A digital experiment monitor

for the PDP-12 computer
by
John Joseph Jackley
A Thesis Submitted to the
Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

MASTER OF SCIENCE

Major Subjects: Biomedical Engineering
Veterinary Physiology

Approved:

Signatures have been redacted for privacy

Towa State University
Ames, Iowa

1971

i

TABLE OF CONTENTS

r\(-4|§:>
c Wy

ﬂ\

Oy

D

N

|

INTRODUCT ION
ANALYSIS
Statement of the Problem
Computer Capabilities
Hardware Limitations
Program Requirements
Logical structure
Scanning cycles
Parameter priorities and processing delays
Time management
Parameter processing tasks
CPU scheduling
Input/output operations
Interrupts and traps

Data files
Program modules

PROGRAM DESIGN
Block Organization and Sequence of Operation
Memory Allocation
Supervisor Block
Idler Routine
Clock Routine
Interrupt Time Test Routine
Timer Set Routine
Timer Test Routine
Cross Field Call Routine
Scheduler Block

Monitor Control Block

Monitor Control Loop
Interpreter

724526

Page

co

O O v o

11
13
14
15
16
17
17
24
24
25
25
25
26
26
26
27
29

31
33

s 55 4

Monitor Service Routine Block
Interrupt and Trap Block
Message Processing Block
PROGRAM TESTING
DISCUSSION
BIBLIOGRAPHY
ACKNOWLEDGMENTS
APPENDIX A
Test Output
APPENDIX B
Table 2. Block Summary
APPENDIX C

Program Listing

Page
33
37
37
41
G
46
47
48
48
52
52
55

55

INTRODUCTION

Biological investigations offer many possibilities for the use of
on-line computers in monitoring and control. Progress in an experiment
is often interrupted by the need to stop and evaluate the data obtained
from each phase of an experiment and may involve days of delay since the
data must be tabulated by hand and evaluated either by hand or by a remote
computer. This can result in the necessity to dismantle all or part of
the experimental setup and it discourages experiments in which data must
be collected continuously over a period of days or weeks. Furthermore,
these difficulties can make certain types of experiments completely
infeasible.

An example is provided by the methods attempted for continuous cell
culture in a controlled physiological environment. A major difficulty in
the use of in vitro culture chambers is the maintenance of normal values
for the physiological parameters of the growth medium. One method, batch
cultures, requires that the cells be transferred serially to fresh medium
after several days of growth. Between transfers the medium becomes
increasingly degraded since there are no control mechanisms present
analogous to those that exist in vivo.

In 1962 a continuous culture apparatus was devised by Quinn (4) in
which commercial analog control devices were used to control the feeding
rate, pH, oxidation-reduction potential, stirring rate, salinity and
volume of the culture. However, automatic recording of the parameter

changes occurring during the culture growth was not available with this

apparatus. Improvements in the system, referred to as the Ecoanalyzer,
were described by Zimmerli (10) and included a cell counter for determin-
ing the population density and a digital voltmeter and card punch for
recording the chemical and physical properties of the culture. A pilot
plant, the Trophocell, for the culture of lymphocytoid cells has been
described by Vosseller and Moore (6). It is a large (1000 liters) appara-
tus, in which four environmental parameters are controlled and five
variables are monitored by the instrumentation.

An Ecoanalyzer, to be monitored and controlled by an on-line digital
computer, has been proposed for the study of the primary immune response
of lymphocytes. Normal growth of the lymphocytes over a period of time
sufficient for studying the immune response requires that the physiological
parameters of the growth medium be maintained within relatively narrow
limits. The present design specifies that at least eight experimental
parameters are to be controlled. Laboratory data have provided initial
values for the parameter limits; however, these values will require
modification during the course of experimentation. In addition, there
will be interaction between at least some of the parameters. Therefore,
for continuous cell growth a relatively sophisticated control mechanism
which includes the controller, the transducers and the actuators will be
required. An on-line digital computer, the PDP-12 manufactured by
Digital Equipment Corporation, has been selected as the controller for the
Ecoanalyzer.

As illustrated by the Ecoanalyzer, two functions are to be provided

by the instrumentation: data acquisition and parameter control. Automatic

data acquisition alone is sufficient for many biological experiments;
however, control without human intervention is necessary if the experiment
involves many varying parameters to which manual response would be inade-
quate. Analog computers have been used to implement data acquisition and
control, but direct digital control is increasingly being used because of
its advantages which include:

1. Representation of values by more significant digits sincc
an analog computer is limited to two or three significant digits while a
digital computer, by multiple precision arithmetic, can provide as many
as required

2. Implementation by numerical methods of mathematical functions
which are physically unrealizable, e.g. cannot be implemented by an analog
device

3. Easier implementation and modification of complex logical and
mathematical algorithms via the computer program

4, Measurement and analysis of data by statistical and numerical
methods while the experiment is in progress, thus eliminating the need
for intermediate storage of data in analog form

5. Immediate presentation of data and results of analysis in
alphanumeriec form

6. Selection and logging by program control of only those values
that are significant, thus reducing the quantity of data which must be
saved

7. Lower cost for a digital "minicomputer" than for an analog com-

puter with comparable capabilities,

When the controlled process or the control strategy cannot be described
by a set of equations, the capability of a digital computer to selectively
store past information is particularly important. As the controller, the
computer can be programmed to search both for the "solution" which has been
defined as the object of the experiment and for an optimal control strategy
and adapt it to a changing enviromment. To accomplish the search and
adaptation such methods as optimum seeking techniques, dynamic programming
and mathematical filters can be incorporated into the control program.

Although the computer can be thought of as the controller, it is the
computer program and the control scheme or algorithm contained within the
program that determines the performance and effectiveness of the computer
as a controller. The subject of this thesis is the design and implemen-—
tation of a computer program for on-line, real-time monitoring and control
of a biological experiment using the PDP-12 computer. A model for deter-
mining the requirements of the program is provided by the Ecoanalyzer,
but the design is not based on any particular control algorithm. Rather,
an objective of the design is to provide a program structure which can
be modified to accommodate changes (such as with the control algorithm) in
a given experiment, and to accommodate experiments with other types of

biological systems.

ANALYSIS

Statement of the Problem

Major computer tasks - acquiring and analyzing data, and providing
command signals for the peripheral hardware - are to be combined in a
program such that the computer becomes an element in a feedback loop of
the entire system composed of the experiment, interfacing hardware and
computer. Thus, for the initial continuous cell culture experiments, the
computer is to maintain environmental parameters at specified levels by
obtaining data samples from the culture chamber and initiating corrective
action if the parameters deviate from their preset levels.

Program design is determined by the capabilities and limitations of
both the computer and the peripheral hardware as well as by the require-
ments of the experiment. Since the peripheral hardware and the experiment
will require modification as experience is gained, the program should be
designed so that it can be easily adapted to these modifications. From
a practical standpoint, the program must reflect a compromise determined
by the speed of the central processor, the size of the memory, the limita-
tions of the peripheral hardware, and the generality of the design.
Limitations on program efficiency are imposed primarily by the size of the
memory and by the response times of the peripheral hardware, input-output
(I/0) devices and tape units. Within these limitations, the program is
intended to be as general as is practical.

Successful control of the cell culture requires investigation of

various sampling sequences and control algorithms. More effective use of

the computer results if the program design establishes rules or conventions

for making these changes.
Computer Capabilities

Digital Equipment Corporation's PDP-12 has a 4096 word, 12 bit, ran-
dom access memory and can be programmed with both LINC and PDP-8 symbolic
assembly languages using the DIAL editor and assembler (3). Both languages
may be used in the same program. In LINC mode the memory is organized as
four, 1024 word segments and, of these four, a single memory addressing
instruction can access two which are referred to as the Instruction Field
and the Data Field. These two fields can be assigned to any of the four
segments by the field setting instructions. In PDP-8 mode the memory is
organized as thirty twe, 128 word pages. By indirect addressing, a
memory addressing instruction can access any word in the memory.

Communication between the central processing unit (CPU) and the opera-
tor is provided by a Teletypel, CRT display screen and a variety of console
switches. Two tape units provide auxiliary storage. FEight A/D convertors,
six relays and an I/O bus line provide the interface between the CPU and
the peripheral hardware. Additional features of the CPU include an exter-
nal program interrupt and an illegal instruction trap. A 12 bit digital
clock, scaled in tenths of seconds, has been attached via the I/0 bus and

it will trigger an external program interrupt when its register contains

1
Trademark of the Teletype Corporation, 5555 Touhv Avenue, Skokie,
Illinois.

the number '"2260 octal'. The clock register is read and reset by the CPU
via program instructions, but it cannot be reset to any value other than

zZero.
Hardware Limitations

As opposed to I/O devices which provide communication between the
computer operator and the CPU, I/0 data and control terminals that inter-
face the experiment to the computer are referred to as ''peripheral hard-
ware'" or "peripheral data terminals'. Hardware requirements will depend
on the type of experiment being performed. Also, for a particular experi-
ment changes in the design of the peripheral hardware may be required.
Therefore, an objective of the program design is to allow for future
hardware requirements and to avoid placing any restrictions on the type
of hardware used.

Characteristics of the terminals are illustrated by the apparatus of
the cell culture system; its actuators are two-state (on-off) devices
and its sensors transmit a range of voltage values to the A/D convertors.
Particular devices include the temperature sensing thermistor, ion specific
electrodes, magnetic stirring assembly, titrators and the heater. Response
times vary from nearly instantaneous for the temperature readings to many
seconds for the ion concentration readings. A common amplifier is used
for all of the electrodes and, as a result, a "settling period" is re-
quired after an electrode is switched to the amplifier before a reading

can be taken.

Program Requirements

Logical structure

The real-time nature of the problem requires that the program have
both a data dependent and a time dependent logical structure. Since the
experiment, a biological system, cannot usually be fully or even partially
described by a set of deterministic functions, the exact sequence of
computer processing cannot be programmed. Rather, the computer must be
able to respond to both the acquired data and to the time. Therefore,
the program must be constructed from a set of rules which, based on the
data and the time, govern the processing sequence of the computer.

For instance, when a physical parameter such as the temperature is to
be kept above a given level by the computer, the decision to turn the

"on" depends on the temperature value sampled by the computer. If

heater
the "on" time for the heater cannot be determined via a formula or a table
of values, the correction can be made iteratively by alternately pulsing
the heater and testing the temperature and therefore, the program sequence
is determined by successive data samples. However, each pulse may intro-
duce temperature transients and a time lag may be required before a valid
sample value, a steady state value, can be obtained. 1In effect, unless
these transients can be determined and the steady state value predicted,

the response time of the computer controller must be slowed to match the

reaction rates of the experimental process.

Scanning czcles

To maintain parameters at specified levels, each must be scanned
periodically and corrected if it is outside an acceptable range of wvalues;
thus, requiring for each parameter a record kept of the time elapsed since
it was last scanned. When the scanning cycle time for a parameter has
been reached, the processing sequence (also referred to as a processing

task) for that parameter should be initiated.

Parameter priorities and processing delays

It is desirable to assign relative priorities to the various para-
meters such that, if two or more are ready for processing at the same time,
the most important one is processed first. A further refinement is neces-
sary to allow a partially processed parameter to be interrupted in favor
of a higher priority parameter. If a processing sequence requires a time
delay because of physical or chemical characteristics of the parameters,
performance of the system will be improved if processing of a lower
priority parameter is initiated during the delay; and when the delay is
complete, the higher priority processing should be restarted. Figure 1
illustrates the decisions involved in using priorities, delays and scan-

ning cyclé times.

Time management

To implement scanning cycles and time delays, the hardware clock must
be read since it cannot be set to initiate an external interrupt at a
specified time. Thus, a clock routine is required for reading and reset-

ting the clock to zero and for updating necessary time records. If the

10

+ Check clock

" Time
for new or

no
delayed task?

Put task on work list l

no

yves

on work list

Start highest priority task

ﬂ_ Continue processing task 4J

%

I Check clock '

Put new

or delaye ’

el Ony ves for new or
lelayed task?

work listi

of new tas
> priority of
urrent task?

ves

Put current task on work list

%

Initiate the new or delaved
task

yes

urrent

task com-
prlete?

Current
task require a
time delay?

‘_

Figure 1. Task scheduling decisions

%L

clock routine is designed so that it can be called by any routine in the
program, it can then be used by the main program for scheduling and for
servicing clock interrupts; and it can also be called upon by subroutines
added to the program to furnish them with an updated record of the time.
It is useful to use the clock to insert short pauses of specified lengths
into a processing sequence without that sequence being interrupted. As
illustrated later, a pause may be necessary if both processing tasks

require the use of the same peripheral hardware device.

Parameter processing tasks

A method is required for specifying the parameter processing and
control tasks and incorporating them into the program such that they can
be contained within the memory space available and easily modified. Use
of the tape units to store subroutines can help sclve the space problem
and will allow the size and capabilities of the processing programs to be
expanded beyond the limits imposed by the main memory. Implementing the
parameter priority interrupt requires that clock checks must be inserted
in the parameter processing sequences and also that information necessary
for continuing the interrupted sequence not be destroyed while the sequence
is delayed. To satisfy these requirements a monitor program is required
which will establish rules for programming the processing programs and
which will establish the conventions for calling subroutines. Clock
checks can be performed by the monitor, thus relieving the processing

programs of this requirement.

12

CPU scheduling

The programming problem can be described as one of 'scheduling' the
work of the computer according to a set of priorities such that the basic
time requirements of the experiment are satisfied. An objective of the
scheduling rules should be to prevent any single computer task from ex-
cessively slowing the operation of the entire system. Such a situation can
arise when a parameter processing sequence initiates a message, requires a
data file from the magnetic tape, or must wait for an experimental para-
meter to come to equilibrium. In general, it can occur with any data
transfer between the CPU and an external device because of the latter's
slow response during which the CPU would be idle. Response times can vary
from fractions of a second to minutes, such as with the ion electrodes, as
compared with the few microseconds required by the CPU to execute one
instruction.

An illustration is provided by the Ecoanalyzer, which at present uses
one meter as an amplifier for six ion specific electrodes. Fach electrode
may require up to one minute of "settling" time after it is switched into
the meter and before a sample value can be obtained. To improve the effi-
ciency of the system, the computer should be scheduled for some other func-
tion during this idle period. However, the other function cannot be one of
the other ion measurements since they all use a common device, the meter.

Thus, a basic objective of the program design is to interleave the
time lags inherent in the peripheral devices and experimental process.

For instance, during a parameter processing cycle, data is generated that

may need to be stored on tape or logged on the Teletype. If these

13

operations can be queued, they can then be completed as time allows
during the idle periods. Or, an alternate, but more complex solution is
to make use of the tape and Teletype interrupts so that these operations
can be executed in parallel with the CPU's execution of the parameter

processing tasks.

Input/output operations

In general, input/output operations refer to all information transfers
between the memory and peripheral devices. Characteristics and require-
ments of most of these operations will specifically depend on the experi-
ment being performed and on the type of data and message terminals being
used. However, messages from the computer concerning data, conditions of
the experiment and operation of the program will be required for most
experiments. Additional considerations in programming for I/0 operations
are memory space requirements, the real-time required for performing the
operations and the time and difficulty involved in adding or changing
specific I/0 requests in the program.

A message routine which establishes uniform rules for writing messages
and which can be used to implement all message requests greatly simplifies
the mechanics of inserting messages into the program. Since the computer
has both a CRT display and a Teletype, a message request should have the
option of specifying which output device is to be used. As mentioned
previously, system efficiency requires that the message processor queue
messages for output on a time available basis. However, for testing and

debugging the program, trace or diagnostice messages are needed at the

14

point in time at which they are requested in the program. Therefore, the
routine should provide the option for specifying either immediate or
queued output of a message. Also, it should establish rules for specify-
ing the message format and the message variables thus conserving memory
space since a single format can then be used for two or more different
messages, each with its own unique list of variables.

In some experiments it may be necessary for the experimenter to make
modifications of the program instructions and tables or to enter data
while the system is in operation. Making entries from the console in
response to a request displayed on the screen is the simplest way to
implement this function. An alternate method is to halt the CPU and
toggle the information into the specific memory locations provided for it;
however, to avoid disrupting the normal operation of the program, this
must be done while the computer is "idle" and requires a signal from the
program indicating that it is safe to stop the CPU. A more elaborate
solution involves using the Teletype keyboard thus requiring a specific

routine to handle the keyboard interrupt.

Interrupts and traps

External program interrupts, such as the keyboard interrupt, and
instruction traps can occur either by design or as the result of an error.
A general interrupt and trap processor can be used to provide the register
saving and restoring capability and to disable and enable the interrupt
mechanism. If two or more interrupts can occur simultaneously, the

interrupt processor must determine, on the basis of priorities, which to

15

service first.

A specific routine is required to service a particular interrupt (or
trap) and, if the routine is used elsewhere such that it can be interrupted
(or trapped), it must be designed as a reentrant routine. Types of
interrupts that need to be considered are those caused by the clock,
Teletype, tape units and power failure. Design of the general interrupt
processor should allow for adding or removing specific interrupts as

required.

Data files

Because structures of data records and files are specific to the
particular application and because of core limitations, a general file
structure is not defined. However, provision should be made for incor-
porating data files into the program, and memory space should be set
aside for data records. In particular, space is necessary for "volatile"
files which must be accessed quickly and easily with little or no search-
ing. These include the records of the recent sample data and control
values which should be readily available for use by the parameter proces-
sing and control routines.

At the other extreme are records that are to be filed on tape and
processed off-line. Space is necessary in the memory for a buffer area
in which records can be assembled as a block for tape transfer. Pro-
viding two buffers, which are filled alternately, eliminates the need for
the computer to wait until the transfer is complete before storing more

records in the buffer area.

16

Between these two extremes are the records which must be filed in
buffer areas or on tape and later accessed on-line during the experiment.

For such records, the format, contents and the "key" will depend upon the
intended use of the record and the method of search or addressing used to

locate it.

Program modules

Experience may indicate need for change in the program. Examples
include changing the time base of the clock, adding or deleting external
program interrupts and changing peripheral hardware devices. With respect
to the monitor and its processing and control tasks, modifications may
vary in complexity from simple changing table entries to changing the
logic and mathematics of the control scheme. A recommended procedure is
to design the program as a set of '"modules" such that the changes can be
restricted to the module or modules which perform the function to be

modified.

17

PROGRAM DESIGN

Block Organization and Sequence of Operation

The program is designed as a set of independent routines which pro-
vide the following general capabilities: task definition, scheduling and
execution; time management; output processing; and interrupt and trap
processing. On the basis of their functions, individual routines are
organized into program blocks and, with the exception of the Supervisor
Block (SVB), primary program control is passed to these blocks through
only a few entry points as shown in Figures 2 and 3. Since they are
intended to provide general capabilities, such as timing and message out-
put, the Supervisor Block and the Message Processing Block may be called
by any other routine in the program.

Data acquisition and parameter control functions for the experiment
are organized as a set of one or more tasks and each task consists of one
or more steps as illustrated in Figure 4. Task organization is provided
by a Monitor Control Block (MCB) which functions as a table processor.
For each task the sequence of steps is defined by coded entries in the
Monitor Control Table (MCT) illustrated in Figure 6. Each entry's posi-
tion in the MCT is identified by its horizontal coordinate, the Step
Identification Number (STEPID), and by its vertical coordinate, the
Parameter Identification Number (PARMID). Concatenated together, the
PARMID and the STEPID form the entry's MCT Position Identifier (POSID).

Corresponding to each step is an independent service routine, identi-

fied by the STEPID, which implements the execution of that step. To

18

conserve memory, each service routine is intended to provide a common
function for all tasks that require it by means of information in its own
tables, which are indexed by the PARMID. Individual service routines can
be added, deleted, or modified as processing requirements change and, to
facilitate this, are organized in a group as the Monitor Service Routine

Block (MSB).

Table 1. Abbreviations of program components' names

CCW: Core Contents Word

ITTR: Interrupt Time Test Routine
MCE: Meonitor Control Block

MCL: Monitor Control Loop

MCT: Monitor Control Table

MQ: Message Queue

MQL: Message Queue Loader

MQP: Message Queue Processor

MSB: Monitor Service Routine Block

PARMID: Parameter Identification Number
POSID: Monitor Control Table Position Identifier

PQ: Priority Queue

SCB: Scheduler Block

SRAT: Service Routine Address Table
STU: Scheduling Time Unit

SVB: Supervisor Block

STEPID: Step Identification Number
TASKID: Task Identification Number
TDT: Task Definition Table

Program
Starter

Fs

I Block

Figure 2.

—_— — e —

upervisor

Routine

Clock

Routine I

Basic block linkage for task scheduling and processing

.Monitor Monitor ! Sub-
Scheduler Control Service routine
ey Block Elock Routine | Block
Time Block l
Test

61

Program

|

Starter
— : ﬁ
Supervisor
lBlock I
: I
| »
r
l O Idler) '
S OE— — — —— ———
I s Scheduler Monitor Monitor Sub- ﬂigizgiinw ——]
' r I Block EfggﬁOl Service routine Iﬁlock =
l i InFerrupr { r Routine Block
& Time I Block I Message Message
I 1 Test I Queue - Queue
I d Routine I Loader Processor
¢ h |)
' ald l i A [A
| 1 Clock
' 1l “ﬂ Routine 1
R l Interrupt
l o I and
I u r'j l Trap Block
I ti - Timer
Routines|) l
|Ls]
I _L..‘_l s Branch
I
I_. — — R — < =—$-— (Call and return
(return address saved by called
routine)
Figure 3. Complete block linkage

21

Task 1: Maintain parameter 1 within two limit values (set points)

Initialize for this task

step 1
step 2: Obtain parameter sample

step 3: File parameter sample

step 4: Is the parameter sample within the limits?

If "yes", go to step 9
If "no", go to step 5

step 5: Compute parameter correction

step 6: Send command signal to the peripheral hardware
step 7: Delay processing of task 1

step 8: Return to step 2

step 9: Return to scheduler (end of task 1)

Figure 4. Example of a task's sequence of steps

One service routine serves to load subroutines from the tape into the
memory and each subroutine performs a single step and is identified by
its STEPID. Thus, subroutines can be used to provide computations, data
file operations or for any function not included as a specific service
routine. In general, a routine which performs a particular step can be
programmed either as a service routine or as a stored subroutine thus
providing flexibility in adapting the program to a particular experiment.

Task execution is initiated by a set of scheduling routines which
comprise the Scheduler Block (SCB) and are referred to collectively as

the scheduler. The sequence in which tasks are initiated is determined

22

dynamically by task cycle times and by task priorities. These are defined
by the experimenter by entries in the scheduler's Task Definition Table
and by assigned Task Identification Numbers (TASKID). A Priority Queue
(PQ) of tasks which are ready for processing is maintained by the scheduler
and from this queue it selects the highest priority task and passes it

to the MCB.

Records of the scanning cycle times for tasks to be initiated on a
definite cycle, and records of the delay times for tasks which must be
delayed are maintained by the scheduler. From these two sets of tasks
come the entries for the Priority Queue as illustrated in Figure 5. Delay
and scanning times are managed in conjunction with the program's Clock
Routine which also keeps a record of the time since the scheduler's lists
were last processed. These times are measured in terms of a Scheduling
Time Unit (STU) defined by the experimenter as a multiple of the time unit
of the hardware clock.

At present, all of the program tables and most of the flags are
initialized at the time of assembly by the DIAL assembler using the LINC
assembly language. After subroutines are assembled and loaded into the
selected tape blocks on tape zero and the program is loaded into the
memory (all done using the DIAL system), program execution begins in mem-
ory segment 2 with a simple Start Routine which initializes the hardware

clock register and some flags. After turning the clock "on" the experi-
menter, via a sense switch, allows program execution to proceed to the

Idler routine of the Supervisor Block as illustrated in Figure 2. Now the

23

progress execution is controlled by the clock via the Interrupt Time Test
Routine (ITTR) which is called by the Idler.

When a Scheduling Time Unit has elasped, control is passed from the
ITTR to the Scheduler Block (Figure 2) which processes its lists, looking
for any task whose cycle time has elapsed. If none is found, control is
returned to the Idler; otherwise, the highest priority task which is
ready to be processed is passed to the Monitor Control Block which then
processes the task using entries in the MCT. What is actually transferred
to the MCB is the starting location of that task in the MCT. Using this
POSID, the MCB selects the proper service routine for the first step and
passes control to it (Figure 2); if a stored subroutine is required, it is
loaded (if it is not already in the memory) and control is passed to the
subroutine. After the step is completed control is returned to the MCB
which has direct access to the ITTR without going through the scheduler.
As described above, a time check is performed; and if one or more
Scheduling Time Units have elapsed, control is passed to the scheduler.
Otherwise, control is returned to the MCB and processing of the current
task is resumed.

If the scheduler receives control, its lists are checked again and
if another task is ready for execution, the priority of that task is com-
pared with the priority of the task currently being executed. The lower
priority task is returned to the Priority Queue and the higher priority
task is passed to the MCB. Therefore, a partially processed task can be
interrupted in favor of a higher priority task as mentioned previously in

the section concerning program requirements. A task is processed step by

24

step until it is either finished, interrupted or requires a time delay. In
the latter two cases, a POSID indicating the next step at which to continue
the task, is returned to and saved by the scheduler. Task processing
continues until there are no more tasks ready for processing and then

control is returned to the Idler.
Memory Allocation

Each block is assigned to a particular memory segment and blocks may
not cross memory segment boundaries. Areas of memory are also allocated
for tables, for data and temporary record storage and for subroutines
stored on tape. The Monitor Control Block, Monitor Service Routine Block,
Scheduler Block, Supervisor Block and Interrupt and Trap Block are assigned
to segment zero. The Message Processing Block and program tables are
assigned to segment one. Segment two is reserved for subroutines and seg-
ment three is reserved for temporary record storage. Half of the latter
is presently used for a pair of 256 word data buffers into which records

are assembled for storage on tape while the other half is unused.
Supervisor Block

Overall control of the program is provided by the Supervisor Block
since program execution begins here and returns to this block when no
parameter processing tasks are scheduled. 1In effect, the SVB, via its
supervisory routines, serves as a master scheduler for the entire program.
As shown by Figure 3, the Timer Routines and the Clock Routine can be

called by any other routine and provide general service functions for the

25

program. Other routines, intended to provide comparable service functions,
can be added to the SVB since each routine in this block has its own
unique "call list' of arguments as opposed to the routines of the MSB

which must conform to the structure established by the MCB.

Idler Routine

When all scheduled parameter processing tasks have been completed,
control of the program returns to the Idler and it maintains ;ontrol until
sufficient time has elapsed that another task is scheduled. During this
idle period, the clock is "watched" via the Interrupt Time Test Routine
and messages that have been stacked, e.g. a "background" job, are proc-
essed. This routine is a simple loop into which the scheduling of other

background jobs (such as file sorting) can be inserted.

Clock Routine

Reading and resetting the clock is performed by the Clock Routine
which also uses the "read'" value to update the Total Experiment Time and
the Elapsed Time Registers. Scale factors for these registers may be set
by the experimenter and the scale factor of the Elapsed Time Register is

the experiment's STU as used by the scheduler.

Interrupt Time Test Routine

The Elapsed Time Register is tested by the Interrupt Time Test Routine.
If its value is not zero, indicating that the scheduler's lists should be
processed again, control is passed to the scheduler. Otherwise, control
is returned to the calling routine which is primarily either the Idler or

the Monitor Control Loop (MCL) as shown in Figure 2.

26

Timer Set Routine

In conjunction with the Timer Test and the Clock Routines, the Timer
Set Routine implements a time delay without rescheduling such as is pro-
vided by the Monitor Control Loop's pause option. (The MCL calls the
Timer Routines to implement the pause, Figure 7.) Via the accumulator the
delay interval, measured in the units of the hardware clock, is passed to
this routine which uses it to set the Test Registers of the Timer Test

Routine. Control is returned to the calling routine.

Timer Test Routine

After the Test Registers are set, the Timer Test Routine is called

upon to perform the comparison with the Total Lxperiment Time Registers

of the Clock Routine. Separation of the Timer Routines allows the calling
routine to do some operations between the setting and testing of the Test
Registers; in addition, the Timer Test Routine, between time tests, will
initiate the processing of messages that have been gqueued for output on a
time available basis. If a finer degree of time control is desired, the
calling routine can turn this message option "off'"; however, the option is

"on", upon return to the calling

always returned to its default condition,
routine which occurs when the time interval set by the Timer Set Routine

has elapsed.

Cross Field Call Routine

Because a call for a routine is this block mav be from across a
memory segment boundarv, the identification of the calling segment must

be saved (LINC mode only). The Cross Field Call Routine provides a

27

common "field" (segment) register saving and restoring capability for all
of the routines in this block such that all calls from across a segment

boundary must go through this routine.
Scheduler Block

Scheduling is implemented by processing the information lists shown
in Figure 5. Information that must be defined by the experimenter for
each task includes its cycle time (entered into the Task Cycle Time Table)
and its Task Level Code, Task Interrupt Flag, and starting POSID (all
entered in Task Code Table). The Task Cycle Time Table and Task Code
Table comprise the Task Definition Table which is indexed, as are the
Task Cycle Time List and the Priority Queue, by the TASKID. Priorities
are assigned to the tasks according to their TASKID in inverse order.

Tasks for which the MCB initiates a delay are placed on the Task Delay
List which requires three items of information: the delay time, the TASKID
and the POSID at which the task is to be resumed. These are obtained from
the program registers shown in Figure 5, and when the scheduler selects
the next task from the Priority Queue, the TASKID of that task is entered
into the TASKID Register and the contents of the Priority Queue entry for
that task is transferred to the POSID Register. Note that the Priority
Queue receives its entries from the Task Definition Table, the Task Delay
List, or the TASKID Register.

Because the Priority Queue is indexed by the TASKID, it may contain

only one entry for each defined task, but more than one entry at a time

Priority Gueue (indexed by TASKID)

0 POSID
1
{: . y A A Task Definition L
. I y = | Table
n " A
| S Task Task
Task 4 Cvcle Cycle Task
e Task Delay List Time Time Code
A List Table Table
Task ;‘},...-..A.__.‘ e P,
delav next P —
3 & 5 Ii <
time MCT Qg — 78 33 0,0,1,0 ™
Y remaining position -m—b 2
- e © 105 b4 105 11,0,2,0 |y ‘
POSID TASKID |§.5 >0 £ > : ' ; c
. ; time . . = o i L L A
time TASKID | POEID r >~ 1 o~ T
508 ID TASKID Monitor | - . n {NOP* |ed NOP NOP "
Register Recister Delay —
o - Register 4 - ’
' o~ ~ > b2 - \
¢ ——y o \
{ " " " : //
* i 2 \
H] " " L~ ‘
] -
bdt 0, bits 2-3, bits 4-11
5 ! f s e
i H Task Task starting
| - Interrupt Level POSID
Flag Code
PARMID, STEPID
bits 4-7, bits 8-11
*NOP: reserves storage (no operation)

Firure 5.

Scheduler information Lists

29

may be attempted for a given task since there are three sources for the
entry. By assigning priorities from low to high, respectively, to the
three sources listed above, the scheduler resolves this problem; the
entry from the highest priority source is saved and the others are

discarded.
Monitor Control Block

To identify the program's status with respect to the experiment, four
registers are used: the PARMID, STEPID, POSID, and TASKID Registers which
contain the identification numbers previously described. The TASKID Re-
gister is set by the scheduler and the other three are set by the MCB
except that when a task is passed to the MCB from the scheduler, the
scheduler determines the MCT position (e.g. POSID) at which the task is to
begin. Each entry in the MCT, shown in Figure 6, has four fields: the
Step Level Code, Message Code, next PARMID, and next STEPID. The latter
two fields identify the POSID of the next MCT entry to be used for the
current task after the current step is completed. Each table entry occu-
pies one word (twelve bits) of memory and the present allocation of bits
per field limits the MCT dimensions to fifteen parameters by sixteen steps.
Since the maximum PARMID is fifteen, the combination of all bits set to
"one" is an invalid MCT entry; therefore, this value is used in the TASKID
Register to signify that no task is currently active.

Two routines, the Monitor Control Loop and the Interpreter are in-

volved in processing the MCT and resetting the identification registers.

Sample Save Test Compute Send Delay

Step: Sample Sample Command Command Task unused
0 1 2 3 4 5 6 ¥
Parameter:
I [| I I I E W
Temp. 0 ,0,1,0,2, | 0,1,0,3, 0,1,0,4; 0,1,0,0 Lo
Pl e P v st ol i Gt s s el s i s i Al]
Stirrin I I | [| I ¢ 0 4
Saon & j 10,1,1,2 0,1,1,3, 0,1,1,4, 0,1,1,0 . .
IINIIRL SR | SENIRUN NRPIRN. (Rt W .
[I | I I ! (.
pH 2 By teRely 0:1,8,8) 6,1,2,9) 0124 0.1,2.04 | Lo
"SR, [BSOUSY (INNREPRE, WO DUSSRUUY TSR -, -
| I | I I ! A
PO, 3,0,1,3,1, 0,1,3,2, 0,1,3,3, 0,1,3,4, 0,1,3,14 F 3
OSSR, WIS SRS NETPUNION [NPUIOTE NP, N
+, + | | I | | | I |
Na /K 4 ,0,1,4,1, 0,1,4,2 0,1,4,3, 0,1,4,4 0,1,4,14 ,0,1,4,0 | | |
Y. S (NI RGN, YU, S _I ! -
| | | | | I -
ca' /Mg 5 0,1,5,1,0,1,5,2, 0,1,5,3, 0,1,5,4 0,1,5,5 ;0,1,5,14| Lo
PSR, SN TS, JAPys. | JRSRPENPIS Wly T
- I I | | I I L § 4
c1 6 0,1,6,1,0,1,6,2,0,1,6,30,1,6,4 | 0,1,6,5 [0,1,6,0 | | |
B o s o o ot s b i M e 5. i g i o IR - -
= I | I I | | S
HCO 7 0,1,7,1,0,1,7,2,0,1,7,3, 0,1,7,4 0,1,7,5 0,1,7,0 | | |
(RO | Y V. SUPSSSNI— SNSRI p—p——— [I
. « S A . o w s
unused 8-14 - p . . s oA
. ~ - . . e ; E
= P
SRR " Al R
bits 0-1, 2-3, 4-7, 8-11 :

Step Message next next
Level Code PARMID STEPID
Code N
next POSID

*0ctal code = 11638

Figure 6. Monitor Control Table with test experiment

30b

Initialize:
Repeat Comp. Sub. Repeat End

unused Counter Flag Task Task
8 9 10 11 12 13 14 15

[(N [[[[

Lo 1 0,1,0,15 | |0,0,0,0 |
— A= = — - — Fm———t - - — = A —— Task 0

[I | I I

Lol]0,1,1,15 | |1,1,0,0 i
S (NS | N I S E——— b = el o = el e e i

[I | [[

(o0 : 0,1,2,15 ,0,1,2,12 | 0,1,2,13,0,1,0,0 | } Task 1; Task 5
—dtd ke e T e T ?

A | | I I |

' 1 ¢ 91,3,13,0,1,3,15 , 0,1,3,12, 0,0,0,0 } Task 2 l
PN (S (U] M, PSS deorme o comiam et i el e o : I

| | I [I

L1 1 Glsh,15 0,014,322 | 0,14,4,13) 1,1,50 | |
T T [P A - ! ST N —— e mi vk, & Tl 3 |

A | [I |

{1 1 [91,515 6,1,512 | 0,1,5,13 0,0,0,0 |
A S T S, F——— " SR SR SN |

O | I I I

| | | | |0,1,6,15 | |0,0,0,0 . Task 4 l
MY TN S e el el iy e] |

N I [I |

| | | | 10,1,2,0 | | | Task S—J
P () S (PSS RSP Y TPE— | S —

31

Other routines in this block implement a set of standard monitor messages,
such as the Trace Message (indicated by the Message Code set to "one'),

and implement the feature of inserting a time delay between steps.

Monitor Control Loop

Each pass through the MCL (Figure 7) completes the processing of one
step. The MCT Pointer, which is the actual memory address of the MCT
entry being processed, is reset via the POSID and is passed to the Inter-
preter. After control is returned from the Interpreter, the MCL examines
the Monitor Message Register and the Monitor Delay Register which are set
by either the Interpreter or a service routine for a nonzero value. If
either is nonzero, a message request and/or a delay request is processed
as illustrated by the flow diagram in Figure 7. Two options are provided
for the time delay feature as flagged by bit zero of the Monitor Delay
Register. If it is set, a '"pause'", measured in hardware clock's time
units, is specified and all task processing ceases during this pause. If
bit zero is clear, the delay is measured in terms of the STU and the task
is returned to the scheduler allowing another task to be processed.

As mentioned previously, a clock check normally (by default) occurs
between each step. If, however, the Task Interrupt Flag has been set by
the scheduler via information contained in its Task Definition Table,
the clock check is ignored. Thus, the experimenter has the option of
specifying that a task (such as one of low priority) be processed to com-
pletion once it has been started. Note that the clock check feature de-
fines a step as the largest unit of parameter processing work that cannot

be interrupted by program action.

Call
Interrupt
Time Test
Routine

32

Enter from
Scheduler

Set MCT
Pointer
via

POSID

Reset

ition for
this task

Monitor

er zero?

Message Regis-

no

A O

Select
message;
Call message
processor

Monitor
Delay Regis-
er zero?

Scheduler
implemented
delay?

Branch to
Interpreter

Return from
Interpreter
(POSID not reset)

Return from
Interpreter (POSID
alreadv reset)

Return to
Scheduler

Call

Figure 7.

Timer
Routines

Flow diagram of Monitor Contrel Loop

33

Interpreter

Using the MCT pointer, the MCT entry for the current step is obtained
(Figure 8) and its Step Level Code is compared with the contents of the
Task Level Register which has been set by scheduler from the current task's
entry in the Task Definition Table. If the Step Level Code is greater,
the step is bypassed and control is returned to the MCL. This feature
allows two tasks to be overlaid on the same positions of the MCT and
increases the flexibility of the MCT's use, 1If the Step Level Code is
not greater, the Interpreter uses the STEPID as an index to find in its
Service Routine Address Table (SRAT) the address of the service routine
which implements this step (Figure 9). Therefore, the procedure for link-
ing a service routine to the rest of the program is to enter its memory
address into the SRAT. When the step is completed, control is returned
to the MCL, but before the return occurs, the service routine may cause
a "branch" in the MCT if it stores a new POSID and returns to the MCL at
the return point which follows the MCL's POSID reset operation as shown

in Figures 7 and 8.
Monitor Service Routine Block

Routines in this block can be classified, as either processing rou-
tines (e.g. computation routines) or program control routines (e.g. a loop
counter) and can be added, deleted, or modified in order to tailor the
program to the requirements of a particular experiment. As already stated,
the entry address of each of these service routines must be included in

the Interpreter's Service Routine Address Table.

34

Fetch MCT

entry for
this step

Enter from

Monitor via MCT
Control Pointer
Loop
Decode:
get Step
Level Code

Step
Level Code
> Task Level
Code

Return to ves
MCL 2
(POSID not

reset)

Decode:

Set Monitor
Message
Register

&

Set PARMID
and STEPID
from current Return to

FOSID scheduler

Set switch

to service Branch to

routine vi: ves service routine
STEPID 7 ~
End of no
task?
N e
o

reset by ser-
routine?

vice

Return to
MCL
(POSID not

reset) Return from
Return to service routine
MCL < 3 e

(POSID

reset)

Figure 8. Flow diagram of Interpreter

Table pointer = table base address + displacement (the STEPID)

SEQUENCE OF OPERATIONS:

Service routine selection by Interpreter:
Enter with STEPID

Service Routine Address Table

(base address) STEPTB,.MF SUBCLL
JMP SDSAVE {7
IJMF TESTSD Select and move Lo

(table pointer) =ee==g JMI' SUBCLL Interpreter's switch }

p i Q
f]g IR INTJMP,JMP SUBCLL
NOD (Branch to subroutine loader)
NOP
NOT
gg; ?Ubh_ yes Branch to

routine 1n g

JMP INITRC S subroutine
JMP INITC1 &
JMD REPEAT
JME LEND

. Load subroutine
Subroutine selection and loading:

Tape Address Table
(base address) SBLTAB,P275
NOP

NOT
Sel :
(table pointer) sy (17 76— -_-—ne_efs._a.n.d_.m?f:. ti ti).c__ —

277 instruction I
277 (loads subroutine)

RCGH
RCGBON, 3276 == —

Subr i Mask T
msgory i dble Update Corﬁ Contents Word

(base address) SBMTAB,7777%

NOP v
NOP Select and complement
(table pointer) 7777 S R ek
1777 Set bit 3 of CCW
*7777 causes a new copy of (e.g. STEPID 3) l
the subroutine to be loaded p——— N |
even if it is alreadv in REER) o =g GG “2HD {d(ﬁﬂq -
. (Clears all bits)
the memory '
LINC language instructions: ﬂ@@@a
JMP: unconditional branch l-..__..__ Restore CCW
NOP: reserves storage
(no operation) Branch to subroutine
RCG: loads tape blocks into I

the memory (read and >

check group)
Figure 9. Example of service routine (subroutine loader) and subroutine
calling operations for STEPID = 3 (computation step in the
test experiment)

36

If a step, such as step 3 in Figure 6, requires the use of a stored
subroutine, the address used from the SRAT is that of the subroutine loader
and the STEPID identifies the subroutine and is used by the loader to find
and load the subroutine as described below and shown in Figure 9. A Core
Contents Word (CCW) is used to keep a record of the subroutines currently
in the memory, and if the required subroutine is not in the core, the Tape
Address Table is used to find the subroutine and load it; the Subroutine
Mask Table entry for this subroutine is used to update the CCW by clearing
the bits corresponding to subroutines that have been assigned to the same
core locations as the subroutine which is loaded. Thus, tape areas and
core areas are statically assigned by the experimenter at the time of pro-
gram assembly and for each subroutine an entry is required in both the Sub-
routine Mask Table and the Tape Address Table. Use of a single 12-bit
memory word for the CCW limits the allowable number of subroutines to
twelve. However, at the expense of using more storage for the tables and
for the CCW, a greater number of subroutines can be used.

Program control routines include decision routines, loop counters,
and flag setting routines. Depending upon the results of a decision or a
counter test, these routines can reset the POSID Register as mentioned
previously. For example, in the test experiment, the Sample Data Test
Routine compares the parameter sample to a pair of set points for that
parameter. If the value is within the set point range, the routine resets
the POSID Register to the last step in the MCT which clears the task from
the TASKID Register. Otherwise, the MCL resets the POSID Register to the

step which computes the correction. As illustrated, program control rou-

tines can be quite short but usually require one or more tables of

37

information.

Record filing operations can be assigned to this block as illustrated
by the test experiment's Sample Data Save Routine which establishes.a
storage area for the most recent sample value for each of the parameters
and also provides the option and the mechanics of storing these values on

tape using the data buffer areas assigned to memory segment three,
Interrupt and Trap Block

Saving and restoring the field registers, index registers, accumu-
lator, and "link" is provided by the Interrupt and Trap Processors
(Figure 3) and when an external program interrupt occurs, the interrupt
hardware is turned "off" until the interrupt has been processed. Priori-
ties of interrupts are defined by the order in which the "cause" of the
interrupt is determined. Via this structure, new interrupts can be added
to the system and the priorities of existing interrupts can be changed.

At present, the only interrupt used is the clock interrupt and the
instruction trap is used only for simulating the input data '"sampling",
of the peripheral data terminals by the CPU as described later. However,
Teletype and magnetic tape unit interrupts are available and can be added

to the program.
Message Processing Block

Two main routines comprise this block: the Message Queue Loader (MQL)
and Message Queue Processor (MQP). See Figure 3. Message writing rules

are established by the MQL and MOP as a subroutine call with a call list

33

which includes the format's name, the device code and the variable list's
name (Figure 10). Both routines provide an entry point to the Message
Processing Block and also the field register saving which is necessary
since this block is called from across a memory segment boundary; however,
they share a common field register restoring routine.

For each variable in the variable list, the MOL looks up the current
value and loads it, together with the format's name and the device code,
on the Message Queue (M0O). An option is provided which allows a string of
bits to be lifted from the value of the variable, right adjusted, and used
by the MQP as the value of the variable. The option is used by setting bit
zero of the variable's name to "one". A "mask" word, specifying the bits
to be used, must follow the variable's name in the variable list. The op-
tion is used when two or more values are packed into a single memory word
and are to be included in a message.

If a message is to be sent immediately when requested, flagged by bit
zero of the call list's name, the message is loaded into the MQ's buffer
area (which also provides for overflow from the main MQ area) and control
is passed to the MQP. Otherwise, the message is loaded into the main MQ
area and control is returned to the calling routine. Messages are sent
from the main M) area on a time available basis as determined by the Idler
or the Timer Test Routine, both of which call the MOP. Two address point-
ers are used by the MQP when processing messages from either the M) or its
buffer: the Value List Tointer which addresses the next variable's value,
and the Format Character Pointer which addresses the next character in

the format specification.

39

Message formats contain delimiting characters dividing the formats
into fields corresponding to the following format elements: character
string constants, message variables, character spacing (blanks), CRT verti-
cal and horizontal coordinates, Teletype carriage return and line spacing
(new line) and "end of format'". For both the CRT and the Teletype, auto-
matic contfol of line spacing and character position is provided by the
MQP so that it is unnecessary to use these specifications unless a non-
standard format is desired. Since a format is organized and processed as

a set of fields, new format specifications can be incorporated into the

design of the MQP.

40

Message ''call list'':
ODMES, ODFORM&5777
1777
ODLIST!2000
Message ''variable list":
ODLIST, ODVAL! 2000
ODPARM! 2000
ODHRS! 2000
ODMIN! 2000
ODSEC! 2000
TEXT Z9;Z
Message ''format':
/OUTPUT COMMAND SUBROUTINE MESSAGE FORMAT/
ODFORM, TEXT Z(OUTPUT VALUE =)VZ
TEXT Z(PARMID =)VCLB7, (TIME=Z
TEXT Z)V(HOURS)V(MINUTES)Z
TEXT ZV(SECONDS.)CL;Z

Message '"calling instruction sequence" for a call from segment 2 with the
call list and variable list in segment 2 and the format in segment 1:

LDA I

ODMES!2000&3777

LDF 2

LIF 1

JMP OLLOAD
Teletype message:

OUTPUT VALUE = -1 PARMID = 4
TIME=0 HOURS 12 MINUTES 200 SECONDS.

note: numerical values are in octal and the unit for the "seconds" val-
ue is decimal tenths of seconds (the unit of the hardware clock)

LINC mode instructions:

LDA I loads accumulator with contents of the following memory location
LDF 2 changes Data Field to segment two
LIF 1 - changes Instruction Field to segment one when the next branch
instruction occurs
JMP - branches to location labelled by the symbol, OLLOAD (in
segment one)

DIAL assembler instructions:

"!" - logical "OR" of the two adjacent values

"&" - logical "AND" of the two adjacent values
(used to set bit zero, the flag, for queued processing and to set bit
one, the field bit, to the I.F. segment or te the D.F. segment)

Figure 10. Teletype message for queued processing

41

PROGRAM TESTING

A test experiment, designed from requirements of the cell culture
system, was coded into the Monitor Control Table (Figure 6) and Task
Definition Table (Figure 5). Subroutines, stored on tape (Figure 9), were
used for steps zero, three, and four in the test experiment. Respectively,
these steps provided for obtaining data samples, determining command sig-
nals, and sending command signals as described below.

Since testing was done without peripheral hardware, the interaction of
the program with the peripheral hardware was simulated by replacing the
A/D convertor sampling instruction with an illegal instruction in the
sampling subroutine. The instruction trap processor displayed a message
on the screen indicating that a data value for the particular parameter
should be entered via the console switches. Command signals to the
peripheral hardware were replaced by a message (Figure 10) containing the
control signal value.

A mathematical model of the cell culture system was not available for
use in computing the value of the command. Rather, an iterative correction
procedure was used such that the signal value was either plus one or minus
one depending upon whether the sample value was below or above, respec-
tively, the set point range defined for the particular parameter. This
scheme is compatible with the culture system since its peripheral hardware
control devices respond to either single pulses or to "on-off' commands.
Thus, the sequence of sampling and correcting continued for each scanning
cycle of a given parameter until the sample value, as entered from the

console, was within the set point range.

42

Initial testing was conducted without the hardware clock and time
increments were entered into the Clock Routine from the console switches.
As additional time was entered, more of the program loops and routines
were called into eoperation so that the progress of the testing was con-
trolled by the time entries.

With the hardware clock added to the system, a real-time environment
was established and it was possible to test the program with respect to
its efficiencv for various combinations of task cycle times and task delay
times. Since testing was done off-line to the peripheral hardware and
data were entered from the console, the trap processor removed the system
from its real-time environment and after the sample was entered, the clock
was restored to the point in time that existed when the trap occurred.

The pause in the real-time epvironment provided the opportunity to étop
the CPU, check the contents of the memory and registers, and make changes
in test values without affecting the real-time environment of the test.

In order to observe its operation, CRT display messages were inserted
in important sections of the program. In addition, the Trace Message
which prints the TASKID, PARMID, STEPID and the time (Appendix A) verified
the sequence of processing for each task. With respect to the task cvcle
and delay times, the efficiency of the program proved to be sensitive to
the amount of time required for the Trace and display messages. Ior this
reason two additional features were added so that message time could be
reduced while the CPU was in operation: a conscle sense switch was used

to turn the Trace Message "on'" or "off" and a console A/D knob was used

43

to control the display time of a CRT message so that when the knob was
turned to zero, the display was eliminated. About one minute of delay

time was used for stabilization of any ion specific electrode, and during
this time, the electrode amplifier was unavailable for use by the other
electrodes. Thus, processing of the other ion parameters was also delaved.
This appeared to be the primary limitation to system performance since, as
the cycle times were decreased, the lower priority parameters were proc-

essed to completion less often.

44

DISCUSSION

Successful operation of the program was confirmed by the final off-

line tests, during which additional
incorporated into the program. The

made illustrated the utility of the

the test experiment did not require

messages and service routines were
ease with which these additions were
program design and implementation of

any bazic changes in the original

design.

Several factors concerning the use of the Monitor Control Table may
not be immediately apparent. As described, the task processing is con-
trolled by a time scheduler, but initiation of a given task can be accom-
plished via a signal from the experimenter by setting the task's cvcle
time to zero and using an initial step to test a sense switch. Or if the
event signal is to come from the external hardware, the interrupt system
can be used in place of the sense switch. TFor the latter situation, the
scheduler may require redesign which is facilitated by the bhlock structure
of the program since task scheduling is performed by the Scheduler Block.

It may appear from the test experiment that the processing of each
parameter is meant to be a single task with the sequence of steps moving
across the MCT. Actually, an experiment involving many parameters can
be designed as a single task if parameter priorities are not required;
and the sequence can be vertical as is the case if the data samples for
all parameters are required before any of the computations can be
the entire experiment can be programmed as

accomplished. Furthermore,

45

a single task with a single step if the identification of the parameters
is maintained by the processing program illustrating that, although the
MCT size is fixed, the functions performed by two or more steps can be
combined into one step if a time test is not required between these
functions. Thus, the design of the MCB provides considerable flexibility

in adapting the program to the experiment.

10.

46

BIBLIOGRAPHY
Chorafas, Dimitris N. Control systems functions and programming
approaches. Vol. A. New York, New York, Academic Press, Inc. 1966.

Desmonde, William H. Real-time data processing systems: introduc-
tory concepts. Englewood Cliffs, N. .J., Prentice-Hall, Inc. 1964,

Digital Equipment Corporation. PDP-12 User Handbook. Maynard,
Massachusetts, Author. 1969.

Quinn, L. Y. Continuous culture of ruminal microorganisms in chemical

medium. T. design of continuous culture apparatus. Applied
Microbiology 10: 580-582. 1962.

Rothstein, Michael F. Guide to the design of real-time systems,
New York, New York, Wiley-Interscience. 1970,

Vosseller, George V. and George E. Moore. The trophocell, an
installation for large scale mammalian cell culture. Research/
Development 20: 20-24. 1969.

Watson, Richard W. Timesharing system design concepts. New York,
New York, McGraw-Hill, Inc. 1970.

Wilkes, M. V. Time-sharing computer systems. New York, New York,
American Elsevier Publishing Company, Inc. 1968.

Yourdan, Edward, ed. Real-time systems design. Cambridge,
Massachusetts, Information and Systems Institute, Inc. 1967.

Zimmerli, D. W. An electronic counter for population and size
distribution of microscopic particle suspensions. Unpublished M.S.
thesis. Ames, Iowa, Library, Iowa State University of Science and
Technology. 1967.

47

ACKNOWLEDGMENTS

I wish to thank Dr. David L. Carlson for suggesting the project and
for his patient encouragement and guidance during the development of the
program and the preparation of the thesis. To Dr. Richard L. Engen goes
my appreciation for his suggesting valuable improvements in the manuscript
and for serving, with Dr. Carlson, as a co-major professor. Special
thanks go to Dr. Loyd Y. Quinn whose dedication te the study of immunology

and cell cultures made this project possible.

48

APPENDIX A

Test Output

49

LO ASSEMBL4s0

TRACE: T0n P1 1) 141 | SEC 1 MIN
TRACE: T@ il se ¢ 233 SEC 1 MIN
TRACE: T0O Pl §3 326 SEC 1 MIN
TRACE: T® Pil 54 424 SEC 1 MIN
THACE: T0@ Pl 50 527 A0 O | MIN
TRACE: T® Pl 52 621 SEC 1 MIN
TRACE: TO Pl 53 714 SEC 1 MIN
TRACE: T9O Pl 54 1212 SEC 1 MIN
TRACE: T3 Pl 50 1117 SEC 1 MIN
TRACE: T2 Pl s2 31 SEC 2 MIN
TRACE: T4 Pl 53 123 SEC 2 MIN
TRACE: TO P1 54 221 SEC @2 MIN
TRACE: TH P1 S0 325 SEG 2 MIN
TRACE: T@ P1 S& 416 SEC 2 MIN
TRACE: TO Pl 53 511 SEC 2 MIN
TRACE: T@ P1 S4 6A7 SEC 2 MIN
TRACE: T@ P1 50 713 SEC 2 MIN
TRACE: T@ Pl s2 1005 SEC 2 MIN
TRACE: T0 Pl 515 1100 SEC 2 MIN
TRACE: T PO 1G] 42 'SEC 3 MIN
TRACE: TO P s2 133 SEC 3 MIN

TRACE: T@ PO 53 225 SEC 3 MIN

OUTPUT VALUE

TIME=0
TRACE: T4
TRACE: T@
TRACE: T0
TRACE: Ta
OUTPRIIT VALUE
TIME={
TRACE: T0O
TRACE: T@
TRACE: T@
TRACE: T0

OUTPUT VALUE
TIME=0%

OUTPUT VALURE
TIME=0

OUTPUT VALUE
TIME=0

OUTPUT VALUE

TIME=0
TRACE: TI1
TRACE: TI1
TRACE: TI1
TRACE: TI1

1

50

PARMID = 1

HOURS 1 MINUTES
PO S4 324
P S 573
PO s2 665
= 16] 53 760
-1 PARMID = 1

HOURS 1 MINUTES
P S4 1056
PO Sn 147
PR s2 240
Pa S15 333
-1 PARMID = 1

HOURS 2 MINUTES
-1 PARMID = 1

HOURS 2 MINUTES
1 PARMID = 0

HOURS 3 MINUTES
1 PARMID = 7

HOURS 3 MINUTES
P2 S0 514
P2 S1 514
P2 s2 514
Pa 515 514

424 SECONDS .
SEC 3 MIN
SEC 3 MIN
SEC 3 MIN
SEC 3 MIN
1712 SECONDS »

SEC 3 MIN
SEC 4 MIN
SEC 4 MIN

SEC 4 MIN

221 SECONDS .

607 SECONDS

324 SECONDS »
1456 SECONDS «
SEC b5 MIN
SEC 5 MIN
SEC 5 MIN

SEC 6 MIN

TRACE:

TRACE:

TRACE:

TRACE:

TRACE:

TRACE:

TRACE:

TRACE:

TRACE:®

TRACE:

TRACE:

TRACE:

TRACE:

TRACE:

TRACE:

TRACE:

OUTPUT YVALUE
TIME=0

TRACE:

TRACE:

TRACE:

TRACE:

TRACE:

TRACE:

T1

T2

T@

TO

TA

T2

O

TO

T?

TA

T?

TN

T2

T2

T2

T2

T3

T3

T3

T3

T3

T3

P3

Pi

Pl

P1

Pt

Pl

Pi

Pl

PO

340/

PO

P3

P3

P3

P3

1

P4

P4

P4

P4

P4

P4

51

Sl4

5

50

52

S3

54

50

52

515

SA

52

S15

S1

52

S14

515

PARMID

7

S0

Sl

52

S3

S4

516

514

75

243

335

430

526

631

1120

32

125

434

530

625

MINUTES

1735

1130

145

200

300

377

SEC 5 MIN
SEC MIN
SEC 7 MIN
SEC 7 MIN
SEC 7 MIN
SEC 7 MIN
SEC 7 MIN
SEC 7 MIN
SEC 7 MIN
SEC 7 MIN
SEC 10 MIN
SEC 10 MIN
SEC 1@ MIN
SEC 10 MIN
SEC 1M MIN
SEC 1@ MIN
526 SECONDS «
SEC 11 MIN
SEC 11 MIN
SEC 12 MIN
SEC 12 MIN
SEC 12 MIN
SEC 12 MIN

APPENDIX B

Table 2. Block Summary

Table 2. Block Summary

Block

Function

Main Component Routines

Supervisor Block

Monitor Control
Block

Monitor Service
Routine Block

Interrupt and
Trap Block

Message
Processing
Block

Provides primary program control

and timing functions needed by
the program

Implements the initiation and
delay of processing tasks on
a time interval basis

Initiates and monitors the
execution of each step of
each task

Implements the execution
of each step

Services the external program
interrupt and instruction trap

Processes message requests
for the teletype printer
and for the CRT

Idler Routine

Clock Routine

Interrupt Time Test Routine
Timer Set and Test Routine

Delay List Test, Delay List Load,
Task List Test, Priority Queue Test,
Priority Queue Load, Task Starter

Monitor Control Loop
Interpreter

Monitor Delay Processor
Monitor Message Processor

Subroutine Call and Load
Test Sample Data
Sample Data Save

Interrupt Processor
Trap Processor

Message Queue Loader
Message Queue Processor

€S

Table 2 (Continued)

Tables and Data Areas Used

Major Data and Control Registers

Block

none

Task Delay List
Task Cycle Time
Task Definition
Priority Queue

Monitor Control
Service Routine
Monitor Message

Table
Address Table
Table

Tape Address Table

Subroutine Mask

Table

Sample Data Buffers

Message Queue and Buffer

Total Experiment Time Registers
Elapsed Time Register
Timer Test Registers

TASKID Register, STEPID Register,
POSID Register

Monitor Delay Register

Task Interrupt Flag

TASKID, PARMID, STEPID, POSID
legisters,

Task Interrupt Flag, MCT Pointer,

Monitor Message Register

Queue Load Pointer, Buffer Load
Pointer, Value List Pointer,
Format Character Pointer

CRT Scan Counter

Supervisor Block

Scheduler Block

Monitor Control
Block

Monitor Service
Routine Block

Interrupt and
Trap Block

Message
Processing
Block

i)

APPENDIX C

Program Listing

SEGMNT 0
*451

/ SUPERUISOLR BLOCK

SIDLER>

SSCALL»

SSCJMP.

SSCRST»
558AUL»

SSCACC»
SSLDF»
SSLIF»
SSCRTN.
READSC»

JMP TESTIC
LpA I
YSIDLE! 4000
LIF 1

JMP OLLOATD
LIF 1

JMP OCNTL
JMP SIDLER
STC SSCACC
ADT 2

BSE I

AOANA

STC SSCJMP
ROR I 1
STC S8SS5AVL
ADD AL
STC SSCHTN
10w

AR234

ROK 3

STH
SSLIFtanam
SCit 7

BCL I

T774

RSE 1

ARLHA

S5TC SSLDF
ADD SSCACC
NOP

STC SSsCaCC
Lba 1

NOP

BROL I 1
Lna 1

NOP

NOP

MAMA

NOP

10R

AAND

LpbA

56

SECCLK»

HRSCLK,
7

INTCLK.,
CLKEND»

MM

STC CLKRIN
101

302

AZE 1

JMP CLHEND
ADM 1

aladulel

SET 1 &
MININC

JMP CLKDIV

STC SECCLR

I0R
63704
SET 1 &
HRSING
ADD 7
anv 1
anag
LDA
ANAT
anpa 1
ARG
JMP CLKDIV

STC MINCLK

ADD 7
apM 1
AAna

Lba 1
INTINC

STC 6

ADD KXPCLX
JWP CLKDIV
STC EXPCLK
ADD

ADM I

nagn

SkO

IMFLAG

JMP e+ 3
_I0B

CLKHTN»
MININC.
HHSINC»
INTINC>
s

CLKDIV.»

NDULOOP s

AL
NOP
-11A0%
-AATH
=-00n1

STG S
LDA

4]

S5TC 4
CLk

STC 7
ADD 5
JVME e +?
XSK 1 7
STA

Cs

ADA 6
FLO

APO 1
Jrip DULOOP
AZE

JMP e +4

/
b
TIMERS»

SAVETS>»
TRSCON»

CLR

XSK I 7
STC S
LDA

24

STC 0
LA

5

JVMP A

STC SAVETS
ADD O

STC 2

JMP READSC
SET 1 6
MININC

Lpa I

adaele

ADD SECCLK
JMP CLKDIV
STC TTSECVY
SET 1 &
HKSINC

ADD 7

ADD MINCLK
JMP CLKDIV

_STC TTMINV

57

/
TIMERT,

TTLOOF.,
TMTSVY »

TMTCON»

ADD 7
ADD HRSCLK
STC TTHRSV
ADD 2
STC A
JMD 4

LDA
&)

STC °

JMP TMTCON
SRO 1

1A

JMP TMTCON
LDa 1
XTIMET ! 40100
LDF 0

LIF 1

JMP OLLOAD
LDF 1

LIF 1

NOP

JMP OCNTLI1
JMP READSC
LDA

HHSCLK

COM

ADA I

TTHRSV.,

TTMINU,

TTSECU.,

TMTEND.,

AAAn
AP0 1

JMP TTLOOP
AZE

JMP TMTFEND
LDA

MINCLK

oM

AbA 1

aang

APO 1

JMP TTLOOPR
AZE

JMP TMTEND
LpA

SKCCLK

COM

apa I

A0AN

APO I

JMP TTLOOP
LDA

2

3]

CSTICS

X

TTCON1.»

TICRTN.
/

AAZSSR»
/ZEND OF

STC
JMP

Lha
i

STC
JMP
LDA

TICETN
READSC

INTCLK

AZE
NOP

STC
STC
JMP
558

I

ICOUINT
INTCLK
DRTSTI

SEGMNT 0

*T764

/SCHEDIJLER BLOCK.»

DATSTI »

/

DOTST2»

DOCON1 »

DTQENDS»

ICCOM,

DOLOOP»

SET
L7917

I 11

JMP READSC
JMP DOCONI1

SET
AARA
LDaA

DTIMEQ=1!2/800

5TA
aaA2

I 11

I

STC @AAA3
Lpa 1

DCODEN=1!12071.

STA
AnA4L
STC
ADD
cOM
STA
NOP
CLR
STC
LDA
APO
JMP
ADD
APO
JMP
STA
LDA
S5TA

2005
ICOUNT

I

ICOTINT
I 2

DOCON3
1ICCOM

DOCON2
13
I 4
I 5

58

/
DOCONZ.,

NOCON3»

/

TATEST»

TOLOOP,

TOCON1 »

JMP DOLONOR

LDa I &
RCL I

AJTT

ROR #&

STA

BATASK

LnAa &

STC POCODE

SET I 12
1777

JMP POLOAD
JMP DELOOP
STA 1 3
XSK 11

JME DOLNAN
JMP TOTEST
Lna I
TTIMEN=1!200%
S5TC 8

5TC A

JMP TOCONL
STA 5

XSK I 6
Lba I 5
APO

JMP TFETCH
ADD ICCOK
APO I

JMP TOLOCY
LDA

a6

TNCONZ»

STA

PQTASK

ADA 1
TDTARI2ACH
STG 7

Loa 7

STC PQCODE
5TC 12

JMP POLOAD
LDA

AANG

ADA 1
TTTAB! 2050
STC 7

.LbAa 7

JMP TQLOOP

DOLOAD.

DOLCONS

PQLOAD.

PATASK,

LDA

Ann3

SAW 1
NCODNEN=212A00
J¥IP e +D2
Jiir DALCON
Lna

NUALIJKE

STA 3

LDa

TASKID

KROL B

RSE

POSID

STa I 5
CLR

Co™

STA I 3
STC TASKID
CLR

STC NVALTIE
JMP TOQTREST
LDA

A0

STC PNLHTN
LA I

NOP

ADA I
POUEUE! 20201%
STC 15

LDA 15

SAE 1

TTTT

JMP «e+2

POCODE.

"4
POCONI1 »
POLRTM.,

JMP «+5
LDA
12
aArO
JMP
LDA
NOP
STA 15

LoAa I
XPQLOD!ann
LDF @

LIF 3

JMP OLLOAD
LDF 1

— U
2
o
Q
=

LDa I
NOP

59

TFETCHo»

POSIZES

TFLOOPs
TFECON1 »

TFCON? »

TSTRT1»

STC &

JMP 7

Lna 1
POUENE=1! 2000
STC 2

STC 3

LDA I

-14

STC 4

JMP TFCON1
XSK T 3
LDa I 2
SAE 1

T777

JMP TFCONP2
XSK 1 4
JMP TFLOOP
LDA

TASKID

ApRo

JMP SIDLER
JvpP MCLOOP
LDA

TASKID

APO

JMP TSTRT2
CcCOM

aADD 3

AZE

apo 1

JuP MCLOOP
JMP TSTRTI
Loa I
POITEUE! 20004

ann

/
TSTHT2»

TASKID

STC 4

ADD POSID
STa 4

LA 1
XPINT!AATER
LDk N

LIF 1

JiEp OLLoan
LDF 1

LDa 2

BCL I
THAM

S5TC POSID

ADD 3

AAZSCR.,

/MONITOR CONTROL LOOP

MITEST»
MCLOOB,
P0S1ID»

MRESET.

"STC TASKID

com

STA 2

LDa 1
TDTAB!2710A
ADD 3

S5TC 4

LDA 4

SCH 13

STC TIFLAG
iac

SCHR 12

azE

nNOP

ane

SER 11

STC TLEVUEL
Lpa I
¥YSTART ! 4037
LDF @

LIF 1

JMF QOLLOAD
LDF 1

JMP MCLOOP
SEGMNT @
*]1300

JMP TESTIC
Lha 1

NOP

NO#p

ANAa 1
MONTARI QA0
STC MTARBPT
JMP MONINT
LDA

MTABPT

STC 3

&
MCON1D »
MOCODE>»

MCON?2s
DUALIIR,

LDa 3
BECL. 1
7400
STC POSID

Lba 1

anan

AZE

JMP MONOUT
LbAa I

AR

AP0 1

AZE

60

/
MCON3»
TIFLAG.

“JMP MDELAY

SRO 1
AAAD
Jvp MCLOOP
JMP MITEST

/VMONITOR INTERPRETER

MONINT.
MTABPTS

MICONI »

PARMID,

STEPID.,

INTJMP
MICONR2.,
/FND OF

LA

NOP

NOP

SCR 12

BCL I

77724

A7ZE

JEP LTEST
nac

SCH 11

STC MOCODE
ADD POSID
SCR 4

STA I

NOP

nac

SCR 7

STA I

NOP

ADA 1
STEPTR!2A00
STC 14

LDa t4

STC INTJMP
NOP

JMP MRESET
"MONINT"

/MONITOR OUTPUT ROUTINE

MONQUT»

ADA 1
MONMSG=1
STC . 7

STC MOCODE
SNS I 4
JMP MCON2
Lpa 7

LIF 1

MORST.

MONMSG

/END OF

LDF &
JVMP OLLOAD

LDF 1

JMP NMCOND
TRACKESTT7 1 AUAK
NOP

V(’ F\

MONONT

/LEUVEL TEST RONUTINE:

LTEST»

TLEUFLS

MDELAY»

PAUIS K,
PAIISEL s

PAIISEZ,
AAZMCRH,»

SyrCcLL,

SCCON1.»
STIBJMP »

SHHTNI »

SRRTN2,
/END OF
SURLTIs

- apn
ROLCCW »

0

ana 1

fAnan

AZE

APO I

JMP MICON1
JMP MRESET
apQ

JMP PATSE
Lpa 1
XDELAY! 47020
LDF 0

LIF 1

JMP OLLQOAD
LDF 1

JMP DOTST2
JMP TIMERS
CLR

STC DVALTE
JMP TIMERT
JMP MCON3
NOP)
SEGMNT @
*1440

JMP STIRLD
NOP

NOP

LIF 2

NOP

NOP

NOP

JMP MRESET
NOP

NOP

JMP MCON1
SIURCALL
LDA I
SBLTAR! 240N
NOP

ADD STEPRPID
STC 2

Lna 1

ROL 0

ADD STEPRPID
STC ROLCCW
CORECW

NOP

APO

JMP SSHJMP
STC CORKECW

61

LDaA @
STC RKHCGRON

/LDA 1 DELETED

RCGBAON»

COECHY.

RORCCU.

SSBJMP»

NOP

NOP

LDF 2

RCG @

NOP

LDF 1

NOP

Lba I

ROR @

ADD STEPID
STC RORCCW
LDA 1
SBMTARB! 2800
ADD STEPID
STC 3

LDa I

aNAnG

BSE 1

2040
NOP
BCL
S5TC
LDA
BCL
T774
ML 1

A4007

BSE 1

6070

STC SUBJMP
JMP SCCON!

ORFECU

= 0w

/END OF SURLOAD
/TATA SAVE ROUTINE:

SDSAVE,
SCOTINT»

SDCON1 »

SAVEPT»

Lpa I

135

apn

JMP 5A5WAP
ADA I

-Aan1

STC SCOTNT
LDA 1
SAREAL 12400
STC AA1A
ADD PAKMID
LDF 3
STa 1
LDF 1
ROL 1

1a

ADA

SASUYAP,

DWLIST»

SCHAIN,

MANCNT»

NM2nmo,
NP256h,

I
SDBUFF!2000
STC 11
LDa 11
LDF 3
STA I 10
LDF 1}

Lba I 11
LBDF 3

S5TA 1

LDF 1

LDA

aa1e

STC SAVEPT
JMP MRESET
Lpa 1

AAa1e

AX0

STD

JMP c"l
WRI

[SXG14D!

LDAa

DUWLIST

SRO I

6314

ADD NM2A0#
ana 1

10011

STC DWLIST
Lha 1
SAREA1!2900
SRO

SCHAIN

ADD NP256
STC SAVEPT
Lpa I

m1os

JMP SDCON1
=-2807

25A

10

/END OF SDSAVE.,
/TEST SAMPLE DATA

TESTSDs»

LDa

PARMID

HOL 1

ADA 1
SDBRIIFF! 20004
STC 2

LDA

_PARMID

62

HOL 1
ADA 1
LIMTAR! 2060
STC 3
Lpa 2

comMm
ADA 3
APO 1
JMP MHESET
LDA I 3
COM
ADA 2
APO 1
JMP MRESET
LbA
PARMID
apa 1
SKIPTR!2600
STC 2
LDbA 2
STC POSID
JMP MCON1

/DELAY SERVICE ROUTINE

NELAY s LDA
PARMID
aADa I
DTARL1!20(3A
STC 14
LDA 14
STC DUALUE
JMP MRFESET

ZINITC1»

INITC1s LDA I
CARIIFFI 200
ann PapMIn
STEG 2
5TA 2
JMP MRFSET

INITRC», LDA I
INRTARB!I 29772
ADD FARMID
STG P
LbDa 1
RCTARBY 20010
ADD Par¥ID
STC 3
Lba 2
STA A
JMP VPRESET

ZEND OF INITHC

HEPEATs SET I 2

63

3 108
LDA 1 6002
RPTAR! 2740 STC HIsSAUA
ADD PALMID ROB 11
STA 2 STC HISAUL
ADA T coM
PARNMNO, 10 STA 1
STA 1 2 IMFLAGs 0AA0
ADD PARMNQ /
STA I 2 CLR
ADD PARMNO 108
STC 6 AR
LDA & 10k 3
azZrE 1 STH
JMP RPCONI HILIF!1 4026
Lba 1 SCR 7
-1 RCL 1
apM 4 7774
aro I BSE I
JMP RPCONI1 n64a0
LDA 5 STC HILDF
STA 4 aADpD 46
JMP MRESET BSE I
RPCON1, LDA 3 6000
STC POSID STC HIRTN
LDA 6 ADD ©
STC DVALUR STC HISAU®A
JMP MOON] ADD]
LENDS Lpa 1 STC HISAUM+]
XEND! 601030 ADD 2
LIF 1 STC HISAUA+D
LDF N0 ADD 3
JMP QLLOAD STC HISAUP+3
LDF 1 ann 4
CLR STC HISAUA+4
coM ADD 5§
STC TASKID STC HISAUM+5
JMP TFETCH ADD 6
XEND S XFEND! 2000 STC HISAUO+6
A ADD 7
xUcoMe STC HISAUG+7
XFEND» TEXT ZC(END TASK)Ju37z 7
SARFAL=70917 HLT
ZEND OF MSR, FILTD AS MSRE NOP
TASKIDs 7777 CLR
ICONUNTS 0090 ADD HISAUVN
AN7ZNMER, NOP STC @
ZINTELRUPT=THAP RLOCK ADD HISAUO+1
SEGMNT STC 1
*4 0 ADD HISAVO+D
. Nop STC 2

"apD HISAUMA+3
STC 3

ADD HISAUA+4
JMP TPEND+1

TRAPS

*140
NOP

STC TpPSsAvA
ROx T 1

5TC
101
AR34

TPSAVL

H0Rr 3

STH

TPLIF!4200

ngw
TAVITE!
STH

I

TRAPDF 14020n7
SCR 7

BCL

7774

TRAPDF»

BSE
AL
STC

ADD
BSE
6300
STC

ADD
STC
ADD
STC
ADD
STEG
AbD
STC
ADD
STC
ADD
5TC
ADD
STC
apn
8TC
ADD
aDa
el |

I
I

TPLDF
142
I

TPITN
(5]

TrSAUA

1
TPSAUA+1]
2
TRSAUMA+2
3
TPSAUA+3
|
TPSAUA+4
5
TPSAVH+5
6
TPSAUA+A
7
TPSAVO+T
A1an

I

BSE 1
2000
STC 2
AAAG

TitAPCD»
/

TPCON1»

DJR
TPLIF,
TPLDF»
TPRKTN.,
TPSAUL.
TRPS5AVA,
TIPSAUR,

TPEND>
/

LDA
S5Ta
NOP

JMP
CLKH
ADD
STC
ADD
STC
ADD
STC
ADD
STC
ADD
STC
ADD
STC
ADD
STC
ADD
S5TC
ADD
ROL
ADD

- 0D

SIM

TPSAVR

@
TESAUN+]
1
TPSAVU+2
2
TRSAUM+ 2
3
TPSAUN+4
A
TPSAUA+S
5
TPSAUM+4
6
TRPSAUA+7
7

TPSAVL
I1
TPSAUA

N60@

NOP
NOP
NOP
NOP
NOP
NoP
NOP
NOP
NOP
NOP
NOP
NOP

STC
ADD
STC
ADD
STC
ADD
STC

il
HISAUM+5
5
HISAUA+A
6
HISAUA+7
7

STC IMFLAG
ADD HISAVL
ROL I 1

ADD HISAUA

DJR
HILIF, 0609
HILDF: NOP

I10B

AT
HIRTN> NOF
HISAVL, NOP
HISAVA, NOP
HISAUAs NOP

NOP

NOP

NOP

NOP

NOP

NOP
HIEND, NOP
/HARDWARE SIMIULATORS»
SIM» I10B

ABA2

CLR

COM

STC IMFLAG

JMP READSC

LDF @
SIML1, LDA 1

MESSS116080

LIE 1}

JMP OLLOAD

SNS 1

JMP SIMLI1
SIML?2, LDA 1

MESSS2!16000

LIF 1

JMP OLLOAD

SNS I 1

JMP SIML2

LSwW

STC TPSAUA

STC IMFLAG

108

A374

I0R

6071

SIMRTN, JMP TPCONI

/

MESSS51, SIMF1!2040
nann
SIMUVL1!20aa0

/

MESSS2s SIMF2!2000
anae

SIvEl s
LBs

/
S5IMULL s

/
SIMFR,

/
SIMUL2,
AAZ T TR

OLLQOADNS

N6 s

'

OHLOAT s

0OSL0OADSs
ODSTCKI s
SBLOAD.S

LSLOOP,

SIMUL2!120A0

TEXT ZC(INTO L
TEXT 7 FQi PA
TEXT 7Z HAISE

PARMID! 20040

TEXT S8R
TE¥T Z(LOWEL
TEXT Z 5¥WITCH
TEXT @137
NOP

SEGMNT 1
*2720

STE 1

108

6234

SCH 3

BCL 1

7774

apa 1

AN

STC OELAF
ann n

STC OEKTN
ann 1

AP0 1

JMP OSLOAD
BET 1 2

=
hM YR1
SENSKE

SENSEY
1) 37

QSBUFF=-11400325777

JMP SRLOAD
SET I 2

OSTACK=11404ALS5TT77

Lbha 1
STA 1 2
LA T 1
5T 1 2
L4 T 1
Aanpn I

=1

5T11 S
CLK

LbA 1 5
SAE 1
TEXT Zn37
JMP «+2

JMP LSCON2
STa

PUT SAMPLE

66

i
sURLs C 7
SEITCH 123

4

LSCON1.

&

COoMIMAS

LSCON2

L]

[

AP0

JMPR BRITSTR
LDa A

APO I

JMP LSCOM])
LpA 1
TEXT Z73=Z
STH 1 2
LDha s

(MRl

S6H 1

SET T 17

=4

5ChH 1@

XSK I 7
N7F

JN-) e+
LZE 1

Ji? .45
BSE 1

(YA

5TH 1 2
ROL I 7
NAG

ALSK 7

JMP e=14
Lpa 1

TEXT ZMsZ .
STH I 2
JMP LSLOOP
LnA

2

nPo 1

JVP et
Lpa 1

TEXT 7Z¢ 7
STH 1 o

LDA

/
LSCON3s

/
RITSTRS

LOOr2,

NN Ay

LOOP3,
BITSAU,

/
ZOUTPIT
OCNTL1 »

I

TEXT 7ZM37
STH I =2
LDa

1

AP0
Jp
LDA

OSRIIFFIA4MRNLSTTT

5TC
JMP

I

LSCON3

I

b4

OCNTL 3

LDA

STA

OSTCKI&STTT

COM

ADA T
OSRUFF1AAGALSTTT
ARO

JMP OCNTL2

JriP OECON2

LDa
Bl
STC
Lha
KOKR
A
Jwmp LOo0r3
SHO

BITSAV
NQP

Jrp LON»2
LDa 1

NOP

J¥P LSCONI1

w1 N

bt U T e N
=g
i
D
=

CONTROL ROUTINE
CLE

108

A234

SCR 3

neL I

7774

ADD N6
STC ORLIF
ADD 0

STC QERTN
LDA
OSTCKIASTT7

67

OCNTLZ.,

OCNTL3»

OTT»

/
OCRT>»

ONRTI1.»

OCHT2,

OCNTL4,

OCNTLS5.,

/
STWARCH»

SAE

I

OSTACK=114ARBESTTT

JMP
JMP

0
UECON?Z

LDa I
OSTACK!!' 4GRS TTT
STC 2
Lha 2
ann 1
-1
RSE I
HAGO

STC
SkO
JMP
JMP
Lba

3

I 2
o2
0CAaT
I

OCNTLS! 63006

STGC
JMP

SET
=50
SaM
ADA

OUTRTN
TTYPE2

1 4

7
I

-1 000

5TC
XSK
JMP
X5K
JMP
JMP
LDa
114
STC
LDA
an
STC
LDA
3
291
LDA

(o]

-

S5TC

LDH
SHND

S

JMP
SHD

2600

13

I 13
QCNTLA
I 4
OCHTIL
OUTEND
1

1
I

10

N

STRING
I

/

3ran
/
OUITRTN

STHINGS

/
VARUAL

VLOOP.»

BLANKS

JMP UARUAL
SHD T

N2N

JMp RLANKS
SHD 1

3070

JMP ¥COOR

SHD I

JMBP YCOn:
SHIY I
TaAMAN

JMP ENDM

SHD 1

1 A0

JMe TTLINK
SHD I

a3nn

JP TTCARR
JMP SEARCH
NOP

Lna I
BARRY o +0
STC OTITHTN

LOH 1 5
SHDh 1
5117

JMP SEARCH
5820 2

JMB TTY R
JiiP ClY

Lnna 1
6AAAT e +2
STC OTMITHTN
SET I 17
=5

XSK I 12
LDH I 6
SHD I
54348

JMP e +4
SRO 2

JMP TTYPEIL
JMP CRT
¥SK I 12

JMP BLANKS+3

JMP SEOARCH
JMP NUMBRH

68

BLOOPS

KCOOK.
STC

/
YCOOR»

SAUSIN,

TTLINE.,

TTCAIR,

NDN .

NUMBEM.

NTMLLD

COM

STE 12

LbAa 1

6ANNY «+7
STC OFTRHRTN
Loa I

anar

SRO 2

JMP TTYREI]
JMP ChT
XSK I 12
JMp BLOOP
JMP SEARCH
JMP NTIMBER

1

JMP SEFARCH
LDH I 5
HOR 1

STC SAUSIN
JMP NIIMBBER
SRO I

NOP

JMP «+2

C O

STC 1@

SRO 2

JMP e +2
JMP SEAKCH
LDa 1

n21e

JMP TTOUT
JMP SEARCH
SrO 2

JMEP e+ 22
JMP S5EALCH

LDA I

nals

JMP TTOUT
SET I 7
=120

JMP SEARCH
SRO 2

JMP OUTEND
JMP OCKHT?2
LDA

ARan

STC NUMRTN
ROL 3

STC Nimsay
LDH I §

‘sam 1

s 4

JMEP e+ h

LDA

NI SAL

#0H 3

MBS NTJERHTH

RCL 1

i

ana 1
NIV AU, 110

JMT NTIMLY
G B TI‘-\], \ﬂ')
STYRE ROUTINE
TIvom1s ann 1

-37

AP0

AND N10g

AniA I

A
JMe TTOUT
XS I 7
JMP OFTRTN
S L 140
TT¥ N8, LDha I
ne1e
JMP TTOUT
Lpa 1
fA21s
JMp TTOUT
SET 1 7
=192
JEP 0TIT2TN
7
TTONT I0OR
[SIATR =]
(12
20N
TSE
JhP e=1
TLS
LING
LMODE
I10R
SIGIAN
TTRTNs JMP B

/00T OUTPUT BOUTINE

CHTos R0L 1
aAna 1

CRTTAR&STT7

STC 11

69

/
DITEND S

OELOOR,

ADD 10
n&se 11
L

-

DEC 1 11
L 1
2

ane

ERGIEE |
Lo

1

COw

ana I

ARA

AapPG 1

Jite MTTE T

Lna I
112
sS40
L §
-0
AT
17
JME QOTHTN

Lna

2

cow

ADG T

QSHLFF+ Y4085 TTT
AP

JMP OECONS

Lha [
Q8TACK=114001 85T
ST 9

LK A

JME .42
Lha T A
5AaK 1

IGEEA]

JME e =3
LDa

6

SAT
OSTCAI&STT77
JMP e +0
JMP OECON]
Lpa 1 6
5T 1 2
J¥P 0FLO0OD

70

/ n176 YAt
OECON1, LDA T402
2 neT7 F A
STC OSTOCRILSTT77 7701
OECON2s DJE 1463 £
OFLIF, NOP A314
OFETNs NOP V77TA 7z Y
CRTTARBs 2000 /NONE 7007
[GRGRERG! 45135 /7 7
Qa7 /A 6151
7744 /
5¥7T / B TRACFs TRACEF&STTY
2651 77717
4136 /7 C TRACVLE&STTT
2241 TRACVL, TASKID!2200
4177 / D PARMID! 20060
3641 STERPID! 2000
4577 /7 SECCLKI2000
4145 MINCLK! 2000
4477 / F TEXT 2932
Hony *CRTTAR+ 107
4136 / G SPaACE, monn
2645 nann
18717 / H TitACEF» TEXT Z(TRACE?)Z
7710 LINET2s TEXT ZR2,(TIVR2,(PIVR2, 7
T741 /7 1 LINET3s TEXT Z(S)UB4,UZ
ARal LINET4s TEXT Z(SEC)B2,UVIMINICLY
4142 /7 J LINETS., TEXT 73 Z
2076 /
1077 / K *CRTTAR+140
4324 4136 (44
ALTT /7 L 3641
301 2101 /1
3377 7/ M L A177
7730 4523 /2
3IN17 / N 2151
7706 f4122 /3
4177 /7 0 2651
7741 24814 74
aQa7T /P 477
3044 5172 /5
ap7e /7 0 651
n376 1506 /6
4477 / R 4225
3146 Q443 77
5121 / S 6950 .
4651 5126 /78
4047 /T 2651
4077 5120 /9
a177 /11 3651

7791 0STACKs NOP

OSHITFF»

ODFORM.

/
XSIDLEs

XIDL®EF,
XIDLEU,
XTIMET>»

XFTIMT.»

XUCOM1 »

XSTART>»

/

KFESTHTs

X¥UCQOM2,

/
XPINT,

XFOINT,
XFPIN2.,
XPOLOD»

XFPOLDs
XUPOLD.,

/
AXDELAY »

WFDLAYS,
AAZ.S08.,
NDTIMEQS

71

* o +507

MNOP

e+ 30

TEXT 7.¢ OQUTPUT VYALUE = V7

TRXT ZC PAHMID = JUCLB7s(TIME=Z
TEXT 7ZYv¢ HOILS YU MINDTES)7
TWYXT 7ZUCSECONDS«XCL37

¥IDLEF

M

XIDLEY

TEXT ZCIDLE J)3Z
TEXT 2037
XFTIMT

AAAA

XUCOoM1

TEXT ZC(TEST TIMER PYVIZ
PARMID! 2001
TEXT 2057

XFSTRT

AAA

XUcomM2

TEXT ZCSTART T JYUC AT POS YVB2.Z

TEXT ZV3Z

TASKIDI2A00

POSID!6OOA

Ta4L7T

POSINIAAGAA

7767

TEXT ZA3Z

XFPINT

anman

XUcoMmM2

TEYT Z(PROG INT T)JVU%

TEXT Z¢ AT POS JYURP,U37Z
ZFPOLD

anan

XUPALD

TEXT Z(SCHEDULE TASK)JYUs7Z

POTASK! 2unmn

TEXT 20037

XFDLAY

aANan

PUCOM2

TEXT Z(DELAY TASK JYU3Z

NOP

TIFT

*¥e+13

DOODEDS, NOP
*xe4+173
POURITEs T777
THTHT
TTET
T777
b 6 S
TTT7
TTRT
i i &7 i 4
TTT
T777
Tt
1797
/ TASK TIME QUENE
TTIMEQ, 1
3
5
7
11
13
7777
NOP
TTTABs 6
13
10
19
13
14
NOP
NOP
TDTAR, 02 A
ritaViRh!
alaye1s!
a4100
Alam
a160
NOP
NOP
7
MONTAH, 7402
(5]
mamna
nat4
A4nn
&)
G
™
]

72

PARMP

PARM3,

PAEM4.,

A
4]
Aa17
@
20074
3022
a9 .
nas23
An2h
aAu2n
5]

u‘?)

4}

“

%

A

&}

6]
a4y37
4]
2400
a4a4l
naae
A443
A444
nasée
]

(5]

a2 =2

3

|2 S

na4s57
454
A455
naan
A461
Aa62
Q463
BaahH
476
@
7
@
a
2

a
2475
Qa7

PARMS,

PARME»

PARMT »

PARMEB,

natTa
000
n50a1
nsae
nS5A3
A5MA4
A516
nAsta
)

A

6]

0

&)

]
AS1T
ng14
515
2520
”521
ns522
1523
2524
7525
536
61

(]

4]

4]

A
g537
A534
AS35
RAMA
541
Y8
ns4ani
AS44
m545
n540
@A

n

557
el

AAANA
561

73

0562

2563

STEPTH,

SRLTAB,»

/
SEMTABS»

SDBIJFF»

LIMTAB»

A564
a565
AS567

ST T8

anan

)

A
AMMAA Y STTRCLL
6M0AI SNSAVE
AT TESTSD
6MAMA 1 STJBCLL
6AAA 1 SURCLL
60T DELAY
NOP

NOP

NOP

NOP

NOP

NOP
600ATINITRC
6AAYINITCI
AANATREPEAT
AOAANTLEND
A2TS

NOP

NO

naT6

“HerT7

7739
Bnaaa
AAGn
TT7AH
7700
NOP
*k o +20
1731
1733
1000
1020
13101
1322
A&TM

aTG2
72189
125
130
A16S

=108
=100

A6TA

A7Aa2
SKIFTB, 0015

AA35

2@55

2074

P115

135

m155

2175
/NDELAY ROUTINE DELAY TABLE
DTABl1s 9 - ol

g

DMOVVOIID

RPTAB, NOP
NOP
Aa4n
ane6n
A1a5
o120
NOP
NOP

RCTAR, @

10
10
10
10
A

RLSTARs 0
19
10
16
10

RLDTAR, 0

74

INRTABS

10

CUBUFF»

CABUFF»

AAZ.TAB,
z

HSCREG»

S IPVDVNONO

a

18
10

10

NOP
*o+7
AaAN

7
NOP

TSOUT=7777
SEGMNT?2
*20

NOP

CLR

coM

STC HSCREG
I10RB
6002
Lba 1
A215
PDP
PMODE
TLS

KCC
LINC
LMODE
SNS 3
JMP e=1]
CLR

SCik 14
LDF ©
10R
A304

