
Searching for a minimal cost of closed-loop

automatic assembly system with the genetic algorithm

by

Yisheng Hsiao

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the degree of

MASTER OF SCIENCE

Department: Industrial and Manufacturing Systems Engineering
Major: Industrial Engineering

Signatures have been redacted for privacy

Iowa State University
Ames, Iowa

1994

11

TABLE OF CONTENTS

1. INTRODUCTION

2. LITERATURE REVIEW

2.1. Genetic Algorithm in Optimization

2.1.1. Literature on Development of Genetic Algorithms

2.1.2. Literature on the Application of Genetic Algorithms

2.2. Optimization of Automatic Assembly Systems

2.3. Summary of Literature

3. SYSTEM DESCRIPTION

3.1. Simulation Model

3.1.1. Model Development

3.1.2. Batch Size and Steady-State Simulation

3.1.3. Model Validation

3.2. Cost Model

3.2.1. Cost of Pallets

3.2.2. Cost of Buffer Spaces

3.2.3. Cost of Conveyor

3.2.4. Cost of Holding Inventory

3.2.5. Penalty Cost

4. THE GENETIC ALGORITHM

4.1. General Description of Genetic Algorithms

4.2. The Genetic Algorithm in this Research

5. COST OPTIMIZATION

5.1. Determine Parameters

1

6

7

7

9

11

14

17

17

17

18

22

27

29

29

31

31

32

33

33

36

39

39

III

5.1.1. Setting the Cost Parameters

5.1.2. Setting the Parameters in System and Simulation Model

5.1.3. Setting the Genetic Algorithm Operating Parameters

5.2. The Results of Cost Optimization

5.2.1. Type 1 Asynchronous Automatic Assembly System

5.2.2. Type 2 Asynchronous Automatic Assembly System

5.2.3. Type 3 Asynchronous Automatic Assembly System

5.2.4. Type 4 Asynchronous Automatic Assembly System

5.2.5. Type 5 Asynchronous Automatic Assembly System

5.3. Results Between Minimum Cost and Maximum Throughput

5.4. Summary

6. CONCLUSION

REFERENCES

APPENDIX A - DETAILED RESULTS OF EACH GENERATION

APPENDIX B - IMPLEMENTATION OF A GENETIC ALGORITHM
WITH C SOURCE CODE

39

40

41

43

43

48

52

57

61

65

67

69

72

76

87

IV

LIST OF FIGURES

Figure 1.1. Closed-Loop Asynchronous Automatic Assembly System 3

Figure 3.1. Cumulative Averages with Deletions of Type 1 System 22

Figure 3.2. Cumulative Averages with Deletions of Type 2 System 23

Figure 3.3. Cumulative Averages with Deletions of Type 3 System 23

Figure 3.4. Cumulative Averages with Deletions of Type 4 System 24

Figure 3.5. Cumulative Averages with Deletions of Type 5 System 24

Figure 4.1. The processes ofa Simple Genetic Algoriyhm 35

Figure 4.2. The Algorithm of Modified Genetic Algorithm 37

Figure 5.1. Performance of GA and mGA for Type 1 System Under Simulation Seed
Type 1 and Penalty Cost 10% 44

Figure 5.2. Performance of GA and mGA for Type 1 System Under Simulation Seed
Type 2 and Penalty Cost 10% 45

Figure 5.3. Performance of GA and mGA for Type 1 System Under Simulation Seed
Type 1 and Penalty Cost 1 % 46

Figure 5.4. Performance ofGA and mGA for Type 1 System Under Simulation Seed
Type 2 and Penalty Cost 1 % 47

Figure 5.5. Performance of GA and mGA for Type 2 System Under Simulation Seed
Type 1 and Penalty Cost 10% 49

Figure 5.6. Performance of GA and mGA for Type 2 System Under Simulation Seed
Type 2 and Penalty Cost 10% 49

Figure 5.7. Performance ofGA and mGA for Type 2 System Under Simulation Seed
Type 1 and Penalty Cost 1 % 51

Figure 5.8. Performance of GA and mGA for Type 2 System Under Simulation Seed
Type 2 and Penalty Cost 1 % 51

v

Figure 5.9. Performance ofGA and mGA for Type 3 System Under Simulation Seed
Type 1 and Penalty Cost 10% 53

Figure 5.10. Performance ofGA and mGA for Type 3 System Under Simulation Seed
Type 2 and Penalty Cost 10% 54

Figure 5.11. Performance of GA and mGA for Type 3 System Under Simulation Seed
Type 1 and Penalty Cost 1% 55

Figure 5.12. Performance ofGA and mGA for Type 3 System Under Simulation Seed
Type 2 and Penalty Cost 1% 55

Figure 5.13. Performance ofGA and mGA for Type 4 System Under Simulation Seed
Type 1 and Penalty Cost 10% 58

Figure 5.14. Performance of GA and mGA for Type 4 System Under Simulation Seed
Type 2 and Penalty Cost 10% 58

Figure 5.15. Performance of GA and mGA for Type 4 System Under Simulation Seed
Type 1 and Penalty Cost 1 % 59

Figure 5.16. Performance of GA and mGA for Type 4 System Under Simulation Seed
Type 2 and Penalty Cost 1 % 60

Figure 5.17. Performance ofGA and mGA for Type 5 System Under Simulation Seed
Type 1 and Penalty Cost 10% 62

Figure 5.1S. Performance ofGA and mGA for Type 5 System Under Simulation Seed
Type 2 and Penalty Cost 10% 63

Figure 5.19. Performance ofGA and mGA for Type 5 System Under Simulation Seed
Type 1 and Penalty Cost 1 % 64

Figure 5.20. Performance of GA and mGA for Type 5 System Under Simulation Seed
Type 2 and Penalty Cost 1 % 64

VI

LIST OF TABLES

Table 3.1. The Results of Von Neumann Test

Table 3.2. 95% Confidence Intervals of the Production Rate

Table 3.3. Test Statistics

Table 3.4. The Difference of Two Systems

Table 5.1. Optimization Results of Type 1 System (penalty 10%)

Table 5.2. Optimization Results of Type 1 System (penalty 1 %)

Table 5.3. Optimization Results of Type 2 System (penalty 10%)

Table 5.4. Optimization Results of Type 2 System (penalty 1%)

Table 5.5. Optimization Results of Type 3 System (penalty 10%)

Table 5.6. Optimization Results of Type 3 System (penalty 1%)

Table 5.7. Optimization Results of Type 4 System (penalty 10%)

Table 5.S. Optimization Results of Type 4 System (penalty 1%)

Table 5.9. Optimization Results of Type 5 System (penalty 10%)

Table 5.10. Optimization Results of Type 5 System (penalty 1%)

Table 5.11. The Results of Minimum Cost Model and Maximum Throughput
(penalty 10%)

Table 5.12. The Results of Minimum Cost Model and Maximum Throughput
(penalty 1%)

21

25

26

27

45

47

50

52

54

56

59

60

63

65

66

67

Vll

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Doug Gemmill, for all his assistance, guidance

and support throughout this research. His valuable suggestions and comments were greatly

appreciated. His instruction made the process of completing my thesis finish smoothly.

I would also like to thank my parents for their constant encouragement, love, and

support. You were there whenever I needed your support. I will always grateful for all you

have given for me.

1. INTRODUCTION

The assembly process plays an significant role in u.s. manufacturing and the economy.

According to statistical reports of the Bureau of Labor, there are about eighteen million

people employed in manufacturing in the U.S. (Schloemer, 1992). Manufacturing is regarded

as a competitive weapon in the marketplace and it is recommended that each company include

in their business plans specific goals in the area of achieving manufacturing excellence (Hays

and Wheelright, 1984). Manufacturing consists of three major stages; design, fabrication, and

assembly. The resulting activity of manufacturing can be either fabrication or assembly. It

was estimated that approximately eight million people work in the area of manufacturing

processes associated with product assembly (Liu and Sanders, 1988). Usually, when the

product is more complex, assembly is a larger concern. The assembly cost can often account

for more than 50% of the completed product (Boothroyd, 1992). Obviously, the assembly

process is an important area for U.S. manufacturing and the economy.

An assembly line can be classified as manual or automatic. In manual assembly, people

work in a line each contributing something to the assembly of a certain product. In automatic

assembly, automatic assembly devices, such as robots, spot-welding, etc., have been used to

replace manual workers. The automation of assembly has many advantages: reduction in the

cost of assembly, increased produ~tivity, a more consistent product, and avoidance of

dangerous operations for operators. However, only 5% of products are produced by

automatic assembly, others are still produced by manual assembly (Boothroyd, 1992).

Although only a small portion of products are produced by automatic assembly, it is expected

that automatic assembly will grow in batch manufacturing. Batch production represents more

than 35% of the US manufacturing base and makes up 36% of manufacturing's share of the

GNP (Browne et al. 1988).

2

An automatic assembly system contains a series of ~orkstations which are formed in a

predetermined order. A transport mechanism is used to transfer the assemblies between

workstations. An automatic assembly system could be labeled as an intermittent or

continuous transfer system (Boothroyd, 1992). In the intermittent system, the pallets are

moved intermittently and the workheads, structures used to assemble parts, remain fastened.

In the continuous system, the workheads index back and forth as the pallets are transferring at

a constant speed. The intermittent assembly system is the more common system used in

industrial automatic assembly.

Automatic assembly systems can also be grouped as synchronous systems or

asynchronous systems according to the type of transfer system installed. The synchronous

system transfers all the assemblies simultaneously; consequently, the entire assembly system

stops ifany one of the workstations is shutdown. Thus, a synchronous assembly system with

several workstations will have high downtime if any one of the station's reliability is not high.

However, an asynchronous assembly system is separated by buffer units. When a workstation

has finished its operations, the assembly is moved to another workstation by a continuous

operating carrier/conveyor. It will not affect other fixtures or workstations when assemblies

are removed from the conveyor of the system for assembly tasks.

According to the configuration of the transport mechanism, an automatic assembly

system can be classified as open or closed system. A closed system starts and finishes

assemblies at the same area; however, an open assembly system starts assemblies at one end

and completes at the other. Since an open system does not have any space limit, it may have a

variable number of pallets in the system. On the other hand, a dosed system has a fixed

number of assemblies in the system at all times.

This study will deal exclusively with a closed asynchronous automatic assembly system

(Figure 1.1). This kind of automatic assembly system exists in a variety of areas such as

3

manufacturing and packaging. For this type system, the workstations are designed around a

closed loop. Assemblies are built on pallets and the pallets are moved by conveyor. All

pallets will be occupied when the system is running. As soon as a completed assembly is

unloaded, a new workpiece is installed on the pallet. Consequently, the loading area becomes

the first station in the system, and the unloading area becomes the last station. Both the space

between any two adjoining workstations and the pallet dimensions decide the number of

pallets that can be formed in a queue between any two adjacent workstations.

ri--t-. load/unload
'+--+-' workslation

workslalion

pallels

s___ 0 0

I buffer space I
Figure 1.1. Closed-Loop Asynchronous Automatic Assembly System

The analysis of automatic assembly systems has been classified into deterministic

models, analytical models or stochastic process models, and simulation methods.

Deterministic models use equations to predict the behavior of the system. Deterministic

modeling works well in the analysis of deterministic systems. However, most systems are

actually not deterministic. It is difficult to use deterministic modeling to model a system

4

containing stochastic elements. Analytical approaches only work well on small and less

complex systems. This method can be used effectively to model systems containing two or

three stations. But, it is difficult to incorporate the transportation delays, blocking and

starvation aspects of an automatic assembly system by applying queuing theory. Recently

some effort has been made to model the transportation delay and its effect on performance

evaluation oftransfer lines (Commault and Semery, 1990). Most queuing models assume that

the buffer space is infinite. Thus, the blocking effect is ignored. However, buffer spaces are

usually small and the blocking effect can be considerable. For a more complex system,

simulation is the most effective of the three modeling techniques. Simulation can properly

incorporate the complicated effects of transportation delay, blocking and starving in stochastic

systems. However, simulation is only an evaluative approach. It is necessary to combine a

search technique in order to find the optimal solution.

The search techniques used to search for optimal solutions are categorized into

gradient methods, enumerative methods, and random search methods (Goldberg, 1989).

Gradient methods use slopes or derivatives to improve performance towards minimum or

maximum point or optimal variable set. These methods are effective for well-behaved

functions, or continuous functions, having few local optimum. Enumerative methods are used

to evaluate all possible combinations of system variables. Clearly, this approach is feasible

only when systems are small. Random search methods randomly generate values for the

system variables in order to search for the optimal solution. One of the most well-known of

the random search techniques is the genetic algorithm.

The genetic algorithm is a randomized algorithm that searches for a globally or near

globally optimal solution. This algorithm uses bit strings as the method of representing

complicated structures. The genetic algorithm uses three transformations, reproduction,

crossover, and mutation to generate new configurations. This algorithm generates new

5

configurations in a manner similar to the mechanics of natural selection and "survival of the

fittest. "

The main objective of this research is to investigate the effectiveness of the genetic

algorithm to the optimization of a closed-loop asynchronous automatic assembly system with

a stochastic cost model. This research applies the genetic algorithm method to search for the

solution which minimizes the manufacturing cost. The decision variables consist of the total

number of pallets and the number of buffer spaces between stations. In this research, the

optimal number of buffer spaces and pallets, and the production rate are obtained by linking a

simulation model to the genetic algorithm. A cost model is used to calculate the cost required

for this system. Comparison of the solutions between the maximum throughput problem and

the minimum cost problem are made.

6

2. LITERATURE REVIEW

Automatic assembly systems are a member of stochastic systems. When an automatic

assembly system is designed, the optimization of the system's performance is always a serious

concern. Methods applied for stochastic optimization are normally referred to as Monte Carlo

methods. A lot of different optimization techniques have been developed for solving

stochastic problems. Glynn (1986) surveyed various approaches, all continuous parameter

stochastic optimization, in simulation optimization. These approaches include Response

Surface Methodology, Stochastic Quasi-Gradient Methods (SQG), Kiefer-Wolfowitz

Algorithm, and Robbins-Monro Algorithm. These approaches may not work well when the

parameters are discrete. Meketon (1987) also surveyed certain other approaches. He

classified the approaches into three categories: standard non-linear programming techniques,

response surface methodologies, and stochastic approximation techniques. However these

approaches can only guarantee a local optimum solution, not a global solution. In addition to

these stochastic optimization techniques, some discrete parameter deterministic optimization

techniques, such as simulated annealing and genetic algorithms, have been applied to

stochastic problems with good results. Simulated annealing and genetic algorithm are random

search algorithms based on processes found in thermodynamics and natural selection

respectively (Davis and Steenstrup, 1987).

This literature review collects two areas of the automatic assembly process analysis.

The first section will review the research on genetic algorithms. The second section will

discuss the efforts performed on the optimization of assembly systems. The final section

provides a general summary of the literature as related to this research.

7

2.1 Genetic Algorithms in Optimization

This section will present the literature of genetic algorithms in two categories:

algorithm development and applications. The perfonnance of the algorithm is presented in

chapter four.

2.1.1. Literature on the Development of Genetic Algorithms

The Genetic Algorithm is a discrete parameter probabilistic method for searching the

solution space'--er0lland (1975) first applied this algorithm in artificial systems. He presented

the concepts of reproduction, crossover, and mutation to demonstrate how the genetic

algorithm can offer an effective search in a complicated solution space. J
Davis (1987) edited a book that contains 13 papers. These papers discuss various

issues that use genetic algorithms and simulated annealing as searching tools. In this book,

Davis and Steenstrup reviewed and supplied a brief description of both simulated annealing

and genetic algorithms. In the same book, Grefenstette (1987) considered the incorporation

of problem-specific infonnation into genetic algorithms. Grefenstette implied that genetic

algorithms are not particularly useful for fine local searches. He suggested that one could

apply genetic algorithms to specify "promising" regions, and then invoke a local search

method to search for the optimum solution. He used several heuristic methods for popUlation

initialization to evaluate the traveling salesman problem. Grefenstette inferred that if heuristic

infonnation is utilized with caution to avoid causing premature convergence of the solution,

the heuristic infonnation should be effective. In the same book, Booker (1987) considered the

premature convergence problem of the genetic algorithm. He showed that carefully selected

modifications of search operators, such as using two crossover points instead of one and

changing the crossover rate dynamically to make up for imbalances, can dramatically improve

the perfonnance of genetic algorithms. qoldberg discussed the behavior of simple genetic

8

algorithms when applied to the minimal, deceptive problem (MDP). The MDP is built to

misguide the simple genetic algorithm away from the global optimum solution and toward

sub-optimal solutions. In Davis' book, Goldberg (1987) concluded that the simple genetic

algorithm converged across a broad range of initial parameters, thus, the MDP could not

distract the genetic algorithm.

Pettey et al. (l987) tried to use a parallel genetic algorithm to decrease the search time

in problems with large population size. The authors show when the population size is

exceedingly large, genetic algorithms can take an excessive amount of running time. In

contrast, when the population is small, genetic algorithms can be limited in terms of the wrong

solution space. The authors introduce a class of parallel genetic algorithms (pGA) to defeat

the problem of redundant running time and illustrate them in the traveling salesman problem.

The results indicate that the PGA can allow for an larger population size of a genetic search .

. Richardson et al. (1989) showed some steps to accomplish penalty functions in genetic

algorithms. In this penalty scheme, some infeasible or illegal combinations are given a strong

penalty. Historical recommendations for using penalty functions suggested applying harsh

penalties for infeasible solutions. Infeasible solutions would be forced out of the current

population when a large penalty is assigned to the performance measure of the

improper solutions. The authors recommended that a well chosen, ranged penalty is more

desirable than harsh penalties. The authors inferred that these types of penalties maintain the

information for all strings; however, the harsh penalties do not.

Goldberg (l989) published a book that focuses on the issues of genetic algorithms.

This book introduces the history and operation of genetic algorithms. Goldberg discusses the

simple operators such as reproduction, crossover, and mutation in detail, several advanced

genetic operators containing dominance and abeyance, and mathematical foundations.

Goldberg also introduces several knowledge-based techniques that involve genetic algorithms,

9

such as knowledge-augmentation and hybridization. The techniques of knowledge

augmentation involve improving a genetic algorithm with some "problem-specific" data.

Hybrid schemes mix the crossing of a genetic algorithm with a problem-specific optimization

or search technique. This book also discusses parallel genetic algorithms which indicate that a

single master would simultaneously directe several different, but parallel, generations.

Moreover, this book provides Pascal code for a simple genetic algorithm (SGA) that combines

the three fundamental genetic operators, reproduction, crossover, and mutation.

Davis (1991) published the Handbook of Genetic Algorithms. Unlike any previous

publications, this book discusses the coding of genetic algorithms from an object-oriented

point of view. In fact, Davis refers to his code as the Objective-Oriented Genetic Algorithm

(OOGA). Overall, Davis' main contribution to genetic algorithm research was twofold: a lot

of case studies implicating the application of genetic algorithms and using an object-oriented

method to implement genetic algorithms.

2.1.2. Literature on the Application of Genetic Algorithms

There are a lot of publications describing the application of genetic algorithms to

theoretical and "real-world" problems. The following section reviews some of the

applications of genetic algorithms, and relates to this study.

Davis and Ritter (1987) applied genetic algorithms to optimize the performance of a

simulated annealing algorithm that was used to optimize student class schedules. The authors

concluded that the application of genetic algorithms in this area enabled them to obtain better

annealing parameter settings than humans found.

Glover (1987) used genetic algorithms to solve a complex keyboard configuration

problem. Since it is difficult to produce language-to-keyboard mapping for the Eastern Asian

languages, Glover tried to use genetic algorithms to find the optimal solution. Glover claimed

10

that the genetic algorithms provide a robust search technique when applied with different

operators and representations than those used in the standard genetic algorithm.

Cohoon et aI. (1988) applied distributed genetic algorithms on the floor plan design

problem. This particular application is used to design the placement of modules in the VLSI

cycle. The objective of the placement is to find the minimum of the wire lengths and weighted

sum of the area. The authors apply multiple processors (called GAPE) to implement a

distributed genetic algorithm. After developing several fit sub-populations, these sub-groups

are combined by GAPE into one large generation. GAPE then goes forward to evolve this

single population. They found that GAPE worked consistenty better than using genetic

algorithms in a serial procedure.

Falkenauer and Bouffouix (1991) used the genetic algorithm to optimize the job shop

problem with many tasks, many machines, and precedence constraints. The job shop problem

also is a combinational problem. They showed the difficulties in solving the job shop problem.

They presented an encoding of the job shop problem to conquer these dimculties. Then, they

applied the genetic algorithm to demonstrate the performance on job shop scheduling

problems with examples of real-world size.

We11man (1991) transferred a simple genetic algorithm to the optimization of buffer

space and pallet allocation in a closed-loop asynchronous automatic assembly system.

We11man's research concentrated on the application issues of a simple genetic algorithm and

the relative performance of this algorithm compared to the results ofLiu and Sanders' (1988)

work. Wellman claimed that the simple genetic algorithm did not get better results in

comparison to Liu and Sanders' SQG method. However, Wellman's research results showed

that the genetic algorithm could obtain reasonable results.

Huntley and Brown (1991) used a parallel heuristic to solve the quadratic assignment

problem. Huntley and Brown developed an algorithm, SAGA, with the idea of combining

11

decentralized characteristics of genetic algorithms and centralized characteristics of simulated

annealing methods. A genetic algorithm is used to create populations and then simulated

annealing "matures" these populations. The authors concluded SAGA performed well on two

standard problems found in the related literature~ however, SAGA's running time was longer

than some less complicated algorithms.

Fujita et al. (1993) combined a genetic algorithm and a local optimal algorithm to

optimize layout design problems including blank nesting. They used the genetic algorithm to

handle the combinations (solutions), and the local minimization algorithm to determine the

embodiment layout based on the fixed combinations so as to minimize the volume that

corresponds to the fitness in the genetic algorithm. They concluded that this hybrid approach

could produced an effective nesting result.

Genetic algorithms have been successfully applied to many optimization problems. In

addition to the above applications, genetic algorithms have been applied in optimal control

problems, process design and optimization problems, database query optimization, neural

networks, and machine learning. The applications of genetic algorithms mentioned above just

scratch the surface of what is available.

2.2 Optimization of Automatic Assembly Systems

In the last few years, many researchers have developed different techniques and

methods for performance evaluation of automatic assembly systems.

Leung and Sanders (1986) presented a special form of parallel workstation, called

tunnel-gated station, to solve the problem when some operations may have relatively long

cycle time in an automatic assembly system. The tunnel-gated station is a kind of transfer

machine used to seize an assembly from the transfer and lift it to an elevated position. Thus,

12

an additional pallet can pass under the station, when the tunnel-gated station is working. This

type of system could be applied to carty out parallel station configurations.

Kamath and Sanders (1987) developed analytical methods to evaluate the performance

of an automatic assembly system. They applied the Renewal Approximations (RA) approach

and the Product -Form Analysis (PF A) approach to a closed-loop automatic assembly system

with a queuing network model. The results show that both approaches worked well.

However, in the large automatic assembly system, the PF A approach does not work better

than the RA approach.

Kamath et al. (1988) extended their own research of analytical performance analysis

models to optimize a closed-loop flexible assembly system. They used an approximate factor

to improve the general arrival and service time at each queue. They assumed that this closed

loop flexible assembly system model did not have any transport delay or blocking. The

simulation results showed that the approximate approach could improve the accuracy for

steady-state performance measures. The results also showed that the approximate approach

performed well for a broad range of parameter values and system sizes.

Liu and Sanders (1988) combined a queuing network model and a stochastic quasi

gradient (SQG) method to the performance optimization of asynchronous flexible assembly

systems to search for maximum system throughput. First, a queuing network was used to

determine the number of pallets in the system. Then, under the fixed number of pallets, a

SQG algorithm is applied to minimize the number of buffer spaces. They test this Network

SQG method with a variety of assembly systems which include ten workstations and are

subject to blocking and starvation effects. They concluded that this hybrid algorithm

performed well and could obtain a near optimal solution in this discrete problem, even though

the SQG algorithm was designed for solving continuous problems.

13

Bulgak and Sanders (1988) presented an approximate analytical method to optimize

automatic assembly systems with statistical process control and repair loop. They pointed out

that quality and productivity improvement are of vital importance due to the competitive

world market. Statistical process control is applied to produce a high percentage of

acceptance of quality. They concluded that this analytical model could accurately predict the

performance of the automatic assembly system. Bulgak and Sanders (1991) extended their

model to asynchronous flexible assembly systems. This system considered starvation and

blocking effects. They applied a hybrid approach for the stochastic optimization of

asynchronous flexible assembly systems with statistical process control and repair loops.

First, they used 'analytical models to set the number of pallets to meet a certain throughput.

They then used Monte Carlo optimization methods associated with discrete event simulation

to evaluate the number of buffer spaces that attempts to maximize the throughput. The

stochastic quasi-gradient and a modified simulated annealing algorithms were used to

implement the Monte Carlo optimization. The authors claimed that both methods perform

reasonably well in designing this system to obtain a maximum production rate.

Liu and Chiou (1989) developed a heuristic method based on a queuing network

model for the design optimization of a closed automatic assembly system. They used this

heuristic method to determine the total number of pallets and the number of buffer spaces

between workstations to meet the optimal system utilization. Then, they applied a regression

model and simulation experiments to evaluate the performance of the heuristic method. They

found that the heuristic method could obtain a near optimal solution.

Tandiono (1991) extended a study ofLiu and Sanders (1988) mentioned previously.

In this study, she attempted to use the manufacturing cost as the goal of performance of the

asynchronous assembly system. In contrast, Liu and Sanders evaluated the performance of

asynchronous automatic systems based on system throughput. Tandiono presented a cost

14

model that considered the cost of the pallets, buffer spaces, conveyors, holding inventory, and

a penalty cost. Tandiono combined the cost model, stochastic quasi-gradient method, and a

discrete event simulation model to search for the minimum cost. She found that by

considering the economic factor, the system could optimize the number of pallets and the

number of buffer spaces at the same time and find a solution which is more suitable in the real

world.

Wellman (1991) applied genetic algorithms in a study ofLiu and Sanders (1988) to

optimize the performance of an asynchronous automatic assembly system. The genetic

algorithm performs reasonably well in getting good solutions when compared with results of

SQG of the same system, even though genetic algorithms were built for application to

deterministic systems. However, it does not show up to be superior to SQG. Since the

response surface for the buffer and pallet allocation problem using throughput as the objective

function is basically smooth. The SQG method performs well on this type of surface due to

its search algorithm depending on estimates of gradients.

2.3 Summary of Literature

Genetic Algorithms are designed for solving deterministic objective functions. They

have been used to deal with many kinds of theoretical and practical problems. However, the

genetic algorithms have not been used on an automatic assembly system except Wellman's

effort.

In the last few years, many researchers have developed analytical methods for

performance evaluation of automatic assembly systems. These studies are mentioned

previously. The difficulties in modeling the automatic assembly system are the vast number of

decision variables involved and the complicated interactions among them. Thus, many

unrealistic simplifying assumptions are usually required for these analytical models of

15

autom~tic assembly systems. In order to avoid these assumptions, simulation is used to model

automatic assembly systems. Moreover, faster computers and cheaper computing cost lead to

computer simulation becoming more powerful and popular.

There are two important factors that will affect the performance of an automatic

assembly system. One is the number of buffer spaces between stations. The other is the

number of pallets in the system. If the number of buffer spaces is too large, more work-in

process inventories will be loaded in the system. If the number of buffer spaces are too small,

the frequency of blocking will increase and a high probability of starvation will occur because

of small work-in-process inventories. The number of pallets in the system has a big impact on

the effects of changes in number of buffer spaces. So, the performance of automatic assembly

system could be improved by setting up an appropriate number of buffer spaces and an

appropriate number of pallets in the system.

Liu and Sanders (1988) used the stochastic quasi-gradient (SQG) algorithms for

performance optimization of asynchronous flexible assembly systems based on system

throughout or production rate. Tandiono (1991) extends the study ofLiu and Sanders to

minimize the manufacturing cost. She also applied the SQG method to search for the optimal

solutions, the number of pallets and buffer spaces. The SQG method is revealed to be a viable

option; however, the algorithm tends to be a "greedy" algorithm in that it will find local

optimal rapidly. Wellman (1991) applies genetic algorithms to the performance optimization

of an asynchronous automatic assembly system. The genetic algorithm performs reasonably

well in getting good solutions when compared with results of SQG, even though genetic

algorithms were built for application to deterministic systems. However, it does not appear to

be superior to SQG. If a cost function is used, the response surface could become quite

"ragged" depending on the nature of the cost function. In this situation the genetic algorithm

16

which does not depend on gradient search, may be able to find better results. This application

of the genetic algorithm has not been investigated.

This research attempts to combine genetic algorithms, a cost model, and a discrete

event simulation to optimize the perfonnance of a closed-loop asynchronous automatic

assembly system.

17

3. SYSTEM DESCRIPTION

This research applies the genetic algorithm method to search for the optimal solutions

by minimizing the manufacturing cost. The decision variables consist of the total number of

pallets and the number of buffer spaces between each pair of workstations. This chapter

discusses the systems that were used to fulfill the goal. The simulation model is discussed in

section one. The cost model is presenteded in section two.

3.1. Simulation Model

3.1.1. Model Development

In order to enable the performance analysis of stochastic optimization techniques, a

model similar to that ofLiu and Sanders' study (1988) was developed. The simulation was

developed using SIMAN (SIMulation ANalysis) simulation language. SIMAN from Systems

Modeling Corporation, like other general simulation languages, such as GPSS, SLAM, and

SIMSCRIPT, is a commercial simulation package. The simulation model considers the

transport delays, the blocking, and starvation effects. When the downstream buffer is full, the

current station becomes blocked. When the upstream buffer is empty, the current station

becomes starved. It is assumed that no direct supply is available at the upstream buffer. So,

transport delay is considered in this model. The transport time required to fully leave the

station and arrive at the next buffer is also considered in this model.

The station cycle time is assumed to be deterministic. The randomness depends on the

random times between station jams and on the random times expected to clear the jams. Part

jams may happen whenever there is a bad positioning of the part being assembled, or a

defective part is being assembled. When this condition occurs, the part will be repositioned,

or the defective part will be taken away. It is presumed that the jams do not destroy the base

18

part, therefore, it is not necessary to move the base part away from the pallet. Also, it is

assumed that there is only one operator available to clear the jams. Other required

information in this model is the jam rate, the mean clear time and its distribution, the station

cycle time, and the transport time.

3.1.2. Batch Size and Steady-State Simulation

Simulations may be classified as terminating or nonterminating, depending on whether

there is an obvious way to determine run length. A terminating simulation is one that specifies

some finite length of time of each run, while a nonterminating simulation is one that does not

specifY the length of a run, or at least runs over a very long period of time. This simulation

model of an asynchronous automatic assembly system utilizes a nonterminating simulation.

A nonterminating simulation starts at simulation time zero and runs for a specified

period of time. To avoid the influence ofthe initial condition of the model, steady-state

simulation is used for such simulation. Its objective is to study long-run, or steady-state,

behavior of a nonterminating simulation. One way to observe the steady-state behavior is

called warming up the model or initial-data deletion. This method divides each simulation run

into two phases: an initialization phase from time zero to time Ts, and a data collection phase

from time Ts to the finishing time Tr. It is important to choose the appropriate value for the

warm-up period (or deletion length) Ts to delete the effects of initial transients.

One of the approaches for analyzing the output of a nonterminating simulation is the

batch means method (Banks and Ca~son, 1984). This study uses this batch means method to

decide the warm-up period. In order to apply this batch means method, the batch size should

be predetermined. A procedure that decides the batch size is stated as follows:

19

(1). The procedure starts with an instinctively chosen batch size (subrun length) I and

an initial number of batches n. Each batch results in a single response x j , with

i = 1, ... , n. The number n must be greater than or equal to 100.

(2). Next, it is tested whether the batch responses Xj are indeed independent or

not. The Von Neumann statistic is used to confirm this problem. The Von Neumann

equation is defined as follows:

0-)

~(Xj _Xj+)2

q = ..:.;j:=)o----

~(Xj _X)2
j:)

where Xj = response from subrun i,

x = average response from all n sub runs.

When all the Xi are independent, the value of q will be equal to 2. A z-test is

used to test this statistical problem, the null hypothesis Ho: q = 2 (independent xJ vs.

the alternative hypothesis Ha:q *2. The null hypothesis will be rejected when

4(0-2)
where CTq = I---'--~

(0-1)(0+1)

(3). If the result shows independence, then the process stops. This batch size will be

applied to the batch means method. If the null hypothesis is rejected, the procedure

returns to step (1) and the value of the batch size is increased.

20

The input parameters for the batch size procedure and ~atch means method were

derived from the examples of the maximum throughput model ofLiu and Sanders (1988).

Those input parameters are stated as follows.

Problem type 1:
Station Cycle Time = 5 seconds
Number of Pallets = 20
Number of Buffer Spaces at stations 1 through 10 = (3,3,3,3,3,3,3,3,3,3)
The Jam Rates (%) at stations 1 through 10 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
Transportation Time = 1 second per buffer space
Jam Clear Time = Geometric distribution (mean 18 seconds)

Problem type 2:
Station Cycle Time = 5 seconds
Number of Pallets = 40
Number of Buffer Spaces at stations 1 through 10 = (5, 5, 17, 4, 4, 4, 4, 5, 5, 5)
The Jam Rates (%) at stations 1 through 10 = (0, 3, 3, 0, 0, 0, 3, 0, 0, 0)
Transportation Time = 1 second per buffer space
Jam Clear Time = Geometric distribution (mean 36 seconds)

Problem type 3:
Station Cycle Time = 5 seconds
Number of Pallets = 40
Number of Buffer Spaces at stations 1 through 10 = (4, 4, 10, 10, 12, 12,4,4,4,4)
The Jam Rates (%) at stations 1 through 10 = (0,3, 0, 3, 0, 3, 0, 0, 0, 0)
Transportation Time = 1 second per buffer space
Jam Clear Time = Geometric distribution (mean 36 seconds)

Problem type 4:
Station Cycle Time = 5 seconds
Number ofPaIIets = 20
Number of Buffer Spaces at stations 1 through 10 = (2,3,4,4,4,2,2,2,3,3)
The Jam Rates (%) at stations 1 through 10 = (0, 3, 0, 0, 2, 0, 0, 2, 0, 0)
Transportation Time = 1 second per buffer space
Jam Clear Time = Geometric distribution (mean 36 seconds)

Problem type 5:
Station Cycle Time = 5 seconds
Number of Pallets = 50

21

Number of Buffer Spaces at stations 1 through 10 = (4, 11, 15,6,6,6, 12, 11,6, 7)
The Jam Rates (%) at stations 1 through 10 = (0.5, 3, 0.5, 0.5, 0.5, 0.5, 3, 0.5, 0.5,
0.5)
Transportation Time = 1 second per buffer space
Jain Clear Time = Geometric distribution (mean 18 seconds)

With these five types of system parameters, the Von Neumann statistic showed that a

batch size 1000 seconds is an appropriate batch size under testing at a = 0.05 and 100

batches. In this situation, the value ofq fell in the acceptance interval (1.61192, 2.38808).

Table 3.1 shows the results for the five problems with ten different runs of the simulation for

each type.

When the batch size is decided, the next step is to determine the warm-up period. Ten

independent runs were obtained to determine a truncation point where all observations before

this point are abandoned and observations after this point are kept. Each run consisted of 100

Table 3.1. The Results of Von Neumann Test

Number of Type 1 Type 2 Type 3 Type 4 Type 5
Run q-value q-value q-value ~-value ~-value

1 2.138303 2.037759 2.351688 1.761249 2.006332
2 2.368414 2.181268 1.842971 1.917113 1.931841
3 2.172705 1.92972 1.940507 1.767926 2.071625
4 1.96486 2.094937 1.838898 2.119209 2.121761
5 2.14064 1.843073 2.153594 1.91101 1.941406
6 1.837485 1.97146 2.313608 1.927583 2.117418
7 1.957847 1.932803 2.313048 1.654419 2.144834
8 2.216105 1.775853 2.012118 2.022636 1.746736
9 1.756472 2.518383 1.869536 2.242487 2.104225
10 2.072204 2.285505 1.994886 2.264007 2.051299

22

batches and each batch was 1000 seconds long. The results are shown in Figure 3.1 to Figure

3.5. Checking these five figures, deleting the first three batches would eliminate most of the

initial transient bias. Therefore, the initial 3000 seconds of simulation time was selected as the

warm-up period.

3.1.3. Model Validation

To validate this simulation model, five output results with different input parameters

from this simulation model are compared to those from Liu and Sanders (1988). A 95%

confidence interval is used to measure the statistical accuracy by running the simulation for a

specific length of time that generates about 20000 assemblies. In Liu and Sanders' simulation

system, they used exactly 20000 assemblies, not a specific length of time, to obtain the

confidence interval. In this study, problem type 1 and type 5 use 150000 seconds as the

simulation time, and problem type 2, 3, and 4 use 160000 seconds as the simulation time. In

B 0.145
Q2 0.14
= .9 0.135
g 0.13

£ 0.125
~ 0.12
~ 0.115

Type 1 System

< 0.11 .I--_-+-__ --______ - _______ ~

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Batches

- - delete 0 --0-- delete 1 - - delete 2 I

Figure 3.1. Cumulative Averages with Deletions of Type 1 System

23

'TYpe 2 System

~ 0.13

~ 0.125 ~ s:e-s: = ~--=
'g 0.12 ~~-----:8 0.115
~ 0.11
M, 0.105
e
~ 0.1 < 0.095 ~ _____ ---o-___ --+-____ - _________ -+_____<

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Batches

- ... - delete 0 -0- delete 1 - - delete 2 I

Figure 3.2. Cumulative Averages with Deletions of Type 2 System

Type 3 System

~ 0.13

~ 0.125 .. ~ -/,~. :;-~:;d~~~~~~~~~~
'B ---.--~ = 0.12 e
Q., 0.115

~ 0.11
u
> < 0.105 .!-_____ ---o-_______ - ______ ---o-+_____<

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Batches

- - delete 0 -0- delete 1 - ·-delete2

Figure 3.3. Cumulative Averages with Deletions of Type 3 System

£ 0.13
Q2
IS 0.125 . .::
g
:8 0.12
0::
u e 0.115
u

24

Type 4 System

~ 0.11~----~--~~~--~~------------~--~------
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of Batches

---1.1--- delete 0 --0- delete 1 --~.~- delete 2 --0- delete 3

Figure 3.4. Cumulative Averages with Deletions of Type 4 System

Type 5 System

u 0.148
~ = 0.146 • • •
o
·B 0.144
= '8 0.142

0::
u 0.14
til) e 0.138
~

« 0.136 ~--------------------------------
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Batches

--1.1--- delete 0 --0- delete 1 --<.~- delete 2

Figure 3.5. Cumulative Averages with Deletions of Type 5 System

25

each case, the first 10% of each run time was used as a warm-up period. Ten independent

replications were made to obtain the confidence intervals.

The input parameters for the five different types of problems were mentioned

previously. The confidence interval for each problem is shown in Table 3.2.

Table 3.2. 95% Confidence Intervals of the Production Rate

Problem Typ_e Liu & Sanders' Model This Research's Model
1 (0.1426,0.1454) (0.1395, 0.1411)
2 (0.1270, 0.1302) (0.1205, 0.1225)
3 (0.1277, 0.1325) (0.1225,0.1245)
4 (0.1243, 0.1297) (0.1236, 0.1254)
5 (0.1478,0.1512) (0.1458,0.1468)

In order to compare the above results between Liu and Sanders' model and the

SIMAN model, an F-test is used to check whether the variances are equal or not. Then, based

on the results, a formula is used to calculate the difference between these two systems.

(1) F-test: The procedures of hypothesis testing are

a. Null hypothesis Ho: a-: = cr;
b. Alternative hypothesis H.: cr. ~ cr;
c. Test statistic = S~ /S!.wler' The results are shown in table 3.3.

d. The null hypothesis is rejected if the test statistic is larger than the F

statistic. The F-statistic (Fa/ 2•n,-I.n2-1)= 4.03 under a = 0.05 and sample size for

both hypotheses is equal to 10.

26

Table 3.3. Test Statistics

Standard Deviation Standard Deviation S2

Problem Type for Liu & Sanders' for This Research's
T S .. .arger est tatlstlc = 2

Ssmaller

. 1
2
3
4
5

Model Model
0.001957 0.001154 2.875875
0.002237 0.001334 2.812032
0.003355 0.001320 6.460069
0.003775 0.001279 8.711498
0.002377 0.000754 9.938382

e. Conclusion: The hypothesis that the variances of type 1 and 2 are equal

cannot be rejected. However, for type 3, 4, and 5, the null hypotheses are

rejected.

(2) Calculate the difference: The 95% confidence intervals for the differences on

production rate were calculated using the formulas:

a. When the variances are same, cr. = a;

where t is the t-statistic, degrees of freedom V= n. + n2 - 2,

(-y _Y)= (n,-1)s~+(n,-1)~ ~ 1 1
s.e. 2 • +

n. +n2 -2 n. n2

b. When the variances are different, cr. =f. a;

where t is the t-statistic,

27

The results are presented in table 3.4. The results show that the confidence intervals

of this research are very close to those ofLiu and Sanders (1988). The confidence intervals of

the differences reveal that there are small differences for all five types of problems. These

small differences are tolerable, considering the fragmentary knowledge of their model. Thus,

the SIMAN simulation model was evaluated to be acceptable.

Table 3.4. The Difference of Two Systems

Problem Type Difference
1 (-0.0052, -0.0022)
2 (-0.0088, -0.0054)
3 (-0.0091, -0.0041)
4 (-0.0043, -0.0007)
5 (-0.0049, -0.0015)

3.2. Cost Model

Most of the research related to automatic assembly systems have evaluated the

performance by system throughput. In practice, it is not necessary to obtain the maximum

production rate as long as the system can reach the production goal. The more utilities work

in the system, the higher probability of generating higher production rate will be obtained.

28

However, it can be too costly and cause a low utilization of the system. Thus, Tandiono

(1991) introduced a cost model to evaluate the performance of the closed-loop asynchronous

automatic assembly system. She claimed that when the designer uses the manufacturing cost

as the performance measure, the number of buffer spaces and the number of pallets can be

optimized simultaneously. However, the simultaneous optimization can not be achieved when

using system throughput as the performance measure. She assumed that the basic

configurations of the automatic assembly system were fixed. Therefore, the cost factors

involved in this model included cost of buffer spaces (floor space), cost of pallets, cost of

conveyor, cost of work-in-process holding inventory, and penalty cost when the production

rate does not meet the required production goal. Since the first three cost factors are initial

costs, it is necessary to uniformly annualize the cost function.

In this study, the cost model is almost the same model as that developed by Tandiono.

The only difference is the cost of the conveyors is modified due to the practical situation. The

total annual cost is defined by the following equation:

where

TIC = total evaluated annual cost of assembly system,

Pe = cost of pallet per year,

Be = cost of buffer space per year,

Ce = cost of conveyor per year,

He = cost of work-in-process holding inventory per year,

Fe = cost ofthe penalty per year.

29

3.2.1. Cost of Pallets

The cost of pallets relies on the number of pallets prepared for the system. Since, the

cost of pallets is an initial total cost, an average annual cost is required to compute throughout

the life of the pallets. Therefore, an (AlP) factor is used to annualize the cost of the pallets.

The cost equation can be written as follows:

where

P =N *C *f c p p

N p = Number of pallets,

Cp = the cost of per pallet,

f = (AI P)~ factor, a ratio of annual cost and present cost under a certain return rate i

and total life n.

3.2.2. Cost of Buffer Space

The cost of the buffer space depends on the total area of buffer space used by the

system. The annual cost of buffer space is defined as following equation:

where

Cfb = annual cost of buffer spaces per buffer unit,

Ab = total area of buffer space in buffer units.

30

As mentioned before, this is a closed system. Therefore, when one buffer unit is

added, it does not necessarily cause an increase in the total area equal to the size of one buffer

space. Moreover, the buffer space required in the real situation is affected by the actual

arrangement. In order to determine the relationship between the total buffer space area and

the number of buffer spaces, Tandiono (1991) introduced a multiplication factor called

'ArealBuffer Ratio'. She assumed that the size of a workstation is the same as one buffer unit

and the system is arranged in a rectangular shape. For example, for a system including ten

workstations and twenty buffer spaces, it can be arranged from 'one by fourteen buffer units'

to 'seven by eight buffer units'. After evaluating the data with the statistical linear regression,

she found the estimated 'ArealBuffer Ratio' equation as follows:

R = 0.2259+0.0314(Ab)

= 0.2259+0.0314(Bs + Ns)

In this research, it is also assumed that the size of a workstation is the same as one

buffer unit. Then, a new equation for annual cost of buffer space is rewritten from the above

two equations:

where

Be = Ctb *R *(Bs + Ns)

= Ctb *[O.2259+0.0314(Bs + Ns)]*(Bs + Ns)

B. = Number of total buffer space,

Ns = Total number of stations,

Ctb = Annual cost of buffer space per buffer unit.

31

3.2.3. Cost of Conveyor

Four factors, namely, number of workstations, number of buffer spaces, size ofa

buffer space, and type of conveyor, will affect the cost of the conveyor. When the number of

workstations and buffer spaces increase, the length of conveyor increases. In Tandiono's

(1991) model, she did not consider the length of the conveyor within the workstation.

However, in practical situations, it should not be ignored. Also, the cost of conveyor is an

initial cost. An (AlP) factor is used to uniformly annualize the cost of the conveyor.

Therefore, the annual cost of conveyor is computed as follows:

where

Cb = Cost of conveyor per buffer unit.

3.2.4. Cost of Holding Inventory

The holding cost in this system focuses on the average amount of work-in-process

inventory. The number of buffer spaces and pallets in the system will affect the amount of

work-in-process inventory. The annual cost of holding inventory is stated as follows:

where

H =WIP*H e e

=WIP*Rh *V.

WIP = Average amount of work-in-process inventory,

He = Cost of holding inventory per year,

Rb = Holding cost rate per year,

32

V. = Value of each assembly.

3.2.5. Penalty Cost

The penalty cost relies on whether the production goal is met or not. It is assumed

that the company will stop producing assemblies when the actual number of assemblies meets

the required number of assemblies. Therefore, when the actual production rate is larger than

the expected production rate, there is no penalty cost. The penalty cost equation is shown as

follows:

where

N e = Expected number of assemblies required per year,

N. = Actual number of assemblies produced by the system per year,

Cu = Penalty cost ofunderproducing per assembly.

According to all above terms, the total cost function could be combined as follows:

This cost function is used as the objective function expected to be minimized in this research.

It will be combined with the simulation model and genetic algorithm to evaluate the

performance of the closed-loop asynchronous automatic assembly system.

33

4. THE GENETIC ALGORITHM

This chapter discusses genetic algorithms in detail. Section one introduces the basic

mechanisms that consist of genetic algorithms and how these mechanisms work in searching

the potential solution space. Section two describes how a simple genetic algorithm was

applied to optimize the decision variables of the number of pallets and buffer spaces, as

mentioned previously. Moreover, a modified genetic algorithm will be presented.

4.1. General Description of Genetic Algorithms

Genetic algorithms use a simple representation of bit strings (strings of Os and Is) to

demonstrate a method of representing complicated structures, and the power of simple

transformations to improve these bit strings (chromosomes). Each genotype (a single

chromosome) would represent a potential solution to a problem, and an evolution process run

on a population of chromosomes corresponds to a search through a space of potential

solutions. These transformations, based on the mechanics of natural selection, are

reproduction, crossover, and mutation. Natural selection is a multi-directional search by

keeping a population of potential solutions and promotes information formation and exchange

between these directions. The process of natural selection happens in natural systems by

which the fittest individuals dominate in the mating pools. Given an objective function, at

each generation the relatively "good" solutions reproduce, while the relatively "bad" solutions

die.

Genetic algorithms include three basic operators: reproduction, crossover, and

mutation. These operators process the population of individuals from generation to

generation. The reproduction operator generates a mating pool of individuals by copying their

current existing chromosomes with respect to the probability distribution based on fitness

34

values. Each chromosome has a fitness value and each generation has a total fitness. When

the new populations are selected, the crossover operator is applied. There are two major

steps for crossover operation. First, random pairs of individuals in the mating pool are mated.

This step involves the specified probability of crossover. Second, if crossover is expected to

occur, the number that indicates the position of the crossing point is randomly chosen. For

example, assume there are two chromosomes being mated as follows:

chromosome 1: 010 1111 0 11

chromosome 2: 1011100101

Suppose the number that indicates the position of crossing point is 4. Then, the results

after crossover are:

new chromosome 1: 0101100101

new chromosome 2: 1011111011

If the crossover does not occur, the parents are copied into the new generation. When

the crossover is finished, the mutation operator is performed on a bit-by-bit basis. According

to the specified mutation probability, every bit has an equal chance to undergo mutation, i.e.,

change from 0 to 1 or vice versa.

Following selection, crossover, and mutation, the new population is prepared for its

next evaluation. This evaluation is applied to construct the probability distribution (for the

next selection process). All processes ofa simple genetic algorithm are summarized in Figure

4.1.

35

(1) Initialize a population (from 1 to the specified number of pop_size).

The procedures of reproduction:
(2) Calculate the fitness value./; for each chromosome c; (i = 1, , pop_size)
(3) Find the total fitness of the population

F = "pop_si:. I".
L..,,;=I J;

(4) Calculate the probability p;ofa selection for each chromosome c; (i = 1, ... ,
pop_size)

Pi =/;/ F
(5) Calculate a cumulative probability q; for each chromosome c; (i = 1, ... ,
pop_size)

q; = L~=IPk
(6) Generate a random float number n from the range [0, 1].
(7) Suppose n < ql then choose the first chromosome (cl); otherwise choose the i -Ih
chromosome cj (2:S i :S pop_size) such that q;_1 < n :S qi.

The procedures of crossover:
(8) Generate a random float number n from the range [0, 1].
(9) If n < Pc (Pc is specified crossover probability), choose given chromosome for

crossover.

The procedures of mutation:
(10) Generate a random float number n from the range [0, 1].
(11) n < Pm (Pm is specified mutation probability), mutate the bit (change from 0 to

1 or vice versa).

Figure 4.1. The Processes of a Simple Genetic Algorithm

From the abovementioned discussion, it is clear that a genetic algorithm applied to

evaluate a particular problem should have the following five components (Michalewicz 1992):

(1) a genetic representation for the potential solutions,

(2) a method to generate initial populations,

(3) an objective function,

36

(4) genetic operators to alter the formation of children during reproduction,

(5) parameters, such as population size, probabilities of applying genetic operators,

etc ..

4.2. The Genetic Algorithm in this Research

The theoretical basis of genetic algorithms depend on a binary string representation of

solutions, and on the notion ofa schema (Goldberg 1989, Michalewicz 1992). Although

genetic algorithms explain the reasons of convergence to the optimal solution for a given

problem formulation, unfortunately, it does not always follow the theory in practical

applications. The reasons, mentioned by Michalewicz (1992) are:

(1) the genetic algorithm assumes an unlimited number of iterations,
(2) the genetic algorithm assumes an unlimited population size, and
(3) the coding of the problem usually shifts the genetic algorithm to operate in a
different solution space.

In practical applications, it is impossible to apply the genetic algorithm with infinite population

size and number of iterations. In the attempt to find a more effective approach, some

researchers combined specific knowledge about their particular problem into a genetic

algorithm.

In this research, a classical genetic algorithm and a modified genetic algorithm are both

used to find the optimal solution. The classical genetic algorithm implemented for the

optimization of the asynchronous automatic assembly system is a simple genetic algorithm

presented by Goldberg (1989). This genetic algorithm includes three operators, reproduction,

crossover, and mutation, all described previously. The main differences between the classical

genetic algorithm used in this research and that presented by Goldberg are the handling of the

individual structure and the computer language code. The algorithms used in this research

37

were written in C language; however, Goldberg used PASCAL to perform the genetic

algorithm.

Let P(t) denote populations of potential solutions at generation t, P(t) = {fIt ,f~ , ... , f~}.

As mentioned before, the objective in this research is to minimize the objective function. The

structure of the modified genetic algorithm is shown in Figure 4.2. The modification with

respect to classical genetic algorithm is that in the modified genetic algorithm the best and

second best chromosomes of the previous generation are forced into the following generation

when the best chromosome is larger than that of the previous generation. If this condition

happens, two distinctive chromosomes whose fitness is larger than the average fitness in

current generation are randomly selected to die simultaneously.

procedure of modified genetic algorithm
begin
t: = 0;
initialize P(t);
evaluate P(t);
find the minimum fitness ftparent) in P(t);
while termination condition is not met do

begin
t: = t + 1 ~
select parents from P(t-l) according to the fitness;
produce the offspring P(t) from these parents using genetic operators;
evaluate P(t);
find the minimum fitness ftoffspring) in P(t);
while ftoffspring) is larger than ftparent)

end;
end

select two different chromosomes with the minimum and
second minimum fitness ofP(t-l) to replace randomly two
different chromosomes having larger fitness than the average
value in P(t);

Figure 4.2. The Algorithm of Modified Genetic Algorithm

38

The decision variables applied in this research are the nU11Jber of pallets and buffer

spaces. The number of pallets and buffer spaces are easily encoded into a chromosome. The

decimal value of the number of pallets and buffer spaces are converted to their binary

equivalent. For instance, the maximum number of pallets in this system is 63 pallets; this can

be encoded by a bit chromosome of size 6. The maximum number of buffer spaces for each

workstation is 31. This can be encoded as a bit chromosome of size 5. Suppose there are 10

workstations in the system, then each chromosome consists of a bit string of size 56.

In order to perform the genetic algorithm, some initial population of individuals is

required. There are several ways to implement this initial population. Some authors suggest

randomly generating the initial population, while others propose some special approaches. In

this research, the chosen method is to create the initial population randomly.

39

5. COST OPTIMIZATION

This chapter presents the results of cost optimization from combining the classic or

modified genetic algorithm, a cost model, and a simulation model. Before showing the

results, it is necessary to predetennine proper operating parameter settings for the algorithms,

cost model, and simulation model. Therefore, section one discusses the relative parameters in

this research. Section two presents the results.

5.1. Determine Parameters

The optimal solution is to minimize the total annual cost resulting from the sum of

pallets and the number of buffer spaces between each pair of workstations. Five different

types of closed-loop asynchronous assembly systems with different parameters were

evaluated. In order to achieve the objective, it was required to predetennine three types of

parameters. Those are: the parameters of the algorithms, the parameters of the cost model,

and the parameters in the system and simulation model.

5.1.1. Setting the Cost Parameters

The cost model includes nine parameters: the unit cost of pallet, the annual cost of

buffer space per buffer unit, the cost of conveyor per buffer unit, the rate of return, the total

life of the system, the annual holding cost rate, the value of each assembly, the expected

production rate, and the penalty cost. It is assumed that the life of the system is ten years.

The lower bound of the confidence interval of the production rate obtained from the

simulation model in chapter 3 is selected as the required production rate for each category.

The value of each assembly is $100. Both annual holding cost rate and rate of return are set

40

at a level of 10%. The other cost parameters, summarized by Tandiono (1991), are presented

as follows:

Cost per pallet = $500
Annual cost per unit of buffer space = $1,500
Cost of conveyor per unit of buffer space = $15,000

Now, all parameters are determined except for the unit penalty cost. From the cost

model, the value of penalty cost may become the major factor in the objective function when

the unit penalty cost is higher. However, when the unit penalty cost is smaller, the cost of

buffer spaces or conveyors may become the significant element. Thus, two kinds of unit

penalty cost, 10% and 1% of the value of an assembly, were used in the objective function. It

was expected that the variety of the total number of pallets and the number of buffer spaces

between each pair of workstations under these two different unit penalty costs would be

sizable.

5.1.2. Setting the Parameters in System and Simulation Model

This automatic assembly system includes four parameters: the station cycle time, the

jam rate, the jam clear time, and the conveyor speed. It is assumed that each workstation has

5 seconds to perform the assembly task. The conveyor transports the pallets at a buffer unit

distance every second. Thus, the variables of the system are only the jam rate and the clear

time. The jam clear time is a random number with exponential distribution and a mean of 18

or 36 seconds. Both unique jam rate and clear times were combined differentlly to form five

categories of asynchronous automatic assembly systems. The type 1 automatic assembly

system is a system with uniform stations; that is, all the stations have the same system

parameters. Except for the type 1 automatic assembly system, the other four systems have

41

more complicated combinations in each workstation. The varied combinations of jam rate and

clear time in each workstation will be presented in the section 5.2.

Every combination of the total number of pallets and the number of buffer spaces

between each pair of workstations generate individual production rates after the SIMAN

simulation procedure. Every production rate is used to estimate the penalty cost of that

system. Each production rate obtained from the SIMAN simulation is based on a single run

length of 13000 seconds with the first 3000 seconds as the warm-up period.

5.1.3. Setting the Genetic Algorithm Operating Parameters

Before running the classical and modified genetic algorithms, four operating

parameters, population size, crossover probability, mutation probability, and the run length,

need to be determined. For the first three parameters, Goldberg (1989) recommend that a

high crossover probability, a low mutation probability (inversely proportional to the

population size), and a moderate population size are expected for a good performance of the

genetic algorithm. Wellman (1991) tested several different combinations of the parameters:

population size, crossover probability, and mutation probability. He concluded that the

following values of crossover and mutation probabilities perform well and applied these

parameters in a genetic algorithm to evaluate the decision variables of an asynchronous

automatic assembly system.

crossover probability: 0.6 or 0.8
mutation probability: 0.001 or 0.005

However, for the parameter of population size, results were very noisy. He used two

different popUlation sizes to perform the closed-loop asynchronous automatic assembly

system. One consists of popUlation size of 50 and run length of 50 generations. The other

42

consists ofa population size of 100 and run length of25 generations. He claimed that the

genetic algorithm run with a population size of 100 is better than the population size of 50 and

perfonns reasonably well in obtaining good solutions. Since he claimed that the asynchronous

automatic assembly system which he used to evaluate the perfonnance is statistically

indifferent with those Liu and Sanders (1988) and the system in this research also is very close

to those ofLiu and Sanders, population size of 100 is selected to perform genetic algorithm in

this research. Moreover, considering the computer calculating time, run length of25

generations is also selected as the parameter to perform the optimization algorithms.

In short, the operating parameters for classic or modified genetic algorithm applied to

the closed-loop asynchronous automatic assembly system are summarized as follows:

population size: 100
crossover probability: 0.6
mutation probability: 0.005
run length (number of generations): 25

Another operating parameter used in genetic algorithms is the length of the encoded

string. As mentioned previously, the decimal values of the number of pallets and buffer spaces

are necessarily converted to their binary equivalent. It was assumed that the maximum total

number of pallets in this system is 63 pallets; this can be encoded by a bit chromosome of size

6. The maximum number of buffer spaces for each pair of workstations is 3l. This can be

converted by a bit chromosome of size 5. For the type 1 automatic assembly system, all

workstations have the same characteristics. Therefore, it is expected that the buffer sizes for

all stations will be the same. It is enough that only one buffer size and the total number of

pallets are encoded into a bit string form. Thus, each chromosome has a bit string of size 11.

However, considering the other four systems, there are 10 unique buffers between

43

workstations in each system. All ten buffer spaces and the total number of pallets are encoded

into a bit string form. Thus, each chromosome consists of a bit string of size 56.

5.2. The Results of Cost Optimization

Two kinds of objective functions are used in this research. These two functions are

almost identical. The only difference between these two functions is the value of penalty cost.

One considered 10% of the value of per assembly as the penalty cost; however, the other

considered only 1 %. Five different categories of closed-loop asynchronous automatic

assembly systems are evaluated. Both objective functions are applied to evaluate the five

categories of automatic assembly systems. Four replications are used in both classical and

modified genetic algorithm for each category. Each replication is executed under identical

conditions. The difference between each replication is the use of different random number

seeds. There are four kinds random number seeds. Two of them, called program seeds, are

used to perform the genetic algorithm program. The other two, called simulation seeds, are

used to run the SIMAN simulation model. Each replication should have one program seed

and one simulation seed. Thus, the number of permutations of the two kinds of seeds is four.

The remarks of GAl, mGAl, GA2, and mGA2 are used to represent these conditions in the

next section. Using the same simulation seed, each pair of GAl and mGAI, or GA2 and

mGA2 performs classic and modified genetic algorithm in identical conditions. The only

difference between GAl and GA2, or mGAI and mGA2 is the program seed used to perform

the algorithms.

5.2.1. Type 1 Asynchronous Automatic Assembly System

For the type 1 asynchronous automatic assembly system, all the workstations in the

44

system have the same jam rate. The jam clear time is exponentially distributed with a mean of

18 seconds. The parameters used for this system are listed as follows:

Station cycle time = 5 seconds
Transport speed = 1 buffer unit per second
Jain rate (%) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
Exponential mean clear time = 18 seconds
The expected production rate = 0.1395 assemblies per second.

First, the penalty cost of 10% of value per assembly is applied in the objective function

to evaluate this type of system. Figure 5.1 and Figure 5.2, classified according to the

simulation seed, present the optimal solutions of each generation of the classic genetic

algorithm (GA) and modified genetic algorithm (mGA). The details of the cost of each

generation are listed in Appendix A. The results of the optimization are shown in Table 5.1.

Type 1.1 (penalty 10%)

300000
250000 Q--{:J-{J-O~-o--O-Q--{J-Cl-O-a--a--o-D-{J-CJ-{}-o--a--a--<D-{J-CJ-{}-a

~ 200000~~~-o~~~~~~-o~~~~~~~-o~~~~ u
e 150000
cu

~ 100000

50000

o~~~~----~~~--~------~~----~----~

Number of Generations

--II.t--- GAl -0-- mGAl - - GA2 --<>-- mGA2

Figure 5.1. Performance ofGA and mGA for type 1 system
under simulation seed type 1

300000

250000

8 200000

.S 150000
~
~ 100000

50000

45

Type 1.2 (penalty 10%)

O~~--~~~------~~~~~~~--~~~~

Type of
simulatio

n seed

I

2

Number of Generations

• GAl --0- mGAI --+t- GA2 --<>-- mGA2

Figure 5.2. Performance of GA and mGA for type 1 system
under simulation seed type 2

Table 5.1. Optimization results of type 1 system (penalty 10%)

Run Buffer sizes Pallets Prod.
1 2 3 4 5 6 7 8 9 10 Rate

GAl 4 4 4 4 4 4 4 4 4 4 20 0.1396
mGAI 4 4 4 4 4 4 4 4 4 4 20 0.1396
GA2 3 3 3 3 3 3 3 3 3 3 18 0.1400
mGA2 3 3 3 3 3 3 3 3 3 3 18 0.1400
GAl 4 4 4 4 4 4 4 4 4 4 21 0.1399
mGAI 4 4 4 4 4 4 4 4 4 4 21 0.1399
GA2 3 3 3 3 3 3 3 3 3 3 21 0.1400
mGA2 3 3 3 3 3 3 3 3 3 3 21 0.1400

Cost

258582.5
258582.5
188208.8
188208.8
258673.9
258673.9
188482.9
188482.9

46

As shown in Figure 5.1 and 5.2, the performance of each pair of the classic and

modified genetic algorithms is almost the same. This is the reason why the representative lines

of GAs do not appear in these figures. From table 5.1, it appears that the seed parameter

significantly affected the results. The results were better with type 2 program seed than with

type 1. Since the penalty cost acts as an main factor in the objective function, the combination

of the total number of pallets and the number of buffer spaces of each pair of workstations

always tends to produce a production rate, higher than or near to the expected production

rate.

Then, considering another type of penalty cost, 1% of value of per assembly, the

results are presented in Figure 5.3, Figure 5.4 and Table 5.2. Also, Figure 5.3 and Figure 5.4,

classified according to the simulation seed, illustrate the solutions of each generation of both

the GA and mGA. Table 5.2 summarizes the optimization results. The detailed results are

also presented in Appendix A.

185000

180000

1;; 175000 8
e 170000

Type 1.1 (penalty 1%)

~
! 165000 (HO-€J-!:l-C-o-o--o--O-O-€J-!:l-Cf-O--c--o--o--o-G-1:J.--l::)-cf-O--C--o--c

160000
155000 +---........... ____--...-..--.. ____ -.-....-?--t..--..---... ____-.......... ~---.---.,

O-NM~~~~~~O_NM~~~~~~O-NM~~
-----------NNNNNN

Number of Generations

- ... - GAl -0-- mGAI - - GA2 --<>-- mGA2

Figure 5.3. Performance of GA and mGA for Type 1 System
Under Simulation Seed Type 1 and Penalty Cost 1 %

178000
176000

til 174000
8 172000
·5 170000

47

Type 1.2 (penalty 1 %)

a 168000 Q-oi;rt:I--O-O--O-Q-{;J-Q-Q--Q-o-!~l-Q-O--Q-Q-!:H:l-Q-o--o-~:>--o
til 166000

164000
162000 --+-___ ...-_-+--+--+--....--.,.--. __ --t--+--.....-.-. ___ --t-_t__.......-.

Number of Generations

• GAl -0-- mGAl - - GA2 --<>-- mGA2

Figure 5.3. Performance of GA and mGA for Type 1 System
Under Simulation Seed Type 2 and Penalty Cost 1 %

Table 5.2. Optimization results of type 1 system (penalty 1 %)

Type of
simulation Run Buffer sizes Pallets Prod. Cost

seed 1 2 3 4 5 678 9 10 Rate
GAl I 1 I 1 1 1 1 I 1 1 13 0.1257 178964.4

I mGAl 2 2 2 2 2 2 2 2 2 2 15 0.1346 163854.9
GA2 1 1 1 1 1 1 1 1 1 1 10 0.1257 195824.2
mGA2 2 2 2 2 2 2 2 2 2 2 16 0.1346 163946.3
GAl 1 I 1 I 1 I 1 1 1 1 11 0.1260 176535.2

2 mGAI 2 2 2 2 2 2 2 2 2 2 15 0.1341 167598.8
GA2 1 1 1 1 1 1 1 1 1 1 12 0.1260 176626.5
mGA2 2 2 2 2 2 2 2 2 2 2 15 0.1341 167598.8

As shown in Figure 5.3 and 5.4, the performance between each pair of the classical

and modified genetic algorithms is significantly different. Since the performance ofmGAI

48

and mGA2 is similar under the same simulation seed, both representative lines in the figure are

duplicate. Comparing the cost result of the last generation, clearly, the performance of mGA

is better than that of GA under identical conditions. Since the penalty cost was changed to

1 % value of per assembly, the penalty cost is not the main factor in the objective function.

The results show that the cost of buffer spaces and conveyor replace the penalty cost as the

major elements in the objective function. The genetic algorithm tends to find the number of

buffer spaces as small as possible under some reasonable penalty cost. The actual production

rates of the final generation are always smaller than the expected production rates.

5.2.2. Type 2 Asynchronous Automatic Assembly System

In the type 2 automatic assembly system, it is assumed that some workstations have

positive jam rates and the others have zero jam rates. The jam clear time is exponentially

distributed with a mean 36 seconds. The parameters involved in this system are listed as

follows:

Station cycle time = 5 seconds
Transport speed = 1 buffer unit per second
Jam rate (%) = (0,3,3,0,0,0,3,0,0,0)
Exponential mean clear time = 36 seconds
The expected production rate = 0.1205 assemblies per second.

Also, the penalty cost of 10% of value per assembly is first applied in the objective

function to evaluate this type system. Figure 5.5 and 5.6, classified according to the

simulation seed, show the optimal solutions of each generation of the GA and mGA. The

detail of the cost of each generation for both algorithms is listed in Appendix A. The results

of the optimization are shown in Table 5.3.

900000
800000
700000

18 600000
~ 500000
'u 400000
~ 300000
fI) 200000

100000

49

Type 2.1 (penalty 10%)

O~~~~~--~~--~~~~---T~--~----~~~

Number of Generations

--1.1-- GAl ---0- mGAI -~.~- GA2 ~ mGA2

Figure 5.5. Perfonnance of GA and mGA for Type 2 System
Under Simulation Seed Type 1 and Penalty Cost 10%

900000
800000

Type 2.2 (penalty 10%)

700000 ~~-o..
~ 600000
~ 500000
u 400000
~ 300000
fI) 200000

100000

O~~~~~--~----~--~~--~-T----------~--
O-N~~~~~~~O-N~~~~~~~O-N~~~

.......................... - _ NNNNMN

Number of Generations

--1.1-- GAl ---0- mGAI - - GA2 ~ mGA2

Figure 5.6. Performance of GA and mGA for Type 2 System
Under Simulation Seed Type 2 and Penalty Cost 10%

50

Table 5.3. Optimization Results of Type 2 System (penalty 10%)

Type of
simulation Run Buffer sizes Pallets Prod. Cost

seed 1 2 3 4 5 678 9 10 Rate
GAl 2 8 18 9 9 1 1 1 1 1 36 0.1216 348134.7

1 mGAl 3 6 10 1 1 2 2 6 2 7 48 0.1212 26114l.0
GA2 4 9 13 11 1 1 1 1 2 10 38 0.1221 365558.4
mGA2 1 7 9 4 1 15 4 1 3 12 47 0.1209 401993.2
GAl 1 1 11 4 1 3 17 1 3 4 46 0.1210 307594.5

2 mGAl 3 3 1 1 5 4 6 6 3 5 41 0.1199 283383.0
GA2 5 1 23 3 1 7 1 5 1 3 60 0.1198 394264.5
mGA2 2 11 12 3 1 1 4 1 113 44 0.1209 33200l.5

As shown in Figure 5.5 and 5.6, the performance of each pair of the GA and mGA is

different. Comparing the results, the solutions obtained from the mGA are not always

superior to those from GA. However, the mGA generally performed better than the GA did.

Again, since the penalty cost plays an important part in the objective function, the production

rate is usually higher than or near the expected production rate.

Next, considering 1 % of value per assembly as the penalty cost in objective function,

the results are presented in Figure 5.7, Figure 5.8 and Table 5.4. Also, Figure 5.7 and Figure

5.8, grouped under the simulation seed, illustrate the solutions of each generation for both the

GA and mGA. Table 5.4 shows the optimization results. The detailed results are collected in

Appendix A.

900000
800000
700000 ~)-O~ 8 600000 [}-[]--{}-o...~

e 500000
'u 400000
~ 300000
til 200000

100000

51

Type 2.1 (penalty 1%)

o~~~~~--~--~~~--~--~~--~--~~~~

Number of Generations

--,1 __ - GAl ~ mGAI -~ • .-- GA2 ~ mGA2

Figure 5.7. Performance ofGA and mGA for Type 2 System
Under Simulation Seed Type 1 and Penalty Cost 1 %

900000
800000
700000 ",-,~r--s

Type 2.2 (penalty 1%)

~ 600000 n-£"l-rl-O.

~ 500000 l::l;:-I:J-i..~:-:*--'-:""""
B 400000
£- 300000

200000
100000

o ~~~--~--~--~~~~~----~--------~~~

Number of Generations

--,1 __ - GAl ~ mGAI ---; • .-- GA2 ~ mGA2

Figure 5.8. Performance of GA and mGA for Type 2 System
Under Simulation Seed Type 2 and Penalty Cost 1 %

52

Table 5.4. Optimization Results of Type 2 System (penalty 1%)

Type of
simulation Run Buffer sizes Pallets Prod. Cost

seed 1 2 3 4 5 678 9 10 Rate
GAl I 1 2 13 11 5 6 8 3 2 51 0.1166 387281.9

1 mGAl 1 2 3 1 8 2 3 3 2 1 30 0.1172 188576.8
GA2 3 2 1 1 1 8 6 1 1 1 32 0.1118 223070.6
mGA2 7 3 3 2 1 3 1 1 1 1 18 0.1185 159655.9
GAl 3 1 1 10 7 1 1 5 9 5 53 0.1176 303960.9

2 mGAl 3 1 3 6 1 1 4 1 1 7 28 0.1144 219645.1
GA2 2 1 2 2 1 5 1 1 3 3 18 0.1125 190748.6
mGA2 3 5 3 2 1 1 4 1 3 1 34 0.1124 210484.1

As shown in Figure 5.7, Figure 5.8 and Table 5.4, the perfonnance ofmGA is

generally better than that of GA under identical conditions. Again, the results show that the

cost of buffer spaces and conveyor replace the penalty cost as the major elements in the

objective function. The genetic algorithms can optimize the number of buffer spaces as small

as possible under some reasonable penalty cost. The actual production rates of the final

generation are always smaller than the expected production rate.

5.2.3. Type 3 Asynchronous Automatic Assembly System

In the type 3 automatic assembly system, some workstations have positive jam rates

and the others have zero jam rates. The jam clear time is exponentially distributed with a

mean of36 seconds. The parameters involved in this system are collected as follows:

Station cycle time = 5 seconds
Transport speed = 1 buffer unit per second
Jam rate (%) = (0,3,0,3,0,3,0,0,0,0)

53

Exponential mean clear time = 36 seconds
The expected production rate = 0.1225 assemblies per second.

Also, the penalty cost of 10% of value per assembly is applied to optimize the cost of

this type system. Figure 5.9 and 5.10, classified under simulation seed, show the optimal

solutions of each generation of the GA and mGA. The details of the cost of each generation

of both algorithms are listed in Appendix A. The results of the optimization are arranged in

Table 5.5.

Comparing the final results, the solutions obtained from the mGA are superior to that

acquired from GA. Also, since the penalty cost plays a major role in the objective function,

the production rates are higher than or near the expected production rate.

1ii

1000000

800000

Type 3.1 (penalty 10%)

8 600000
e o

a. 400000

200000

O~~~~~~~~~--~--~~~~~~--~--~
O-NM~~~~~~O-NM~~~~~~O-NM~~

--- --------NNNNNN

Number of Generations

- ... - GAl --0-- mGAl -~.~- GA2 ~ mGA2

Figure 5.9. Performance of GA and mGA for Type 3 System
Under Simulation Seed Type 1 and Penalty Cost 10%

1200000

1000000

8 800000

·5 600000
u

~ 400000

200000

54

Type 3.2 (penalty 10%)

O~----~~~--~----~~--~~~~--~~

Type of
simulation

seed

1

2

Number of Generations

• GAl ~mGAl - - GA2 ~ mGA21

Figure 5.10. Performance ofGA and mGA for Type 3 System
Under Simulation Seed Type 2 and Penalty Cost 10%

Table 5.5. Optimization Results of Type 3 (penalty 10%)

Run Buffer sizes Pallets Prod.
1 2 34567 8 9 10 Rate

GAl 6 1 2 15 82553 7 50 0.1244
mGAl 2 6 11 6 9 1 6 3 2 7 45 0.1267
GA2 1 7 110 8 15 2 4 13 1 57 0.1217
mGA2 1 5 6 12 1 15 4 3 4 9 28 0.1267
GAl 2 4 9 1 8' 7 11 3 1 3 44 0.1224
mGA1 2 1 1 10 9 3 5 5 4 9 44 0.1224
GA2 5 5 18 1 16 1 4 5 1 7 54 0.1226
mGA2 1 9 12 7 8 1 4 1 1 5 40 0.1219

Cost

375416.8
366198.1
509446.1
427955.5
339489.6
339489.6
458877.5
376564.2

900000
800000
700000 y-----}~---

55

Type 3.1 (penalty 1%)

8 600000 [}-{J-C1-'II:l

-5 500000 ~::~~t~~~~_
u 400000

~300000 -~~~~~~~sG~~~~~B.
200000
100000

O~~--~~--~--~~~~------~--~----~T-~

Number of Generations

--i. 1-- GAl --0- mGAl --. • ..--- GA2 --<r- mGA2

Figure 5.11. Performance ofGA and mGA for Type 3 System
Under Simulation Seed Type 1 and Penalty Cost 1 %

900000
800000
700000

Type 3.2 (penalty 1%)

~ 600000 ~~:::J-(:h!1j.......,

~ 500000
B 400000
~ 300000
til 200000

100000

o~~--~~--------~~--------~--------~~~ O-MM~~~~~~O-MM~~~~~~O-MM~~
--------- --NNNNNN

Number of Generations

- ... - GAl --0- mGAl - - GA2 --<r- mGA2

Figure 5.12. Performance of GA and mGA for Type 3 System
Under Simulation Seed Type 2 and Penalty Cost 1 %

56

Next, 1% of value per assembly is considered as the penalty cost in the objective

function. Figure 5.11 and 5.12, grouped under the simulation seed, illustrate the solutions

of each generation of both the GA and mGA. The optimization results are shown in Table

5.6. The detailed results are collected in Appendix A.

Table 5.6. Optimization Results of Type 3 System (penalty 1 %)

Type of
simulation Run Buffer sizes Pallets Prod. Cost

seed 1 2 3 4 5 6 7 8 9 10 Rate
GAl 1 1 5 1 2 10 1 1 1 3 36 0.1086 268497.9

1 mGAI 1 2 1 1 7 1 6 2 2 3 36 0.1149 221323.5
GA2 3 4 1 1 1 11 1 1 2 4 39 0.1109 270487.4
mGA2 2 2 6 3 1 1 1 3 1 1 31 0.1153 188192.5
GAl 2 3 6 10 1 4 4 1 3 7 28 0.1201 284821.9

2 mGAI I 4 1 1 9 4 1 3 1 1 22 0.1174 201324.3
GA2 2 9 2 2 5 1 1 5 1 6 26 0.1172 255572.2
mGA2 III 1 3 1 3 1 2 7 1 35 0.1172 236043.7

Comparing the cost results, the performance of mGA is better than that of GA under

identical conditions. From Table 5.6, the program seed used in GA and mGA only slightly

affected the final results under identical conditions. Again, the results show that the cost of

buffer spaces and conveyor replace the penalty cost as the major elements in the objective

function. The genetic algorithms tend to find the number of buffer spaces as small as possible

under some reasonable production rates. Thus, the production rates are always smaller than

the required production rate.

57

5.2.4. Type 4 Asynchronous Automatic Assembly System

The type 4 asynchronous automatic assembly system also consists of some

workstations have positive jam rates and the others have zero jam rates. However, the

positive jam rates are not always the same value. The jam clear time is exponentially

distributed with a mean 36 seconds. The relative parameters are listed as follows:

Station cycle time = 5 seconds
Transport speed = 1 buffer unit per second
Jam rate (%) = (0,3,0,0,2,0,0,2,0,0)
Exponential mean clear time = 36 seconds
The expected production rate = 0.1236 assemblies per second.

Also, the penalty cost of 10% of value per assembly is applied to evaluate the system

cost. Figure 5.13 and 5.14, classified under simulation seed, show the optimal solutions of

each generation of the GA and mGA. The detail of the optimal cost of each generation of

both algorithms are listed in Appendix A. The results of the optimization are shown in Table

5.7.

From Figure 5.13, Figure 5.14, and Table 5.7, it is clear that the performance of the

mGA is better than that GA in this system. According to Table 5.7, the program seed only

slightly affected the results obtained from both algorithms. Comparing the final results, the

solutions obtained from the mGA are much better than that attained from GA. Once more,

since the penalty cost is a principal factor in the objective function, the higher production rates

are always generated to avoid the penalty cost of underproducing.

Subsequently, the penalty cost of 1% of value per assembly is used in the objective

function. Figure 5.15 and 5.16, grouped under the simulation seed, illustrate the solutions of

each generation of both the GA and mGA. The optimization results are presented in Table

5.8. The detailed results are collected in Appendix A.

350000

300000

1;; 250000

8 200000
,5 150000
1;;

£ 100000

50000

58

Type 4.1 (penalty 10%)

O~~~-T~~~--~T---~~~~--~~~~~~~

Number of Generations

- - GAl -D- mGAI -~t.--- GAl -<>-- mGAl

Figure 5.13. Performance of GA and mGA for Type 4 System
Under Simulation Seed Type 1 and Penalty Cost 10%

450000
400000
350000

~ 300000
~ 250000
~ 200000
~ 150000
en 100000

50000

Type 4.2 (penalty 10%)

o r-~~-T~ __ ~ __ ~~ __ ~~ ____ ~ __ ~ ____ ~~--
O-NM~~~~~~O-NM~~~~~~O-NM~~

----------NNNNNN

Number of Generations

--1.1-- GAl -D- mGAl --.t.--- GAl -<>-- mGAl

Figure 5.14. Performance of GA and mGA for Type 4 System
Under Simulation Seed Type 2 and Penalty Cost 10%

59

Table 5.7. Optimization Results of Type 4 System (penalty 10%)

Type of
simulation Run

seed

1

2

GAl
mGAl
GA2
mGA2
GAl
mGAl
GA2
mGA2

400000
350000

1;; 300000
8 250000
e 200000
~

~ 150000
til 100000

50000

1 2 3
3 3 4
1 1 2
2 4 1
2 1 1
1 3 1
1 1 1
1 2 3
2 1 1

Buffer sizes Pallets Prod.
4 5 678 9 10 Rate
1 2 4 4 1 1 1 17 0.1252
4 2 1 1 1 1 1 25 0.1289
5 5 4 1 2 1 1 23 0.1265
1 4 2 3 1 1 3 23 0.1237
1 2 9 2 3 2 7 24 0.1249
3 7 2 1 2 1 1 17 0.1241
2 4 4 1 6 4 1 28 0.1265
2 1 4 1 2 7 2 20 0.1267

Type 4.1 (penalty 1%)

Number of Generations

Cost

150524.4
101224.4
163226.8
122335.6
195352.2
127346.4
176214.7
144862.7

-.

• GAl --0-- mGAI - - GA2 ~ mGA2

Figure 5.15. Performance ofGA and mGA for Type 4 System
Under Simulation Seed Type 1 and Penalty Cost 1 %

400000
350000

1il 300000
8 250000
.9 200000
u
~ 150000
V,) 100000

50000

60

Type 4.2 (penalty 1 %)

o~~~--~--~----~~----~--~~------~

Type of
simulation

seed

1

2

Number of Generations

• GAl ~mGAl - - GA2 --0---- mGA2

Figure 5.16. Performance ofGA and mGA for Type 4 System
Under Simulation Seed Type 2 and Penalty Cost 1 %

Table 5.8. Optimization Results of Type 4 System (penalty 1 %)

Run Buffer sizes Pallets Prod.
1 2 3 4 5 6 7 8 9 10 Rate

GAl 2 1 3 3 3 1 1 2 1 1 16 0.1268
mGAI 3 1 4 1 1 1 1 1 1 2 26 0.1228
GA2 3 1 1 2 3 5 3 1 4 1 31 0.1278
mGA2 1 1 2 1 1 4 3 2 1 2 28 0.1282
GAl 3 4 4 1 2 1 2 3 I 1 17 0.1247
mGAI 3 1 1 1 1 3 1 2 1 1 16 0.1230
GA2 2 1 1 1 1 5 2 3 4 2 27 0.1233
mGA2 1 2 5 2 4 2 1 1 4 1 24 0.1242

Cost

116231.2
112488.3
151803.6
117327.7
138747.0
104894.8
141907.1
145228.2

61

Comparing the cost results, the performance of mGA is generally better than that of

GA under identical conditions. From Table 5.8, it is apparent that the type of program seed

can affect the results. The results indicate that type 1 program seed performs better than type

2 program seed. Since the number of buffer spaces in this system is small, the cost of the

buffer spaces and the conveyor should not be too large. Although the penalty cost is only 1 %

of value per assembly, it still acts as a primary factor in the objective function. Therefore, the

production rates that are higher than or near to expected production rate are expected.

However, there exists a larger potential solution space than the system that uses 10% of value

per assembly as the penalty cost. Comparing the production rate of the 10% penalty cost

system, a much lower production rate could be generated to optimize this I % penalty cost

system.

5.2.5. Type 5 Asynchronous Automatic Assembly System

In the type 5 asynchronous automatic assembly system, it was considered that all

workstations have positive jam rates of 0.5% or 3%. The jam clear time is exponentially

distributed with a mean 18 seconds. The parameters required in this system are listed as

follows:

Station cycle time = 5 seconds
Transport speed = I buffer unit per second
Jam rate (%) = (0.5,3,0.5,0.5,0.5,0.5,3,0.5,0.5,0.5)
Exponential mean clear time = 18 seconds
The expected production rate = 0.1458 assemblies per second.

Once more, the penalty cost of 10% of value per assembly is applied to optimize the

cost of this type system. Figure 5.17 and 5.18, classified under simulation seed, show the

solutions of each generation of the GA and mGA. The details of the cost of each generation

62

of both algorithms are listed in Appendix A. The results of the optimization are presented in

Table 5.9.

As shown in Figure 5.17, Figure 5.18 and Table 5.9, performance of mGA is better

than that of GA. Again, since the penalty cost is the weightiest factor in the objective

function, the production rates that are higher than or near to expected production rate are

usually produced.

Following, the 1 % of value per assembly is considered as the penalty cost in the

objective function. Figure 5.19 and 5.20, grouped under the simulation seed, illustrate the

solutions of each generation of both the GA and mGA. The optimization results are shown in

Table 5.10. The detailed results are collected in Appendix A.

Type 5.1 (pen.:'llty 10%)

1200000

1000000 ~~~~

8 800000 Q-{}-Q-a..:~

e ~OOOO ~~~~~~~~~~~~~~~~~~
! 400000

200000

O~~~------~~~------~~~~----~~--~
O-NM~~~~~~O-NM~~~~~~O-NM~~

-------- -NNNNNN

Number of Generations

- •• - GAl -0- mGAl - - GA2 --<>- mGA2

Figure 5.17. Performance ofGA and mGA for Type 5 System
Under Simulation Seed Type 1 and Penalty Cost 10%

63

Type 5.2 (penalty 10%)

1000000
~t---.

800000

~ 600000
.=
!

Type of
simulation

seed

1

2

400000

200000

O~~~~------~~~~~~--~~----~~

Number of Generations

• GAl ---0- mGAI • GA2 --<>-- mGA2

Figure 5.18. Performance ofGA and mGA for Type 5 System
Under Simulation Seed Type 2 and Penalty Cost 10%

Table 5.9. Optimization Results of Type 5 system (penalty 10%)

Run Buffer sizes Pallets Prod.
123 4 5 678 9 10 Rate

GAl 1 14 14 5 11 1 6 8 7 6 48 0.1457
mGAl 4 12 13 2 7 1 9 11 7 1 44 0.1459
GA2 6 9 12 10 1 7 5 10 7 5 47 0.1449
mGA2 9 15 10 1 16 1 5 6 3 1 42 0.1460
GAl 12 10 6 5 6 8 6 5 6 9 54 0.1467
mGAl 211 4511 863 9 5 50 0.1446
GA2 3 17 23 11 2 3 4 5 13 2 50 0.1478
mGA2 7 2 23 4 1 7 3 1 3 12 42 0.1461

Cost

567094.2
497344.1
616355.2
497161.3
560154.4
558071.8
670485.9
457781.0

900000
800000~~i\
700000

18 600000 'T"""...r-"\::lc-c~ ~..-.-
~ 500000
·u 400000
~ 300000

200000
100000

64

Type 5.1 (penalty 1%)

O~--~~--~--~~~~--~--~---r--~--~~~

Number of Generations

- ... - GAl -0- mGAI --- GAl --<>---- mGAl

Figure 5.19. Perfonnance ofGA and mGA for Type 5 System
Under Simulation Seed Type 1 and Penalty Cost 1 %

900000
800000
700000

Type 5.2 (penalty 1%)

~ 600000 ~D--I;:J..
~ 500000 ~~~~~::a= __

~ 400000 9~~~~~~~·~--~~~~E;8;~~~~ ~ 300000
til 200000

100000

O~~--------~----~~----~------------~~~ O-NM~~~~~~O-NM~~~~~~O-NM~~
...... ----- ----NNNNNN

Number of Generations

--1."'-- GAl -0- mGAI --- GAl --<>---- mGAl

Figure 5.20. Perfonnance of GA and mGA for Type 5 System
Under Simulation Seed Type 2 and Penalty Cost 1 %

65

Table 5.10. Optimization Results Of Type 5 System (penalty 1%)

Type of
simulation Run Buffer sizes Pallets Prod. Cost

seed I 2 3 4 5 6 7 8 9 10 Rate
GAl 3 1 1 1 5 6 1 5 5 3 21 0.1380 253484.5

I mGAI 3 2 I 1 5 4 2 I 3 9 41 0.1349 278524.8
GA2 1 1 5 2 4 3 4 1 1 8 31 0.1346 273262.2
mGA2 2 3 1 3 3 1 4 1 3 6 20 0.1351 249292.6
GAl 2 1 1 1 7 1 8 4 6 7 48 0.1361 318982.8

2 mGAI 3 6 1 1 4 1 9 1 2 2 23 0.1391 238835.2
GA2 4 1 5 7 1 10 1 1 1 8 27 0.1396 298204.7
mGA2 2 1 1 1 1 I 4 2 3 3 29 0.1306 236670.5

Comparing the cost results in Table S.10, the performance ofmGA is better than that

of GA under identical conditions except for the first solution. The results show that the cost

of buffer spaces and conveyor are the major elements in the objective function. The genetic

algorithms try to find the number of buffer spaces as small as possible under some reasonable

lower production rates. Thus, the production rates on Table S.10 are smaller than the

required production rate to reduce the number of buffer spaces.

5.3. Results Between Minimum Cost and Maximum Throughput

Liu and Sanders (1988) applied a hybrid algorithm including an analytical model and

the SQG algorithm to find the optimal number of pallets and buffer spaces under the goal of

maximizing the system throughput. They first used the analytical model to determine the total

number of pallets in each system. By using different numbers of pallets in each system, they

then utilized the SQG algorithm to search for the number of buffer spaces to maximize the

throughput. Since a system with more pallets and buffer spaces results in a higher production

66

rates, the optimal solutions of the number of pallets and buffer spaces will be indefinite when

try to optimize the number of pallets and buffer spaces simultaneously. However, considering

a cost model, we are able to optimize both parameters simultaneously. Although more pallets

reduce the starvation effects and more buffer spaces decrease the blocking effects, the size of

the system is limited by the economic factors. Thus, the optimization processes can be

accomplished concurrently.

In order to validate the results perfonned by genetic algorithms, the cost of those

solutions in this research is compared with the cost ofLiu and Sanders' solutions. The

solutions ofLiu and Sanders is put into the same SIMAN simulation model to evaluate their

production rate. Also, the cost is calculated through the same cost model. The comparisons

are made for all five categories of asynchronous automatic assembly systems. The results are

summarized in Table 5.11 and 5.12.

Table 5.11. The Results of Minimum Cost Model and Maximum Throughput
(penalty 10%)

Penalty
10% Simulation Seed Type 1 Simulation Seed Type 2

Result Using Liu Result of Liu
Type of Solution Solution and Sanders' Solution Solution and Sanders'
System of GAl ofmGAI Solution ofGA2 ofmGA2 Solution

1 188208.8 188208.8 188391.5 188482.9 188482.9 285735.5
2 348134.7 261141.0 410492.2 307594.5 283383.0 410492.2
3 375416.8 366198.1 623937.7 339489.6 339489.6 975873.7
4 150524.4 101224.4 256770.5 176214.7 127346.4 181890.5
5 567094.2 497161.3 727001.8 560154.4 457781.0 682073.8

67

Table 5.12. The Results of Minimum Cost Model and Maximum Throughput
(penalty 1 %)

Penalty
1% Simulation Seed Type 1 Simulation Seed Type 2

Result Using Result Using
Type of Solution Solution Liu and Sanders' Solution Solution Liu and Sanders'
System of GAl ofmGAI Solution ofGA2 ofmGA2 Solution

1 178690.2 163854.9 188391.5 176535.2 167598.8 198125.9
2 225903.2 159655.9 410492.2 190748.6 210484.1 410492.2
3 268497.9 190294.1 516110.5 255572.2 201324.3 551304.1
4 116231.2 112488.3 189378.5 138747.0 104894.8 181890.5
5 253484.5 249292.6 686566.6 298204.7 236670.5 682073.8

From Table 5.11 and 5.12, it is clear that the costs of all five problems in this research

are lower than the costs using Liu and Sanders' solutions. In order to obtain the maximum

system production rate, Liu and Sanders' algorithm overestimated the buffer sizes and resulted

in larger systems with higher costs. When considering a cost model, it is able to design a

system that not only has a lower system cost but also could reach the production goal.

5.4. Sununary

Although the genetic algorithm is created to solve detenninistic objective function, it

has been demonstrated that it is able to search for the optimal solution to a stochastic system.

Generally speaking, the perfonnance of modified genetic algorithm (mGA) is better than that

of classic genetic algorithm (GA).

Since asynchronous automatic assembly systems have a very low cycle time, small

decreases in the production rate will result in a large shortage of assemblies over a year.

Therefore, using different penalty costs in the objective function generates largely different

68

results. Insufficient pallets and buffers spaces can result in a low production rate. Excessive

pallets and buffer spaces lead to high cost of facilities. Considering both production rate and

the cost offacility simultaneously, a less expensive system can be found compared to the

maximum-throughput problem.

Although the results reveal that the GA and mGA perfonn well for asynchronous

automatic assembly systems, the computational requirements for each GA or mGA run were

very large. Liu and Sanders reported that they spent a time of 45 minutes to fulfill ten

iterations of the stochastic quasi-gradient algorithm. However, the typical running times for

the GA and mGA implementation were approximately 24 hours (on Digital DEC 5000/240

workststion computer).

69

6. CONCLUSION

In this research, two major issues are presented: modeling of an asynchronous

automatic assembly system utilizing SIMAN simulation and comparing to the model ofLiu

and Sanders~ and the application of genetic algorithms. The SIMAN simulation model was

developed to simulate the asynchronous automatic assembly system and compared to Liu and

Sanders' model for validation. The simulation model considered the the transport delay,

blocking and starvation effect in the system.

The genetic algorithms are based on the natural selection principles that guide the

generation of new chromosomes in living entities via genetic recombination. A genetic

algorithm consists ofa reproductive plan that provides organizational structure (i.e. bit

strings) for representing the pool of genotypes of a generation, for selecting surviving

genotypes to create the offspring of the next generation, and a set of genetic operators (i.e.,

crossover and mutation) used to generate the new offspring. A cost model was used as an

objective function to distinguish "bad" or "good" results. The cost model considered the cost

ofpaIlets, buffer spaces, conveyor, holding inventory and penalty for underproducing.

In general, the objective function of the asynchronous automatic assembly system is

stochastic. Genetic algorithms are created for optimization of deterministic objective

functions. However, by integrating the SIMAN simulation model, cost model and genetic

algorithms, the results in this research have shown that the GA and mGA perform well for the

asynchronous automatic assembly system. The optimal solution consists of the total number

of pallets and the number of buffer spaces between each pair of workstations. These variables

were optimized concurrently to minimize the total annual system cost. Comparing to the cost

of the best solutions ofLiu and Sanders, it is clear that both genetic algorithms are able to find

a cheaper system, while still reaching the production goal. This research also compared the

70

performance of GA and mGA under identical conditions. Although the solutions obtained

from mGA are not always better than that from GA, the results showed that the performance

of mGA is generally better than that of GA.

In this research, two different kinds of penalty cost functions were applied to evaluate

the performance of the solutions. One considered a higher penalty cost (10% of the assembly

value), while the other considered a lower penalty cost (1 % per assembly). From the results,

if the penalty is large, the algorithms will find a system with a large number of pallets and

buffer spaces which usually generates a production rate high enough to avoid penalty. lfthe

penalty is small, the algorithms will tend to converge to a system with a smaller number of

pallets and buffer spaces which generally produces a smaller production rate than production

goal. However, if the optimal number of buffer spaces is small (i.e. type 4 system), the

penalty cost of the value of 1% per assembly still acts as a major factor and the system

generates a high production to minimize the system cost. This is the reason that each type

system generates a smaller system cost but type 4 system does not when the penalty cost is

reduced.

Since different simulation seeds generate different production rates under identical

system conditions, using the average of several simulation runs with different simulation seeds

to an objective function might be advantageous. But, considering the huge computational

requirement for a genetic algorithm run, the computer running cost would be increased

dramatically. A huge execution time is the main drawback when the genetic algorithm is used

in combination with a simulation model. Future research can be done to use computers with

parallel processor architectures. This might decrease dramatically the execution time of

genetic algorithms. Since the genetic algorithms search potential solution spaces in parallel,

the algorithm could perform well on a parallel processor with a reasonable running time.

71

As mentioned in this study, the penalty cost depends on the actual production rate.

Slight shortage in the production rate can result in a big difference in the annual cost when the

unit penalty cost is high. The results also showed that the system accepted the combination of

the smaller number of pallets and buffer spaces which generates a lower production under a

lower penalty cost. These results are based on the assumption of paying the penalty cost only

when underproducing happens. It does not need to produce more assemblies after deadline to

fulfill the contract. For future research, a different penalty cost model which considers a

penalty cost per day after deadline may be reasonable. Future research areas also can extend

the asynchronous automatic assembly system to a more complex system which involves

inspection and repair loops.

72

REFERENCES

Banks, J., and Carson, J. S., 1984. Discrete-Event System Simulation, Prentice-Hall,
New Jersey.

Booker, Lashon, 1987 "Improving Search in Genetic Algorithms." Genetic Algorithms and
Simulated Annealing (Edited by Lawrence Davis). Morgan Kaufmann Publishers, Los
Altos~ CA pp. 61-73.

/Boothroyd, Geoffrey, 1986. Economics of Assembly Systems. Automated Assembly, 2nd
Edition (Edited by Lane, J. D.), Marcel Dekker, Inc., New York. pp. 34-48.

Boothroyd, Geoffrey, 1992. Assembly Automation and product Design. Marcel Dekker,
New York.

Browne, Jimmie, Harhen, J. and Shivnan, J., 1988. Production Management Systems,
Addison-Wesley, Great Britain.

c/Bulgak, A A, and Sanders, J. L., 1991. "Approximate Analytical Performance Model for
Automatic Assembly Systems with Statistical Process Control and Automated
Inspection." Journal of Manufacturing Systems. Vol. 10, No.2. pp. 121-133.

Bulgak, A A, and Sanders, J. L., 1989. "Hybrid Algorithms for Design Optimization of
Asynchronous Flexible Assembly Systems with Statistical Process Control and Repair."
Proceedings of Third ORSAITIMS Conference on Flexible Manufacturing Systems.
Cambridge, MA. August 14-16. pp. 275-281.

Bulgak, A A, and Sanders, J. L., 1988. "Integrating a Modified Simulated Annealing
Algorithm with the Simulation of a Manufacturing System to Optimize Buffer Sizes in
Automatic Assembly Systems." Proceedings of the 1988 Winter Simulation Conference.
December 12-14. San Diego, C.A. pp. 684-690.

Bulgak, A. A., and Sanders, J. L., 1991. "Modeling and Design Optimization of
Asynchronous Flexible Assembly Systems with Statistical Process and Repair." The
International Journal of Flexible Manufacturing Systems. Vol. 3. pp. 251-274.

Cohoon, J.P., Hegde, S. u., Martin, W. N., Richards, D., 1988. "Floorplan Design using
Distributed Genetic Algorithms." Proceedings of IEEE International Conference on
Computer-AidedDesign: ICCAD 88 a Conferencefor the EE CAD. IEEE, New York.
pp. 452-455.

73

Commult, C. and Semery, A., 1990. "Taking Into Account Delays in Buffers For Analytical
Performance Evaluation of Transfer Lines." lIE Transactions. Vol 22 No.2.
pp. 133-142.

Davis, Lawrence, and Ritter, Frank., 1987. "Schedule Optimization with Probabilistic Search."
Proceedingsjrom The Third Conference on Artificial Intelligence Applications. IEEE
Computer Society Press, New York. pp. 231-236.

Davis, Lawrence (Editor), 1987, Genetic Algorithms and Simulated Annealing. Morgan
Kaufinann Publishers, Los Altos, CA.

Davis, Lawrence (Editor)., 1991. Handbook of Genetic Algorithms. Van Nostrand Reinhold
Company, New York.

Davis, Lawrence, and Steenstrup, Martha., 1987. "Genetic Algorithms and Simulated
Annealing: An Overview." Genetic Algorithms and Simulated Annealing (Edited.
Lawrence Davis). Morgan Kaufmann Publishers, Los Altos, CA. pp. I-II.

Falkenauer, E. and Bouffouix, S., 1991. "A genetic algorithm for job shop." Proceedings
IEEE International Conference on Robotics and Automation. Vol. 1. pp. 824-829.

Fujia, K., Akagji, S. and Kirokawa, N., 1993, "Hybrid Approach for Optimal Nesting Using a
Genetic Algorithm and a Local Minimization Algorithm." Advances in Design
Automation American Society of Mechanical Engineers, Design Engineering Division
DE V 65 PT 1, AS ME, New York. pp. 477-484.

Glover, D. E., 1987. "Solving a Complex Keyboard Configuration Problem Through
Generalized Adaptive Search." Genetic Algorithms and Simulated Annealing (Edited by
Lawrence Davis) Morgan Kaufinann Publishers, Los Altos, CA. pp. 13-31.

Glynn, P. W., 1986. "Optimization of Stochastic Systems." Winter Simulation Conference
Proceedings. Washington, D.C. Dec. 8-10. pp. 52-59.

Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization, and Machine Leaning,
Addison-Wesley, New York.

Goldberg, D. E., 1987. "Simple Genetic Algorithms and the Minimal, Deceptive Problem."
Genetic Algorithms and Simulated Annealing (Edited by Lawrence Davis). Morgan
Kaufinann Publishers, Los Altos, CA. pp. 75-88.

Grefenstette, J. 1., 1987. "Incorporating Problem Specific Knowledge into Genetic
A1gorithms./t Genetic Algorithms and Simulated Annealing (Edited by Lawrence Davis).
Morgan Kaufmann Publishers, Los Altos, CA. pp. 43-60.

74

Hays, R. and Wheelright, S., 1984. Restoring our competitive Edge: Computing Through
Manufacturing. John Wiley and Sons, New York.

Holland, John H., 1975. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, Michigan.

Huntley, Christorpher L., and Browns, D. E., 1991 "A Parallel Heuristic for Quadratic
Assigiunent Problems." Computers Operations Research. Vol. 18, No.3. pp. 275-289.

Kamath, M., and Sanders, J. L., 1987, "Analytical Methods for Performance Evaluation of
Large Asynchronous Automatic Assembly Systems." Lasge Scale Systems, Theory and
Applications, Vol 12, No.2, pp. 143-154.

Kamath, M., Suri, R., and Sanders, 1. L., 1988 "Analytic Performance Models for Closed
Loop Flexible Assembly Systems. II The International Journal of Flexible Manufacturing
Systems. Vol. 1. pp. 51-84.

Kraig, A, D., 1993 "Tandom application of a genetic algorithm and stochastic quasi gradient
method to the optimization of an assembly systemn," M.S. Thesis Iowa State University.

Law, A M., and Kelton, W. D., 1991. Simulation Modeling and Systems Analysis. Second
Edition. McGraw-Hili, New York.

Leung, W. K., and Sanders, 1. L., 1986. "Simulation Analysis of the Performance of Tunnel
Gated Stations for Free-Transfer Assembly Systems." Journal of Manufacturing Systems.
Vol. 5, No.3. pp. 191-202.

Liu, C. M., and Chiou, 1. M., 1989. "Design and Performance Evaluation of Closed
Automatic Assembly Systems." International Journal of Production Research. Vol. 28,
~0.9.pp. 1577-1593.

Liu, C. M., and Sanders, 1. L., 1989. "Approximate Design Optimization of Asynchronous
Assembly Systems." International Journal of Computer Applications in Technology.
Vol. 2. No.1. pp. 30-37.

Liu, C. M., and Sanders, 1. L., 1988. "Stochastic Design Optimization of Asynchronous
Flexible Assembly Systems." Annals o/Operations Research. Vol. IS. pp. 131-154.

Meketon, M. S., 1987. "Optimization in Simulation: A Survey of Recent Results."
Proceedings of the 1987 Winter Simulation Conference. pp. 58-67.

MichaIewicz, Z., 1992. Genetic Algorithms + Data Sln/clure = Evolution Programs,
Springer-Verlag, Berlin, New York.

75

Pegden, C. D., Shannon, R. E., and Sadowski, R. P., 1990. Introduction to simulation Using
SIMAN. McGraw-Hill, New York.

Pettey, C. B., Leuze, M. R., and Grefenstette, J. J., 1987. "A Parallel Genetic Algorithm."
Genetic Algorithms and Their Applications: Proceedings of the Second International
Conference on Genetic Algorithms. MIT, Cambridge, MA. July 28-31, pp. 155-161.

Richardson, J. T., Palmer, M. R., Liepins, G., Hilliard, M., 1989. "Some Guidelines for
Genetic Algorithms with Penalty Functions." Proceedings of the third International
Conference on Genetic Algorithms. George Mason University, June 4-7, 1989.
pp. 191-197.

Schloemer, P. G., 1992. "Let's Get America Back To Business." Industry Week, April 6,
1992: 34.

Tandiono, Elly. 1991. "Stochastic Optimization of Cost of Automatic Assembly Systems."
M.S. Thesis. Iowa State University.

Wellman, M. A. 1991. "A genetic Algorithm Approach to optimization of Asynchronous
automatic Assembly Systems." M.S. Thesis. Iowa State University.

76

APPENDIX A

DETAILED RESULTS OF EACH GENERATION

System 1
penalty

10%

Number of
Generation

0
I
2
3
4
5
6
7
8
19
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

77

Table 1. The Minimum Results of Each Generation for System Type 1
(penalty 10% of Value of Per Assembly)

Simulation Seed TYQe I Simulation Seed Type 2
Program Seed Type 1 Program Seed Type 2 Program Seed Type 1 Program Seed Type 2

GAl mGAI GA2 mGA2 GAl mGAI GA2 mGA2
258765.3 258765.3 188300.1 188300.1 258765.3 258765.3 259313.5 259313.5
258765.3 258765.3 188208.8 188208.8 258765.3 258765.3 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258765.3 258765.3 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 258765.3 188482.9
258582.5 158581.5 188208.8 188108.8 158673.9 158673.9 259770.4 188481.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258765.3 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9
258582.5 258582.5 188208.8 188208.8 258673.9 258673.9 188482.9 188482.9

System 1
penalty 1%

Number of
Generation

0
1
2
3
4
5
6
7
8
19
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
2S

78

Table 2. The Minimum Results of Each Generation for System Type 1
(penalty 1% of Value of Per Assembly)

Simulation Seed T~ I Simulation Seed Type 2
Pro~ Seed T~ 1 Progrom Seed Type 2 Program Seed T~ 1 Pro~Seed Type 2

GAl mGAI GA2 mGA2 GAl mGAI GA2 mGA2
163854.9 163854.9 163946.3 163946.3 167598.8 167598.8 167690.2 167690.2
163854.9 163854.9 163946.3 163946.3 167598.8 167598.8 167690.2 167690.2
168256.3 163854.9 163946.3 163946.3 175695.0 167598.& 167690.2 167690.2
168256.3 163854.9 163946.3 163946.3 167598.& 167598.8 175269.6 167690.2
180426.4 163854.9 163946.3 163946.3 16759&.8 167598.& 175269.6 167690.2
163946.3 163854.9 163946.3 163946.3 167598.8 16759&.8 175269.6 167690.2
163946.3 163854.9 16&530.4 163946.3 16759&.& 167598.& 175269.6 167690.2
163946.3 163854.9 168530.4 163946.3 175695.0 167598.8 175695.0 167690.2
175361.0 163854.9 17&&73.0 163946.3 175695.0 167598.8 176535.2 167690.2
175361.0 163854.9 175361.0 163946.3 167598.8 167598.& 176535.2 167690.2
175361.0 163854.9 17&7&1.6 163946.3 176626.5 167598.8 176626.5 167690.2
163946.3 163854.9 178873.0 163946.3 176626.5 167598.8 176626.5 167690.2
175361.0 163854.9 178873.0 163946.3 167690.2 167598.8 176626.5 167690.2
168530.4 163854.9 178873.0 163946.3 167690.2 167598.8 176626.5 167690.2
178690.2 163854.9 178873.0 163946.3 176535.2 167598.8 176626.5 167690.2
178690.2 163854.9 178873.0 163946.3 176626.5 167598.8 176626.5 167690.2
178690.2 163854.9 181157.4 163946.3 176626.5 167598.& 176626.5 167690.2
178690.2 163854.9 178873.0 163946.3 176626.5 167598.8 176626.5 167690.2
178690.2 163854.9 178873.0 163946.3 176535.2 167598.8 176626.5 167690.2
178690.2 163854.9 178873.0 163946.3 176535.2 167598.8 176626.5 167690.2
178690.2 163854.9 178873.0 163946.3 176535.2 167598.8 176809.3 167690.2
178690.2 163854.9 178690.2 163946.3 176535.2 167598.8 176626.5 167598.8
178690.2 163854.9 178690.2 163946.3 176535.2 167598.8 176626.5 167598.8
178690.2 163854.9 178781.6 163946.3 176535.2 167598.8 . 176626.5 167598.8
178690.2 163854.9 179055.7 163946.3 176535.2 167598.8 176626.5 167598.8
178964.4 163854.9 178690.2 163946.3 176535.2 167598.8 176626.5 167598.8

System 2
penalty

10%
Nwnberof
Generation

0
I
2
3
4
5
6
7
8
19
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25

79

Table 3. The Minimum Results of Each Generation for System Type 2
(penalty 10% of Value of Per Assembly)

Simulation Seed Type 1 Simulation Seed T~e 2
Program Seed Type 1 Program Seed Type 2 Program Seed Type 1 Program Seed Type 2

GAl mGAI GA2 mGA2 GAl mGAI GA2 mGA2
680154.9 680154.9 729092.9 729092.9 720969.2 720969.2 729092.9 729092.9
792984.9 559606.2 828749.1 729092.9 996136.3 720969.2 870591.2 729092.9
742248.1 559606.2 828749.1 668567.1 625076.8 720969.2 827652.6 729092.9
792984.8 544550.6 728179.1 668567.1 625076.8 585923.2 816670.5 729092.9
425408.2 544550.6 565298.8 668567.1 625076.8 585923.6 729641.1 670211.8
425408.2 518056.4 645400.0 668567.1 514248.1 570922.1 580992.0 669937.7
425408.2 518056.4 706445.7 527207.4 514248.1 570922.1 721985.4 619472.8
410126.7 473490.5 503929.6 527207.4 514248.1 570922.1 721985.4 402815.6
400988.1 473490.5 503929.6 527207.4 465583.7 563275.7 592922.7 402815.6
306680.7 473490.5 382628.0 517965.0 514248.1 427955.5 592922.7 402815.6
306680.7 473490.5 549237.4 517965.0 514248.1 427955.5 516503.0 402815.6
392948.8 357804.6 503929.6 517965.0 514248.1 427955.5 517051.3 402815.6
365375.7 357804.6 391030.0 517965.0 514248.1 341300.3 517051.3 386391.7
374137.5 357804.6 391030.0 468489.9 457324.1 341300.3 517051.3 386391.7
374137.5 357804.6 438199.1 468489.9 480488.6 298717.4 539145.4 386391.7
322979.7 357804.6 383084.9 468489.9 405876.7 298717.4 507516.1 38639\.7
322979.7 357804.6 383084.9 468489.9 470490.3 283931.2 394136.7 384272.8
374137.5 357804.6 383084.9 401993.1 450090.3 283931.2 462902.4 384272.8
322979.7 357804.6 383084.9 401993.1 421461.1 283931.2 507516.1 384272.8
322979.7 357804.6 314783.1 401993.1 458146.5 283931.2 487174.9 367203.2
322979.7 357804.6 314783.1 401993.1 330258.7 283931.2 498714.7 367203.2
322979.7 357804.6 314783.1 401993.1 373954.8 283931.2 467758.9 367203.2
322979.7 274939.0 314783.1 401993.1 373954.8 283931.2 487905.9 350419.1
322979.7 274939.0 314783.1 401993.1 373954.8 283931.2 384272.8 350419.1
348134.7 26114\.0 314783.1 401993.1 373954.8 283931.2 394136.7 332001.5
348134.7 261141.0 365558.4 401993.1 307594.5 283383.0 394264.5 332001.5

System 2
Penalty 1%

Number of
Generation

0
1
2
3
4
5
6
7
8
19
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

80

. Table 4. The Minimum Results of Each Generation for System Type 2
(penalty 1% of Value of Per Assembly)

Simulation Seed Type 1 Simulation Seed Type 2
Program Seed Type 1 Program Seed Type 2 Program Seed Type 1 Program Seed Type 2

GAl mGAI GA2 mGA2 GAl mGAI GA2 mGA2
586636.6 586636.6 729092.9 729092.9 570911.8 570911.8 729092.9 729092.9
740561.1 586636.6 828200.9 729092.9 740561.1 570911.8 828200.9 729092.9
740561.1 586636.6 828200.9 729092.9 740561.1 570911.8 828121.2 525670.1
742613.6 586636.6 778883.6 702750.3 759836.1 570911.8 729092.9 525670.1
636561.9 559697.6 634094.8 567080.3 614142.7 504112.6 729092.9 525670.1
790422.3 425736.5 569612.4 538534.5 550059.8 504112.6 716580.0 379840.7
684594.3 425736.5 569612.4 288289.5 524520.1 504112.6 548415.0 379840.7
694943.6 376056.4 520117.8 288289.5 570708.9 477031.0 487631.8 379840.7
568943.4 309931.6 444279.6 288289.5 570708.9 449412.6 487484.7 379840.7
568943.4 292150.8 333179.9 288289.5 570708.9 337054.0 487484.7 379840.7
580352.4 261411.5 325831.2 283931.3 526438.1 333637.5 485016.9 3m53.4
507900.9 261411.5 325831.2 276675.1 433292.7 313240.3 496623.3 337503.5
507900.9 261411.5 325831.2 276675.1 467886.7 313240.3 410583.6 337503.5
518711.6 260589.1 333179.9 228184.8 467147.7 313240.3 410583.6 292037.7
520958.0 260223.6 307432.7 221693.2 467147.7 313240.3 359191.2 267042.4
520958.0 245454.4 248716.8 169079.7 429359.5 313240.3 319985.6 266494.2
520958.0 245454.4 268481.8 169079.7 403455.2 300087.6 319985.6 266494.2
426644.6 231757.7 292147.2 169079.7 384692.7 300087.6 319985.6 266494.2
416783.5 231757.7 240044.4 169079.7 378136.2 300087.6 317624.3 255654.3
400144.9 213088.7 240044.4 169079.7 304219.5 263042.1 222961.0 210484.1
400144.9 213088.7 224611.1 169079.7 317631.0 263042.1 259587.6 210484.1
425730.8 213088.7 224611.1 169079.7 303960.9 263042.1 257525.6 210484.1
367202.4 188576.8 224611.1 169079.7 303960.9 221793.3 261501.8 210484.1
367202.4 188576.8 241020.3 169079.7 303960.9 220376.1 261501.8 210484.1
367202.4 188576.8 223070.6 169079.7 296471.5 219645.1 234763.4 210484.1
387281.9 188576.8 223070.6 159655.9 303960.9 219645.1 190748.6 210484.1

System 3
penalty

10%
Number of
Generation

0
1
2
3
4
5
6
7
8
19
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

81

Table 5. The Minimum Results of Each Generation for System Type 3
(penalty 10% of Value of Per Assembly)

Simulation Seed Type I Simulation Seed Type 2
Program Seed Type I Program Seed Type 2 Program Seed Type I Program Seed Type 2

GAl mGAI GA2 mGA2 GAl mGAl GA2 mGA2
926530.0 926530.0 880563.9 880563.9 1003571.6 1003571.6 823719.9 823719.9
988803.8 926530.0 925202.3 880563.9 933246.3 933246.3 828200.9 823719.9
741517.1 926530.0 868199.9 829114.6 933246.3 933246.3 657073.5 823719.9
741517.1 717676.5 871503.8 829114.6 694121.3 694121.3 657073.5 647318.9
617480.3 571074.4 694669.5 829114.6 595134.1 623797.5 657073.5 647318.9
499080.2 571074.4 741011.9 725534.9 595134.1 591095.2 800684.4 647318.9
549602.9 571074.4 682439.3 725534.9 741608.5 59\095.2 742789.3 613685.8
570434.8 571074.4 694029.9 725534.9 757436.3 591095.2 718590.3 613685.8
570434..8 571074.4 614234.1 513684.9 831620.0 591095.2 487723.2 548323.6
570434.8 571074.4 569612.4 513684.9 592008.9 59\095.2 593393.4 548323.6
448354.1 571074.4 555532.8 513684.9 560154.4 591095.2 629814.6 548323.6
518513.3 569245.8 601855.8 513684.9 592100.3 482917.9 580992.0 527503.0
394008.7 569245.8 601855.8 427955.5 596722.6 482917.9 497526.8 527503.0
394008.7 548780.5 592374.4 427955.5 581540.3 482917.9 497526.8 493457.3
394008.7 389431.9 614508.2 427955.5 478196.5 482917.9 497526.8 467302.0
394008.7 389431.9 478653.4 427955.5 477648.3 457781.0 497709.6 467302.0
394008.7 389431.9 478653.4 427955.5 422809.4 457781.0 497709.6 467302.0
434075.3 389431.9 478653.4 427955.5 422809.4 448354.1 497709.6 467302.0
467376.7 366198.1 522551.8 427955.5 422809.4 448354.1 549054.6 477648.3
467376.7 366198.1 448080.0 427955.5 422626.7 420090.5 580809.3 419085.4
375782.3 366198.1 448080.0 427955.5 422626.7 340037.9 580809.3 419085.4
375782.3 366198.1 479018.9 427955.5 420821.5 340037.9 487540.4 419085.4
375782.3 366198.1 488545.6 427955.5 422626.7 340037.9 487540.4 376564.2
375782.3 366198.1 478653.4 427955.5 422626.7 340037.9 487540.4 376564.2
375416.8 366198.1 487357.7 427955.5 402450.1 339489.6 459517.1 376564.2
375416.8 366198.1 509446.0 427955.5 339489.6 339489.6 458877.5 376564.2

SystemJ
nenaItvl%
Number of
Generation

0
1
2
3
4
5
6
7
8
19
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

82

Table 6. The Minimum Results of Each Generation for System Type 3
(penalty 1 % of Value of Per Assembly)

Simulation Seed Type I Simulation Seed Type 2
Program Seed Type 1 Pro~Seed~2 Progr:un Seed 1"ype 1 ProgJ1l!Il Seed Type 2

GAl mGAI GA2 mGA2 GAl mGAI GA2 mGA2
592627.0 592627.0 765035.4 765035.4 640480.6 640550.2 734083.6 734083.6
740561.1 592627.0 829114.6 765035.4 752873.0 640550.2 828200.9 734083.6
740561.1 592627.0 828931.9 765035.4 752873.0 640550.2 816507.9 570746.9
742613.6 592627.0 786945.6 508176.3 692273.6 640550.2 753423.5 570746.9
560140.5 519025.0 641659.2 437179.6 781948.2 640550.2 651261.0 570746.9
613063.4 518476.8 537957.6 400436.8 791926.1 620799.4 617275.4 570746.9
613063.4 444877.0 506145.5 400436.8 718291.1 430605.4 596410.6 570746.9
603991.2 444877.0 537957.6 400436.8 713687.4 430605.4 466705.6 554004.3
535717.9 444877.0 534467.8 375470.2 604125.3 430605.4 389956.1 498925.5
478416.0 444877.0 394956.8 375470.2 603120.1 430605.4 378100.8 486261.2
407995.8 368932.7 394956.8 375470.2 444341.7 430605.4 403438.4 454672.7
396592.5 300641.1 394956.8 330391.5 444341.7 341572.5 403438.4 454672.7
289733.7 300641.1 375211.9 255389.2 444341.7 326607.7 401538.1 454672.7
289733.7 300641.1 375211.9 255389.2 444341.7 326607.7 284259.4 390450.8
274376.7 300641.1 321148.3 255389.2 451596.8 302320.4 284259.4 390450.8
289733.7 300641.1 321148.3 255389.2 394757.5 229558.5 327994.6 390450.8
269197.8 300641.1 330477.4 255389.2 373058.5 229558.5 280756.0 237797.1
242624.0 270781.0 371201.2 255389.2 340860.1 229558.5 229894.4 237797.1
230778.9 270781.0 274760.6 255389.2 340860.1 229558.5 239404.4 237797.1
230778.9 270781.0 304567.8 237540.3 340860.1 229558.5 250070.4 237797.1
274194.0 270781.0 291287.0 237540.3 340860.1 229558.5 250070.4 237797.1
274194.0 270781.0 277870.0 188192.5 340860.1 225605.2 239404.4 237797.1
273514.3 270781.0 291711.2 188192.5 286515.9 225605.2 246627.4 237797.1
269591.8 221323.5 303217.3 188192.5 311448.9 225605.2 240043.5 237705.8
269591.8 221323.5 270487.4 188192.5 306662.8 225605.2 256035.8 237705.8
268497.9 221323.5 270487.4 188192.5 284821.9 201324.3 255572.2 236043.7

System 4
penalty

10%

Number of
Generation

0
I
2
3
4
5
6
7
8
19
10
1-1
12
13
14
15
16
17
18
19
20
21
22
23
24
25

83

Table 7. The Minimum Results of Each Generation for System Type 4
(penalty 10% of Value of Per Assembly)

Simulation Seed Type 1 Simulation Seed Type 2
Program Seed Type 1 Program Seed Type 2 Program Seed Type 1 Program Seed Type 2

GAl mGAl GAZ mGAZ GAl mGAI GA2 mGA2
305036.0 305036.0 346581.3 346581.3 372492.8 372392.8 409395.7 409395.7
305310.1 305036.0 346581.3 346581.3 274299.3 274299.3 338741.8 338471.8
289022.4 259496.3 305584.2 305584.2 274390.7 274299.3 243973.5 243973.5
243882.1 259496.3 251322.3 251322.3 274482.1 194712.6 243973.5 243973.5
236627.5 259404.9 251322.3 251322.3 274482.1 162678.6 243973.5 202589.9
236627.5 229558.5 251322.3 251322.3 236901.6 162678.6 259313.5 202498.5
195078.1 150615.8 237267.1 237267.1 236901.6 132999.6 229773.9 202498.5
208551.1 150615.8 237267.1 237267.1 209373.5 132999.6 229773.9 201858.9
208551.1 150615.8 188665.6 188665.6 209373.5 132999.6 229773.9 201858.9
208368.3 150615.8 22309.5 188665.6 222583.6 131502.2 195260.8 201858.9
170176.2 127437.8 208459.7 169445.2 230254.5 131502.2 216251.3 201858.9
194804.0 127437.8 215611.6 145593.7 202133.0 127346.4 216159.9 157559.5
175666.5 127437.8 215611.6 145593.7 188848.4 127346.4 222492.3 157559.5
181707.8 127437.8 190201.0 145593.7 216404.7 127346.4 201858.9 151529.5
175940.6 127437.8 208551.1 145593.7 195352.2 127346.4 237541.2 151529.5
175209.6 127437.8 201858.9 122335.6 208825.2 127346.4 236627.5 151529.5
168897.0 127437.8 182164.6 122335.6 208825.2 127346.4 229467.1 151529.5
168897.0 127437.8 169262.5 122335.6 223040.5 127346.4 216251.3 151346.8
168897.0 124998.6 182164.6 122335.6 222766.4 127346.4 216251.3 151346.8
170166.7 124998.6 182530.1 122335.6 182347.4 127346.4 202315.7 151346.8
133365.1 122883.9 170084.8 122335.6 182347.4 127346.4 188482.9 145593.7
150889.9 122244.3 169262.5 122335.6 188757.0 127346.4 188482.9 145593.7
150889.9 117601.8 169262.5 122335.6 188757.0 127346.4 201767.5 145593.7
163775.1 117053.6 163044.1 122335.6 188848.4 127346.4 202407.1 145593.7
150524.4 101224.4 165774.2 122335.6 195352.2 127346.4 175849.2 145593.7
150524.4 101224.4 163226.8 122335.6 195352.2 127346.4 176214.7 144862.7

System 4
penalty 1%
Number of
Generation

0
I
2
3
4
5
6
7
8
19
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25

84

Table 8. The Minimum Results of Each Generation for System Type 4
(penalty 1% of Value of Per Assembly)

Simulation Seed Type I Simulation Seed Type 2
Program Seed Type I ProNW1l Seed Tn>e 2 Prognun Seed Type 1 ProgrllIll Seed T~ 2

GAl mGAI GA2 mGA2 GAl mGAI GA2 mGA2
305036.0 305036.0 346581.3 346581.3 330495.2 330495.2 330495.2 367409.6
250774.0 250774.0 355428.8 346581.3 202915.1 202915.1 367409.6 367409.6
250774.0 250774.0 289479.3 344366.7 195335.8 195335.8 289479.3 289479.3
250774.0 250774.0 266850.7 275836.3 195335.8 195335.8 266850.7 266850.7
245453.3 245453.3 266485.2 267033.4 187297.6 187297.6 266850.7 266850.7
250774.0 245453.3 266485.2 252053.3 168805.6 168805.6 281842.2 266850.7
181616.4 230015.3 251505.0 242653.5 156463.0 156463.0 250180.1 266850.7
215063.4 215720.8 237267.1 229741.2 156463.0 156463.0 3 \0570.7 259587.6
189213.9 215720.8 237267.1 229741.2 150798.5 150798.5 338102.1 216159.9
189305.3 194202.6 236901.6 229741.2 128691.5 128691.5 270821.1 216159.9
182712.9 181600.0 230\06.7 200840.0 144862.7 128691.5 270821.1 216159.9
208872.2 181600.0 230\06.7 188208.8 157303.2 128691.5 215794.4 215703.0
128077.4 181600.0 215703.0 188208.8 127255.0 128691.5 215703.0 166770.3
128077.4 181600.0 182256.0 188208.8 127255.0 128691.5 215703.0 162495.8
128442.9 181600.0 182256.0 169536.6 133000.0 121787.4 234605.7 162495.8
110860.6 176553.6 182256.0 169536.6 138838.4 121787.4 251170.7 162495.8
110860.6 176553.6 178844.4 169033.3 122883.9 121787.4 242509.3 162495.8
110860.6 170084.8 181981.9 139295.2 130341.6 121787.4 233101.9 162495.8
110860.6 135444.0 181981.9 139295.2 127255.0 121787.4 235354.5 151255.4
110860.6 135444.0 153793.7 139295.2 127255.0 121787.4 236993.0 151164.0
110860.6 134187.5 153793.7 133822.0 130341.6 121787.4 211776.0 151164.0
110860.6 122569.3 169810.7 133822.0 121787.4 115444.7 202041.6 151164.0
106406.6 117236.3 176214.7 133822.0 131090.4 104986.1 195535.0 145228.2
110952.0 117236.3 170084.8 127894.6 127255.0 104894.8 156408.5 145228.2
106406.6 112488.3 174781.9 117327.7 132908.2 104894.8 156408.5 145228.2
116231.2 112488.3 151803.6 117327.7 138747.0 104894.8 141907.1 145228.2

SystemS
penalty

10%

Number of
Generation

0
I
2
3
4
5
6
7
8
19
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

85

Table 9. The Minimum Results of Each Generation for System Type 5
(penalty 10% of Value of Per Assembly)

Simulation Seed T~e I Simulation Seed Type 2
Program Seed Type I Program Seed Type 2 Program Seed Type 1 Program Seed Type 2

GAl mGAI GA2 mGA2 GAl mGAI GA2 mGA2
814655.6 814655.6 968975.3 968975.3 890666.0 890666.0 880563.9 880563.9
992018.3 814655.6 992583.7 968975.3 933246.3 890666.0 944423.6 880563.9
992018.3 814655.6 992583.7 968975.3 933246.3 840921.9 944423.6 880563.9
992018.3 814655.6 973066.8 968975.3 907036.5 692385.1 880746.6 751771.6
992018.3 766015.7 992583.7 717585.1 634081.1 670917.8 894484.1 690448.9
847411.0 594703.4 886889.5 717585.1 634081.1 670917.8 948182.9 690448.9
722814.1 588316.2 820074.2 717585.1 634081.1 627214.6 821671.9 642340.4
722814.1 588316.2 845241.2 717585.1 634081.1 627214.6 821671.9 642340.4
722814.1 588316.2 828322.9 717585.1 634081.1 627214.6 607528.4 642340.4
681982.4 588316.2 845241.2 692842.0 634081.1 627214.6 607528.4 642340.4
681982.4 569521.0 815319.1 692842.0 569927.8 627214.6 626185.4 642340.4
681982.4 569521.0 664940.3 692842.0 614427.3 627214.6 591048.1 642340.4
704031.4 569521.0 664940.3 654475.0 611547.1 627214.6 644939.1 611216.9
682623.8 560428.6 664940.3 654475.0 515626.7 627214.6 631163.3 611216.9
531716.6 560428.6 659083.8 654475.0 597202.6 570434.8 631163.3 548323.6
704031.4 560428.6 632846.2 654475.0 597202.6 570434.8 647593.0 532121.1
643634.1 560428.6 576066.9 654475.0 614325.4 570434.8 611252.4 517508.1
518056.4 520428.6 576066.9 654475.0 622242.4 570434.8 571646.6 517508.1
694395.4 497344.1 576066.9 654475.0 547589.3 570434.8 571646.6 517508.1
625533.6 497344.1 603898.1 654475.0 547589.3 570434.8 571646.6 517508.1
646222.4 497344.1 607431.1 606358.6 534660.5 570434.8 571646.6 517508.1
629590.4 497344.1 613685.8 587656.1 530743.9 570434.8 571646.6 517508.1
621303.9 497344.1 613685.8 587656.1 560366.2 570434.8 678114.4 517508.1
567094.2 497344.1 614478.5 497161.3 570617.5 570434.8 588030.2 457781.0
567094.2 497344.1 524694.7 497161.3 602754.6 558071.8 549237.4 457781.0
567094.2 497344.1 614478.5 497161.3 560154.4 558071.8 670485.9 457781.0

SystemS
penalty 1%

Number of
Generation

0
I
2
3
4
5
6
7
8
19
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25

86

. Table 10. The Minimum Results of Each Generation for System Type 5
(penalty 1% of Value of Per Assembly)

Simulation Seed Type I Simulation Seed Type 2
Program Seed Type I Pn)graIll Seed Type 2 Program Seed Type 1 Program Seed Type 2

GAl mGAI GA2 mGA2 GAl mGAI GA2 mGA2
585994.2 585887.8 770330.3 770276.8 593595.3 593595.3 764718.1 764718.1
780605.0 585887.8 829114.6 770276.8 789982.3 593595.3 839966.1 764718.1
766361.1 585887.8 829114.6 565582.6 776025.9 593595.3 839966.1 568354.6
673714.0 441509.l 670760.1 557560.1 670257.5 532633.0 780593.9 515718.6
673714.0 441509.l 688553.0 557560.1 670257.5 532633.0 543608.1 515718.6
633334.4 382284.2 576278.1 498472.5 517811.5 488596.4 543608.1 501389.1
619176.7 382284.2 576278.1 498472.5 517811.5 488596.4 540455.5 501389.1
581054.8 382284.2 621299.2 497848.4 517811.5 410363.4 540455.5 481771.0
588244.1 382284.2 518716.1 407217.1 480823.7 375400.3 514291.9 391738.8
448565.6 382284.2 430787.1 399546.3 480823.7 329695.0 501611.9 360017.3
421323.3 370851.7 388451.0 399546.3 480823.7 301725.7 484103.1 360017.3
344594.4 353964.2 332878.2 398882.6 461074.4 301725.7 460113.2 360017.3
359388.6 346310.6 332878.2 373817.6 446341.9 301725.7 383856.4 348026.2
376017.3 330554.0 356948.6 356375.6 443796.1 274070.2 383856.4 326707.9
372704.2 310691.3 337220.2 339328.5 439518.8 274070.2 383856.4 326707.9
263310.2 300384.7 328555.0 313243.1 422376.4 272880.3 415077.2 326707.9
263310.2 300384.7 318389.9 313243.1 331647.1 238939.7 415077.2 314341.2
263310.2 300384.7 316896.3 306758.4 331647.1 238939.7 413137.7 314341.2
263310.2 300384.7 316896.3 306758.4 331647.1 238939.7 419788.1 276495.6
263310.2 300384.7 285522.9 306758.4 283619.0 238939.7 335384.3 276495.6
255364.2 286048.3 285522.9 306758.4 283801.8 238939.7 369485.6 276495.6
253484.5 286048.3 283595.9 306758.4 283801.8 238939.7 315745.9 276495.6
253484.5 286048.3 281597.2 302151.0 325635.8 238939.7 326907.0 265863.3
236745.8 278890.2 281597.2 271746.8 325227.8 238939.7 326907.0 265863.3
236745.8 278890.2 284316.0 249292.6 283344.9 238939.7 338929.5 238282.0
253484.5 278890.2 273262.2 249292.6 318825.3 238939.7 298114.7 238282.0

87

APPENDIX B

IMPLEMENTATION OF A GENETIC ALGORITHM

WITH C SOURCE CODE

88

1* The Simple Genetic Algorithm

The genetic algorithm used in this study is
the simple genetic algorithm (SGA) which
was presented by

David E. Goldberg (1989)

The program is part of this research done to
achieve the requirements for a Master of
Science degree in Industrial Engineering.

Programming by:

#include<stdio.h>
#include<stdlib.h>
#include<time.h>

int num_bistring = 56;
int num _works = 10;

struct individual
{

Yisheng Hsiao
IMSE Department
Iowa State University
1994 */

int chromo[57]; /* genotype=bistring */
int x[12]; /* phenotype = 11 integers */
float fitness; 1* objective function value * /
int parent 1; 1* parent number 1 *1
int parent2; 1* parent number 2 * /
int cross_site; 1* cross-over site *1
float rate; 1* production rate *1

} 0Idpop[110],newpop[110];

float rlnum(void); /* random number generator #1 */
float r2num(void); /* random number generator #2 */

int popsize, gen, maxgen;
float pcross, pmutation, sumfitness;

int nmutation, ncross, jcross;
float avg, max, min;
long int seed 1; 1* global mg seeds *1

FILE *fpout, *fpout 1;

1**************************1
1* *1
1*
1*

mainO *1
*1

1*************************1

void main(void)
{

void copy_new jnto _ old();
int select jndividual();
int flipO;
int find_x_siteO;
void crossoverO;
int mutationO;
void generationO;
int decode_num_of_buffersO;
int decode_num_of-'palletsO;
void set_fitness_valueO;
void write_siman_exp();
void ~reate jnit -'populationO;
void generate jnitJeportO;
void statisticsO;
void buffer _ np _ outO;
void reportO;

int i;
double tused;

time _t tstart, tstop;

printf("\n\n Input a random seed --> ");
scanf("%Ii", &seedl);

89

popsize = 100; 1* This must be an even number *1
maxgen=25;
pcross = 0.6; /* Crossover probability */
pmutation = 0.005; /* mutation probabiity */

}

nmutation = O~
ncross = 0;
gen = 0;

1* open global output file *1

90

itt(fpout = fopen("hystlS1S.21 ","W"» = NULL)
{

}

printf("Unable to open HYSTlS15.21 file !\n\n");
exit(l);

1* Time Start *1
time(&tstart);

system("model hyst362.mod hyst362.m");
printft"Finished compiling model file\n");
create Jnit -1'opulationO~
statistics(oldpop);
generate Jnit JeportO;
copy_newJnto_old(newpop,oldpop)
for(i= 1; i<=maxgen; i++)
{

}

gen++;
generationO;
statistics(newpop);
reportO;
copy_new Jnto _ old(oldpop, newpop);

buffer_np_outO; 1* outputs final number of buffers and the number of pals *1

1* Time end *1
time(&tstop);
tused = difRime(tstop, tstart);
fprintftfpout,"The running time is %10.2fseconds\n\n", tused);
fc1ose(fpout);

1**************************************1
1* *1
1* Copy new into old population *1
1* *1
1**************************************1

91

void copy_newJnto_old(oldpop, newpop)

strnct individual oldpop[llO];
strnct individual newpop[llO];

{
int ij;

for(i= 1; i<= popsize; i++)
{

for(j= 1; j<=num _ bistring; j++)
oldpop[i].chromoO]=newpop[i].chromoO];

for(j= 1; j<=num _works + 1; j++)
oldpop[i].x[j]=newpop[i].x[j];

oldpop[i].fitness= newpop[i].fitness;
oldpop[i].parentl = newpop[i].parentl;
0Idpop[i].parent2 = newpop[i].parent2;
oldpop[i].cross_site = newpop[i].cross_site;
oldpop[i].rate = newpop[i].rate;

}
}

1**************************1
/* */
/* Select individual */
/* */
/*************************/

int selectjndividual(workyop)

struct individual workyop[llO];
{

int i, popJndex; . /* population index */
float rpw, partial_sum; /* random point on wheel, partial sum */
float ts£; /* transfonned sumfitness for min problem * /
float tfv; /* transfonned fitness value for min problem * /

partial_sum = 0.0;
pop_index = 1;
tsf= 0.0;
for(i= 1; i <= popsize; i++)

tsf= tsf + (sumfitnesslworkyop[i].fitness);
rpw = rlnumO * tsf;

92

tfv = (sumfitness/work.J)op[popjndex].fitness);
partial_sum = partial_sum + tfv;

}

while« rpw>= partial_sum) && (pop_index < popsize»
{

}

pop _ index++;
tfv = (sumfitness/work.J)op[popjndex].fitness)~
partial_sum = partial_sum + tfv;

return pop jndex;

1*******************1
1* *1
1*
1*

flipQ *1
*1

1***··*·***·****·***1

int flip(pcross)

float pcross;
{

}

float mdnum;
rndnum = rlnumO;
if\mdnum <= pcross)

return 1;
else

return 0;

1·····**************1
1* *1
1* find x site *1
1* *1
1*******************1

}

int num, randint;

(int)randint = rlnumO*32767;
num = (randint % 55) +1;
return num;

1*******************1
1* *1
1* mutationQ *1
1* *1
1*******************1

int mutation(alleleval)
int alleleval;

{
int mutate;

93

mutate = flip(pmutation); 1* mutate with pmutation probability */
1* change the allele value *1

}

if(mutate)
{

}

nmutation = nmutation + 1;
if{alleleval)

return 0;
else

return 1;

else
return alleleval; 1* No change occurred */

1*******************1
1* */
1* crossoverQ * /
/* */
/*******************/

void crossover(parent 1, parent2, child 1, child2)

{

int parentI [57], parent2[57], childl[57], child2[57];

intj;

if(flip(pcross»
{

}

jcross:= find_x_site(); /* assumes constant chromosome length */
Dcross = ncross + 1;

else
jcross = num_ bistring;

fore j= 1; j<= jcross ; j++)
{

child 1 [j] = mutation(parent 1 O))~
child2[j] = mutation(parent20))~

}

if(jcross != num_bistring)
{

94

for(j = jcross + I;j <= num_bistring;j++);
{

}

}
}

child 1 0] = mutation(parent20));
child2[j] = mutation(parent 1 OJ);

H*************************/
1* */
/* Set fitness value */
/* */
1**************************1

void set_fitness_value(work-pop, index)
struct individual work-pop[110]~

{

int index;

FILE *fp;
float prod_rate, avg-prod _rate, reurod Jate;
float Cp, Hr, f, Cb, Ctb, Rab, Va, Cu, total_cost;
int pals, Bs, Ns,WIP, i;

Bs=O;
reured_rate = 0.1205
Cp = 500.0~
f= 0.16275;
Ctb = 1500.0~
Cb = 15000.0;
Hr=O.I;

Va= 100.0;
Cu=O.1 * Va;
Ns = 10;
pals = work-IJop[index].x[II];
WIP = pals;

for(i=l' i<= num works'i++) , - ,
Bs = Bs + work-IJop[index].x[i];

Rab = 0.2259 + 0.0314*(Bs + Ns);

if{(fp=fopen("hyst021.rat","r"» = NULL)
{

95

printf{"Cannot open HYST021.RA T file !\n\n");
exit(I);

}
1* Find average production rate *1

fscan£(fp,"%f\n", &prodJate)~
fclose(fp);
avg-IJrod Jate = prod Jate;
work-IJop[index].rate = prodJate;

if{revrod_rate> avg-IJrod_rate)
total_cost = pals*Cp*f+(Bs+Ns)*(Rab*Cfb + Cb*f) + WIP*Hr*Va + (reCLProd_rate

avg-IJrodJate)*Cu*52*5*8*3600;

}

else
total_cost = pals * Cp * f+ (Bs + Ns) * (Rab * Cfb + Cb * f) + WIP * Hr * Va;

printf{"Total Cost = %12.3f\n",total_cost);
work-IJop[index].fitness = total_cost;

1**************************************1
~ ~

1* write siman experiment file *1
~ ~
1**************************************/

void write_siman_exp(work, i)
struct individual work[110];
int i;

{

96

intj;

if{(fpoutl=fopen("hyst021.exp","w"» = NULL)
{

printf("Unable to open HYST021.EXP file ! !\n\n");
eXit(2);

}
fprintf(fpoutl, "BEGIN;\n");

fprintf(fpout 1, "PROJECT, Thesis assembly modeJ,HYS;\n\n");

fprintf(fpoutl, II ATTRIBUTES: WkStation·\n\n")· , ,

fprintf(fpoutl,"STATIONS: WorkStationl :\n");
forO=2; j < num _works; j++)

fprintf(fpout 1," WorkStation%d:\n" ,j);
fprintf(fpoutl," Unload;\n\n");

fprintf(fpoutl,"V ARIABLES: Pallets, %d:\n",work[i].x[num_works+l]);
fprintf(fpoutl," Jam(lO), .0,.03,.03,.O,.O,\n");
fprintf(fpoutl," .0,.03,.0,.0,.0:\n");
fprintf(fpoutl," Buf(lO), %d,",work[i].x[l]);
forG=2; j < num _works; j++)

fprintftfpout 1, "%d,", work[i] .xu]);
fprintftfpoutl, "%d;\n\n", work[i].x[num_ works]);

fprintft fpoutl," SEEDS:
fprintf(fpoutl, II

1,lS3,NO:\n");
2,lS1S,NO;\n\n");

fprintftfpoutl,"QUEUES: MachineIQ:\n");
forG=2; j < num _works; j++)

fprintftfpoutl," Machine%dQ:\n",j);
fprintf(fpoutl," UnloadoperQ:\n");
fprintf(fpout 1," UnloadQ:\n");
fprintf(fpoutl," OperatorQ:\n");
fprintftfpout 1, II OperLoadQ;\n\n");

fprintf(fpoutl, "RESOURCES: Machine(9):\n");
fprintftfpout 1,1\ Unloadoper:\n ");
fprintf(fpout 1," Operator;\n\n");

97

fprintf(fpoutl,"SEQUENCES: I,WorkStationl &\n");
forfj=2; j < num _works; j++)

fprintf(fpoutl," WorkStation%d &\n",j);
fprintf(fpoutl," Unload;\n\n");

fprintf(fpoutl,"CONVEYORS: Conveyor, 1, 1, 1, A, I, A, 1;\n\n");

fprintf(fpoutl,"SEGMENTS: 1, Unload,\n");
fo rfj = 1; j < num _works; j++)

fprintf(fpoutl," WorkStation%d - %d,\n",j, work[i].xDD;
fprintf(fpoutl," Unload - %d;\n\n", work[i].x[num_worksD;

fprintf(fpoutl,"T ALLIES: Average Cycle Time;\n\n");
fprintf(fpoutl, "FILES: Rate,\"hyst021.rat\" ,SEQ,\"(F 1 0.8)\" ,IGN;\n\n");
fprintf(fpoutl,"REPLICATE, 1,0, 10000, NO, YES, 3000;\n\n");
fprintf(fpoutl,"END;\n");

fclose(fpoutl);

}

1**************************/
1* *1
1*
1*

execute_simanQ *1
*1

1**************************1

void execute_simanO
{

}

system("expmt hyst021.exp hyst021.e");
printf("finished compiling experiment fiJe\n");
system("linker hyst362.m hyst021.e hyst021.p");
printf("Finished linking model file and experiment file\n");
system(" siman hyst021. p ");
printf("Finished executing siman fiJe\n");

1*************************1
1* *1
1* Generation(} *1
1* *1
1**************************1

98

void generationQ
{

int i, j, mate 1, mate2;

j = I;

while(j <= pop size)
{

/* Select a pair of mates *1
matel = selectjndividual(oldpop);
mate2 = selectjndividual(oldpop);

/* crossover and mutations achieved by crossoverO *1
crossover(oldpop[matel].chromo, 0ldpop[mate2].chromo, newpoPU].chromo,

newpop(j+ 1].chromo);

/* Decode string, evaluate fitness, and record parentage date on both children *1
for(i= 1; i <= num _works; i++)
{

}

newpopO].x[i] = decode_num_otbuffers(newpopOl.chromo, i);
if{newpopU].x[i] <= 0)
{

}

newpoPU].chromo[5*i] = 1;
newpopU].x[i] = 1;

newpop(j].x[num_ works+ 1]= decode _ num _ ofyallets(newpop(j]. chromo);
if(newpopO].x[num_works+l] <= 0)
{

}

newpopO].chromo[S*(num_ works+ 1)+ 1] = 1;
newpopU].x[num_works +1] = 1;

/* write siman experiment file *1
write _ siman _ exp(newpop, j);
/* Call siman to find prodution rate */
execute _ simanO;
set_fitness_ value(newpop, j);

newpopU]. parentI = mate 1 ;
newpopU].parent2 = mate2;
newpoPOl.cross_site = jcross;

}
}

99

for(i=l; i <= nurn_works; itt)
{
newpop[j+l].x[i] = decode_num_oCbuffers(newpop[j+l].chrorno, i);

if{newpop[j+l].x[i] <= 0)
{

}
}

newpop[j+l].chrorno[5*i] = 1;
newpop[j+ 1].x[i] = 1;

newpop[j+l].x[num_works +1] = decode_num_of-pallets(newpop[j+l].chromo);
if{newpop[j+I].x[num_works +1] <= 0)

{

}

newpop[j+l].chromo[5*(num_works+l) +1] = 1;
newpop[j+l].x[num_works +1] = 1;

/* write sirnan experiment file */
write_siman_exp(newpop, j+ 1);
/* Call sirnan to find prodution rate * /
execute_sirnanQ;
set_fitness_value(newpop, j+ 1);

newpop[j+ 1]. parent 1 = mate 1;
newpop[j+ 1].parent2 = mate2;
newpop[j+ 1].cross_site = jcross;

j = j+2; /* Increment population index */

/* ••••••••••• *.************************/
/* */
/*
/*

Decode number of buffers */
*/

/*.************************************/

int decode_nurn_of_buffers(nurn_buffer,i)
int nurn_buffer[57], i;

{
int j, b32, b 16, b8, b4, b2, b 1, bsurn;

}

j = (i-I) * 5 + I;
bI6 = nUffi_bufferfj] * 16;
b8 = nUffi_buffer[j+l] *8;
b4 = nUffi_buffer[j+2]*4;
b2 = nUffi_buffer[j+3]*2;
bl = nUffi_buffer[j+4] * 1;
bSUffi = bl6 + b8 +b4 +b2 +bl;
return bSUffi;

1********************************1
1* */
1*
1*

Decode num of pallets */
*/

1********************************/

int decode_num_ofj)allets(station_config)
int station_config[57];

{

}

inti,b32,bI6,b8,b4,b2,bl,bsum;

i = 51;
b32 = station_config[i]*32;
b16 = station_config[i+l]*16;
b8 = station_config[i+2]*8;
b4 = station_config[i+3]*4;
b2 = station_config[i+4]*2;
bI = station_config[i+5] * 1;
bSUffi = b32 + b16 + b8 +b4 +b2 +bl;
return bSUffi;

/********************************/
1* *1
/* create initial population */
1* */
1********************************/

void create jnit j)opulationO
{

100

101

int xl, x2, i;
1* int sum_buffer=O,value; *1

for(xl = 1; xl <= popsize; xl++)
{

for(x2=I; x2<=num_bistring; x2++)
oldpop[xl].chromo[x2] = flip(0.5);

for(i::: 1; i <= num _works; i++)
{

}

oldpop[xl].x[i]= decode_num_oCbuffers(oldpop[xl].chromo,i);
if(oldpop[xl].x[i] <= 0)
{

}

0Idpop[xl].chromo[5*i] = 1;
oldpop[xl].x[i] = I;

oldpop[xl].x[num _ works+ 1]= decode _ num _ of-'pallets(oldpop[x I].chromo);
if(oldpop[xl].x[num.:...works +1] <= 0)
{

}

0Idpop[xl].chromo[5*(num_works+I)+I] = I;
oldpop[xl].x[num_works +1] = I;

1* write siman experiment file */
write_siman_exp(oJdpop, xl);

1* Call siman to find prodution rate *1
execute_simanO;

set_fitness_ value(oldpop, xl);

oldpop[xl].parentl = 0;
0Idpop[xl].parent2 = 0;
oldpop[xl].cross_site = 0;

}
}

1********************************/
1* */
1*
1*

Generate initial report */
*/

1********************************/

102

void generate jnit JeportO
{

}

fprintf(fpout," Searching for Minimal Cost of Closed-Loop \nil);
fprintf(fpout, "Automatic Assembly System with the Genetic Algorithm.\n\n");
fprintf(fpout, II Yisheng Hsiao\n"); .
fprintf(fpout," Thesis Work\O");
fprintf(fpout, II Spring 1994\0\0\0");
fprintf(fpout, "Summary ofParameters\nn);
fprintf(fpout," Population Size: %d\o",popsize);
fprintf(fpout," Chromosome Length is fixed at 56.\n");
fprintf(fpout," Maximum number of generations: %d\n",maxgen);
fprintf(fpout," Crossover probability: %6.4f\n",pcross);
fprintf(fpout," Mutation probability: %6.4f\n\n\n",pmutation);
fprintf(fpout, "Initial Population Statistics\nll);
fprintf(fpout," Initial population minimum fitness: % 12.3 t\n" ,min);
fprintf(fpout," Initial population maximum fitness: % 12.3f\n",max);
fprintf(fpout," Initial population average fitness: % 12.3 f\n II ,avg);
fprintf(fpout," Initial population sum of fitness: %12.3f\n",sumfitness);
fprintf(fpout, "\n\n\n\n\n\n\n\n");

1*******************1
1* */
1* Statistics() */
1* */
/*******************/

void statistics(work .JlOp)

{

struct individual work.Jlop[llO];

int i;

sumfitness = work.Jlop[l].fitness;
min = work.Jlop[l].fitness;
max = workyop[l].fitness;
for(i=2; i<=popsize; i++)
{

sumfitness = sumfitness + work.Jlop[i].fitness;
if(work .Jlop[i].fitness > max)

max = workyop[i].fitness; /* set new max */

103

if(workyop[i].fitness < min)
min = workyop[i].fitness~ /* set new min */

}
avg = sumfitness/popsize; /* calculation of average */

}

/ ••••••• ** ••• **************/
/. */
/.
/.

*/
*/

/ •••••• * ••• * •• *************/

void buffer _ np _ outO
{

int i, j;
fprintf{fpout, "popsize= % d\n " ,popsize);
for(i=l; i<= popsize; itt)
{

forG= 1; j<= num _works; j++)
fprintf{fpout," %d" ,newpop[i].xOD;

fprintf{fpout," pals= %2d rate=%lO.8f
% 12.3f\n" ,newpop[i].x[num _ works+ 1],newpop[i].rate,newpop[i] .fitness);

}
}

/ •• * ••••• ***********/
/. */
/. ReportO * /
/. */
/ ••••••• *.**********/

void reportO
{

int i, j;

for(i= l;i <= popsize; i++)
{

fprintf{fpout,"Q %3d: ",i);
forG=l;j<= 56;j++)

fprintf{fpout,"%ld",oldpop[i].chromoOD;
fprintf{fpout, "\n ")~

forG= 1; j<= num _works; j++)
fprintf(fpout," %2d" ,oldpop[i].xO])~

104

fprintf(fpout," Pals= %2d" ,oJdpop[i].x[num _ works+ l));
fprintf(fpout," rate= % 1 0.8f% 12.3f][\n",oldpop[i].rate,oJdpop[i].fitness);

fprintf(fpout,"N %3d:[(%2d,%2d) %2d]
",i,newpop[i].parentl,newpop[i].parent2,newpop[i].cross_site);

forG=l;j<= 56;j++)

}

fprintf(fpout, "% 1 d" ,newpop[i].chromoO])~
fprintf(fpout, "\nil);
forG= 1; j<= num _works; j++)

fprintf(fpout," %2d" ,newpop[i].xO));
fprintf(fpout," Pals= %2d" ,newpop[i].x[num_ works+ 1 D;
fprintf(fpout," rate= %10.8f%12.3f][\n",newpop[i].rate,newpop[i].fitness);

fprintf(fpout, " ---\n ") ~
fprintf(fpout, "Generation 1 Stats: max=% 12.3[. min=% 12.3[. avg=% 12.3[.

sumfit=«'11012.3t\n",max,min,avg,sumfitness)~

}

fprintf(fpout," Accumulated Stats: nmutation=%5d, neross=%5d\n" ,nmutation,nefoss);
fprintf(fpout, ,,--\n \n \n \n \n ");

/*******************1
/* */
/*
1*

r2numO */
*/

/********************1

float r2numO
{

}

float ran num;
seedl = (seedl *3993) + I;
if(seed 1 < 0)
{

}

seedl += 2147483647;
seedl += I;

ran_num = seedl/2147483647.0~
return fan _ num~

