
Petri net representation of relay ladder

logic for programmable controllers

by

Douglas K. Hyde

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

~IASTER OF S(,IE~CE

~Iajor: Industrial Engineering

Signatures have been redacted for privacy I Signatures have been redacted for privacy

Iowa State Uniwrsity

Ames. Iowa

1989

11

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION

CHAPTER 2. LITERATURE REVIEW

Petri Nets ..

History.

Desirable traits and advantages of Petri nets

Disadvantages of Petri nets.

Graphic representation and dynamics of Petri nets.

Testing of Petri nets ..

Extensions to Petri nets

Applications of Petri Nets ..

Design and documentation

Manufacturing simulation and modeling using Petri nets

Analysis and testing

Control

CHAPTER 3.

CHAPTER 4.

PROPOSAL

LOGIC MODELS

1

4

4

4

4

6

6

9

10

12

13

14

15

15

17

19

PLC Processing of RLL

Serial Ladder Model .

Parallel Ladder Model

111

CHAPTER 5. ALGORITHMS FOR PETRI NET MODELS

Process Nets.

Generic REN Modelling Steps

The mathematical algorithm.

The tabular algorithm

Justification of Selected Algorithm

CHAPTER 6. PETRI NET MODEL DEVELOPMENT

Serial Ladder Petri Net Model .

Serial ladder rung one

Serial ladder rung two

Serial ladder rung three.

Output evaluation ...

Parallel Ladder Petri Net ~Iodel .

Parallel rung one

Parallel rung two

Parallel rung three

CHAPTER 7. TESTING AND DEMONSTRATION OF MODELS

Serial Model .

RLL model results

19

20

23

25

25

30

37

48

56

.57

57

57

.57

.59

62

64

6.5

6.5

69

76

77

78

PN model results

Parallel Model.

RLL model results

PN model results .

IV

CHAPTER 8. CONCLUSIONS AND FUTURE WORK.

Conclusions .

Future Work

BIBLIOGRAPHY

APPENDIX A. COMBINATION TABLES

APPENDIX B. TEST EVALUATION DATA

79

79

79

80

81

81

82

84

89

9.5

v

LIST OF TABLES

Table 5.1: Transition and place representations for serial PrN 27

Table 5.2: Truth table for the start / stop rung. 38

Table 5.3: Sorted table for serial rung one. . . .51

Table 5.4: Second sorting of start/stop truth table .52

Table .5.5: Third sorting of start / stop truth table. .53

Table 6.1: Combinations generated by rung two input and output states .58

Table 6.2: Table for serial ladder rung three input values showing gener-

ated output values 61

Table 6.3: Transition and place representations for parallel PrN . 65

Table 6.4: Parallel rung two unsorted combinations table . 67

Table 6.5: Parallel rung three unsorted combinations table i1

Table 6.6: Sorted parallel rung three combinations table i1

Table A.1: Table for serial or parallel rung one 90

Table A.2: Rung two table reordered tables showing six mutually exclu-

sive alternatives and their arc requirements 91

Table A.3: Six tables showing all possible combinations generated for de-

activation of the future output of serial ladder rung three " 92

VI

Table A.4: Six sortings for parallel rung two evaluation. 93

Table A.5: Six combinations generated for parallel rung three 94

Table B.1: Evaluation data for serial RLL 96

Table B.2: Evaluation data for parallel RLL 104

Table B.3: Evaluation data for serial REN . 120

Table B.4: Evaluation data for parallel REN . 121

Vll

LIST OF FIGURES

Figure 2.1: Places, transitions, arcs, and tokens of a Petri net .

Figure 4.1: Common components of relay ladder logic diagrams

Figure 4.2: Serial relay ladder logic model .

Figure 4.3: Parallel relay ladder logic model

Figure 5.1:

Figure 5.2:

Figure 5.3:

Figure .5.4:

Figure 5.5:

Figure 6.1:

Figure 6.2:

Figure 6.3:

Figure 6.4:

Figure 6 .. 5:

PrN for serial RLL

Two output evaluation schemes for the PrN update analysis.

Comparison of Boolean expressions using PN representations

PN model of serial rung one .

PN model of serial rung three

PN model of serial rung two

Output evaluation network .

Complete PN model of serial relay ladder logic

PrN model for the parallel RLL model .

PN model of parallel rung one

7

20

21

23

26

29

32

43

49

60

62

63

66

68

VIll

Figure 6.6: PN model of parallel rung two . 70

Figure 6.7: PN model of parallel rung three 74

Figure 6.8: Complete parallel RLL PN model representation including

PrN, RENs, and output evaluation nets 7.5

1

CHAPTER 1. INTRODUCTION

Programmable logic controllers (PLC) and programmable logic devices (PLD)

have progressed rapidly since their inception in the 1960s and represent a first step

towards automation for many manufacturing facilities. Their initial programming

systems involved several methods of implementation or coding including relay ladder

logic (RLL), digital logic symbols, boolean logic symbols, and high level language

coding. A new concept for control programming is beginning to appear in manu­

facturing. Petri nets (PN) have been demonstrated as effective tools in the design

and control of PLCjPLD systems and also have been used to model manufacturing

systems at levels of control from production flow to individual machine control. The

use of Petri nets as a language for logic representation at all levels of manufacturing

and production planning would help to speed the planning and implementation times

for a manufacturing system by reducing the number of different languages used by

the implementation team.

In the development of a production system many computer languages are used

to develop, test, and implement the system software components. Each language has

a distinct programming style, syntax, and structure. A lack of continuity between

these many systems makes communication, documentation and validation difficult.

In a manufacturing setting one might model the production line with GPSS, imple-

2

ment conveyor control with RLL, program the robotics and the flexible manufactur­

ing system (FMS) with other languages, and document the systems interaction with

graphics and word processing, then tie elements of the system together inside another

programming environment. As the project proceeds from one task to another, the

shift of responsibility for implementation can result in a loss of information, inadver­

tent change in the focus of the project, or complications in the documentation and

implementation of the system. These diverse systems of logic need a common base

for design and implementation.

Petri nets provide a common base of communications. Alanche et al. [2] stated:

" ... (if) ... graphical tools such as petri nets are more and more used for

the design, the evaluation and the implementation of the control system,

a better understanding within the project team will result."

The ability to use one approach to logic and programming through all of these design

and implementation phases simplifies and speeds the process of testing, debugging,

and documentation yielding a reduction in start up time [9]. Due to the diverse nature

of the manufacturing environment, this will not be entirely successful.

Petri nets can be used as a tool for representation, analysis and synthesis. Some

applications include operating systems, compilers, communications, speed indepen­

dent hardware, propositional logic, mathematics, computer hardware and production

systems [1, 38]. Petri nets have been applied to manufacturing environments at the

level of whole systems, FMSs, and controllers [4, 29, 33].

Ladder logic as a programming tool is successful because the person wiring the

wall mounted systems could program the new PLC systems using electrical wiring

3

symbols. Remembering and understanding the relay ladder logic following a long ab­

sence from the logic is difficult [9]. The programming of PLC jPLD systems is coming

under the control of programmers and systems people and not the "electrician". The

present literature indicates that PN based controllers may eventually replace RLL

systems. Realistically, RLL will endure for some time in islands of automation and

small manufacturing installations [41].

The ability to test, validate and document a system before implementation has

not progressed as fast as the control capability of PLC jPLD systems. Validation

using simulation sometimes fails to identify potential states and evaluate the system

in their presence. The programmer writes the simulation for what is expected rather

than the real potential of event occurrence which exists. Failure to check all of

the states or potential markings of a system for these "unforeseen" conditions could

result in PLC logic which operates incorrectly causing costly implementation delays

and perhaps damage or injury. Petri nets can be evaluated for all potential system

states using a reachability tree. PN can be used to test and document a system before

implementation.

Manufacturing automation's shift from the factory floor to systems design groups,

the desire to reduce the number of languages used in developing the automation, the

continued use and growth of RLL based PLCjPLD devices in industry, and the need

to document and test RLL before implementation combine with Petri nets growth

as a language in manufacturing planning to point out a need for generating PN logic

from RLL to improve the communications, testing, debugging, and implementation

of processes.

4

CHAPTER 2. LITERATURE REVIEW

Petri Nets

A summary of work on Petri nets and modifications for manufacturing follows.

History

Dr. Carl Adam Petri's dissertation in 1962 [39] formulated the basis for a theory

of communication between synchronous components of a computer system. "He was

particularly concerned with the description of the causal relationships between events"

[38]. This work began the development of Petri nets into the large body of research

and development existing today. 1 The basis of Petri nets is to model graphically and

test analytically the discrete events of concurrent operations within a system. One

goal of the research is to achieve the ability, using Petri nets, to visualize, analyze,

and validate a discrete system of any size.

Desirable traits and advantages of Petri nets

Kamath and Viswanadham [19] listed five positive aspects of Petri nets.

1 Peterson [38, pp. 3 and 4] gives a developmental path.

.5

1. "They describe the modelled system graphically and hence enable

an easy visualization of complex systems,

2. Petri nets can model a system hierarchically; systems can be rep­

resented in a top-down fashion at various levels of abstraction and

detail,

3. A systematic and complete qualitative analysis of the system is pos­

sible by well-developed Petri net analysis techniques,

4. The existence of well formulated schemes for Petri net synthesis fa­

cilitates system design and synthesis, and

5. Performance evaluation of systems is possible using timed Petri nets."

Peterson [37] elaborated further:

"Petri nets have been receiving increased attention as a model of par­

allel computation. In large part this is due to the simplicity of the Petri

net model coupled with a careful balance of modeling power and decision

power. The modeling power of Petri nets is quite good, as witnessed by

the wide variety of systems which can be modelled by Petri nets. The

decision power is also good, since the reach ability problem is decidable,

and most problems can be converted into reachability problems."

Agerwala [1] states that the advantages of Petri nets include the ability to model at

every level of the system which most other design languages cannot do.

6

Disadvantages of Petri nets

The complexity of analysis grows as the model grows. Model size or complexity

must be balanced with desired decision power. Peterson [37] summarized some of the

disadvantages:

" ... concurrency of operation has become more and more common. This

has generally improved utilization and throughput, but at a consequent

increase in complexity."

A balance between modeling and decision power must be struck. Peterson concludes

with:

"Subclasses of Petri nets increase the decision power, but at a cost of being

unable to model a large number of systems. Extended Petri net models

increase the modeling power, but in all known cases at the expense of

decision power, since most analysis questions become undecidable."

There are still some areas and events which Petri nets can not model [38, pp. 190

through 195].

Graphic representation and dynamics of Petri nets

Graphic Representation Petri nets use three basic components: places, tran­

sitions, and arcs.

Places represent states of the system components; transitions are events; and arcs

are either inputs or outputs of transitions. Graphically, Petri nets are represented by

circles (places), bars (transitions) and unidirectional vectors (arcs). An example of

7

P2 P3

Tl T2

Figure 2.1: Places, transitions, arcs, and tokens of a Petri net

a Petri net in Figure 2.1 demonstrates these three components. shows tokens mark-

ing places, and inhibitor arcs used for enabling a transition requiring an absence of

markings in a place.

Transitions are the events changing the state of the system. \Vhen a transition

fires. the system changes state (i.e., from idle to active~ available to unavailable). In

some models the bars are replaced by boxes representing transition delays or process­

ing time [4].

Places are connected to transitions (and vice versa) by directed arcs -3;~. Thev - - .

control the unidirectional flow of tokens between places and transitions. Some 2\et

models are subsystems of larger models so may have an entry place without a feeder

arc or a completion place without a departure arc.

8

"An extension of Petri nets replaces the arrow head by a small circle

creating an inhibitor arc to change the transition firing rule. A transition

is enabled when tokens are in all of its normal inputs and no tokens are

in its inhibitor inputs. This notation is borrowed from switching theory

where the small circle means 'not'" [38].

Tokens are dots contained within the places (circles). Tokens are used to define

the execution of a Petri net [38, page 16]. There can be one or more tokens in a place

representing multiple available resources at that state or the units having reached

that state in the system; the ability to generate only a finite number of tokens at any

place in the modeled system denotes a bounded Petri net.

Dynamic Behavior The dynamic behavior of a petri net is described by Ka­

math and Viswanadham [19] as follows:

"The dynamic behavior of a system is modeled as follows. The oc­

currence of an event is represented by the firing of the corresponding

transition. The movement of tokens in the net resulting from the firing

of one or more transitions represents a change in the system state. The

following are the firing rules for marked Petri nets.

1. A transition is enabled when each of its input places contains at least

one token.

2. A transition can fire only if it is enabled.

3. When a transition fires:

• a token is removed from each of its input places, and

9

• a token is deposited into each of its output places".

A more complete discussion of the dynamics of Petri nets can be found in Peterson

[38] or Reisig [40].

Testing of Petri nets

A significant advantage to using Petri nets versus other modeling systems is the

ability to test and validate a system. Liveness, boundedness, safeness, and reachabil­

ity are measures of effectiveness for the Petri net.

Deadlock occurs when a transition cannot fire and no sequence of transition

firings will take the net to a marking which allows the transition to fire. A Petri net

is live if there is no deadlock [37, 38].

A reach ability tree is generated from an initial marking by firing enabled tran­

sitions. Reisig [40] and Peterson [37, 38] discuss this in detail. Essentially, if the

reachability tree shows no infinite markings (places containing or having the poten­

tial to contain an infinite number of tokens) then the tree is bounded and safe. The

reachability tree is a finite representation of the usually infinite reach ability set from

an initial marking of the Petri net.

The reachability problem deals with the ability to reach a marking from an initial

marking. Peterson [37, page 147] states:

"Recent. results seem to indicate that. the reachability problem is solvable,

but it is extremely hard. Thus although the problem can be solved, it

may take much too much time and money to be worthwhile, in general.

Other problems, such as t.he equality of the reachabilit.y sets of two Pet.ri

10

nets (useful for considering equivalence and optimization) are known to

be unsolvable."

Extensions to Petri nets

There have been many advancements and modifications to the basic Petri net

theory. Not all authors and researchers have agreed on the direction of the "improve­

ments" so several branches of Petri net theory have developed. Some have added

features by extending basic Petri net concepts. Examples include timed transitions,

levels of net operation to reduce repetition, delayed transitions to simulate processing,

delayed arcs, and multiple token place representations. The following sections discuss

some of the more prevalent extensions to Petri nets and their applications.

Extensions to Petri nets have enhanced or altered the power of these models.

Some of the changes are colored Petri nets, timed Petri nets, and stochastic Petri

nets.

Colored Petri nets Colored Petri nets (CPN) allow the modeler of systems

with repetitive processes to view a smaller network in which tokens have changed

colors to: indicate process steps, assign attributes, or differentiate between tokens.

The primary function of CPN is data management. The structure of the PN systems

are not affected nor are the reach ability trees or analysis questions. The color of

the tokens is just another data item carried in the markings. The colors represent

levels of activity or number of times the part has moved through the process. This

model concept is also useful when several parts must be processed through the same

system. An example would be in electronic chip manufacture where wafers being

11

fabricated pass through five basic processes many time adding layers of new material

onto existing layers. The processes are represented by states, the pass number is

represented by the color of the token, and the transition represents the movement

between processes.

Timed Petri nets Timed Petri nets introduce timing to a network. The

manufacturing area of interest in Petri net analysis would be limited if the timing of

a network were not possible. By adding time to the place or transition (two schools of

thought diverge here) the system changes from instantaneous firings to one of delayed

firing. This can affect the network from several standpoints including availability of

resources, timing of future events, and overall completion time for activities.

Control nets Control nets (C nets) are a modified form of Petri net (P,T ,1,0)

where I and 0 represent input and output arcs by Murata, Komoda, and Matsumoto

[33]. They called the 4-tuple a single element C, included the marking matrix M and

5 new elements representing various process functions (8, 'P, TJ) (command, response,

and gate functions respectively) and system status functions (U ,V) (execution status,

and transition status respectively) to produce a 7-tuple (C, 8, 'P, TJ,D ,V,M) to control

a factory automation controller. The process functions are used to allow an operator

direct control of token movement in the system. The system status functions allows

supervision of the execution status and management of the transition statuses. This

is an example of modelling enhancements quickly limiting the decision and analysis

attributes of Petri nets.

12

Applications of Petri Nets

Applications of Petri nets in the manufacturing setting are varied. The useful­

ness of PN logic in systems design and documentation is demonstrated quite often.

There are efforts in simulation, testing, analysis, design, and control using PN sys­

tems. Implementations at every level of control has been demonstrated. Simulation

systems using Petri nets at the levels of factory, production line, cell, and controller

exist. Design of systems using Petri nets have been automated. Systems have been

demonstrated which develop RLL from PN graphics and test PN designs before im­

plementation. Three PN based controllers have been developed and demonstrated.

PN as a basis of documentation and control is becoming more prevalent and will

continue to demonstrate its applicability.

The dissertation in 1962 by Petri [39] came to the attention of Project MAC at

MIT which has published numerous reports and dissertations. One of these reports, by

M. Hack [1.5] in 1972, brought together the many facets of the production environment

and provided a broad approach to manufacturing systems overview and design in light

of Petri nets. Most importantly, the work describes the use of free choice Petri nets

and their definitions. This work puts together the nuts and bolts of production

schemata and is the seminal work relating Petri nets directly to a manufacturing

environment. Since that time work has branched into several different areas of study.

Primarily, there are 3 levels of production control:

• Manufacturing Systems

• Flexible Manufacturing Systems or Cells

13

• Programmable Controllers or Controller based Sequencers

The study in all three of these areas falls into 4 categories:

• Design and Documentation

• Simulation and Modeling

• Analysis and Testing

• Control

Design and documentation

Houldsworth and Bready [18] state that PLC functions can be enhanced by us­

ing a Petri net like programming system and a structured method of programming.

They maintain that good methods and a graphical approach to programming are

used effectively with a personal computer to provide good documentation of the sys­

tem. The system they promoted is GRAPH.5 by Siemens. Brand and Kopainsky [6]

and Bruno and Marchetto [i] cite Petri nets as the basis for process control design.

Gentina and Corbeel [14] propose a modified net system for the synthesis of FMS

control. Devanathan et al. [13] promote computer aided design of RLL using state

diagrams. Krogh and Beck [23] investigate the use of nets for simulation of manu­

facturing systems and Krogh, Willson and Pathak [24] propose using Petri nets and

microcomputers to generate programming for PLCs keeping a data base of used and

available data points. Their work allows the retention of RLL but keeps the pro­

gramming level at a higher level language. Kruempel and Day [25] developed a CAD

package for designing RLL for PLCs as well as a simulation system they test against

14

a Modicon controller. Lloyd [27] discusses GRAFCET, a program which uses Petri

nets as a basis for PLC programming. Like the GRAPH5 program of Siemens, they

promote a function block approach to states and transitions. The elemental function­

ality of PN s are not considered or demonstrated, only their higher order modeling is

used. The function blocks and transitions are evaluated or fired based on RLL writ­

ten at a lower level. Only the PN logic is displayed. Currently Siemens (GRAPH5),

Telemecanique (GRAFCET), and Allen-Bradley (unknown) offer PN-based graphic

programming modes in addition to ladder logic and high level languages [41 J. Mar­

tinez and Silva [30, 31] develop a language for describing concurrent systems such as

FMSs and a package for computer design of concurrent logic systems; with AHa [28]

they discuss using Petri nets for specification of FMS. Matsuzaki et al. [32] use a

GRAFCET-like Petri structured programming system similar to BASIC and report

increases in software productivity of .50% to 100% over Relay Ladder Logic, as did

Murata, Komoda, and Matsumoto [33] who reported a .50% man hour reduction in

software development time from RLL using their PN oriented language.

Manufacturing simulation and modeling using Petri nets

Han [16J not only proposes the specification of the system using Petri nets, he

also demonstrates the simulation, modeling and queuing analysis capabilities of the

nets. Silva and Velilla [42] investigate the various computer resource consumptions

using PLC vs Petri Net based controllers. Alanche et al. [2] presents a Petri Net

based Simulator (PSI) to evaluate flexible manufacturing systems. Ana et al. [3]

develops some of the mathematics of analysis of FMS using CPN (see section 2).

15

Narahari and Viswanadham [35] use Petri Nets to analyze FMS, and conclude that

simple PN will not suffice for larger systems. Viswanadham works with Kamath

[19] to develop the Colored Petri net analysis of an FMS. Beck and Krogh [5] citing

N arahari and Viswanadham present modified Petri nets for simulation and control of

an FMS. Bruno and Morisio [8] develop PN based simulation of manufacturing cells

using some earlier work on PN for the design of FMS. Martinez, Muro, and Silva [29]

expand previous work to demonstrate the modeling and validation capabilities of PN

in production systems modeling. Peng and Shin [36] who did not deal directly with

manufacturing systems develop some interesting concepts of modeling distributed

systems for real time control.

Analysis and testing

Hack's [1.5] seminal work includes a basis for analysis and testing of PN systems.

Heimerdinger [17] uses PN systems to analyze fault tolerance at a system level. LelVler

[26] develops a software package for the analysis of PN systems which verifies and

validates Petri nets. Narahari and Viswanadham's [3.5] \vork on PN systems includes

the analysis needs of the system; as does Martinez et al. [29].

Control

Chocron and Cerny [10] provide the first example of implementation of a PN

based controller (called a sequencer in their work). This example is paralleled by

the work of Courvoisier et al. [11, 43] in their development of a PN based controller

on a Z80 based computer. The implementation is slow due to the CPU speed and

16

memory SIze. Advances in semiconductors is expected to improve the processing time.

Murata et al. [33, 22, 34] present work on a PN based controller implementation

on a larger CPU controlling a FMS cell. Their findings indicate good control and

quick comprehension of the graphics used in the control monitor allowing rapid fault

detection and repair with increases in software productivity of 50% over the RLL

systems. Crockett et al. [12] expands upon all of the previous work to implement a

PN based controller at a higher level of control generating software control commands

used to interact with hardware signals.

17

CHAPTER 3. PROPOSAL

The need for documentation and testing capabilities on Relay Ladder Logic used

in programmable controllers has importance in the future as islands of automation

are incorporated into larger automated systems. The initial control logic was devel­

oped for use by electronic technicians, floor foreman, plant maintenance personnel, or

electricians who wired the equipment. This level of control has yet to be integrated

with larger automation systems. The RLL serves well as a communication system

of logic for earlier programmers, but systems people need to consider integration of

subsystems using a common control environment.

Replacement of Relay Ladder Logic at its lowest levels of use will be slow. Petri

net based controllers have been considered, and some high level petri net systems

are offered but their acceptance is far down the road. RLL is an acceptable and

proven method of logic development. Its roots in the electrical magnetic relay and

switch system make comprehension easy for maintenance and repair teams who work

around the equipment. The difficulty of communications between floor personnel who

are not well versed in the logic design languages and systems designers who are not

well versed in RLL or electrical symbols will cause an increase in the cost. and time

to implement a system.

Petri nets have been used for designing and developing logic for manufacturing

18

and flexible manufacturing control. Their future use as a documentation and logic

development tool for systems has a high probability. They have the potential to

become a base language of manufacturing systems design in the future.

Computer Integrated Manufacturing (elM) and system design is becoming more

important at every manufacturing site. Integrating and reducing the number of lan­

guages which must be worked with in a elM project is important. Logic and systems

planning using one common language is the ideal solution. Although the ideal usually

is not reality, Petri nets have the potential to be that common integration language

used in elM.

Since relay ladder logic is entrenched in the current manufacturing systems and

will remain so for some time in the future, there is a need to develop a methodology

to provide a Petri net view of the RLL logic for analysis and documentation. In light

of this need, this thesis proposal is threefold.

• To develop RLL test models demonstrating basic control logic.

• To determine the generic steps required to convert RLL models to Petri net

models.

• To demonstrate that the Petri net and RLL models perform exactly alike.

This work will provide a conceptual model and working algorithm for converting RLL

to Petri nets providing future systems designers with a common language for design

and documentation, and allowing future designs in RLL to be converted to Petri nets

for testing, validation, and debug before implementation on the factory floor.

19

CHAPTER 4. LOGIC MODELS

Components found in most RLL systems as shown in Figure 4.1 include:

• Normally open switch,

• Normally closed switch, and

• Coil or Relay,

The proposed architecture consists of two models, namely, the processing model

and RLL model. PLCs process RLL diagrams according to a predefined algorithm

embedded in the PLC system. This processing is the basis of the processing model

and must be integrated into the PN models for a valid model of RLL execution. Two

RLL models investigated in this research are a serial and a parallel ladder using swi tch

and relay elements. These models are representative of simple RLL systems.

PLC Processing of RLL

The PLC processing model gathers outside inputs for the relay ladder into current

registers. Each rung is evaluated sequentially based on the current register values.

The results of the evaluation are placed in future registers used to update the current

output registers after the ladder scan is completed. During a ladder scan no state

20

-{}-
Normally Open Switch Normally Open Coil

* Normally Closed Switch Normally Closed Coil

Figure 4.1: Common components of relay ladder logic diagrams

change in earlier rungs output affects the rungs following. The ladder scan speeds

make the processes appear to be continuous but RLL based PLC's are all sequential

evaluation systems.

Serial Ladder Model

A three rung serial ladder is illustrated in Figure 4.2. Rung 1 of this model is a

start/stop rung. Outputs are represented by coils and inputs by switches. The Y1

input is driven by the Y1 coil and represents both internal and external control by the

Y1 coil. The relay Y1 is activated by the start switch X 1 closing and the stop switch

X2 remaining closed (i.e .. no outside actions). Once the relay Y1 is activated. the

start switch is released and the contact controlled switch 'Y1 maintains the circuit.

This rung should not be confused with the hard wire stop switch connected to the

PLC to stop processing when the CPU fails. This rung appears in our parallel model

also and serves as an example of a Boolean OR decision module. The outcome of

21

Xl X2 Yl

Rung 1

Yl

Yl Y3 X3 Y2

Hf-11 I-------I[Rung 2

Y2 X4 X5 Y3

H HI I-------I[Rung 3

Figure 4.2: Serial relay ladder logic model

this rung may be implemented as a switch in all succeeding rungs to stop all related

processing. In our serial modeL this dependence has been removed to gain simplicity

in our models. Several start/stop rungs may appear in a complex PLC to control

separate manufacturing lines or processes.

Rung 2 represents a sequence rung using rung 1 output to activate output Y2.

Another function employed in the model is the use of "exclusive or" switching. Rung

3 output, Y3, controls the actions of rung 2 and vice versa. An example of the use of

such a rung pair would be a robot release command. The release command cannot be

given until the robot is activated in rung 2 and has moved to a position determined

by switches X 4: and X.). Once the robot has reached this position. the output Y:3

triggers the part release mechanism turns off the }-2 output and releases t he robot

22

for other tasks. Output Y3 may initiate further activity on the released part.

Inputs from outside sensors such as contact closures and photo detectors are rep­

resented by the X values. Output to the outside world is represented by the Y

notation above the square bracket coil elements, and internal control of rungs is rep­

resented by the Y notation above switch elements. This representation is not meant

to follow anyone PLC system, but to represent the logic of basic PLC RLL notation.

The RLL rungs are processed from top to bottom. The activation of the next

rung depends on the previous rung's status. Ladder scanning systems working on this

type of dependency require at least n passes through the RLL to activate/ deactivate

each rung of the ladder where n is the number of rungs in the RLL model. More

than n passes are necessary when there is increased dependency upon previous rungs

in the model. A ladder scan does not pass the activation of rung 1 to rung 2 until

the output of rung 1 is updated. This updating occurs at the end of a ladder scan,

so the activation of rung 1 in the first scan can not be reported to the input of rung

2 or successive dependent rungs until the update phase following the scanning of all

the rungs. A discussion of PLC rung scanning systems in [20, pages 124-126] reveals

that output evaluation occurs after ladder scan completion regardless of the method

used to scan the ladder rungs. The rung scanning process used in this paper is rung

by rung.

PLC ladder processing is serial in nature, automatically evaluating each rung

before testing the next rung. Although current PLCs process each rung in a sequential

manner, the current processor speeds give an appearance of simultaneous occurrence

of events.

23

Xl X2 Yl
Rung 1

Yl

Yl X3 X4 Y2
H I Yr [Rung 2

Yl X5 X6 Y3
HHH Rung 3
Figure 4.3: Parallel relay ladder logic model

Parallel Ladder Model

The model in Figure 4.3 also begins with the start/stop rung. The purpose of

this model is to represent in RLL what can be processed simultaneously. In the wall

mounted relay technology, these processes are performed at the same time and are

not dependent upon each other. The serial scanning of ladder rungs causes the RLL

based PLCs to be sequential in nature and not parallel as the older \vall mounted

systems are. Only by rapid processing does the parallel ladder model appear to be

processing simultaneously. Large RLL diagrams slow down the processing. displaying

the sequential nature of the PLC.

As explained in an earlier section, the updating of output is performed at the

end of a ladder scan, so any change to output in rung 1 cannot affect rung 2 until

24

the output update at the end of the ladder scan. Petri nets are used routinely to

model parallel processes. Our parallel PN model demonstrates two rungs evaluated

not in parallel but sequentially due to the higher logic present in the CPU of the

PLC. Development of the PN model for a true parallel evaluation is left for future

investigative work. The processing used by parallel models is less complex to design,

perhaps more complex to implement on a CPU.

25

CHAPTER 5. ALGORITHMS FOR PETRI NET MODELS

PN models are built to represent the logic process RLL uses to process inputs and

produce outputs. Higher level processing of RLL, built into the CPU of the PLC,

must be incorporated into the model. There are two separate levels of modeling

taking place; the higher level is called Process Nets (PrNs) and the lower level is

labeled Rung Evaluation Nets (RENs). The PrN represents the PLC's CPU control

system, and the REN is a rung of the relay ladder diagram. The RENs are inside the

PrN and the PrN controls the processing of the REN input and output evaluations.

The RLL models are kept small for purposes of clarity, ease of demonstration,

and testing. The algorithms used can be applied to any size RLL system. A thor­

ough understanding on smaller RLL systems is suggested before any large ladders are

evaluated.

Process Nets

Figure 5.1 shows the PN representation of the PLC processing and Table 5.1

lists the state or action of each place or transition. There is one token in the PrN

during evaluation. Another PrN model using parallel output evaluation requires as

many tokens as there are output evaluation nets. The PrN evaluates each rung of the

model and controls the updating of the future to current memory addresses for each

26

T9
P9 P2

T2

P3

T7 T3

T6
T4

P6L ___ ~~_
T5

P5
Figure .5.1: PrN for serial RLL

2i

Table 5.1: Transition and place representations for serial PrN

Place State represented
PI Ladder scan ready
P2 Rung I evaluation ready
P3 Rung 2 evaluation ready
P4 Rung 3 evaluation ready
P5 Ladder scan complete; Output evaluation ready
P6 Rung 3 output scan ready
Pi Rung 2 output scan ready
P8 Rung I output scan ready
P9 Output scan completed
Transition Event(s) represented
TI Start ladder scan, Gather inputs
T2 Evaluate rung 1
T3 Evaluate rung 2
T4 Evaluate rung 3
T5 Mark all output scan places
T6 Evaluate output rung 3
Ti Evaluate output rung 2
T8 Evaluate output rung 1
T9 Report current output statuses; Set ladder scan ready

scan of the ladder. The PrN is composed of:

• places and transitions for every REN;

• a place to activate the output evaluation segment of the PrN, and (in the parallel

model) a transition to put tokens into every output evaluation place; otherwise,

a transition to start output evaluation;

• places for each output evaluation,

• a place to collect the output evaluation token (tokens if the parallel model is

used);

28

• a transition to end the ladder scan and report status of outputs (if the parallel

model is used this transition consumes all tokens generated by output evaluation

and produces one token to keep the net safe);

• a place to represent completion of ladder scan (the beginning marking) and a

transition to activate the ladder scan.

The serial model discussed above and the changes to produce a parallel output eval­

uation model are shown in Figure 5.2. Note the differences from T.) through T9 of

the two models.

The RENs are independent PNs representing one rung of the RLL tied together

VIa the PrN. The PrN model in Figure 5.1 evaluates ladder rungs at transitions

T2, T3, and T4. The models in Figure 5.2 are the same model as Figure .5.1. The

transitions T2~ T3, T4, T6, T7, and T8 have more than one transition detailed in

Figure .5.1 while Figure 5.2 shows only one transition at these locations; the PrN

transition T2 represents multiple REN transitions. Since only one transition of the

REN can be enabled (they are mutually exclusive events) the single token is preserved

and no conflict occurs during REN evaluation and the larger PrN model can be shown

with only one transition to represent the higher level process.

After REN input transition evaluations, the PrN for parallel output modeling

fires transition T5 putting a token in each REN output evaluation place. There is

an output evaluation net for each REN. Place P9 gathers these tokens after output

evaluation and transition T9 enables when all tokens created at T5 are collected in P9.

An alternative to parallel processing the output evaluation is sequential processing.

p
g

P

2

P
5

T

5
 L

ef
t)

 S
er

ia
l

P
rN

 o
u

tp
u

t
('

va
il

la
ti

ol
l

H
ig

h
t)

 P
a.

ra
.lI

ei
 P

rN

F
ip

;l
Ir

e
.~

.2
:

T
w

o
 o

ut
»l

It
.

ev
al

u
at

io
n

 s
ch

('I
ll<

's
fo

r
t.h

e
P

rN
 u

p
d

at
e

an
al

y
si

s

P
2

P
5

tv

c:o

30

Figure 5.2 shows the two alternatives from T5 through T9. The serial PrN uses

a single token while the parallel PrN splits and rejoins the tokens. Either process

preserves safeness. The parallel processing allows all outputs to update simultane­

ously. However, the PN tree that it generates can cause evaluation and documentation

problems. The output evaluations do not affect the input places for REN evaluation

because the output evaluations are performed after T5 (the end of Ladder rung scan

phase) and before T9 (the transition to Ready to begin Ladder scan state). This PrN

location isolates the output update from the current input data allowing us to update

the outputs using serial rather than parallel processing without affecting the REN

outcomes. The PrN models used in this study are serial like the left hand model of

Figure 5.2.

Generic REN Modelling Steps

One goal of this research is to arrive at a system of RLL evaluation applicable

for any combination of basic rung elements shown in Figure 4.1. In addition, PN

modeling requires that we move a token through each net; so all possible outcomes

must be modelled rather than the outcomes activating the network. This is not true

in RLL due to the built in instruction set of the PLC's CPU.

The RLL in Figure 4.2 demonstrates that the Boolean expression (YI + X I) .

X2 can model the activation of Y1. This expression will activate YI for the three

combinations of YI, Xl, and X2 (assuming a current and future value for YI) but

relies on the instruction set imbedded in the PLC to bypass any rung showing no

change. PNs use tokens to activate states; thus the additional consideration of testing

31

the REN when there is no change in state (i.e., 1 is still 1) is necessary to move tokens

to a new state by enabling and firing a transition.

Conflict resolution in PN evaluation requires explicit processing rules. This is

undesirable for PN systems used as documentation tools because the explicit rules

must be recorded and remembered separately. The PN drawing for these "ruled"

systems no longer completely demonstrate the logic of the system. One of the purposes

of converting RLL to PN representations is to provide a documentation tool; if the

tool does not carryall of the information on the processing of the RLL and relies

on outside rules for conflict resolution it become a less useful tool. PN used as an

analysis tool to produce reach ability trees will also be hampered by the use of rules

not built into the model.

In consideration of the previous three paragraphs, the PN based RLL modeling

system being developed in this paper must consider:

• the transitions activating the future output,

• the transitions reversing the future to current output, and

• the transitions maintaining the status quo (i.e., 0 is still 0),

in order to move tokens through the system. In addition, the model must be able to

produce conflict free transition sets for the RENs so no explicit rule set is needed.

The modeling of 2n transitions, where n is the number of inputs to the rung,

quickly becomes bulky; it is desirable to minimize the number of transitions used by

reducing the Boolean expression to a minimum number of phrases. This desire to

minimize must be modified by the need to eliminate transition conflict. Developing a

32

Left) Mixed AND "OR logic Right) ~Iutually exclusive logic

Figure 5.3: Comparison of Boolean expressions using PN representations

33

mu t ually exclusive set of transi tions eliminates conflict with a slight (if any) increase

in the number of transitions required to evaluate the system.

Another consideration for users of this modeling system is keeping the visual

interpretation simple. If an REN has multiple levels of places and transitions asso­

ciated with the logic to evaluate one rung of RLL, then the simplicity is destroyed

and ease of comprehension is reduced. An example of this in Figure 5.3 is the logic

for serial rung I displayed in PN form on the left and in the REN form of this paper

on the right. The lower case c represents the current state of the output variable,

and the lower case! the future state. For simplicity, the two PN s only address the

activation of the future output in this example. Activation transitions are transitions

with arcs from the transition to the future output place; deactivation transitions have

no arcs from the transition to the future output place. The YI! place in both draw­

ings and the unnamed place receiving tokens from Ylc and Xl in the left drawing

OR the transitions feeding them. The transitions AND the places entering the tran­

sition. The complexity of the activation network is increased by mixing AND and

OR notation in the expression for the PN representation (the left hand model); the

REN transition set reduces the complexity and increases comprehension by giving

the reader constant information at each transition for all input variables and allowing

users to readily view all optional paths for a token. Each transition is a mutually

exclusive transition so only one transition is enabled during any scan of the system.

The system on the left of Figure 5.3 has the potential for multiple token generation

or for conflict with certain initial markings. The returning arc of Ylc is necessary for

any variable affecting information elsewhere in the model. All of the current output

34

variables have a returning arc wherever a token is required to enable a transition

because the current output status is needed for the output evaluations. Any X input

variables appearing more than once in the same RLL model also need returning arcs.

Although the left PN of Figure 5.3 appears to be able to generate an infinite number

of tokens from Y1 to the unnamed interim place, this is not the case. The control­

ling factor is the PrN input arc not shown in the drawing to reduce the complexity.

This arc controls the flow of the PrN token through only one of the two transitions

available. The presence of this arc prevents the multiple token potential mentioned

earlier but produces the potential for conflict between the two transitions when each

has a token available for delivery to the interim place.

By keeping the transition sets between REN s similar, the REN s become easier

to decipher and understand. Each transition in the system represents a Boolean

AND. The REN transitions are a set of ANDed conditions ORed together creating

an "exclusive or" set of transitions meaning only one transition can be enabled any

time the system is evaluated. The "exclusive or" concept is better described by the

term mutually exclusive. Rung 1 of the RLL demonstrated in Figure 4.2 has a Boolean

representation of (Y1c + Xl) . X2 (where Y1c denotes the current value of Y1 and

Y1j is the future value) and a PN representation in the left plate of Figure .5.3. The

PN can produce two tokens when both Y1C and Xl have the value of 1 if no other

controlling network exists and all enabled transitions are allowed to fire. The PN is

not safe if a transition is capable of generating an undeterminable number of tokens.

This network could create an infinite number of tokens if enabled transitions fired

multiple tokens into the interim place and only removed one token during each scan

35

of the system. The controlling network (PrN) arcs not shown in the drawing limit

this firing yet still allow conflict between two transitions when certain initial markings

are used.

The Boolean expression (Y1c' Xl . X2) + (Y1c . X2) represents the same logic

employing a mutually exclusive set of phrases and is displayed on the right plate of

Figure 5.3 in a more comprehensible manner using transitions having a logical variable

order. The expression preserves safeness by producing only one token while avoiding

conflict between transitions. The work of this thesis is to create a PN modeling

algorithm that:

• is repeatable for every RLL rung containing the basic components of RLL;

• identifies the activation/deactivation of the future output, or recognizes status

quo events;

• eliminates conflict by ensuring that each combination of inputs enables one and

only one transition of the REN each time a token passes through the REN; and

• simplifies reading of the transition set visually and logically for each REN.

As the work for this thesis progressed, two paths to solution emerged. The first

path is the mathematical approach to the solution. In this approach, the RLL infor­

mation is coded into algebraic expressions using Boolean logic, then mathematically

reduced to mutually exclusive sets of phrases. This approach is valid and usable for

any size system although it becomes increasingly difficult and time consuming work

beyond three input variables. The second path is based in the Boolean algebraic

solution, but is a more algorithmic solution lending itself to automation. The tabular

36

algorithm involves sorting rows in tables and choosing variable combinations defining

mutually exclusive REN transition sets. With the tabular algorithm a set of manip­

ulation rules can be written allowing automation of the solution in the future. The

conversions to REN s in this paper will use the tabular method. The algebraic solution

is shown to provide a basis for the tabular solution and demonstrate the mathematics

behind the row sorting and variable selection. Each algorithm produces the same

result.

The mathematic algorithm for translating RLL rungs into REN sis:

1. Build a binary input combinations table.

2. Generate the desired binary output results for the table.

3. Build, reduce, and choose the optimal Boolean output activation expression.

4. Convert each phrase of the Boolean activation expression into a REN activation

transition .

. 5. Compliment and reduce the Boolean activation expression; choose the optimal

Boolean deactivation expression.

6. Convert each phrase of the Boolean deactivation expression into a REN deacti­

vation transition.

A detailed explanation of each of these steps follows in the section on the mathematical

algorithm.

The tabular algorithm for translating RLL rungs into PN based RENs is:

1. Build a binary input combinations table.

37

2. Generate the desired binary output results for the table.

3. Sort the table by the output value grouping activation and deactivation rows.

4. Solve for the activation expression by using rows with output values equal to

1 and finding the input variable combinations defining the most rows using

the least number of variables without defining any deactivation rows or any

previously defined activation rows. Repeat this step until all rows with output

values of 1 have been defined by input variable combinations.

5. For each phrase of the activation expression generated in the previous step build

the activation transition.

6. Solve for the deactivation expression by using rows with output values equal to

o and finding the input variable combinations defining the most rows using the

least number of variables without defining any activation rows or any previously

defined deactivation rows. Repeat this step until all rows with output values of

o have been defined by input variable combinations.

7. For each phrase of the deactivation expression generated in the previous step

build the deactivation transition.

A complete discussion and examples of this algorithm appear in the section on the

tabular algorithm beginning on page 48.

The mathematical algorithm

Build a binary input combinations table The table is a binary combina­

tions table with columns for each rung input and output. It is a standard digital

38

Table 5.2: Truth

Ylc Xl
0 0
0 0
0 I
0 I
I 0
I 0
I I
I I

table for the
start / stop
rung

X2 YI!
0 0
I 0
0 I
I 0
0 I
I 0
0 I
I o

logic table representing every input combination possible. This table is the complete

set of combinations not just those that the system designers consider. This allows

for the testing for every condition in the system. This list will have 2n rows where

n is the number of input variables. The table technique is common to digital logic.

Essentially it is binary counting from 0 to 2n - I using an n bit register with each

row being incremented by 1. The right hand column (output column) remains blank.

It is filled in by performing the next step of the algorithm.

Generate the desired binary output results for the table Mark the

output column with 0 or I using the RLL's Boolean logic to evaluate inputs. Use a I

in the future output columns for any combination of inputs activating the output and

a 0 in the future output column for any combination rendering the output inactive.

Though some of these markings cannot occur in the real world system, they must

be considered in any logic system. The first two steps build tables like Table .5.2.

Table 5.2 is a binary counting table with future output generated from the Boolean

39

analysis of a RLL rung for the given row's input variable values.

Build, reduce, and choose the optimal Boolean output activation ex­

preSSIOn By looking for all of the active output rows (output column values of 1),

representing the rows as ANDed Boolean combinations, and combining the represen­

tation phrases into an ORed statement, a Boolean expression is generated. Table 5.2

has active output Boolean representations of

Ylc·Xl·X2

Ylc· Xl· X2

and

Ylc· Xl· X2

for rows 3, 5 and 7 respectively. OR the three phrase representations of rows into one

expression to get

(Ylc· Xl . X2) + (Ylc· Xl . X2) + (Ylc· Xl . X2). (5.1)

Reducing the expression to the lowest level of mutually exclusive set of ORed

. combinations (using Boolean algebra) is the next step. Boolean algebra is evaluated

based on priority rules. The order of Boolean algebra evaluation is bracketed phrases,

parenthetic phrases, ANDed values (the· sign indicates an AND operation), and then

ORed values (indicated by a + sign).

Reduction of expression (5.1) begins by combining the second and third phrases

noting that Xl and Xl are the only differing variables. The ORing of compliments

40

produces a Boolean value of 1 In every case. This elimination of the X 1 variable

produces the expression

(Ylc. Xl . X2) + (Ylc . X2). (5.2)

Boolean algebra further reduces the expression to

(Ylc· Xl + Ylc) . X2

and finally to

(Ylc + Xl) . X2. (.5.3)

Expression (.5.3) is not mutually exclusive because it does not provide for the

"exclusive or" between Ylc and Xl. Expression (.5.2) is mutually exclusive since

the Ylc variable has its compliment appearing in the other phrase. Multiple rows

of the combination table satisfy expression (5.3) thus conflict would exist in the PN

representation. Pr N safeness would be violated if a PN from expression (.5.3) was

inserted in the PrN.

No conflict is one goal of the algorithm, and a Boolean expression containing

a set of mutually exclusive phrases is another goal; the Boolean expression (.5.2)

IS an activation expression meeting both goals. This represents the least number

of transitions needed to model the activation of the YI output without conflict.

Essentially the process incorporates the compliment of the chosen variable into the

other phrases of the expression. Based on this process an alternative solution exists.

41

By taking expression (.5.1) and combining the first and third terms the expression

(Xl· X2) + (Ylc· Xl· X2) (.5.4)

IS created. This expreSSIOn and expreSSIOn (.5.2) are both mutually exclusive and

represent the activation expression. Having two equivalent transitions sets requires

additional consideration for selection.

All other considerations being equal and the expressions meeting the criteria of

mutual exclusivity the simplification of the REN drawing becomes important. By

keeping the number of transitions, arcs, and places to a minimum, the drawing be­

comes more readable and easier to produce graphically. One consideration for sim­

plification of the drawing is the number of arcs used to generate the REN.

Optimization of the number of arcs considers the PN representation of the RLL

system. Each time a variable is included in a phrase an arc is drawn to represent it. If

the variable must be renewed for use by other REN s or by the output evaluation, then

a returning arc to the enabling place must be provided from each transition enabled

by that variable. By selecting the Boolean expression to minimize the number of

arcs, we reduce the drawing complexity. Each input variable used elsewhere in the

PrN or RENs must have the token returned to the enabling place by the enabled

transition thus requiring two arcs. Any transition enabling a future output place has

an additional arc besides the input arcs. Any variable not used elsewhere in the PrN

or RENs requires only one arc to represent it and does not require the token to be

returned to the enabling place. Any transition enabled by the absence of a token in

a place requires only one inhibitor arc and no returning arc.

Since the input variables are not used in succeeding rungs, the only multi-

42

pIe arc consideration for the start/stop REN is Ylc (used in rung 2). Expres­

sions (5.2) and (5.4) each require six arcs and two transitions to model the acti­

vation expression. The choice in this case is moot, and expression (5.2) will be used.

Additional examples will be discussed later to clarify this optimization step.

Convert each phrase of the Boolean activation expression into a REN

activation transition Based on the reduced Boolean expression of the previous

section we need to build the transition(s) to represent state combinations causing

active output for the rung. All of our transition models will have a similar structure.

The first two transitions of Figure .5.4 and the left two transitions of T2 in Figure .5.3

(left plate) are the same transitions. The right side of each transition in Figure .5.4

has no arc from the PrN. The location where the PrN arc enters and leaves the

transition is open in Figure 5.4 and each REN drawing will have an opening on the

right side of each transition for the PrN arc to be included later. The transition

constructions are based on arc location upon the transition. There are 4 positions on

the transitions of Figure .5.4 representing 3 input variables and I PrN arc. The first

transition has all three input places filled; the 2 inhibitor arcs represent the Ylc and

X2 components of the phrase in the reduced Boolean expression of the last section,

and the arrowhead represents the Xl component. The second activation transition

(transition 2 of Figure 5.4) uses just 2 components to define the transition; note that

the physical position for Xl is left open to indicate that variable is not used. This

notation will be follO\ved throughout the thesis to maintain comprehension and ease

of reading PN drawings.

The last item to note in Figure .5.4 IS the presence of arcs from the first two

43

Figure .5.-1: PN model of serial rung one

44

transitions to the Ylj place in the REN model. These arcs represent the future

activation of YI and the Ylj place holds the activation token until the output update

phase is reached. It is the presence of these arcs from the transition to the future

output place that denotes an "activation" transition. Conversely, the absence of the

arc from the transition to the future output denotes a "deactivation" transition which

will be developed next. The use of Ylj and Ylc notation prevents the YI change

of state from affecting other rungs during the present ladder scan. After the output

evaluation takes place, the change in state of Yl will exercise its effect on any rung

using Ylc as input during the next ladder scan.

Compliment and reduce the Boolean activation expression; choose the

optimal Boolean deactivation expression The set of transitions deactivating

the output must be developed. Boolean logic lends itself to this task handily. 'When

you have a set of true conditions, the compliment (reverse) of that set of conditions

yields a set of opposing conditions. Time being an important factor there is a limit

to what should be processed by hand manipulation of Boolean expressions. The ma­

nipulation rapidly becomes time consuming after 4 input variables. Tabular methods

become more expedient.

Complimenting the expression; reducing to the simplest set of OR combinations;

and solving for an optimal mutually exclusive representation begins with the compli­

menting of expression (.5.2) giving

(Ylc· Xl· X2) + (Ylc· X2). (.5 .. 5)

This expression must now be reduced. Boolean algebra states that any compliment

4.5

crossing ANDed conditions yields complimented Ored conditions. The same is true

when a compliment crosses an ORed conditions; complimented AND conditions are

the result. Imbedding the compliment of expression (5.5) produces

(Ylc· Xl . X2) . (Ylc· X2).

Further reduction usmg the same imbedding technique across each complimented

AND phrase results in

(Ylc + Xl + X2) . (Ylc + X2).

Combining variables across the ANDed condition and reordering them results in

X2 + (Ylc' X2) + (Ylc· X2) + (Xl· X2) + (Ylc· Xl). (5.6)

The variable X2 appears in the first three phrases and is implicit in the third phrase

ORed with its compliment. By expanding the fifth phrase we get

X2 + (Ylc' X2) + (Ylc· X2) + (Xl· X2) + (Ylc· Xl . X2) + (Ylc· Xl . X2).

Recombining using X2 as a common variable the expression

X2 . (1 + Ylc + Ylc + Xl + Ylc· Xl) + Ylc· Xl· X2 (5.7)

is generated. The 1 inside the parenthesis denotes the presence of X2 as a single

variable in the expression. Boolean algebra provides that 1 ORed with any other

variable(s) equals 1; 1 ANDed with any other variable equals that variable. These

two facts reduce expression (5.7) to

X2 + Ylc· Xl· X2. (5.8)

46

Expression (.5.6) could be reduced to

X2 + Ylc· Xl; (5.9)

but mutual exclusivity is a necessary condition satisfied by expression (.5.8) not by

expression (.5.9). Expression (5.8) is the reduced mutually exclusive representation

desired in this manipulation.

The last step of this selection process is to find the optimal solution by looking

for the least number of arcs for the deactivation expression. This example generated

a final solution before optimization was necessary. However, using the complimented

expression from serial RLL rung 3 as an example yields six mutually exclusive but

not necessarily optimal solutions.

Rung 3 of the serial ladder has one activation phrase:

Y2c· X4· X5.

The imbedded compliment of that phrase is the expression

Y2c+ X4 + X5.

This is not the mutually exclusive set because any two of the variables equalling 0

causes conflict between the ORed conditions. To resolve conflict, a mutually exclusive

set of transitions must be generated. The solution of this expression involves selecting

one variable to define 4 rows. The remaining two phrases must have the compliment of

the selected variable ANDed to them. One of the remaining pair of phrases is selected

to define two rows and the remaining two variable phrase has the compliment of the

last variable ANDed to it defining the single remaining row. This procedure produces

6 solutions listed below with arc requirements.

47

1. Y2c + Y2c . X 4 + Y2c . X 4 . X 5 requiring 8 arcs,

2. Y2c + Y2c· X5 + Y2c· X4· X5 requiring 8 arcs,

3. X4 + Y2c· X4 + Y2c· X4· X5 requiring 7 arcs,

4. X4 + X4· X5 + Y2c· X4· X5 requiring 6 arcs,

5. X.5 + X4 . X.5 + Y2c· X4· X5 requiring 6 arcs, and

6. X5 + Y2c· X.5 + Y2c· X4· X.5 requiring 7 arcs.

Selection of expression 4 or .5 is equal; so, the first one generated is used in Figure 5.5

to generate the last 3 transitions of that REN.

Convert each phrase of the Boolean deactivation expreSSIOn into a

REN deactivation transition The same rules for building activation transitions

apply to building deactivation (i.e., YI! = 0) transitions. The transition structure

will leave room for every input variable and the PrN arc. The last two transitions of

Figure 5.4 are the representation of the phrases in the expression

X2+YIc·XI·X2.

The first phrase of the expression has only the arrowhead input arc from X2. The

second phrase uses the inhibitor arc for the variable X2 = 0 (a "not" condition).

Note that these two arcs appear in the same physical location on their respective

transition. If a variable is not used in the enabling of the transition, its space remains

to improve the comprehension of the transition. The first of these two transition does

not require input from the variable Ylc but the location where that variable would

48

enter the transition is left open to represent the absence of the variable. There are

no arcs from the last two transitions of Figure 5.4 to the Ylj place because they are

deactivation transitions.

The future places have no tokens in them upon starting a ladder scan. The

tokens are removed during the output evaluation phase of the PrN. The transitions

in each REN are a mutually exclusive set to avoid conflict and maintain one token to

and from the REN, preserving safeness.

The expression chosen for the deactivation of serial rung 3,

Y2c· X4· X.5 + X4 + X4· X.5,

contains three phrases representing the last three transitions of Figure .5 .. 5. The struc­

ture of the deactivation transitions is the same as the previous activation transitions.

Open spaces are left on the transition for the PrN arc and any variable not used by

the transition.

The tabular algorithm

As the number of input variables increases, the mathematical algorithm becomes

more time consuming to perform. The tabular method is based on the Boolean

evaluation method, but is more convenient because of the reduced time to produce

the same results. The tabular algorithm will be used in the analysis of the models.

The previous work in the mathematical algorithm helps to explain the origin of the

tables and the relationships of the rows to their Boolean expression components. A

definition for 'defining a row' is given to help understand the process being used.

For n input variables a binary combinations table with 2n rows will be generated.

49

Figure ,5 .. 5: p~ model of serial rung three

50

Definition 5.1 A set of variables define a set of rows in the table if it is the minimum

set of input variables necessary and sufficient to specify the maximum set of desired

outcomes.

For table having n input variables the maXImum number of rows a Boolean

phrase can define is 2n - x where x is the number of variables used in the Boolean

phrase. The most rows a single variable can define is 2n - 1; two variables define

2n - 2 rows; three variables define 2n - 3 rows; etc. This information coupled with

the knowledge of how many rows we have to define reveal the minimum number of

variables for the first Boolean phrase to define the desired rows. For example, using a

3 input variable table with eight rows; ifthe deactivation rows (i.e., output values = 0)

number six, the first Boolean phrase can be a single variable phrase defining 4 rows.

If the deactivation rows numbered three, then the first Boolean phrase would use two

variables defining 2 rows.

Build a binary input combinations table This step is the same as the

mathematical algorithm.

Generate the desired binary output results for the table By applying

Boolean logic to the RLL rung 1 of Figure 4.2 the output values of Table .5.2 are

generated.

Sort the table by the output value to group activation and deactivation

rows Sorting by the output variable groups the activation rows (i.e., 1'1f = 1) and

deactivation rows (i.e., 1'1f = 0) to produce Table .5.3.

51

Table 5.3: Sorted ta­
ble for serial
rung one

Y1c Xl X2 Y1j
1 0 0 1
1 1 0 1
0 1 0 1
0 0 0 0
0 0 1 0
0 1 1 0
1 0 1 0
1 1 1 0

Solve for activation expression The activation rows of Table .5.3 (i.e., Y1j =

1) can be sorted further to produce Boolean phrases defining the most activation rows

using the least number of variables in a phrase. In our example, a single variable set

to a value (i.e., X2 = 0), can define four rows. In this table, only three rows are

activation rows, so another variable will have to be added to the phrase. Using our

three input table and a single variable phrase, 23- 1 or 4 rows are defined. If two

variables are used in the phrase, 23-2 or 2 rows are defined. The goal of this step in

the algorithm is to define the most activation rows with a Boolean phrase containing

the fewest variables.

The variable X2 is equal to 0 for all activation rows. Given this fact, it should

be included as one of the two variables in the Boolean phrase to define the most

rows. The second variable can be Y1c or Xl; this leads to two possible phrases.

By choosing Xl = 1 and X2 = 0 the Boolean phrase Xl . X2 defines two rows in

Table 5.4 leaving a third row undefined. This third row requires three variables in

the Boolean phrase to be defined uniquely (23- 3 = 1).

.52

Table 5.4: Second sort-
mg
of start I stop
truth table

lYle Xl X2 I Ylj I

I
1 1 0

I
1

I 0 1 0 1

I
1 0 0

I
1

I 0 1 1 0
1 0 1 0
1 1 1 0
0 0 1 0
0 0 0 0

The tabular solution generates the Boolean phrases required for conversion to

transitions in the REN s. Sorting activation rows from Table .5.3 by the input variable

values X2 = 0 and Xl = 1 results in Table .5.4. A second sort using variable values

X2 = 0 and Y1c = 1 generates Table 5.5. A combination of the sorted tables is

shown in Table A.1 contrasting the difference in the sorts.

Activation expressions from Table 5.4 and Table .5.5 both satisfy the mutual

exclusivity requirements; the expression from Table .5.4,

Xl . X2 ...;... Y1c . Xl . X2,

is generated by ANDing the two variables defining the double row then ORing it

with the three variables ANDed to define the remaining row. The Boolean activa-

tion expression from Table .5.4 corresponds to expression (5.4) of the mathematical

algorithm. The expression from Table .5.5 is generated in the same manner but uses

the Y1c variable instead of the Xl variable to define the double row when ANDed

with X2 to define a different pair of rows. The remaining single row is defined with a

.53

Table 5.5: Third sorting
of st art / stop
truth table

Ylc Xl X2 YI!
I 0 0 I
I I 0 I
0 I 0 I
0 I I 0
I 0 I 0
I I I 0
0 0 1 0
0 0 0 0

three variable Boolean phrase. The two and three variable phrases are ORed together

to form a Boolean expression for activation of serial rung 1. The activation expres-

sion from Table 5.5 corresponds to expression (5.2) of the mathematical algorithm.

Since both of these Boolean activation expressions are mutually exclusive an optimal

solution must be tested for.

The next step is to find an optimal solution with respect to the number of

arcs required to build REN s from each expression. This activity is the same as

that performed in the mathematical algorithm. Each expression requires 6 arcs for

implementation, so the choice is left to the builder. The second expression is chosen

for transition construction in this example as it was the first to appear in Table A.I.

For each phrase of the activation expreSSIOn generated in the preVl-

ous step build the activation transition Construction of transitions remains

the same as that presented in the mathematical algorithm. The structure, arc loca-

tions and meanings hold true also. The left pair of transitions in Figure 5.4 detail

.54

the construction of the activation Boolean expression generated from Table 5.5 (Ta­

ble A.l A).

Solve for the deactivation expreSSIOn This step is where the most time

savings is realized over the mathematical algorithm. As in the section solving for

activation phrases, we group common variable values. If any input variable had a

common value for all activation rows, the first sort of the deactivation rows should be

for this variable's compliment. Sorting for the compliment of a common activation

variable value will yield the most rows using a single variable in the Boolean phrase.

In the start/stop rung set variable X2 has a value of 0 for all activation rows; the

variables Ylc and Xl have values of 0 and 1 in the activation rows. This means

that the deactivation rows contain all of the rows with the variable X2 equal to

1. Sorting deactivation rows for X2 = 1 yields four rows definable with a Boolean

phrase containing one variable. One row remains to be defined and three variables

are required to define a single row.

The Boolean expression for deactivation of the future output is generated by

ORing the single variable Boolean phrase with the triple variable Boolean phrase.

The activation expression is

X2+Ylc·Xl·X2.

There is only one expreSSIOn meeting the maXImum row definition criteria, so the

step of choosing an optimal solution based on arcs required to build the transitions is

eliminated. Serial rung three used in the mathematical algorithm is a good example

of multiple mutually exclusive Boolean phrases requiring optimal analysis.

55

Serial rung three is a case where one row activates the output and seven rows

deactivate the output. With seven rows to sort, four can be eliminated with a Boolean

expression using a single variable. Because the activation has only one row, there are

three variables to compliment and sort with on the first pass. After defining four rows

out of seven, the remaining three rows can be sorted two ways. This compounding

results in six possible tables. Table A.3 in Appendix A shows the six alternative

tables. The Boolean expressions generated from these alternatives correspond to

the six Boolean expressions generated by the mathematical algorithm as shown on

page 46. The sort chosen to represent the REN deactivation transitions for serial

rung three is Table A.3 part C.

For each phrase of the deactivation expression generated in the pre­

vious step build the deactivation transition Once again, construction of the

transitions is the same as that performed in the mathematical algorithm. Each tran­

sition has a designated space for the input variable arcs and the PrN arc. If an input

variable arc is not used the blank space remains on the transition. If the input vari­

able requires the absence of a token (i.e., Xl = 0) an inhibited input arc is used.

Any arc from a place used elsewhere in the PrN model must be refreshed by using

a return arc from the transition removing the token to the place holding the token

before its removal. All of the transitions will be placed side by side and, because the

transition set is mutually exclusive, only one transition can be enabled on any PrN

pass through the REN. For the serial REN of rung I the right two transitions of Fig­

ure 5.4 represent deactivation. The PN representation of serial rung 3 deactivation is

the right three transitions of Figure 5.5.

56

Justification of Selected Algorithm

The mathematical and tabular algorithms are equivalent and produce the same

selection sets and Boolean expressions as demonstrated by the manipulation of serial

rung one and serial rung three to convert RLL rungs to REN s. The algebraic method

is time consuming for large sets of input variables. The tabular method allows larger

input sets to be easily manipulated, reducing the computation time. The key to the

choice of methods is in the automation of the solution for activation and deactivation

expressions. Performing Boolean algebraic manipulations and displaying the results

on an output screen is difficult if not impossible. Building and sorting tables can be

implemented using standard computation algorithms [21].

.5i

CHAPTER 6. PETRI NET MODEL DEVELOPMENT

Serial Ladder Petri Net Model

Serial ladder rung one

This first rung has been given in the example material.

Serial ladder rung two

Rung two has two current output variables used in input, so there will be more

arcs to be counted if these two variables appear in the expression.

The combinations Table 6.1 is a binary counting to seven as before.

The output combination of

Y1c· Y3c· X3

produces an active output for row six of Table 6.1. Having only one row III the

activation table we will need three variables to define it exclusively.

One input combination and seven output combinations produce three choices for

sorting to define the most rows and two choices following each major sort. A total of

six expressions are considered.

58

Table 6.1: Combinations
generated by
rung two in­
put and out­
put states

Y1c
0
0
0
0
1
1
1
1

Y3c
0
0
1
1
0
0
1
1

X3 I Y2j
0
1
0
1
0

I 1
I

~ I

0
0
0
0
0
1
o
o

The single row requires three variables to define it exclusively. The phrase

Y1c· Y3c· X3

defines the row. A total of five arcs will be required to define this activation transition:

two for Y1c, one for Y3c, one for X2, and one for the activation arc to Y1j.

Figure 6.1 has one activation transition. Note the returning arc for Y1c and no

returning arc for Y3c. The Y3c variable uses an inhibitor arc to enable the transition

so no token is removed from the Y3c place and no token need he returned. The

activation arc to the future output place completes the transition.

Having seven deactivation rows to define, the largest quantity defined is four rows

with one variable. This leaves three rows to be defined by two more phrases; one two

variable and one three variable phrase. Because there are three variables in the single

activation phrase there are three compliment variables to sort the maximum number

of rows by. For each major sort a choice of two sorts using two variables creates six

.59

tables to consider. Table A.2 in Appendix A shows all six possible sorts with the

number of arcs required to represent each expression in REN form. The table pairs

A-B, C-D, and E-F each sort a different primary variable for the deactivation. The

pair differ only in the secondary sort selection of variable pairs. The number of arcs

required for the activation transition has been included, but will be a constant for

all combinations considered having been fixed in the previous steps of the tabular

algorithm.

Two combination tables produce sets requiring 12 arcs (including the activation

arcs) to represent the REN. The choice is left to the user, and Table A.2 part C is

chosen (the first one to appear). The expression

Y3c + Y3c . X3 + Ylc . Y3c . X3

contains three phrases to be converted to transitions.

U sing the constructions previously discussed the three transitions on the right of

Figure 6.1 are developed. The lack of arcs from the transitions to the future output

indicates they are deactivation transitions.

Serial ladder rung three

This is another rung with a single row defining the activation of a transition.

The procedure is similar to serial rung two. The deactivation transitions were defined

as an example for the mathematical and tabular algorithms.

Only row eight of Table 6.2 (all inputs active) has a value of 1 for the output

Y3J.

60

Figure 6.1: PN model of serial rung two

61

Table 6.2: Table for se-

Y2c X4
0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

rial ladder
rung three
input values
showing gen­
erated out­
put values

X5 Y3f
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 1

Sorting the rows of Table 6.2 moves the activation row to the top and provides

three variables for the primary sort of the deactivation rows.

The activation phrase

Y2c ·X4· X5

defines the single activation row.

The left transition of Figure 5.5 is the activation transition for the above phrase.

A total of five arcs are required to generate the transition: two for Y2c, one for X 4,

one for X5, and one for the activation arc to place Ylf.

The six tables generated by the deactivation portion of the tabular algorithm are

shown in Table A.3. The arc requirements are listed to the right of the combinations

generated. A minimum of eleven arcs are required to construct the transitions, and

two combinations of output deactivation variables (Table A.3 C and F) each generate

62

Figure 6.2: Output evaluation network

eleven arcs. Choice is left to the user and Table A.3 C (the first one generated) IS

chosen.

The three transitions representing the expression

from Table A.3 C are shown in Figure .5 .. 5 without arcs to the future output place.

Output evaluation

Figure 6.3 includes a PN not yet discussed. The output evaluation net shown in

Figure 6.2 tests for the 4 possible combinations of markings current and future output

places and adds or consumes the token as required. This output evaluation network

is the same for each rung. For future work connecting the outside world inputs to

the internal representations, this same sort of comparison can be made to determine

the absence or presence of a token in an input prior to the next pass through the

RE~ ladder scan. Each pass through the output evaluation for a REN will drain the

63

P9 P2

T3

P5
T5

Figure 6.3: Complete p~ model of serial relay ladder logic

64

future register just as each pass through the RENs drains all X registers not used

elsewhere in the PrN or REN s. It should be stated here that the Ylj status controls

the updated status of Ylc. Whatever the token content of Ylj is at the time of

output analysis this will be the token count of Ylc after output analysis. This should

indicate a simpler route to update testing. However, just as we must pass tokens for

the REN even though there is no change of state, we must also pass tokens through

the output evaluation net for no change of state. In addition, to preserve safeness,

the tokens existing in Ylc must be removed before the new token can be placed from

Ylj. So, the need for 4 transitions to test the two places is inherent.

Parallel Ladder Petri Net Model

Since the PrN for parallel and serial RLL models have the same place and transi­

tion values, the evaluation of the two models will be the same. The differences in the

drawing shape only serve to display the new model in a more visual final form. The

states and events for the serial and parallel PrNs are exactly the same. Figure 6.4 is

the PrN for the parallel RLL model, and Table 6.3 shows the places and transitions

and their respective state or event representations.

Unlike the wall mounted predecessor to RLL in PLCs, the parallel operation of

RLL is actually a sequential evaluation. Large RLL diagrams on a slow CPU would

demonstrate the serial nature of parallel ladders. The serial nature of parallel ladder

processing is visible in the PrN for parallel RLL logic shown in Figure 6.4 demonstrat­

ing the evaluation of each rung then the sequential updating of outputs. True parallel

process development from parallel RLL and for multiple functions programmed to the

6.5

Table 6.3: Transition and place representations for parallel PrN

Place State represented
PI Ladder scan ready
P2 Rung I evaluation ready
P3 Rung 2 evaluation ready
P4 Rung 3 evaluation ready
P5 Ladder scan complete; Output evaluation ready
P6 Rung 3 output scan ready
P7 Rung 2 output scan ready
P8 Rung 1 output scan ready
P9 Output scan completed
Transition Event(s) represented
Tl Start ladder scan, Gather inputs
T2 Evaluate rung 1
T3 Evaluate rung 2
T4 Evaluate rung 3
T5 Mark all output scan places
T6 Evaluate output rung 3
T7 Evaluate output rung 2
T8 Evaluate output rung 1
T9 Report current output statuses; Set ladder scan ready

same PLC and running contiguously are left to future work.

Parallel rung one

The parallel start/stop rung is the same as the serial start/stop rung. The REN

drawing appears to be different, but the expression and the four transitions used to

activate and deactivate Ylj are the same.

Parallel rung two

The eight binary combinations produce the first three columns of Table 6.4.

The output for Table 6.4 is the fourth column. Only row seven activates future

66

OJ
:.;

~ -
-~ ---
~

.-

.~--
~

....
co ::

,..;::

p.., ['- --b
z ...
"

~ -LD :.; ... ~ p.., :.c
~ :-

L()

~

67

Table 6.4: Parallel rung
two unsorted
combinations
table

lYle X3 X 4 I Y2j I

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0

I 1 0 1 0
1 1 0 1
1 1 1 0

output when Ylc and X3 are active and X 4 is inactive.

Having only one activation row requires three variables to define the row uniquely.

The phrase for activation of output is

Ylc· X3· X4.

For the above phrase one transition will be needed. The transition will have

three arrowhead input arcs: two from input variable places and one from the PrN;

one inhibitor arc from the input variable place X 4; and three output arcs: one to

the future output place Y2j, one returning to the current output place Ylc, and one

to the Pr N. All transitions will have the same location relationship. If a variable is

not needed in the enabling of a transition, a blank space remains where the input

arc would have been. These are the same rules for constructing transitions used

throughout the paper.

Three variables have only one value in the input rows leaving three choices of

complimented variable values to sort output columns. These three choices can be

68

Figure 6.5: PIS" model of parallel rung one

69

sorted agaIn by a pair of variables giving two more combinations to choose from.

The total of six tables sorted for all combinations of input arcs and optimized for

the least number of arcs required is presented in Table AA of the Appendix. The

minimum number of arcs required to produce the output transitions is eleven. There

are two expressions (Table AA D and F) satisfying the optimization of arc quantity.

The selection is left to the user and Table AA D is used for the parallel rung two

representation of output transitions. The expression

as defined by Table AA D in the Appendix must now be converted to transitions.

Three transitions are built from the expression. The three transitions on the

right side of Figure 6.6 are for deactivation of output. The input arrowhead arcs from

the PrN are not shown in this drawing but the space for them on the far right of each

transition is.

Parallel rung three

The similarity between serial rung 3 and parallel rung 3 is very noticeable. After

all of the tables are built and sorted, the resemblance becomes more apparent. Except

for a change of variable names, the tables are exactly the same. This gives rise to

future work investigating the development of tables for any number of variables in

advance so the computational work of automation becomes one of look up rather than

plug and grind.

The activation row for rung three is row 8 of Table 6 .. 5. This value of 1 is gained

by evaluating rung three of the parallel RLL model for each of the input combinations

iO

Figure 6.6: p~ model of parallel rung two

71

Table 6.5: Parallel rung
three un­
sorted com­
binations ta­
ble

Ylc X5 X6 Y3j
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 I 1

Table 6.6: Sorted paral­
lel rung three
combinations
table

Ylc X5 X6 Y3j
1 1 1 1
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0

72

using Boolean logic to produce the output value.

The sorted Table 6.6 raises the activation output value to the top of the table

and filters all of the deactivation rows to the bottom.

The only row with an output value equal to one requires three variables to define

the row. The phrase

YIc· X.5· X6

defines the requirements of the row. Five arcs will be needed to build the transition

representing the phrase.

The first transition of Figure 6.7 is the activation transition for future output.

The blank space on the right side of the transition is for the PrN input arc to be

added later.

As in the evaluation of serial rung three, six combinations are required to repre­

sent all possible sorting combinations. The combinations satisfy the requirements of

representing the most rows with the least number of variables. The six combinations

are shown in Table A .. 5. Each expression has 3 phrases thus 3 transitions are required;

the least number of arcs required to represent the activation and deactivation phrases

(exd uding Pr Narcs) is eleven. Two sorted tables (Table A.5 C and F) represent this

rung equally, and the choice is left up to the user. The first expression generated:

X.5 + X.5 . X6 + Ylc . X5 . X6

from Table A.S C will be converted to transitions.

The three transitions, representing each ORed phrase of the above expression,

are shown in Figure 6.7 on the right side of the drawing. They are deactivation

transitions and have no arc from the transition to the future output place Y3j. The

73

open spaces on the first two places of the second transitions are for the unused arcs

from Ylc and X5.

The three developed REN s are combined into the parallel PrN to produce a

complete PN representation of parallel RLL. Although the serial and parallel drawings

look very different, the two system's PrNs are exactly alike in operation. Figure 6.8

shows the parallel model including output evaluation nets.

74

Figure 6.7: PN model of parallel rung three

P
8

T
9

F
ig

u
re

 (
U

l:

C
om

pl
et

.e
 p

ar
al

le
l

R
L

L
 P

N
 m

o
d

el
 r

ep
rc

sc
nt

at
.i

on
 i

n
cl

u
d

in
g

 P
rN

,
H

E
N

s,
 a

n(
1

o
u

tp
u

t
ev

al
u

at
io

n
 n

et
.s

-
I

CJ
l

76

CHAPTER 7. TESTING AND DEMONSTRATION OF MODELS

The PN model must be demonstrated as functioning the same as the RLL sys­

tem. There are several approaches to this demonstration. The most obvious and

most tedious is to test the models using exhaustive enumeration for every switching

condition. ·With the serial model using 5 inputs and 3 outputs there are 28 com­

binations (256) to test. An alternative would be to test only the conditions which

will activate the RLL model. This borders on the realm of programming for known

conditions as mentioned in the introduction. The parallel model has 6 inputs and 3

outputs resulting in 512 conditions to be tested. Appendix B contains the extensive

tables developed from the evaluation of the models.

RLL outcomes are determined for each combination of input and output varI­

ables. The Petri net models are tested after the token reaches place P 1 of Fig­

ures .5.1 and 6.4 (Ladder scan ready) because this is where outputs have been reported

to the outside world via transition T9. The model evaluation tables in Appendix B

show the values of the X and Y variables from the external perspective. The process

followed to test the PrN and REN systems tracks these internally. The Y variable

reported is the updated Ylc variable maintained internally. ~Iu1tiple PrN passes are

shown as additional Y combinations to the right of the column labeled scan one in

the tables of Appendix B if necessary. Internal X values at pg are negligible because

77

they will be refreshed at TI on the next scan of the rungs. The system never really

reaches steady state because outputs will trigger activity externally and alter the X

inputs for the next scan.

As stated in the output evaluation explanation at the end of the serial PN model

construction, the X input places are compared with outside world inputs at transition

TI in much the same fashion as the output future and current places are compared.

Any t.okens remaining in input places as TI fires are refreshed or removed prior to

beginning the ladder scan. It is the nature of the output evaluation nets to drain the

future output places, so they will always have a 0 marking upon beginning a ladder

scan.

The RLL and PN models were tested using the enumeration method described

above. After each pass through the pertinent model, a snapshot of the Y results was

taken at PI and compared with the output of the RLL model.

One example of the process of testing PN logic for each model will be included to

demonstrate the process to the reader, the bulk of the processing is left to the author

and reported in Appendix B.

Serial Model

The output results and number of passes to reach steady state for both the serial

RLL and PN models are the same. The PN testing matched the RLL outcomes for

every initial state tested.

78

RLL model results

U sing a combination of 5 inputs represented by the X values, a potential 64 com­

binations result. This applied to the three output combinations for initial conditions

results in 25+3 combinations. Using the three output initial combinations as a basis

of comparison seeking a final combination, the 64 possible input initial settings are

evaluated. The result is eight possible tables of final values. This is not surprising

as the eight tables relate to the three rungs possible outcomes of on or off thus 23 or

eight tables.

Taking each of the input combinations and looking at the output results after

the first scan through the table shows if another scan is necessary. If a pattern or

constant value has not resulted, another scan is necessary. If more than one scan was

required to develop the steady state, the changes in the combinations are shown in

the following scan. If no change occurred in succeeding scans, then the area was left

blank. As many as four scans are required to reach steady state. The left column of

the lower half of each table represents all of the possible input combinations. It also

serves as the look up column for each succeeding scan. The complete table of test

results can be see in Appendix B Table B.l.

One initial condition creates a repeating pattern. This condition is 10111 for the

X values. This pattern would be called the process in operation being controlled by

the RLL. No matter what state the output variables started in, they generate the

pattern of operation 100, 110, 111, 101, 100. Twenty-four initial X combinations

reach a steady state of 000; four reach a steady state of 100, three initial condition

reach a steady state of 110, and one pattern repeats as stated above. These thirty-

79

two initial X conditions are tested over the eight initial conditions of the Y output

statuses.

PN model results

The repeating pattern for the initial X values of 10111 is a good system to

demonstrate the path through the PN model. The complete path for four scans is

shown in Appendix B as Table B.3. In addition to the internal representations of

the X, Y1c, and Y1t values, a column on the left side of the table demonstrates the

transition that fired to produce the internal values. At T9 the outputs are reported

to the outside world or the right side of the table.

Parallel Model

RLL model results

Adding one X variable doubles the number of initial conditions to be checked.

Still, it only produces five steady state conditions. Because of the nature of the RLL

there is no repeating pattern. Forty-eight initial X conditions reach a steady state

Y output condition of 000, nine reach 100, three reach 101, three reach 110, and one

condition reaches 111. The patterns and number of scans required to reach steady

state are shown in Appendix B Table B.2. Each of the sixty-four initial X conditions

are tested against all eight Y initial conditions. Additional columns of Y output

are scans required beyond one to reach a steady state. Each set of three numbers

represents the Y1, Y2, and Y3 outputs at the end of that scan.

80

PN model results

For the parallel REN model, only three passes are needed for any input initial

state to reach a steady state operation. This system operates like the serial PN model

because the PrN and output evaluation networks operate the same and have the same

structure. All output values are measured at Transition nine after a ladder scan and

output evaluation have been made. Table B.4 in Appendix B shows the Transition

and output status for the initial input values 101011 (all rungs activated). This table

makes three scans to prove steady state and corresponds to the output results of the

parallel RLL analysis of Table B.2 in Appendix B for the same initial inputs and

initial output state 000. The results for the parallel model external output reporting

is identical to Table B.2 so is not included in the interest of saving paper and time.

81

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Conclusions

The work developed here is only the beginning of a larger investigation. Although

the initial investigation is sound, the additional elements found in a complex PLC

today will require more development for a complete PN representation of PLCs and

the RLL driving them.

Although the RLL diagrams are more pleasing to the eye, the complete logic of

the system is not present to the novice reader and easily forgotten by an experienced

user of RLL. The PN representations are more communicative in the function of the

complete PLC system and operation.

This research develops both mathematical and tabular algorithms for conversion

of simple RLL diagrams using a limited set of rung elements. The tabular algorithm

is shown to have basis in Boolean logic using the mathematical algorithm presented

here also. The tabular algorithm is the preferred method when using large numbers

of variables and for automation of the sorting procedures.

Two RLL models of three rungs each are presented to test the algorithm. Each

model represented a different type of rung dependence. The serial RLL model acted

as a sequencer and each succeeding rung relied upon the earlier results. The parallel

82

RLL model uses the same first rung but allowed the second and third rung to operate

independently of each other relying only on rung one.

Rung evaluation nets (RENs) were generated for each rung of the two models

and a PN model of the PLC processing was built. In order to completely model the

RLL logic of a PLC, a higher network (PrN) system and output evaluation analysis

networks were added to the RENs. After demonstrating the algorithm and generating

the PN models of RLL, testing and evaluation demonstrated that the RLL and PN

representations were equivalent.

Future Work

The direction of this thesis has been to model RLL using PN logic. The next step

would be to take RLL and automate the conversion to PN on a computer by directly

reading the RLL graphics and data files. This automation would be developed for

each type of equipment being used.

Additional studies on the Parallel networking of systems are needed and their

relationships to RLL rungs of PLC. In these system, PN diagraming becomes more

useful in providing a clear picture of the functions being controlled and their interde­

pendent or independent relationships.

Connection to the outside world of the variables shown in the PN representation

at Tl and T9 would involve testing for the presence/ absence of tokens and updating

them at the proper transitions in the PrN in a similar manner to the output evaluation

nets of the PN models demonstrated.

The use of counters and timers in PLCs is common, and development of these

83

devices would be needed if a PN system was to be useful in system design. Several

paths exist for this work, but timed Petri net representations for various timers found

in RLL systems seem to be the most logical.

Any automation system would have to include the automation of RLL to REN

conversion. In addition to the basic automation of the manipulation of tabular solu­

tions, evaluation of arc optimization, and creation of transition phrases the creation

of the PN representation graphics is yet undeveloped. This would involve consid­

erable rule writing for the graphics based systems including the PrN consideration.

The automation of any of these components will have to consider the multiple use

of input variables in the RLL to allow for arc optimization and graphic design lay­

outs. Complete automation of the RLL graphic to PN graphics opens many doors of

investigation.

Analysis of the Petri nets created to determine safeness, boundedness, and

reach ability trees is an important aspect of creating the PN representations of the

RLL systems. Several areas of research are open here. The analysis of the PrN

would include reachability trees to determine deadlock and system states reaching

infinity. Testing and simulation using the PN representations is also a rich field of

study.

84

BIBLIOGRAPHY

[1] Agerwala, T. "Some Applications of Petri Nets"; Proceedings of the National
Electronics Conference: Volume XXXII; Tranter, "V. H., Ed.; National
Electronics Consortium, Inc.: Chicago, Ill.; 1978; Vol. 32, pages 149-154.

[2] Alanche, P.; Benzakour, K.; Dolle, F.; Gillet, P.; Rodrigues, P. and Valette, R.
"PSI: A Petri Net Based Simulator for Flexible Manufacturing Systems";
Lecture Notes in Computer Science: Advances in Petri Nets 1984; Springer
Verlag: Berlin, West Germany; 1985; Vol. 188, pages 1-14.

[3] Alla, H.; Ladet, P.; Martinez, J. and Silva-Suarez, M. "Modelling and
Validation of Complex Systems by Coloured Petri Nets: Applications to a
Flexible l'vlanufacturing System"; Lecture Notes in Computer Science:
Advances in Petri Nets 1984; Springer Verlag: Berlin, West Germany; 198.5;
Vol. 188, pages 1.5-29.

[4] Balbo, G.; Chiola, G.; Franceschinis, G.; and Roet, G. Molinar. "Generalized
Stochastic Petri Nets for the Performance Evaluation of FMS"; Proceedings of
the 1987 Conference on Robotics and Automation; IEEE Computer Society
Press: New York, New York; 1987; Vol. 2, pages 1013-1018.

[5] Beck, C.L. and Krogh, B.H. "Models for Simulation and Discrete Control of
Manufacturing Systems"; Proceedings of Conference on Robotics and
Automation; IEEE Computer Society Press: New York, New York; 1986; Vol.
1, pages 305-310.

[6] Brand, K.P. and Kopainsky, J. "Principles and Engineering of Process Control
with Petri Nets"; IEEE Transactions on Automatic Control; 1988; AC33, No.
2, 138-149.

[7] Bruno, G. and Marchetto, G. "Process-translatable Petri Nets for the Rapid
Prototyping of Process Control Systems"; IEEE Transactions on Software
Engineering; 1986; 5E12, No.2, 346-357.

85

[8] Bruno, G. and Morisio, M. "Petri Net Based Simulation of Manufacturing
Cells"; Proceedings of the Conference on Robotics and Automation; IEEE
Computer Society Press: New York, New York; 1987; Vol. 2, pages 1174-1179.

[9] Cherba, D. M. "Reducing Engineering Time for the Development of Ladder
Diagrams"; Control Engineering; April 1987,34, No.4, 125-128.

[10] Chocron, D. and Cerny, E.A. "Petri Net Based Industrial Sequencer"; IECI
Proceedings of Conference on Applications of Alini and Microcomputers; IEEE
Press: New York, New York; 1980; Vol. 1, pages 18-22.

[11] Courvoisier, M.; Valette, R.; Bigou, J. M.; and Esteban, P. ;'A Programmable
Logic Controller Based on a High Level Specification Tool"; Proceedings of a
Conference on Robotics and Automation 1987; IEEE: New York, New York;
1987; pages 174-179.

[12] Crockett, D.H.; Desrochers, A.A.; DiCesare, F. and Ward, T. "Implementation
of a Petri Net Controller for a Machining 'Workstation"; Proceedings of the 1983
Conference on Robotics and Automation; IEEE Society Press: New York, New
York; 1987; Vol. 3, pages 1861-1867.

[13] Devanathan, R.; Kuan, F.Y.; Chang, C.J. and Choo, S.A. "Computer Aided
Designing of Relay Ladder Logic via State Transition Diagram"; International
Conference on Industrial Electronics} Control and Instrumentation; IEEE: New
York, New York; 1987: Vol. 2, pages 764-772.

[14] Gentina, J .C. and Corbeel, D. "Coloured Adaptive Structured Petri Net: A
Tool for the Automatic Synthesis of Hierarchical Control of Flexible
Manufacturing Systems"; International Conference on Robotics and
Automation; IEEE: New York, New York; 1987 Vol. 3, pages 1166-1173.

[15] Hack, M.H.T. "Analysis of Production Schemata by Petri Nets"; Technical
Report 94 Project MAC; Massachusetts Institute of Technology: Cambridge,
Massachusetts; 1972, 110 pages.

[16] Han, Y.W. "Performance of a Digital System Using a Petri Net-like
Approach"; Proceedings of the 1978 National Electronics Conference; Tranter,
W. H., Ed.; National Electronics Consortium, Inc.: Chicago, Ill.; 1978; Vol. 32,
pages 166-172.

[17] Heimerdinger, W.L. "A Petri ~et Approach to System Level Fault Tolerance
Analysis"; Proceedings of the 1978 National Electronics Conference; Tranter,

86

W. H., Ed.; National Electronics Consortium, Inc.: Chicago, 111.; 1978; Vol. 32,
pages 161-165.

[18] Houldsworth, P.A. and Brearly, D. "Programmable Controller Functions are
Enhanced by Structured Programming and Graphic Sequence Control Together
with Good PC Documentation"; Proceedings of the Conference on
Programmable Controllers 1985; Peter Lawrenson, Editor; 198.5; GAMBICA
Programmable Controllers Committee: London, England; pages 129-134.

[19] Kamath, M. and Viswanadham, N. "Applications of Petri Net Based Models in
the Modelling and Analysis of Flexible Manufacturing Systems"; Proceedings of
the 1986 International Conference on Robotics and A utomation; IEEE
Computer Society Press: New York, New York; 1986; Vol. 1, pages 312-317.

[20] Kissel, T.E. Understanding and Using Programmable Controllers; Prentice Hall:
Englewood Cliffs, New Jersey; 1986.

[21] Knuth, D.E. The Art of Computer Programming; "Volume 3: Sorting and
Searching"; Addison- "Vesley: Reading, Massachusetts; 1973.

[22] Komoda, N.; Murata, T. and Matsumoto, K. "Petri-Net Based Controller:
SCR and its Applications in Factory Automation"; IEEE International
Symposium on Circuits and Systems; IEEE: New York, New York; 1985; Vol. 2,
pages 937-940.

[23] Krogh, B.H. and Beck, C.1. "Synthesis of Place/Transition Nets for Simulation
and Control of Manufacturing Systems"; Fourth Symposium on Large Scale
Systems: Theory and Applications; Zurich, Switzerland, IFACjIFORS;
Pergamon Press: Oxford, England; August 1986; Vol. 2, pages 583-589.

[24] Krogh, B.H.; "Villson, R.; and Pathak, D. "Automatic Generation of Control
Programs for Discrete Manufacturing Processes"; The Robotics Institute
Annual Research Review; Carnegie Mellon University; 1987, pages 21-31.

[25] Kruempel, G.E. and Day, A.L. "Personal Computer Aided Design and
Simulation of Programmable Controller Programs"; IEEE Industry
Applications Society Annual Meeting 1987; IEEE: New York, New York; 1987;
Vol. 2, pages 1764-1767.

[26] LeMer, E. "OVIDE: A Software Package for Verifying and Validating Petri
Nets"; Third IFAC/IFIP Symposium; Pergamon Press: Oxford, England; 1982;
pages 25.5-260.

87

[27] Lloyd, M. "GRAFCET - Graphical Function Chart Program"; Proceedings of
the Conference on Programmable Controllers 1985; Peter Lawrenson, Editor;
GAMBICA Programmable Controllers Committee: London, England; 1985;
pages 51-.56.

[28] Martinez, J.; AHa, H. and Silva, M. "Petri Nets for the Specification of Flexible
Manufacturing Systems"; Modelling and Design of Flexible Manufacturing
Systems; Kusiak, A. Editor; Elsevier Science Publishers: Amsterdam; 1986;
Chapter 8, pages 389-406.

[29] Martinez, J.; Muro, P. and Silva, M. "Modeling, Validation and Software
Implementation of Production Systems using High Level Petri Nets";
Proceedings of the 1987 Conference on Robotics and Automation; IEEE
Computer Society Press: New York, New York; 1987; Vol. 3, pages 1180-1185.

[30] Martinez, J. and Silva, 1\1. "A Package for Computer Design of Concurrent
Logic Systems"; Proceedings of the Third IFACjIFIP Symposium on Software
for Computer Control; Pergamon Press: Oxford, England; 1982; pages 243-248.

[31] Martinez, J. and Silva, M. "A Language for the Description of Concurrent
systems Modelled by Colored Petri Nets: Applications to the Control of
Flexible Manufacturing systems"; Languages for Automation; Shi-Kuo Chang,
editor; Plenum Press: New York, New York; 198.5; Chapter 8, pages 369-388.

[32] Matsuzaki, K.; Hata, S.; Junichi, H.; Kurashima, Y. and Torii, M. "Petri-Net
Structured Sequence-Control Language with GRAFCET-like Graphical
Expression for Programmable Controllers"; Proceedings of International
Conference on Industrial Electronics, Control and Instrumentation; IEEE
Press: New York, New York; 1985; Vol. 1, pages 433-438.

[33] Murata, T.; Komoda, N. and Matsumoto, K. "A Petri Net Based Factory
Automation Controller for Flexible and Maintainable Control Specifications";
Proceedings of Conference on Industrial Electronics, Control and
Instrumentation; IEEE Press: New York, New York; 1984; Vol. 1, pages
362-366.

[34] Murata, T.; Komoda, N.; Matsumoto, K. and Haruna, K. "A Petri Net-Based
Controller for Flexible and Maintainable Sequence Control and its Applications
in Factory Automation"; IEEE Transactions on Industrial Electronics,
February 1986; IE33, No.1, 1-8.

88

[3.5] Narahari, Y. and Viswanadham, N. "A Petri Net Approach to the Modelling
and Analysis of Flexible Manufacturing Systems"; Annals of Operations
Research; Baltzer: Basel, Switzerland; 1985; Vol. 3, pages 449- 472.

[36] Peng, D. and Shin, K.G. "Modeling of Concurrent Task Execution in a
Distributed System for Real-Time Control"; IEEE Transactions on Computers;
April 1987; C36, No.4, .500-.516.

[37] Peterson, J.L. "An Introduction to Petri Nets"; Proceedings of the National
Electronics Conference: Volume XXXII; Tranter, W. H., Ed.; National
Electronics Consortium, Inc.: Chicago, Ill.; 1978; Vol. 32, pages 144-148.

[38] Peterson, J.L. Petri Net Theory and the Modeling of Systems; Prentice Hall:
Englewood Cliffs, N. J.; 1981.

[39] Petri, C.A. "Kommunikation mit Automaten," Ph.D. dissertation, University
of Bonn: Bonn, West Germany, 1962.

[40] Reisig, VV. Petri Nets: an Introduction; Springer Verlag: Berlin, West
Germany; 1985.

[41] Sacks, T. "Is it Time to Step off of the Ladder?"; Electrical Review (London);
9-22 March, 1988; 122; 23-25.

[42] Silva, M. and Velilla, S. "Programmable Logic Controllers and Petri Nets: A
Comparative Study"; IFAC Proceedings of Software for Computer Control
SOCDCO '82; Pergamon Press: Oxford, England; 1982; pages 83-88.

[43] Valette, R.; Courvoisier, M.; Bigou, J,M. and Albukerque, J.A. "Petri Net
based Programmable Logic Controller"; Computer Applications in Production
and Engineering (CAPE 83); E.A. Warman, Editor; ,North-Holland Publishing:
Amsterdam, The Netherlands; 1983; pages 103-116.

89

APPENDIX A. COMBINATION TABLES

90

Table A.1: Table for serial or parallel rung one

A* B
Y1c Xl X2 Y1j Arcs Y1c Xl X2 Y1j Arcs

1 0 0 1 1 1 o I 1
1 1 0 1 3 0 1 o I 1 2
0 1 0 1 3 1 0 0 I 1 4 I

0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0
1 1 1 0 1 1 1 0
0 0 1 0 1 0 0 1 0 1

0 0 0 0 3 0 0 0 I 0 3 I
Total 10 Total 10

91

Table A.2: Rung two table reordered tables showing six mu­
tually exclusive alternatives and their arc require­
ments

A B
Y1c Y3c X3 Y2f Arcs Y1c Y3c X3 Y2f Arcs

1 0 1 1 51 1 0 1 1 5
0 0 0 0 ! 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 0 1 0 1 1 0 1
1 1 0 0 1 1 0 0
1 1 1 0 4 1 0 0 0 3
1 0 0 0 4 1 1 1 0 5

Total 14 Total 14
C* I D
Y1c Y3c X3 Y2f Arcs Y1c Y3c X3 Y2f Arcs

1 0 1 1 5 1 0 1 1 .5
0 1 0 0 0 1 0 0
0 1 1 0 0 1 1 0
1 1 0 0 1 1 0 0
1 1 1 0 2 1 1 1 0 2
0 0 0 0 I 0 0 0 0
1 0 0 0 I 2 0 0 1 0 2

I 0 o 1 I 0 I 3 III 1 o o I 0 I
Total I 12 Total 13

E F
Y1c Y3c X3 Y2f ! Arcs Y1c Y3c X3 Y2f Arcs

1 0 1 1 I 5 1 0 1 1 .5 I

0 0 0 0 I 0 0 0 0

I 1 0 0 0 1 0 0 0
0 1 0 0 I 0 1 0 0 I

I

1 1 o o
1 III ~ 1 o o

o 1 1 o 1 1 o
0 0 1 0 i 2 I 1 1 1 0 3 I

1 1 1 0 I 5 0 0 1 0 3
Total I 13 Total 12

92

Table A.3: Six tables showing all possible combinations gener­
ated for deactivation of the future output of serial
ladder rung three

A B
Y2c X4 X5 Y3j Arcs Y2c X4 X.5 Y3j Arcs

1 1 1 1 5 1 1 1 1 5
0 0 0 0 0 0 0 0 I
0 0 1 0 0 0 1 0 \

0 1 0 0 0 1 0 0
0 1 1 0 1 0 1 1 0 1
1 1 0 0 1 0 1 0 \

1 0 0 0 3 1 0 0 0 I 3
1 0 1 0 4 1 1 0 0 4

Total I 13 III Total I 13 I
C* D
Y2c X4 X5 Y3j Arcs Y2c X4 X.5 Y3j Arcs

1 1 1 1 5 1 1 1 1 5
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
1 0 0 0 1 0 0 0
1 o 1 ~ I 1 III ~ o 1 o
1 1 o 1 1 o
0 1 0 0 2 0 1 0 0 I 2
0 1 1 0 3 1 1 0 0 I 4

Total 11 Total 12
E F
Y2c X4 X.5 Y3j Arcs Y2c X4 X5 Y3j Arcs

1 1 1 1 5 1 1 1 1 .5
0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
1 1 0 0 1 1 1 0 0 1
0 1 1 0 1 0 1 0 I

0 0 1 0 2 0 0 1 0 I 2
1 0 1 0 4 0 1 1 0 3

Total 12 Total I 11

93

Table A.4: Six sortings for parallel rung two evaluation

A
VIc

1
0
0
o
o
1
1
1

C
YIc

1
0
0
1
1
0
0
1

E
YIc

1
0
0
1
1
0
0
1

X3
1
0
0
1
1
o
o
1

X3
1
0
0
0
0
1
1
1

X3
1
0
1
0
1
0
1
0

X4
0
0
1
o
1
o
1
1

X4
0
0
1
0
1
0
1
1

X4
0
1
1
1
1
0
0
0

B
Y2j Arcs Ylc

1 .5 1
0 0
0 I 0

~ I 1 III ~
~ I 3111 ~

I

0 4 1
Total 13

D*
Y2j Arcs YIc

1 .5 1
0 0
0 0
0 1
0 1 1
0 1
0 2 0
0 4 0

Total 12
F

Y2j Arcs YIc
1 .5 1
0 0
0 0
0 1
0 1 1
0 0
0 2 1
0 4 0

Total 12

X3
1
0
0
1
1
1
o
0

X3
1
0
0
0
0
1
1
1

X3
1
0
1
0
1
0
0
1

X4
0
0
1
o
1
1
1
0

X4
0
0
1
0
1
1
1
0

X4
0
1
1
1
1
0
0
0

Y2j Arcs
1 .5
0
0

0 4
Total 13

Y2j Arcs
1 .5
0
0
0
0 1
0
0 2
0 3

Total 11

Y2j Arcs
1 5
0
0
0
0 1
0
0 2
0 3

Total 11

94

Table A.5: Six combinations generated for parallel rung three

A
Ylc

1
0
0
o
o
1
1
1

C*
Ylc

1
0
0
1
1
1
0
0

E
Ylc

1
0
1
0
1
0
0
1

X5
1
0
0
1
1
1
o
0

X.5
1
0
0
0
0
1
1
1

X.5
1
0
0
1
1
1
0
0

X6
1
0
1
o
1
o
o
1

X6
1
0
1
0
1
0
0
1

X6
1
0
0
0
0
1
1
1

Y3j
1
0
0
o
o
o
o
0

Total

Y3j
1
0
0
0
0
0
0
0

Total

Y3j
1
0
0
0
0
0
0
0

Total

B
Arcs Ylc

.5 1 ,

I

0
0

1 iii ~
3111 ~
4 I 1

13
D

Arcs I Ylc
5 1

0
0
1

1 1

I 0
2 0
3 1

11 I
IF

Arcs I Ylc
5 1

I 0
I 1

0
1 1

II
1

2 0
4 0

12 I

X.5
1
0
0
1
1
o
o
1

X.5
I
0
0
0
0
I
I
1

X.5
1
0
0
I
I
0
0
I

X6
1
0
1
o
1
1
o
0

X6
1
0
1
0
1
1
0
0

X6
1
0
0
0
0
1
1
1

I

I

Y3j Arcs
1 5
0
0

0 4
Total 13

Y3j Arcs
1 5
0
0
0
0 1
0
0 2
0 4

Total 12

Y3j Arcs
1 .5
0
0
0
0 1
0
0 2
0 3

Total 11

95

APPENDIX B. TEST EVALUATION DATA

96

Table B.l: Evaluation data for serial RLL

INPUTS OUTPUTS
INIT. SCAN 1 SCAN 2 SCAN 3 SCAN 4

XXXXX yyy yyy yyy yyy YYY
1 2 345 123 123 123 123 123

o 0 000 000 000
o 0 000 001 000
o 0 000 o 1 0 000
o 0 000 o 1 1 000
o 0 000 100 000
o 0 000 101 000
o 0 000 110 000
o 0 000 111 000

o 0 001 000 000
o 0 001 001 000
o 0 001 010 000
o 0 001 o 1 1 000
o 0 001 100 000
o 0 001 101 000
o 0 001 110 000
o 0 001 111 000

00010 000 000
00010 001 000
00010 010 000
00010 o 1 1 000
00010 100 000
00010 101 000
00010 110 000
00010 1 1 1 000

o 0 0 1 1 000 000 000
o 0 0 1 1 001 000 000
o 0 0 1 1 010 001 000
o 0 0 1 1 o 1 1 001 000
o 0 0 1 1 100 000 000
o 0 0 1 1 1 0 1 000 000
o 0 0 1 1 110 001 000
o 0 0 1 1 1 1 1 001 000

97

Table B.1 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2 SCAN 3 SCAN 4
XXXXX yyy yyy yyy yyy YYY

1 2 345 123 123 123 123 123

o 0 100 000 000 000
o 0 100 001 000 000
o 0 100 010 000 000
o 0 100 o 1 1 000 000
00 100 100 010 000
o 0 100 101 000 000
o 0 100 110 010 000
00 100 111 000 000

o 0 101 000 000 000
o 0 101 001 000 000
o 0 101 010 000 000
o 0 101 o 1 1 000 000
o 0 101 100 010 000
o 0 101 101 000 000
o 0 101 110 010 000
o 0 101 111 000 000

00 1 1 0 000 000 000
00 1 1 0 001 000 000
00 1 1 0 010 000 000
00 1 1 0 o 1 1 000 000
00 1 1 0 100 010 000
00 1 1 0 101 000 000
00 1 1 0 110 010 000
00 1 1 0 111 000 000

o 0 1 1 1 000 000 000 000
00111 001 000 000 000
o 0 1 1 1 010 001 000 000
o 0 1 1 1 011 001 000 000
o 0 1 1 1 100 010 001 000
o 0 1 1 1 101 000 000 000
o 0 1 1 1 110 011 001 000
o 0 1 1 1 111 001 000 000

98

Table B.1 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2 SCAN 3 SCAN 4
XXXXX yyy yyy yyy yyy yyy

1234.5 123 123 123 123 123

o 1 000 000 000
o 1 000 001 000
o 1 000 010 000
o 1 000 011 000
o 1 000 100 000
o 1 000 101 000
o 1 000 110 000
o 1 000 111 000

o 1 001 000 000
o 1 001 001 000
o 1 001 010 000
o 1 001 o 1 1 000
o 1 001 100 000
o 1 001 101 000
o 1 001 110 000
o 1 001 111 000

o 1 010 000 000
o 1 0 1 0 001 000
o 1 010 010 000
o 1 0 1 0 o 1 1 000
o 1 0 1 0 100 000
o 1 010 101 000
o 1 010 110 000
o 1 0 1 0 111 000

o 1 011 000 000 000
o 1 011 001 000 000
01011 010 001 000
o 1 011 o 1 1 001 000
o 1 011 100 000 000
o 1 011 101 000 000
o 1 0 1 1 110 001 000
o 1 0 1 1 111 001 000

99

Table B.l Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2 SCAN 3 SCAN 4
XXXXX yyy yyy yyy yyy YYY

1 2 345 123 123 123 123 123

o 1 100 000 000 000
o 1 100 001 000 000
o 1 100 010 000 000
o 1 100 011 000 000
o 1 100 100 010 000
o 1 100 101 000 000
o 1 1 00 110 010 000
o 1 1 00 111 000 000

o 1 101 000 000 000
o 1 101 001 000 000
o 1 101 010 000 000
o 1 101 011 000 000
o 1 101 100 010 000
o 1 101 101 000 000
o 1 101 110 010 000
o 1 101 111 000 000

o 1 110 000 000 000
o 1 1 1 0 001 000 000
o 1 1 1 0 010 000 000
o 1 1 1 0 o 1 1 000 000
o 1 110 100 010 000
o 1 1 1 0 101 000 000
o 1 110 110 010 000
o 1 110 111 000 000

o 1 111 000 000 000 000
o 1 111 001 000 000 000
o 1 111 o 1 0 001 000 000
o 1 111 011 001 000 000
o 1 111 100 010 001 000
o 1 111 101 000 000 000
o 1 111 110 o 1 1 001 000
o 1 1 1 1 111 001 000 000

100

Table B.l Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2 SCAN 3 SCAN 4
XXXXX yyy yyy yyy yyy YYY

1 2 3 45 123 123 123 123 123

10000 000 100
10000 001 100
10000 010 100
10000 011 100
10000 1 0 0 100
10000 101 100
10000 110 100
10000 111 100

10001 000 100
10001 001 100
10001 010 100
10001 011 100
10001 100 100
10001 1 0 1 100
10001 1 1 0 100
10001 111 100

10010 000 100
10010 001 100
10010 010 100
10010 011 100
10010 100 100
10010 101 100
10010 110 100
10010 111 100

10011 000 100 100
10011 001 100 100
10011 010 101 100
10011 011 101 100
10011 100 100 100
10011 1 0 1 100 100
10011 110 101 100
10011 111 101 100

101

Table B.l Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2 SCAN 3 SCAN 4
XXXXX yyy yyy yyy yyy YYY

1 2 3 4 5 123 123 123 123 123

101 0 0 000 100 110
1 0 1 0 0 001 100 110
1 0 100 o 1 0 100 110
1 0 1 0 0 o 1 1 100 110
1 0 1 0 0 100 110 110
1 0 100 101 100 110
1 0 100 110 110 110
1 0 1 0 0 1 1 1 100 110

1 0 1 0 1 000 100 110
1 0 1 0 1 001 100 110
1 0 1 0 1 o 1 0 100 110
1 0 1 0 1 011 100 110
1 0 1 0 1 100 110 110
1 0 1 0 1 101 100 110
1 0 1 0 1 110 1 1 0 110
1 0 1 0 1 111 100 110

10110 000 100 110
1 0 1 1 0 001 100 110
1 0 1 1 0 o 1 0 100 110
1 0 1 1 0 011 100 110
10110 100 110 110
10110 101 100 110
1 0 1 1 0 110 110 110
10110 111 100 110

10111 000 100 110 111 101
1 0 1 1 1 001 100 110 111 101
1 0 1 1 1 010 101 100 110 1 1 1
1 0 1 1 1 011 1 0 1 100 110 111
1 0 1 1 1 100 110 111 101 100
1 0 1 1 1 1 0 1 1 0 0 110 111 101
1 0 1 1 1 110 111 101 100 110
10111 111 101 100 110 111

102

Table E.1 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2 SCAN 3 SCAN 4
XXXXX yyy yyy yyy yyy YYY

1 234 5 123 123 123 123 123

1 1 000 000 000
1 1 000 001 000
1 1 000 010 000
1 1 000 011 000
1 1 000 100 000
1 1 000 101 000
1 1 000 110 000
1 100 0 111 000

1 100 1 000 000
1 100 1 001 000
1 100 1 010 000
1 100 1 o 1 1 000
1 100 1 100 000
1 100 1 101 000
1 100 1 110 000
1 100 1 111 000

11010 000 000
11010 001 000
11010 010 000
11010 011 000
11010 100 000
11010 101 000
11010 110 000
11010 111 000

11011 000 000 000
11011 001 000 000
11011 o 1 0 001 000
11011 011 001 000
11011 100 000 000
11011 101 000 000
11011 110 001 000
11011 111 001 000

103

Table B.1 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2 SCAN 3 SCAN 4
XXXXX yyy yyy yyy yyy YYY

1234.5 123 123 123 123 123

1 1 100 000 000 000
1 1 100 001 000 000
1 1 100 010 000 000
1 1 100 o 1 1 000 000
1 1 100 100 o 1 0 000
1 1 100 101 000 000
1 1 100 110 o 1 0 000
1 1 100 111 000 000

1 110 1 000 000 000
1 110 1 001 000 000
1 110 1 010 000 000
1 110 1 o 1 1 000 000
1 110 1 100 o 1 0 000
1 110 1 101 000 000
1 110 1 110 o 1 0 000
1 1 1 0 1 111 000 000

1 1 110 000 000 000
1 1 110 001 000 000
1 1 110 010 000 000
1 1 110 o 1 1 000 000
1 1 1 1 0 100 010 000
1 1 110 101 000 000
1 1 110 110 010 000
1 1 110 111 000 000

1 111 1 000 000 000 000
1 111 1 001 000 000 000
1 111 1 010 001 000 000
1 111 1 011 o 0 1 000 000
1 111 1 100 o 1 0 001 000
1 111 1 101 000 000 000
1 1 1 1 1 110 o 1 1 001 000
1 111 1 111 001 000 000

104

Table B.2: Evaluation data for parallel RLL

INPUTS OUTPUTS
INIT. SCAN 1 SCAN 2

XXXXXX yyy yyy YYY
1 234 5 6 123 123 123

000000 000 000
000000 001 000
000000 010 000
000000 011 000
000000 100 000
000000 1 0 1 000
000000 1 1 0 000
000000 111 000

000 0 0 1 000 000
000001 o 0 1 000
o 0 0 0 0 1 010 000
o 0 0 0 0 1 011 000
o 0 0 0 0 1 100 000
000 0 0 1 1 0 1 000
o 0 0 0 0 1 1 1 0 000
000001 1 1 1 000

000010 000 000
000010 o 0 1 000
000010 010 000
000010 o 1 1 000
000010 100 000
000010 1 0 1 000
000010 1 1 0 000
000010 111 000

000 0 1 1 000 000 000
000 0 1 1 001 000 000
o 000 1 1 010 000 000
o 000 1 1 o 1 1 000 000
000 0 1 1 100 001 000
000 0 1 1 1 0 1 001 000
000 0 1 1 110 001 000
000 0 1 1 111 001 000

105

Table B.2 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2
XXXXXX yyy yyy YYY

1 234 5 6 123 123 123

000100 000 000
000 1 0 0 001 000
000 1 0 0 010 000
000 1 0 0 o 1 1 000
000 1 0 0 100 000
000 1 0 0 101 000
000 1 0 0 110 000
000 1 0 0 111 000

000 1 0 1 000 000
o 001 0 1 001 000
00010 1 010 000
o 001 0 1 o 1 1 000
00010 1 100 000
00010 1 101 000
00010 1 110 000
00010 1 111 000

000 1 1 0 000 000
000 1 1 0 001 000
o 001 1 0 010 000
000 1 1 0 011 000
000 1 1 0 100 000
o 001 1 0 101 000
o 0 0 1 1 0 110 000
000 1 1 0 111 000

000 1 1 1 000 000 000
o 001 1 1 001 000 000
000 1 1 1 010 000 000
000 1 1 1 o 1 1 000 000
000 1 1 1 100 001 000
000 1 1 1 101 001 000
000 1 1 1 110 001 000
000 1 1 1 111 001 000

106

Table B.2 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2
XXXXXX yyy yyy YYY

123456 123 123 123

001000 000 000 000
o 0 1 0 0 0 o 0 1 000 000
001000 010 000 000
001000 011 000 000
o 0 1 0 0 0 100 010 000
001000 101 010 000
o 0 1 0 0 0 110 010 000
001000 111 010 000

o 0 100 1 000 000 000
o 0 100 1 001 000 000
o 0 1 0 0 1 010 000 000
001001 011 000 000
001001 100 010 000
o 0 100 1 101 010 000
001001 110 010 000
o 0 100 1 111 010 000

o 0 1 0 1 0 000 000 000
001010 001 000 000
o 0 1 0 1 0 010 000 000
o 0 1 0 1 0 011 000 000
001010 100 010 000
o 0 1 0 1 0 101 010 000
o 0 1 0 1 0 1 1 0 010 000
o 0 1 0 1 0 111 010 000

001011 000 000 000
001011 001 000 000
o 0 101 1 010 000 000
001011 011 000 000
001011 100 011 000
o 0 1 0 1 1 1 0 1 011 000
001011 110 011 000
001011 111 011 000

107

Table B.2 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2
XXXXXX yyy yyy yyy

123456 123 123 123

001100 000 000
o 0 1 1 0 0 001 000
o 0 1 100 010 000
001100 o 1 1 000
001100 100 000
o 0 1 1 0 0 1 0 1 000
o 0 1 1 0 0 1 1 0 000
001100 111 000

o 0 1 1 0 1 000 000
001101 001 000
o 0 1 1 0 1 010 000
001101 o 1 1 000
001101 100 000
o 0 1 1 0 1 101 000
001101 110 000
o 0 1 1 0 1 111 000

o 0 1 1 1 0 000 000
001110 o 0 1 000
o 0 1 1 1 0 010 000
o 0 1 1 1 0 o 1 1 000
o 0 1 1 1 0 100 000
o 0 1 1 1 0 1 0 1 000
o 0 1 1 1 0 1 1 0 000
001110 111 000

001111 000 000 000
o 0 1 1 1 1 o 0 1 000 000
001111 010 000 000
001111 011 000 000
o 0 1 1 1 1 1 0 0 o 0 1 000
001111 1 0 1 001 000
001111 110 001 000
o 0 1 1 1 1 111 001 000

108

Table B.2 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2
XXXXXX yyy yyy YYY

1 2 3 4 5 6 123 123 123

o 1 0 0 0 0 000 000
o 1 0 0 0 0 001 000
o 1 0 000 010 000
o 1 0 000 o 1 1 000
o 1 0 000 100 000
o 1 0 0 0 0 101 000
o 1 0 0 0 0 110 000
o 1 0 0 0 0 111 000

o 1 000 1 000 000
o 1 0 0 0 1 001 000
o 1 0 0 0 1 010 000
o 1 000 1 o 1 1 000
o 1 0 0 0 1 100 000
o 1 000 1 101 000
o 1 000 1 110 000
o 1 000 1 111 000

o 1 0 0 1 0 000 000
o 1 0 0 1 0 001 000
o 1 0 0 1 0 010 000
o 1 0 0 1 0 o 1 1 000
o 1 0 0 1 0 100 000
o 1 0 0 1 0 101 000
o 1 0 0 1 0 110 000
o 1 0 0 1 0 111 000

o 1 0 0 1 1 000 000 000
o 1 0 0 1 1 001 000 000
o 1 0 0 1 1 010 000 000
o 1 0 0 1 1 o 1 1 000 000
o 1 0 0 1 1 100 001 000
o 1 001 1 101 001 000
o 1 0 0 1 1 110 001 000
o 1 0 0 1 1 111 001 000

109

Table B.2 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2
XXXXXX yyy yyy yyy

123456 123 1 2 3 123

010 100 000 000
010 100 001 000
010 100 010 000
010 100 011 000
010 100 100 o 0 0
010 100 101 000
010 100 110 000
010 100 111 000

010 101 000 o 0 0
010 101 001 000
010 101 010 000
010 101 011 000
010 101 100 000
010 101 1 0 1 000
010 101 110 000
010 101 1 1 1 000

010 1 1 0 000 000
010110 00 1 000
010 1 1 0 010 000
010 1 1 0 o 1 1 000
010 1 1 0 100 000
010 1 1 0 101 000
010 1 1 0 110 000
010 1 1 0 111 000

010 1 1 1 000 000 000
010 1 1 1 00 1 000 000
010 1 1 1 010 000 000
010 1 1 1 011 000 000
010 1 1 1 100 o 0 1 000
010 1 1 1 1 0 1 o 0 1 000
010 1 1 1 110 o 0 1 000
010 1 1 1 111 o 0 1 000

110

Table B.2 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2
XXXXXX yyy yyy YYY

123456 123 123 123

011000 000 000 000
o 1 1 0 0 0 o 0 1 000 000
011000 010 000 000
011000 011 000 000
011000 100 010 000
011000 101 010 000
011000 110 010 000
011000 111 010 000

011001 000 000 000
o 1 100 1 001 000 000
o 1 1 0 0 1 010 000 000
011001 011 000 000
011001 100 010 000
011001 101 010 000
011001 110 010 000
011001 111 010 000

011010 000 000 000
o 1 1 0 1 0 001 000 000
o 1 1 0 1 0 010 000 000
o 1 1 0 1 0 011 000 000
o 1 1 0 1 0 100 010 000
o 1 1 0 1 0 1 0 1 010 000
o 1 1 0 1 0 110 010 000
o 1 1 0 1 0 111 010 000

o 1 1 0 1 1 000 000 000
o 1 1 0 1 1 00 1 000 000
o 1 1 0 1 1 010 000 000
011011 o 1 1 000 000
011011 100 011 000
o 1 1 0 1 1 101 011 000
o 1 1 0 1 1 110 011 000
011011 111 011 000

111

Table B.2 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2
XXXXXX yyy yyy YYY

1 2 3 4 5 6 123 123 123

o 1 1 100 000 000
o 1 1 100 001 000
o 1 1 100 010 000
011100 o 1 1 000
011100 100 000
o 1 1 100 1 0 1 000
o 1 1 100 110 000
011100 111 000

o 1 110 1 000 000
o 1 110 1 001 000
o 1 110 1 010 000
011101 011 000
o 1 110 1 100 000
o 1 110 1 1 0 1 000
o 1 110 1 1 1 0 000
o 1 110 1 111 000

o 1 1 1 1 0 000 000
o 1 1 1 1 0 001 000
o 1 1 1 1 0 010 000
011110 011 000
o 1 1 1 1 0 100 000
o 1 1 1 1 0 1 0 1 000
o 1 1 1 1 0 1 1 0 000
o 1 1 1 1 0 111 000

o 1 111 1 000 000 000
o 1 1 1 1 1 001 000 000
o 1 1 1 1 1 010 000 000
011111 011 000 000
011111 100 001 000
o 1 111 1 101 001 000
o 1 1 1 1 1 110 001 000
011111 111 001 000

112

Table B.2 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2
xxx XXX yyy yyy YYY

123456 123 123 123

100000 000 100
1 0 0 0 0 0 001 100
100000 010 100
100000 011 100
100000 1 0 0 100
100000 1 0 1 100
100000 110 100
100000 111 100

1 0 000 1 000 100
1 0 000 1 001 100
1 0 000 1 010 100
1 0 000 1 011 100
1 0 000 1 100 100
1 0 000 1 1 0 1 100
1 0 000 1 110 100
1 0 000 1 1 1 1 100

1 0 0 0 1 0 000 100
1 0 0 0 1 0 001 100
1 0 0 0 1 0 010 100
1 0 0 0 1 0 011 100
1 0 0 0 1 0 100 100
1 0 0 0 1 0 1 0 1 100
1 0 0 0 1 0 110 100
100010 111 100

1 0 001 1 o 0 0 100 101
1 0 001 1 001 100 101
1 0 001 1 010 100 101
1 0 0 0 1 1 011 100 101
1 000 1 1 100 101 101
1 0 001 1 101 1 0 1 101
1 0 001 1 110 1 0 1 101
1 0 001 1 1 1 1 1 0 1 101

113

Table B.2 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2
xxx XXX yyy yyy YYY

1 2 345 6 123 123 123

100 100 000 100
100 100 001 100
100 100 010 100
100 100 011 100
100 100 100 100
100 100 1 0 1 100
100 100 110 100
100 100 1 1 1 100

10010 1 000 100
10010 1 001 100
10010 1 010 100
10010 1 o 1 1 100
10010 1 100 100
10010 1 1 0 1 100
10010 1 110 100
10010 1 111 100

100 1 1 0 000 100
100 1 1 0 001 100
100 1 1 0 010 100
100 1 1 0 011 100
100 1 1 0 100 100
100 1 1 0 1 0 1 100
100 1 1 0 110 100
100 1 1 0 1 1 1 1 00

100 1 1 1 000 100 1 0 1
100 1 1 1 001 100 101
100 1 1 1 010 100 1 0 1
100 1 1 1 o 1 1 100 101
100 1 1 1 100 1 0 1 101
100 1 1 1 1 0 1 101 101
100 1 1 1 110 101 101
10011 1 111 1 0 1 101

114

Table B.2 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2
XXXXXX yyy yyy YYY

123456 123 123 123

1 0 1 000 000 100 110
1 0 1 000 001 100 110
1 0 1 000 010 100 110
1 0 1 000 o 1 1 100 110
1 0 1 000 100 110 110
1 0 1 000 1 0 1 110 110
1 0 1 000 110 110 110
1 0 1 0 0 0 111 1 1 0 1 1 0

1 0 1 001 000 100 110
1 0 1 001 o 0 1 100 110
1 0 1 0 0 1 010 100 110
1 0 100 1 011 100 110
1 0 1 0 0 1 100 110 110
1 0 1 0 0 1 1 0 1 110 110
1 0 1 001 110 110 110
1 0 1 001 111 110 110

1 0 1 0 1 0 000 100 110
1 0 1 0 1 0 001 100 110
1 0 1 0 1 0 010 100 110
1 0 1 0 1 0 011 100 110
101010 100 110 110
101010 1 0 1 110 1 1 0
101010 1 1 0 110 1 1 0
101010 1 1 1 110 110

1 0 1 0 1 1 000 100 111
1 0 1 0 1 1 o 0 1 100 111
101011 010 100 111
1 0 1 0 1 1 011 1 0 0 111
1 0 1 0 1 1 100 111 111
1 0 1 0 1 1 1 0 1 111 111
1 0 1 0 1 1 110 111 111
1 0 1 0 1 1 111 111 111

115

Table B.2 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2
XXXXXX yyy yyy YYY

123456 123 123 123

101 100 000 100
101 100 o 0 1 100
101 100 010 100
101 100 o 1 1 100
101 100 100 100
101 100 1 0 1 100
101100 110 100
101100 111 100

101 101 000 100
101 101 o 0 1 100
1 0 1 101 010 100
101 101 011 100
101 101 100 100
101 101 1 0 1 100
101 101 110 100
101 101 111 100

101 1 1 0 000 100
101110 o 0 1 100
101 1 1 0 010 100
101 1 1 0 011 100
101 1 1 0 100 100
101 1 1 0 1 0 1 100
101 1 1 0 110 100
101110 111 100

101 1 1 1 000 100 1 0 1
101 1 1 1 001 100 101
1 0 1 1 1 1 o 1 0 100 1 0 1
1 0 1 1 1 1 011 100 101
1 0 1 1 1 1 100 1 0 1 101
101 1 1 1 1 0 1 101 101
101 1 1 1 110 1 0 1 1 0 1
1 0 1 1 1 1 111 1 0 1 101

116

Table B.2 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2
XXXXXX yyy yyy yyy

1 234 5 6 123 123 123

1 100 0 0 000 000
1 100 0 0 001 000
1 100 0 0 o 1 0 000
1 100 0 0 011 000
1 100 0 0 100 000
1 100 0 0 1 0 1 000
1 100 0 0 110 000
1 100 0 0 111 000

1 100 0 1 000 000
1 100 0 1 001 000
1 100 0 1 010 000
1 100 0 1 011 000
1 100 0 1 100 000
1 100 0 1 1 0 1 000
1 100 0 1 110 000
1 100 0 1 111 000

1 100 1 0 000 000
1 100 1 0 001 000
1 100 1 0 010 000
1 100 1 0 011 000
1 100 1 0 100 000
1 100 1 0 1 0 1 000
1 100 1 0 110 000
1 100 1 0 111 000

1 100 1 1 000 000 000
1 100 1 1 001 000 000
1 100 1 1 010 000 000
1 100 1 1 011 000 000
1 100 1 1 100 00 1 000
1 100 1 1 1 0 1 00 1 000
1 100 1 1 110 001 000
1 100 1 1 111 001 000

117

Table B.2 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2
XXXXXX yyy yyy yyy

1234.56 123 123 123

1 101 0 0 000 000
1 101 0 0 001 000
1 1 0 1 0 0 010 000
1 1 0 1 0 0 011 000
1 1 0 1 0 0 100 000
1 1 0 1 0 0 1 0 1 000
1 101 0 0 110 000
1 101 0 0 111 000

1 101 0 1 000 000
1 101 0 1 001 000
1 1 010 1 010 000
1 1 0 101 011 000
1 1 0 1 0 1 100 000
1 101 0 1 1 0 1 000
1 101 0 1 110 000
1 101 0 1 111 000

1 101 1 0 000 000
1 101 1 0 o 0 1 000
1 101 1 0 010 000
1 101 1 0 011 000
1 101 1 0 100 000
110110 101 000
1 101 1 0 110 000
1 101 1 0 1 1 1 000

1 101 1 1 000 000 000
1 101 1 1 001 000 000
1 101 1 1 010 000 000
1 101 1 1 o 1 1 000 000
1 101 1 1 100 00 1 000
1 101 1 1 1 0 1 001 000
1 101 1 1 110 001 000
1 101 1 1 111 001 000

118

Table B.2 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2
XXXXXX yyy yyy YYY

123456 123 123 123

1 1 1 0 0 0 000 000 000
1 1 1 0 0 0 001 000 000
1 1 1 0 0 0 010 000 000
1 1 1 0 0 0 011 000 000
1 1 1 0 0 0 100 010 000
111000 101 010 000
111000 110 010 000
1 1 1 0 0 0 111 010 000

1 1 100 1 000 000 000
1 1 100 1 001 000 000
1 1 100 1 010 000 000
1 1 100 1 011 000 000
1 1 100 1 100 010 000
1 1 100 1 101 010 000
111001 110 010 000
1 1 100 1 111 010 000

1 1 1 0 1 0 000 000 000
111010 001 000 000
111010 010 000 000
1 1 1 0 1 0 011 000 000
1 1 1 0 1 0 100 010 000
111010 1 0 1 010 0-0 0
1 1 1 0 1 0 110 010 000
1 1 1 0 1 0 111 010 000

1 1 101 1 000 000 000
111011 001 000 000
111011 010 000 000
1 1 101 1 011 000 000
1 1 101 1 100 011 000
111011 101 011 000
111011 110 011 000
111011 111 011 000

119

Table B.2 Continued
INPUTS OUTPUTS

INIT. SCAN 1 SCAN 2
XXXXXX yyy yyy YYY

1 2 3 456 123 123 123

1 1 1 100 000 000
1 1 1 100 001 000
1 1 1 100 010 000
1 1 1 100 o 1 1 000
1 1 1 100 100 000
1 1 1 100 1 0 1 000
1 1 1 100 110 000
1 1 1 100 111 000

1 1 1 101 000 000
1 1 1 101 001 000
1 1 1 101 010 000
1 1 1 101 011 000
1 1 110 1 100 000
1 1 1 101 101 000
1 1 1 101 110 000
1 1 1 101 111 000

1 1 1 110 000 000
1 1 1 110 001 000
1 1 1 1 1 0 010 000
1 1 1 1 1 0 o 1 1 000
1 1 1 110 100 000
1 1 1 110 1 0 1 000
1 1 1 110 110 000
1 1 1 1 1 0 111 000

1 1 1 111 000 000 000
1 1 1 1 1 1 001 000 000
1 1 1 1 1 1 010 000 000
1 1 1 1 1 1 011 000 000
1 1 1 111 100 001 000
1 1 1 111 1 0 1 o 0 1 000
1 1 1 111 110 001 000
1 1 1 1 1 1 111 o 0 1 000

120

Table B.3: Evaluation data for serial REN

Transition Initial Internal Reported
Fired Inputs Current Future Output
T1 10111 000 000
T2.1 00111 000 100
T3.2 00011 000 100
T4.2, T5 00000 000 100
T6.4 00000 000 100
T7.4 00000 000 100
TS.2 00000 100 000
T9 00000 100 100
Scan 2
T1 10111 100 000
T2.2 10111 100 100
T3.1 10011 100 110
T4.2, T5 10000 100 110
T6.4 10000 100 110
T7.2 10000 110 100
TS.1 10000 110 000
T9 10000 110 110
Scan 3
T1 10111 110 000
T2.2 10111 110 100
T3.1 10011 110 110
T4.1, T5 10000 110 111
T6.2 10000 111 110
T7.1 10000 111 100
TS.1 10000 111 000
T9 10000 111 111
Scan 4 I
T1 10111 111 000
T2.2 10111 111 100
T3.3 10011 111 110
T4.1, T5 10000 111 111
T6.1 10000 111 110
T7.3 10000 101 100
TS.1 10000 101 000
T9 10000 101 101

121

Table B.4: Evaluation data for parallel REN

Transition Initial Internal Reported
Fired Inputs Current Future Output
T1 101011 000 000
T2.1 001011 000 100
T3.2 000011 000 100
T4.4,T5 000000 000 100
T6.4 000000 000 100
T7.4 000000 000 100
TS.2 000000 100 000

Scan 2
I 000000 I 100 100 I

T1 101011 100 000
T2.2 101011 100 100
T3.1 100011 100 110
T4.1, T5 100000 100 111
T6.2 100000 101 110
T7.2 100000 111 100
TS.1 100000 111 000
T9 100000 111 111
Scan 3
T1 101011 111 000
T2.2 101011 111 100
T3.1 100011 111 110
T4.1, T5 100000 111 111
T6.1 100000 111 110
T7.1 100000 111 100
TS.1 100000 111 000
T9 100000 111 111

