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I. INTRODUCTION 

The problem of relative positioning in geodesy can generally be re­

garded as "the determination of the location of one point with respect 

to another, either by measuring directly between the two points or by 

measuring indirectly from two points to extraterrestrial objects" [1]. 

The more frequently encountered problem in geodetic surveying, however, 

of finding the direction and distance between two given points is just 

the inverse case of the above. 

The idea of using satellites for geodetic surveying is by no means 

a new one [2]. The advantages of this extraterrestrial method clearly 

surpass those of terrestrial alternatives in operating environments 

affording only reduced visibilities due to terrain, weather, or sheer 

distances. Recent developments in satellite geodesy have been focused 

on a promising new navigational scheme known as the Global Positioning 

System (GPS). This scheme, which incorporates state-of-the-art tech­

nology from various disciplines, is planned to be operational by the 

later part of the decade. Although the normal differential mode of the 

GPS operation contends with mere accuracies of several meters, recently­

developed radio interferometric techniques have reported the achievement 

of centimeter-level precision based on data gathered over an hour or two 

of observation time [3,4]. 

This project constitutes an investigation based on an alternative 

approach to the GPS geodesy problem with the primary objective of reduc­

ing the required observation time through optimal processing and manage­

ment of the data gathered. The ultimate goal naturally is to develop a 
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practical model for implementation through computer simulations leading 

up to eventual field testing. Using the differential position estab­

lished by normal means as a coarse approximation, "fine-tuning" on the 

estimate can then be carried out on an incremental basis by timing on 

the carrier phase of the GPS signal instead of the usual coded modula­

tion. This inevitably leads to the problem of ambiguity in the accumu­

lated integer wavelengths, an inherent dilemma in measuring phase delay. 

Kalman filtering techniques are invoked to solve what will eventually 

be seen as a combination problem in estimation and multiple-hypothesis 

testing. 

The two chapters following this one will cover relevant background 

material. Formulations and solutions to the Kalman filter and Magill 

adaptive filter are reviewed in Chapter II. The Global Positioning 

System and its involvement in satellite geodesy will be briefly discussed 

in the next chapter. Chapter IV covers the formulation of the incre­

mental model with the solution to the integer wavelength ambiguity 

dilemma (to be referred simply as integer ambiguity). A one-dimensional 

example presented with computer simulated results serves as a tutorial 

that will be referred back to time and again for its clarity for analy­

sis. Extension to a 3-dimensional GPS-like geometric model will also 

be pursued here. Chapter V addresses the massive computational burden 

generated by the Magill adaptive filter solution. Two approaches are 

formulated, one of which is a generalized version of the original Magill 

solution. They are compared and shown to yield the same results under 

certain special conditions. 
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II. BACKGROUND IN KALMAN FILTER THEORY 

In this application of the Global Positioning System to geodesy, we 

encounter a typical problem of "recovering" signals that are immersed in 

noise. One of the most powerful statistical tools available today in 

filtering out noise is an algorithmic scheme known as the Kalman filter. 

The essentials to the theory of this well-proven method will make up the 

first topic of this chapter, followed by an extension of the filter to 

an adaptive scheme in the next section. The adaptation of the latter to 

our application problem at hand will, in turn, be the topic of the last 

section. 

A. The Discrete Kalman Filter 

The discrete Kalman filter is essentially a recursive algorithm 

that estimates a random process from a set of noisy measurement data 

that is linearly related to the process itself. The filter is optimal 

for Gaussian processes; otherwise, it is only optimal as a linear filter 

in a least squares sense. 

This technique is credited to R. E. Kalman who, in 1960, provided an 

alternative solution to the more computationally restrictive Wiener 

filter of an earlier generation. Since the theory of the Kalman filter 

is adequately documented in the literature, in particular, Kalman's 

original paper [5] as well as several other reference texts [6-8], it is 

simply sufficient here to provide a brief summary of the formulation and 

solution to the discrete version of the filter. 

The random process and measurement models are given by the following 
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relationships: 

~+l = ~k~ + wk (2.1) 

An explanation of the notation here is in order. The subscript k de-

notes the value of a variable at time t k • Addi tionally : 

xk = the process state vector 

zk = the measurement vector 

~k = the state transition matrix 

Hk = the linear connection matrix between the measurement and the 

state 

w
k 

= process noise (Gaussian white sequence) with covariance Q
k 

v
k 

measurement noise (Gaussian white sequence uncorrelated with 

the wk sequence) with covariance ~ 

The Kalman filter equations are given here in the order of the computa-

tiona! sequence and are summarized in a block diagram given in Figure 

2.1. 

~ = P~~ [~P~~ + ~]-l (2.3) 

+ A- A-Xk = ~ + ~(zk - ~~) (2.4) 

p+ = [I - KkHk]P~ (2.5) 
k 

-
~+l = ~ A+ 

k~ (2.6a) 

- +T 
Pk+l = ~kPk~k + Qk (2.6b) 
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The circumflex denotes that the corresponding variable is an estimate. 

The initial values of the filter are: 

h-Xo = mean value of Xo 

Po = error covariance associated with Xo 

In eqs. 2.3-2.6, ~ denotes the Kalman gain which is used to weight the 

measurement residual (zk - ~~) and Pk is the error covariance matrix 

associated with the state vector. The superscripts used on x and P 

represent a priori and updated versions of the respective quantities. 

In the two decades since the Kalman filter was first introduced, a 

lot of activity has taken place involving applications, refinements, and 

adaptations of the filter. Applications have diversified substantially 

from the original settings of aerospace and navigation to many other 

areas which include industrial, geophysical and power systems, and even 

demography [9]. Extended and linearized versions of the filter have 

arisen to accommodate nonlinear dynamics. And perhaps the most relevant 

development of all, with regard to this research project, is an adaptive 

scheme based on a paper published in 1965. The adaptation of this 

scheme to our application follows in the next section. 

B. The Magill Adaptive Filter 

There are cases, on occasion, where complete knowledge of a certain 

parameter related to the filter becomes elusive to the analyst for any 

one of a variety of reasons. In such instances, an adaptive estimator, 

with the ability to adapt itself to the initially unknown portion of the 

model, can be a particularly useful approach in solving for the unknown 

parameter. 
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The adaptive estimator based on a scheme proposed by D. T. Magill 

[10] calls for an implementation of a parallel bank of Kalman filters, 

each modeled around a particular realization of the unknown parameter. 

It is obvious, then, that the unknown parameter must necessarily have a 

finite number of realizations which are discrete in nature as well. The 

output from each and every filter element in the bank is then properly 

weighted and summed to give a blended output. The degree of "correct-

ness" is reflected in the weighting factor which is itself rather 

appropriately defined as the conditional probability that the parameter 

realization is correct given the information from the measurement se-

quence. A summary of this scheme is provided in Figure 2.2, where 

z~ denotes the measurement sequence zO,zl"",zk' 

No attempt will be made here to review the mathematical derivations 

leading to Magill's solution. However, the following are the key re-

suIts of his paper (see reference [6] sec. 9.2): 

* P(zk1ai) p(ai ) 
(2.7) 

(2.8) 

The recursive form of eq. 2.8 is perhaps the attractive feature that 

contributes most to the practicality of this implementation. The nota-

tion used here is consistent with that introduced in the previous sec-

the above equations are quantities that are computed in the regular 
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Figure 2.2. The Hagill adaptive filter 

+ K.F.l 

+ K.F.2 MULTIPLE 

* 
ALTERNATIVE 

zk HYPOTHESIS 
• TESTER 
• BASED ON 

aN • PROBABILITY 
CALCULATION 

+ K.F.N 

Figure 2.3. Multiple hypothesis tester derived from the Magill adaptive 
scheme 
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filter equations given in eqs. 2.3 and 2.4. At the risk of a slight 

deficiency in notation, p(.) in eqs. 2.7 and 2.8 has been used to repre­

sent both probability and probability density. The normal use of upper 

case P for the former is hereby waived to avoid confusion with its use 

in representing the state error covariance matrix in the Kalman filter 

algorithm. In any case, it should be clear from the context as to which 

interpretation applies in these equations. 

c. Adaptive Estimation in Multiple Hypothesis Testing 

The Magill adaptive filter, also known as the partitioned adaptive 

filter, is widely used in parameter identification problems where the 

"parameter" involved is usually one of the covariance quantities. Brown 

[11], however, has proposed that this parallel processing technique can 

be applied to problems where the unknown parameter is an additive bias 

in the measurement model. This scheme, as is given in Figure 2.3, clear­

ly represents the recursive version of a multiple hypothesis tester. 

Each element in the parallel bank operates on the same measurement se­

quence but adjusts it by the appropriate "hypothesized" amount of bias 

before processing. Since the hypothesis appears only in the measurement 

model, the gain and covariance structures of the filters are uniform 

throughout the parallel bank. This commonality is crucial in drastically 

reducing the amount of computational effort normally associated with the 

Magill adaptive scheme, especially if the set of hypotheses is large. 

This adaptation brings about a happy congruence between the areas of 

estimation and detection theory. Nevertheless, a subtle difference in 
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emphasis remains between the two. In hypothesis testing, statistical 

decision theory calls for a decision to be made on the correct hypothesis 

and only the output of that element (in the parallel bank) need be con-

sidered. This differs from the significance of the blended output as 

seen from the point of view of adaptive estimation. 

In the decision-making process, we need only consider the weighting 

factors p(ailz~) as specified by eq. 2.7. Further simplifications may 

be obtained from considering the unconditional probability distribution 

of p(ai ) as uniform throughout the range of implementation, thereby 

allowing the use of p(z~lai) (commonly known in statistical decision 

theory as the likelihood function) as the decision criterion. Also, eq. 

2.8 can be expanded as a product to include the initial term, p(z~llai): 

,,- 2 
(zk-~~) 

where: 

and 

= ~ exp[- _ T ]. 
2(HkPkHk+~) 

,,- 2 
(zk-l-Hk_l~_l) 

Ak - l exp[- - T ] • 
2(Hk_lPk_lHk_l+~_1) 

.......... 

A. = l/[2TI(H.P~H: 
J J J J 

p(z* la ) = 1 -1 i 

+ R.)]1/2 
J 

(2.9) 
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In this particular implementation, A. is independent of the hypo the­
J 

sis ~.' It is evident, then, that we can derive from eq. 2.9 a log­
~ 

likelihood type function defined as 

k 

I 
m=l 

,,- 2 
(z -H x ) m m m 

(2.10) 

In place of the likelihood function P(z~l~i)' the parameter given by 

'eq. 2.10 can be used to evaluate the decision in choosing among the 

hypotheses. It should be noted that in addition to a reduction in compu-

tational steps, the use of the above-formed likelihood function will also 

help relieve potential numerical problems (caused primarily by the 

exponentiation operation) sometimes encountered by the regular Magill 

adaptive scheme [12]. 
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III. NAVSTAR GPS AND ITS APPLICATIONS IN GEODESY 

The Global Positioning System is now spawning a host of new appli­

cation ideas in geodesy-oriented problems as well as navigational ones. 

This chapter serves to provide what can only be a very brief overview 

of the many aspects involved in terms of characteristics and operations 

of the system. As a result, only those topics which are of any rele­

vance to this project will be highlighted. In the second section of 

the chapter, potential applications of the GPS in geodetic surveying 

already under development will be reviewed. 

A. The Global Positioning System 

Fully designated as the Navigation Satellite Timing and Ranging 

Global Positioning System (NAVSTAR GPS) , this project originated in the 

early 1970s, evolving out of a merger between two independent military 

research projects of the same nature. Its primary goal of providing 

global satellite passive ranging for navigational purposes, scheduled to 

be fully operational by the late 1980s, has certainly aroused anticipa­

tion in potential exploitation by the civilian community as well. Over 

the past decade since its inception, the originally-proposed 24-satellite 

scheme has been withered down to a considerably smaller one comprising a 

constellation of 18 satellites orbiting in half-synchronous trajectories 

inclined at 55 degrees to polar. 

The basic mechanism employed by the GPS in its differential position 

determination scheme involves ranging from a known satellite position to 

the local receiver location by accurately timing the signal propagation 
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delay. The satellite position ephemerides are embedded in a lSOO-bit 

navigation message periodically transmitted from the satellites. This 

information, available after processing by the user equipment, is only 

a very good approximation at best based on observational sightings of 

the satellite in question made by "upload" earth stations. By working 

the position determination problem in reverse since the "upload" loca-

tions are fixed and known, the ephemeris information carried in a 

satellite's data banks pertaining to itself is updated on a regular 

basis. The navigation message itself is coded by spread spectrum tech-

niques and modulated on two carrier frequencies: approximately 1.2 and 

1.S GHz. The coding of the message with pseudorandom sequences reduces 

the effects of both intentional and unintentional signal interference. 

The extremely high degree of precision demanded in timing the 

signal transit time is facilitated by the availablity of highly stable 

13 clocks with drifts in the order of one part in 10 per day for a cesium 

standard. Receiver sets designed with restricted budgets in mind though 

may have to settle for more limited performance instead of such alterna-

tives as rubidium or quartz. Even so, these clocks should provide more 

than adequate stability for the relatively short spans of timing opera-

tions involved. The inevitable problem of synchronization between the 

receiver clock and the coordinated satellite time standard, however, can-

not be alleviated by accurate timing. It must instead be resolved by 

treating this clock bias error as an additional variable, often termed 

pseudorange, to compute in the position determination problem. Hence, 

to determine a position in 3-space, four satellite fixes are required to 
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perform the task. 

The accuracy of the solution can be greatly enhanced by sighting 

well-placed satellites in the visible sky. It is intuitively evident, 

for example, drawing from an analogy on the problem of binocular rang-

ing, that in having four satellites spatially clustered together as 

depicted in Figure 3.1a, the observation data obtained will be inferior, 

in terms of providing accuracy to the solution, to those gathered from 

four satellites that are distributed sparsely over the visible sky such 

as those shown in Figure 3.lb. The measure used to assess this "we11-

placed" quality in the geometry is known as the Geometric Dilution of 

Precision or GDOP. If more than four satellites are available at any 

one time, then choosing the satellites on the basis of minimizing the 

GDOP factor will lead to the most accurate results obtainable using the 

given satellites. 

(a) ~) 

Figure 3.1. Satellite distributions that yield (a) high Geometric 
Dilution of Precision (GDOP), and (b) low GDOP (high 
accuracy) 



15 

Other sources of error encountered that affect the GPS system 

accuracy 'in ranging include: 

(1) Undetermined ionospheric and tropospheric delays that have both the 

effects of reducing the speed of the propagating signal as well as 

causing refraction of the signal ray. The latter is especially 

critical when a satellite is at a low elevation. Atmospheric 

models have been formulated to compensate for these distortional 

effects. 

(2) Group delay comprises of the uncertainties in the processing and 

passage of signals through the satellite equipment. These uncer­

tainties can be predetermined experimentally from benchmark tests. 

(3) Mu1tipath resulting from the interference of signals following more 

than one propagation route. 

(4) Receiver noise which also includes resolution errors primarily 

associated with the equipment itself. 

Results from the field testing accomplished thus far have been very 

encouraging. Accuracies of a few meters have been reported as being 

achievable using the differential GPS mode [13,14]. Although the use of 

the GPS is certainly not restricted to position determination alone, 

this is the only 'relevant aspect of interest in our application to 

geodesy. There are many references pertaining to the characterization, 

development, and various other potential applications of the GPS avail­

able to the reader interested in delving further into the general sub­

ject [15,16]. 
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B. GPS and Centimeter-Level Geodesy 

The interest in using GPS for precision geodesy has recently begun 

to gain momentum as reflected in the growing number of papers covering 

the subject [3,4,17-19]. The research activity to date has been more or 

less dominated by interferometric methods which find their roots in 

radio astronomy. These methods are likely offshoots from the more 

established Very Long Baseline Interferometry (VLBI) technique using 

quasar sources developed for geodetic surveying nearly fifteen years ago. 

The GPS's potential in achieving very high-resolution performance 

is derived from the stability of the signals transmitted from the satel­

lites. In comparisons made with other advanced surveying techniques 

[17], all nonterrestrial in nature, GPS methods are expected to approach 

closest, in terms of precision and range, to the capabilities of ter­

restrial surveying techniques. This projection is based on current 

developments in GPS geodesy schemes which have shown centimeter-level 

precision capabilities. Several such receiver systems are now under 

development and should be commercially available in the near future. 

The pricing on these introductory units will naturally be very ex­

clusive, although much more reasonable costs are expected when the GPS 

becomes fully operational towards the end of the decade. 

Of the receiver systems capable of centimeter-level geodesy. the 

MACROMETER, a commercial outgrowth of the research work of Couns8lman 

and his colleagues (see references [18, 19]), has demonstrated to be the 

most promising on the basis of field test results carried out on proto­

type units. The operating procedure calls for recording the measurement 
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data on storage media at both ends of the baseline for typically an hour 

or two, and then batch-processing the accumulated data off-line at a 

central coordinating site. The processing may be roughly described as an 

iterative adjustment of the baseline vector until a "best fit" from the 

measurement data available is obtained. 

Accuracies of 5 millimeters over short baselines under one kilome­

ter and 1:170,000 resolution over longer baselines (around 100km) have 

been reported with this interferometric scheme [3J. No mention, however, 

of the relative observation time spans required in obtaining these re­

sults was given. 

As an additional note, due to the significance of wavefront inter­

ference as the principal mechanism involved in this technique, the prob­

lems of multipath interference become irrepressibly crucial. Much re­

search effort in this area, as such, has been concentrated on the study 

of antenna systems and their design. 

Two other receiver systems, the SERIES and the GEOSTAR, currently 

less advanced in the developmental stage than the MACROMETER, are also 

pursuing the centimeter-level objective. Neither of these has yet to 

report any accomplishments in field testing. 
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IV. THE INCREMENTAL GPS GEODESY MODEL WITH 

COMPUTER-SIMULATED RESULTS 

In order to achieve the very high degree of resolution sought after, 

the incremental GPS geodesy model approaches the position determination 

problem by way of using a coarse estimate attained via some other means 

to narrow down the uncertainty, and then improving on it in an incre­

mental fashion. The formulation of this model which forms the framework 

of the project will be the topic of detailed discussion in this chapter. 

The ordering of the sections in accordance with increasing complexity 

is, not surprisingly, also the chronological order of development in the 

research work done. The simplest case of a single satellite in a one­

dimensional position determination problem will be formulated in the 

first section. The modeling of the clock error and its resulting 

effects are to be discussed in the next section. In a third section, 

the full-blown three-dimensional problem with a realistic geometry will 

be formulated and its results discussed. The last section of this 

chapter is devoted to the effects of data sampling rate on the con­

vergence of the filtering scheme used. In each of these sections, re­

sults of computer simulations made in conjunction with the different model 

discussed will also be presented. 

A. Single Satellite in a Plane 

We shall ease into the relative positioning geodesy problem by 

first considering a simple example with planar geometry and a one­

dimensional position uncertainty (Figure 4.1). In this tutorial 
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example, the distance between two points, one of which is a known refer-

ence, is to be determined from the satellite-receiver geometry by 

establishing the delay in time-of-arrival of the GPS signal wavefront at 

the two receiver locations. Proximity of the two points is further 

assumed such that the paths of incidence of the GPS signals to both 

points are ideally parallel. This negates the Doppler effect and 

elaborate geometries are thereby avoided. 

PLANE WAVE 
/ FROM SATELLITE / 

/ / 
/ / 

lld cos8 ~ / 

do cose //.z.::..,~, / 
~; '::::::'>i 

lld 
A 8 8' 

Figure 4.1. Single-satellite geometry for the one-dimensional incre­
mental model 

In Figure 4.1, Point A represents the reference. Using differential 

GPS techniques (normal navigation modes), a baseline A-B may be estab-

lished accurate to within a few meters of the correct value. If B' is 

the actual location of the second point, we can then treat B-B' as an 

incremental perturbation. It is the determination of this incremental 

quantity that we will serve to address hereinafter. 
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In order to achieve this "fine-tuning" in accuracy, timing on the 

carrier phase of the GPS signal instead of the coded modulation (known 

in GPS terminology as the CiA and the P codes) is adopted. Assuming a 

phase-tracking rms error of 1/18 of a cycle, positional error, based on 

the 20-cm wavelength (approx.) GPS carrier, in the order of centimeters 

is feasible. This method, however, poses an inherent problem when track­

ing two phase-delayed signals, namely the ability to account for accumu­

lated full cycles which is commonly referred to as the integer wavelength 

ambiguity problem for obvious reasons. 

Going back to Figure 4.1 to formulate the problem, the relationship 

between the incremental phase and the incremental position is 

b~ = ~Ad cos e(t) + measurement noise (4.1) 

The increment in phase delay, ~~, can be considered as the differ­

ence between the total delay over A-B' and the delay over the nominal 

baseline A-B. As pointed out earlier, a phase delay carries an integer 

part (the accumulated full cycles) and a fractional one, of which only 

the latter can be electronically measured initially. Grouping the frac­

tional terms together, we can rewrite eq. 4.1 as 

~(Modl) - ~O(Modl) = (N-NO) + ~d cos 8(t) + noise (4.2) 

Thus, the measurement model of eq. 4.2 and the process stated in 

the discrete form of eqs. 2.1 and 2.2 become 

Zk = N' + xk cos e ( t k ) + vk 

~+l = ~ 

N'=N-N o (4.3) 

(4.4) 
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where N and NO are the integer portions of the A-B' and A-B baseline 

phase delays initially. ModI denotes modulo 1 or a fraction of a 

cycle. All quantities related to the nominal assumption are known and 

will be tagged with the subscript O. Note that eq. 4.2 is in the same 

form as the measurement model of eq. 2.2 with the quantity (N-N
O

) treated 

as an additive bias. In this formulation, ~d/A is the state variable of 

the process and the directional cosine term provides the linear connec­

tion between the state and the measurement, (~-~O). Also, note from 

eq. 4.4 that the state transition for a constant state is unity. 

We now turn to the multiple hypothesis testing scheme, earlier dis­

cussed in the last section of the previous chapter, to resolve the un­

known bias quantity (N-NO)' However, while the earlier discussion dealt 

with a scheme that processed measurements containing the unknown addi­

tive bias, the measurements associated with our incremental GPS model 

here do not "include" the additive bias that has to be determined. The 

saving feature lies in the time-varying nature of the directional cosine 

term. It provides the necessary information on how the dynamics of the 

orbiting satellite will affect the variations in the phase measurements 

over a period of time. This allows the hypotheses to weed through the 

chaotic measurement noise and resolve out the true value of (N-NO)' 

The adaptive filter scheme was tested on a computer using simulated 

phase measurements that were generated from the same geometry described 

above for this single satellite scenario. Properly-scaled random numbers 

were used to represent the additive Gaussian white noise appearing also 

in the measurements. The parallel bank was set up to model eleven 
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hypotheses, consecutive integers from -5 to +5 (see Appendix B for pro­

gram). The principal parameters used include: 

Initial satellite trajectory angle = 30 degrees from horizon; 

Angular rate of travel of satellite = 30 degrees per hour; 

Data sampling interval = 20 seconds; 

RMS of measurement noise (Gaussian) = 1/18 cycle; 

Actual value of incremental position = 2.5 wavelengths; and 

True value of integer ambiguity = -2. 

The results shown in Figure 4.2 depict the progression of the weight 

factors p(ailz~) as the discrete measurement data are processed. The set 

of 50 measurements represents an equivalent in a real-time acquisition 

interval of 1000 seconds or 16 2/3 minutes. In the interest of graphic 

clarity, only five of the parameters from the eleven filter elements were 

plotted. It is evident that the initialization influenced the zeroth 

filter to start off strongly ahead of the others. The eventual outcome 

from the tangled clutter saw the true filter modeled around the -2 inte­

ger clearly converge to unity after about 40 steps. 

During the processing of the measurements, while the adaptive scheme 

was resolving the integer ambiguity, the filter that was modeled around 

the true integer -2 was also at the same time working its way towards an 

accurate estimate of the incremental position perturbation. Note from 

Figure 4.3 showing position estimates from 3 of the 11 filters that it 

did not take very long for the estimate of the true filter to converge 

to its actual value of 2.5 wavelengths. 

Although the simulation presented above is but one sample run, 
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results seen from others made with different sets of random numbers have 

been similar enough to consider this particular run only typical. No 

special numerical problems were encountered even though the complete 

form of the Magill algorithm given by eqs. 2.7 and 2.8 was implemented. 

B. Accounting for Clock Error 

In order to establish the phase delay of a GPS signal wavefront at 

two separate receiver locations, the ability to time the carrier phase 

of the GPS signal with precision using a local clock reference seems to 

be a crucial requirement imposed on the receiver equipment. It will be­

come apparent later on in this section, though, that this clock error 

can be eliminated by redefining the measurement quantities. Before 

arriving at that, a major portion of this section will be devoted to 

the results obtained using the model from the previous section extended to 

include the clock error. Although this subject is now antiquated, it is 

nonetheless essential for the sake of completeness with regard to docu­

menting the evolvement of this project. 

When the phase of the carrier is measured at both receivers, it is 

timed relative to the local reference. Now since it is the difference in 

these two phase measurements that makes up the one measurement defined in 

our model, we can likewise consider a clock error to incorporate in our 

model as the difference in the errors of the local references of the two 

receivers. This error manifests itself in the measurement model as an 

additive zero-mean random variable and in the process as an appended 

state variable. The new model then becomes 
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[Xl 
T 

X = x2 ] (4.5) 

where: 

b.d 
xl =-

A 

x2 = E: (clock error) 

and, 

z. = [cos 8i (t) l]x + vi i=I,2 
~ 

(4.6) 

Because of the increase in the dimensionality of the state, a correspond-

ing increase in the dimensionality of the measurement vector is required. 

The second measurement is obtained from another satellite with a differ-

ent ephemeris. For our simplified example, we will stay with the planar 

geometry as in the previous section and keep this second satellite in the 

same plane sharing the trajectory of the first satellite. The hypothesis 

space (integer ambiguity) is now two-dimensional as well, that is, the 

parallel bank may be thought of as an array of filter elements laid out 

at the intersections of a grid. 

To simplify the processing of the measurements somewhat, we can draw 

upon the assumption that the white noise terms appearing in both measure-

ments are uncorrelated. Hence, sequential processing becomes an avail-

able option [6] and although it is not very clear that the computational 

savings are all that significant, this technique was adopted in all sub-

sequent multi-dimensional problems simulated. 

In a simulation using the process of eqs. 4.5 and 4.6, the geometric 

model of the earlier simulation was retained with the addition of a 

second satellite initially located on the circular trajectory 50 degrees 

from the horizon. The satellite is expectedly also traveling at equal 
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rates and in the same orbital direction as the first one. Focusing our 

attention again on the weighting factor of the true filter in the array, 

the plot in Figure 4.4 shows a definite convergence after less than 20 

steps, but the limit unlike before is not unity. It turned out that 

several other filter elements all belonging to the same "diagonal" of 

the 2-dimensional array also reached the same inconclusive state. 

The reason for this condition is very simply that the clock error is 

unobservable. Without going into much detail, an intuitive explanation 

can be derived from the fact that while the directional cosine term con­

necting the position state variable to the measurement possesses that 

previously noted time-varying feature to resolve out the integer am­

biguity, the same is not true of the linear connection (unity) for the 

clock error state variable. As a result, all the filters in that 

diagonal containing the true filter provided the same estimate for the 

position state while the estimates for the clock error state differed by 

one unit between adjacent filters. This, then, suggested that some com­

binatorial manipulation could be done to transform the scheme to elimi­

nate the inestimable clock error and yet still account for it in the 

model. 

A differencing technique which takes the difference of the two 

measurements, zl and z2' and redefines it as a new measurement was then 

implemented. This differencing when incorporated into the measurement 

model gives (recall E is the clock error): 
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t. 
(cos 8l (t) x + (N-NO)l + vI + £) zl-z2 = 

- (cos 82 (t) x+ (N-NO)2 + v2 + e) 

= [cos 8l (t) - cos 82 (t)]x + N" + v' (4.7) 

The form of eq. 4.7 degenerates into that similar to eq. 4.3. In 

so doing, the variance of the newly-defined v' is now twice that of the 

original v. Fortunately too, the dimensionality of the state is reduced 

by one, a benefit that will prove significant especially when dealing 

with higher-order geometries such as one encountered in the next section. 

c. Three-Dimensional Geometry 

As an extension from the "satellites-in-a-plane" geometry, the 

number of satellites required to solve the 3-space perturbation problem 

with inclusion of clock error now becomes four. This would expand the hy-

pothesis space of the Magill adaptive scheme to one with four dimensions. 

The differencing technique introduced in the previous section to elimi-

nate the clock error in turn reduces the dimensionality to three. This 

constitutes a huge savings in terms of the number of filter elements 

3 4 
required (n «n if n is large). 

The geometry of the satellite trajectories was set up to imitate 

the real-life GPS model. Figure 4.5 depicts the orbital rings from a 

visual orientation looking down on the North Pole. The 3 rings, of which 

only 2 are shown, are spaced 120 degrees apart and the planes of the rings 

are inclined 30 degrees from the polar plane. Satellites belonging to 

the same orbit are separated by 60 degrees of arc. In addition to this, 

a rotation of the entire structure about the polar axis was included to 
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Figure 4.5. 

30 

z AXIS 
IS POLAR 

Geocentric satellite geometry for the 3-dimensional 4 
satellite model (Z-axis is pointing out of the page) 

investigate the possible influence of the rotating earth. 

The positions of the four satellites were chosen such that they 

remained fairly closely clustered over the observation time interval to 

ensure visibility of all the satellites as they are viewed from an 

appropriate location on the surface of the earth. As far as the measure-

ment model was concerned, it was assumed that the observations were made 

in geocentric (center-of-the-earth) coordinates, which, in other words, 

placed the observation point right in the center of the spherical model 

of Figure 4.5. Although this seems somewhat detached from reality, the 

truth of the matter is that the observation point can readily be trans-

ferred to the surface of the earth through a coordinate transformation 

which would, at this point, unnecessarily clutter up the computations 

with excessive algebra. In any case, we are assured that any distortion 
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arising from this simplification would yield results that are more 

pessimistic than the actual because an improvement in the Geometric 

Dilution of Precision (GDOP) factor (refer to Chapter III for a defini-

tion of this term) can otherwise be obtained. Figure 4.6 sufficiently 

clarifies this point using a planar analogy. 

+ + 
~~--+ 

\ 
I 

(b) 

Figure 4.6. For the same satellite distribution, a geocentric­
coordinate model (a) yields higher GDOP than a geodetic 
one (b) 

In formulating the measurement model for the 3-dimensiona1 geometry, 

we will use only generalized representations for the directional vectors. 

The equation for the "raw" measurements obtained from the satellites can 

be written, as before, 

, 
t.1j>. = D.' x + N. + €: + vl.' 

1. 1. 1. 
i=1,2,3,4 (4.8) 



where: 

o , j;&k 

(1/18) 2 , j=k 
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The operator E[.] denotes the average or expected value. Also, D. 
~ 

is the direction cosine row vector for the ith satellite and x, the 

state vector representing the 3-space perturbations in earth-fixed X, 

Y, Z Cartesian coordinates. Using the following differencing scheme, 

r 
lltP - M2 zl = 1 

r 
lltP3 - M4 z2 = 

r 
(lltP

l 
+ lltP2) - (lltP

3 
+ lltP

4
) (4.9) z3 = 

or 

r r r 
z. = D.· x + N'! + v. 
~ ~ ~ ~ 

i=1,2,3 

,r r 
it can be shown that the newly-defined measurements zl' z2' and z3 are 

statistically independent. We consider, 

Similarly, 

, , 
E[v

l
v

2
] = E[(vl -v2) (v3-v4)] 

= E[vlv3-vlv4-v2v3+v2v4] 

= 0 

E[V~V;] = E(vl -v2) (vl +v2-v3-v4)] 

= E[vlvl+vlv2-vlv3-vlv4-v2vl-v2v2+v2v3+v2v4] 

= E[vlvl ] - E[v2v2 ] 

= 0 
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E[V~V;] = E[(v3-v4) (vl +v2-v3-v4)] 

= -E[v
3

v
3

] + E[v
4

v
4

] 

= a 

This scheme was adopted to ensure retention of the use of sequen-

tial processing in the computational scheme. Here again, as before, 

the variances of the redefined associated noise terms are increased 

accordingly: 

E[V~V~] = E[v;v;] = 2 (1/18)2 

E[V;V;] = 4 (1/18)2 

In a simulation run where the now expanded version of the adaptive 

filter scheme was tested using the new simulated geometry, the results 

obtained were very encouraging. The filter structure is now three-

dimensional and, in retaining the integer ambiguity range of -5 to +5, 

the number of filter elements implemented was 113 or 1331, a staggering 

figure for the rather limited range of coverage. Figure 4.7 displays 

results gathered from three typical simulation runs made. Again, the 

weighting factor p(ailz~) of the true filter is plotted against the 

measurement time steps, fifty in all, representing 1000 seconds of actual 

observation time. Also, the progression of the state variables in the 

estimate vector of the true filter through the entire recursion is 

summarized in Table 1. The actual perturbations in the X, Y, Z direc-

tions incorporated in the problem were x = [1.5 1.5 
T 

1.5] • 

A notable presence in the results (Table 1) featured is the sluggish 
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Table l. Computer listing of the state estimate 
vector and the a posteriori probability 
of the "true" filter in the simulation 
of the 3-dimensional 4 satellite model 

STEP X (TRUE) Y(TRUE) Z(TRUE) PROB(TRUE) 

0 0.445 1.179 0.579 0.062 
1 0.824 1.298 0.968 0.056 
2 2.105 1.641 2.228 0.004 
3 2.376 1.685 2.449 0.008 
4 2.147 1.661 2.226 0.008 
5 1.508 1.522 1.585 0.011 
6 0.894 1.380 0.958 0.008 
7 0.590 1.290 0.647 0.006 
8 0.126 1.170 0.170 0.001 
9 0.265 1.202 0.316 0.005 

10 0.342 1.215 0.384 0.004 
11 0.357 1.224 0.373 0.005 
12 0.480 1.262 0.511 0.075 
13 0.458 1.257 0.492 0.139 
14 0.956 1.385 0.992 0.389 
15 1.081 1.412 1.125 0.503 
16 1.090 1.418 1.129 0.682 
17 1.335 1.481 1.378 0.734 
18 1. 767 1.596 1.816 0.720 
19 1.611 1.551 1.660 0.637 
20 1.635 1.560 1.678 0.856 
21 1.698 1.580 1. 740 0.893 
22 1.577 1.547 1.610 0.926 
23 1. 769 1.601 1.801 0.872 
24 1.684 1.578 1.711 0.910 
25 1. 728 1.589 1.754 0.897 
26 1.634 1.562 1.658 0.938 
27 1. 746 1.594 1.776 0.928 
28 1.816 1.615 1.842 0.901 
29 1.858 1.627 1.886 0.896 
30 1. 881 1.634 1.911 0.907 
31 2.001 1.671 2.030 0.794 
32 1.971 1.663 1.995 0.815 
33 1.945 1.654 1.968 0.847 
34 1.774 1.603 1.791 0.914 
35 1.830 1.620 1.851 0.892 
36 1.841 1.624 1.858 0.896 
37 1.812 1.615 1.829 0.906 
38 1. 762 1.599 1.777 0.977 
39 1.689 1.576 1.702 0.993 
40 1. 717 1.585 1. 731 0.996 
41 1. 727 1.588 1. 742 0.995 
42 1.674 1.572 1.681 0.995 
43 1.646 1.563 1.649 0.998 
44 1.610 1.551 1.614 0.998 
45 1.605 1.550 1.610 0.999 
46 1.528 1.525 1.528 0.998 
47 1.605 1.550 1.613 1.000 
48 1.623 1.555 1.630 1.000 
49 1.541 1.528 1.546 1.000 
50 1.566 1.536 1.574 1.000 
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convergence of the X- and Z-components of the state vector for the true 

filter. The principal reason for this lies in the geometry which 

yields, 'as mentioned before, poor GDOP characteristics. This manifests 

itself in causing the determinant of the measurement matrix (the linear 

connection between the state and the measurement vectors) to be small in 

magnitude. Using this to be a measure of the "degree of observability," 

the choice of satellites, should the luxury of sighting more than four 

be afforded, may then be based on the maximization of this parameter. 

The plots of Figure 4.7, on the other hand, show little effect that 

the poor geometry might have had on the convergence of the adaptive 

estimator if any at all. Comparing them to the example of the single 

satellite case in the first section, the time it takes to converge to 

unity is reasonably similar in all cases, about 13 to 15 minutes of 

observation time. It would seem reasonable to deduce, then, that 

while the spatial dimensionality has increased three-fold in this prob­

lem, the amount of information harnessed from enlisting the involvement 

of the additional satellites has correspondingly increased as well. 

D. Effects of Increased Sampling Rates 

The cause which prompted investigation into this area was the slow 

convergence of the state and its associated error covariance due to poor 

geometry as encountered in the 3-dimensional problem of the previous 

section. Several other parameters apart from the measurement matrix 

play a role in the convergence of the Kalman filter (different from the 

convergence of the Magill adaptive filter), one of which is the data 

sampling rate. Since the random process considered here is constant, 
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there is no input process noise involved in the model of eq. 4.4. While 

it is often unwise to model a process strictly as a stationary random 

bias [6], the relatively short observation spans involved reduce the 

risk of divergence. The limit of convergence of the error covariance 

in this case is then zero. 

Now if the sampling rate is increased so that the measurement se­

quence is lengthened for the same observation time span, the filter will 

invariably yield a better estimate after processing all the data col­

lected. Through simulation runs similar to those of the earlier sec­

tions, but made with increased sampling rates, it was discovered that in 

addition to confirming the above, the rate of convergence of the adaptive 

scheme in locating the true filter, in a real time sense, is also 

improved. 

Due to the greater processing effort involved in simulating models 

with high sampling rates (greater amounts of data), studies in this area 

were restricted to the simplified one-dimensional case from the first 

section of this chapter. The results of three separate runs made with 

varying sampling rates are summarized in Figure 4.8, showing the weight 

factor of the true filter plotted against the real time equivalent of the 

measurement data processed. It is apparent that the increase in the 

convergence rate is not linearly proportional to an increase in the 

sampling rate. 

While it may seem that the overall performance of the Magill adap­

tive scheme is benefited by a faster sampling rate, it must be con­

sidered that there are physical limitations that can hinder such an 
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implementation. If the sampling rate is too high, the data acquisition 

requirements will consequently become extremely stringent as well. This 

is also true of processing requirements should the implementation be 

one of real-time. A more severe systems limitation manifests itself in 

the degree of correlation among the discrete samples since it increases 

with a diminishing sampling time interval. Since the Kalman filter 

formulation adopted makes the assumption that all such discrete samples 

must remain uncorrelated, the optimality of ' the filter, therefore, 

hinges upon the degree of "uncorrelatedness" of the samples. 
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v. COMPUTATIONAL CONSIDERATIONS FOR LARGE INTEGER 

AMBIGUITY IMPLEMENTATIONS 

In the 3-dimensional example of the last chapter, the range of 

integer ambiguity was restricted to 11 units in each of 3 dimensions. 

Even with this very limited range, it was necessary to run over a thou­

sand Kalman filters in parallel. Clearly, this can get out of hand in 

cases where the integer ambiguity is large. In the actual GPS applica­

tion, for instance, it might be more realistic to consider an uncertain­

ty in the order of 100 per dimension, in which a million Kalman filters 

would be required should the Magill scheme be implemented literally as 

was done earlier. 

Fortunately, it was found that a.deterministic relationship exists 

among the filter elements of the parallel bank. It will be seen later 

on that this relationship is monotonic in nature, hence allowing us to 

regard the hypothesis space as a continuum rather than as a "bank of 

discrete filters." Similarly, the unknown integer vector (a 3-tuple) 

can be treated as a continuous random variable amenable to estimation by 

either maximum likelihood (as we have been doing with the Magill adap­

tive scheme), or Bayesian (Kalman filtering) methods. 

In this chapter, we will address the maximum likelihood method first 

as it constitutes a generalization of our discrete formulations up to 

this point. In a separate section, we will look at the Kalman filtering 

alternative in estimating this unknown integer vector. For reasons of 

relevance, we will in this chapter refrain from reference to "the true 

filter" as before in the discrete sense and instead use the reference 
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of the "correct hypothesis" to mean the same. 

A. Maximum Likelihood 

The concepts presented in this section are no more than generaliza-

tions from those in the last chapter except that the descriptions will 

often revolve around the notions of a continuous hypothesis space unlike 

before. The deterministic relationship found to exist among the filter 

elements had suggested that there was no need to numerically keep track 

of all the filter parameters in each and every element in the parallel 

structure. Rather, a knowledge of the relationship or function that 

tied them together was sufficient to propagate through each cycling of 

the Kalman filter algorithm. This essentially reduced the "bank" to the 

processing of one filter modified to accommodate this idea. 

To introduce the notation used, x represents as before the state 

vector, and u, the hypothesis (or parameter) vector as defined by the 

Magill adaptive scheme. If we consider that x is a linear function of 

u, then we can write 

x [C b]u a (5.1) 

where C is the coefficient matrix of u and it is augmented with the 

b 1 [ l] T. constant vector ; a so, u = u a 

given by 

The measurement residual is then 

(5.2) 

recalling that y, the "processed measurement" (obtained after the raw 
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measurement has been "adjusted by the hypothesized" amount in the 

equivalent discrete case), is a linear function of the hypothesis. The 

Kalman filter state update and projection equations of eq. 2.4 and eq. 

2.6b now become 

(5.3a) 

where K, the Kalman gain, is constant and independent of u. The Kalman 

gain and state error covariance which make up the rest of the filter 

algorithm are computed as usual without any modifications. 

At the start of the filtering process, the initial a priori esti­

mate of the state, x~ in all the filter elements is set equal to a 

constant vector which, in this scheme, makes up b. Now, the recursive 

nature of eq. 5.3 then implies that once the filter is "started up" with 

a vector x~ linear in u, then ~, and hence rk , will remain linear in u 

for all tk thereafter. 

Next, we consider a modified form of the log-likelihood function 

taken from eq. 2.9: 

(5.4) 

where V. is the error covariance associated with the jth measurement 
J 

residual. Drawing from the fact that the sum of quadratic functions is 

itself quadratic, eq. 5.4, then, is of the form 
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When this is maximized with respect to u (the actual value of L(u ) 
a a 

at the maximum is not important here), we obtain 

(5.6) 

w
ll ~12 w

13 
w

14 
u

l 

/). 
w2l 

w22 w23 
w

24 u2 
Wkua = 

[W31 w32 w33 w
34 u3 

w4l w42 w43 w44 1 
k 

Hence, setting Wkua = 0 yields the location of the maximum, ~: 
A* -1 
ul Wu w12 w13 w14 

A* A* 
~ = u2 = - w2l w22 w23 w24 (5.7) 

A* w3l w
32 w33 u3 

k 
w34 

~ need only be computed as required since it is not a parameter 

essential to the recursion of the process. The circumflex on Uk is used 

to indicate that the quantity is an estimate of the random variable ~ 

and, depending on the influence of the initial a priori conditions set 

for the filters as well as that of the noise in the measurement sequence, 

it will gradually converge, in a statistical sense, on the correct 

hypothesis. When working with brief sequences of measu~ement data 

though, ~ will in all likelihood end up being anywhere but at an 
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"integer" location which is a strict requirement built into our original 

model. Reverting to a geometric viewpoint of the three-dimensional bank 

of filter elements, the "integer" location referred to is one of the 

discrete intersections of the grid structure meshed one unit apart. 

Our goal remains then to find the discrete "integer" location that car-

ries the largest value of the likelihood function. Using eq. 5.5, we 

can compute the values of the log-likelihood for the vertices of a unit 

cube geometrically containing Uk' the vertices being at "integer" loca­

tions. The vertex having the largest value of the comparison of the 

eight points is then taken to be the location of the correct hypothesis, 

the coordinates of which, when substituted back into a relationship 

similar to eq. 5.1 for t k , yield the state estimate vector ~. 

As an example, we consider a one-state process where the notation 

follows from before: 

Step 0: 

(Since x~ is always set to be the same for all filters in a parallel 

adaptive arrangement, and is usually set equal to zero if a zero-mean 

distribution is assumed, then Co = bO = 0.) 

y = z - u o 0 

(zo is the raw measurement at to.) Computing the residual from eq. 5.2, 
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~ [sO tol [~l 
Updating the state estimate as in eq. 5.3, 

A+ 
x = o 

Forming the log-likelihood function from eq. 5.4, 

S I b f d 
,,+ 

tep : Repeat as a ove or r l an xl' The log-likelihood function 

is then (see eq. 5.4), 

Step k: Locating the maximum of the log-likelihood function as in 

eqs. 5.5-5.7, 

L = [u 
k 

"* ~= 
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This recursion is carried on until all the measurements available are 

processed. In implementing the above, only the linear connection 

matrices and, in the case of the log-likelihood function, the weighting 

matrix, need to be computed and carried through each cycle of the 

process. 

The results of a simulation using the above scheme on the full 3-

dimensional model are summarized in Figure 5.1. The unknown perturba­

tions to be estimated were arbitrarily chosen to be ~X = -46.1, ~y = 

-35.3, ~Z = 70.8, with the corresponding unknown integers being u* = 

[64 -71 3ll T• As before, the measurement sequence used consisted of 50 

sets of measurements from four satellites sampled at 20-second intervals. 

u* is shown plotted in each dimension against the measurement time steps 

(see Appendix for program). 

In the unlikely event that the true element is located far away 

from the initial a priori assumption, the rate of convergence will 

deteriorate simply because there is an "increase" in the required effort 

to nullify the bad initial assumption. In such cases, the adaptive 

scheme may actually "home in" on the wrong location. Due to the con­

vexity of the log-likelihood function, however, it is still possible 

to locate the true element by making several runs, each successive run 

using, as its initial state, the state estimate resulting from the previ­

ous run. This cycling is kept up until-consecutive runs yield the same 

"true" element. Thus, a minimum of two cycles are required for the 

purpose of verification. Even if several runs are needed to obtain the 

solution, the processing time involved is truly minimal. 
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Figure 5.1. Plots of (a) u~. (b) u~. and (c) uj show that each com­
ponent converges to within one unit (dotted lines) of its 
actual value 
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B. The Augmented Kalman Filter 

By treating the unknown integer vector as a continuous random vari-

able, we therefore redefine the multiple hypothesis testing concept of 

solving for the integer ambiguity to be a problem in estimation. In so 

doing, the Kalman filter again becomes a viable option to accomplish 

the task. In rewriting the differenced measurement model of eq. 4.9 

from the last chapter, we obtain 

D '. + N'.' + ' J • x J Vj (5.8) 

with the prime notation indicating newly-formed quantities from the dif-

ferencing operation which eliminates the clock error. Now if the addi-

tive integer N'! were inducted into the state vector, henceforth creating 
J 

a 6-tuple made up of the original "position" 3-tuple vector x and aug-

mehted with N'.' (for j=I,2, 3) representing the 3-tuple "hypothesis" 
J 

vector, eq. 5.8 then becomes 

r z~l rD~ 
, , 

DYI DZI I 0 
01 rx 1 rv~l 

l:~J 
, , , , 

= DX2 DY2 DZ2 0 I 0 Y + v2 (5.9) 

, , , , 
DX3 DY3 DZ3 0 0 I Z v3 

" NI 

" N2 

" N3 

Here again, the process is considered to be a stationary random bias 
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with the trivial dynamics described by 

[X y z " T N] = [X y 
3 k+l 

z N,,]T 
3 k 

(5.10) 

In the initialization of the filter, the "startup" a priori values 

associated with the "hypothesis" part of the state is constrained by 

those specified for the original "position" portion because, as shown 

previously, the two elemental vectors are linearly, and hence uniquely 

related. To formulate the initial state of the filter, we will digress 

to reexamine the one-dimensional two-satellite differenced measurement 

model of eq. 4.7, 

z' = = h • x + N" + v' (5.11) 

where: 

The "raw" measurements, zl and z2' at time to' being measurable only as a 

fraction of a cycle, can be assigned a uniform distribution over the 

internal of 0 to 1. The resulting distribution of z', the difference of 

two uniform distributions, then is triangular in form and symmetric (from 

-1 to +1) about zero. Hence, the random variable z' is zero-mean and 

has a variance of 1/6. 

Eq. 5.11 remains unbiased and thus, the initial a priori state 

vector can be set to the null vector. To compute the initial a priori 

error covariance matrix PO' the variance of the first stage variable must 

be specified; let it be q. The remaining terms in the matrix may now be 
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readily computed given q. Rewriting eq. 5.11 in terms of Nil and comput-

ing its variance (Var) while ignoring v' , 

Nil ~ -x • h + z' 

Var{N") = Var{x·h) + Var{z') 

= h2
q + 1/6 

The variance of the measurement noise v is comparatively small and is as 

such neglected. For the cross-covariance (Cov) term, 

Cov{N") = E[{-x·h) x] + E[z'] 

= -qh + 0 

The notation E[·], as encountered before, denotes the average or expected 

value. The variables x and z' above are assumed to be uncorrelated 

for large values of x. 

Therefore, with this measurement model, we start out the augmented 

Kalman filter with the initialization, 

o 

(5.l2) 

As in the case of the maximum likelihood option, the augmented 

Kalman filter provides the means for a preliminary run to narrow down 

the uncertainty of the unknown integer so that when the discrete 

hypotheses of the Magill adaptive filter are ultimately reverted to, 

the scale of implementation involved becomes delightfully manageable. 
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In extending the above to the three-dimensional model and retaining 

the notation of eq. 5.9, the initial a priori state and its associated 

error covariance then become (see Appendix A): 

[X Y Z Nil Nil N"]T = 0 1 2 3 

P~ ~ [:: pT 
_p HT] 

x 0 

HOPxH~+F (5.13) o x 

where: 

F = 1/6 o o 

o 1/6 0 

o 0 1/3 

where P is a 3x3 covariance matrix specifying the 3-position error in 
x 

the incremental perturbation from the nominal, and HO' the 3x3 direction-

al matrix providing the linear connection between the positive state 

variables, X, Y, Z and the 3-tuple measurement vector. The general pro-

cedure involved with the rest of the filter is essentially the same as 

already described for the one-dimensional example. 

The results obtained using the augmented Kalman filter were pre-

dictably very similar to those obtained using the maximum likelihood 

approach given in the last section (see Appendix B for program). Analy-

sis of the results and a brief comparative study of these two methods 

will be the topic of focus reserved for the last section of this 

chapter. 
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C. A Comparison of the Maximum Likelihood and the 
Augmented Kalman Filter Approaches 

The comparative analysis to be presented in this section will con-

centrate only on results obtained on the one-dimensional two-satellite 

differenced measurement model with planar geometry. This simplified 

example serves to present a picture free of clutter from algebraic de-

tails and yet not suffer any loss of generality since extension to its 

3-dimensional counterpart is readily accomplished. 

The results obtained with the augmented Kalman filter from process-

ing computer-simulated measurements show a similarity in the steady-

state with those obtained using the maximum likelihood scheme. This, 

then, suggested that with the appropriation initialization of the Kalman 

filter, results as those of the maximum likelihood version could be 

duplicated. Figure 5.2a shows the effect on the results for the aug-

mented Kalman filter of varying the values in the 2,2-entry of the error 

covariance matrix in eq. 5.12. This parameter corresponds to the 

initially-assumed variance of the unknown integer vector. The graph 

depicts the deviation, from the "optimal" version, of the unknown integer 

estimates, the latter obtained using the augmented Kalman filter initial-

ized with eq. 5.12. The same noisy measurement data sequence was used in 

all cases for the comparative purpose of eliminating the random nature of 

the stochastic process. The smooth curves plotted against the measure-

ment time steps clearly indicate that the maximum likelihood (Figure 

5.2b) and the augmented Kalman filter schemes coincide in the steady-

state. In addition, they also show that the maximum likelihood scheme 
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UNKNOWN INTEGER EST. DIFFERENCE 
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.06 

10 2D 40 so 
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.oo~---------------------------------------------. 
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.02 

TIME STEPS (20-aecond interval) 
(b) 

Figure 5.2. The augmented Kalman filter (a) coincides with the maxi­
mum likelihood method (b) when the initially-assumed 
variance of the unknown integer gets very large 
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is the limiting case of the augmented Kalman filter when the initially­

assumed variance of the unknown integer vector is allowed to become very 

large. 

Qualitatively, this means that the maximum likelihood scheme con­

cedes to having no prior information whatsoever about the probability 

distribution of the integer ambiguity. This can additionally be veri­

fied from eq. 5.5 where the quadratic-form weighting matrix Wk is 

initialized as Wo = 0, thereby taking on an even distribution which, in 

the Gaussian context, implies infinite variance. Although optimality 

can still be achieved by embedding the a priori information into this 

matrix, this is not a common practice in the use of the maximum likeli­

hood technique and neither is it convenient to do so. In this respect, 

the augmented Kalman filter provides the optimal solution to the problem 

of estimating the integer ambiguity. 

Also, in addition to this, the state error covariance matrix con­

veniently keeps track of the variance of this parameter as it cycles 

through the recursive algorithm of the Kalman filter. This parameter 

can be used as a confidence indicator of the estimate at hand, and the 

ease of computing it lends a benefit to the data acquisition process 

with regard to specifying the amount of data needed to meet a required 

confidence criterion. 

Lastly, it is appropriate to comment on certain processing consider­

ations marginally in favor of the maximum likelihood method. Comparing 

the dimensionality of the two approaches, it is obvious that the compu­

tational burden, however minimal, is lighter in the case of the 3-state 
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maximum likelihood scheme than the 6-state augmented Kalman filter. 

Also, in the maximum likelihood scheme, the transition from the pre­

liminary estimation of the integer ambiguity to the "fine" estimation 

of the fractional phase is trivial since eqs. 5.1 and 5.5 readily yield 

the required quantities for the discrete Magill adaptive implementation. 
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VI. CONCLUSIONS 

A. Summary of Results 

The results obtained over the entire period of the study have shown 

that the Magill adaptive scheme possesses considerable promise in its 

application to the field of GPS geodesy. The results that have been 

presented can be summarized in three groups: 

(a) Computer simulations of the incremental GPS model (Chapter IV): 

The one-dimensional single satellite model with planar geometry 

demonstrated convergence in resolving the integer ambiguity in the 

range of 13 to 15 minutes of equivalent observation time. The esti­

mation of the "true" fractional part of the phase itself converged 

in even less time. 

(b) Simulations investigation the effects of varying the sampling rates 

Chapter IV): 

Using the one-dimensional model again, the results from drasti­

cally increasing the data sampling rate showed a remarkable improve­

ment in the convergence: 7-8 minutes for a 2-second sampling inter­

val, and 5-6 minutes for a I-second sampling interval. This gain is, 

of course, not without a price; data acquisition as well as data 

processing capabilities must be upgraded to match. 

(c) Estimation of the integer ambiguity (Chapter V): 

The favorable results obtained from research done in this area 

have dramatically reduced the associated computational burden of 

parallel processing the data down to a reasonably routine problem 

in estimation. The generalized extension of the Magill adaptive 
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filter, a maximum likelihood technique, was found to compare very 

closely with an alternative approach using an augmented state 

Kalman filter, except that the latter can be made optimal more 

conveniently through a proper initialization by accounting for all 

a priori information available. 

B. Topic Suggestions for Future Research 

While the hypothetical models used thus far have evolved with 

gradually-added realism throughout this development phase, there remain 

many facets of this project that need to be explored before it is ready 

for the ultimate challenge, experimental field testing. Apart from the 

necessary inclusion of details such as correction for atmospheric refrac­

tion and more realistic geodetic geometry, there are two major topics in 

particular need of attention. 

The first has to do with something that was intentionally neglected 

in our idealized models, the effects of a less-than-perfect knowledge of 

the satellite-receiver geometric relations. Since the ability to resolve 

the integer ambiguity depends so heavily on precise information on the 

satellite dynamics, it is conceivable then that large uncertainties in 

this aspect of the filtering scheme may lead to sizable errors in the 

estimation of both the unknown integer and the incremental position. 

This source of error is concerned more with large incremental uncertain­

ties associated with positions on the ground than errors in satellite 

positions which are on the whole comparatively minute. 

The second topic that warrants investigation deals with the modeling 
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of very long baselines. So far, only models with short baselines have 

been handled to avoid geometric complexities. However, when the base­

line considered becomes long enough, then the directional vectors at 

the two ends of the baseline will differ. This must be taken into 

account accordingly. 
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IX. APPENDIX A: INITIALIZING THE AUGMENTED 

KALMAN FILTER 

From eq. 5.8, we obtain the differenced measurement model for the 

3-dimensional four-satellite geometric model: 

, = D'· + N" + ' zi i x i vi i=1,2,3 (9.1) 

Recall that in the differencing scheme (eq. 4.9), z, is made up of 

combinations of the "raw" measurements, z. = 1I</> .• Now, since the latter 
1. 1. 

are initially observable only as fractions of a cycle, we can assume 

that they each take on a uniform distribution over the interval 0 to 1. 

The variance of this uniform distribution is 1/12. From this, the vari-

ances of the resulting differenced measurements can be computed: 

, f , 

Var(zl) = E[z l z1] 

= E[(zl-z2) (zl-z2)] 

= E[zl z1] - E[z l z2] - E[z2z1] + E[z2 z2] 

= 1/12 + 0 + 0 + 1/12 

= 1/6 

f 

Var(z2) = E[z;z;] 

= E[(z3-z4) (z3-z4)] 

= E[z3z3] - E[z3z4] - E[z4z3] + E[z4z4] 

= 1/12 + 0 + 0 + 1/12 

= 1/6 
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, , , 
Var(z3) = E[z3z3] 

= E[(Zl+z2-z3-z4) (zl+z2-z3-z4)] 

= E[zlzl] + E[z2z2] + E[z3z3] + E[z4z4] 

= 1/3 

Because of the zero-mean nature of eq. 9.1, the initial state 

estimate vector can be set as 

As for the initial 6x6 state error covariance matrix, we consider 

it in 3x3 blocks. Hence, 

P~ = rPll P12] 

lp2l P22 

The specification of P
ll 

by itself constrains the values of the remain­

ing block. 

" . , In rewriting eq. 9.1 in terms of Ni , we 19nore vi because its vari-

ances of 2R for i=1,2 and 4R for i=3, where R=(1/18)2, were comparative-

ly small: 

" 
, , 

N. = -D. 0 x+ z. i=1,2,3 
1 1 1 

and N" 
!::. 

[ " N" " T then If we consider P
ll = P Nl N3] , x 2 
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E[NIINIIT ] = E[(-HOX + z')(-HOx + z,)T] 

= HOE[xxT]HOT + E[Z'Z,T] 

= HOPxHO 
T 

+ [:/6 

E[x NIIT ] = E[x (-HOx + z,)T] 

T T 
= -E[xx ]HO 
= _ P H T 

x 0 

0 

1/6 

0 

0 

0 

1/3 

where HO is a matrix made up of the row vectors DI for i=1,2,3. 

Note that x and z' are taken to be uncorrelated which is true especially 

for large values of x. 

This gives, in partitioned block form, 

(9.2) 

where 

1/6 o o 

F = 0 1/6 o 

o o 1/3 

Since this parameter reflects a condition at the initial state, the 

directional matrix HO used is that computed at t=O. 
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X. APPENDIX B: COMPUTER SIMULATION PROGRAMS 

The simulations carried out in this project were accomplished on 

two computers: (1) development of the early simplified models as well 

as the later unknown integer estimation schemes were done on a Hewlett­

Packard HP-87 personal computer which utilizes a powerful version of the 

BASIC computing language; (2) development of the higher-dimensional 

geometric models in the mid-stages of the project while still using 

the discrete hypotheses implementation of the Magill adaptive scheme, 

had to be carried out on a NAS AS-6 mainframe computer. The WATFIV 

version of the FORTRAN computing language was adopted in the programs 

run on the second machine. 

The last two of the three programs selected for inclusion here con­

tain portions developed on both computers, although, in their final 

form, they were reconstructed in HP-87 Basic. (The first program is 

also written in the same language.) Because of the similarity in the 

structure of BASIC to that of FORTRAN as well as the enhancements 

available in the HP-87 version [20], these programs can very easily be 

translated to FORTRAN on a virtual line-by-line basis. Additionally, 

only minor changes in variable names will need to be made in order to 

adhere to the stricter "variable type" rules in FORTRAN. 
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Notes for the programs: 

1. The character "¢" is an exponentiation operator with the same 

function as "A" in standard BASIC. 

2. The function RMD(x,y) gives the remainder of x/yo 

3. The function INT(x) provides the largest integer ~ x, e.g., 

INT(3.4)=3, INT(-3.4)=-4. 

4. PI is a constant with the fixed value of TI = 3.14159 ••.. 
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A. One-dimensional Single-Satellite 
Model with Planar Geometry 

############################################################# 

This program simulates the one-dimensional incremental GPS 
problem using the Magill Adaptive Kalman Filter to resolve 
the integer ambiguity in the carrier phase. The formulation 
of this problem may be found in the text under Section A of 
Chapter IV. The scheme here is able to pick out K.F.#4 as 
the true filter that accounts for the -2 integer wavelengths 
due to the incremental perturbation from the nominal. 

############################################################# 

NOTATION 
G - computer-generated Gaussian white sequence 

SEED - seed of randomization 
VAR - variance of the Gaussian sequence 
XPR - a priori state estimate 

X - updated state estimate 
P - state error covariance 
H - directional cosine (connection between state vector and 

the measurement) 
K - Kalman gain 
R variance associated with the measurement noise 

PH - product of P and H 
KH - product of K and H 

THETA - initial elevation angle of satellite 
T - time elapsed after initial measurement 

TRUE - value of the true filter element (#4 in this case) 
PHI - observable phase delay measurements (initially Mod 1) 

PRIO - nominal phase delay 
CPROB - likelihood functions (prior conditional probabilities) 

PROB - weighting coefficients (posterior conditional 
probabilities) 

NOMINAL - integer part of the nominal phase delay 
Z - "processed" measurements (adjusted with integer 

hypothesis) 
RES - measurement residual 

VARIANCE - variance of the measurement residual 
TOTAL summation of CPROB for normalization in getting PROB 

I - observation time steps 
F - filter element counter 

GENERATING THE RANDOM SEQUENCE 

550 DIM G(110),PHI(55) ,CPROB(11) ,PROB(ll) ,XPR(ll),X(ll) 
560 SEED=13 



570 BIG=10000000000 
580 RAD 
590 VAR=(l/18)C2 
600 FOR 1=0 TO 55 
610 S=SEED 
620 SEED=RMD (51*S+7,BIG) 
630 SCL1=SEED/BIG 
640 S=SEED 
650 SEED=~ (51*S+7,BIG) 
660 SCL2=SEED/BIG 
670 IF 1<6 THEN 710 
680· RN=SQR (2*VAR*LOG (1/SCL1)) 

68 

690 G(I~'t2-1Z)=RN~':COS (Z">':PI ">':SCLZ) 
700 G(I~':2-1l)=RN">':SIN (Z~':PI *SCL2) 
710 NEXT I 
720 
730 ! 
740 ! SIMULATING THE PHASE HEASUREMENTS 
750 ! 
760 DEG 
770 THETA=30 @ TRUE=4 
780 FOR 1=0 TO 50 
790 T=ZO~':I 

800 PHI(I)=102.5">':COS (THETA+T/120)-IP (l02.5~·:COS (THETA))+G(I) 
810 NEXT I 
8Z0 
830 ! 
840 ! INITIALIZING THE FILTER 
850 ! 
860 PPR=4 @ R=VAR 
870 FOR F=l TO 11 
880 CPROB(F)=l-@ XPR(F)=O 
890 NEXT F . 
900 NOHINAL=IP (lOO">':COS (THETA)) 
910 
920 
930 ! THE KALMAN FILTER DOMAIN (COMMON COVARIANCE 
940 ! AND GAIN STRUCTURE) 
950 ! 
960 FOR 1=0 TO 50 
970 T=20~':I 

980 PHIO=100*COS (THETA+T/1Z0)-NOMINAL 
990 H=COS (THETA+T/120) 
1000 VARIANCE=Hc2*PPR+R 
1010 K=PPR*H/VARIANCE 
1020 P=(l-K">':H)'>':PPR 
1030 TOTAL=O 
1040 
1050 
1060 THE DISCRETE HYPOTHESIS LOOP (THE MAGILL ADAPTIVE SCHENE) 



1070 
1080 
1090 
1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 

FOR F=l TO 11 
Z=PHI(I)-(PHIO+(F-6)) 
RES=Z-H7:XPR(F) 
XPR(F)=XPR(F)+K*RES 
CPROB(F)=CPROB(F)*EXP 
TOTAL=TOTAL+CPROB(F) 

NEXT F 
FOR F=l TO 11 
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(-(RESC2/2/VARIANCE)) 

1180 
1190 

CALCULATING THE WEIGHTING COEFFICIENTS 

1200 PROB(F)=CPROB(F)/TOTAL 
1210 NEXT F 
1220 PPR=P 
1230 PRINT PROB(TRL~) 
1240 NEXT I 
1250 END 

B. Three-dimensional Four-Satellite Model 
(Preliminary Estimation with Maximum Likelihood Method) 

1000 ################################################################ 
1010 
1020 This program simulates the 3-dimensional geometric model formu-
1030 lated in the text under Section B of Chapter IV. the processing 
1040 scheme first undergoes a preliminary run to estimate the unknown 
1050 integer vector using the maximum likelihood method derived in 
1060 Chapter V (section A). The notation described below draws 
1070 heavily from the given references. 
1080 
1090 The program begins with the simulation of the phase measurements 
1100 with computer-generated random numbers. The first part of the 
1110 processing portion, as mentioned above, estimates the unknown 
1120 integer vector, while the second, utilizing this estimate, runs 
1130 the discrete hypotheses in a parallel structure similar to that 
1140 in the program listed in Appendix C. 
1150 
1160 ################################################################ 
1170 



1180 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
l300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 
1440 
1450 
1460 
1470 
1480 
1490 
1500 
1510 
1520 
1530 
1540 
1550 I 

1560 
1570 
1580 
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1600 
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1630 
1640 
1650 
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NOTATION 

G - computer-generated Gaussian white sequence 
SEED - seed of randomization 

VAR - variance of the Gaussian sequence 
PHI1234 - raw phase measurements 

DPHI - differenced phase measurements 
PHIO - nominal phase delay 

ZM - measured phase less the nominal phase 
(differenced version) 

PPR - a priori state error covariance matrix 
P - updated state error covariance matrix 

GAIN - Kalman gain 
H - linear connection matrix between the state and the 

differenced measurements (made up of differenced 
directional vectors) 

PKH - matrix product of GAIN and H 
PH - matrix product of PPR and transposed H 

CX,CY,CZ - directional cosine vectors in 3-dimensional space 
CF - 4x4 coefficient matrix of the state vector 

( C b. in text) 
LKHD - quadratic weighting matrix formed from the log­

likelihood function (W(k) in text) 
V - covariance associated with the measurement residual 

FIXl234 - integer values of the nominal phase delay 
QFIX1234 - integer values of the actual phase delay 

PI2 - twice the value of PI 
R2 twice the variance of the raw measurement noise 

ANLY - upper-left 3x3 block of the 4x4 LKHD matrix 
AINV - inverse matrix of ANLY 

PT - final estimate of the unknown integer vector 
TEMP - used as intermediate variable in several calculations 

MX - maximum number of processing steps 
DX,DY,DZ incremental perturbation from nominal baseline in 

DT -
CLOCK -

FX -

XLKHD -
NR -

XPR 

3-dimensional space 
time elapsed after initial measurement 
clock bias 
coordinate indices of the eight "integer locations" 
making up a unit cube 
actual log-likelihood values computed at FX locations 
true integer location resulting from comparison of 
XLKHD at the locations in FX 
state estimate vector of the true element NR (this is 
the desired result) 

1660 DIM DPHI(3,51) ,PPR(3,3) ,PHIO(4) ,PKH(3,3) ,GAIN(3,3) ,Z}1(3) ,TEHP(4) 
1670 DIM XPR(3),FX(3,10),XLKHD(10),HX(4),CF(4,4),LKHD(4,4),V(3),PT(3) 



71 

1680 DIM P(3,3),H(3,3),G(205),PH(3),CX(4),CY(4),CZ(4),ANLY(3,4) 
1690 DIM AINV(3,3) 
1700 ! 
1710 
1720 ! GENERATING THE RANDOM SEQUENCE 
1730 ! 
1740 SEED=13 @ MX=51 @ BIG=10000000000 
1750 RAD 
1760 VAR=(1/18)C2 
1770 FOR 1=1 TO MX*2+5 
1780 S=SEED 
1790 SEED=RMD (51*S+7,BIG) 
1800 SCL1=SEED/BIG 
1810 S=SEED 
1820 SEED=RMD (51*S+7,B1G) 
1830 SCL2=SEED/BIG 
1840 IF 1<6 THEN 1880 
1850 RN=SQR (2'>':VAR'>':LOG (l/SCLl)) 
1860 G(2*I-ll)=RN*COS (2*PI ~':SCL2) 

1870 G(2*I-lO)=RN'':SIN (2'>':PI *SCL2) 
1880 NEXT I 
1890 P12=2*P1 
1900 
1910 ! 
1920 ! 
1930 ! 
1940 DEG 

INITIAL SATELLITE ANGLES 

1950 ALFAl=15 @ ALFA2=75 @ BETAl=90 @ BETA2=150 
1960 THET1=0 @ THET2=60 @ CLOCK=.25 
1970 
1980 
1990 ! 
2000 ! 
2010 ! 

SIMULATING THE PHASE MEASUREMENTS The baseline vector 
is (100,0,0) and the perturbation vector is (1.5,1.5,1.5) 

2020 DX=1.5 @ DY=1.5 @ DZ=I.5 
2030 DT=O 
2040 GOSUB DRNCOS 
2050 FIX1=( 100+DX)'':CX( l)+DY*CY( 1)+DZ":CZ (1 )+CLOCK 
2060 F1X2=( 100+DX)*CX(2)+DY":CY (2)+DZ":CZ (2 )+CLOCK 
2070 FIX3=(100+DX)*CX(3)+DY*CY(3)+DZ*CZ(3)+CLOCK 
2080 FIX4=( 100+DX)*CX( 4 )+DY*CY( 4 )+DZ":CZ (4 )+CLOCK 
2090 FIXl=INT (FIXl) @ FIX2=INT (FIX2) 
2100 FIX3=INT (FIX3) @ FIX4=INT (FIX4) 
2110 FOR 1=1 TO MX 
2120 DT=(I-1)/6 
2130 GOSUB DRNCOS 
2140 PHI 1=( 100+DX)'>':CX (1 )+DY":CY (1 )+DZ":CZ (1 )+CLOCK -FIXl +G (4,':1 -3) . 
2150 PHI2=( 100+DX)'>':CX(2)+DY":CY (2)+DZ'':CZ (2)+CLOCK-F1X2+G (4":1 -2) 
2160 PHI3=( lOO+DX)'>':CX(3 )+DY'>':CY (3 )+DZ":CZ (3 )+CLOCK-FIX3+G( 4'>':1 -1) 
2170 PHI4=( 100+DX)":CX( 4 )+DY'>':CY (4 )+DZ'':CZ (4 )+CLOCK -FIX4+G (4":1) 
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2180 DPHI(1,I)=PHI1-PHI2 @ DPHI(2,I)=PHI3-PHI4 
2190 DPHI(3,I)=PHI1+PHI2-PHI3-PHI4 
2200 NEXT I 
2210 
2220 ! 
2230 ! 
2240 ! 
2250 FOR 1=1 TO 3 
2260 FOR J=1 TO 3 

INITIALIZING THE FILTER 

2270 IF 1=J THEN PPR(1,J)=4 ELSE PPR(1,J)=O 
2280 NEXT J 
2290 NEXT I 
2300 FOR N=1 TO 4 
2310 FOR NN=1 TO 4 
2320 CF(N,NN)=O @ LKHD(N,NN)=O 
2330 NEXT NN 
2340 NEXT N 
2350 R2=2*(1/18)¢2 
2360 DT=O 
2370 GOSUB DRNCOS 
2380 QFIX1=1001:CX(1) @ QFIX2=100":CX(2) 
2390 QFIX3=100*CX(3) @ QFIX4=100*CX(4) 
2400 QFIX1=INT (QF1X1) @ QF1X2=INT (QFIX2) 
2410 QFIX3=INT (QFIX3) @ QFIX4=INT (QFIX4) 
2420 ! 
2430 ! 
2440 ! 
245'0 ! 

THE PROCESSING LOOP 

2460 FOR 1=1 TO MX 
2470 DT=(I-1)/6 
2480 GOSUB DRNCOS 
2490 H(1,1)=CX(1)-CX(2) 
2500 H(1,2)=CY(1)-CY(2) 
2510 H(1,3)=CZ(1)-CZ(2) 
2520 H(2,1)=CX(3)-CX(4) 
2530 H(2,2)=CY(3)-CY(4) 
2540 H(2,3)=CZ(3)-CZ(4) 
2550 H(3,1)=CX(1)+CX(2)-CX(3)-CX(4) 
2560 H(3,2)=CY(1)+CY(2)-CY(3)-CY(4) 
2570 H(3,3)=CZ(1)+CZ(2)-CZ(3)-CZ(4) 
2580 PHIO(1)=100*CX(1)-QFIX1 @ PHIO(2)=100*CX(2)-QFIX2 
2590 PHIO(3)=100'':CX(3)-QFIX3 @ PHIO(4)=1001:CX(4)-QFIX4 
2600 
2610 
2620 
2630 
2640 
2650 
2660 
2670 

THE SEQUENTIAL PROCESSING LOOP 

FOR M=1 TO 3 
FOR N=1 TO 3 

PH(N)=PPR(N,1)*H(M,1)+PPR(N,2)*H(M,2)+PPR(N,3)*H(M,3) 
NEXT N 
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2680 V(M)=H(M, 1)*PH(1)+H(M, 2)'l':PH(2)+H(M, 3)~':PH(3)+R2 
2690 IF M=3 THEN V(M)=V(M)+R2 
2700 GAIN(1,M)=PH(1)/V(M) @ GAIN(2,M)=PH(2)/V(M) 
2710 GAIN(3,M)=PH(3)/V(M) 
2720 IF M=1 THEN ZM(1)=DPHI(M,I)-(PHIO(1)-PHIO(2)) 
2730 IF M=2 THEN ZM(2)=DPHI(M,I)-(PHIO(3)-PHIO(4)) 
2740 IF M=3 THEN ZM(3)=DPHI(M,I)-(PHIO(1)+PHIO(2)-PHIO(3)-PHIO(4)) 
2750 FOR N=1 TO 4 
2760 HX(N)=- (H(M, l)~':CF (1 ,N)+H(M, 2)*CF (2 ,N)+H (M, 3 )'':CF (3 ,N)) 
2770 IF M=N THEN HX(N)=HX(N)-1 
2780 IF N=4 THEN HX(4)=HX(4)+ZM(M) 
2790 
2800 
2810 UPDATING THE COEFFICIENT MATRIX 
2820 
2830 FOR NN=1 TO 3 
2840 CF(NN ,N)=CF(NN ,N)+GAIN(NN ,M)~':HX(N) 
2850 NEXT NN 
2860 NEXT N 
2870 
2880 
2890 UPDATING THE (LOG-LIKELIHOOD) QUADRATIC WEIGHTING MATRIX 
2900 
2910 FOR N=1 TO 4 
2920 FOR NN=1 TO 4 
2930 LKHD(N,NN)=LKHD(N,NN)+HX(N)*HX(NN)/2/V(M) 
2940 NEXT NN 
2950 NEXT N 
2960 
2970 
2980 UPDATING THE (KALMk~ FILTER) STATE ERROR COVARIANCE MATRIX 
2990 
3000 FOR N=1 TO 3 
3010 FOR NN=1 TO 3 
3020 PKH(N,NN)=-(GAIN(N,M)*H(M,NN)) 
3030 IF N=NN THEN PKH(N,NN)=1+PKH(N,NN) 
3040 NEXT NN 
3050 NEXT N 
3060 FOR N=1 TO 3 
3070 FOR NN=1 TO 3 
3080 TTEMP=PKH(N,1)*PPR(1,NN)+PKH(N,2)*PPR(2,NN) 
3090 P(N,NN)=TTEMP+PKH(N,3)*PPR(3,NN) 
3100 NEXT NN 
3110 NEXT N 
3120 FOR N=1 TO 3 
3130 FOR NN=1 TO 3 
3140 PPR(N,NN)=P(N,NN) 
3150 NEXT NN 
3160 NEXT N 
3170 NEXT M 



3180 NEXT I 
3190 
3200 
3210 
3220 
3230 

END OF PROCESSING LOOP 
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3240 
3250 
3260 

ESTIHATE THE UNKNOWN INTEGER VECTOR FROM 
THE FINAL QUADRATIC WEIGHTING MATRIX 

3270 FOR M=l TO 3 
3280 FOR N=l TO 4 
3290 ANLY(M,N)=2*LKHD(M,N) 
3300 NEXT N 
3310 NEXT M 
3320 GOSUB INVERSE 
3330 FOR M=l TO 3 
3340 TTEMP=- (AINV(M, l)~'(ANLY(l, 4)) -AINV(M, 2)~'(ANLY(2,4) 
3350 PT(M)=TTEMP-AINV(M,3)*ANLY(3,4) 
3360 NEXT M 
3370 
3380 
3390 
3400 
3410 

SETTING UP THE HYPOTHESES (EIGHT "INTEGER" LOCATIONS) 
FOR THE MAGILL ADAPTIVE FILTER SCHEME 

3420 IX1=INT (PT(l)) @ IX2=INT (PT(2)) @ IX3=INT (PT(3)) 
3430 FX(1,1)=IX1 @ FX(2,1)=IX2 @ FX(3,1)=IX3 
3440 FX(l,2)=IXl+l @ FX(2,2)=IX2 @ FX(3,2)=IX3 
3450 FX(1,3)=IX1 @ FX(2,3)=IX2+1 @ FX(3,3)=IX3 
3460 FX(1,4)=IX1+l @ FX(2,4)=IX2+1 @ FX(3,4)=IX3 
3470 FX(1,5)=IXl @ FX(2,5)=IX2 @ FX(3,5)=IX3+1 
3480 FX(l,6)=IX1+1 @ FX(2,6)=IX2 @ FX(3,6)=IX3+1 
3490 FX(1,7)=IX1 @ FX(2,7)=IX2+1 @ FX(3,7)=IX3+1 
3500 FX(1,8)=IX1+1 @ FX(2,8)=IX2+1 @ FX(3,8)=IX3+1 
3510 
3520 
3530 
3540 
3550 
3560 

ALL THE NECESSARY PARAl'ffiTER VALUES FOR THE MAGILL ADAPTIVE 
SCHEME CAN BE OBTAINED FROM THE FUNCTIONS LKHD AND CF 
ALREADY COMPUTED ABOVE IN THE l'iAXIl'ruM LIKELIHOOD ESTIMATOR 

3570 FOR 1=1 TO 8 
3580 FOR 1'1=1 TO 4 
3590 TTEMP=LKHD(M, l)~':FX(1, L)+LKHD(M, 2)~'(FX(2, L) 
3600 TEHP (M) =TTEMP+ LKHD (M, 3 ) ~':FX (3, L)+ LKHD (H, 4 ) 
3610 NEXT M 
3620 XLKHD (L)=FX( 1, L)~':TEMP (1 )+FX(2, L)~'(TEMP (2)+FX(3, L)*TEHP (3 )+TEMP (4) 
3630 NEXT L 
3640 
3650 
3660 
3670 

COMPARING XLKHD AMONG THE EIGHT FX LOCATIONS 



3680 NR=l @ XMIN=XLKHD(l) 
3690 FOR 1=2 TO 8 
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3700 IF XLKHD(L»= XHIN THEN 3720 
3710 XMIN=XLKHD(L) @ NR=L 
3720 NEXT L 
3730 FOR M=1 TO 3 
3740 XPR(M)=CF(M, 1)~':FX(1 ,NR)+CF (M, 2)~':FX(2 ,NR)+CF(M, 3 )":FX(3 ,NR)+CF(M,4) 
3750 NEXT M 
3760 PRINT XPR(1),XPR(2),XPR(3) 
3770 END 
3780 
3790 
3800 
3810 
3820 
3830 

THE SUBROUTINE "INVERSE" INVERTS A 3x3 MATRIX 

3840 NVERSE: 
3850 DET1=ANLY (1, 1)*(ANLY(2, 2)*ANLY(3, 3) -ANLY(2, 3)~':ANLY (3,2» 
3860 DET2=ANLY(1, 2)*(ANLY(2, 1)":ANLY(3, 3) -ANLY(2, 3)":ANLY(3, 1» 
3870 DET3=ANLY(1,3)*(ANLY(2,1)*ANLY(3,2)-ANLY(2,2)*ANLY(3,1» 
3880 DET=DET1-DET2+DET3 
3890 AINV(1,1)=(ANLY(2,2)*ANLY(3,3)-ANLY(2,3)*ANLY(3,2»/DET 
3900 AINV(2, 2)=(ANLY(1, 1)":ANLY(3, 3) -ANLY(1, 3 )*ANLY(3, 1» /DET 
3910 AINV(3, 3)=(ANLY(l, 1)":ANLY(2, 2) -ANLY(1, 2)":ANLY(2, 1» /DET 
3920 AINV(1,2)=-((ANLY(1,2)*ANLY(3,3)-ANLY(1,3)*ANLY(3,2»/DET) 
3930 AINV(1,3)=(ANLY(1,2)*ANLY(2,3)-ANLY(1,3)*ANLY(2,2»/DET 
3940 AINV(2, 1)=- ((ANLY(2, 1)":ANLY(3, 3) -ANLY(2, 3)~':ANLY(3, 1» /DET) 
3950 AINV(2,3)=-((ANLY(1,1)*ANLY(2,3)-ANLY(1,3)*ANLY(2,1»)/DET) 
3960 AINV(3,1)=(ANLY(2,1)*ANLY(3,2)-ANLY(2,2)*ANLY(3,1»/DET 
3970 AINV(3, 2)=- ((ANLY(1, 1)":ANLY(3, 2) -ANLY(1, 2)~':ANLY(3, 1» /DET) 
3980 RETURN 
3990 
4000 
4010 
4020 
4030 
4040 

THE SUBROUTINE "DRNCOS" COMPUTES THE DIRECTION COSINE VECTORS 
OF THE SATELLITES BASED ON THE SPECIFIED INITIAL ANGLES AND 
GIVEN THE ELAPSED TIME, DT. 

4050 DRNCOS: 
4060 CA1=COS (ALFA1+DT) @ CA2=COS (ALFA2+DT) 
4070 SA1=SIN (ALFA1+DT) @ SA2=SIN (ALFA2+DT) 
4080 CB1=COS (BETA1+DT) @ CB2=COS (BETA2+DT) 
4090 SB1=SIN (BETA1+DT) @ SB2=SIN (BETA2+DT) 
4100 CT1=COS (THET1+DT/2) @ CT2=COS (THET2-DT/2) 
4110 ST1=SIN (THET1+DT/2) @ ST2=SIN (THET2-DT/2) 
4120 CX(1)=CA1":CT1+SA1~':ST1/2 @ CY(1)=-(CA1*ST1)+SA1~':CT1/2 
4130 CZ(1)=.866*SA1 
4140 CX(2)=CA2*CT1+SA2*ST1/2 @ CY(2)=-(CA2*ST1)+SA2*CT1/2 
4150 CZ(2)=.866*SA2 
4160 CX(3)=-(CB1*CT2)+SB1*ST2/2 @ CY(3)=-(CB1*ST2)-SB1*CT2/2 
4170 CZ(3)=.866*SB1 
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4180 CX(4)=-(CB2*CT2)+SB2*ST2/2 @ CY(4)=-(CB2*ST2)-SB2*CT2/2 
4190 CZ(4)=.866*SB2 
4200 REWRN 

1000 
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1100 
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1180 
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1200 
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1240 
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1260 
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1290 
1300 
1310 
1320 
1330 
1340 

C. Three-dimensional Four-Satel1ite.Model 
(Preliminary Estimation with Augmented Kalman Filter) 

################################################################# 

This program consists of the simulation of phase measurements 
based on the 3-dimensional geometric model of Chapter IV (section 
B), and the six-state augmented Kalman filter described in 
Chapter V (section B). 

The program begins by simulating the measurements with the aid of 
computer-generated random numbers. The next part of the program 
makes up the six-state Kalman filter used to process the simu­
lated measurements with the preliminary objective of estimating 
only the unknown integer vector (the augmented portion of the 
state). The discrete Magill adaptive scheme, with eight filters 
geometrically placed at the corners of a unit cube "surrounding" 
the final estimate computed of the unknown integer vector, rounds 
up the last part of the program with the intention of estimating 
the 3-tuple state vector representing the incremental position 
perturbation. 

################################################################# 

NOTATION 

G - computer-generated Gaussian white sequence 
SEED - seed of randomization 

VAR - variance of the Gaussian sequence 
PRI1234 - raw phase measurements 

DPHI - differenced phase measurements 
PRIO - nominal phase delay 

ZM - measured phase less the nominal phase 
(differenced version) 

RES - measurement residual 
V - error covariance associated with the measurement 

residual 



1350 
1360 
1370 
1380 
1390 
1400 
1410 
141.0 , 
1430 
1440 
1450 
1460 
1470 
1480 
1490 
1500 
1510 
1520 
1530 
1540 
1550 
1560 
1570 
1580 
1590 
1600 
1610 
1620 
1630 
1640 
1650 
1660 
1670 
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PPR - a priori state error covariance matrix 
P - updated state error covariance matrix 

GAIN - Kalman gain 
H - linear connection matrix between the state and the 

differenced measurements (made up of differenced 
directional vectors) 

PKH - matrix product of GAIN and H 
PH - matrix product of PPR and transposed H 

CX,CY,CZ - directional cosine vectors in 3-dimensional space 
FIX1234 - integer values of the nominal phase delay 

QFIX1234 - integer values of the actual phase delay 
IFIX123 - true value of the unknown integer vector(used for 

checking against the solution obtained) 
PI2 - twice the value of PI 

R2 twice the variance of the raw phase measurement noise 
MX - total number of processing steps 

DX,DY,DZ - incremental position perturbation from nominal baseline 
in 3-dimensional space 

DT - time elapsed after initial measurement 
CLOCK - clock bias (error) 

AXPR - 6-tuple state vector (3-position augmented with 
3-tuple hypothesis vector) 

XPR - 3-tuple state vector used in the Hagil1 adaptive scheme 
in the final part of the program 

FX - coordinate indices of the eight "integer locations" 
making up a unit cube 

XLKHD - actual log-likelihood values computed at FX locations 
NR - true integer location resulting from comparison of 

XLKHD at the locations in FX 

1680 
1690 
1700 
1710 
1720 

DIH DPHI(3,51),PPR(6,6),PHIO(4),PKH(6,6),GAIN(6),ZM(3,51),AXPR(6) 
DIM P(6,6),H(3,6),G(205),PH(6),CXC4),CYC4),CZ(4),XPRC8,3),PC(3,3) 
DIM FXC8,3),XLKHD(8) 

1730 
1740 

GENERATING THE RANDOM SEQUENCE 

1750 SEED=13 @ MX=51 @ BIG=10000000000 
1760 RAD 
1770 VAR=(lj18)C2 
1780 FOR 1=1 TO MX*2+5 
1790 S=SEED 
1800 SEED=RHD (51,'rS+7,BIG) 
1810 SCL1=SEEDjBIG 
1820 S=SEED 
1830 SEED=RMD (51*S+7,BIG) 
1840 SCL2=SEEDjBIG 
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1850 IF 1<6 THEN 1890 
1860 RN=SQR (2*VAR*LOG (1/SCL1)) 
1870 G(2*I-ll)=RN*COS (2*PI ~':SCL2) 

1880 G(2*I-10)=RN*SIN (2*PI *SCL2) 
1890 NEXT I 
1900 PI2=2*PI 
1910 
1920 ! 
1930 ! 
1940 ! 
1950 DEG 

INITIAL SATELLITE ANGLES 

1960 ALFA1=15 @ ALFA2=75 @ BETA1=90 @ BETA2=150 
1970 THET1=0 @ THET2=60 @ CLOCK=.25 
1980 
1990 
2000 
2010 
2020 
2030 

SHlULATING THE PHASE MEASUREMENTS 
.The nominal baseline vector is (100,0,0) with 
an incremental position perturbation of (1.5,1.5,1.5) 

2040 DX=1.5 @ DY=1.5 @ DZ=1.5 
2050 DT=O 
2060 GOSUB DRNCOS 
2070 FIX1=( 100+DX)1rCX(1)+DY1rCY(1)+DZ~'rCZ (1)+CLOCK 
2080 FIX2=(100+DX)~':CX(2)+DY":CY(2)+DZ~-:CZ(2)+CLOCK 
2090 FIX3=(100+DX)*CX(3)+DY*CY(3)+DZ*CZ(3)+CLOCK 
2100 FIX4=( 100+DX)1:CX( 4 )+DY*CY(4 )+DZ~-:CZ (4 )+CLOCK 
2110 FIXl=INT (FIX1) @ FIX2=INT (FIX2) @ FIX3=INT (FIX3) @ FIX4=1NT (FIX4) 
2120 FOR 1=1 TO MX 
2130 DT=(I-1)/6 
2140 GOSUB DRNCOS 
2150 PHI 1=(100+DX)'-:CX( 1)+DY'-:CY(l)+DZ'-:CZ (1)+CLOCK-FIX1+G(4":1 -3) 
2160 PHI2=( 100+DX)":CX(2)+DY":CY (2)+DZ'':CZ (2)+CLOCK -F1X2+G( 4,':1 -2) 
2170 PHI3=( 100+DX)1rCX(3 )+DY1:CY (3 )+DZ*CZ (3 )+CLOCK -FIX3+G (4,':1 -1) 
2180 PHI4=( 100+DX)'-:CX( 4 )+DY*CY (4 )+DZ":CZ (4 )+CLOCK -FIX4+G( 4'-:1) 
2190 DPHI(1,I)=PHI1-PHI2 @ DPHI(2,1)=PHI3-PH14 
2200 DPHI(3,I)=PHIl+PHI2-PHI3-PHI4 
2210 NEXT I 
2220 
2230 THE AUGMENTED KALMAN FILTER: 
2240 ! 
2250 ! 
2260 ! 
2270 DT=O 

INITIALIZING THE STATE ERROR COVARIANCE MATRIX 
Details are given in Appendix B 

2280 GOSUB DRNCOS 
2290 H(1,1)=CX(1)-CX(2) 
2300 H(1,2)=CY(1)-CY(2) 
2310 H(I,3)=CZ(1)-CZ(2) 
2320 H(2,1)=CX(3)-CX(4) 
2330 H(2,2)=CY(3)-CY(4) 
2340 H(2,3)=CZ(3)-CZ(4) 



2350 H(3,1)=CX(1)+CX(2)-CX(3)-CX(4) 
2360 H(3,2)=CY(I)+CY(2)-CY(3)-CY(4) 
2370 H(3,3)=CZ(1)+CZ(2)-CZ(3)-CZ(4) 
2380 FOR 1=1 TO 3 
2390 FOR J=1 TO 3 
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2400 IF I=J THEN PPR(I,J)=4 ELSE PPR(I,J)=O 
2410 NEXT J 
2420 NEXT I 
2430 FOR 1=1 TO 3 
2440 FOR J=1 TO 3 
2450 PPR(I , J+3 )=- (PPR (I, 1)~':H (J , 1)+PPR(I, 2)~':H(J , 2)+PPR (I, 3 )~':H (J , 3)) 
2460 PPR(J+3,I)=PPR(I,J+3) 
2470 NEXT J 
2480 NEXT I 
2490 FOR 1=1 TO 3 
2500 FOR J=1 TO 3 
2510 PC (I, J)=PPR(I, 1)~':H(J , 1)+PPR( I, 2)~:H(J , 2)+PPR (I, 3 )~':H(J , 3) 
2520 NEXT J 
2530 NEXT I 
2540 FOR 1=1 TO 3 
2550 FOR J=1 TO 3 
2560 PPR(I+3 ,J+3 )=H(1, 1)*PC (1, J)+H(I, 2)*PC (2, J)+H(I, 3 )~':PC (3 ,J) 
2570 IF I=J THEN PPR(I+3,J+3)=PPR(I+3,J+3)+1/12 
2580 NEXT J 
2590 NEXT I 
2600 
2610 ! 
2620 ! INITIALIZING THE STATE VECTOR 
2630 ! 
2640 R2=2*(1/18)C2 
2650 FOR 1=1 TO 6 
2660 AXPR(I)=O 
2670 NEXT I 
2680 DT=O 
2690 GOSUB DRNCOS 
2700 QFIX1=100~':CX(1) @ QFIX2=100~"'CX(2) 
2710 QFIX3=100*CX(3) @ QFIX4=100*CX(4) 
2720 QFIX1=INT (QFIXl) @ QFIX2=INT (QFIX2) 
2730 QFIX3=INT (QFIX3) @ QFIX4=INT (QF1X4) 
2740 
2750 
2760 ! COMPUTING THE TRUE VALUE OF THE UNKNOWN INTEGER 
2770 ! FOR PURPOSES OF CHECKING AGAINST THE SOLUTION 
2780 ! 
2790 IFIX1=QFIX1-FIXI-(QFIX2-FIX2) 
2800 IFIX2=QFIX3-FIX3-(QFIX4-FIX4) 
2810 IFIX3=QFIX1-FIXI+(QFIX2-FIX2)-(QFIX3-FIX3+(QFIX4-FIX4)) 
2820 PRINT IFIX1,IFIX2,IFIX3 
2830 ! 
2840 ! 
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2850 ! 
2860 ! 

SETTING UP THE AUG~ffiNTED PORTION OF THE H-MATRIX 

2870 FOR 1=1 TO 3 
2880 FOR J=4 TO 6 
2890 IF I=J-3 THEN H(I,J)=l ELSE H(I,J)=O 
2900 NEXT J 
2910 NEXT I 
2920 
2930 ! 
2940 ! 
2950 ! 

THE PROCESSING LOOP 

2960 FOR 1=1 TO MX 
2970 DT=(1-1)/6 
2980 GOSUB DRNCOS 
2990 H(1,1)=CX(1)-CX(2) 
3000 H(1,2)=CY(1)-CY(2) 
3010 H(1,3)=CZ(1)-CZ(2) 
3020 H(2,1)=CX(3)-CX(4) 
3030 H(2,2)=CY(3)-CY(4) 
3040 H(2,3)=CZ(3)-CZ(4) 
3050 H(3,1)=CX(1)+CX(2)-CX(3)-CX(4) 
3060 H(3,2)=CY(1)+CY(2)-CY(3)-CY(4) 
3070 H(3,3)=CZ(1)+CZ(2)-CZ(3)-CZ(4) 
3080 PHIO(1)=100*CX(1)-QFIX1 @ PHIO(2)=100*CX(2)-QFIX2 
3090 PHIO (3 )=100":CX(3) -QFIX3 @ PRIO (4 )=100":CX( 4) -QFIX4 
3100 
3110 
3120 
3130 
3140 
3150 
3160 

THE SEQUENTIAL PROCESSING LOOP 

FOR M=1 TO 3 

3170 COMPUTING THE KALMAN GAIN 
3180 
3190 
3200 
3210 
3220 
3230 
3240 
3250 
3260 
3270 
3280 
3290 
3300 
3310 
3320 
3330 
3340 

FOR N=l TO 6 
TOTAL=O 
FOR NN=1 TO 6 

TOTAL=TOTAL+PPR(N,NN)*H(M,~~) 

NEXT NN 
PH (N)=TOTAL 

NEXT N 
TOTAL=O 
FOR N=1 TO 6 

TOTAL--TOTAL+H(M,N)*PH(N) 
NEXT N 
V (M)=TOTAL+R2 
IF M=3 THEN V(M)=V(M)+R2 
FOR N=1 TO 6 

GAIN(N)=PR(N)/V(M) 
NEXT N 



3350 
3360 
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3370 THE STATE ESTIMATE UPDATE 
3380 
3390 
3400 
3410 
3420 
3430 
3440 
3450 
3460 
3470 
3480 
3490 
3500 
3510 

IF M=l THEN ZM(1,I)=DPHI(M,I)-(PHIO(1)-PHIO(2» 
IF M=2 THEN ZM(2,I)=DPHI(M,I)-(PHIO(3)-PHIO(4» 
IF M=3 THEN ZM(3,I)=DPHI(M,I)-(PHIO(1)+PHIO(2)-PHIO(3)-PHIO(4» 
TOTAL=O 
FOR N=1 TO 6 

TOTAL=TOTAL+H(M,N)~:AXPR(N) 

NEXT N 
RES=ZM(M,I)-TOTAL 
FOR N=l TO 6 

AXPR(N)=AXPR(N)+GAIN(N)*RES 
NEXT N 

3520 THE STATE ERROR COVARIANCE UPDATE 
3530 
3540 FOR N=1 TO 6 
3550 FOR NN=l TO 6 
3560 PKH(N,NN)=-(GAIN(N)*H(M,NN» 
3570 IF N=NN THEN PKH(N ,NN)=1+PKH(N ,NN) 
3580 NEXT NN 
3590 NEXT N 
3600 FOR N=l TO 6 
3610 FOR NN=l TO 6 
3620 TOTAL=O 
3630 FOR NNN=l TO 6 
3640 TOTAL=TOTAL+PKH(N ,NNN)~:PPR(NNN ,NN) 
3650 NEXT NNN 
3660 P(N,NN)=TOTAL 
3670 NEXT NN 
3680 NEXT N 
3690 FOR N=1 TO 6 
3700 FOR NN=l TO 6 
3710 PPR(N,NN)=P(N,NN) 
3720 NEXT NN 
3730 NEXT N 
3740 NEXT M 
3750 NEXT I 
3760 
3770 
3780 END OF PROCESSING LOOP 
3790 
3800 
3810 

OUTPUT: THE FINAL ESTIMATE OF THE UNKNOWN INTEGER VECTOR 

3820 PRINT AXPR(4),AXPR(5),AXPR(6) 
3830 
3840 ! 
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THE MAGILL ADAPTIVE SCHEHE 
3850 
3860 
3870 
3880 
3890 
3900 
3910 

SETTING UP THE EIGHT "INTEGER LOCATIONS" AT THE CORNERS 
OF A UNIT CUBE GEOHETRICALLY CONTAINING THE FINAL ESTIHATE 
FOUND ABOVE 

3920 IX1=INT (AXPR(4)) @ IX2=INT (AXPR(5)) @ IX3=INT 
3930 FX(1,1)=IX1 @ FX(1,2)=IX2 @ FX(1,3)=IX3 
3940 FX(2,1)=IX1+1 @ FX(2,2)=IX2 @ FX(2,3)=IX3 
3950 FX(3,1)=IX1 @ FX(3,2)=IX2+1 @ FX(3,3)=IX3 
3960 FX(4,1)=IX1+1 @ FX(4,2)=IX2+1 @ FX(4,3)=IX3 
3970 FX(5,1)=IX1 @ FX(5,2)=IX2 @ FX(5,3)=IX3+1 
3980 FX(6,1)=IX1+1 @ FX(6,2)=IX2 @ FX(6,3)=IX3+1 
3990 FX(7,1)=IX1 @ FX(7,2)=IX2+1 @ FX(7,3)=IX3+1 
4000 FX(8,1)=IX1+1 @ FX(8,2)=IX2+1 @ FX(8,3)=IX3+1 
4010 ! 
4020 ! 
4030! INITIALIZATION OF THE FILTER 
4040 ! 
4050 FOR 1=1 TO 3 
4060 FOR J=l TO 3 
4070 IF I=J THEN PPR(I,J)=4 ELSE PPR(I,J)=O 
4080 NEXT J 
4090 NEXT I 
4100 FOR 1=1 TO 8 
4110 XPR(I,1),XPR(I,2),XPR(I,3)=0 
4120 XLKHD(I)=O 
4130 NEXT I 
4140 
4150 ! 
4160! THE PROCESSING LOOP 
4170 ! 
4180 FOR 1=1 TO MX 
4190 DT=(I-1)/6 
4200 GOSUB DRNCOS 
4210 H(1,1)=CX(1)-CX(2) 
4220 H(1,2)=CY(1)-CY(2) 
4230 H(1,3)=CZ(1)-CZ(2) 
4240 H(2,1)=CX(3)-CX(4) 
4250 H(2,2)=CY(3)-CY(4) 
4260 H(2,3)=CZ(3)-CZ(4) 
4270 H(3,1)=CX(1)+CX(2)-CX(3)-CX(4) 
4280 H(3,2)=CY(1)+CY(2)-CY(3)-CY(4) 
4290 H(3,3)=CZ(1)+CZ(2)-CZ(3)-CZ(4) 
4300 
4310 
4320 THE SEQUENTIAL PROCESSING LOOP 
4330 
4340 FOR H=l TO 3 

(AXPR(6)) 



4350 
4360 
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4370 COMPUTING "THE KALMAN GAIN 
4380 
4390 
4400 
4410 
4420 
4430 
4440 
4450 
4460 
4470 
4480 
4490 
4500 
4510 
4520 
4530 
4540 
4550 
4560 
4570 
4580 
4590 
4600 
4610 
4620 

FOR N=l TO 3 
PH(N)=PPR(N,1)*H(M,1)+PPR(N,2)*H(M,2)+PPR(N,3)*H(M,3) 

NEXT N 
V=H(M, l)"::PH( l)+H(M, 2)":PH(2)+H(M, 3 )":PH(3 )+R2 
IF M=3 THEN V=V+R2 
GAIN(1)=PH(1)/V @ GAIN(2)=PH(2)/V @ GAIN(3)=PH(3)/V 

UPDATING THE STATE ESTIMATE VECTOR AND THE LOG-LIKELIHOOD 
FUNCTIONS IN EACH OF THE EIGHT FILTER ELEMENTS 

FOR F=l TO 8 
Z=ZM(M,I)-FX(F,M) 
TEMP=H(M,1)*XPR(F,1)+H(M,2)*XPR(F,2) 
RES=Z-(TEMP+H(M,3)*XPR(F,3)) 
XPR(F,l)=XPR(F,l)+GAIN(l)*RES 
XPR(F,2)=XPR(F,2)+GAIN(2)*RES 
XPR(F ,3)=XPR(F ,3)+GAIN(3)":RES 
XLKHD (F)=XLKHD (F)+RESC2/2/V 

NEXT F 

UPDATING THE STATE ERROR COVARIANCE MATRIX 

4630 FOR N=1 TO 3 
4640 FOR NN=l TO 3 
4650 PKH(N,NN)=-(GAIN(N)*H(M,NN)) 
4660 IF N=NN THEN PKH(N,NN)=1+PKH(N,NN) 
4670 NEXT NN 
4680 NEXT N 
4690 FOR N=l TO 3 
4700 FOR NN=1 TO 3 
4710 TEMP=PKH(N,1)*PPR(1,NN)+PKH(N,2)*PPR(2,NN) 
4720 peN , NN)=TEMP+PKH(N , 3 )~':PPR(3 ,NN) 
4730 NEXT NN 
4740 NEXT N 
4750 FOR N=1 TO 3 
4760 FOR NN=l TO 3 
4770 PPR(N,NN)=P(N,NN) 
4780 NEXT NN 
4790 NEXT N 
4800 NEXT M 
4810 NEXT I 
4820 
4830 
4840 ! cmlPARING THE LOG-LIKELIHOOD FUNCTIONS AMONG THE EIGHT ELEMENTS 



4850 ! 
4860 NR=l @ XMIN=XLKJID(1) 
4870 FOR F=2 TO 8 
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4880 IF XLKHD(F»= XMIN THEN 4900 
4890 XMIN=XLKHD(F) @ NR=F 
4900 NEXT F 
4910 
4920 ! 
4930 ! 
4940 ! 

OUTPUT: THE STATE ESTIMATE OF THE TRUE FILTER ELEMENT 

4950 PRINT XPR(NR,1),XPR(NR,2),XPR(NR,3) 
4960 END 
4970 ################################################################# 
4980 
4990 
5000 
5010 
5020 
5030 

THE SUBROUTINE "DRNCOS" COMPUTES THE DIRECTIONAL VECTORS 
IN 3-DIMENSIONAL SPACE FROM THE INITIAL SATELLITE ANGLES 
GIVEN THE ELAPSED TIME, DT. 

5040 DRNCOS: 
5050 CA1=COS (ALFA1+DT) @ CA2=COS (ALFA2+DT) 
5060 SA1=SIN (ALFA1+DT) @ SA2=SIN (ALFA2+DT) 
5070 CB1=COS (BETA1+DT) @ CB2=COS (BETA2+DT) 
5080 SB1=SIN (BETA1+DT) @ SB2=SIN (BETA2+DT) 
5090 CT1=COS (THET1+DT/2) @ CT2=COS (THET2-DT/2) 
5100 ST1=SIN (THET1+DTj2) @ ST2=SIN (THET2-DTj2) 
5110 CX(1)=CA1~':CT1+SA1~':ST1j2 @ CY(1)=- (CA1~':ST1)+SA1~':CTlj2 
5120 CZ(1)=.866*SA1 
5130 CX(2)=CA2*CT1+SA2*ST1j2 @ CY(2)=-(CA2*ST1)+SA2*CT1j2 
5140 CZ(2)=.866*SA2 
5150 CX(3)=-(CB1*CT2)+SB1*ST2j2 @ CY(3)=-(CB1*ST2)-SB1*CT2j2 
5160 CZ(3)=.866*SB1 
5170 CX(4)=-(CB2*CT2)+SB2*ST2j2 @ CY(4)=-(CB2*ST2)-SB2*CT2j2 
5180 CZ(4)=.866*SB2 
5190 RETURN 


