associated with maintaining an acceptable voltage 

profile and an increase in incidents of voltage instability in bulk power electric 
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energy systems. Voltage instability is often described as a problem caused by 

an operating system that exceeds the power limit and involves dynamic as well 

as static phenomena. Steady state voltage instability occurs as a result of a 

small disturbance, generally an increase of load or a loss of generation. The 

disturbance leads to declining of voltages at certain buses. Under these 

conditions, the operator equipped with automatic control may fail to maintain 

the voltages. The system then undergoes the state of voltage instability, leading 

to local or global blackout. The relationship between the loss of this steady state 

stability and singularity of power flow Jacobian has been observed and 

presented [1, 5, 16]. The Newton method of power flow solution near this 

voltage instability point is ill conditioned because of singularity of Jacobian. 

1.2 Literature Review 

In the past two decades, extensive research has been done in the area of 

voltage instability. Significant research efforts are underway in an effort to 

understand the phenomenon, and to develop tools to estimate and avoid voltage 

collapse. Numerous articles have been published and workshops have been 

conducted to discuss and solve the voltage instability problem. 

A major difficulty encountered in such research is that the Jacobian of 

Newton power flow equations becomes singular at the steady state voltage 

instability point. The relationship between loss of this stability and singularity 

of Jacobian has been shown [1, 2]. Tamura et al. [4] related the voltage 

instability phenomenon to multiple power flow solutions. As a consequence of 

the singularity of Jacobian, attempts to find power flow solutions near the 

critical point are prone to divergence and error. For this reason, Tamura et al. 
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[4] used the anti-divergence algorithm in an attempt to overcome the 

numerical divergence. Alvarado et al. [2] and Ajjarapu et ale [5] proposed a 

direct method to detect the voltage instability point, but the method requires a 

close guess of the critical point. Based on the locally parametrized continuation 

technique, Ajjarapu [2] and Ajjarapu and Christy [10] developed a 

continuation power flow algorithm to trace the power flow solution curve 

systematically until critical point is reached. The continuation power flow, 

obtained by using the augmented Jacobian, avoids the singularity of Jacobian 

near or at critical point. Various indices have been developed to estimate the 

distance from the critical point. Tiranuchit and Thomas [6] proposed the 

minimum singular value of the Jacobian of the descriptor network equations 

as a voltage security index. Ajjarapu and Christy [3] used the available tangent 

vector in continuation power flow (CPF) to provide an index to estimate the 

collapse point. Ajjarapu and Battula [9] used the tangent vector information in 

performing sensitivity analysis. Tangent vector that contains the differential 

changes in bus voltage angles and magnitudes information in response to a 

differential change in load connectivity is used to locate the weak areas in the 

system. 

To avert voltage collapse, operators are seeking tools that can enhance 

their understanding of where the system is operating with respect to the point 

of collapse, as well as how much VAr supply is required and where it should 

be located to achieve a secure system. To address such needs, based on 

sensitivity and optimization technique, Ajjarapu et al. [11] developed a method 

to minimize the capacities of reactive power to be installed at load buses, to 

increase the power transfer limit of the network limited by reactive power. 
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Energy interchange are on the rise to accomplish bulk power economic 

transfers. The effect of area interchange on voltage stability has been discussed 

and presented [15]. Iba et al. [22] applied the homotopy continuation method, 

similar to the continuation power flow developed at Iowa State University, to 

detect the critical point. The technique of solving a sequence of equations with 

diminishing degree of simplification until finally the full equation is solved is 

called homotopy. A continuation parameter is chosen and used to trace the 

solution curve without numerical ill-conditioning. 

To maintain the load voltages and minimize the cost of generation 

requires an optimal power flow (OPF) formulation. The method developed by 

Dommel and Tinney [29], using the gradient-based optimization technique, is a 

benchmark. in the solution of the problem of OPF. Burchett et al. [33] used the 

linear programming technique to solve the OPF problem. Sun et al. [30] 

developed OPF by the Newton Raphson method and provided decoupling and 

sparsity techniques to fasten the OPF problem. In other studies [25, 26, 27] 

Ponrajah and others used the homo·topy-based continuation method to solve the 

OPF problem. 

The above methods provide an OPF solution at a current operating point. 

This thesis describes a methodology that traces the optimal solution path for a 

continuous increase in load. 

1.3 Scope and Objective 

To study and prevent the loss of the steady state stability the electric 

utility industry needs a tool that can avoid the singularity of Jacobian and 

systematically estimate the distance from this critical point. A robust and well 
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conditioned tool, the continuation power flow (CPF), has been developed at 

Iowa State University. The current CPF has the following features and 

provides the following informations: 

• It avoids ill conditioning by using the well conditioned augmented Jacobian 

in Newton corrector iterations. 

• It employs sparsity and optimized step-length techniques to fasten the 

procedure of obtaining a series of power flow solutions. 

• It provides an index to identify the distance from the critical point. 

• It performs sensitivity analysis using the tangent vector information. It lists 

the generators in order of importance in maintaining stability, as well as the 

branches and buses that are most sensitive to change in load. 

• It provides for the effect ofload modelling on voltage stability. 

Even though the present version of the CPF has been provened to be a 

powerful tool for analyzing steady state voltage stability, the CPF requires 

further improvements. The CPF does not take the economics of generation into 

account. With the worldwide energy crisis and continuous rise in energy 

prices, reducing the running charges of electric energy, is as important as 

maintaining the security and reliability of the system. In the current CPF, 

load voltages are allowed to fall below acceptable limits. Load voltages must be 

maintained for satisfactory operation of equipment connected to the system. 

The objective of this research is to blend the theory of optimization and 

continuation technique to develop a tool to provide an optimal solution for a 

given increase in load. This results in the optimal continuation power flow 

(OCPF), which has the following features: 
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• The OCPF provides a continuum of optimal solutions for a continuous 

increase in load in a given direction. 

• The total cost of generation is minimized. 

• The load voltages are maintained by controlling generator voltages. 

• If the generators fail to maintain load voltages, i.e, the solution is not 

feasible, the method provides a way to control load bus voltages by injecting 

reactive power sources at suitable load buses. 

1.4 Thesis Outline 

In Chapter 2, the basic principles involved in analysis of voltage 

instability and the concepts behind the continuation power flow are discussed. 

In Chapter 3, the various classical optimization techniques used in optimizing 

the power flow solutions are reviewed. The development of optimal 

continuation power flow, which traces optimal solutions for a continuous 

increase in load, is des~ribed in Chapter 4. In Chapter 5, validity of optimal 

continuation power flow is tested by applying the method for large scale power 

system network examples. Chapter 6 contains the conclusions and 

suggestions for future work. 
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2. VOLTAGE INSTABILITY AND CONTINUATION 

POWER FLOW 

2.1 Introduction 

In a recent Institute of Electrical and Electronics Engineers (IEEE) 

meeting, the voltage stability working group committee used the following 

definitions: 

''Voltage stability has been defined as the ability of a system to maintain 

voltage so that when load admittance is increased, load power will increase, 

and so that both power and voltage are controllable." 

"Voltage collapse has been defined as the process by which voltage 

instability leads to very low voltage profile in a significant part of the system." 

''Voltage security is the ability of a system not only to operate stably, but 

also to remain stable as far as the maintenance of system voltage is concerned 

following any reasonably credible contingency or adverse system change." 

Throughout the research, the problem of voltage stability has been 

examined from the steady state point of view. 

2.2 Voltage Collapse Phenomenon 

Steady state voltage collapse occurs as a result of inadequate supply of 

reactive energy, either globally or locally. If generation facilities are located far 

from load, a voltage drop occurs along the transmission line. Voltage drop is 

compensated locally or globally by installation of shunt capacitors, on-load tap 

changing transformers, static V Ar compensators, and generator reactive 
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sources. Adoption of higher transmission voltages and increases in power 

factor of large generating units decrease the available reactive energy. 

Increased loading of transmission lines and recent renewed growth in 

demand has further resulted in increase of reactive losses. 

Voltage support is complicated because of the interaction among various 

buses. Adjustment of voltage at one bus requires the readjustment of voltage at 

other buses. The situation is further complicated because of the well-accepted 

wisdom that reactive power dispatch over long distances is limited by 

increased reactive losses. So even if there is a sufficient reactive energy source, 

it is of no use if that source is far from the voltage weak area. 

Industrial experience reveals that most voltage collapse incidents have 

followed major disturbances such as loss of transmission or generation 

equipment. After primary regulation have acted and after the system has 

settled down to a lower voltage, two factors generally have been observed to 

jeopardize the voltage stability: 

• Load recovery, because of the nature of induction motors and the action of 

automatic tap changers to restore the secondary voltages. On the customer 

end, the motors stall with the drop in voltage, causing the voltage to drop 

further and other motors to stall in cascade fashion. The on-load tap 

changer, in an attempt to restore voltages, further increases the voltage 

dependent load and results in further deterioration of voltage, leading to 

widespread voltage collapse. This may result in massive loss of motor load. 

The massive loss of motor load may cause the voltages to recover. 

Transmission line over current protection may not operate due to the fast 
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voltage recovery. If the root cause of voltage collapse is not removed, voltage 

may again collapse as motors are restored to service. 

• The restriction of generators reactive support imposed by admissible thermal 

stresses of the machines. Machines are prevented from sustained reactive 

overload by protecting devices, such as rotor current and maximum voltage 

set point of generators. 

It has been observed that, in most cases, the system settles down to a 

new operating equilibrium point. However, in a few extreme cases, such an 

equilibrium point might not exist. Voltage instability results, in the form of 

sustained monotonic decrease of the voltages, leading to voltage collapse. The 

collapse leads to the loss of load and a complete shutdown of the affected area. 

2.3 Analysis of Voltage Collapse 

Planners and operators, aware of the potential for steady state voltage 

instability, assess the risk of voltage instability and margins by real power­

voltage (PV) or reactive power-voltage (QV) curves. PV or QV curves are 

generated for increasing transfer or load by running a series of power flow 

solutions. These curves are used by the operators to obtain transfer limits. 

Figure 2.1 is typical of the PV curve generated for a system that is stable at 

moderate loading and close to voltage instability at the higher loading. The 

point "p" on the curve corresponds to the saddle node bifurcation point, i.e, the 

voltage collapse point. The convergence of power flow solution by Newton 

method at or near the critical point is ill conditioned because of the singularity 

of Jacobian. The continuation power flow developed at Iowa State University 
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Figure 2.1: PV curve 

avoids the ill conditioning by using augmented Jacobian, and in a single run 

obtains the series of continuum solution for increased transfer or load until a 

critical point is reached. A brief description of the continuation power flow, 

which can be used to analyze the steady state voltage stability, is described in 

the following section. 

2.4 Continuation Power Flow 

2.4.1 Introduction 

Consider a set of nonlinear algebraic equations given by: 

G(x, Il) = 0 (2.1) 

x, G are vectors with n components and Il is a control parameter. It is intended 

to study how the solutions x of Equation 2.1 vary with Il. For the nonlinear 
, 

algebraic equation 2.1, more than one zero point may exist for a given fixed 
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value of the parameter. It has been observed in physical systems that the 

stationary points are smooth functions of ~ except at some exceptional points. 

This smooth solution set forms the branches of solutions in 9tn+1. If an initial 

point (xo' ~o) is known then a path following method is an algorithm 

procedure for tracing out these paths. 

To be a useful tool, an algorithm has to trace the paths efficiently; it 

must also be able to recognize the existence of exceptional points to compute 

them accurately. Continuation methods and homotopy based methods have 

been introduced and applied to various engineering and scientific applications 

including applications in civil engineering, chemical engineering and flow 

research. These techniques provide a systematic approach to trace the branch 

of equilibrium points. 

2.4.2 Continuation power flow formulation 

The continuation power flow (CPF) developed at Iowa State University is 

based on this locally parametrized continuation technique and employs a 

predictor corrector scheme to trace the solution path of power flow equations. 

In order to apply the locally parametrized continuation technique, the 

power flow equations are reformulated by including a load parameter ~ 

(Appendix B). Reformulated power flow equations can be represented in a 

general form as 

G(x,~) = 0 (2.2) 

Here x = [0, v] T, where 0 represents the vector of bus voltage angles, v is the 

vector of load bus voltages and ~ is the load parameter. 
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Once a base solution (xo, J.l.o) is obtained corresponding to J.I. = 0, the 

continuation problem is to calculate further solutions: 

(Xl, J.l.1), (X2, J.l.2), (X3, J.l.3), ••• , 

until the critical point corresponding to voltage instability is reached. The 

mathematical basis of the path following method (or continuation method) is 

the implicit theorem, which ensures the existence of a smooth path of 

solutions near (xo, J.l.o) provided GJ.I.(xo, J.l.o) is non-singular. The following 

section explains how the solution path is traced up to and beyond the critical 

point (where GJ.I.(xo, J.l.o) is singular) via co?-tinuation techniques. 

Various continuation techniques that have been developed differ in the 

type of predictor, parametrization strategy, corrector, and step length control 

used. The ith continuation step starts from an approximation of (Xi, J.l.i) and 

attempts to calculate the next solution. With predictor-corrector type 

continuation, the step i~ i+1 is split into two parts. In the first part, the next 

solution is predicted; in the second part, the predicted solution is corrected to 

the required solution. 

Predictor: (Xj, J.l.i) ~ (xi+1, lli+1) 

(Xi, J.l.i) is the power flow solution at base load and (xi+1, J.l.i+1) is the predicted 

solution at increased load level. 

(Xj+l> J.l.i+1) is the corrected solution at increased load level. The predictor­

corrector procedure is illustrated in Figure 2.2. 
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Predictor process: Either the tangent vector or the polynomial 

extrapolation technique can be used to predict the solution. In the CPF, the 

next solution is predicted in the direction of the tangent vector, because of the 

additional information the tangent vector provides. The tangent vector can be 

used to obtain an index to estimate the distance to critical point from base 

solution. The tangent vector has also been used to obtain the sensitivity 

information in the CPF [9, 11]. 

Thus, the first task in the predictor process is to calculate the tangent 

vector. The tangent vector is obtained by taking the derivative of Equation 2.2: 

dG dO dO 
dO =- do+- dv+- d~ 

dO dV a~ 
(2.3) 

The factorization of Equation 2.3 results in 

[GO Gv Gil] is the conventional power flow Jacobian augmented by one column 

(Gil) and t = [do dv dll]Tis the tangent vector to be sought. A normalization is 

imposed in order to give t a unique non-zero length: 

where ek is an appropriately dimensioned row vector with all elements equal 

to zero except kth, which equals one. Proper choice of k guarantees the non­

singularity of augmented Jacobian. Thus the tangent vector is obtained by 

determining the solution of the following equation. 
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x 

Figure 2.2: lllustration of predictor corrector scheme 

Once the tangent vector is obtained, the next solution is estimated as 

where '*' denotes the predicted solution and a is a scalar that designates the 

step size. The step size is optimally chosen to prevent the corrector iterations 

from being costly. Various techniques have been used in determining the step 
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length in the CPF based on sensitivity, radius of curvature, and the 

continuation parameter. 

After the prediction is made, the next step is to correct the predicted 

solution in the corrector process. 

Corrector process: The corrector process depends upon the type of 

parametrization used. A parametrization is a mathematical way of identifying 

each solution on the branch. The CPF uses local parametrization, i.e, the 

original set of equations is augmented by one equation specifying the value of 

. one of the state variables. The new set of reformulating power flow equations is 

given by 

x=[~l 
where G(x) denotes the original set of power flow equations and k is the index 

of the continuation parameter. Once a suitable index k and value of 11 are 

chosen, a slightly modified Newton power flow method (altered only in that one 

additional equation and one additional state variable are involved) can be used 

to solve the set of equations. This provides the corrector, needed to modify the 

predicted solution found in the previous section. The critical point corresponds 

to the point at which maximum. loading (and hence maximum. J.l) occurs. For 

this reason, the critical point is identified as the point at which the component 

of the tangent vector corresponding to J.l (that is, dJ.l) is zero, and becomes 

negative once it passes the critical point. The predictor-corrector process is 

continuously repeated until the critical point corresponding to voltage collapse 

is obtained. The CPF process is demonstrated pictorially in Figure 2.3. 
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Figure 2.3: lliustration of CPF via predictor corrector scheme 

This is the basic continuation power-flow algorithm; details can be 

found in [2, 3, 12]. In the basic CPF algorithm, the load at each bus is 

independent of voltage (constant power load model). Christy and Battula [12, 

14] in their thesis work included non-linear models in the CPF. Non-linear 

models represent the actual load on the system as it considers the response of a 

load change to a change in voltage magnitude. In the basic CPF, the load is 

increased in steps, corresponding to a change in the continuation parameter 

and in the specified direction of the load increase. 

PLi = PLio (1 + Jl * pmulti) 

QLi = QLio (1 + Jl * qmulti) 

Generation is increased in an arbitrary fashion. For example, the load .is 

distributed according to the original base generation as follows: 
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PO' = POi 0 * (total change in load) 
1 (total original base generation) 

where PLio and QLio are the original active and reactive load at bus i, POlo is 

the original generation at bus i, Jl is the load parameter, and pmulti and 

qmulti are vectors that designate the direction and the amount of increase. 

The main aim of the basic continuation power flow described in the 

previous paragraphs is to trace the solution path of the power flow equations 

up to and beyond the critical point. In the basic CPF, the load bus voltages are 

not maintained within limits. Improvements in the CPF included the use of 

the weak bus information to determine the possible remedial action for the load 

voltages. In Lau's thesis work [13], additional reactive sources were used "in an 
" " 

attempt to control the load voltages and increase the power transfer capability. 

In his work, the reactive power compensation was obtained from shunt 

reactors and shunt capacitors. However, there are other type of reactive 

sources that can be used to indirectly control the voltage. 

The following section discusses the type of these reactive sources. In 

addition, the relationship between reactive power injection and power transfer 

capability is described. 

2.5 Voltage Control and Reactive Support 

2.5.1 Types of reactive sources 

The reactive requirements of a power system network are provided by 

the available reactive sources, which include: 
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Synchronous generators: Synchronous generators are a major source of 

reactive power and are limited by machine design parameters. Generators 

possess the fast dynamic ability to respond to system disturbances and 

maintain voltages at the desired level. Control of reactive power of generator is 

achieved by the adjustment of generator field excitation. In a network, 

generator outage is considered the most critical contingency in terms of the 

loss of overall reactive supply and the ability to maintain system voltages at 

permissible levels. 

However, the generator reactive power is limited, for the following 

reasons: 

• One must maintain certain generator reactive power margins so 

that unused reactive power can respond quickly to increased reactive 

requirements resulting from sudden disturbances. 

• Generator reactive power is limited by design parameters. Even if 

the generator reactive capability is increas~d by changing the design 

parameters, increased reactive capability carries a heavy economic 

penalty outside the normal design limits. 

• The installation of generators is dictated by the system active 

requirements, and not by the need for reactive support. Large 

transmission reactive losses are incurred if the reactive power of the 

generator is used to remedy load voltages at the far end of the 

network. 

As a result, additional reactive sources are needed. Additional reactive 

sources include: 
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Synchronous condensers: A synchronous condenser is a synchronous 

machine used to generate reactive power only. A smooth, automatically 

controlled output can be obtained for a wide range of values. Synchronous 

condensers are more expensive and require more maintenance than a shunt 

capacitor. Synchronous condensers are generally installed only if the 

additional benefits, such as continuous range of reactive control, absorptive 

capability, better dynamic response characteristics, and greater overload 

capability are desired in a particular application. 

Shunt Capacitors: Shunt capacitors ·are the most widely used form of 

reactive compensation in power system networks. Compensation provided by 

shunt capacitors is a function of the line voltages, and their effectiveness 

decreases as system line voltage decreases. Shunt capacitors have no moving 

parts and are therefore highly reliable. Switching of shunt capacitors, 

achieved by load-break switches or circuit breakers, can be controlled 

manually or automatically through some control circuitry. This is the 

cheapest source of additional reactive power. 

Series capacitors: Series capacitors compensate for transmission line 

inductive reactance, thereby reducing the electrical length of transmission 

lines, reducing line losses and enhancing system capability. Series capacitors 

introduce the problem of sub-synchronous resonance in the power system 

network. 

Shunt reactors: Shunt reactors are used in a bulk transmission system 

as a means of holding down system steady state bus voltage when the system is 

lightly loaded. 



High voltage transmission lines: High voltage transmission lines 

contribute significantly to the total shunt capacitance of the system. The 

addition of a new transmission line to a system can help in alleviating low 

voltage by providing additional reactive compensation. However, the 

construction of a new line, for this purpose alone, is not justified for economic 

reasons. 

Static var compensator (SVC): SVC provides continuous instantaneous 

changes in reactive output. SVC can be applied to perform steady state voltage 

regulation functions. However, because of their relatively high cost, most SVC 

applications are limited to situations in which quick response or independent 

phase control is required. 

Regulating transformers with under load tap changing capability: The 

system voltage control capability provided by tap changing is generally deemed 

necessary and. well worth the additional expense in transformer cost. The 

proper use of the tap-changers in conjunction with other reactive devices 

provides the system operator with considerable flexibility in maintaining 

system voltage levels. Tap changing capability can be automatically controlled 

to respond to a control signal, such as voltage signal from a connecting or 

nearby bus. 

2.5.2 Reactive power supply and voltage control 

The load voltages are related to power flow injections by the following 

equations: 
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n 

o = PGi - PLi - PTi, PTi = L ViVjYijCOS(Oi-OrSij) 
j=l 

n 

0= QGi - QLi - Qn, QTi = L ViVjYijSin(Oi-Oj-Sij) 
j=1 

The nodal difference equation for the bus powers in matrix form can be 

obtained as 

[L\P] = [ap/a~ ap/av] [~~] 
~Q aQ/aB aQ/av ~v 

The relation between the effect of change in voltage at bus i because of a 

change in reactive power at bus j can be obtained by setting L\P = O. This results 

in 

AQ - aQ * [ _ (ap )- 1 * ap * ~ v] + aQ * A v 
aa aa av av 

The above information can be used to decide the amount of reactive power 

required to control load voltages at an operating point. Lau et al. [13] used the 

sensitivity information available from tangent vector to identify the weak buses 

that need reactive power support. 

2.5.3 Effect of reactive power injection on real power transfer capability 

The real power transfer capability of a network increases with reactive 

power injection. Figure 2.4 illustrates how the change in power factor angle (<<I» 

resulting from a capacitive reactive power injection would lead to an increase 

in real power transfer capability. The critical point shifts along a trajectory as 



Tan cjl=O.25 

Tan cjl=O.50 

Power 

Figure 2.4: illustration of shift of the critical point with reactive power 
injection 

the injection is increased. Reactive power can be injected in to a power system 

network up to some maximum value, as the voltage at the bus will cross the 

Vmax limit if additional reactive power is injected. It has been observed that 

highly compensated networks can experience sudden voltage collapses. 

Indices relying on gradient information for highly compensated systems can 

be misleading and deceitful. 

There is no unique way to improve an operating condition. Some form of 

compromise is always made in selecting the operating conditions. Our 

objective in this research is to obtain minimum generation cost with regulated 

load voltages. To achieve the objective, an optimal power flow (OPF) 

formulation is required. Various classical optimization techniques that have 

been applied in the past have been reported in the literature. 



The following chapter describes the various approaches to the OPF. In 

addition, the criteria for the choice of an OPF formulation to be incorporated in 

optimal continuation power flow (OCPF) are discussed. 



3. OPTIMIZATION TECHNIQUES 

3.1 Introduction 

In this chapter, the optimum power flow (OPF) problem is described and 

various techniques that are available and used to solve it are discussed. The 

OPF problem has an objective function and is subject to various constraints. 

3.2 OPF Problem Description and Formulation 

The purpose of OPF problem is to optimize a performance function while 

at the same time enforcing the loading limits imposed by the practical system 

requirements. The performance function is also known as the objective 

function. In the OPF problem, the most commonly studied objective function is 

the reduction of the total cost of generation. Other objective functions studied 

include minimum reactive power generation, maximum loadability, 

minimum load shedding, minimum losses, and minimum generation 

emission. 

The objective function for the minimization of total cost of generation can 

be defined as 

f= L Ki (POi) 

where Ki is the production cost for the real power POi. Assuming a second 

order generation cost function, the objective function can be represented as 

NG 
f ( x, u ) = 2. c 1 i + C2 i * PGi + C3 i * ( PGi)2 

i = 1 
(3.1) 



Here Ci are cost coefficients for unit i. 

The real power system requires the optimal solution to satisfy some additional 

conditions in the form of equality constraints and inequality constraints. An 

equality constraint forces some specific relationship among the variables to be 

satisfied exactly. In a power system network, equality constraints are the 

power balance equation, which requires the net active and reactive power 

mismatch at each bus to be zero. 

G(x, u) = 0 

Here x is a vector of the state variables and u is a vector of the control variables. 

Inequality constraints impose maximum or minimum limits on the variables 

or function of variables. 

h(x, u) ~ 0 

Inequality constraints can be grouped in two classes: 

(1) Parametric inequality constraints 

(2) Functional inequality constraints 

Parametric constraints are the constraints on the control parameters, and 

functional inequality constraints are the constraints on the dependent 

variables. 

3.2.1 Parametric inequality constraints 

Generator real power constraint: The maximum active power 

generation is limited by thermal considerations and the minimum power 

generation is limited by the flame instability of the boiler: 



PGmin < PGi < PGmax 

Regulating transformer tap setting: For a two winding transformer, if 

tappings are provided on the secondary side, the transformer tap setting (t) is 

limited as 

~nststmax 

Phase shifter angles: Phase shift angle limit of the phase shifting 

transformer is given as 

ct>pmax S ct>p s ct>pmin 

Here ct>p is the phase shift angle. 

Generator voltage: Generator voltages are limited by generator reactive 

power limits: 

VGmin < VGi < VGmax 

Here VGi is the generator voltage at PV bus i. 

3.2.2 Functional inequality constraints 

Reactive power of generator: The maximum reactive power of a 

generator is limited by overheating of the rotor, and the minimum is limited by 

the stability limit of the machine. 

QGmin < QGi < QGmax 

Here QGi is the reactive power generation at generator i. 

Transmission line capacity: The flow of active and reactive power 

through the transmission line circuit is limited by the thermal capability of the 

circuit. 



Ci < Cimax 

Here Ci is current loading at line i, and Cimax is the maximum loading 

capacity of line i. However, in a voltage constrained power system network, 

power transfer on transmission lines may be limited by voltage stability limits 

rather than by thermal limits. 

Voltage of load buses: It is essential that the voltage magnitude vary 

within certain limits at various load buses for the satisfactory functioning of 

equipment connected to the load buses. 

Bus angle: Higher limit is imposed on angles at all buses for reasons of 

transient stability. 

3.3 Techniques used to Solve OPF Problem 

The OPF problem has been observed to be characterized by: 

• Large dimensionality (thousands of variables). 

• Large number of nonlinear equality constraints in the form of power flow 

mismatch equations to be satisfied exactly. 

• Few inequality constraints that are binding at the optimal solution. 

• An objective function that is highly non-linear and non-separable, as the 

objective function includes losses and the controls include various reactive 

devices. 

The application of optimization to the a.c. power flow problem was first 

formulated by Carpentier [28] in 1966. Since then, various methods have 
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emerged to solve the above OPF problem. Among them the linear 

programming, Newton's method, and the generalized reduced gradient are 

the predominant methods used in industry. Each of these methods has its own 

peculiar limitations in term of flexibility, adaptability and performance. It is 

always difficult to identify the method with the best combination of properties. 

3.3.1 Linear programming 

In general, the OPF is expressed as a nonlinear optimization problem. 

The OPF problem is solved using linear programming (LP) techniques by 

expressing the OPF as a linear optimization problem. 

Simply stated, linear programming seeks to find the optimum value of a 

linear objective function while· meeting a set of linear constraints. A non­

linear generation cost curve is approximated by a series of piece-wise linear 

curves. The OPF problem is typically subdivided or decoupled into two separate 

sub-problems: 

• Constrained Economic Dispatch 

• Constrained Var Dispatch 

In both the constrained economic dispatch and the constrained var 

dispatch, the objective function and the parametric and functional constraints 

are linearized by piece-wise curves at the base power flow solution. These 

curve are solved iteratively by various linear programming approaches such 

as the primal dual, and the single phase. 

The drawbacks of LP technique lie in the requirement that all relations 

be linear or approximated as linear, and that all variables must not be moved 



simultaneously towards the solution point. This technique cannot be used to 

solve non-separable objective functions efficiently. However, the LP technique 

can directly enforce the limits on variables and on constrained quantities that 

are linear functions of the variables. The enforcement of these limits presents 

difficulties in the classic nonlinear gradient or the Newton techniques. It has 

been observed that decoupling models are inadequate when voltage-related 

constraints impose restrictions on MW scheduling and when very high 

coupling exists in the power system network. The fast solution of the OPF by 

the linear programmjng technique using the decoupled version cannot be used 

in power system networks limited by voltage constraints. 

3.3.2 Newton method 

In the Newton method, the constrained objective function is changed to 

the unconstrained form by use of the classical optimization method of 

Lagrangian multipliers: 

L(x, u) = ftx, u)+A. T * G(x, u) (3.2) 

Here G(x, u) is a set of active equalities and A. corresponds to Lagrangian 

multipliers equal to the number of active equalities. The set of active equalities 

always includes the power flow equations for scheduled load and generation. It 

also includes the following sets of binding inequalities: 

• The equation of inequality functions constrained at their limits. 

• The minimum and maximum variable limits. 

The minimum ~f the objective function is at a point at which partial 

derivatives obtained with respect to all variables are zero, i.e, Kuhn-Tucker 



(K-T) conditions are satisfied as follows: 

(3.3.) 

(3.4) 

aL 
-=G (x, u) =0 
aA. (3.5) 

The above equations are non-linear and can only be solved by some 

iterative method. In the Newton optimal power flow approach, the above non­

linear equations are iteratively solved using Newton Raphson iterations. The 

partial derivatives are obtained for- the above equations with respect to all 

variables and set equal to zero, resulting in the following algebraic form: 

WX=b (3.6) 

(3.7) 

Here W is the Lagrangian matrix and J is the Jacobian matrix. H is the 

Hessian matrix, symmetric in nature and consisting of the second partial 

derivatives of Lagrangian objective function w.r.t to x, u, 11, and A.. X is a vector 

of unknown variables and b is a vector of mismatch at the approximated value 

of unknowns. The value of the vector X is calculated by solving the equation 3.6, 

and then substituting to obtain the updated Lagrangian matrix values and the 

vector b. This procedure is repeated until the mismatches obtained are zero. 
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Various techniques have been developed to reduce the time for the above 

computing process. The techniques include decoupling of the Hessian matrix 

and the use of sparsity in the highly sparse Hessian and Jacobian matrices. 

The set of binding constraints at the optimal point is unknown. The set 

of binding inequalities used at the start may change as the iterations proceed. 

The enforcement of different types of inequalities has different effects on the 

form of the Hessian matrix, the Jacobian matrix and the vector b. Heuristic 

methods are used to approximately predict the effects from the known behavior 

of the power system and the solution process. An algorithm that may be used 

[30] employs a main and a trial iteration approach to solve the K-T equations. 

The trial iteration is performed either by partial refactorization or by 

compensation and is generally used to identify the currently binding 

inequalities. In each trial, the effects of different combinations of constraint 

enforcement and release at a tentative solution point are examined. Various 

heuristic strategies are employed to minimize the number of trial iterations. 

Mter the trial iterations, a main iteration is performed. In the main iteration, 

the decoupled Hessian is fully factorized and the corresponding equations are 

solved. The procedure is repeated until the K-T conditions are satisfied. 

The solution of the OPF problem by Newton's method requires the 

approximate knowledge of Lagrangian multipliers. Solution of the OPF by 

Newton's method can suffer from divergence if the point guessed is far from 

the actual solution point. Identifying the correct binding inequalities is still a 

challenge in this approach to the OPF and Newton's method still suffers from 

deficiencies. 
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3.3.3 Generalized reduced gradient method 

In 1968, Dommel and Tinney [29] introduced the reduced gradient 

approach to the OPF problem. The generalized gradient method of solving the 

OPF is based on power flow solution by Newton's method, a gradient 

adjustment algorithm for obtaining the minimum and penalty functions to 

account for dependent constraints. 

In the strict sense, the Lagrange function deals only with equality 

constraints. Inequality constraints can be incorporated using the "penalty 

function" approach. The Lagrangian objective function obtained in this case is 

given by 

L(x, u) = ftx, u) + A. T * G(x, u) + penalty terms. (3.8) 

The Lagrangian multipliers are the same as in Equation 3.2 corresponding to 

the equality constraints. The penalty term corresponds to functional dependent 

constraints and are of the form: 

Olj = p/Xj - xjmax)2, whenever xj > xjmax 

Olj = pj<Xj - xjmin)2, whenever xj < xjmin 
(3.9) 

Here Pj is the penalty constant for jth state variable and Olj is the penalty 

function. The penalty function approach forces the solution to obtain an 

optimal point sufficiently close to constraints. The penalty method seems to 

have the following advantages for the functional constraints: 

• Functional constraints in the OPF generally have soft limits, i.e, the voltages 

at PQ buses should not exceed 1.0, but 1.01 is still permissible. 
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• The penalty approach does not increase the computing time. 

• The method always yields a feasible solution. 

In the penalty method approach, quadratic penalties are used as shown 

in Equation 3.9. Because the limits on voltage are more severe and more 

important, they require larger penalties. On the other hand, limits on reactive 

power generation (QG) can be less rigid, as QG can be expanded by installing 

reactive or capacitive equipment and, therefore, require smaller penalties. 

Very large penalty factors corresponding to load voltages will unload the unit, 

affecting the maximum and reducing the total combined cost. The combined 

cost is a minimum when all units are operating at an equal incremental 

combined cost. Finding the stationary point of the Lagrange function has the 

effect of optimizing the constrained problem. The augmented Lagrangian 

function is differentiated wrt to x u A. as in Equations 3.3, 3.4, 3.5. These 

equations are solved by a simple iteration scheme involving gradients, an 

approach called the steepest descent approach. A gradient of the objective 

function fix, u, A.) at any point (x, u, A.) is a vector in the direction of the largest 

local increase in the function. In order to achieve the minimum cost of the 

objective function, the solution should proceed in the direction opposite to the 

gradient of rex, u, A.), i.e, the direction of steepest descent. One step in the 

direction of the steepest descent for optimization does not yield the final 

minimum. This process is applied repeatedly until the final minimum is 

reached. 

The main steps involved in the gradient method are the following: 

• (1) Assume a set of control variables (u). 
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• (2) Find a feasible power flow solution by Newton's method. 

• (3) Once the power flow solution is obtained, Equation 3.3 is solved for A. as 

follows: 

A. = _ [ao]-T at' 
ax ax (3.9) 

Here the matrix [:] is the power flow Jacobian. Detailed formulation in 

terms of power flow equations can be found in Appendix B. The factored 

power flow Jacobian is available already from the power flow solution by 

Newton's method. The calculation of the Lagrangian multipliers amounts to 

.only one m~re repeat solution of a linear system. 

• (4) The Lagrangian multipliers obtained in step 3 are substituted in to 

Equation 3.4 to compute the gradient. The gradient vector represented by Vf 

measures the sensitivity of the objective function wrt to a change in the 

control parameters. 

(3.10) 

• (5) If the norm of the gradient vector is small, the minimum has been 

reached. 

• (6) If the norm of the gradient vector is not small, then the control 

parameters are changed in the direction of the negative gradient vector: 

[unew] = [Uold] -c~f 
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where c represents the step size. The choice of the step size is critical. A 

small value ensures convergence but increases the number of adjustment 

cycles, and too large a value for c causes oscillations around the minimum. 

Various methods for selecting the step size can be employed. In one method 

the objective function is minimized wrt to c in order to move by one step. A 

fixed variable can also be selected. 

The above steps are straightforward and do not pose any computational 

problems in formulation and computation. Once the new control parameters 

are obtained, the power flow solution is obtained corresponding to these new 

control parameters by Newton's method. Drawbacks of this approach include 

the slow convergence with the steepest descent direction and the ill 

conditioning resulting from the penalty function. The OPF formulation by this 

approach can be ill conditioning near the critical point (corresponding to 

voltage collapse) because of the singularity of the' Jacobian. This ill 

conditioning is avoided in the OePF approach by using well augmented 

Jacobian. 

In the next chapter the criteria for choosing the OPF technique in the 

optimal continuation power flow (OCPF) are discussed and the OCPF 

algorithm is developed. 
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4. OPTIMAL CONTINUATION POWER FLOW 

4.1 Introduction 

The optimal continuation power flow (OCPF) method uses the 

systematic approach of the continuation technique to provide a series of 

solutions for the increased transfer or load level. It uses the OPF technique to 

obtain each solution as an optimal point. This results in an algorithm to trace 

the optima of the equality and inequality constrained optimal power flow as a 

function of a load parameter. Available optimization techniques are used to 

find an optimal power solution for a fixed load. It is often necessary to know 

the effects of a change in load parameter on the optima solution over a wide 

range. The optimal continuation power flow approach provides a systematic 

way to trace the optima for a continuous increase in load in the given direction 

via continuation techniques. This approach also reveals the critical point 

corresponding to voltage instability. 

As a series of optimal solutions are obtained up to the critical point, the 

optimal power flow solution can be ill conditioning near the critical point. The 

simplicity of gradient based OPF technique and the use of a well-conditioned 

augmented Jacobian (obtained in the CPF) in optimal corrector iterations are 

the main decision factors in choosing the gradient-based OPF technique for 

development of the OCPF. The following section provides an overview of the 

OCPF algorithm. 



4.2 OCPF Algorithm 

4.2.1 Overview of the OCPF algorithm 

The OCPF starts at the given base load. An optimal solution is obtained 

corresponding to this base load using a gradient-based optimization technique. 

The OCPF mainly consists of the following two parts: 

Continuation process: In the continuation process, the next solution is 

first predicted in the direction of the tangent vector at increased load level. The 

predicted solution is corrected to the required solution. The output of the 

continuation process is then fed in to the optimization process. 

Optimization process: The corrected solution is iteratively optimized in 

steps via a gradient-based optimization technique. Once the optimal solution is 

obtained, the output is fed back in to the continuation process so that the next 

solution can be predicted. 

This procedure continues until a critical point corresponding to voltage 

collapse is obtained. Figure 4.1 illustrates the overview of the OCPF algorithm. 

4.2.2 Problem statement for the optimization 

The objective function to be minimized is the same as described in 

Chapter 3 (Equation 3.1): 

The objective function is subjected to the following equality constraints: 

G(x, u, J.1.) = 0 
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INPUT BASE 
LOAD DATA 

PREDICT THE NEXT 
SOLUTION AT INCREASED 

LOAD LEVEL 

CORRECT THE PREDICTED 
SOLUTION 

OPTIMIZE THE CORRECTED 
SOLUTION . 

Figure 4.1: An overview of the OCPF algorithm 

Here G(x, u, J.1) are the reformulated power flow equations after a load 

parameter J.1 has been included. The objective function is also subjected to 

following inequality constraints: 

Generator voltages and generator powers are the parameters changed during 

optimal tracking in the OCPF. The transformer tap setting is not changed. 

4.2.3 Overall solution approach 

The overall algorithm includes the following steps: 



-Step 1 

-Step 2 

2.1 

2.2 

2.3 

-StepS 

3.1 

Solve the power flow equations at the base load using 

Newton Raphson iterations. 

Perform optimization at base load. 

Obtain Lagrangian Multipliers using Equation 3.9. 

Substitute the Lagrangian multiplier in Equation 3.10 to 

obtain the gradient vector. If the norm of the gradient vector 

is small, go to Step 3; otherwise go to Step 2.3. 

Adjust the control parameters in the negative gradient 

direction. Return to Step 1. 

Select the load parameter as the continuation parameter. 

Solve for the tangent vector. If the tangent vector 

component corresponding to A. is negative, then stop; the 

cri tical point has reached. 

-Step 4 Predict the solution in the direction of the tangent vector. 

This step includes the following sub steps: 

4.1 Select the step size. 

4.2 Increase the load in the given direction. 

4.3 Obtain the total increase in load and distribute the load 

among the generators in the optimal direction calculated 

using 

PGDIFi = PGia - PGib 

where PGia = generation after the nth optimal iteration for 

a particular predictor step and PGib = generation before the 

nth optimal iteration for the same predictor step. 

PGi = PGi + II PGDIFilil * total change in load 
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4.5 Change the voltages and angles in the direction of tangent 

vector. 

-Step 5 Solve the Newton power flow equations using the 

augmented Jacobian to correct the required solution. 

-Step 6 

6.1 

6.2 

6.3 

-Step 7 

Perform optimization. 

Perform Sub-step 2.1 

Obtain the gradient vector. If the norm of the gradient 

vector is small, or the number of optimal iterations exceeds 

the maximum number of iterations, go to Step 7. 

Adjust the control parameters in the negative gradient 

direction and go to Step 5. 

Check for the load voltage violations. If the load voltages are 

violated, then reactive sources are installed with capacities 

calculated as in Section 2.5.2. There are two ways to 

continue once the value of reactive sources is calculated. 

Either solve the power flow equations at the current load 

level or without solving the power flow equations at current 

load level, predict the next solution. The later approach 

saves the cpu time while the former is more accurate. 

These two approaches have been compared for a 30-bus test 

system and numerical results obtained are presented in 

Chapter 5. 

Go to Step 5. Else go to Step 3.l. 

These steps are illustrated with the help of a block diagram in Figure 

4.2. Block A and block B are given in Figures 4.3 and 4.4 respectively. 
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Figure 4.2: Detailed block diagram of the OCPF 
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Figure 4.3: Block A 
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4.3 Features of the OCPF Algorithm 

• In the predictor-corrector process, the step size is chosen optimally on the 

basis of radius of curvature and previous step size. This prevents the the 

process from being excessively time consuming. 

• These Linearized power flow equations at an operating point are solved 

using a sparsity based algorithm to reduce the execution time, as the 

Jacobian is highly sparse in nature. 

• The Jacobian is not continuously factorized during the Newton iterations. 

If the dimension of the Jacobian changes because of the change in status of 

buses from PV to PQ or PQ to PV, then only the Jacobian is updated and 

factorized in the Newton iterations to solve the power flow equations. This 

reduces the number of factorizations of the Jacobian, resulting in a saving 

of CPU time. 

• The Lagrangian multipliers require the factorization of a power flow 

Jacobian matrix. Instead of a power flow Jacobian as used in reference [29], 

a well-conditioned augmented Jacobian is used. However the validity of 

using the same augmented Jacobian remains as long as the load 

parameter is the continuation parameter. 

The matrix on the left side is the augmented Jacobian. 

• In the optimal corrector iterations, the use of well-augmented Jacobian is 

made. 
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• Optimal solutions with respect to cost of generation are available for the 

continuous increase in the load. 

• A constant step size is chosen for changing the parameters in the negative 

gradient direction. 

• The algorithm has been applied to systems as large as 1,500 buses and is 

capable of handling even bigger systems. 

4.4 Advantages of the Proposed Algorithm 

The" advantages of the proposed algorithm include: 

• This approach uses the well-conditioned augmented Jacobian to avoid the 

ill-conditioning resulting in the OPF formulation near the critical point. 

The ill-conditioning is avoided by using the well-augmented Jacobian in 

optimal corrector iterations. Even in calculating the Lagrangian 

multipliers, the same augmented Jacobian is used. 

• The proposed algorithm has all the advantages of the gradient approach, 

which makes the overall algorithm simple. The algorithm always obtains a 

series of feasible operating points. 

• In the proposed approach, the total load added at the predictor step is 

distributed among the generators in the optimal direction. This reduces the 

number of iterations needed for optimizing the solution, which results in a 

saving of execution time. 

In the next chapter, the OCPF algorithm is applied to real power system 

networks, and the results obtained are discussed. 
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5. NUMERICAL RESULTS 

5.1 Introduction 

Three power system networks are used to test the validity of the OCPF 

algorithm as explained in Chapter 5. The system networks used are real and 

reasonably sized. Because of the unavailability of cost coefficients for the 

generators, fictitious data have been used for economic modeling. 

5.2 Test Systems and Results 

IEEE New England test system: In this system that is commonly used in 

voltage stability research, there are a total of 9 generators and 20 PQ buses. Bus 

30 is the slack bus. Table 5.1 gives the cost coefficients that are used in 

modeling generators cost. The system is shown in Figure 5.1. 

Figure 5.2 compares the cost of generation for the CPF and the OCPF 

(without shunt reactive power injection) for a continuous increase in load. It is 

observed that, during optimal tracking, the total cost decreases greatly during 

the first few steps and then decreases only slightly and even increases later on. 

The cost of generation is always lower for the OCPF than for the CPF. 

Figure 5.3 and Figure 5.4 plots the generator bus and slack bus real 

power generation levels for the CPF and the OCPF (without shunt reactive 

power injection) respectively. Figure 5.3 illustrates how the generation is 

increased in the basic CPF; the generation increase is along straight lines, 

with the slope higher for the higher base generation. Figure 5.4 illustrates the 

generation increase in the OCPF (without shunt reactive power injection); the 
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generation increase in the OCPF corresponding to an increase in load that is 

not along straight lines. Figure 5.4 shows that generator 6 with the minimum 

generation cost (seen from Table 5.1) has the highest generation level. The 

change in the slack bus generation level in the OCPF run is large as compared 

to the CPF. 

Table 5.1: Cost coefficient data for the 30-bus test system 

units coefficient Cli coefficient C2i coefficient C3i 

2 59.0 340.0 41.0 

6 39.0 300.0 32.0 

10 39.0 312.0 48.0 

19 49.0 382.0 63.0 

ID 58.0 356.0 48.0 

22 40.0 300.0 43.0 

Z3 58.0 345.0 47.0 

25 38.0 304.0 42.0 

2:} 58.0 360.0 58.0 

ro 55.0 351.0 45.0 

Figure 5.5 compares the voltage profile for a bus for the CPF and the OCPF 

(without shunt reactive power injection). Bus 24 is observed to be the most 

critical bus (maximum drop in voltage magnitude corresponding to the 

change in loading parameter~) during the CPF run according to information 
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Figure 5.4: Pgen versus the total load for the 30-bus system for the OCPF 

obtained via the tangent vector. This bus seemed to be most suitable for 

comparison of voltage profile for the CPF and the OCPF. At a load value of 

approximately 9,500 MW, the OCPF boosts the voltage at bus 24. This boost may 

be because of the voltage interaction between different buses. The voltage 

magnitude at one bus may affect the voltage magnitude at other buses. The 

CPF as well as the OCPF curves have been traced in this Figure up to the 

critical point. However, in actual operating conditions, once the load voltages 

fall below acceptable limits, load voltages have to be regulated. If system 

conditions have reached the point at which voltage regulation is not feasible, 

further increase in the transfer of power is not allowed. Figure 5.5 shows the 

voltage boost obtained at various loading points during optimal tracking in the 



OCPF. If 0.95 p.u. is considered to be the minimum acceptable limit for the 

load voltages, then in the CPF total load transfer capability of the system is 

10,800 MW, and in the OCPF it is 11,080 MW. The transfer capability of 

network increases by approximately 280 MW with the OCPF. This increase in 

MW is because of the increased generator voltage magnitude during optimal 

tracking, which results in a better load voltage profile. 

Figure 5.6 compares the cost of generation for the CPF and the OCPF 

(with shunt reactive power injection). The costs of the reactive sources is not 

included in the graphs. The CAPOCPF represents the OCPF with shunt 

reactive power injection. Figure 5.7 compares the voltage profile for the CPF 

and the CAPOCPF. It illustrates how the voltage is boosted via reactive sources 

when the load level is at a value of approximately 11,300 MW. In Figure 5.7 

after the values of shunt reactors is calculated in CAPOCPF, the next solution 

is predicted without updating the voltages and the Jacobian. Figure 5.8 plots 

the voltage levels for the CPF and the CAPOCPF for the case; where the 

Jacobian and the load voltages are updated after the values of shunt reactors is 

obtained by performing Newton iterations, at the same load level in the 

CAPOCPF. Results obtained with updating at the same load level are more 

accurate. However, updating increases the computing time. Figure 5.7 

illustrates the increase in transfer capability of the network via shunt reactive 

power injection by 2,020 MW. This increase results from the local reactive load 

being now supplied by the shunt reactive sources installed at the load buses. 

This results in decreased effective reactive load and also reduced reactive 

losses. Figure 5.9 plots the reactive losses for the CPF, OCPF, and CAPOCPF. 

Table 5.2 gives the transfer capability information for- the CPF, OCPF, and 

CAPOCPF. 
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Table 5.2: The CPF and the OCPF results for the 30-bus system 

Method Maximum system real 
power transfer in p.u. 

CPF 108.0 
OCPF without reactive 

power injection 110.8 
OCPF with reactive 

power injection 128.2 
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162 reduced Iowa system: This reduced model of an actual Iowa power 

system is generally used for transient stability studies at Iowa State 

University. This model has now become the IEEE test system for stability 

studies. There are a total of 17 generators (PV buses) and 144 PQ buses in the 

system. 

Figure 5.10 compares the total cost of generation for the CPF and the 

OCPF (without reactive power injection). It illustrates how the generation cost 

decreases during optimal tracking. The cost decreases greatly in the first few 

steps, but later the change slows and is even reversed. The slower rate of 

decrease in cost in the next few steps can be explained by the generation being 

increased in optimal direction corresponding to the load increase. 
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During the CPF run, bus 61 is observed to be one of the five most critical buses 

in this system. The voltage at bus 61 is used to compare the voltage profile for 

the CPF and the OCPF (without reactive power injection) in Figure 5.11. The 

CPF as well as the OCPF curves have been traced in this Figure up to the 

critical point. If 0.95 p.u. is considered to be the minimum acceptable limit for 

load voltages, then in the CPF total load capability of the system is 16,200 MW 

and in the OCPF, it is 17,700 MW. 

Figure 5.12 compares the total cost of generation for the CPF and the 

CAPOCPF (the OCPF with shunt reactive power injection). The cost of 

additional shunt reactors installed at various load buses is not considered in 

the total cost of generation. The cost of generation for the CAPOCPF is always 

lower than the cost obtained in the CPF for a continuous increase in load; 
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Figure 5.13 compares the voltage profile obtained for the CPF and the 

CAPOCPF at load bus 61. The total increase in load from the base case up to 

the critical point is 3,000 MW for the highly stressed system in the CPF. The 

load voltages fall rapidly as the load is increased in the CPF. In the CAPOCPF 

efforts are made to control the load voltages once they fall below the acceptable 

limit via generator reactive power and reactive shunt compensation. The total 

power transfer capability is increased by 4,980 MW via the CAPOCPF. Figure 

5.14 compares the reactive losses for the CPF, OCPF, and CAPOCPF. Reduced 

reactive losses are obtained with reactive power injection in CAPOCPF for this 

system. This results in from the fact that in CAPOCPF part of the local 

reactive load is supplied by shunt reactors. This leads to reduced effective 

reactive load and there by reduced reactive losses. 
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Table 5.3: The CPF and the OCPF results for the 162-bus system 

Method Maximum system real 
power transfer in p.u. 

CPF 162.0 
OCPF without reactive 

power injection 177.0 
OCPF with reactive 

power injection 211.8 

Table 5.3 gives the transfer capability information for the CPF, OCPF, 

and CAPOCPF for this system. 

1500 system power system network: Figure 5.15 compares the total cost 

of generation for the CPF and the OCPF. The total increase in load from the 

base case before the voltage collapse occurs is approximately 4,520 MW for this 

highly stressed network. Reduced cost of generation is obtained for a 

continuous increase in load via the OCPF algorithm. 

Figure 5.16 compares the voltage profile at a bus for this system for the 

CPF and the OCPF. During the CPF run, bus 409 is observed to be the most 

critical bus for this system near the critical point. The voltage at bus 409 is 

used to compare the voltage profile for the CPF and the OCPF (without reactive 

power injection). If 0.95 p.u. is considered to be the minimum acceptable limit 

for load voltages, then in the CPF total load capability of the system is 74,520 

MW and in the OCPF, it is 76,520 MW. 

Figure 5.17 compares the total cost of generation for the CPF and the 

CAPOCPF (the OCPF with shunt reactive power injection). The cost of 

additional shunt reactors installed at various load buses is not considered in 

the total cost of generation. The cost of generation for the CAPOCPF is always 

lower then the cost obtained in the CPF for a continuous increase in load. 
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Figure 5.18 compares the voltage profile obtained for the CPF and the 

CAPOCPF at load bus 409. The load voltages fall rapidly as load is increased in 

the CPF. In the CAPOCPF efforts are made to control the load voltages, once 

they fall below the acceptable limit via generator reactive power and reactive 

shunt compensation. Total power transfer capability is increased by 3,770 MW 

via CAPOCPF for this system. Table 5.4 compares the transfer capability of 

network for the CPF and the OCPF. Figure 5.19 compares the reactive losses 

for the CPF, OCPF, and CAPOCPF for this network and illustrates the reduced 

reactive losses obtained with reactive power injection. 
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Table 5.4: The CPF and the OCPF results for the 1500-bus system 

Method System real power 
transfer in p. u. 

CPF 745.2 
OCPF without reactive 

power injection 765.2 
OCPF with reactive 

power injection 782.9 

Table 5.5 gives the value of capacitive and inductive reactors that are 

installed on the load buses in the CAPOCPF (OCPF with shunt reactive power 

injection) run to control the load voltages for the three system networks. 

Table 5.6 shows the cpu time for the CPF, OCPF, and CAPOCPF on Sun 

Sparc stations for the above 3 power system network. The cpu time is not just 

for 1 optimal solution but for a series of optimal solutions up to the critical 

point is reached. 

Table 5.5: Values of reactive sources installed at load buses 

Total value of capacitive Total value of inductive 
Type of system sources installed p.u. sources installed p. u. 

30-bus 10.89 1.82 

162-bus 40.36 24.20 

1500-bus 27.96 19.55 

Table 5.6: Compares the execution time for the CPF, OCPF, and CAPOCPF 

Type of system CPF cpu time (s) OCPF _cpu time (s) CAPOCPF cpu time (s) 

30-bus 2.4 14.9 29.7 

162-bus 12.9 183.3 343.3 

1500-bus 1,444.8 5,131.0 8,348.0 



6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

6.1 Conclusions 

System Planners and operators are seeking means to deal effectively 

with the voltage stability problem. They require analytical tools that are 

capable of 

• Quantifying accurately the voltage stability margins 

• Predicting voltage collapse in complex networks 

• Defining power transfer limit 

• Identifying voltage weak points and areas susceptible to voltage 

instability 

• Determining critical voltage levels and contingencies 

• Identifying key contributing factors and sensitivities affecting voltage 

instability 

The CPF, with the different versions developed at Iowa State University, 

serves a portion of the needs of the power industry and has been used 

successfully to study the phenomenon of voltage instability in a group of 

complex networks. The CPF starts at a known power flow solution and then, 

via predictor and corrector schemes traces the solution curve until a critical 

point is reached. The CPF avoids the ill-conditioning of the Jacobian by using a 

well-conditioned augmented J acohian. 

This research attempts to use the present CPF algorithm and couple it 

with an OPF technique to develop the OCPF. The resulting OCPF provides a 
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new solution methodology for the optimal power flow problem for a continuous 

increase in load via a locally parametrized continuation method. This new 

methodology is flexible enough to use in calculating the sensitivities as 

proposed [40] and can be used to calculate the change in cost as the parameters 

are varied. With the OCPF, the cost of generation is minimized and voltages 

are maintained for a series of power flow solutions. In the OCPF, available 

reactive power is properly used and voltage collapse is delayed in terms of total 

active power transfer, even without injecting any reactive sources. 

The calculation of an optimal solution near the critical point may be ill­

conditioned. The proposed method avoids the ill conditioning by using the well­

conditioned augmented Jacobian during the optimal corrector iterations. This 

OCPF methodology seems to work rapidly as the Jacobian is not updated 

continuously in the corrector iterations. 

The OCPF methodology seems to be simple and flexible and has been 

found to work well when applied to real systems as large as 1,500 buses. 

6.2 Suggestions for Future Work 

This research focussed basically on the development of an OCPF 

algorithm. to trace the optima of power flow solutions for a continuous increase 

in load via continuation method. Although the basic development is complete, 

many enhancements could be added and many features may be further 

investigated. These include: 

• In the OCPF, the objective function used is the minimization of total cost of 

generation subjected to equality and inequality constraints. The cost of any 



additional reactive sources installed at various load buses is not taken into 

account. Optimizing the cost of generation does not result in the reduced 

transmission losses as observed for the 3 test cases. However, once the real 

powers are scheduled, the voltages and reactive powers can be scheduled to 

reduce the transmission losses. Implementation of goal programmjng in the 

OCPF is necessary in the future to study the other available objective function 

simultaneously and to determine the affect of objective functions on each 

other. 

• In the future, the Newton OPF technique is needed to be implemented in the 

OCPF to compare the gradient-based OCPF formulation in terms of speed 

and robustness. 

• The inclusion of phase shift transformers in the CPF should be explored to 

achieve maximum real power transfer. 

• Ways that could decrease the cpu time required to execute the OePF should 

be investigated. 

• In the 1993 IEEE winter power meeting, the voltage stability working group 

committee listed the following techniques to mitigate the voltage stability 

problems: 

Must run generator: operate less economical generators to change the 

power flows and, thus, reduce the reactive demand when construction of new 

lines is delayed. 

Series capacitors: use series capacitors to effectively shorten the 

electrical length of line and thereby reduce the reactive losses. As a result, 
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more reactive power can be delivered to the end of the line experiencing a 

reactive shortage. 

Shunt capacitors: Supply the reactive power using shunt capacitors 

locally to reduce the reactive consumption across lines. 

Load shedding: Use load shedding to reduce the reactive demand in 

avoiding voltage collapse. 

Lower power factor generators: In areas where new generation is close 

to a reactive shortage or where the demand of large reactive reserve is 

occasional, low power factor generators may be helpful in avoiding voltage 

collapse . 

. Generator reactive overload capability: Use a generator's overload 

capability and exciters to delay voltage collapse until operators can vary the 

dispatch to reduce the reactive power. 

A systematic approach that can utilize the above techniques in planning 

and operation does not exist. A detailed study is required to determine the most 

economic and effective means of mitigating the voltage collapse. 

Implementation of these schemes can be explored in the CPF. Use of FACT 

(Flexible A.C. Transmission) devices in the CPF is under investigation. 
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APPENDIX A: FORMULATION OF POWER FLOW EQUATIONS IN CPF 

Let Jl represent the load parameter such that 

o S Jl S Jlcritical 

Here Jl = 0 corresponds to the base load and Jlcritical corresponds to the critical 

point. It is desired to incorporate Jl into the following power flow equations: 

n 

0= PGi - PLi - PTi, PTi = L ViVjYijCos(Bi-Br8ij) 
j=l 

n 

0= QGi - Qu - QTi, QTi = L ViVjYijSin(oi-Oj-8ij) 
j=1 

Here i is index for the ith bus and the subscripts L, G, T denote load, 

generation, and injection, respectively. Vi and Vj represent the voltages at 

buses i and j and YijL8ij is the (i, j)th element of Y bus. 

Terms PLi and QLi are modified to simulate the load change. 

Modification consists of breaking each term into two components. One 

component corresponds to the base load; the other corresponds to change in the 

load brought about by a change in the load parameter Jl. 

PLi = PLio x (1 + Jl x pmul1i) 

QLi = QLio x (1 + Jl x qmu11i) 

Here PLio, QLio are original active and reactive load at bus i; pmu11i, qmu11i 

represents the direction of the load increase. The active power generation is 

modified corresponding to increase in load by 

P . = P . x (1+ total change in load ) 
GI GIO total base load generation 
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If these new expressions are substituted into the power flow equations, this 

results in 

total change in load o = PGio x (1 + T tal bId .) - PLio x (1+ Il x pmul1;j) - PTi o ase oa generation 

o = QGio - QLio x (1 + Il x qmul~) - QTi 

The values of pmultj and qmultj can be uniquely specified for each bus in the 

system. 
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APPENDIX B: GRADIENT BASED OPF FORMULATION 

In the basic load flow problem, given load demands at various load buses and 

generation levels at specified supply voltages are assumed. It is desired to 

obtain voltage profile, real and reactive flows on transmission lines, phase 

angles, line currents, line losses and other related steady state variables. The 

power flow equations are given by: 

n 

0= PGi - PLi - Pn, Pn = L, ViVjYijCOS(ai-aj-8ij) 
j=l 

n 

o = Qci - 'ill -Qn, Qn = L, ViVjYijSin(ai-ar 8ij) 
j=l 

(Bl) 

The above nonlinear power flow equations are solved by the Newton Raphson 

iterative method. 

Here ~8 and ~v/v are the vector of the voltage angle and the relative voltage 

magnitude correction. H, N, J, L are sub-matrices of the Jacobian matrix. ~P 

and ~Q are the vectors of the residuals given by: 

@ = PGi - PLi - PTi 

~Q = Qci - QLi - Qn 

~e and ~v/v are calculated iteratively and substituted in Equation (Bl) until the 

norm of ~P, ~Q residuals obtained is sufficiently small. 
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Hkm = aPk(V,e), Nkm = aPk(V,e) x Vm, Jkm = aQk(V,e), Lkm = aQk(V,e) x vm 

aem dvm aem dvm 

Once the power flow equations are solved, the control parameters are changed 

in the optimal direction. The Lagrangian multipliers are calculated as 

[~ ~l [ ~~ = - z [~:] - [ ;~~~~e;I:/~v ] 
roj are the penalty terms, AP and Aq are the Lagrangian multipliers 

corresponding to the real and reactive power equality constraints, and z = 

After the Lagrangian multipliers are calculated, the gradient vector with 

respect to all control parameters is computed. The components are as follows: 

Generation control 

-.dL = ~ + L aO>j(PGl) 
dPGl aPGl aPGl 

df = aKi + l: aOlj(PGi) - AP i 
dPGi aPGi aPGi 

Generator voltage control 

aQ a (00 (v o
) 

+ 2. AQ m-I!lvo
} + L J 1 

m =PQ nodes dvi 1 av i 
adjacent to i 

Once the gradient vector is obtained, the direction of search is obtained in 

negative direction of the gradient vector. 



78 

{
o if af/du < 0 and ui= uimax } 

DSi = 0 if af/du > 0 and ui= uimin 

-Of/aUi else 

where u is any control parameter. Control parameters are adjusted as 

fUimax if U i-Ci * af/dup Uimax) 
Ui = \ uimin if U i-Ci * af/dui< uimin 

Ui- ciaf/dui else 

Here c is a scalar and represents the step size. 


