
Pharmacological characterization of the bovine median caudal artery 

J .S~< 
/Cf 'l~ 
ii s.s. 
(' 3 

by 

Brent J. F. Hill 

A Thesis Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

MASTER OF SCIENCE 

Department: Veterinary Physiology and Pharmacology 
Major: Physiology 

Signatures have been redacted for privacy 

Iowa tate University 
Ames, Iowa 

1995 

Copyright © Brent J.F. Hill , 1995. All rights reserved . 

( 



II 

DEDICATION 

This thesis, submitted fo r the degree of master of science, is ded icated to my 

grandfather, Irving J. Fong, who was also known as "Pops." He was a strong believer in the 

personal development of people. A person can only develop as an individual if they possess 

the will and des ire to do so. He wrote on a picture he once gave me, "you can do it so go 

get'em." " Pops" a lways fe lt that if a person is persistent and maintains a positive mental 

attitude, any goal is attainable. 



111 

TABLE OF CONTENTS 

CHAPTER 1. REVIEW OF LITERATURE 
Anatomy of the bovine tail 
Architecture of the median caudal artery 
Mediators of vasoactivity 
Catecholamine disposition mechanisms 
Pharmacological differentiation of adrenoceptors 
Characterization of a -adrenoceptors 
Characterization of ~-adrenoceptors 

CHAPTER 2. ST A TEMENT OF THE PROBLEM 

CHAPTER 3. MATERIALS AND METHODS 
T issue preparation 
Generation of concentration response-curves 
Adjusting for sensitivity changes 
Evaluation of the norepinephrine disposition mechanisms 
Evaluation of the response to tyramine 
The effect of endothelium removal on the norepinephrine response 
The effect of L-NAME on the norepinephrine response 
The effect of L-NAME on acetylcholine-mediated relaxation 
Comparison of the contractile response to several agonists 
Evaluation of the response to isoproterenol 
The effect of propranolol on the response to isoproterenol 
Determination of the dissociation constant (KA) for norepinephrine 
Determination of dissociation constants (K8 ) for several antagonists 
The effect of tone on the tissue ' s response to medetomidine 
Statistical analysis 
Drugs 

CHAPTER 4. RESULTS 
Methodological considerations 
Evaluation of the disposition mechanisms for norepinephrine 
The role of the endothelium in vasoactivity 
Comparison of the contractile response to several agonists 
Determination of the dissociation constant (KA) for norepinephrine 

2 
3 
6 

11 
13 
19 

2 1 

22 
22 
23 
24 
24 
26 
26 
27 
27 
28 
29 
29 
30 
31 
34 
34 
35 

36 
36 
37 
46 
50 
50 



IV 

Determination of dissociation constants (Ks) fo r a.-adrenoceptor antagonists 54 
Isoproterenol-mediated relaxation in the absence and presence of propranolol 65 
The effect of tone upon the ti ssue's response to medetomidine 65 

CHAPTER 5. DISCUSSION 69 
Catecholamine disposition mechanisms 69 
The role of the endothelium in vasoacti vity 76 
Comparison of the contractile response to several agonists 77 
Evaluation of the di ssociation constant (KA) for norepinephrine 81 
Evaluation of the di ssociation constants (Ks) fo r several antagonists 83 
The effect of tone upon the ti ssue's response to medetomidine 85 
The evaluation of the response to isoproterenol in the absence and presence of 

propranolol 85 

CHAPTER 6. SUMMARY 87 

LITERATURE CITED 90 

ACKNOWLEDGMENTS l 03 



v 

ABBREVIATIONS 

NE Norepinephrine 

NO Nitric Oxide 

EDRF Endothel ium-derived re laxing factor 

MAO Monoamine oxidase 

COMT Catechol-0-methyltransferase 

DOPA 3, 4-dihydroxyphenylalanine 

PKC Prote in kinase C 

IP3 lnositol-1 ,4,5-triphosphate 

DAG Diacylglycerol 

GDP Guanosine diphosphate 

GTP Guanos ine triphosphate 

cAMP Cyclic adenosine 3,5-monophosphate 

ED50 Effecti ve agonist concentration required to elicit 50% of its maximal response 

CR The concentration ratio: agonist EClO in the presence of an inhibitor/antagonist 
agonist EC50 in the absence of an inhibitor/antagonist 

pD2 -log EC50 

K8 Dissociation constant for an antagonist 

KA Dissociation constant for an agonist 



CHAPTER 1. REVIEW OF LITERATURE 

Anatomy of the bovine ta il 

The median caudal ( coccygeal) artery starts at the first caudal vertebrate and 

continues down the length of the tail (Getty, 1975). Th is artery is an extension of the median 

sacral artery which originates from the abdominal aorta. The abdominal aorta is a segment 

from the descending aorta (Scha ller, 1992; Getty, 1975). The median caudal artery is 

s ituated inside a vascu lar grove, which is enclosed by a pair V-shaped bones, ca lled the 

hemoral processes, which originate from the caudal vertebrate (Getty, I 975 ; Dyce et a l. , 

1987). It a lso runs directly ventral and parallel to the median caudal vein. car the middle 

of each caudal vertebra, the median caudal artery branches out to fo rm the ventral and dorsal 

branches (Getty, 1975). 

The median caudal artery is also situated between the median ventral sacrocaudal 

musc les, these are the lateral flexor muscles of the tai l (Evans and Christensen, 1979). These 

ventral median muscles have their highest muscle density at the second vertebra, but virtually 

di sappear by the fourth vertebra. The limbs of animals are primarily comprised of slow-

twitch muscle fibers. It is thought that " the increased occurrence of slow-twitch distally in 

the bovine tail indicates that the muscles are playing an increasing postural ro le at the 

expense of potential for rapid movement" (Young and Kenrick, p. 55, 1989). 
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Architecture of the median caudal artery 

The bovine tail artery has yet to be hi stologically studied. Ashida et al. ( 1988) has 

studied the morphology of the bovine tail artery myocyte using electron microscopy, and this 

will be discussed later. In general , arteries are predominantl y composed of three layers: the 

tunica intima, the tunica media, and the tu nica adventitia. The tunica intima, a sing le layer of 

endothelial cells, lines the inner surface of the vessel lumen. The middle layer (tunica media) 

of the artery is separated from the tunica intima by a layer o f connecti ve tissue ( lamina 

propria). The tunica media is composed o f several layers o f smooth muscle cells oriented 

c ircumferentially or longitudinally. These layers of smooth muscle cells vary in number 

depending on the s ize of the vessel. The outer arterial layer is absent of smooth muscle cell s 

and is called the tunica adventitia. It is composed of collagen fibers that are wrapped around 

the tunica media layer. Axo n varicosities innervate blood vessels along the tunica adventiti a 

layer, and rarely penetrate into the tunica media layer (Ilirst and Edwards, 1989). The 

dens ity of adrenergic innervation and the neuromuscular j unction width d istance isn' t 

homogeneous between tissues and along the length of the vessel ( Furchgott, 1972; N ie ld and 

Zelcer, 1982; Merrill ees et a l. , 1963). The neuromuscular j uncti on w idth for blood vessels is 

usuall y between 50nM to 1 OOnM (Nield and Zelcer, 1982). 

Smooth muscle cell s are characteri sti call y spiral shaped, and have a length and 

d iameter of approximately 40-60µm and 4µm, respecti vely (Hirst and Edwards, 1989). 

However, Ashida et al. ( 1988) found that the myocytes of the bovine tai l artery were unique. 

They were spindle shaped and had a length greater than 125- I SO~Lm, and a diam eter of 10-
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15µm. Smooth muscle cells also possess a nucleus, mitochondria, and sarcoplasmic 

reticulum (Hirst and Edwards, 1989). The bovine tail artery myocytes contain very few 

mitochondria, which are located near the plasma membrane and nucleus (Ashida et al., 1988). 

The sarcoplasmic reticulum was also sparse, and was concentrated just under the plasma 

membrane. In fact, Ash ida et al. ( 1988) found that the bovine tail artery myocyte has 60% 

less sarcoplasmic reticulum than the rat thoracic artery. Consequently, the sarcoplasmic 

reti culum has only a minor role in the regulati on of the intracellular calcium concentration. 

The rise in the intracellular calcium concentration was primarily due to the inOux of 

extracellular ca lcium, which Ashida et al. ( 1988) associated with gated calcium channels . 

Ashida and Blaustein (1987) also observed that when the intracellular calcium concentration 

exceeded the amount needed for a contraction, the efflux of excess calcium (80-90%) was 

mediated by the sod ium-calcium exchanger (located in the plasma membrane), not the 

sarcolemma calcium pump. This contrasts wi th results from the rat aorta, where the ATP-

driven calcium pump was found to be more important than the sodium-calcium exchanger 

(Ashida and Blaustein, 1987). 

Mediators of vasoactivity 

Contractility of arterial smooth muscle is predominantly regulated by the sympathetic 

nervous system, and by hormones synthesized and released into the bloodstream by the 

adrenal gland. The three major hormones synthesized by the medulla of the adrena l gland are 

norepinephrine (NE), epinephrine, and dopamine. A bioassay of the bovine adrena l medulla 
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indicated that epinephrine, NE, and dopamine are synthesized in the following amounts 4000, 

1250, and 17 (expressed as µg/g tissue), respecti vely; these amounts constituted 76%, 23%, 

and 1 % of the total (Holzhauer and Sharman, 1972). While the adrenal g land can re lease 

epinephrine, NE, and dopamine into the bloodstream, onl y NE is released by the 

prejunctional sympathetic neuron. 

The biosynthesis of N E and epinephrine follow identical pathways, starting with the 

precursor, tyrosine. T he rate-limiting enzyme, tyrosine hydroxylase, converts tyrosine to 3,4-

dihydroxyphenylalanine (DOPA). DOPA is then converted to dopamine by dopa-

decarboxylase. D opamine is oxidized by dopamine-p-hydroxylase to NE. 

Phenylethanolamine-N-methyltransferase in the adrenal gland is responsible fo r the 

conversion of NE to e pinephrine. Catecholamine synthesis, within the nerve termina l, 

primarily occurs in the varicosities of the prejunctional nerve terminal. However, the 

conversion of dopamine to NE occurs in conjunction with storage ves icles located in the 

nerve terminal. Norepinephrine is stored within these vesicles and quantally released when 

the nerve is stimulated (Katzung, 1992; Euler, 1972). 

The vascular endothe lium (tunica intima) is important in the regulation of smooth 

muscle tone. The endothelium has been reported to depress the contractility o f blood vessels 

to catecho lamines (Oriowo et al., 1987; Doggrell , 1992; Macl ean et al ., 1993; Kaneko and 

Sunano, I 993). This suggests that the endothe lium has a vasore laxant effect on vessels. 

Endothelium-derived relaxing factor (EDRF), now thought to be primarily nitric oxide (NO), 

is re leased from the vascular endothelium and mediates the vasodil ati on (Ignarro et al., 1987; 
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Palmer et al. , 1987). Results have demonstrated that removal of the endothe lium enhances 

the contractil ity of blood vessels to a similar magnitude as inhibiting the synthesis of 0 

(MacLean et al., 1993; Vo et al., 1992). Coincidental ly, Palmer et al. ( 1987) suggested that 

NO and EDRF are identical compounds. Ignarro et al. ( 1988) later proved, in the bovine 

intrapulmonary artery, that NO was responsible for the vascular relaxation induced by EDRF. 

N itric oxide mediates the vasorelaxant effect of endothelium-dependent vasodilators, like 

bradykinin, prostaglandin 0 2, and acetylchol ine (Tgnarro ct al. , 1988; Fisher-Nakielski and 

Schror, 1990; Braun and Schror, 1992; Ayaj iki et al. , 1993). 

Nitric ox ide is released spontaneously (basal release) by blood vessels, such as the 

bovine coronary artery (Purdy and Milburn, 1991 ). Vo et al.( 1992) suggested that NO is 

released from endothelia l cells to oppose endothelia l shear stress, thereby limiting blood 

vessel damage during vasoconstriction . Endothelial shear stress is caused by an increase in 

vascular tone, thereby changing the blood flow velocity (Vo et al.. 1992). Activation of a 1-

and aradrenoceptors may also mediate the synthesis and release of NO (Kaneko and 

Sunano, 1993 ; MacLean et al. , 1993). The amount of NO released from the endothelium 

appears to be directly proportional to the magnitude of the smooth muscle contraction, and 

occurs without any change in the membrane potential of the endotheli al cell (Vo et al. , 1992; 

Komori et a l. , 1988). Bradykinin, a vasodepressor, also releases NO in a concentration-

dependent manner (Palmer et al., 1987). These results indicate that 0 contri butes to the 

maintenance of vessel tone. 
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Catecholamine disposition mechanisms 

Norepinephrine is predominantly stored in synaptic vesicles within the prejunctional 

nerve terminal. Following sympathetic nerve stimulation, NE is quantally exocytosed and 

released into the neuromuscular junction. The released NE is then able to bind to 

prejunctional aradrenoceptors which inhibit the release of NE, or diffuse across the 

junctional cleft to react with postj unctional a-adrenoceptors (Hirst and Edwards, 1989). The 

concentration of catecholamines in the neuroeffector junction, whether originating from the 

sympathetic neuron or bloodstream, is controlled by several disposition mechanisms. Within 

the junctional cleft NE can either be inactivated by catechol-0-methyltransferase (COMT) 

found within the plasma, or diffuse out of the synapse into the circulation (Coquil et al., 

1973; Trendelenburg, 1972). The remaining NE, within the neuroeffector junction, can be 

actively taken back into the prej unctional nerve terminal by uptake 1 (neuronal uptake), or be 

taken up by the effector tissue by uptake2 (extraneuronal uptake). Upon uptake into the nerve 

terminal or effector cell, NE undergoes enzymatic inactivation by COMT and by monoamine 

oxidase (MAO) (Levin and Furchgott, 1970; Trendelenburg, 1972; Verity et al., 1972). 

Uptake 1 is a saturable carrier-mediated transport system for catecholamines, and is 

located along the medial-adventitial border (site of adrenergic innervation) of the artery 

(Trendelenburg, 1990; Levin and Furchgott, 1970). Therefore, catecholamines circulating in 

the bloodstream need to diffuse across the tunica media layer of the artery to reach uptake 1 

(de la Lande, 1989; Morris et al., 1988). Uptake 1 also acts by "facilitated exchange 

diffusion" to indirectly mediate the release of NE from the prejunctional nerve terminal 
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(Trendelenburg, p. 15, 1990). "Facilitated exchange diffusion," predominantly associated 

with indirectly acting sympathomimetic amines like tyraminc and guanethidine, occurs when 

substrates for uptake, are also substrates for the vesicular uptake mechanism associated with 

storage vesicles located within the prcjunctional nerve terminals (Trendelenburg, p. 15, 1990; 

Miyahara and Suzuki, 1985). These indirectly acting amines are taken up into the nerve 

terminals by uptake1, and if not deaminated by MAO, act to displace NE fro m the storage 

vesicles (Miyahara and Suzuki, 1985; Furchgott et al., 1963). 

Uptake2 is a carrier-mediated transport system that favo rs the inward transport of 

positively charged protonated substrates (Schomig et al. , 1992). It is primarily fo und within 

the tunica media smooth muscle layer of the artery (de la Lande, 1989; Morris et a l. , 1988). 

High concentrations o f catecho lamines are able to saturate this uptake mechanism (Schomig 

and Schonfeld, 1990). The membrane potential o f the effector cell provides the driving fo rce 

for uptake2. The inside negativity of the cell faci litates uptake and hinders the efnux of 

substrates. Therefore, depolarization of the effector cell prevents substrate uptake and causes 

the outward efflux of substrates (Schomig ct a l. , 1992). Pharmaco logical inhibitors fo r 

uptake2 are able to impair both the infl ux and efflux of catecholamines within the e ffector 

cell (Eckert et al. , 1976). 

Catecho lamines undergo deamination by MAO. Monoamine oxidase is a 

mi tochondrial enzyme located in both the adrenergic nerve terminal and the effector cell 

(Coquil et al. , 1973 ; Verity et al., 1972; Levin and Furchgott , 1970). Monoamine oxidase 

ex ists in two forms: type A and type B. Type A is found within sympathetic nerve terminals, 
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brain, and liver, while type B has been found in the arterial walls of rats and in the rabbit 

aorta (Coquil et al., 1973). Norepinephrine and serotonin are primarily metabolized by type 

A MAO (Rivett et al., 1982; Precious and Lyles, 1988). Type B metabolizes NE to a lesser 

degree than type A. Tyramine is a good substrate for both MAO types (Caramona, 1982; 

Precious and Lyles, 1988). Trendelenburg et al. (1987) found that the Km for MAO in the 

nerve terminal is higher than the Km for uptake 1• Therefore, MAO is not saturated by the 

activity of uptake1• 

Catechol-0 -methyltransferase (COMT) is primarily found within the tunica media 

layer of blood vessels, and is responsible for the 0-methy lation of catecholamines (Verity et 

al., 1972; Levin and Furchgott, 1970). The activity of COMT is dependent on the influx of 

catecholamines through the uptake2 mechanism (Martel et al. , 1993; Graefe and 

Trendelenburg, 1974). This enzyme can be saturated at high concentrations of 

catecholamines since its Km is lower than that of uptake2 (Henseling, 1980). When COMT is 

saturated, the excess catecholamines in the effector tissue are transported back out of the 

tissue through uptake2, thereby maintaining a steady-state balance between the uptake of 

catecholamines and the rate of COMT activity (Eckert et al., 1976). Within the effector cell , 

COMT is more important than MAO in catecholamine metabolism (Eckert et al. , 1976; 

Henseling, 1980; Kalsner and Nickerson, 1969; Schomig et al., 1992). This is partially 

because COMT and MAO function is series. Since MAO is a mitochondrial enzyme and 

COMT is predominantly located in the cytosol, it can be hypothesized that once 
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catecholamines are taken up by uptake2, they are first exposed to COMT before they can 

reach the mitochondria fo r inactivation (Ka lsner and N ickerson, 1969). 

The catecholamine concentration in contact with the various disposition mechanisms 

is determined by the thickness of the tissue, the width of the neuromuscular junction, and the 

density of adrenergic innervation (Trcnde lenburg, 1972). Catecholamines, circulating in the 

bloodstream, have a higher concentration within the lumen of the artery (intima layer) than at 

the adventitia layer (de la Lande, 1989). These catecholamines diffuse across the three layers 

of the artery (inti ma, media, and adventitia) as determined by these catecho lamine 

concentration gradients found across the arterial wall. However, in large arteries, the 

vasovasorum and lymph may contribute to maintaining the catecholamine concentration in 

the adventitial layer s imilar to that in the lumen. The media layer has the lowest diffusion 

coefficient, therefore making it a major obstacle for amine diffusion. This suggests that the 

rate of catecholamine uptake, by uptake 1 or uptake2, is linked to the abil ity of the amine to 

diffuse across the arterial layers (de la Lande, 1989). The concentration of catecholamines 

within the neuromuscular junction is inversely proportiona l to the di stance between the nerve 

terminal and effector tissue (width of the neuromuscular junction). As the w idth of the 

neuroeffector junction increases, the neuronally released catecholamines have to traverse a 

larger distance to reach the effector ti ssue. Therefore, the potentia l for the amines to diffuse 

away from the synapse into the c irculation increases. The activity of uptake1 is dependent on 

the distance between the nerve terminal and the effector tissue. As the d istance increases, the 
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importance of uptake1 in disposing catecholamines decreases. This was demonstrated on the 

inferior and medial muscles of the cat nictitating membrane (Trendelenburg, 1972). 

The density o f adrenergic innervation (therefore uptake1) also regulates the amount of 

NE exposed to the e ffector disposition mechanisms (Schomig et al., 1992; Morris et al. , 

1988; Burnstock et al., 1972; Gaefe and Trendelenburg. 1974). This was confirmed in the cat 

nictitating membrane (Graefe and Trendc lenburg, 1974). I lydrocorti sone, an uptake2 

inhibitor, fai led to potentiate the catecholami ne response in the cat nictitating membrane. 

However, after the nictitating membrane was denervated, hydrocorti sone potentiated the NE 

response. This suggested that the high activity of uptake 1 in the ni cti tating membrane had 

significantl y decreased the E concentration within the neuroeffector j unction. Therefore, 

the s ignificance of uptake2 in the inacti vation of NE was not apparent until the ti ssue was 

denervated (Graefe and Trendelenburg, 1974). Wyse (1974), in his studies on rabbit aortic 

strips, estimated that 50% of exogenously administered NE and 90% of neuronally released 

NE was taken up by uptake1• S ince the rabbit aorta is not well innervated, it is hypothesized 

that the importance of uptake 1 increases in more highly innervated ti ssues, while the acti vity 

o f uptake2 decreases (Burnstock et al., 1972; Wyse, 1974; Graefe and Trendelenburg, 1974). 

chomig et a l. ( 1992) demonstrated that there was more accumulation of 3[H] Eat the 

surface (uptake1) o f the more highly innervated rat vas deferens than in the rat atrium. 

Coinc identally, there was also a greater percentage of [3H]NE in the center of the musc le 

(uptake2) of the less densely innervated rat atrium than in the rat vas deferens. They 
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concluded that uptakc2 has only a minor role in the removal of [31 !]NE from the j unctional 

cleft due to the high density of adrenergic innervation o f the rat vas deferens. 

The physiologica l role played by each catecholamine di sposi tion mechanism has been 

ascertained using pharmaco logical inhibitors for the specific mechanism. The importance of 

each inhibited disposition mechanism is assessed by its abi lity to prolong and/or potentiate 

the response to catecholamines (Trendelenburg, 1972). Cocaine and corticosterone have 

been extensively used to block uptakc1 and uptake2, respecti vely (Furchgott and Garcia, 

1968; Furchgott et al., 1963; Wyse, 1974). The enzymatic mechan isms, MAO and COMT, 

have been studied using the inhibitors, iproniazid and tropolone, respectively (Furchgott and 

Garcia. 1968; Wyse, 1974). 

Pharmacologica l differentiation of adrenoccptors 

The catecholamines, NE and epinephrine, mediate their bio logical response by 

binding to receptors located on either the prejunctional or postjunctional cell membrane 

(Ruffolo, 1991 ). These receptors were classified by Ahlquist (1948) into two groups, a - and 

P-adrenoceptors, based on the relati ve potency of several agonists to initiate opposing 

responses (excitatory or inhibitory). Lands et al. ( 1967) further subdivided the P-

adrenoceptors into P1- and Pradrenoceptors. The a-adrenoceptors were a lso divided into 

two groups, a 1- and aradrenoceptors, by Langer ( 1974). Adrenoceptors can be 

pharmacologically characterized by comparing the e ffective concentration of an 

agonist/antagonist to produce a response (relative potency of a drug). However, using 
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agonists to classify receptor types can be difficult since the response to the agonist is 

determined by the receptor's efficacy and affinity for the agonist. Therefore, receptors with a 

high affinity for the agonist, but having a low efficacy, may generate a low response or 

possibly no response at all (Drew, 1985). The predominant property governing the receptor's 

response to the antagonist, however, is affinity. Therefore, tissues having identical receptors 

for an agonist should yield relatively identical responses in the presence of a selective 

antagonist for the receptor (Drew, 1985; Arun lakshana and Schi ld, 1959). Receptors can a lso 

be purified and characterized by ligand-binding. This method also utilizes the affinity of a 

receptor for a particular antagonist (McGrath, 1983). Unfortunately, agonists and antagonists 

tend to lose their specificity fo r a specific adrenoceptor at high concentrations. 

The agonists, NE and epinephrine, have approx imately equal potencies at both a 1-

and aradrenoceptors, as does the antagonist, phentolamine. It is speculated, however, that 

aradrenoceptors have a lower threshold for NE than a 1-adrenoceptors (McGrath, 1983; 

Drew and Whiting, 1979). Phenylephrine and cirazoline are selective a 1-agonists, while 

prazosin and WB4101 are selective a 1-antagonists (Wilson et al., 1991 ). The order of 

potency of some selective aragonists are: medetomidine > clonidine = B-HT 920 > 

xylazine (Virtanen et al., 1988; Wilson et al., 1991 ). The selectivity of some common a 2-

antagonists are idazoxan > rauwolscine > yohimbine (Wilson et al., 1991). Some selective a -

adrenoceptor antagonists have a wide potency range, therefore, Medgett and Langer (1984) 

suggested that selective antagonists must be used over a 100-fold concentration range when 

characterizing receptors by Schild plot analysis. The selective a 1-adrenoceptor antagonist, 
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prazosin, has a selectivity for a 1-adrenoceptors, over a radrenoceptors, that spans over a 100-

fo ld concentration range. Coincidentall y, the selecti ve aradrenoceptor antagonist, 

yohimbine, has a selectivity for aradrcnoceptors, over a 1-ad renoceptors, that a lso covers a 

I 00-fold concentration range. a 1-Adrenoceptors are commonly classified as having a 

prazosin/yohimbine ratio of 100, while a 2-adrenoceptors have a yohimbine/prazosin ratio of 

I 00 (Drew, 1985). 

The potency order for P-adrenoceptors was defined by Furchgott ( 1972): 

isoproterenol > epinephrine > NE > phenylephrine. p1-Adrcnoceptors have an equal affi ni ty 

fo r both epinephrine and NE, whi le p2-adrenoceptors have a greater affinity for epinephrine 

than E (Ruffo lo, 1991 ). lsoproterenol has a greater affini ty fo r P2-adrenoceptors than P1-

adrenoceptors. Activation of Pr adrenoceptors, by isoproterenol, also activates adenylyl 

cyclase to a greater degree than P1-adrenoceptors (Green et al. , 1992). 

Characterization of a-adrenoccptors 

Langer ( 1974) suggested that the a-adrenoceptors, as proposed by Ahlqu ist, were not 

a homogeneous population, and that they be di vided into two subtypes (a1 and a 2) based on 

their respecti ve anatomical differences. I le suggested that a 1-adrenoceptors are located 

postjunctionally, and aradrenoceptors are located prejunctiona lly. Berthelsen and Pettinger 

( 1977) later redefined Langer's definiti on based on a functional approach. They defined a 1-

adrenoceptors as postjunctional receptors that mediate exc itatory responses. The 

prejunctional receptors responsible fo r inhibiting the neuronal release of NE were then 
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classified as cx.2-adrenoceptors (McGrath, 1983; Berthelsen and Pettinger, 1977). This 

functional classification was later disproved by Drew and Whiting ( 1979) who found 

postjunctional excitatory cx. 1- and cx.radrenoceptors. These results suggest that cx. 1-

adrenoceptors are located postjunctionally and mediate an excitatory response. Activation of 

cx.radrenoceptors causes both an inhibitory and excitatory effect at the pre- and postjunctional 

cell membrane, respecti vely, in smooth muscle. 

There does appear to be a difference in the vascular distribution of cx. 1- and cx.2-

adrcnoceptors based on their relative distance from the nerve terminals. cx. 1-Adrenoceptors 

are primarily located along the adventitial-medial border, in close proximity to the 

sympathetic innervation of the artery. Therefore, released NE from the nerve terminals 

preferentially acts at cx. 1-adrenoceptors. cx.2-Adrenoceptors are located farther away 

(extrajunctionally) from the nerve terminals near the intimal layer of the artery. It is 

hypothes ized that cx.radrenoceptors are predominantly stimulated by circulating epinephrine 

in the bloodstream (McGrath, 1983; Langer and Shepperson, 1982). This distribution of cx.-

adrenoceptors has been demonstrated in the hind I imb of the dog by Langer et al., ( 1980). 

However, Langer ct al. , ( 1980) also hypothesized that an additional cx. 1-adrenoceptor 

population resides cxtrajunctionally in conjunction with the population of cx.radrenoccptors. 

Medgett and Langer ( 1986) using the rat tai l artery, demonstrated that cx. 1- and ar 

adrenoceptors are both located extrajunctionally and in close proximity to the nerve 

terminals. These results suggest that cx.2-adrenoceptors are distributed unevenly in blood 
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vesse ls, with their greatest density occurring near the vessel lumen (Medgett and Langer, 

1986). 

The distribution of a 1- and aradrenoceptors is not homogeneous within tissues 

(Medgett and Langer, 1984; Atkinson et a l., 1988). The rat vas deferens and rabbit urethra 

have a higher population of functional postjunctional aradrenoceptors than a 1-

adrenoceptors, while the reverse is true for the bovine oviductal arteries, rat anococcygeus 

muscle, and rat tail artery (Andersson et al., 1984; Drew and Whiting, 1979; Atkinson et al., 

1988; Costa et al., 1992). Whether a homogeneous population of a-adrenoceptors exists in 

the peripheral vessels of the bovine is uncertain . Nevertheless, studies have indicated that 

NE has a high potency for a-adrenoceptors in the isolated bovine tail artery (Ashida et al., 

1988) and iso lated bovine dorsal pedal vein (Solomons et al., 1989). The isolated perfused 

bovine ear artery also elicits a sign ificant pressor response when exposed to phenylephrine 

(Eghianruwa and Eyre, 1991 ). 

There appears to be an inverse relationship in the a-adrenoceptor population along the 

length of the vessel. The density of a 1-adrenoceptors appears to predominate in the proximal 

part of the rat tail , while the density of a 2-adrenoceptors increases in the distal end (Medgett 

and Rajanayagam, 1984; Medgett, 1985; Rajanayagam and Medgett, 1987). There is some 

speculation that a 2-adrenoceptors are predominantly located in the smaller resistance vessels 

(Langer and Shepperson, 1982). 

This lack of homogeneity for a-adrenoceptors makes identification of postjunctional 

aradrenoceptors difficult (Medgett and Langer, 1984). Identification of aradrenoceptors 
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has been conclusively demonstrated using pressor responses in vivo (Langer and Shepperson, 

1982; Langer et al., 1980). However, identification of arterial a 2-adrenoceptors in vitro with 

selective agonists and antagonists has been controversial (Savino and Varela, 1991; Atkinson 

et al., 1988; Dunn et al., 199 1 ). Dunn et al. ( 1991 ), using the isolated rabbit distal saphenous 

artery, suggested that a complex interaction occurs between postjunctional a 1- and <Xr 

adrenoceptors. Therefore, expression of aradrenoceptors is dependent on the prior 

simulation of a 1-adrenoceptors. It has been speculated that increasing the tone of the vessel, 

similar to physiological conditions in vivo, helps to uncover postjunctional aradrenoceptors. 

Angiotensin II and vasopressin have been used to potentiate the response of an a 2-agonist on 

the isolated rat tail artery (Templeton et al., 1989). However, angiotensin II did not always 

potentiate the response of an aragonist on the isolated rat tail artery (Savino and Varela, 

1991). 

a 1- and a 2-Adrenoceptors utilize different second messenger pathways to mediate 

their contractile response. The contractions can either be phasic (response has a short 

duration) or tonic (response is prolonged and maintained) (Ford, 1995). a 1-Adrenoceptors 

are capable of mediating both phasic and tonic contractions. They mediate their effects by 

stimulating the phosphatidylinositol second messenger system. When activated, the a 1-

adrenoceptor couples to a G-protein (Gp). This protein complex stimulates phospholipase C, 

thus catalyzing the hydrolysis of inositol-4,5-bisphosphate into inositol-1,4,5-triphosphate 

(IP3) and diacylglycerol (DAG). IP3 mediates the release of calcium from the sacroplasmic 

reticulum to induce aphasic contraction. DAG activates protein kinase C (PKC) to initiate a 
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tonic contraction. Once PKC is activated it phosphorylates proteins fo und along the actin 

fi lament of the smooth muscle cell , thus initiating a contraction. Protein kinase C also 

mediates the opening of potential-sensitive calcium channels to cause an influx of 

extracellular calcium (Wilson et al., 1992; Ford, 1995). This influx of extracelluar calcium is 

responsible fo r maintaining the ton ic contractions. arAdrenoceptors mediate their response 

by coupling to a G-protein (Gi). This protein complex inhibits adenylyl cyclase, thereby 

decreasing the cytosolic accumulation of cAMP. This resul ts in an influx of extracelluar 

calcium through potential-sensitive channels to cause a pro longed tonic contraction (Ford , 

1995; Ruffo lo et a l., 1991; Wilson et al., 1991). Ashida et a l. (1988) demonstrated that 85% 

of the NE-induced contraction in the myocyte of the bovine tai l artery was mediated by the 

influx of extracellular calcium, while only 15% was due to calcium mobilization from the 

sarcoplasmic reticulum. In the rat aorta, each mechanism was capable of generating 50% of 

the contraction induced by NE. 

It has been well established that both a 1- and aradrenoceptors, as originally 

proposed by Langer (1974), can be further subdivided into distinct subtypes. Investigators 

have proposed several classification schemes for the identification of a 1-adrenoceptor 

subtypes. The discrepancy between classifi cation schemes and nomenclature is dependent on 

the techniques (functional contractions, radioligand binding, and molecular biology) and a 1-

adrenoceptor antagonists used when differentiating between subtypes (Hieble et al., 1995). 

Recently ( 1995), the International Union of Pharmacology Subcommitte on Nomenclature 

for Adrenoceptors proposed that a 1-adrenoceptors can be clearly divided into the three 
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subtypes: a 1A, a 18, and alD. A functional response, using se lective a 1-adrenoceptor 

antagonists for each subtype, has been clearly attributed to each subtype. There are fewer 

uncertainties concerning the subclassification or aradrenoceptors than the a 1-adrenoceptors. 

a 2-Adrcnoccptors have been pharmacologicall y classified into four subtypes (a2A, a 20, 

a 2c,and a 20) using iso lated cell lines and radioligand binding techniques (Bylund, 1992). 

a 1-Adrenoceptors have been found to possess two binding sites that have either a high 

or low affinity for agonists/antagonists (Colucci ct al., 1985; Morrow and Creese, 1986; 

Jagadecsh and Deth, 1987; Minneman, 1988). Epinephrine di splacement studies for the 

[3H]Prazosi n binding s ite have revealed both high and low affin ity binding sites in the bovine 

aorta from young animals (Jagadeesh and Deth, 1987; Jagadeesh et al., 1990). However, 

Jagadeesh et a l. ( 1990) found that the high affinity a 1-ad renoceptor binding site d isappears as 

an animal matures. Therefore, the a 1-adrenoceptors in the adult bovine were dominated by 

the low affi ni ty binding site (Jagadeesh et al , 1990). The low affinity s ite comprised 77% of 

the a 1-binding sites on the bovine thoracic aorta from young anjmals (Jagadeesh and Deth, 

1987). Jagadecsh and Deth (1987) proposed that these two binding sites utilize different 

second messenger pathways for initiating the biological response. When an agonist binds to 

an a 1-adrenoceptor, GDP is dislocated by GTP from the G-protein subunit. The high affi ni ty 

site binds GDP tightly, and is inhibited by the binding o rGTP to the G-protein subunit. 

However, the low affinity site does not bind GDP as ti ghtl y as the high affinity si te, and is 

not affected by GTP-binding. Therefore when the GTP concentration is low, GDP is not 

highly di splaced by GTP from the G-protein subunit o r the high affinity site. As the 
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concentration of GTP increases within a cell , the high affinity site is capable of shifting to the 

low a ffinity site due to the additional bind ing o f GTP to the G-protein subun it, thereby 

destab iliz ing the prote in complex. This uncouples the a. 1-ad renoceptor from the G-protein, 

therefore changing the second messenger cascade (Jagadeesh and Deth, 1987; Jagadeesh et 

a l. , 1990). Jagadeesh and Deth ( 1987), and Jagadccsh ct al. ( 1990), proposed that the low 

affinity s ite is also less efficient than the high affinity s ite in mediating its biological 

response. 

Characterization of P-adrcnoccptors 

Lands et a l. ( 1967) refined the original c lassification of P-ad renoceptors, as proposed 

by A hlquist, by suggesti ng the existence of two types of P-ad renoceptors based on func ti onal 

d iffere nces. They defined P1-adrenoceptors as those mediati ng lipo lysis and myocardial 

contractility, while Pr adrenoceptors were classified as causing bronchod ilation and 

vasorelaxation. P1-Adrenoceptors are located in the cardiac muscle, while Pradrenoceptors 

arc predominantl y located in blood vessels and other smooth muscle. However, the 

epicard ial arteries of the heart are capable of possess ing either subtype, depending on the 

animal species. The bovine descending coronary artery possesses a homogeneous population 

of P 1-adrenoceptors (Purdy and Stupecky, 1986). Pr Adrenoceptors have been characteri zed 

in rat adipose ti ssue by Tan and Curti s-Prior ( 1983). They are also present in the canine 

cutaneous vasculature, and induce vasod ilation (Berl an ct al. , 1994). 
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When activa ted by a ligand, P-adrenoceptors mediate their effects by coupl ing to the 

G-protein, Gs. This protein complex then stimulates adcnylyl cyclase to increase the 

intracellular cAM P concentration (Green et al. , 1992). Green et a l. , ( 1992) demonstrated that 

the P-subtypes have a difference in the ir coupling efficiency. At low epinephrine 

concentrations P2-adrenoceptors acti vate adenylyl cyclase lo a greater degree, and a lso have a 

greater coupling efficiency to the Gs prote in, than P1-adrenoceptors. 
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CHAPTER 2. ST A TEMENT OF THE PROBLEM 

Little knowledge exists about the physiologic/pharmacologic factors which regulate 

the vasoactivity or blood vessels in the bovine. To remedy thi s lack o f knowledge about the 

physiology/pharmacology of the bovine vasculature. we wanted to develop the isolated 

median caudal artery preparation as a model for the study of bovine blood vessels. The 

median caudal artery preparation is an attractive model to use s ince the bovine ta il is readily 

available at slaughter plants. Previously, investigators have primarily used the fo llowing 

isolated vessel preparations in the study o f the bovine vasculature: the coronary artery, the 

cerebral artery, the uterine artery, and the pul monary artery and vei n (Purdy and tupecky, 

1986; Foy et al ., 1992; Ayajiki et al., 1993 ; Suzuki et a l., 1984; Dyer, 1993; Ford ct a l., 1992 ; 

Cai et al., 1994 ; Ignar ro et a l. , 1988) . 

The purpose of thi s study was to determine the characteristics of thi s artery based on 

the fo llowing studies: 

1.) To ascerta in the importance of the catecholamine dispos ition mechanisms using 

inhibitors for uptake 1, uptake2, monoamine ox idase (MAO), and catechol-0-

methyltransferase (COMT). 

2 .) To ascerta in the importance of the endothelium in regulating vasoacti vity . 

3.) To pharmaco logically determine the functionality of a 1- , a 2- , and, Pradrenoceptors 

based on their affinity fo r selective agonists and antagonists . 

4.) To determine the a -adrenoceptor receptor reserve and dissociati on constant fo r NE. 
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CHAPTER 3. MATERIALS AND METHODS 

T issue preparation 

Adult bovine tails were collected at a local abattoir and transported on ice back to the 

laboratory within 120 minutes a fter s laughter. The median caudal artery was dissected out of 

the proximal-medial part of the tai l and c leared of extraneous connecti ve tissue. The tissue 

was kept in a modified Krebs' solution with the fo llowing composition (mM): NaCl, 11 5.2 1; 

KCI, 4.70; CaCl2, 1.80; MgS0 4, 1.16; KH2P0 4, 1. 18; NaHC03, 22. 14; dextrose, 7.88; and 

0.03mM EDT A. Arteries were cut into ring segments 4mm in length. Through each lumen 2 

triangular stainless steel wires were then inserted. The triangular wires were suspended by 

threads in a I Oml iso lated ti ssue bath. One thread was looped under a stationary support near 

the bottom of the bath, while the other thread was connected to a Grass FT-03 force 

transducer. T issue baths, containing Krebs' solution, were maintained at 37°C and aerated 

wi th a 95% 0 2 - 5% C02 mixture. Tissue responses were recorded isometrica lly by a Grass 

or Beckman polygraph (model 7 or model R6 I I, respectively). Ring segments were initially 

stretched to a tens ion of 10- 12 grams (g) and then allowed to relax to a tension of 3g over a 

period of 60 minutes. T issues were then equilibrated at a baseline tension of 2g for at least 

30 minutes. Krebs' so lution was replaced every 20 minutes unless otherwise indicated . For 

each experimental trial , adjacent rings from the same arterial segment were used. 
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Generation of concentration response-curves 

In experiments to evaluate the effect of endothelium removal and L-NAME on the 

E response and to determine the dissociation constant for NE and several antagonists, a ll 

arteries were treated with inhibitors for MAO, COMT, uptake" and uptake2. During the 90 

minute equilibration period all arteries were incubated with the MAO inhibitor, iproniazid 

(0.36mM), for 60 minutes and washed every I 0 minutes over a 40 minute period. Before 

generating a concentration-response relationship to an agonist, the arteries were equilibrated 

with cocaine (3µM), corticosterone ( 1 O~tM) , and tropolonc ( I O~tM) for 20 minutes to block 

uptakel> uptake2 , and COMT, respecti vely. l f cocaine induced a contraction above base line 

(2g tension), the experiment was discarded. 

Administration of each agonist concentration was done cumulatively in 

approximate ly half-log increments. The response to each concentration was allowed to reach 

its maximum before the next concentration was added to the bath. The contractile response 

of each individual agonist concentration was then plotted. Data measurements were obtained 

at the effective agonist concentration required to elicit 50% of its max imal response (EC50) , 

as indicated by Schi ld ( 1949). In experiments that evaluated inh ibitors for the catecholamine 

disposition mechanisms and the dissociation constants for NE and several a -adrenoccptor 

antagonists, a concentration-response curve was generated (and measured) in the absence 

(EC50) and presence (EC50*) of the inhibitor/antagonist under evaluation. The concentration 

ratio (CR) of the agonist EC 50*/EC50 was determined (Furchgott, 1972). 
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Adjusting for en itivity changes 

Any time-dependent shift of the agonist concentration-response relationship during 

the course of an experiment was monitored as recommended by Furchgott (l 972), and as 

used in our laboratory (Zhang and Dyer, 1990). A "time control tissue," which was not 

treated with the drug under evaluation, was paired with each experiment. The concentration 

ratio (CRT) for any time-dependent shift of the agonist concentration-response relationship 

(EC50 at time t /EC50 at time 0) was determined from the two control agonist concentration-

response curves. The concentration ratio (CR) obtained for tissues treated with inhibitors and 

antagonists for the di sposition mechanisms and adrenoceptors, respectively, were adjusted 

according to the formula: CR=CRJCRT. 

Evaluation of the norcpincphrine disposition mechanisms 

Factors regulating the NE concentration at the receptor site were evaluated by the 

ability of each enzymatic and uptake inhibitor to shift the concentration-response curve to the 

left. The disposition mechanisms for both fresh and co ld stored (24 hrs.) ti ssues were 

evaluated. 

Two enzymatic processes for catecholamine inactivation are monoamine oxidase 

(MAO) and catechol-0-methyltransferase (COMT). Iproniazid (0.36mM) was used to 

inactivate MAO, and tropolone ( I 0- 1 OOµM) was used to block COMT. To ascertain the 

importance of neuronal uptake 1, cocaine ( 1- IOOµM) and desipramine (O.J nM-I OµM) were 
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used. Corticosterone 2 1-acetate (0. 1- 1 OOµM), an extraneuronal uptake2 inhibitor, was 

evaluated as we ll as its solvent, ethano l ( 10µ1). 

The equilibrated tissues were initially primed with I OµM NE for l 0 minutes and then 

washed until they relaxed to baseline. Ring segments were then allowed to stabilize at 

baseline for 30 minutes. A control NE concentration-response re lationship was generated 

and the tissues washed until they relaxed to baseline. Each concentration of corti costerone, 

ethano l, cocaine, desipramine, and tropolone was allowed to equilibrate with one ring o f the 

artery segment for 30 minutes. Iproniazid was allowed to equilibrate with an arteria l ring for 

60 minutes, and then the tissue was washed every l 0 minutes over a 40 minute period. This 

was fo llowed by the determination of a second NE concentration-response relationship on all 

ring segments . 

The data analysis for the ab ility of each inhibitor to shift the NE concentration-

response curve to the left was evaluated at the EC50 of the NE concentration-response curve 

before (EC50) and after (EC50*) equili bration with the inhibitor. After correcting fo r 

sensitivity changes over time, a potentiation facto r (PF) was calcu lated using the equati.on: 

PF = (EC50) / ( ECso*). 

The control NE concentration-response curves (0.0 1- 1 OµM) were also analyzed based 

on the sex of the animals. Concentration-response curves to NE, for males and females, were 

analyzed at the EC 50 and maximum response. 
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Evaluation of the response to tyramine 

During equ ilibration, fo ur ring segments were incubated with 0.36mM iproniazid for 

60 minutes and then washed every I 0 minutes over a 40 minute period. The ti ssues were 

then primed with 3µM of NE for I 0 minutes, and washed unti l they relaxed to baseline. All 

the tissues were equilibrated with cocaine (3µM) for 20 minutes to block uptake 1• This was 

followed by the administration of I OµM NE to determine the control response. After the 

response to NE had reached a plateau, the ti ssues were washed (five times) for at least 30 

minutes and allowed to stabilize at the baseline. Two of the four ti ssues were pretreated with 

3µM cocaine for 20 minutes. This was fo llowed by determining a E and tyramine 

concentration-response relationship for both agonists in the presence and absence of cocaine. 

After determining the control response, the response to NE in the presence of cocaine was 

approximately similar to the control response. It was then assumed that after the ti ssues had 

been repeatedly washed fo llowing the determination of the con tro l response, that cocaine did 

not remain in the tissue and a lter the response of the tissue to the subsequent experimental 

procedures. The response produced by each respective ago ni st conce ntration admini stered in 

the absence and presence of cocaine was analyzed for significant differences. 

The effect of endothelium removal on the norepinephrine response 

One ring was denuded by the careful rotation of a blunt toothpick inside the lumen of 

the vessel, while the endothelium of the other ring was left intact. After the equ ili bration 

period, the two ring segments were primed with 3µM NE for I 0 minutes and washed every 
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10 minutes for 40 minutes. This was fo llowed by the admi nistration of 120mM KCI. After 

obtaining a peak response to KC!, the ti ssues were washed and allowed to relax to baseline. 

The rings were pretreated with uptake and enzyme inhibitors, followed by the generation of a 

NE concentration-response relationship. The tissue's response to NE in the absence and 

presence of an endothelium was analyzed at their respective EC50 values. 

The effect of L-NAME on the norepinephrine response 

After the equilibration period, the two arterial ring segments were primed with 3µM 

E for 10 minutes and washed every 10 minutes for 40 minutes. This was followed by the 

administration of I 20mM KC!. After obtaining a peak response to KCl, the tissues were 

washed and allowed to relax to baseline. One tissue was pretreated with the nitric oxide 

synthase inhibitor, ro N-n itro-L-arginine methyl ester HCl (L-NAME; I OOµM), for 30 

minutes. All rings were pretreated with uptake and enzyme inhibitors, followed by the 

generation of a NE concentration-response relationship. The NE concentration-response 

curves were analyzed at their EC50 in the absence and presence of L-NAME. 

The effect of L-NAME on acetylcholine-mediated relaxation 

After the equilibration period, the two ring segments were primed with 3µM NE for 

10 minutes, and washed every I 0 minutes for 40 minutes. One ti ssue was pretreated with the 

nitric oxide synthase inhibitor, L-NAME (1 OOµM), for 30 minutes. Both tissues were 

initially contracted with 45mM KC! and allowed to stabi li ze at their maximum contractile 
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response. A cumulative acetylcholine concentration-response relationship (0.01 -1 OOµM) 

was superimposed over the KCl-induced contraction. The response produced by each 

incremental increase in concentration of acetylcholine, in the absence and presence of L-

NAME, was analyzed for s ignifi cant differences. 

Comparison of the contractile response to several agonists 

Contractile responses to epinephrine, angiotensin TI, 5-hydroxytryptamine (5-HT), 

medetomidine, B-HT 920, phenylephrine, and NE were evaluated using seven rings sectioned 

from the same artery segment. After equilibration, all the ti ssues were primed with 3µM NE 

for 10 minutes. The tissues were then washed and allowed to stabil ize for 30 minutes at 

baseline. T issues were then contracted with 120mM KCI. Fo llowing washout and relaxation 

to baseline, they were allowed to stabilize fo r 30 minutes before generating a cumulative 

concentration-response relationship to each agonist (0. 1 nM-1 OOµM). 

To maximize the agonist concentration at the receptor site tissues were pretreated, in the 

fo llowing way, with uptake and enzyme inhibitors. Tissue preparations for B-HT 920, 

epinephrine, phenylephrine, and NE were incubated with 0.36mM iproniazid for 60 minutes 

and then washed for 40 minutes . These four rings were pretreated with 1 µM propranolol for 

30 minutes to block P-adrenoceptors, and also pretreated with cocaine (3µM) and 

corticosterone (1 OµM) for 20 minutes to block uptake 1 and uptake2, respectively. Tissues for 

5-HT (serotonin) were pretreated with 3µM cocaine fo r 20 minutes before generating its 

concentration-response relationship. Tissues receivi ng medetomidine and angiotensin were 
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not equilibrated with uptake and enzyme inhibitors. The agon ist concentration-response 

curves were analyzed at their EC50 and maximum response. 

Evaluation of the response to isoproterenol 

Two tissue rings were sectioned from the same artery segment. After equilibration, 

the tissues were pretreated with the a-adrenoceptor antagonist, phentolamine ( 1 µM), for 45 

minutes. Tropolone (I OµM) and corticosterone (1 OµM) were added to the preparation for 20 

minutes to block COMT and uptake2, respectively. Both ti ssues were then contracted with 

45mM KCI and the response was allowed to stabilize. Cumulative add itions of isoproterenol 

(0.1-1 OOµM) were superimposed upon the KCl-induced contraction of one tissue preparation. 

The second tissue served as a control in order to monitor relaxation with time. 

The amount of relaxation, in both the time control and isoproterenol tissue 

preparations, was measured at the same point in time after each response to isoproterenol had 

stabi lized. This relaxation amount was expressed as a percent of the maximum response to 

45mM KCI in each tissue. The percent relaxation due to time was subtracted from the 

percent relaxation due to isoproterenol , thus obtaining the percent relaxation due to 

isoproterenol alone. 

The effect of propranolol on the response to isoproterenol 

During equilibration, the ring segments were incubated with the MAO inhibitor, 

0.36rnM iproniazid, for 60 minutes and washed every I 0 minutes for 40 minutes. Tissues 
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were then primed with 3µM NE for 10 minutes and washed unti l they stabilized at baseline . 

One tissue served as a control and received no antagonist. The other ti ssues were 

equilibrated wi th one concentration of propranolol (30nM, 1 OOnM, I µM) for 60 m inutes. All 

the ti ssues were pretreated w ith the nonselective a -adrenoccptor antagonist, phentolamine 

( I µM), for 60 minutes, and also pretreated with corticosterone (1 OµM) and tropolone (1 OµM) 

for 20 minutes to block uptake2 and COMT, respectively. All the tissues were then 

contracted w ith 45mM KC!, and the responses were allowed to stabilize. An isoproterenol 

concentration-response relationship (0.0 1-1 OOµM) was superimposed over the KCI-induced 

contraction. After the max imum response to I OOµM isoproterenol was obtained, 1 OµM 

sodium nitroprusside was added to the tissues in order to ascertain if the ti ssues were capable 

of fu rther relaxation. 

Determination of the dissociation constant (KA) for norcpinephrine 

After the equilibration period, ring segments were primed w ith 3µM NE for 10 

minutes and washed every 10 minutes for 40 minutes. Before generating a NE 

concentration-response relationship, the rings were pretreated w ith uptake and enzyme 

inhibitors, and also p roprano lol (0.3µM) for 60 minutes to block P-adrenoceptors. A 

cumulative concentration-response relationship was initially generated to NE. Following 

washout and stabilization at the baseline, dibenamine (0.3~LM for 20 minutes) , an irrevers ible 

a-antagonist, was then added to one of the ti ssue baths to inactivate a fraction of the a-

adrenoceptors. The other tissue served as a "time control tissue." After the dibenamine 
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treatment, the tissues were washed 4-5 times over a period o f 30 minutes. This was followed 

by determining a second NE concentrati on-response relationship. 

The methods and statistical analysis fo r determining the KA of NE follow those as 

described by Furchgott and Bursztyn ( 1967). After correcting for time-dependent changes in 

sensitiv ity, the NE concentration-response curves before ( l/[A]) and after ( l / [A']) 

dibenamine treatment were plotted. A double reciprocal plot of equi-effecti ve concentrations 

of NE before (1 /[A]) and after (1 /[A']) dibenamine treatment was made. This plot yields a 

slope of 1/q and an intercept of ( l-q)/q(K1J Using the slope and abscissa intercept, the KA 

and fraction of uninhibited receptors remaining, q, were calculated us ing the equation: l / [A] 

= 1-q/q[A'] + l/q(KA). In this equation the fraction of receptors remaining after dibenamine 

treatment, q, is equal to the rec iprocal of the slope. In simplifying thi s equation , KA= s lope-

! / intercept. To estimate the receptor reserve the fo llowing equation was used (Ruffo lo, 

1982): K A I EC50. 

Determination of dissociation constants (K8 ) for several antagonists 

Furchgott's ( 1972) methods were used to determine pA2 and KB va lues for the 

adrenoceptor antagonists, prazosin, phento lamine, rauwolscine, and idazoxan. The pA2 for 

prazosin was determined against the selective a 1-agonist, phenylephrine, and the 

nonselective a -adrcnoceptor agonist, NE. The pA2 for phentolan1ine and idazoxan were 

determined against E and phenylephrine, respectively. 
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After the equilibration period, the ring segments were primed with 3µM NE for l 0 

minutes and washed every I 0 minutes for 40 minutes. Before determining agonist 

concentration-response relationships, the rings were pretreated with uptake and enzyme 

inhibitors, and also propranolol (0.3µM) for 60 minutes to block ~-adrenoceptors. A control 

agonist concentration-response relationship was initially attained, and the tissues were 

washed until they stabi lized at baseline. One concentration of either prazosin (3nM, l OnM, 

30nM, 0.1 µM), phentolamine (30nM, 0.1 µM, 0.3µM, 1 µM), or idazoxan (3nM, I OnM, 

30nM, O.l~LM, 0.3µM, lµM), was then allowed to equilibrate for 60 minutes with each ti ssue 

before repeati ng the agonist concentration-response relationship. 

K8 and pA2 values were also determined for idazoxan, rauwolscine, and prazosin 

against the selective a 2-adrenoceptor agonist, medetomidine. After the equilibration period, 

ring segments were primed with 3µM NE for 10 minutes and washed every I 0 minutes for 40 

minutes. A concentration-response relationship to medetomidine was not generated before 

and after the tissue had equilibrated with the inhibitor (as was previously described using NE 

and phenylephrine) since medetomidine could not be washed out of the tissue after the 

determination of the control concentration-response relationship. Therefore, a control 

cumulative concentration-response relationship was determined to KCl (3- l 20mM) on all the 

tissues. The tissues were washed until they relaxed back to baseline. One tissue served as 

the control and received no antagonist. The other tissues were each equilibrated with one 

concentration of prazosin (3nM, l OnM, 30nM, 0. 1 µM, 0.3µM), rauwolscine (3nM, 30nM, 

O.lµM), or idazoxan (lOnM, 30nM, O.lµM, 0.3~tM, lµM) for 60 minutes. All the tissues 
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were pretreated with uptake and enzyme inhibitors, and a lso propranolol (0.3µM) for 60 

minutes to block P-adrenoceptors. This was followed by determining a medetomidine 

( I OnM-1 OOµM) concentration-response relationship. The response of each ti ssue to 

mcdetomidine was expressed as a percentage of its maximum response to KCI , and an EC50 

va lue was determined. Unfortunately, prazosin depressed the response to medetomidine 

below the EC50 value for the response to KC!. Therefore, the response to medctomidine was 

expressed as grams tension developed, not as a percentage o f the KCI response. 

The pA2 and K13 values were calculated according to Arunlakshana and Schild ( 1959), 

as described by Furchgott ( 1972), using the equation: log (DR- I) = log [B] - log K8 . The 

contractile response of each individual agonist concentration in the absence and presence of 

an antagonist was plotted to obtain the effective agonist concentrati on required to el ic it 50% 

of its maximal response (EC50) as indicated by Schild ( 1949). As was previously mentioned, 

the concentration ratio (CR) was calculated at the EC50 of the agonist concentration-response 

re lationship in the absence (A) and presence (A*) of each competiti ve antagonist 

concentration; whereby, CR = A*IA. After correcting for time-dependent changes in 

sensitivity, a Schild plot (Furchgott, 1972) of the log (CR- I ) against the -log of each 

antagonist concentration, [B] , was made to obtain the pA2 value (abscissa intercept) . If the 

blockage is competitive, the slope of the regression line should be unity. Under these 

dynamic conditions the pA2 = -log K13. 
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The effect of tone on the ti suc's respon e to medetomidine 

Three tissues were equilibrated for 90 minutes and then primed with 3µM NE for 10 

minutes. The tissues were washed (~ 30 minutes) until they stabilized at baseline. 120mM of 

KCI was administered and the response was allowed to reach its maximum before washing 

out. After the baseline had stabilized at 2g, NE (0.3µM) and phenylephrine (0.3µM -3µM) 

were added to one of the two tissues, respectively, to induce a small contracti le response just 

above threshold. The third tissue served as a control and received no agonist to induce tone. 

When the contractions had stabilized, a medetomidine cumulative concentration-response 

relationship was generated on all three ti ssues. 

Statistical analysis 

All results presented were corrected for sensitivity changes over time (see "Adjusting 

for sensitivity changes"). Results for each measurement arc presen ted as mean ± S.E. The 

number of different animals, n, for each experiment is indicated. Agonist EC50 values were 

calculated using least squares linear regression on the steepest part of the concentration-

response re lationship. Significant differences between two means were tested us ing the two-

tai led, paired or unpaired t-test (Eckblad, 1988; Netter et al., 1990). To test for signifi cant 

differences between means and variances when there were more than two groups, the one-

way analysis of vari ance (ANOVA) and F-max test were used, respectively (Eckblad, 1988; 

etter ct al., 1990). If the data was not normally di stributed or did not have an equality of 

variance, then a power transformation was used on the data before using ANOV A. When a 
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significant di ffe rence was detected using ANOV A, the a posteriori sum of squares 

simultaneous test procedure was used to make multiple compari sons between the different 

means (Eckblad, 1988). In the Schild plot, the t-test (null hypothesis is that s lope= unity) 

was used to determine if the slope was significantl y di fferent from unity (Eckblad, 1988). 

D ifferences were taken as significant when p<0.05. 

Drugs 

The fo llowing drugs were used: angiotensin II , (-)-epinephrine, (-)-i soprotereno l, (-)-

norepinephrine, cocaine, corticosterone 2 1-acetate, iproniazid, desipramine HCI, 5-

hydroxytrypta mine, sod ium nitroprusside, , co N-nitro-L-arginine methyl ester HC I (Sigma 

Chemical Co., t. Louis, MO); dibenamine I ICI (Smith, Kline, and French, Philadelphia, 

PA); medetomid ine HCI (Farmos Group Ltd., Turku, Finland); prazosin HC I (Pfizer Inc ., 

Brooklyn, NY); propranolol HCI (Ayerst Laboratori es, Inc., New York, N Y); tropolone 

(Aldrich Chemical Co., M ilwaukee, WI); tyrarnine (Calbiochem. , La Jolla, CA); 

phento lamine mesylate and rauwolsc ine HCI (Research Biochemicals lne., Natick, MA); 

phenylephrine HC I (Winthrop Laboratories, New York, NY); idazoxan (Kingston-Upon-

Hull , U.K.); B-HT 920 (Boehringer, lndelhe im, Germany). All drugs were disso lve in 9% 

saline except for corti costerone 2 1-acctate and dibenamine which were disso lved in ethanol. 
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CHAPTER 4. RESULTS 

Methodological considerations 

Several laboratories, including our laboratory (Zhang and Dyer, 1990), have stored 

fresh tissue overnight in a cold room to be reused the fo llowing day ( hibata et al., 197 I ; 

Langer et a l. , 1974). In our preliminary studies of the catecholamine disposition 

mechanisms, it was observed that ti ssue sensitivity significantly increased when tissues were 

co ld stored (4°C) for twenty-four hours (n=5). The maximum contracti le response prod uced 

by 30µM NE in fresh and cold stored tissues was 6.40 ± 0.62g and 9.5 I ± 0.64g, 

respecti vely (p<0.02). The response to E in the presence of the COMT inhibito r, tropo lone 

( IOµM; n=3), or the uptake, inhibitor, cocaine ( 1-IOOµM; n=3), differed between fresh and 

cold stored tissues. These inhibitors did not significantly potentiate the NE response in cold 

stored tissues. ince fresh and cold stored tissues differed in thei r response to E, only fresh 

ti ssues were used in subsequent experiments. This was similarly done by Nair and Dyer 

( 1974) using guinea-pig umbilical vessels. They found that the contractility of the um bi I ical 

vessels to serotonin, co ld stored (4°C) fo r more than four hours, differed from fresh tissue. 

The concentration-response curves to NE showed no sign ificant difference in potency 

and maximum response between the male and female median caudal arteries (n=6). The 

EC50 of male and female arteries was 5.28 ± 0.6 1 µMand 7.5 1±1 .77µM, respectively. The 

maximum response to 1 OµM NE on the median caudal artery from male and female bovine 
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was 6.92 ± 1.01 g and 7.86 ± 1.31 g, respectively. Since there was not a significant difference 

between male and female arteries in their response to NE, the arteries were not separated 

based on sex in subsequent experiments. 

Evaluation of the disposition mechanisms for norepinephrine 

The sensitivity of the tissue to NE is partially determined by the NE concentration 

within the neuromuscular junction and at the receptor site. A reduction in the NE 

concentration within the junctional cleft by the enzymatic (MAO and COMT) and uptake 

mechanisms (uptake1 and uptake2) may reduce the response of the tissue to NE. Inhibition of 

each of these disposition mechanisms should increase the response of the tissue to NE if that 

mechanism has an important role in the inactivation of NE within the neuromuscular 

junction. 

The enzymatic inactivation of norepinephrine was studied using iproniazid and 

tropolone, which are inhibitors for monoamine oxidase (MAO) and catechol-0 -

methyltransferase (COMT), respecti vely. Tropolone ( IOµM; n=5) significantly (p<0.01) 

shifted the EC50 of the NE concentration-response curve to the left approx imately 1.7-fold. 

However, there was no significant potentiation of the response to NE using 1 OOµM tropolone 

(n=5; Figure 4.1 ). No potentiation of the NE response was ascertained using 0.36mM 

iproniazid (n=6; Figure 4 .2). 
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Figure 4 .1. T he effect of tropo lone pretreatment (30 minutes) on the contractile response to 
norepinephrine. An asterisk(* ) indicates points on the curve (1x 10-5 M 
tropolone) wh ich are significantly different from the time control response. 
Each data po int represents the mean ± S.E. for 5 anima ls. 



39 

200% 

,.-.... 150% ---control ~ 0 
0 - - o - ·Time Control 0 

II • 0.36 mM lproniazid 
~ .,... 
0 
x 100% -

µJ 

b 
Cl) 
Cl) c 
0 
0. 
Cl) 
Cl) 

o:'.'. 
~ 0 50% 

8 7 6 5 4 

-Log [Norepinephrine] (M) 

Figure 4.2. The effect of iproniazid pretreatment (60 minutes) on the contractile response to 
norep inephrine. Each data point represents the mean± S. E. fo r 6 an imals. 
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Extraneuronal uptake2 was evaluated using corticosterone 21-acetate (n=5). The NE 

concentration-response curve was shifted three-fold to the le ft using corticosterone 

concentrations of 1-1 OµM (p<0.02; Figure 4.3). The solvent for corticosterone, I 0µ1 ethanol , 

did not s ignificantly affect the EC50 for NE (n=5; Figure 4.4). 

Neuronal uptake1 was evaluated using the inhibitors, desipramine (n=5) and cocaine 

(n=6). Desipramine (0.3 nM-1 OµM) fa iled to potenti ate the response to NE. However, there 

was s ignificant inhibition (p<0.05) of the response to NE by I OµM desipramine, which 

shifted the NE EC50 to the right approximately fifteen-fo ld (Figure 4.5). Unlike desipramine, 

cocaine s ignificantly shifted the NE concentration-response curve to the left three- fo ld at 

concentrations of I OµM (p<0.00 I) and l OOµM (p<O.O I), however the potentiation by I µM 

cocaine was not s ignificant (Figure 4.6). Occasionally, coca ine at concentrations from 3-

l OOµM induced contracti ons. These experiments were exc luded from the study. Since 

1 OµM cocaine induced contractions more frequently than 3~LM cocaine, 3µM cocaine was 

used to block uptake 1 in subsequent experiments. 

The indirect agonist, tyramine, was used to investigate the importance o f the uptake1 

disposition mechanism. Tyramine acts through uptake1 to re lease NE from storage vesicles 

found within the prejunctional nerve terminal. Therefore, a tyramine- induced contraction 

indicates that stored NE is present in the nerve termina l. Blocking uptake 1 with cocaine 

should then decrease the amount of NE released by tyramine within the prejunctional nerve 

terminal (Furchgott, 1963). Cocaine (3µM) depressed the response to tyramine, but the 

magnitude of the effect was not sign ificant (n=4 ; Figure 4.7). Cocaine (3µM) was also found 
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Figure 4.3 . The effect of corticosterone pretreatment (30 minutes) on the contractile response 
to norepinephrine. Letters (a = Ix I o·6 M corticosterone, b = Ix I 0·5 M 
corti costerone) indicate points on the curves that are s ign ificantl y different from 
the time control response. Each po int represents the mean ± S.E. for 5 anima ls. 
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to norepinephrine. Each data point represents the mean± .E. for 5 animals. 
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Figure 4.5. The effect of desipramine pretreatment (30 minutes) on the contractil e response 
to norepinephrine. An asterisk (*) indicates points on the curves that are 
significantly d ifferent from the time control response. Each data point represents 
the mean ± S. E. for 5 animals. 



44 

250% 

f 
200% 

---+- Control ,....._ 
'cf?. · · o · ·Time Control 
0 

O - l x10-6M Cocaine 0 - .. 
II ---- Ix I 0 ·5 M Cocaine 

:2: 150% l x 10-4M Cocaine .,., • 0 -x: 

w 
6 

11) 100% Vl c: 
0 a. 
Vl 
11) 

~ 

'cf?. 
50% 

.~r 

0% 

8 7 6 5 4 
-Log [Norepinephrine] (M) 

Figure 4.6. The effect of cocaine pretreatment (30 minutes) on the contracti le response to 
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points on the curves that are significantly different from the time control 
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Figure 4.7. The concentration-response relationship for norepinephrine and tyramine in the 
presence and absence of 3~tM cocaine. A contro l response was initially 
determined to I OµM NE in the presence of 3 µM cocaine on all four tissues. 
Fo llowing washout, two o f the tissues were pretreated wi th 3µM cocaine (20 
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response to norepinephrine in the absence of cocaine. Each data point represents 
the mean ± .E. fo r 4 animals. 
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to significantly potentiate the response to NE (n=4). In these iproniazid treated tissues, 

tyramine elicited a max imum response that was 40% and 34% of the max imum response to 

NE in the absence and presence of cocaine, respectively . The experimental design of the 

present study assumed that the control response to NE, in the presence of cocaine, was 

completely washed out of the ti ssue before the subsequent procedures were carried out. 

There is a possibility that cocaine was not completely washed out of the tissue after the 

determination of the control response. However, the results do not suggest thi s since the 

control response was not significantly different from the response to E, in the presence 

cocaine, w hen determining the tyramine and NE concentration-response re lationships. 

The role of the endothelium in vasoactivity 

The endothelium was removed by rubbing the lumen of the tissues w ith a toothpick 

(n=4). This d id not significantly increase the max imum tension developed (g) to NE or shift 

the EC50 of the NE concentration-response curve to the left (Figure 4.8). Coincidentally, 

inhibiting the synthes is of NO with L-NAME also did not s ignificantly effect the maximum 

tension developed (g) to E or shift the EC50 of the NE concentrati on-response curve to the 

left (Figure 4.9). Acetylcholine relaxed arteries contracted by KC I ( 45mM), addition of 

sodium nitroprusside ( I O~tM) further relaxed the contraction by approx imate ly 15%. 

Pretreatment wi th L-NAME (I OOµM ; n=4) inhibited the acetylcholine-induced relaxation 

(Figure 4.10). 
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Figure 4.8 . The response to norepinephrine in the presence and absence of an endothe lium. 
To remove the endothelium, the lumen of the tissues were rubbed us ing a 
toothpick. A control response to 120 mM KCI was initially determined before 
generating a norepinephrine concentration-response relationship. Each data point 
represents the mean ± .E. for 4 animals. 
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Comparison of the contractile response to several agonists 

The maximum response and potency (EC50) produced by several agonists were 

compared. The max imum contractile response e licited by these agonists from highest to 

lowest was as fo llows: epinephrine > norepinephrine > serotonin > phenylephrine > 

angiotensin II > medetomidine (Table 4.1 ). The a 2-adrenoceptor agonist, B-HT 920, fai led 

to produce a contraction (0.01 -1 OOµM). The potency of the various agonists was calculated 

at the EC50 of their respective concentration-response curves (F igure 4. 11 ). From highest to 

lowest, the order of potency was as fo llows: angiotensin II > serotonin > norepinephrine > 

medetomidine > epinephrine > phenylephrine (Table 4. 1 ). 

Determination of the dissociation constant (KA) fo r norepinephrine 

The fraction of a-adrenoceptors remaining, q, after irreversible a -adrenoceptor 

inactivation with dibenamine (O.J µM) was calculated from the slope of the double reciprocal 

plot of equi-effective concentrations of NE before and aft.er dibenamine treatment (n=5; 

Figu re 4.12). The ca lcu lated q value was 0.26, indicating 26% of the a -adrenoeeptors 

remained after dibenamine treatment. a-Adrenoceptor inactivation wi th dibenamine 

decreased the tissue response to NE by 64%. Several ti ssues contain an excess number of 

receptors which must be occupied in order to produce a maximum response. This excess of 

receptors above that needed to produce the maximum response const itute the receptor reserve 

(Ruffolo, 1982). 
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Table 4 .1. Comparison of agonist-induced contractile responses. 

Agonist pD2 (-Jog EC50) Maximum Response (o/o) 
Angiotensin IT 7.77 64 ± 16 

Serotonin 6.59 90 ± 16 
Norepinephrine 6.1 6 11 7 ± 24 

Medetomidine 5.61 46 ± 9 
Epinephrine 5.16 139± 34 
Phenylephrine 4.70 87 ± 15 

The maximum response is expressed as a percentage of the response to I 20mM KCI. 
The data are expressed as the mean ± .E. (n=S). 
B-HT 920 fa iled to produce a response (n=3). 
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Figure 4.11. Comparison of agonists to induce a contraction. A control response to 120 mM 
KCI was determined on all tissues before generating the agonist concentration-
response relationship. Each data point represents the mean ± S.E. for 5 
animals. 
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Figure 4.12. Determination of the dissociation constant for norepincphrine. (A) The 
contractil e response to norepinephrine before and after treatment (20 minutes) 
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The calculated NE dissociation constant (KA=3. I l µM) was higher than the NE EC50 

( I . I 4µM). The ratio of K/EC50 (2.73) indicated that an a.-adrcnoceptor reserve exists in the 

bovine median caudal artery. According to Ruffo lo (1982), the difference between the KA 

value and NE EC50 (as the K/EC50 becomes greater than 1) renects the existence and 

magnitude of the a.-adrenoceptor reserve. The percentage of adrenoceptors that need to be 

occupied to generate a half-maximal response was calculated using the ratio EC50/KA, which 

is equal to 0.37 (Ruffolo, 1982). It can be concluded that 3. 11 µM NE bound 50% of the a.-

adrenoceptors, but NE only needed to occupy 37% of the a.-adrenoceptors to achieve a half 

maximal response. This 37% receptor occupancy was achieved at 1. I 4µM NE. 

Determination of the dissociation constants (K8) for a.-adrenoccptor antagonists 

Phentolamine, the nonselecti ve a.-adrenoceptor antagonist, shi fted the NE 

concentration-response curve to the ri ght in a concentration-dependent fashion (n=6; Figure 

4.13). The slope (-1 .05) o f the Schild plot (Figure 4.14) was not significantly different from 

unity indicating that the antagonism by phentolamine was competiti ve. The calculated pA2 

and K8 values were 7.36 and 43.65nM, respectively. 

Prazosin , a selective a. 1-adrenoccptor antagonist, shifted the NE concentration-

rcsponse curve to the right at concentrations of 3, 10, 30, and I OOnM (n=5; Figure 4 .15). 

When the data were subjected to Schild plot analysis (Figure 4.1 6), the s lope was -0.99 which 
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Figure 4 .13. The effect of phento lamine pretreatment (60 mi nutes) on the contractile 
response to norepinephrine. Each data point represents the mean ± S.E. fo r 6 
an ima ls. 
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Figure 4.15. The effect of prazosin pretreatment (60 minutes) on the contracti le response to 
norepinephrine. Each data point represents the mean ± S.E. for 5 animals. 
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Figure 4.16. child plot fo r prazosin against norepinephrine. CR represents a ratio at the 
EC50 of norepinephrine a fter and before antagonism by various prazos in 
concentrati ons (see Figure 4.15). The EC50 data was corrected for time-
dependent changes befo re being subjected to Schi ld plot analys is. Each data 
po int represents the mean CR ratio from 5 animals. The pA2 va lue for prazosin 
is represented by the abscissa intercept 
(y = -0.99x + 8.67; r = 0.95; pA2 = 8.74). 
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was not significantly different from unity. The calculated pA2 and K 13 values for prazosin 

against NE were 8.74 and 1.82nM, respectively. 

Prazosin was a very potent antagonist against the selective a 1-adrenoceptor agonist, 

pbenylephrine (n=5). Incremental increases of prazosin (3-30nM) inhibited and gradually 

depressed the maximum response to phenylephrine (Figure 4. 17). The data were analyzed at 

the EC30 instead of the EC50 since the response to phenylephrine in the presence of prazosin 

did not always reach the 50% level. The contraction was almost completely inhibited by 

0. 1 µM prazosin (data not shown). The Schild plot (Figure 4. 18) yielded pA2 and K8 values 

of 9. 11 and 0.78nM, respectively; the slope (-0.83) was not significantly different from unity. 

Prazosin (3-30nM) depressed and shifted the concentration-response curves for the 

a 2-adrenoceptor agonist, medetomidine to the right. However, even though each animals' 

response to medetomidine was inhibi ted by prazosin, all the animals differed by a large 

magnitude in their response to medetomidine in both the presence and absence of prazosin. 

This large degree of variability caused the magnitudes to not be significantly different from 

the control response (n=6; Figure 4. 19). The selective a 2-adrenoceptor antagonist, 

rauwolscine (3 nM-100nM), was evaluated against medetomidine (n=6). No inhibition was 

fo und (data not shown). The highly selecti ve a 2-adrenoceptor antagonist, idazoxan (RX 

78 1094), did not alter responses to either medetomidine (Figure 4 .20) or phenylephrine 

(F igure 4.2 1 ). 
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phenylephrine. Each data po int represents the mean ± .E. for 5 animals. 
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Figure 4.19. The effect of prazosin pretreatment (60 minutes) on the contracti le response to 
medetomidine. Each data point represents the mean ± S.E. for 6-7 animals. 
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Figure 4.20. The effect of idazoxan pretreatment (60 minutes) on the contractile response to 
medetomidine. Each data point represents the mean± S.E. for 6 animals. 



64 

150% 

1--.I ,.-..., 
~ 125% 0 
0 
0 

, 

II 
v - - • - ·Control c 
] 100% 

~Time Control 
0. 

I x I o-8 M ldazoxan ~ 0 ->-. c • I x I O -6 M ldazoxan v 
...s::: 
0.... 75% 
~ 

"i 
0 -><: -~ 50% v 

C/l c 
0 
0. 
C/l v 
~ 25% 
~ 

8 7 6 5 4 
-Log [Phenylephrine] (M) 

Figure 4.2 1. The effect of idazoxan pretreatment (60 minutes) on the contractile response to 
phenylephrine. Each point represents the mean ± S.E. for 5 animals. 
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Isoproterenol-mediated relaxation in the absence and presence of propranolol 

p
2
-Adrenoceptor-mediated tissue relaxation was studied using the P1- and P2-agonist, 

isoproterenol (n=5). Relaxation of the 45mM KCl-induced contraction was first observed at 

0.1 µM, and steadily increased with each half-log addition of isoproterenol (Figure 4.22). The 

maximum relaxation observed was I 0.3% by 1 OOµM isoproterenol. Isoproterenol-mediated 

relaxation of the KCl-induced contraction was not sign ificantly inhib ited by the P-antagonist, 

propranolol (n=5; Figure 4.23). 

The effect of tone upon the tissue's response to medetomidine 

A prccontractile stimulus (approximately 4-5% of the maximum response to KCI) by 

either NE or phenylephrine caused a decrease in the contracti le threshold for the selective a 2-

adrenoceptor agonist, medetomidine, in four of the fi ve animals studied (1 animal failed to 

contract to medetomidine). The sensitivity to each concentration of medetomidine with tone 

was not significantly different from the control response. However, at lower medetomidine 

concentrations the probability of response homogeneity between the control and 

precontractile groups decreased (Table 4.2). The medetomidine percent response values have 

a high degree of error since all the tissues differed from one another by more than three 

standard deviations. In three of the fo ur tissues, precontraction with phenylephrine caused a 

greater response to low concentrations of medetomidine than precontraction with NE. 
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Table 4.2. Percent response (120 mM KC l = I 00%) to cumulative additions of 
medetomidine after an initial contraction to norepinephrine or phenylephrine. 

[Medetomidine]' 
(µM) 

Control 
Mean ± S.E.M . 

0.25%± 0.25 

0.50%± 0.50 

Norepinephrinc Phcnylephrine 
Mean ± S.E.M. Mean ± S.E.M. 

1.00%± 1.00 1.75% ± 1.75 

2.50%± 0.02 6.25%± 3.66 

0 .01 

0.03 

0.1 

0.3 
0.75%± 0.75 3.00%± 3.00 10.25%± 5.95 

b 
p = 0.08 

a 

3 

10 

30 

100 

1.00%± 1.00 

6.50%± 5.85 

27.50% ± 22.89 

41.00% ± 20.51 

50. 75% ± 22.28 

54.50% ± 20.85 
The data represents 4 animals. 

5.50% ± 4.56 13.75%± 8.25 

14.75%± 10.91 18.75%± 9.86 

19.75%± 14.55 23.75%± 14.48 

25.25% ± 16.7 1 30.50% ± 18.14 p = 0.14 

35.75% ± 19.38 34.00% ± 19.88 

41.50% ± 19.87 35.25%± 21. 12 

The mean of the response to medetomidinc differed by more than 3 standard deviations. 
There was no s ignificant difference in the response to individual concentrations of 

b 
medetomidine between all 3 groups (ANOY A, p > 0.05). 
Probability of response homogeneity between groups for medetomidine concentrations 
of 0.0 I µM to I µM (ANOV A). 

c 
Probability of response homogeneity between groups for medetomidine concentrations 
of3µM to lOOµM (ANOVA). 

c 
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CHAPTER 5. DISCUSSION 

Catecholamine disposition mechanisms 

The catecholamine concentration within the neuroeffector junction is regulated by 

several disposition mechanisms. Inhibition of these mechanisms should then increase the 

catecholamine concentration within the neuroeffector junction. Our premise stated that if the 

inhibited disposition mechanism plays a significant role in regulating the catecholamine 

concentration at the receptor site, then the sensitivity of the tissue to catecholamines would 

be expected to increase. 

Both cocaine and desipramine were used to block the uptake 1 (neuronal) 

catecholamine di sposition mechanism found within the prejuctional nerve terminal. Cocaine 

( I OµM and 1 OOµM) effectively potentiated the NE contractil e response, while desipramine 

(0.3nM-10µM) failed to lower the NE EC50 . The three-fo ld shift to the left of the NE EC50 by 

cocaine (1 OµM and 1 OOµM) demonstrates that the neuronal uptake mechanism is invo lved in 

catecholamine inactivation in the bovine median caudal artery. Other authors have reported 

similiar findings using relaxation and potentiation techniques (Trendelenburg, 1972, 

Guimaraes and Paiva, 1977; Kalsner and Nickerson, 1969; Shibata et al. , 1971 ). 

Investigators have reported that desipramine (0. 1 µM) potentiates the NE response to a lesser 

degree than cocaine ( l OµM) in both the rat anococcygeal muscle (Kenakin and Beek, 1981) 

and the isolated rabbit aorta (Auguet et al., 1982). In fact, higher concentrations of 
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desiprarnine (1 OµM) significantly inhibited the contractile response to NE in the present 

study. 

omogyi and Pere) (1991 ) reported that when strips from the rabbit atrium where 

preloaded with [3HlNE, high concentrations of desiprarni nc (50-1 OO~LM) inhibited the 

stimulation-induced release of [3II]NE, while low concentrations of dcsiprarn ine ($ I OµM) 

increased [3H]NE re lease from the neuron. The experimental methodo logy used by 

investigators suggests that higher concentrations of cocaine (30-1 OOµM) and desipramine 

(0.5-1 OµM) need to be used to increase the s imulation-induced release of ti ssue-loaded 

[3H]NE than is needed to potentiate the ti ssue response to NE when the amine is app lied to 

the organ bath (Purdy et al. , 1977; Hensling et al. , 1983 ; Somogyi and Percel, 199 1; Al-

Oamluj et al. , 1993; Kenakin and Beek, 198 1; Auguet et a l. , 1982). Therefore, 1 OµM 

desiprarnine may be capable of inhibiting the NE response in other ti ssues besides the bovine 

tail artery, while not inhibiting the re lease of [3 H]NE from preloaded tissues. These results 

suggest that despiramine's ability to potenti ate the NE response, by blocking uptake 1, is 

counteracted by some inhib itory mechanism. Somogyi and Perce I ( 199 1) suggested that high 

concentrations of desiprarnine may block the adrenergic neuron similiar to the actions of 

guanethidine. 

Cocaine caused periodic contractions in both fresh and cold stored tissues. This 

response has a lso been reported by other investigators (Egashi ra et al., 199 1; Webb and 

Vanhoutte, 1982; hibata et al. , 197 1; Furchgott et al., 1963). The mechanism behind 

cocaine- induced contractions is uncertain. Webb and Vanhoutte ( 1982), and Egashira et al. 
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( 1991 ) suggested that cocaine-induced contractions are caused by the presynapti c release of 

NE. This proposal contradicts Shibata et al. ( 197 1) who demonstrated that co ld storage 

drastically reduces the E content in the rabb it aorta, but does not reduce the cocaine-

induced potentiation of the NE response. Studies by Wyse ( 1974; 1976) demonstrated that if 

cocaine does exhibit postjunctional effects, its contribution in potentiating the catecholamine 

response is very small. Bevan and Verity ( 1967) also indicated that cocaine does not have 

postjunctional effects s ince when the nerve terminal s have degenerated, due to surgical 

sympathectomy, coca ine did not potenti ate the NE response. The influx of extracellular 

calcium may be invo lved in the cocaine-induced potentiation of the NE respo nse s ince a 

ca lcium-free media abo li shed the potentiation (Shibata et a l., 1971 ). Therefo re, cocaine-

induced potentiation o f responses to NE may involve calcium influx as well as inhibition of 

uptake1• This idea is strengthened by the fact that in the bovine ta il artery, gated calcium 

channels (not the sarcoplasmic reticulum) are the predominant means fo r increas ing the 

intracellular calcium concentration in the contraction process (Ashida et al. , 1988). Blocking 

ca lcium-dependent calcium channels decreased cocaine-induced potentiation of the response 

to NE (Suzuki et al., 1990). This suggests that the potentiation of the catecholamine response 

by cocaine is partia ll y due to calcium innux. 

Contractions to NE and tyramine in the presence and absence of cocaine confirmed 

the importance of uptake1 in regulating the catecholamine concentration at the receptor s ite . 

Tyramine acts th rough uptake 1 to release E from prejuncti onal storage vesicles. The 

released NE then induces a contraction by activating postjunctional a-adrenoceptors. 
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Cocaine interfered w ith tyramine's abi lity to release the neuronally stored NE by blocking 

uptake, (Furchgott ct a l. , 1963). Though not s ignificant, cocaine decreased the max imum 

response to tyraminc by 29%. This lack of significance is not unusua l since Furchgott et al. 

( 1963) reported that at high tyramine concentrations(> I OµM) cocaine demonstrates less 

abi li ty to inhibit uptake, since they compete for the same binding site. I le also indicated that 

to achieve an optima l inhibitory effect against tyramine, these drugs should be used in 

proportional concentrations. This was not done in the present study s ince a tyramine 

concentration relationship (0.0 1-l OOµM) was generated in the presence of3~tM cocaine. In 

the present study, cocaine a lso potentiated the response to NE. The maximum response 

elicited by tyramine, in the absence of cocaine, was approximately one-third of the maximal 

response to NE in the absence o f cocaine. These results compare favo rab ly with results 

obtained by other investigators who demonstrated that tyrami ne acts through uptake 1 to 

release presynaptically stored NE (Jo iner et al. , 1975; Auguet et al., 1982). 

Uptake2, found within the postjunctional cell, was studied using the uptake2 inhibitor, 

corticosterone 21-acetate. Corticosterone 21 -acetate effectively potentiated the NE response 

three- fold . A similar degree of potentiation, by inhibition of uptake2, has been demonstrated 

in the rabbit aorta (Henseling et al. , 1983; Martel et al. , 1993; Kalsner, 1975) and dog 

mesenteric artery (Guimaraes and Pa iva, 1977). Our results indicate that uptake2 is important 

in the catecholamine disposition process for the median caudal artery. 

Catechol-0-methyltransferase (COMT), primarily found within the effector cell, was 

studied using the COMT inhibitor, tropo lone (Verity et al. , 1972). A 1.7-fold potentiation of 
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the NE response (EC 50) by tropolone has been reported by other investigators (Levin and 

Furchgott, 1970; Guimaraes and Paiva, 1977; Wyse, 1974). It has been suggested that 

saturation of the COMT enzyme is possible (Kalsner and Nickerson, 1969; Graefe and 

Trendelenburg, 1974) since COMT has a lower Km than uptake2. (Henseling, 1980). Hence, 

at low concentrations of catecholamines, the rate of 0-methy lation serves as a good index for 

uptake2 activity s ince neither disposition mechanism is saturated (Martel ct al., 1993; Graefe 

and Trendelenburg, 1974). lt appears that in the bovine tail artery, the e ffector cell is 

significantly involved in the inactivation of catecholamines since both corticosterone and 

tropolone significantly potentiated the NE response. 

Monoamine oxidase (MAO) has little significance in the E degradation process, as 

evidenced by the lack of potentiation, when inactivated with iproniaz id . E lectron microscopy 

studies indicated a lack of mitochondria in the bovine tail artery (Ashida ct al. 1988). This 

may partially explai n the negl ig ible potentiation of responses to NE by inhibition or MAO. 

The fa ilure of iproniazid to potentiate the NE response agrees with studies done on the rabbit 

aorta (Ka lsner and Nickerson, 1969), guinea pig atria (Furchgott and Garcia, 1968), and the 

rat tail artery (Wyse, 1976). Neuronal uptake is not able to saturate MAO due to its high Km 

(Trendelenburg et al., 1987). I fowever, the rate of catecholamine accumulation with in 

storage granules may prevent potentiation with iproniazid (Furchgott and Garcia, 1968). 

Furchgott and Garcia ( 1968) found that inhibition of MAO did not potentiate the NE 

response in the guinea-pig atria. However, inhibition of MAO did increase the uptake of NE 

with in the nerve terminal to a greater degree than when MAO was not inhibited. This 
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suggests that even though inhibition of MAO did not potentiate the NE response, it may still 

be important in the inactivation of catecholamines. The rate o f ves icular neuronal uptake of 

catecholamines may be extremely high in the bovine tail artery, thus preventing potentiation 

of the NE response due to MAO inhibition. 

The concentration of catecholamines at the receptor site is predominantly determined 

by the density of adrenergic innervation, the thickness of the tissue, and the di stance between 

the prejunctional neuron and the effector cell (width of the neuromuscular junction). Since 

uptake1 is found prejunctionally on nerve terminals, the activity of uptake1 may serve as an 

approximation of the adrenergic innervation of a tissue (Trendelenburg, 1972). Therefore, 

the degree of cocaine-induced potentiation of the E response can serve as a rel ative index 

for the tissue's density of adrenergic innervation. However, if ti ssues differ by a large 

magnitude in their neuromuscular juncti on width or wall thickness, then inaccurate 

conclusions can be made about the extent of the tissue ' s adrenergic innervation. 

The magnitude of cocaine-induced potentiation of the NE response in the bovine 

median caudal artery is similar to the potcntiation induced by cocaine in less innervated 

tissues such as the rabbit aorta and dog mesenteric artery (Burnstock et a l. , 1972; Hirst and 

Edwards, 1989). Cocaine potentiated the NE response 2- to 3-fold in these tissues (Wyse, 

1974; Shibata et al. , 1971; Guimaraes and Paiva, 1977). The degree of potentiation is low 

when compared to more highly innervated ti ssues, such as the cat nictitating membrane, 

guinea-pig vas defercns, and cat spleen capsule (Merrillees ct al., 1963; Trendelenburg, 1972; 

Fillenz and Pollard , 1976; Van Orden, III ct al., 1967) . Cocaine potentiated the NE response 
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in the guinea-pig vas deferens 8- to 14-fo ld (Sannomiya and De Moraes, l 981; De Moraes 

and Capaz, 1977). In the cat spleen capsule and nictitating membrane cocaine potentiated the 

E response 20-fold, and 20- to 30-fold, respectively (Trendelenburg, 1972). This is in 

agreement with our premise, that the magnitude o f cocaine-induced potentiation serves as an 

index for the tissue's density of adrenergic innervation. ln thi s instance, the cat spleen 

capsule is less densely innervated that the cat nictitating membrane (Trendelenburg, 1972; 

Van Orden, III et al., 1967). Overall, on these highly innervated ti ssues, cocaine potentiated 

the NE response approximately 3 to 7 times greater than on the bovine tail artery. 

Trendelenburg ( 1972) hypothesized that the activity of uptake1 (and maybe the 

density of adrenergic innervation) is inversely proportional to the neuromuscu lar width 

distance. This was demonstrated in the nictitating membrane and vas deferens. These tissues 

are highly innervated and have a small neuromuscular junction width distance 

(Trendelenburg, 1972; ield and Zelcer, 1982; Merri llees ct al., 1963; Van Orden, 111 et al., 

1967). Our results suggest that the 3- fo ld potentiation of the NE response using cocaine may 

partially be due to a low density of adrenergic innervation for the bovine median caudal 

artery, and/or to a relatively wide neuromuscular junction width distance. 

After cold storage, the bovine median caudal artery's maximum response to NE 

significantly increased. This might be partially due to nerve degeneration, as was seen by 

annomiya and De Moraes (1979) when they denervated the gu inea-pig vas deferens 

(bil ateral postganglionic denervation). However, Langer ( 1974) hypothesized that the 
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increased response to NE was due to some unknown developmental change in the 

postj unctional cell brought on by the cold storage. 

The role of the endothelium in vasoactivity 

The endothe lium can influence vascular smooth muscle tone by re leasing the 

endothelium-derived vasodi lator, NO (Ignarro et al. , 1988). The literature contains 

documention that endothelium-denuded tissues are more sensitive to catecholamines than 

endothe lium-in tac t ti ssues (Oriowo et al. , 1987; Doggrell , 1992; MacLean et al. , 1993; 

Kaneko and Sunano, 1993). Our results tend to confi rm these reports, but the increase in 

sensitivity to NE on rubbed arteries was not significant. imilar to the rubbed arteries, 

pretreatment with L-NAME ( lOO~tM) did not significantly potentiate the response to NE. 

I lowever, L-NAM E did inhibit the acctylcholine-induced relaxation of endothe lium-intact 

arterial rings, indicating that the ti ssue is capable of synthesizing NO. The magnitude of 

acetylcholine-induced relaxation may be underestmiated since lgnarro et al. (1988) found that 

KCI inhibits acety lcholine-induced re laxation. Addition of sodium nitroprusside to a ti ssue 

exposed to acetylcholine (1 OOmM) caused an addi tional but small degree of relaxation. 

lgnarro et al. ( 1987; 1988) made similar observations using sodium nitropruss ide on the 

bovine intrapulmonary artery. Our results suggest that the endothelium contributes to the 

vasoactivity of the bovine median caudal artery. 
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Comparison of the contractile responses of several agonists 

A simple pharmacological way to determine the presence and to classify different 

receptor types is to compare the relative potencies of different agonists. However, the 

problem in using these comparisons is that ti ssues differ in their receptor density, efficacy, 

and affinity for each agonist (Drew, 1985). The order of potency fo r several agonists in the 

bovine median caudal artery from highest to lowest was as fo llows: angiotensin 11 > 

serotonin > norepinephrine > medetomidine > epinephrine > phenylephrine. B-HT 920 failed 

to produce a response. This demonstrates that besides a-adrenoceptors, angiotensin II and 

serotonin receptors (5-HT) may also contribute to the vasoactivity and tone of the artery. 

erotonin receptors (5-HT2) have been shown to be invo lved with vasoconstriction in the 

bovine uterine artery (Dyer, 1993), bovine coronary artery (Purdy and Milburn, 199 1 ), and in 

the isolated perfused bovine ear artery (Eghianruwa and Eyre, 1991 ). 

The selective aradrenoceptor agon ist, medetomidine, produced a contractile response 

at a lower concentration than that el ici ted by phenylephrine. However, medetomidine's 

potency was very low (p02=5.6 l ) when compared to its potency (pD2=9.0) on the mouse vas 

deferens (Virtanen et a l. , 1988). On the rat anococcygeus muscle, high medetomidine 

concentrations caused contractions that were inhibited by both prazosin and idazoxan 

(Scheinin et al. , 1989). These results suggest that medetomidine may act as a partial a 1- and 

ar agonist at high concentrations in the bovine tail artery. ince B-IIT 920 (se lective a 2-

agonist) fai led to produce a response, this indicates that a 2-adrenoceptors have e ither a low 

affi nity and/or efficacy, or that functional aradrenoceptors do not exist. 
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The pD2 for NE was 6.16, thi s is consistant with the potency fo r NE on the bovine 

dorsal pedal vein (pD2=6.25; Solomons et al., 1989) and the rat tai l artery (pD2=6.5; Oriowo 

et al., 1989) . The phenylephrine p02 for the bovine tail artery was 4.7. This is very low 

when compared to pD2 values on other ti ssues, such as the major arteries of the rabbit 

(pD2=5.5-6.7; Oriowo et al. , 1987), the bovine oviductal arteries (p0 2=5.93; Costa et al. , 

1992), and the rat aorta (pD2=7.27; Carrier and White, 1985). It may be that the a 1-

adrenoceptors have a low affinity/effi cacy fo r phenylephrinc. There is also a possibi li ty that 

a majority of the a-ad renoceptors are of the a 1A subtype since phenylephrine has a higher 

potency at the a JD subtype (Bylund, 1992). This is possible s ince the a 1A subtype displays a 

prominant ro le in the peripheral circulation of animals (Piasc ik et al. , 1994). 

Epinephrine was found to be less potent than NE. I rowever, our findings differ from 

studies done on other tissues. Epinephrine was found to be more potent than NE in both the 

rabbit aorta (Starke ct al. , 1975) and the rat caudal artery (Rajanayagam and Medgctt, 1987; 

Abel and Minneman, 1986). The d iffe rence in potency between epjnephrine and NE in thi s 

artery can not be expla ined by the presence of ~radrenoceptors since they were blocked by 

propranolol. Therefore, our data suggests that different a-adrenoceptor subtypes may exist 

with differences in their affini ty and/or efficacy fo r NE and ep inephrine. Since adu lt animals 

were used in this study, age might contri bute to the low potency of epinephrine (McAdams 

and Waterfall , 1986; Jagadeesh et al. , 1990) In the bovine aorta, the EC50 for epinephrine 

was 12-fold higher on aortas' from matu re than young animals, even though receptor density 

increased with maturity. It appears that the effi cacy of adrcnocepto rs decreases with age 



79 

(Jagadeesh et al. , 1990; McAdams and Waterfall , 1986). These results suggest that the 

efficacy of the a-adrenoceptors may be poor fo r initiating the response to epinephrine in the 

bovine tail artery. 

The adult bovine tail artery may also predominantly consist of low affinity a 1-

adrenoceptor binding s ites. A high and low affinity binding site fo r a 1-adrenoceptors has 

been proposed by many investigators based on the ability fo r competitive 

agon ists/antagonists to displace [3H]Prazosin from the a 1-adrenoceptor binding site (Morrow 

and Creese, 1986; Colucci et a l. , 1985; Jagadeesh and Oeth, 1987; Minneman, 1988). These 

two binding s ites appear to util ize different second messenger pathways for initiating the 

biological response (Jagadeesh and Deth, 1987; Jagadeesh et al. , 1990). The low affin ity site 

is less e fficient than the high affinity s ite in mediating a response, since its second messenger 

pathway operates independent from GTP-binding to the G-protein subunit. Jagadeesh et al. 

( 1990) reported an absence of the high affi nity site in the aorta of adult bovine. 

Jagadeesh and Deth ( 1987) found that in the aorta from young bovine, epinephrine 

was more potent at low affi nity s ites, while phenylephrine was more potent at the high 

affinity sites. If the bovine tail artery is primarily composed of low affinity sites, then it 

could be hypothesized that the concentration-response relationship would reveal a potency 

order of epinephrine greater than phenylephrine. This agrees with what was found for the 

bovine tail artery. This idea is further supported by the low p02 value for phenylephrine. 

Jagadeesh and Deth ( 1987) found that even though phenylephrine was more potent at the 

high affinity site than the low affi nity site, phenylephrine had a greater affi ni ty than both 
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epinephrine and NE for the low site. The difference between the potency and a ffinity of 

phenylephrine can be expla ined by the poor efficacy of the low site, as previously proposed 

by Jagadeesh and Deth ( 1987). Our hypothesis of a low a ffinity binding site does not 

correlate well with the method for classifying the a 1-adrenoceptor subtypes, as proposed by 

Morrow and Creese ( 1986), s ince phenylephrine has a low p02 value. Thei r classification 

method would label the high affinity s ite and low affinity s ite as being the a 1A and a 113 

subtype, respectively. However, it is possible that the efficacy of the a 113 subtype is very low 

for phenylephrine. The nomenclature and method for classifying a 1-adrenoceptor subtypes 

has been modified since Morrow and Creese c lassified a 1-adrenoceptors. a 1-Adrenoceptors 

are now divided into three subtypes: a 1A, a 18, and arn. It has been acknowledged that when 

pharmacologically c lassifiying a 1 subtypes, the results may display characteristics of both the 

a 1A and a 18 subtype. Therefore, it may not always be poss ible to clearly differentiate 

between the two subtypes (Hieble ct al., 1995). Data in the literature suggests that the high 

affinity site can be clearly identified as the a 1A-subtype, but the low affinity binding site 

exhibits characteristics that are different from both the arn and arn subtype (Piascik et al., 

1994). 

a 1-Adrenoceptors mediate the release of calcium from intracellular stores in a 

concentration-dependent manner (Awad et al., 1983; Colucci et al., 1985). This intrace llular 

calcium re lease is primarily responsible for the initial rapid phase of the contraction (Deth 

and Van Breemen, 1977; Ruffolo et al., 1991 ). Colucci et al. (1985) found that this is due to 

activation of the high affinity site. The bovine tail artery predominantl y increases its 
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intracellular calcium concentration by the inOux o f extracellular calcium since it lacks a 

sarcoplasmic reticulum (Ashida et al. , 1988; Goldman et al. , 1989). Therefore, the 

contractile response of the bovine tail artery to epinephrine may not be primarily mediated by 

the activation of the high affinity binding site. 

Our results suggest that the bovine tai l artery is predominantly composed of low 

affinity binding sites. However, properly classifying the binding s ites into subtypes can not 

be accurately done based on our studies. It does appear that more than one a 1-adrenoceptor 

binding site is present on this artery. 

Evaluation of the dissociation constant (KA) for norcpinephrine 

The percent of receptors occupied by an agonist is not usuall y proportional to the 

response it generates (Ruffo lo, 1982). To achieve a linear relationshi p, 50% of the receptors 

would need to be occupied to obtain a half-maxi mal response. The double reciprocal plot of 

NE, before and after dibenarnine treatment, indicated that 37% of the a -adrenoceptors needed 

to be occupied by N E to produce a half-maximal response in the bovine caudal artery. In the 

arteries supplying the bovine oviduct only 22% of the a-adrcnoceptors needed to be occupied 

(Costa et al., 1992), whi le in the rabbit aorta only 6% of the receptors needed to be occupied 

to produce a half-maximal response (Besse and Furchgott, 1976). Therefore, the bovine tail 

artery has a limited a-adrenoceptor reserve. The KA for NE on the bovine tai l artery 

(3. 1 I µM) was approximate ly similar to the K" (3.95µM) for the arteries supply ing the 

oviduct in the bovine (Costa et al., 1992). However, the NE KA for the bovine tai l artery is 
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somewhat higher than that reported for the rat tail artery (2 .5 1-2.9µM) (Oriowo et a l. , 1989; 

Abel and Minneman , 1986). 

The ratio of KA/ EC50 is an index for the receptor coupling e ffi ciency and recepto r 

reserve. The greater the KA/ EC50 ratio, the higher the e fficacy and receptor reserve for the 

tissue (Ruffo lo, 1982). The ratio o f 2.73 on the bovine median caudal artery was s imilar to 

the 2.86 ratio on the bovine oviductal arteries (Costa et al. , 1992). These ratios are low when 

compared to the ratio (7.9) fo r the rat tail artery (Oriowo et al. , 1989). I lowever, a ll three of 

these ratios are low when compared to the aorta of the cat, and the maj or arteries of the rabbit 

and rat (Oriowo et al. , 1987; Oriowo et al., 1989). This suggests that the bovine median 

caudal artery has a small a -adrenoceptor reserve and that the receptors have a low e ffi cacy 

for initiating the response to an agonist. It appears that NE has a slightly higher afiini ty fo r 

a -adrenoceptors in the bovine caudal artery than in the bovine oviductal artery, however the 

a -adrenoceptors o f the bovine tail rutery display a lower effi cacy fo r initiating a response to 

NE. Compared with the rat tail artery, the a -ad renoceptors of the bovi ne tail artery have both 

a lower affinity and efficacy for NE. Costa et al. ( l 992) proposed that when activated, 

bovine a -adrenoceptors may be inefficiently coupled to mechanisms which trigger the 

biological response. An inefficient coupling mechanism was also proposed by Jagadeesh and 

Deth ( 1987) fo r the low affini ty a 1-adrenoceptor si tes. 
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Evaluation of the dissociation constants (KB) for several antagonists 

The use of antagonists, instead of agonists, to distinquish between receptor types is 

useful because it measures the affinity of the antagonist fo r its receptor, and is independent of 

the agonist used (Arunlakshana and Schild, 1959; Drew, 1985). A competitive antagonist, 

acting against an agonist, will yield a pA2 value that is unique for a specific recep to r type 

(Arunlakshana and chi ld , 1959). The potent nonselectivc a -adrenoceptor antagonist, 

phentolamine, effecti vely shifted the NE concentration-response curve to the right. A Schild 

plot was used to calculate a pA2 value for phentolarnine. The pA2 value was 7.36, which is in 

close agreement with the literature values (pA2=7.48-7.8) for phentolamine acting on a -

adrenoceptors (Starke et al. 1975; Ennis and Cox, 1980). The slope (-1 .05) of the child plot 

did not differ from unity, indicating that the antagonism was competiti ve. The rat 

anococcygeus muscle, predominantly comprised of a 1-adrenoceptors, had a phento lamine 

pA2 value o f 7.70 (Drew and Whiting, 1979; Chapleo et a l. , 198 1 ). These results ind icate 

that phentolamine is acting on a population of a 1-adrenoceptors in the bovine tail artery. 

Prazosin, a selective a 1-antagonist, antagonized contractions induced by NE 

(nonselective a -adrenoceptor agonist) and phenylephrine (selective a 1-agonist). Calculated 

pA2 values fo r prazosin against NE and phenylephrine were 8. 74 and 9. 1 I, respectively. 

Prazosin 's antagonism was competitive against both agonists s ince the slopes of the chi ld 

plots were not significantly different from unity. 

On the bovine oviductal arteries (Costa et al. , 1992) and the rat caudal artery (Ori owo 

et al. , 1989), prazosin had a pA2 value of 9.38 and 8.8, respectively. Other investigators have 
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reported similiar prazosin pA2 values (7.9-9.8) on a variety of ti ssue types (Dunn et a l. , 199 1; 

Medgett and Langer, 1984; fsla and Dyer, 1990; Noguchi et al., 1993; Ennis and Cox, 1980; 

Agrawal et al. , 1984). At high concentrations of prazosin the maximum response to NE was 

depressed and thi s was also observed in the human omental vein (Steen et al. , 1984). The 

maximal contraction to phenylephrine was depressed by prazosin (10, 30, I OOnM). This 

reduction in phenylephrine's maximum response by prazosin was similarly observed in the 

rat tail artery ( avino and Varela, 1991) and rat aorta (Doggrell , 1992). 

Prazosin depressed and shirted the medetomidine cumulative concentration-response 

curves to the right. 1 lowever, the data were not analyzed by Schi ld plot analysis since 

prazosin (10-300nM) prevented medetomidine from generating a sigmoidal curve with a 

steep linear relationship. The selective a 2-adrenoceptor antagonist, idazoxan (3 nM-

1 OOOnM), did not affect the concentration-response curves for medetomidine or 

phenylephrine. Data in the literature suggests that idazoxan can discriminate between a 1-

and a 2-adrenoceptors, with the latter predominant! y antagonized at low ( I OnM) idazoxan 

concentrations (Medgett and Langer, 1984). The specific ity of idazoxan for a 2-

adrenoceptors was described by Chapleo et al. ( 1981) and Virtanen et a l. (I 988) in the rat vas 

deferens. Since prazosin, but not idazoxan, inhibited the response to medetomidine, this 

suggests that medetomidine is acting as a partial a 1-adrenoceptor agon ist in the bovine tail 

artery. This is supported by the fact that rauwolscine (3nM-1 OOnM), a selecti ve a 2-

adrenoceptor antagonist also failed to inhibit the medetomidinc-induced contraction. The 
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studies, using idazoxan and rauwolscine, suggest that the bovine tail artery lacks functiona l 

a rad renoceptors. 

The effect of tone upon the tissue's response to medetomidinc 

The literature suggests that postjunctional cxradrenoceptors can be revealed and 

expressed by increasing vessel tone (Dunn et al. , 199 1; Templeton et al., 1989; Furuta et al., 

1988). However, partiall y contracting the ti ssue with a low concentration of E or 

phenylephrine did not significantly increase the response of the artery to medctomidine. 

There did appear to be a greater increase in sensitivity, though not significant, between the 

control and precontratile groups at low medetomidine concentrations. By placing the vessel 

under tone we were not able to demonstrate that cxradrenoceptors ex ist in the bovine tail 

artery. Tissue responsiveness to concent ration-dependent increases of medetomidine varied 

considerably among all the arteries studied. Since Medgett and Langer (1986) hypothesized 

and demonstrated that the density of cxradrenoceptors differs among different strains ofrats, 

it may be that individual an imals possess thei r own unique density of cxradrenoceptors which 

maybe influenced by the animal's breed, sex, or sexual maturity. 

The evaluation of the response to isoproterenol in the absence and presence of 

propranolol 

A population of 13radrenoceptors appears to ex ist on the bovine tail artery since 

isoproterenol, in the presence of phentolamine, significantly relaxed arteries contracted to 
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KCI (45mM). However, isoproterenol only reduced the contraction by 10%. There is either 

a low density of Pr adrenoceptors, or the Pradrenoceptors have a low affin ity and/or 

efficacy for isoproterenol. Adenylyl cyclase can be inhibited or stimulated by ar and Pr 

adrenoceptors, respectively. Therfore, the ability for the bovine tail artery to activate 

adenylyl cyclase may be poor, or adenylyl cyclase may have an ineffiecent coupling 

mechanism for initiating it 's course of action since our results a lso support the absence of 

functional a r adrenoceptors (Rajanayagam and Medgett, 1987; McGrath, 1983). 

Propranolol (0.03- 1 µM) did not inhibit isoproterenol-mediated re laxation of the artery 

contracted to KCI. It may be that propranolol was not a llowed to equilibrate long enough in 

the bathing solution. However, thi s is unlikely since in the bovine coronary artery 

propranolol antagonized the isoproterenol-induced re laxati on after 30 minutes of 

equilibration time, and the Schild plot yielded a slope o f unity (Purdy and tupecky, 1986). 

A KCl-induced contraction may a lso not be the most appropriate agonist to use to study the 

effect of isoprotercnol. However, in the bovine intrapulmonary artery, there was no 

significant difference in the isoproterenol-induced relaxation between KCl- and 

phenylephrinc-precontracted rings ( lgnarro et al. , 1988). Coincidentially, Purdy and 

tupecky ( 1986) also used a KCl -induced contraction to successfull y calculate a pA2 (8.43) 

value fo r propranolol against isoproterenol in the bovine coronary artery. These results 

indicate that a small but inefficient population of P2-adrenoceptors ex ists on the bovine 

median caudal artery. There may a lso be a small population of Pr adrenoceptors on the 

artery, as was demonstrated in the canine cutaneous vasculature (Berl an et a l., 1994). 
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CHAPTER 6. SUMMARY 

Inhibitors of both the uptake 1 and uptake2 catecholamine di sposition mechanisms, and 

COMT, were effective in enhancing responses to NE. This suggests that uptake 1> uptake2 

and COMT are important in regulating the concentration of NE in the neuroeffector junction 

of the bovine median caudal artery. Monoamine ox.idase appears to have little importance in 

the regulation of catecholamines at the a-ad rcnoceptor site. I lowever, some uncertainties 

exist about the significance of the uptake 1 mechanism since cocaine, but not desipramine, 

potentiated the response to NE. Coicidentiall y, while cocaine potentiated the response to NE, 

cocaine a lso inhibited the response to tyramine. This suggests that the uptake 1 mechanism is 

intact and functional in the artery. Il igh concentrations of dcsipramine ( I OµM) actua lly 

inhibited the response to E. This suggests that desipramine 's ability to potentiate responses 

to NE may be counteracted by its inhibitory action. 

The importance of the endothelium in regulating vasoactivity is unclear. While 

inhibition of nitric oxide synthesis by L-NAME inhibited accty lcholinc-induced relaxation, 

L- AME did not significantly affect responses to NE, nor did removal of the endothelium. 

The artery may have a population of ~2-ad renoceptors that are capable of subserving a 

small degree of arterial relaxation. However, since the relaxation response to isoproterenol 

was not inhibited by proprano lol, proof of the presence and importance of ~2-adrenoceptors 

was not attained. 
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Agonist potency comparisons and the dissociation constants for phentolamine and 

prazosin suggest that a large functional population of a 1-adrenoceptors exists on the artery. 

However, the a-adrenoceptor reserve is limited. Thirty-seven percent of the receptors need 

to be occupied to produce a half-maximal response. As similarly concluded by Costa et al. 

(1992) on the bovine oviductal arteries, the a 1-adrenoceptors appear to have an inefficient 

coupling mechanism for contracting the bovine tail artery as revealed by the low KA/EC50 

ratio. Medetomidine generated a significant contraction that was inhibited by prazosin, but 

not by idazoxan or rauwolscine. However, the a 2-adrenoceptor population may not be 

functional since B-HT 920 did not generate a contraction. Medetomidine also had a low p02 

value which was not significantly increased when the artery was put under tone. Therefore, 

medetomidine appears to act as a partial a 1-adrenoceptor agonist. This suggests that the 

bovine median caudal artery lacks functional aradrenoceptors. 

Some additional studies need to be done in the future. We feel that our agonist 

comparison contractile results are valid. However, since the response of the tissue to 

epinephrine contrasts a majority of the literature data, this experimental study needs to be 

repeated. There is still some uncertainty concerning the existance of the aradrenoceptor 

population. Therefore, further experiments in attempting to "uncover" their presence are 

needed. Perhaps placing vessels under tone with other agonists, such as angiotensin II , 

vasopressin, serotonin, or endothelin may prove fruitful. The functional significance of the 

P2-adrenoceptor population needs to be ascertained using some additional agonists to induce 

tone. Since only a KCl-induced contraction was used to study isoproterenol-induced 
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relaxation, perhaps vasopression, angiotensin II , prostaglandin F2a , or phenylephrine should 

by used to induce tone. Of course, blockade of the isoproterenol response by a P2-antagonist, 

such as propranolo l, wi ll be needed to convicc the scientific community of the presence and 

activity of Pradrenoceptors in the median caudal artery. Further experiments using 

radioligand binding techniques will greatly assist the pharmacological classification of 

adrenoceptors in this artery. 
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