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CHAPTER 1. INTRODUCTION

Programmable logic controllers (PLC) and programmable logic devices (PLD)
have progressed rapidly since their inception in the 1960s and represent a first step
towards automation for many manufacturing facilities. Their initial programming
systems involved several methods of implementation or coding including relay ladder
logic (RLL), digital logic symbols, boolean logic symbols, and high level language
coding. A new concept for control programming is beginning to appear in manu-
facturing. Petri nets (PN) have been demonstrated as effective tools in the design
and control of PLC/PLD systems and also have been used to model manufacturing
systems at levels of control from production flow to individual machine control. The
use of Petri nets as a language for logic representation at all levels of manufacturing
and production planning would help to speed the planning and implementation times
for a manufacturing system by reducing the number of different languages used by
the implementation team.

In the development of a production system many computer languages are used
to develop, test, and implement the system software components. Each language has
a distinct programming style, syntax, and structure. A lack of continuity between
these many systems makes communication, documentation and validation difficult.

In a manufacturing setting one might model the production line with GPSS, imple-



ment conveyor control with RLL, program the robotics and the flexible manufactur-
ing system (FMS) with other languages, and document the systems interaction with
graphics and word processing, then tie elements of the system together inside another
programming environment. As the project proceeds from one task to another, the
shift of responsibility for implementation can result in a loss of information, inadver-
tent change in the focus of the project, or complications in the documentation and
implementation of the system. These diverse systems of logic need a common base
for design and implementation.

Petri nets provide a common base of communications. Alanche et al. [2] stated:

“...(if) ...graphical tools such as petri nets are more and more used for
the design, the evaluation and the implementation of the control system,

a better understanding within the project team will result.”

The ability to use one approach to logic and programming through all of these design
and implementation phases simplifies and speeds the process of testing, debugging,
and documentation yielding a reduction in start up time [9]. Due to the diverse nature
of the manufacturing environment, this will not be entirely successful.

Petri nets can be used as a tool for representation, analysis and synthesis. Some
applications include operating systems, compilers, communications, speed indepen-
dent hardware, propositional logic, mathematics, computer hardware and production
systems [1, 38]. Petri nets have been applied to manufacturing environments at the
level of whole systems, FMSs, and controllers {4, 29, 33].

Ladder logic as a programming tool is successful because the person wiring the

wall mounted systems could program the new PLC systems using electrical wiring



symbols. Remembering and understanding the relay ladder logic following a long ab-
sence from the logic is difficult {9]. The programming of PLC/PLD systems is coming
under the control of programmers and systems people and not the “electrician”. The
present literature indicates that PN based controllers may eventually replace RLL
systems. Realistically, RLL will endure for some time in islands of automation and
small manufacturing installations [41].

The ability to test, validate and document a system before implementation has
not progressed as fast as the control capability of PLC/PLD systems. Validation
using simulation sometimes fails to identify potential states and evaluate the system
in their presence. The programmer writes the simulation for what is expected rather
than the real potential of event occurrence which exists. Failure to check all of
the states or potential markings of a system for these “unforeseen” conditions could
result in PLC logic which operates incorrectly causing costly implementation delays
and perhaps damage or injury. Petri nets can be evaluated for all potential system
states using a reachability tree. PN can be used to test and document a system before
implementation.

Manufacturing automation’s shift from the factory floor to systems design groups,
the desire to reduce the number of languages used in developing the automation, the
continued use and growth of RLL based PLC/PLD devices in industry, and the need
to document and test RLL before implementation combine with Petri nets growth
as a language in manufacturing planning to point out a need for generating PN logic
from RLL to improve the communications, testing, debugging, and implementation

of processes.



CHAPTER 2. LITERATURE REVIEW

Petri Nets

A summary of work on Petri nets and modifications for manufacturing follows.

History

Dr. Carl Adam Petri’s dissertation in 1962 [39] formulated the basis for a theory
of communication between synchronous components of a computer system. “He was
particularly concerned with the description of the causal relationships between events”
(38]. This work began the development of Petri nets into the large body of research
and development existing today.1 The basis of Petri nets is to model graphically and
test analytically the discrete events of concurrent operations within a system. One
goal of the research is to achieve the ability, using Petri nets, to visualize, analyze,

and validate a discrete system of any size.

Desirable traits and advantages of Petri nets

Kamath and Viswanadham [19] listed five positive aspects of Petri nets.

1 peterson [38, pp. 3 and 4] gives a developmental path.



1. “They describe the modelled system graphically and hence enable

an easy visualization of complex systems,

2. Petri nets can model a system hierarchically; systems can be rep-
resented in a top-down fashion at various levels of abstraction and

detail,

3. A systematic and complete qualitative analysis of the system is pos-

sible by well-developed Petri net analysis techniques,

4. The existence of well formulated schemes for Petri net synthesis fa-

cilitates system design and synthesis, and

5. Performance evaluation of systems is possible using timed Petri nets.”

Peterson {37] elaborated further:

“Petri nets have been receiving increased attention as a model of par-
allel computation. In large part this is due to the simplicity of the Petri
net model coupled with a careful balance of modeling power and decision
power. The modeling power of Petri nets is quite good, as witnessed by
the wide variety of systems which can be modelled by Petri nets. The
decision power is also good, since the reachability problem is decidable,

and most problems can be converted into reachability problems.”

Agerwala [1] states that the advantages of Petri nets include the ability to model at

every level of the system which most other design languages cannot do.



Disadvantages of Petri nets

The complexity of analysis grows as the model grows. Model size or complexity
must be balanced with desired decision power. Peterson [37] summarized some of the

disadvantages:

“... concurrency of operation has become more and more common. This

has generally improved utilization and throughput, but at a consequent

increase in complexity.”

A balance between modeling and decision power must be struck. Peterson concludes

with:

“Subclasses of Petri nets increase the decision power, but at a cost of being
unable to model a large number of systems. Extended Petri net models
increase the modeling power, but in all known cases at the expense of

decision power, since most analysis questions become undecidable.”

There are still some areas and events which Petri nets can not model [38, pp. 190

through 195]

i

Graphic representation and dynamics of Petri nets

Graphic Representation Petrinets use three basic components: places, tran-
sitions, and arcs.

Places represent states of the system components; transitions are events; and arcs
are either inputs or outputs of transitions. Graphically, Petri nets are represented by

circles (places), bars (transitions) and unidirectional vectors (arcs). An example of
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Figure 2.1: Places, transitions, arcs. and tokens of a Petri net

a Petri net in Figure 2.1 demonstrates these three components. shows tokens mark-
ing places, and inhibitor arcs used for enabling a transition requiring an absence of
markings in a place.

Transitions are the events changing the state of the system. When a transition
fires, the system changes state (i.e., from idle to active, available to unavailable). In
some models the bars are replaced by boxes representing transition delays or process-
ing time {4].

Places are connected to transitions (and vice versa) by directed arcs 37.. They
control the unidirectional flow of tokens between places and transitions. Some Net
models are subsystems of larger models so may have an entry place without a feeder

arc or a completion place without a departure arc.



“An extension of Petri nets replaces the arrow head by a small circle
creating an inhibitor arc to change the transition firing rule. A transition
is enabled when tokens are in all of its normal inputs and no tokens are
in its inhibitor inputs. This notation is borrowed from switching theory

where the small circle means ‘not’” [38].

Tokens are dots contained within the places (circles). Tokens are used to define
the execution of a Petri net [38, page 16]. There can be one or more tokens in a place
representing multiple available resources at that state or the units having reached
that state in the system; the ability to generate only a finite number of tokens at any

place in the modeled system denotes a bounded Petri net.

Dynamic Behavior The dynamic behavior of a petri net is described by Ka-

math and Viswanadham [19] as follows:

“The dynamic behavior of a system is modeled as follows. The oc-
currence of an event is represented by the firing of the corresponding
transition. The movement of tokens in the net resulting from the firing
of one or more transitions represents a change in the system state. The

following are the firing rules for marked Petri nets.

1. A transition is enabled when each of its input places contains at least

one token.
2. A transition can fire only if it is enabled.
3. When a transition fires:

e a token is removed from each of its input places, and



e a token is deposited into each of its output places”.

A more complete discussion of the dynamics of Petri nets can be found in Peterson

[38] or Reisig [40].

Testing of Petri nets

A significant advantage to using Petri nets versus other modeling systems is the
ability to test and validate a system. Liveness, boundedness, safeness, and reachabil-
ity are measures of effectiveness for the Petri net.

Deadlock occurs when a transition cannot fire and no sequence of transition
firings will take the net to a marking which allows the transition to fire. A Petri net
is live if there is no deadlock {37, 38].

A reachability tree is generated from an initial marking by firing enabled tran-
sitions. Reisig [40] and Peterson [37, 38] discuss this in detail. Essentially, if the
reachability tree shows no infinite markings (places containing or having the poten-
tial to contain an infinite number of tokens) then the tree is bounded and safe. The
reachability tree is a finite representation of the usually infinite reachability set from
an initial marking of the Petri net.

The reachability problem deals with the ability to reach a marking from an initial

marking. Peterson [37, page 147] states:

“Recent results seem to indicate that the reachability problem is solvable,
but it is extremely hard. Thus although the problem can be solved, it
may take much too much time and money to be worthwhile, in general.

Other problems, such as the equality of the reachability sets of two Petri
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nets (useful for considering equivalence and optimization) are known to

be unsolvable.”

Extensions to Petri nets

There have been many advancements and modifications to the basic Petri net
theory. Not all authors and researchers have agreed on the direction of the “improve-
ments” so several branches of Petri net theory have developed. Some have added
features by extending basic Petri net concepts. Examples include timed transitions,
levels of net operation to reduce repetition, delayed transitions to simulate processing,
delayed arcs, and multiple token place representations. The following sections discuss
some of the more prevalent extensions to Petri nets and their applications.

Extensions to Petri nets have enhanced or altered the power of these models.
Some of the changes are colored Petri nets, timed Petri nets, and stochastic Petri

nets.

Colored Petri nets Colored Petri nets (CPN) allow the modeler of systems
with repetitive processes to view a smaller network in which tokens have changed
colors to: indicate process steps, assign attributes, or differentiate between tokens.
The primary function of CPN is data management. The structure of the PN systems
are not affected nor are the reachability trees or analysis questions. The color of
the tokens is just another data item carried in the markings. The colors represent
levels of activity or number of times the part has moved through the process. This
model concept is also useful when several parts must be processed through the same

system. An example would be in electronic chip manufacture where wafers being



11

fabricated pass through five basic processes many time adding layers of new material
onto existing layers. The processes are represented by states, the pass number is
represented by the color of the token, and the transition represents the movement

between processes.

Timed Petri nets Timed Petri nets introduce timing to a network. The
manufacturing area of interest in Petri net analysis would be limited if the timing of
a network were not possible. By adding time to the place or transition (two schools of
thought diverge here) the system changes from instantaneous firings to one of delayed
firing. This can affect the network from several standpoints including availability of

resources, timing of future events, and overall completion time for activities.

Control nets Control nets (C nets) are a modified form of Petri net (P,T,1,0)
where I and O represent input and output arcs by Murata, Komoda, and Matsumoto
[33]. They called the 4-tuple a single element C, included the marking matrix M and
5 new elements representing various process functions (4, »,n) (command, response,
and gate functions respectively) and system status functions (U,V) (execution status,
and transition status respectively) to produce a 7-tuple (C, §,¢,7,U,V,M) to control
a factory automation controller. The process functions are used to allow an operator
direct control of token movement in the system. The system status functions allows
supervision of the execution status and management of the transition statuses. This
is an example of modelling enhancements quickly limiting the decision and analysis

attributes of Petri nets.
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Applications of Petri Nets

Applications of Petri nets in the manufacturing setting are varied. The useful-
ness of PN logic in systems design and documentation is demonstrated quite often.
There are efforts in simulation, testing, analysis, design, and control using PN sys-
tems. Implementations at every level of control has been demonstrated. Simulation
systems using Petri nets at the levels of factory, production line, cell, and controller
exist. Design of systems using Petri nets have been automated. Systems have been
demonstrated which develop RLL from PN graphics and test PN designs before im-
plementation. Three PN based controllers have been developed and demonstrated.
PN as a basis of documentation and control is becoming more prevalent and will
continue to demonstrate its applicability.

The dissertation in 1962 by Petri [39] came to the attention of Project MAC at
MIT which has published numerous reports and dissertations. One of these reports, by
M. Hack [15] in 1972, brought together the many facets of the production environment
and provided a broad approach to manufacturing systems overview and design in light
of Petri nets. Most importantly, the work describes the use of free choice Petri nets
and their definitions. This work puts together the nuts and bolts of production
schemata and is the seminal work relating Petri nets directly to a manufacturing
environment. Since that time work has branched into several different areas of study.

Primarily, there are 3 levels of production control:
e Manufacturing Systems

o Flexible Manufacturing Systems or Cells
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e Programmable Controllers or Controller based Sequencers
The study in all three of these areas falls into 4 categories:
¢ Design and Documentation
e Simulation and Modeling
e Analysis and Testing

e Control

Design and documentation

Houldsworth and Brearly [18] state that PLC functions can be enhanced by us-
ing a Petri net like programming system and a structured method of programming.
They maintain that good methods and a graphical approach to programming are
used effectively with a personal computer to provide good documentation of the sys-
tem. The system they promoted is GRAPH5 by Siemens. Brand and Kopainsky [6]
and Bruno and Marchetto [7] cite Petri nets as the basis for process control design.
Gentina and Corbeel [14] propose a modified net system for the synthesis of FMS
control. Devanathan et al. [13] promote computer aided design of RLL using state
diagrams. Krogh and Beck {23] investigate the use of nets for simulation of manu-
facturing systems and Krogh, Willson and Pathak [24] propose using Petri nets and
microcomputers to generate programming for PLCs keeping a data base of used and
available data points. Their work allows the retention of RLL but keeps the pro-
gramming level at a higher level language. Kruempel and Day [25] developed a CAD

package for designing RLL for PLCs as well as a simulation system they test against
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a Modicon controller. Lloyd [27] discusses GRAFCET, a program which uses Petri
nets as a basis for PLC programming. Like the GRAPHS5 program of Siemens, they
promote a function block approach to states and transitions. The elemental function-
ality of PNs are not considered or demonstrated, only their higher order modeling is
used. The function blocks and transitions are evaluated or fired based on RLL writ-
ten at a lower level. Only the PN logic is displayed. Currently Siemens (GRAPHS5),
Telemecanique (GRAFCET), and Allen-Bradley (unknown) offer PN-based graphic
programming modes in addition to ladder logic and high level languages [41]. Mar-
tinez and Silva [30, 31] develop a language for describing concurrent systems such as
FMSs and a package for computer design of concurrent logic systems; with Alla [28]
they discuss using Petri nets for specification of FMS. Matsuzaki et al. [32] use a
GRAFCET-like Petri structured programming system similar to BASIC and report
increases in software productivity of 50% to 100% over Relay Ladder Logic, as did
Murata, Komoda, and Matsumoto [33] who reported a 50% man hour reduction in

software development time from RLL using their PN oriented language.

Manufacturing simulation and modeling using Petri nets

Han [16] not only proposes the specification of the system using Petri nets, he
also demonstrates the simulation, modeling and queuing analysis capabilities of the
nets. Silva and Velilla {42] investigate the various computer resource consumptions
using PLC vs Petri Net based controllers. Alanche et al. [2] presents a Petri Net
based Simulator (PSI) to evaluate flexible manufacturing systems. Alla et al. [3]

develops some of the mathematics of analysis of FMS using CPN (see section 2).
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Narahari and Viswanadham [35] use Petri Nets to analyze FMS, and conclude that
simple PN will not suffice for larger systems. Viswanadham works with Kamath
[19] to develop the Colored Petri net analysis of an FMS. Beck and Krogh [5] citing
Narahari and Viswanadham present‘ modified Petri nets for simulation and control of
an FMS. Bruno and Morisio [8] develop PN based simulation of manufacturing cells
using some earlier work on PN for the design of FMS. Martinez, Muro, and Silva [29)]
expand previous work to demonstrate the modeling and validation capabilities of PN
in production systems modeling. Peng and Shin {36] who did not deal directly with
manufacturing systems develop some interesting concepts of modeling distributed

systems for real time control.

Analysis and testing

Hack’s [15] seminal work includes a basis for analysis and testing of PN systems.
Heimerdinger [17] uses PN systems to analyze fault tolerance at a system level. LeMer
[26] develops a software package for the analysis of PN systems which verifies and
validates Petri nets. Narahari and Viswanadham’s [35] work on PN systems includes

the analysis needs of the system; as does Martinez et al. [29].

Control

Chocron and Cerny [10] provide the first example of implementation of a PN
based controller (called a sequencer in their work). This example is paralleled by
the work of Courvoisier et al. [11, 43] in their development of a PN based controller

on a Z80 based computer. The implementation is slow due to the CPU speed and
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memory size. Advances in semiconductors is expected to improve the processing time.
Murata et al. [33, 22, 34| present work on a PN based controller implementation
on a larger CPU controlling a FMS cell. Their findings indicate good control and
quick comprehension of the graphics used in the control monitor allowing rapid fault
detection and repair with increases in software productivity of 50% over the RLL
systems. Crockett et al. [12] expands upon all of the previous work to implement a
PN based controller at a higher level of control generating software control commands

used to interact with hardware signals.



CHAPTER 3. PROPOSAL

The need for documentation and testing capabilities on Relay Ladder Logic used
in programmable controllers has importance in the future as islands of automation
are incorporated into larger automated systems. The initial control logic was devel-
oped for use by electronic technicians, floor foreman, plant maintenance personnel, or
electricians who wired the equipment. This level of control has yet to be integrated
with larger automation systems. The RLL serves well as a communication system
of logic for earlier programmers, but systems people need to consider integration of
subsystems using a common control environment.

Replacement of Relay Ladder Logic at its lowest levels of use will be slow. Petri
net based controllers have been considered, and some high level petri net systems
are offered but their acceptance is far down the road. RLL is an acceptable and
proven method of logic development. Its roots in the electrical magnetic relay and
switch system make comprehension easy for maintenance and repair teams who work
around the equipment. The difficulty of communications between floor personnel who
are not well versed in the logic design languages and systems designers who are not
well versed in RLL or electrical symbols will cause an increase in the cost and time
to implement a system.

Petri nets have been used for designing and developing logic for manufacturing
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and flexible manufacturing control. Their future use as a documentation and logic
development tool for systems has a high probability. They have the potential to
become a base language of manufacturing systems design in the future.

Computer Integrated Manufacturing (CIM) and system design is becoming more
important at every manufacturing site. Integrating and reducing the number of lan-
guages which must be worked with in a CIM project is important. Logic and systems
planning using one common language is the ideal solution. Although the ideal usually
is not reality, Petri nets have the potential to be that common integration language
used in CIM.

Since relay ladder logic is entrenched in the current manufacturing systems and
will remain so for some time in the future, there is a need to develop a methodology
to provide a Petri net view of the RLL logic for analysis and documentation. In light

of this need, this thesis proposal is threefold.
e To develop RLL test models demonstrating basic control logic.

e To determine the generic steps required to convert RLL models to Petri net

models.
e To demonstrate that the Petri net and RLL models perform exactly alike.

This work will provide a conceptual model and working algorithm for converting RLL
to Petri nets providing future systems designers with a common language for design
and documentation, and allowing future designs in RLL to be converted to Petri nets

for testing, validation, and debug before implementation on the factory floor.
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CHAPTER 4. LOGIC MODELS

Components found in most RLL systems as shown in Figure 4.1 include:

e Normally open switch,
e Normally closed switch, and

e Coil or Relay,

The proposed architecture consists of two models, namely, the processing model
and RLL model. PLCs process RLL diagrams according to a predefined algorithm
embedded in the PLC system. This processing is the basis of the processing model
and must be integrated into the PN models for a valid model of RLL execution. Two
RLL models investigated in this research are a serial and a parallel ladder using switch

and relay elements. These models are representative of simple RLL systems.

PLC Processing of RLL

The PLC processing model gathers outside inputs for the relay ladder into current
registers. Each rung is evaluated sequentially based on the current register values.
The results of the evaluation are placed in future registers used to update the current

output registers after the ladder scan is completed. During a ladder scan no state
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Normally Closed Switch Normally Closed Coil

Figure 4.1: Common components of relay ladder logic diagrams

change in earlier rungs output affects the rungs following. The ladder scan speeds

make the processes appear to be continuous but RLL based PLC's are all sequential

evaluation systems.

Serial Ladder Model

A three rung serial ladder is illustrated in Figure 4.2. Rung 1 of this model is a
start/stop rung. Outputs are represented by coils and inputs by switches. The Y1
input is driven by the Y1 coil and represents both internal and external control by the
Y1 coil. The relay Y1 is activated by the start switch X1 closing and the stop switch
X2 remaining closed (i.e.. no outside actions). Once the relay Y1 is activated. the
start switch is released and the contact controlled switch Y1 maintains the circuit.
This rung should not be confused with the hard wire stop switch connected to the
PLC to stop processing when the C'PU fails. This rung appears in our parallel model

also and serves as an example of a Boolean OR decision module. The outcome of
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Figure 4.2: Serial relay ladder logic model

this rung may be implemented as a switch in all succeeding rungs to stop all related

~processing. In our serial model. this dependence has been removed to gain simplicity
in our models. Several start/stop rungs may appear in a complex PLC to control
separate manufacturing lines or processes.

Rung 2 represents a sequence rung using rung 1 output to activate output }2.
Another function employed in the model is the use of “exclusive or” switching. Rung
3 output, Y3, controls the actions of rung 2 and vice versa. An example of the use of
such a rung pair would be a robot release command. The release command cannot be
given until the robot is activated in rung 2 and has moved to a position determined
by switches X4 and X5. Once the robot has reached this position, the output }3

triggers the part release mechanism turns off the Y2 output and releases the robot
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for other tasks. Output Y3 may initiate further activity on the released part.

Inputs from outside sensors such as contact closures and photodetectors are rep-
resented by the X values. Output to the outside world is represented by the Y
notation above the square bracket coil elements, and internal control of rungs is rep-
resented by the Y notation above switch elements. This representation is not meant
to follow any one PLC system, but to represent the logic of basic PLC RLL notation.

The RLL rungs are processed from top to bottom. The activation of the next
rung depends on the previous rung’s status. Ladder scanning systems working on this
type of dependency require at least n passes through the RLL to activate/deactivate
each rung of the ladder where n is the number of rungs in the RLL model. More
than n passes are necessary when there is increased dependency upon previous rungs
in the model. A ladder scan does not pass the activation of rung 1 to rung 2 until
the output of rung 1 is updated. This updating occurs at the end of a ladder scan,
so the activation of rung 1 in the first scan can not be reported to the input of rung
2 or successive dependent rungs until the update phase following the scanning of all
the rungs. A discussion of PLC rung scanning systems in {20, pages 124-126] reveals
that output evaluation occurs after ladder scan completion regardless of the method
used to scan the ladder rungs. The rung scanning process used in this paper is rung
by rung.

PLC ladder processing is serial in nature, automatically evaluating each rung
before testing the next rung. Although current PLCs process each rung in a sequential
manner, the current processor speeds give an appearance of simultaneous occurrence

of events.
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Figure 4.3: Parallel relay ladder logic model

Parallel Ladder Model

The model in Figure 4.3 also begins with the start/stop rung. The purpose of
this model is to represent in RLL what can be processed simultaneously. In the wall
mounted relay technology, these processes are performed at the same time and are
not dependent upon each other. The serial scanning of ladder rungs causes the RLL
based PLCs to be sequential in nature and not parallel as the older wall mounted
systems are. Only by rapid processing does the parallel ladder model appear to be
processing simultaneously. Large RLL diagrams slow down the processing. displaying
the sequential nature of the PLC.

As explained in an earlier section, the updating of output is performed at the

end of a ladder scan, so any change to output in rung 1 cannot affect rung 2 until
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the output update at the end of the ladder scan. Petri nets are used routinely to
model parallel processes. Our parallel PN model demonstrates two rungs evaluated
not in parallel but sequentially due to the higher logic present in the CPU of the
PLC. Development of the PN model for a true parallel evaluation is left for future
investigative work. The processing used by parallel models is less complex to design,

perhaps more complex to implement on a CPU.
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CHAPTER 5. ALGORITHMS FOR PETRI NET MODELS

PN models are built to represent the logic process RLL uses to process inputs and
produce outputs. Higher level processing of RLL, built into the CPU of the PLC,
must be incorporated into the model. There are two separate levels of modeling
taking place; the higher level is called Process Nets (PrNs) and the lower level is
labeled Rung Evaluation Nets (RENs). The PrN represents the PLC’s CPU control
system, and the REN is a rung of the relay ladder diagram. The RENs are inside the
PrN and the PrN controls the processing of the REN input and output evaluations.

The RLL models are kept small for purposes of clarity, ease of demonstration,
and testing. The algorithms used can be applied to any size RLL system. A thor-
ough understanding on smaller RLL systems is suggested before any large ladders are

evaluated.

Process Nets

Figure 5.1 shows the PN representation of the PLC processing and Table 5.1
lists the state or action of each place or transition. There is one token in the PrN
during evaluation. Another PrN model using parallel output evaluation requires as
many tokens as there are output evaluation nets. The PrN evaluates each rung of the

model and controls the updating of the future to current memory addresses for each
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Table 5.1: Transition and place representations for serial PrN

Place State represented

P1 Ladder scan ready

P2 Rung 1 evaluation ready

P3 Rung 2 evaluation ready

P4 Rung 3 evaluation ready

P5 Ladder scan complete; Output evaluation ready
P6 Rung 3 output scan ready

P7 Rung 2 output scan ready

P8 Rung 1 output scan ready

P9 Output scan completed

Transition | Event(s) represented

T1 Start ladder scan, Gather inputs

T2 Evaluate rung 1

T3 Evaluate rung 2

T4 Evaluate rung 3

T5 Mark all output scan places

T6 Evaluate output rung 3

T7 Evaluate output rung 2

T8 Evaluate output rung 1

T9 Report current output statuses; Set ladder scan ready

scan of the ladder. The PrN is composed of:

places and transitions for every REN;

a place to activate the output evaluation segment of the PrN, and (in the parallel
model) a transition to put tokens into every output evaluation place; otherwise,

a transition to start output evaluation;

places for each output evaluation,

a place to collect the output evaluation token (tokens if the parallel model is

used);



e a transition to end the ladder scan and report status of outputs (if the parallel
model is used this transition consumes all tokens generated by output evaluation

and produces one token to keep the net safe);

¢ a place to represent completion of ladder scan (the beginning marking) and a

transition to activate the ladder scan.

The serial model discussed above and the changes to produce a parallel output eval-
uation model are shown in Figure 5.2. Note the differences from T5 through T9 of
the two models.

The RENs are independent PNs representing one rung of the RLL tied together
via the PrN. The PrN model in Figure 5.1 evaluates ladder rungs at transitions
T2, T3, and T4. The models in Figure 5.2 are the same model as Figure 5.1. The
transitions T2, T3, T4, T6, T7, and T8 have more than one transition detailed in
Figure 5.1 while Figure 5.2 shows only one transition at these locations; the PrN
transition T2 represents multiple REN transitions. Since only one transition of the
REN can be enabled (they are mutually exclusive events) the single token is preserved
and no conflict occurs during REN evaluation and the larger PN model can be shown
with only one transition to represent the higher level process.

After REN input transition evaluations, the PrN for parallel output modeling
fires transition T5 putting a token in each REN output evaluation place. There is
an output evaluation net for each REN. Place P9 gathers these tokens after output
evaluation and transition T9 enables when all tokens created at T5 are collected in P9.

An alternative to parallel processing the output evaluation is sequential processing.
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Figure 5.2 shows the two alternatives from T5 through T9. The serial PrN uses
a single token while the parallel PN splits and rejoins the tokens. Either process
preserves safeness. The parallel processing allows all outputs to update simultane-
ously. However, the PN tree that it éenerates can cause evaluation and documentation
problems. The output evaluations do not affect the input places for REN evaluation
because the output evaluations are performed after T5 (the end of Ladder rung scan
phase) and before T9 (the transition to Ready to begin Ladder scan state). This PrN
location isolates the output update from the current input data allowing us to update
the outputs using serial rather than parallel processing without affecting the REN
outcomes. The PrN models used in this study are serial like the left hand model of

Figure 5.2.

Generic REN Modelling Steps

One goal of this research is to arrive at a system of RLL evaluation applicable
for any combination of basic rung elements shown in Figure 4.1. In addition, PN
modeling requires that we move a token through each net; so all possible outcomes
must be modelled rather than the outcomes activating the network. This is not true
in RLL due to the built in instruction set of the PLC’s CPU.

The RLL in Figure 4.2 demonstrates that the Boolean expression (Y1 + X1)-
X2 can model the activation of Y'1. This expression will activate Y1 for the three
combinations of Y1, X1, and X2 (assuming a current and future value for Y1) but
relies on the instruction set imbedded in the PLC to bypass any rung showing no

change. PNs use tokens to activate states; thus the additional consideration of testing
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the REN when there is no change in state (i.e., 1 is still 1) is necessary to move tokens
to a new state by enabling and firing a transition.

Conflict resolution in PN evaluation requires explicit processing rules. This is
undesirable for PN systems used as documentation tools because the explicit rules
must be recorded and remembered separately. The PN drawing for these “ruled”
systems no longer completely demonstrate the logic of the system. One of the purposes
of converting RLL to PN representations is to provide a documentation tool; if the
tool does not carry all of the information on the processing of the RLL and relies
on outside rules for conflict resolution it become a less useful tool. PN used as an
analysis tool to produce reachability trees will also be hampered by the use of rules
not built into the model.

In consideration of the previous three paragraphs, the PN based RLL modeling

system being developed in this paper must consider:
e the transitions activating the future output,
e the transitions reversing the future to current output, and
o the transitions maintaining the status quo (i.e., 0 is still 0),

in order to move tokens through the system. In addition, the model must be able to
produce conflict free transition sets for the RENs so no explicit rule set is needed.
The modeling of 2" transitions, where n is the number of inputs to the rung,
quickly becomes bulky; it is desirable to minimize the number of transitions used by
reducing the Boolean expression to a minimum number of phrases. This desire to

minimize must be modified by the need to eliminate transition conflict. Developing a
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Left) Mixed AND/OR logic  Right) Mutually exclusive logic

Figure 5.3: Comparison of Boolean expressions using PN representations
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mutually exclusive set of transitions eliminates conflict with a slight (if any) increase
in the number of transitions required to evaluate the system.

Another consideration for users of this modeling system is keeping the visual
interpretation simple. If an REN has multiple levels of places and transitions asso-
ciated with the logic to evaluate one rung of RLL, then the simplicity is destroyed
and ease of comprehension is reduced. An example of this in Figure 5.3 is the logic
for serial rung 1 displayed in PN form on the left and in the REN form of this paper
on the right. The lower case ¢ represents the current state of the output variable,
and the lower case f the future state. For simplicity, the two PNs only address the
activation of the future output in this example. Activation transitions are transitions
with arcs from the transition to the future output place; deactivation transitions have
no arcs from the transition to the future output place. The Y1f place in both draw-
ings and the unnamed place receiving tokens from Y1lc and X1 in the left drawing
OR the transitions feeding them. The transitions AND the places entering the tran-
sition. The complexity of the activation network is increased by mixing AND and
OR notation in the expression for the PN representation (the left hand model); the
REN transition set reduces the complexity and increases comprehension by giving
the reader constant information at each transition for all input variables and allowing
users to readily view all optional paths for a token. Each transition is a mutually
exclusive transition so only one transition is enabled during any scan of the system.
The system on the left of Figure 5.3 has the potential for multiple token generation
or for conflict with certain initial markings. The returning arc of Y'1c is necessary for

any variable affecting information elsewhere in the model. All of the current output



34

variables have a returning arc wherever a token is required to enable a transition
because the current output status is needed for the output evaluations. Any X input
variables appearing more than once in the same RLL model also need returning arcs.
Although the left PN of Figure 5.3 appears to be able to generate an infinite number
of tokens from Y1 to the unnamed interim place, this is not the case. The control-
ling factor is the PrN input arc not shown in the drawing to reduce the complexity.
This arc controls the flow of the PrN token through only one of the two transitions
available. The presence of this arc prevents the multiple token potential mentioned
earlier but produces the potential for conflict between the two transitions when each
has a token available for delivery to the interim place.

By keeping the transition sets between RENs similar, the RENs become easier
to decipher and understand. Each transition in the system represents a Boolean
AND. The REN transitions are a set of ANDed conditions ORed together creating
an “exclusive or” set of transitions meaning only one transition can be enabled any
time the system is evaluated. The “exclusive or” concept is better described by the
term mutually exclusive. Rung 1 of the RLL demonstrated in Figure 4.2 has a Boolean
representation of (Y1c+ X1)- X2 (where Y1c denotes the current value of ¥'1 and
Y1f is the future value) and a PN representation in the left plate of Figure 5.3. The
PN can produce two tokens when both Y1(" and X1 have the value of 1 if no other
controlling network exists and all enabled transitions are allowed to fire. The PN is
not safe if a transition is capable of generating an undeterminable number of tokens.
This network could create an infinite number of tokens if enabled transitions fired

multiple tokens into the interim place and only removed one token during each scan
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of the system. The controlling network (PrN) arcs not shown in the drawing limit
this firing yet still allow conflict between two transitions when certain initial markings
are used.

The Boolean expression (Y1c- X1-X2) + (Ylc- X2) represents the same logic
employing a mutually exclusive set of phrases and is displayed on the right plate of
Figure 5.3 in a more comprehensible manner using transitions having a logical variable
order. The expression preserves safeness by producing only one token while avoiding
conflict between transitions. The work of this thesis is to create a PN modeling

algorithm that:
e is repeatable for every RLL rung containing the basic components of RLL;

o identifies the activation/deactivation of the future output, or recognizes status

quo events;

o eliminates conflict by ensuring that each combination of inputs enables one and

only one transition of the REN each time a token passes through the REN; and
¢ simplifies reading of the transition set visually and logically for each REN.

As the work for this thesis progressed, two paths to solution emerged. The first
path is the mathematical approach to the solution. In this approach, the RLL infor-
mation is coded into algebraic expressions using Boolean logic, then mathematically
reduced to mutually exclusive sets of phrases. This approach is valid and usable for
any size system although it becomes increasingly difficult and time consuming work
beyond three input variables. The second path is based in the Boolean algebraic

solution, but is a more algorithmic solution lending itself to automation. The tabular
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algorithm involves sorting rows in tables and choosing variable combinations defining
mutually exclusive REN transition sets. With the tabular algorithm a set of manip-
ulation rules can be written allowing automation of the solution in the future. The
conversions to RENs in this paper will use the tabular method. The algebraic solution
is shown to provide a basis for the tabular solution and demonstrate the mathematics
behind the row sorting and variable selection. Each algorithm produces the same

result.

The mathematic algorithm for translating RLL rungs into RENs is:

1. Build a binary input combinations table.
2. Generate the desired binary output results for the table.
3. Build, reduce, and choose the optimal Boolean output activation expression.

4, Convert each phrase of the Boolean activation expression into a REN activation

transition.

Ut

. Compliment and reduce the Boolean activation expression; choose the optimal

Boolean deactivation expression.

6. Convert each phrase of the Boolean deactivation expression into a REN deacti-

vation transition.

A detailed explanation of each of these steps follows in the section on the mathematical
algorithm.

The tabular algorithm for translating RLL rungs into PN based RENs is:

1. Build a binary input combinations table.
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2. Generate the desired binary output results for the table.
3. Sort the table by the output value grouping activation and deactivation rows.

4. Solve for the activation expression by using rows with output values equal to
1 and finding the input variable combinations defining the most rows using
the least number of variables without defining any deactivation rows or any
previously defined activation rows. Repeat this step until all rows with output

values of 1 have been defined by input variable combinations.

Ot

For each phrase of the activation expression generated in the previous step build

the activation transition.

6. Solve for the deactivation expression by using rows with output values equal to
0 and finding the input variable combinations defining the most rows using the
least number of variables without defining any activation rows or any previously
defined deactivation rows. Repeat this step until all rows with output values of

0 have been defined by input variable combinations.

7. For each phrase of the deactivation expression generated in the previous step

build the deactivation transition.

A complete discussion and examples of this algorithm appear in the section on the
tabular algorithm beginning on page 48.
The mathematical algorithm

Build a binary input combinations table The table is a binary combina-

tions table with columns for each rung input and output. It is a standard digital
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Table 5.2: Truth
table for the
start/stop
rung
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logic table representing every input combination possible. This table is the complete
set of combinations not just those that the system designers consider. This allows
for the testing for every condition in the system. This list will have 2" rows where
n is the number of input variables. The table technique is common to digital logic.
Essentially it is binary counting from 0 to 2% — 1 using an n bit register with each
row being incremented by 1. The right hand column (output column) remains blank.

It is filled in by performing the next step of the algorithm.

Generate the desired binary output results for the table Mark the
output column with 0 or 1 using the RLL’s Boolean logic to evaluate inputs. Use a 1
in the future output columns for any combination of inputs activating the output and
a 0 in the future output column for any combination rendering the output inactive.
Though some of these markings cannot occur in the real world system, they must
be considered in any logic system. The first two steps build tables like Table 5.2.

Table 5.2 is a binary counting table with future output generated from the Boolean
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analysis of a RLL rung for the given row’s input variable values.

Build, reduce, and choose the optimal Boolean output activation ex-
pression By looking for all of the active output rows (output column values of 1),
representing the rows as ANDed Boolean combinations, and combining the represen-
tation phrases into an ORed statement, a Boolean expression is generated. Table 5.2

has active output Boolean representations of

Yic-X1-X2

Yie-X1-X2

and

Yic- X1-X2

for rows 3, 5 and 7 respectively. OR the three phrase representations of rows into one

expression to get

(Ylc-X1-X2)+(Yle - X1-X2)+(Yic-X1-X2). (5.1)

Reducing the expression to the lowest level of mutually exclusive set of ORed
. combinations (using Boolean algebra) is the next step. Boolean algebra is evaluated
based on priority rules. The order of Boolean algebra evaluation is bracketed phrases,
parenthetic phrases, ANDed values (the - sign indicates an AND operation), and then
ORed values (indicated by a + sign).

Reduction of expression (5.1) begins by combining the second and third phrases

noting that X1 and X1 are the only differing variables. The ORing of compliments
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produces a Boolean value of 1 in every case. This elimination of the X1 variable

produces the expression

(Yic-X1-X2)+ (Yic-X2). (5.2)

Boolean algebra further reduces the expression to
(Ylc- X1+ Yle)- X2

and finally to

(Yie+ X1)-X2. (5.3)

Expression (5.3) is not mutually exclusive because it does not provide for the
“exclusive or” between Y1lc and X1. Expression (5.2) is mutually exclusive since
the Ylc variable has its compliment appearing in the other phrase. Multiple rows
of the combination table satisfy expression (5.3) thus conflict would exist in the PN
representation. PrN safeness would be violated if a PN from expression (5.3) was
inserted in the PrN.

No conflict is one goal of the algorithm, and a Boolean expression containing
a set of mutually exclusive phrases is another goal; the Boolean expression (5.2)
is an activation expression meeting both goals. This represents the least number
of transitions needed to model the activation of the Y1 output without conflict.
Essentially the process incorporates the compliment of the chosen variable into the

other phrases of the expression. Based on this process an alternative solution exists.
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By taking expression (5.1) and combining the first and third terms the expression
(X1-X2)+ (Ylc- X1-X2) (5.4)

is created. This expression and expression (5.2) are both mutually exclusive and
represent the activation expression. Having two equivalent transitions sets requires
additional consideration for selection.

All other considerations being equal and the expressions meeting the criteria of
mutual exclusivity the simplification of the REN drawing becomes important. By
keeping the number of transitions, arcs, and places to a minimum, the drawing be-
comes more readable and easier to produce graphically. One consideration for sim-
plification of the drawing is the number of arcs used to generate the REN.

Optimization of the number of arcs considers the PN representation of the RLL
system. Each time a variable is included in a phrase an arc is drawn to represent it. If
the variable must be renewed for use by other RENs or by the output evaluation, then
a returning arc to the enabling place must be provided from each transition enabled
by that variable. By selecting the Boolean expression to minimize the number of
arcs, we reduce the drawing complexity. Each input variable used elsewhere in the
PrN or RENs must have the token returned to the enabling place by the enabled
transition thus requiring two arcs. Any transition enabling a future output place has
an additional arc besides the input arcs. Any variable not used elsewhere in the PrN
or RENs requires only one arc to represent it and does not require the token to be
returned to the enabling place. Any transition enabled by the absence of a token in
a place requires only one inhibitor arc and no returning arc.

Since the input variables are not used in succeeding rungs, the only multi-
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ple arc consideration for the start/stop REN is Ylc (used in rung 2). Expres-
sions (5.2) and (5.4) each require six arcs and two transitions to model the acti-
vation expression. The choice in this case is moot, and expression (5.2) will be used.

Additional examples will be discussed later to clarify this optimization step.

Convert each phrase of the Boolean activation expression into a REN
activation transition Based on the reduced Boolean expression of the previous
section we need to build the transition(s) to represent state combinations causing
active output for the rung. All of our transition models will have a similar structure.
The first two transitions of Figure 5.4 and the left two transitions of T2 in Figure 5.3
(left plate) are the same transitions. The right side of each transition in Figure 5.4
has no arc from the PrN. The location where the PrN arc enters and leaves the
transition is open in Figure 5.4 and each REN drawing will have an opening on the
right side of each transition for the PrN arc to be included later. The transition
constructions are based on arc location upon the transition. There are 4 positions on
the transitions of Figure 5.4 representing 3 input variables and 1 PrN arc. The first
transition has all three input places filled; the 2 inhibitor arcs represent the Y1c and
X2 components of the phrase in the reduced Boolean expression of the last section,
and the arrowhead represents the X1 component. The second activation transition
(transition 2 of Figure 5.4) uses just 2 components to define the transition; note that
the physical position for X1 is left open to indicate that variable is not used. This
notation will be followed throughout the thesis to maintain comprehension and ease
of reading PN drawings.

The last item to note in Figure 5.4 is the presence of arcs from the first two
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transitions to the Y1f place in the REN model. These arcs represent the future
activation of Y'1 and the Y'1f place holds the activation token until the output update
phase is reached. It is the presence of these arcs from the transition to the future
output place that denotes an “activétion” transition. Conversely, the absence of the
arc from the transition to the future output denotes a “deactivation” transition which
will be developed next. The use of Y1f and Y1lc notation prevents the Y1 change
of state from affecting other rungs during the present ladder scan. After the output
evaluation takes place, the change in state of Y1 will exercise its effect on any rung

using Y'lc as input during the next ladder scan.

Compliment and reduce the Boolean activation expression; choose the
optimal Boolean deactivation expression The set of transitions deactivating
the output must be developed. Boolean logic lends itself to this task handily. When
you have a set of true conditions, the compliment (reverse) of that set of conditions
yields a set of opposing conditions. Time being an important factor there is a limit
to what should be processed by hand manipulation of Boolean expressions. The ma-
nipulation rapidly becomes time consuming after 4 input variables. Tabular methods
become more expedient.

Complimenting the expression; reducing to the simplest set of OR combinations;
and solving for an optimal mutually exclusive representation begins with the compli-

menting of expression (5.2) giving

(Ylc-X1-X2)+(Ylc-X2). (5.5)

This expression must now be reduced. Boolean algebra states that any compliment
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crossing ANDed conditions yields complimented Ored conditions. The same is true
when a compliment crosses an ORed conditions; complimented AND conditions are

the result. Imbedding the compliment of expression (5.5) produces

(Yic-X1-X2)-(Ylc- X2).

Further reduction using the same imbedding technique across each complimented

AND phrase results in
(Yie+ X1+ X2)-(Yic+ X2).

Combining variables across the ANDed condition and reordering them results in

X2+ (Yle-X2)+(Y1c-X2)+(X1-X2)+(Y1c- X1). (5.6)

The variable X2 appears in the first three phrases and is implicit in the third phrase

ORed with its compliment. By expanding the fifth phrase we get
X2+ (Yle-X2)+(Y1Ic- X2)+(X1-X2)+(Y1e- X1-X2)+ (Y1e- X1-X2).
Recombining using X2 as a common variable the expression
X2 -(1+Yle+Yle+ X1 +Y1lc-X1)+Y1e-X1-X2 (5.7)

is generated. The 1 inside the parenthesis denotes the presence of X2 as a single
variable in the expression. Boolean algebra provides that 1 ORed with any other
variable(s) equals 1; 1 ANDed with any other variable equals that variable. These

two facts reduce expression (5.7) to

X2+Yle-X1-X2. (5.8)
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Expression (5.6) could be reduced to
X2+Yle- XT1; (5.9)

but mutual exclusivity is a necessary condition satisfied by expression (5.8) not by
expression (5.9). Expression (5.8) is the reduced mutually exclusive representation
desired in this manipulation.

The last step of this selection process is to find the optimal solution by looking
for the least number of arcs for the deactivation expression. This example generated
a final solution before optimization was necessary. However, using the complimented
expression from serial RLL rung 3 as an example yields six mutually exclusive but
not necessarily optimal solutions.

Rung 3 of the serial ladder has one activation phrase:
Y2c- X4 X5.

The imbedded compliment of that phrase is the expression

Y2c+ X4 + X5.

This is not the mutually exclusive set because any two of the variables equalling 0
causes conflict between the ORed conditions. To resolve conflict, a mutually exclusive
set of transitions must be generated. The solution of this expression involves selecting
one variable to define 4 rows. The remaining two phrases must have the c