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I. INTRODUCTION 

The response of a nuclear reactor to changes in the neutron 

absorption cross-section or other parameters in a localized area of the 

reactor core has been the object of much research [1-6]. Interest in 

this topic centers around a desire to be able to identify and locate 

the source of the changes . Fluctuations in the local neutron absorption 

cross sections are often caused by vibrations of the internal com-

ponents of reactor cores. Vibrating internal components such as fuel 

elements or control rods generate neutron noise with specific charac-

teristics. Research in neutron noise analysis is being performed in 

an attempt to understand these characteristics in more detail. A long 

term goal of the research described in this thesis is to be able to 

identify and locate moving reactor components in power reactor cores . 

The neutron noise generated by vibrating neutron absorbers, usually 

referred to as the flux response, is observed using neutron detectors 

placed in the reactor core. The flux response is thus interpreted 

as a detector response. The response of several detectors located 

in different positions in the reactor core may then be used to derive 

information about the vibrating absorber . This information is found 

from frequency analysis of the detector signals. 

The ability to locate moving or loose reactor components has both 

economic and safety related advantages. The economic advantages 

include the identification of loose control or fuel rods and reactor 

internal components . Locating these parts would enable their movements 
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to be monitored so that further deterioration of the parts could be 

corrected before extensive damage occurs. Safety implications relate 

to the ability to detect broken or loose internal parts before they 

can cause core damage by either direct mechanical damage or the 

blocking of a coolant channel. For example, a fuel rod which has come 

loose in a fuel assembly may, under the influence of coolant flow 

induced vibrations, impact upon the assembly support grids or other 

fuel rods. This could lead to damage to the fuel rod cladding with 

the possibility of the release of fission products. Obviously, a 

method which could detect and localize such a vibrating fuel rod is 

desirable . 

The research which is the topic of this thesis is a continuation 

of the work being done at Iowa State University in the area of noise 

analysis of vibrating neutron absorbers in nuclear reactor cores, 

[5,6] and consists of analytical, computer, and experimental work. 

A review of the literature shows that a theoretical development very 

important to the present research was introduced by Van Dam (l]. In 

his work, Van Dam demonstrated that neutron noise consists of two 

independent effects. These effects are termed the local effect and 

the global effect. The local effect is space dependent and refers 

to the flux response of the reactor at locations very near the source 

of the neutron noise. The global response is space independent and 

is the overall flux response· of the reactor to the neutron noise source. 

Pazsit, using Van Dam's detector adjoint function, developed a 

two group model of a neutron noise source [2]. This work led Pazsit 
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to conclude that neutron noise generated by a vibr a ting neutron 

absorber is very space dependent. He also showed that the neutron 

noise generated by a vibrating neutron absorber is much different from 

the neutron noise which results from a stationary absorber of var ying 

strength . 

A two-dimensional Green ' s f unction anal ysis of the diffusion 

equations using one energy group of neutrons was done by Pazsit and 

Ana~ytis [3]. In their work, they developed a two- dimensional Green ' s 

func tion model relating s mall stochastic cr oss- section fluctuations 

to neutron noise for a rectangular slab reactor using modified one-

group diffusion theory . From this development, the neutron noise 

response t o two-dimensional vibrating neutron absorbers was investi-

gated. The two-dimens ional model used i n this research will follow 

closel y the developments of Pazsit and Analytis [3]. Unlike their 

work, however, the model developed accounted for the different reactor 

r egions (such as the fuel regions or graphite reflector regions of 

the UTR-10 reactor used in the study) and included two energy groups 

of neutr on s . 

Similar anal ytical work in this area was also done by Nadean [4] . 

The purpose of his work was t o propose a method for determining the 

frequency response of a reactor . He did this by solving the one-

dimensional, t wo-group diffusion equations using Gr een 's function 

techniques . The present research expands on this work by doing the 

analysis in two dimensions and by appl ying the model t o computer 

programs to predict the reactor response . 
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Previous experimental work a t Iowa State University was done by 

Al-Ammar [5] and by Borland [6]. Al-Anunar designed and constructed 

a device which could place a vibrating neutron absorber into the 

Central Vertical Stringer (CVS) of the UTR-10 reactor core . Using 

this device, Al-Ammar obtained experimental data which confirmed the 

hypothesis put forth by Pazsit [2]. His device verified the presence 

of the local and global effects. 

Al-Ammar's work was improved upon by Borland (6). Borland 

constructed a vibrating absorber device which incorporated a better 

absorber position-measuring system and a sturdier vibrator, thus 

eliminating some of the problems inherent in Al-Ammar's design. 

Borland's device also had the capability t o measure the flux response 

with different detector-vibra tor configurations . His work verified 

Al-Ammar's results. 

The experimental portion of the present research extends the 

work of Borland and Al-Ammar by investigating the flux response at 

detector locations farther away from the vibrating absorber. In 

previous experiments, the detec tors were quite close to the vibrating 

absorber , where a large l ocal effect is experienced . By moving 

the detectors farther away from the vibrating absorber , the spatial 

dependence of the local response can be investigated. 

The objectives of the present research can be outlined as follows: 

1. Construct an analytical model which describes the response 

of the neutron noise field and neutron detectors to a vibrating 
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neutron absorber located in the internal reflector region of the 

UTR-10 reactor. 

2. Based on this model, develop computer programs which can be 

used to make predictions on the response of the neutron noise field 

to the vibrating absorber for the experimental configuration to be 

studied. 

3. Use an experimental apparatus consisting of a vibrating 

neutron absorber placed in the reactor, which approximates the 

conditions of (1) and (2), to study the response of a neutron detector 

as a function of position in the reactor. 

4 . Compare and verify the predictions of the analytical model 

with the results of the experiment . 

The analytical model developed is a two-dimensional Green's 

function solution using the two-group diffusion equations for the 

response of the neutron flux to a vibrating neutron absorber . The 

diffusion equations are written as linear differential equations 

which can then be solved essentially exactly using Green's function 

methods. The technique of Morse and Feshbach is applied to the 

equations resulting in a series form of solution equations which can 

be solved using computer programs (7]. 

Computer programs were written to solve the large number of 

multiple mode equations resulting from this development. These 

programs are called GFP-24 , GFP-25, GFP- 27, and GFP-28 and are listed 

in Appendix A. The computer was also used to solve the equations for 
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the unperturbed reactor in the fundamental mode to ensure the model 

represented, as nearly as possible, a critical system. This program 

is called GFP20 and is also listed in Appendix A. The function of 

each program and its relationship to the model are discussed in 

Section IV. The LEOPARD code [8] was used to generate the cross 

sections for the analytical calculations . 

In the experimental phase of the work, the apparatus shown in 

Figure 5 . 4, which was designed by Borland [6], was used to simulate 

a moving neutron absorber. The vibrating component of the apparatus 

consists of a piece of cadmium attached to the end of an aluminum r od 

which pivots on a pin located near the end of the rod, resulting in 

a pendulum-like motion. The rod is driven by two electrical coils. 

The frequency of the absorber vibration can be varied, and its 

position is indicated by a Linear Variable Differential Transformer 

(LVDT), which is attached to the top of the rod. This apparatus 

was inserted into the CVS in the central reflector region of the 

UTR-10 core . Detectors for measuring the reactor's response were 

positioned around the apparatus . One detector was placed in the 

body of the vibrating absorber apparatus and , therefore, very close 

(3.6 cm) to the vibrating absorber . The other detector was also 

placed in the central reflector region of the reactor, but in a 

stringer located 16 . 8 cm . radially away from the vibrating absorber . 

Figure 5.3 shows the exact detector locations. 



7 

A third detector was placed in the Thermal Column of the 

reactor (See Figures 5.1 and 5.2) . This detector location was not 

used in the computer analysis, but the experimental results from this 

detector are used and analyzed. This detector provides a measure 

of the global response. 

Signals from the detectors were analyzed using a frequency 

spectrum analyzer and a microcomputer. The results are interpreted 

in terms of APSDs, CPSDs (magnitude and phase), and coherence 

functions. These experimental results are then compared with the 

predicted responses based on the analytical model. 
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II. DEVELOPMENT OF THE TWO-DIMENSIONAL GREEN'S FUNCTION 
SOLUTIONS OF THE DIFFUSION EQUATIONS 

The Green's function method for solving linear differential 

equations outlined by Hildebrand [9] will be discussed in this section . 

The form of the diffusion equations for a moving neutron 

absorber as used in the analytical model is introduced . The Green ' s 

function solution technique will be used t o solve the resulting 

equations and a final expression for the real part o f the frequency 

dependent neutron flux as a function of position in the reactor will 

be obtained. 

The Green ' s function method for solving differential equations 

is as follows: Given the differential equation 

Ly -S(x) 

or Ly + S(x) = 0 (2 . 1) 

where L indicates the differential operator 

d 2 2 L = dx (P d/dx) + q = P d /dx + dP/dx d/dx + q (2 . 2) 

and noting that y satisfies the homogeneous boundary conditions of 

the form 

ay + 8 dy/dx 0 (2 . 3) 

for cons t an t values of a and 8 on the interval a < x ~ b, a 

Green 's function, G, is determined which for a given point x in 
0 
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(a,b) is G1 for x < x and G2 for x 
0 

and G2 are found by the applica t ion 

ii 1. Gl and G2 satisfy LG = O. 

LG2 = 0 for x > x ' 
0 

> x . The Green's functions Gl 0 

of four properties : 

That is LG
1 

= 0 for x < x and 
0 

2 . G1 and G2 satisfy the boundary conditions of Equation 2. 3 

at the endpoints a and b. G1 satisfies the conditions at x = a and 

G2 satisfies the conditions at x = b. 

3 . The Green's functions are continuous at x 

x x equals G2 at x = x ~ and 
0 0 

x ; i.e. , G
1 

at 
0 

4. dG/dx has a discontinuity of magnitude of -1/P(x ) at x • 
0 0 

This means dG2(xo) 
dx = -1/P(x ) . 

0 

Once the Green's functions G1 and G.i are found, the solution 

to the problem of (2 . 1) may be determined from 

Y(x) = fb G(x,x )S(x )dx 
a o o o 

(2.4) 

As an al t ernate representation, the Green ' s function is also identified 

as the solution of the differential equation 

LG = - o(x-x ) 
0 

In order to apply the Green ' s function technique to the solution 

of the diffusion equations, the equations must be written in a form 

which can be applied directly to this method. The development carried 

out will be limited to two neutron energy groups . To this end, let 

Group 1 represent the fast neutron group and Group 2 represent 
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the thermal neutron group. If the assumption is made that all fissions 

occur in Group 2 and that these fissions produce neutrons in Group 1, 

the usual two-group diffusion equations result 

(2 . 5) 

and 

(2 . 6) 

If the following additional assumptions are made: 

1. Use one group of delayed neutrons, i . e. 

(2 . 7) 

2. Assume small changes in the absorption cross-sect ion, i.e. 

E = E a2 a2o + &E a2' (2. 8) 

3. Assume that small changes in the neutron flux due to 

condition 2 above take place 

<P 1 (2 . 9) 

and 

<P2 = <P2o + 04>2, (2 . 10) 

and 4. Further, assume that small changes in the precursor 

concentration due to condition 2 take place so that 



c C + oC 
0 

11 

the two-group diffusion equations become, 

and 

(2 .11) 

(2 . 12) 

(2 . 13) 

(2 .14) 

Note that when the substitutions of (2.8), (2.9), (2 . 10), and (2 . 11) 

were made into (2.5), (2.6), and (2 . 7), the steady state terms were 

neglected as well as terms involving double differentials, i.e., 

00 « 0. 

Application of the Fourier transform yields 

(2.15) 

(2 . 16) 

(2 .17) 

where 6~l' 6~ 2 , 6C and 6Ea represent the Fourier transforms of o~l' 

o~ 2 , oC, and oEa, respectively. 
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There are two approaches used to obtain the response of a thermal 

neutron detector to the perturbation in the absorption cross section. 

One method is to solve equations (2.15), (2.16), and (2.17) for 6~2 
and form the detector response, R, as the integral over the detector 

volume, Vd, of the product of 6~2 and the detector cross section, Ed, 

An alternate and equivalent formulation is to solve for the detector 

adjoint function [1,2) ~ and form the detector response as 

R JV ~ S dv 
R 

where VR is the reactor volume and S is the perturbation sources. 

The first approach is more direct for a single fixed perturbation 

point with variable detector placement, and the formulation in terms 

of the detector adjoint function is more useful for a fixed detector 

with variable source locations. For the applications in this research, 

the first formulation was used since the driving source was fixed in 

position. 

Equation (2.17) may be rewritten as 

6C (2.18) 

which upon substitution into (2.15) gi ves 
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(2.19) 

If the equations are assumed to be frequency independent in the plateau 

region of the reactor frequency response (approximately 1 to 10 Hz), 

j w can, in effect, be set equal to zero and the Fourier transformed 

flux interpreted as the real part of the complex flux. With this 

assumption, Equations (2 .16) and (2 . 19) become 
2 2 

Dl 
a ti<P1 + Dl 

a M 1 - (ral + rR1)ti<P1 + (l-S)vLfti<P2 0 
ax2 a/ 

(2 . 20) 

and 

a2M a2M 
ti<P2 + rRlti<Pl = tiraz<P~ D2 

2 + D2 
2 

- ra20 
ax2 2 ay 

(2 . 21) 

where ti<P1 and ti<P2 now represent the real part of the Fourier trans-

formed flux. 

As described previously , Equations (2.20) and (2.21) are t o be 

solved using the Green's function technique. In t wo dimensions, the 

equations for the Green ' s fun ctions are 

2 2 a c1 a c1 - - + -- -2 2 ax ay 
0 (2 . 22) 
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and 

2 2 a G2 a G2 --+---2 2 ax oy 
- o (x-x ) o (y-y ) . 

0 0 
(2 . 23) 

Since only the thermal group equation contains a nonhomogeneous term, 

the equation for the thermal component of the Green's function, G2 , 

contains the delta function. The equation for the fast component, 

G1 , is set equal to zero. Equations (2.22) and (2.23) are solved ' 

using the procedure outlined by Morse and Feshbach [7]. This is 

done by expanding the Green ' s function in terms of a complete set 

of sine functions involving all coordinates except one, in this 

case , y . 

G1 (x,x
0

,y) 2 00 = ~=l Sin B x Sin B x Yln (y) a n 0 n 
(2.24) 

and 

G2 (x,x
0

,y) 2 00 = - ft=l Si n B x Sin B x Y2 (y). a n 0 n n (2. 25) 

It is required that the Green's function solutions be zero at both 

boundaries in the x direction. If the x dimension extends from 

0 to a, then the boundary condition is satisfied by letting 

B = R'IT. 
n a (2.26) 

Substituting Equations (2.24) and (2.25) into Equations (2.22) and 

(2.23) yields 



and 

2 00 

E a n=l 

E Rl 2 oo 

15 

2 a> 

- E ~ln B x Sin Bnx Y1n(y) + 
a n=l n o 

Sin B x n o 
Sin B x Y2 (y) = 0 n n 

~ - E Sin Bx 
2 a n=l n o 

Sin B x Y1 (y )= - o (x-x )o (y-y ) . n n o o 

To take advantage of the orthogonality of the sine functions 

fa Sin B x Sin (Bkx)dx = ~2 if ·k n o no 

or 0 if k f. n 

(2 . 27) 

(2 . 28) 

Equation (2 .27) is multiplied by Sin (Bkx) and integrated from Oto 

a with respect to x. This gives 

0 (2.29) 
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or 

y2k = 0 (2.30) 

This procedure is repeated for Equation (2 .28) to obtain: 

y = - o (y-y ) . lk 0 
(2.31) 

Equations (2 . 30) and (2.31) are to be solved for the one-dimensional 

Green's functions, Ylk and Y2k' k = 1,2 , 3 , .... 

In equation (2 . 21), let the nonhomogeneous source term 6~a2~ 20 
be represented by oS ; i . e . l et 6~a2~ 20 oS . For a moving neutron 

absorber in the form of a thin r od , oS can be represented by [3] 

- o (x- x ) o (y-y ) ] 
0 0 

(2 . 32) 

steady state flux, 

the equilibrium position of the absorber, 

y t he relative absorber strength, 

and 6x( t), 6y( t)= motion of the absorber . 

Based on t he Green's f unc tion method, the solution for the thermal 

f lux r esponse is given as the integral over the reactor volume, VR, 
of the Green's f unct i on and the driving source. 
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= JV G(x,x ,y ,y , w) oS (x ,y ,w) dx dy • 
R o o o o o o 

(2 . 33) 

Substituting Equation (2 . 32) into Equation (2.33) gives 

G(x,x , y,y ,w) dx 
0 0 0 

00 
dy J 

O-<X> 
dt e-jwt~(x , y ) 

0 0 

[o(x- x - 6x(t))·o(y-y - 6y(t)) - o (x-x )o(y-y )] 
0 0 0 0 

(2 . 34) 

Integrating over ·v~ and using the property of the delta function 

results in the expression 

Y J00 dt e-j wt ( ~ (x + 6x ,y +6y)G(x,x +6x ,y , y +6y ,w) 
-oo 'I' 0 0 0 0 

- ~2 (x ,y )G(x,x ,y,y ,w)] . 
0 0 0 0 

(2.35) 

The expression ~(x +6x ,y +6y)G(x,x +6x ,y,y +6y,~) i n Equat ion (2.35) 
0 0 0 0 

is expanded about x and y using a two- dimensional Taylor's series . 
0 0 

The Taylor ' s series for a function of t wo variables is 

f(a+h,b+k) = f (a,b) + (h ~x + k a~) f(x , y) + . . . x=a 
y=b 

+ .!., (~ + K ~y \ N f (x, y) + .•. N. ox a ! x=a (2 . 36) 
y=b 

In this case, the series is terminated after two t e rms. For 

convenience, let ~ (x ,y ) be written as~ and G(x,x , y ,y ,4>) be writ ten 
0 0 0 0 
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as G. Applying the Tayl or' s series and neglecting the 6x~x. 6y6y, 6x6y 

tenns yields: 

y /" dte -iwt + { fuc[~ G + cp!Q_) -= axo axo 

(2. 37) 

Carrying out the Fourier transform indicated in Equation (2. 37) 

result s in 

(2.38) 

Equation (2 . 38) provides a means of predic ting the f luctuations 

in the thermal neutron flux resulting from changes in group parameters 

due to a vibrating neutron absorber . If the motion is in one 

dimension only (i.e. , y), the t erm ox(w) = 0 and the expression 

becomes 

(2.39) 

I f G is assumed to be independent of frequency (as is the case for 

this development), Equation (2 . 39) may be inverted back to the time 

domain to obtain 

(2. 40) 

Equations (2.30) and (2 . 31) and equations for the neutron flux will 

be used to find the four terms of Equation (2 . 39), namely, l!_, G, cp 
ayo 
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aG 
and ayo' which are necessary to find 6~ 2 . Note that since a thermal 

detector and absorber are assumed, the thermal component of ~ and G 

are used in Equation (2.39). Also, for a point detector 6~ 2 is 

proportional to the detector response , and integration over the 

detector volume is not required. 
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III. ANALYTICAL MODEL OF THE GREEN'S FUNCTION SOLUTIONS 
TO THE DIFFUSION EQUATIONS 

In this section, the procedures for obt aining the Green's 

functions solutions for a model of the Iowa State University UTR-10 

reactor will be described. These solutions will form the basis of the 

analyt ical model which was then analyzed using the computer programs 

described in Appendix A. 

It can be seen from the two-dimensional plan view of the UTR-10 

reactor shown in Figure 5.1, that a potential difficulty exists in 

applying the series expansion procedure described previously directly 

in that the core material properties are not continuous in either 

direction in the reactor. Since the most significant flux variation 

takes place along an axis perpendicular to the fuel regions (called 

they direction), it was decided to use the sine function expansion 

parallel to the fuel regions (the x direction). This, in effect, 

models the reactor, as shown in Figure 3.1, with the fuel regions 

extending to the edges of the graphite core since the sine functions 

do not account for variations in core properties. Since the variation 

of the flux parallel t o the fuel region is approximately sinusoidal, 

expansion of the x component of the Green 's function in sine functions 

should be a reasonable approximation at least for points not too near 

the boundary of the reactor. 

As shown in Figure 5.1, the UTR-10 reactor core consists of 

differ ent regions containing either fuel or graphite. In a multi-
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region system, some modifications of the basic procedures 1 as described 

in Chapter !I, for obtaining the one-dimensional Green's function 

solution must be made. Continuity of each mode and the equivalent 

of continuity of current is required at each interface . The special 

Green's function conditions of continuity of the modes and jump in 

the derivative of the thermal component of the modes are applied at 

the location of the perturbation. For this model, the vibrator is 

located in the center of the internal graphite reflector. 

In the fuel regions, Equations (2.30) and (2.31), repeated here, 

apply directly without modification, 

2 
(Eal + ER!) (1-e)vl:f d ylk 2 

ylk + = 0 
dy2 

- Bk ylk - y 
Dl D1 2k (2.30) 

and 

2 
d y2k 2 l: l: _ a20 y + Rl y ... 0 

dy2 - Bk y2k D2 2k D2 lk (2.31) 

In the graphite regions, Equation (2.30) must be changed since I:f=O 

there 

(3.1) 
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In order to solve for the Green's functions in the graphite 

regions, Equation (3.1) is ~ewritten as 

D2Y 2 1k 0 
dy2 - (Xk ylk 

where 

cx2 B2 + 
(r al + rRl) 

k k Dl 

Equation (2. 31) is also rewritten as 

where 

( 

The solution for Equation (3.2) is immediately seen to be 

-a Y ex y 
Y · = Ale k + A2e k 
lk 

(3. 2) 

(3. 3) 

(3.4) 

(3.5) 

(3. 6) 
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The solution to Equation (3.4) will have two parts, a homogeneous 

solution YZkH and a particular solution YZ kP ' The homogeneous 

solution comes from 

and its solution is given as 

- 8 y 
A3e k 

The solution for YZKP is written as 

-°ky y 
ClAle + C2A2e°k 

(3. 7) 

(3.8) 

(3 . 9) 

where Cl and C2 are coupling constants which are to be determined. 

Substituting Equation (3.9) into Equation (3 .4) and equating like 

exponentials leads to 

Cl = C2 
(3.10) 

Inserting Equation (3.10) in t o Equation (3 .9) and then writing the 

complete solution for Y2K gives 
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-e y e y 
y2k = y2kH + y2k,P = A3e k + A4e k 

- aky a y 
+ [Ale + A2e k ] . (3.11) 

To solve for the Green's functions in the fuel regions, Equations 

(3.4) and (3.5) are used and Equation (2.30) is rewritten as 

(3.12) 

2 where aK has the same meaning as in Equation (3,3). A fourth order 

equation is next written for YlK alone . This is done by differen-

tiating (3.12) twice to obtain (letting D = d/dy). 

(3 .13) 

2 Solving Equation (3 .4) for D Y2K yields 

(3 . 14) 

which may be combined with Equation (3.12) to obtain an expression 



25 

2 2 
ylk 

y2k 
Clk ylk - D 

<1-s h12: f 
(3 . 15) 

Dl 

Substitute Equation (3.15) into Equation (3 .14), and then substitute 

the resulting expression into Equation (3.13) to obtain 

This can be factored into two terms 

(3. 17) 

2 2 where ~ and v are obtained by solving the roots of 

(3 .18) 

The roots of Equation (3 .18) are found by solving the quadratic 

equation, thus 

(3.19) 
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The solution of Equation (3,12) may be written as 

A5e -µY + A6eµY + A7e - v y + A&e'\J y (3 . 20) 

In solving Equation (3.4) for Y2K' let 

(3 . 21) 

where Cl , C2, C3 , and C4 are coupling coefficients incorporating the 

constants AS, A6, A7, and A8. Differentiating Equation (3 . 21) twice 

yields 

(3 . 22) 

Equations (3.20), (3.21), and (3 . 22) are substituted into Equation 

(3.4) 

(3 . 23) 

Equating like exponentials gives 



27 

-LR1/D2 (3. 24) Cl 2 2 AS 
(µ -8 ~) 

-LR1/D2 (3 . 25) C2 2 2 A6 
(µ -8 k) 

-LR/D2 (3 . 26) C3 = A7 
(\/2-8~) 

-LR1/D2 
C4 = ---A8 

(\/ 2 -8~) 
(3 . 27) 

and Equation (3 . 21) becomes, therefore, 

(3 . 28) 

The Green's functions for the two-dimensional, two-group problem 

are given by Equations (3.6), (3,11), (3.20), and (3.28) . To det ermine 

the coefficients Al through A8, appropriate boundary conditions ar e 

applied. 

As the analysis progressed, it was discovered that for the first 
2 few modes the root \/ of Equations 3.20 and 3.28 is negative . Because 

of this, the terms of (3.20) and (3.28) associated with v 2 become , as 
2 long ·as v is negative, 
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- µy µy A5e + A6e + A7cosvy + A8sinvy 

- L /D R 2 
(µ 2 -e~) 

(3. 20a) 

(A7cosvy + 

A8sinvy) . (3.28a) 

A model of the UTR-10 reactor is now developed. The ISU UTR- 10 

reactor is a graphite reflected, light water cooled and moderated, 

coupled core machine . There are two fuel regions surrounded and 

separated by a graphite matrix. The model used in this study defines 

a plane through the reactor core which is at the level of the cent er-

line of the vibrating neutron absorber . Both the graphite and fuel 

regions of the model core are homogeneous. Figure 3. 1 illustrates 

the model. The core dimensions used in this model are t aken from 

Salih [10]. 

As pointed out previously, in obtaining the Green's function 

modes for the model, the appropriate equations were used for each 

region of the r eactor with appropriate boundary condit ions. Properties 

3 and 4 for the Green's function, as discussed in Section III, were used 

at the point of perturbation (y ) . 
0 
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0 0 0 0 

Figure 3.1 Analytical model of the UTR-10 reactor 
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Referring to Figure 3.1 for the locations of the appropriate 

Green's function solutions, Yikj(y), the application of the boundary 

condition requirements will now be illustrated. In the term Yikj(y), 

i refers to the group number and j refers to the region number. The 

conditions being applied require a Green's function solution of zero 

at both endpoints of the reactor. At each region interface, the 

solutions are required to have continuity of flux and current . Con-

tinuity of flux implies the solution on one side of the interface must 

equal the solution on the other side of the interface when both 

solutions are evaluated at the interface. The current is the ~eriv-

ative of the solution times the diffusion constant , D, for the region . 

Continuity of current means the solutions on either side of an inter-

face will have equal currents at the interface . As an example, the 

boundary/interface conditions for the first graphite and first fuel 

region require 

ylkl (O) = 0 (3 . 29) 

y 2kl (O) 0 (3 . 30) 

ylkl (bl) ylk2 (O) (3 . 31) 

y 2k2 (bl) = y2k2 (0) (3. 32) 

dYlkl (bl) dYlk2 (0) 
DlM dy D2F dy (3.33) 
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(3.34) 

ylk3 (O). (3.35) 

Note that a moving coordinate system was used in the model for the y 

dimension . This was done to avoid computer overflow and underflow as 

a res ult of lar ge spat ial coordinate values. The imposed Green ' s 

functions conditions give 

dY l k3 (yo) 
DlM - dy 

dY2k3 (yo) 
dy 

dY2k 4 (0) 

dy 1. 

A to t al of 24 boundary conditions result . 

(3 . 36) 

(3 . 37) 

(3 . 38) 

(3 . 39) 

The next s tep in the modeling is to f onn the set of equations 

which desc r i be the reactor. The boundary cond i tions are applied to 
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the solution equations (3.6), (3.11), (3,20), and (3.28). The result 

is 24 coupled equations with 24 unknown coefficients . For the fuel 

regions, several additional equations must be written to account for 

the different solution equations, (3.20a) and (3.28a), which are used 
2 2 when the root v is negative. When v is negative, these equations 

are substituted for the equations used when v2 is positive . As an 

example, boundary condition (3.31) yields the following equation when 

imposed on Equations (3.6) and (3.20): 

- a bl 
Ale k = A5e-µ(O) + A6eµ(O) + A7e-v (O) + A8ev(O) 

or 

-a bl 
Ale k ~bl 

+ A2e - AS - A6 - A7 - AB = 0. (3.40) 

The same is done for all boundary conditions to form the solution to 

the two-group problem. The equations are solved simultaneously to 

find the desired coefficients. This is done using the computer, as 

outlined in the next section. 
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IV. COMPUTER MODELING OF THE GREEN'S FUNCTION SOLUTIONS 

In this section, the computer programs which were written to solve 

the Green ' s function solution equations are discussed , and each program 

is described individually. Listing of the programs is also given 

in Appendix A. All programs used double precision arithmetic . 

Graphs indicating the results of individual programs are present ed, 

and predictions of the changing neutron flux due to the moving neutron 

absorber are made . 

The 24 coupled equations discussed in Section III are t o be 

solved simultaneously using computer programs. Solving the equations 

means determining the coefficients of each solution equation (3 . 6), 

(3 . 11), (3.20), and (3.28) in appropriate regions of the reactor. To 

solve them, the equations are first written in the matrix form 

A X = B. (4 . 1) 

The vector X contains the 24 unknown coefficients of the solution 

equations . Matrix A consists of the array of system constants 

multiplying the unknown coefficients. Vector B contains the elements 

of the right hand side of the solution equations. 

The first step in the analysis was to insure that the modeled 

reactor ·represented a critical system as closely as possible. For a 

critical reactor, the vector B in Equation (4.1) will be zero . This 

leads to 
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AX 0 

or 

determinant A = jA 1 = 0. (4.2) 

The criticality calculation was done for an unperturbed core . This 

means that the Green's function conditions at y are not applied and, 
0 

in fact, the interface at y is eliminated. Graphite regions 3 and 4 
0 

(see Figure 3.1) are combined. This reduces the size of the set of 

simultaneous equations to be solved to 20. 

In the criticality calculation, all dif fusion coefficients, cross 

sections, and all other parameters are the same ones that are to be 

used in the perturbed reactor. It was decided to iterate on the 

vertical buckling, B~, to zero the determinant of A to obtain a 

. . 1 B2 . . d d . h . . h 2 d critica system. Z is intro uce into t e equa tions in t e a an 
2 8 terms of Equations (3.3) and (3.5). These equations now become 

2 B2 (I: al + I:Rl) 
+ B2 (4.3) aK + K Dl z 

I: 2 82 2 + a20 + = BK D2 Bz . K 

Addition of the B~ term is justified _if v 2~ of Equations (2 . 5) and 

(2.6) is separated into the three components 



35 

(4.4) 

When this addition is made, it can be easily shown that the derivations 

of Sections II and III are not changed. The value of B~ is approxi-
2 mately (n/Z) , where Z is the vertical dimension of the reactor. 

The computer program GFP-20 was written to do the criticality 

calculations. GFP-20 calls the library subroutine LINV3F to solve 

for the determinant of A. In GFP-20 the reactor parameters, cross 

sections, etc. are first assigned. As discussed in Appendix B, 

reactor parameters were obtained using the LEOPARD code [8]. Next, 

the 20 x 20 matrix A is initialized to zero and the elements of A 

representing the solution equations are inserted. The program then 

calls the library subroutine LINV3F and the determinant of A is 

calculated. The program was set up to step through incremental values 

of Z until the Z which res ulted in a zero determinant was found. At 

this point, it was important to make sure that the value of Z found 

corresponds to the fundamental mode solution . This was checked by 

calculating the neutron fluxes. 2 The desired value of Z (or BZ) will 

result in all positive fluxes. Any Z other than the fundamental value 

gives some positive and some negative fluxes. The critical value of 

Z was found to be 74.583 cm based on the reactor parameters given in 

Appendix B. The solution was also checked by using the finite 

difference, two-dimensional computer code EXTERMINATOR-2 (11] to 
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perform an eigenvalue calculat~on for the reactor model used in the 

analytical calculation. The resulting eigenvalue of 0 . 9974 confirmed 

that the correct critical buckling was found. 

Four computer programs were written to solve fo r the four terms 

needed for the reactor response, Equation (2.40) . These programs solve 

for the te rms of Equation (2.40) and then produce punched output so 

that the total flux response across the reac tor can be calculated . 

Since the detectors and vibrator used in the experiment are sensitive 

to the thermal flux, the computer programs were written to solve for 

the Green's functions, the flux, and their derivatives for the thermal 

group onl y . The gener al form of each program is the same. First , all 

reactor parameters are assigned . Next, the elements of the matrix!, 

and vector ~. if applicable, are calculated and inserted into the 

proper locations. The programs then call the library subroutine 

LINV3F to solve the equations. The coefficients which are found (as 

the elements of vector ~) are then used in the proper solution equation 

and a numerical answer is produced. Choosing the proper solution 

equation t o use depends on the position (y) being sol ved for . 

The pr ogram GFP-24 calculates the term Gin Equation (2.40), 

which is the Green ' s function term . The program, as listed in 

Appendix A, will calculate the Green's functions at 61 points across 

the reactor core for any value of x. Because the equations for the 

Green ' s f unctions were originally expanded into a series form 

(Equations (2 . 24) and (2.25)), the Green ' s functions calculated by 
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the program is the sum of many modes. As the mode number k increased, 

the matrix !:_ appeared to become progressively ill-conditioned until 

a point was reached where the routine LINV3F failed to find the 

solution vector. It was observed that for the maximum value of k, 

the solution in the fuel and external graphite regions had converged. 

For the region containing the perturbation, where the Green's function 

is sharply peaked, convergence was found not to be satisfactory when 

the limiting value of k was reached for the whole core calculation. 

The program is designed to run the maximum number of modes possible 

(13 were used) when the solutions for the whole core are calculated. 

The program then refines the numbers by repeating the mode calculation 

for the central graphite region only using zero boundary conditions 

on the additional modes, which, in effect, forces the solution to the 

conver ged values at the edge of the fuel. This procedure allowed 

8 more modts to be added to the 13 modes already calculated. This 

method produced a convergence of 0.005 at the point of perturbation. 

That is, the difference between the 20th mode and the 21st mode is 

0.005. Since the value of the Green's function at this point is 

0.32825, this convergence represents an error of 1.5%. A plot of 

the Green's functions across the midplane of the reactor through the 

perturbation point is shown in Figure 4.1. In this graph, and the 

others which follow, the perturbation is located in the center of the 

central graphite region of the reactor. Since the Green's function 

describes the response as a function of position due to a point 
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perturbation, the shar ply peaked nature of G implies that the response 

near the perturbation should be sensitive to changes in vibrator 

position (the dG/dy t erm) . 
0 

The nex t computer program, GFP-25, calculates the term dG/dy , 
0 

the change in the Green ' s function associated with a change in per-

turbation position . Since the variable y does no t appear explicitly 
0 

in G, a finite-differ ence technique was employed. The Green ' s f unc tion 

is calculated twice a t each desired point, once wi th the perturbation 

located at the center of the core and once with the perturba tion 

moved an amount 6y = 0. 02 cm in the +y or south direction. The 
0 

differ ence between the two Green ' s functions at each space point is 

divided by the step size and an appr oximate derivative is produced. 

It should be noted that the derivative is a function of x and y 

for a given y . As is expected , dG/dy was found to be greatest 
0 0 

where the Green ' s func t ion is increasing the fas test, at the center 

of the core. Because of the approximate nature of the calcula tion, 

the sensitivity of the result to the step size and two point 

approximation was checked using differen t step sizes and also a 

three point calculation . As might be expected, because of the nature 

of the Gr een's funct i on, the solution was found to be sensitive t o 

these parameters fo r locations near the perturbation point, Based on 

the sensitivity study , it was concluded that a two point estimate of 

the derivative with a 6y of 0 . 02 cm yiel ded acceptable estimates of 
0 

dG/dy0 for the experimental locations used in the study. 
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The flux term of Equation (2.40) is calculated by the computer 

program GFP-27. The flux solutions are the fundamental mode solutions 

to the steady state diffusion equations. The thermal flux solutions 

can be written as 

• TIX sin ~ 
a 

(4.5) 

where Y is the solution to the one-dimensional diffusion equation. 
2lj 

GFP-27 finds the fluxes using the same matrix as is used in GFP-20 . 

The coefficients of the solution equations are found by adding the 

identity matrix to matrix !_ and then calling library subroutine 

EIGRF to evaluate the eigenvectors and eigenvalues of the resultant 

matrix. The coefficients are the elements of the eigenvector 

corresponding to the unity eigenvalue . Figure 4.2 shows a plot 

of the relative thermal flux. This shows a higher peaking in the south 

core due to the larger fuel loading there (see Appendix B). 

The last program used t o evaluate the reactor response was GFP-28 . 

This program calculates d$/dy at the point of the perturbation . Since 

d$/dy is a function of the perturbation location and not detector 

location, it was necessary to find only one value. The program is a 

modification of GFP-27 which uses a finite-difference technique similar 

to GFP- 25 . The value of d$/dy found by GFP-28 is 0.01353 for the 

center of the core. 
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The next step in the analysis was to combine the four terms of 

Equation (2 . 40) calculated by t he programs GFP-24, GFP-25, GFP-27, and 

GFP- 28 into one result which represents the reactor thermal flux 

response . This was done by obtaining program output for G, dG/dy , 
0 

~. and d~/dy on punched cards , which were then assembled as the data 
0 

deck for a plotting program. The program is called PLOT and is listed 

in Appendix A. PLOT was used to generate four graphs , The graphs 

illustrate the detector response across the core in the y direction 

for two fixed positions in x corresponding to locations used i n the 

experimental measurements. Each x position is shown for the whole 

core, and also for the central graphite region . Figures 4 . 3 and 4 . 4 

show the response through the center of the core where the perturbat ion 

is positioned with the x plane located at x = 55 . 88 cm. The point at 

71 . 12 cm on these graphs (the perturbation point), therefore, 

represents the maximum flux response made at this point . I n Figures 

4 . 5 and 4 . 6, the x plane is moved to x = 41.67 cm. 

Figures 4.3 and 4.4 illustrate that the detector r esponse dr ops 

off rapidly along the centerline of the reactor with increasing 

separation between the vibrator and detector. This is indicative of 

a large local component of the response near the vibrator. The 

change in sign across the vibrator location simply indicates that 
0 there is a 180 phase difference between the responses on each side 

of the vib r ator . 

Several other features were noted from the data used to plot 

Figures 4.3 and 4 . 4. The small peak in the response shown in 
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Figure L1.3 is located just insioe the :outh fuel region. There is 

also a similar peak, although smaller, j us t inside the fuel on the 

other side of the south core . These peaks were not found in the north 

core . It is not known if these peaks are real or simply the result 

of residual oscillations from the modal solution for G. It was 

also noted that in a small region (from approximately 111 to 128 cm) 

just outside the south fuel region toward the edge of the core in the 

graphite, the sign of the response changes . This would indicate that 

the response in this region is in-phase with the response on the 

opposite side of the vibrator. Again, it is not known if this effect 

is real or simply due to oscillations in the modal solution. 

Figures 4.5 and 4.6 show the response across the reactor in a 

plane approximately 14 . 2 cm from the vibrator. The response , in this 

case, also shows a strong local component. The small peaks in the 

south fuel region and the change in sign in the graphite region 

appear also in these calcula tions. In both cases, the two terms in 

Equation (2.40) add on the right side of the absorber and subtract of 

the left side . The term dG/dy dominates the solution for the detector 
0 

so the sign of the response is the same as the sign of the derivative . 

In the experimental portion of this work, neutron detectors were 

placed at three locations; two in the central reflector . (at x = 

55.88 cm, y = 68.26 cm and x = 41,67 cm , y = 59 . 61 cm) , and one fully 

inserted in the central s tringer of the thermal column with the near 

end of the detector approximately 58 .42 cm from the center of the 

reac t or. One of the purposes of this study is t o compare the measured 
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and predict ed responses of the detectors located in the central 

reflector. To eliminate the need to estimate an appropriate value 

for y to use in Equation (2.40), results were interpret ed i n terms 

of the r a t io of the response rather than an absolute value . A 

summary of the prediction is shown in Table 1. 

The calculated ratios of de t ector responses shown in Tabl e 1 

confirm the highly localized char acteristics of the response. These 

results also illustrate the sensitivity of the calculat ed respons e 

of the de t ector near the vibrator to the assumed detec t or position . 

This behavior shoul d be kept in mind when comparing the exper i mental 

and theor etical responses. 



Table 1. Computer based predictions of flux response to a moving absorber 

M 2 (w) ll<P2 y=68 
Detect or Posit ion G 'aG/'ay <P aip /ay yll Y (w) R.atio[ .1<P y=59J 

0 2 

x = 55 . 88 cm 

68 . 26 a 0.1675 - 0,03602 7 . 086 0 , 01353 -0,2576 y cm 

x = 41. 67 cm 8.587 

59 . 61 a 0 . 02971 -0 . 004290 7. 086 0.01353 - 0,03000 y = cm 
~ 
\0 

x = 55 . 88 cm 

69 . 06 b 0.2401 -0 . 04524 7. 086 0 . 01353 - 0.3173 10 . 58 y = cm 

~ased on distance from detector centerline to vibrator centerline . 
b d i stance from detector edge to vibrator centerline . Based on 
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V. EXPERIMENTAL EQUIPMENT AND RESULTS OF MEASUREMENTS 

In this section, the results of the experiment which was performed 

to verify the predictions of Section IV will be presented. In addition 

t o the actual f lux response ratio, other dat a s uch as detec tor phase 

plots and coherence f unctions will be discussed . Short descriptions 

of the UTR-10 reactor , experimental equipment, and experiment a l methods 

are also included. 

The UTR-10 r eactor is an Ar gonau t t ype coupled- core sys tem. It 

is light wa ter moderated and cooled . Each core r egi on is surrounded 

by graphite which serves as a reflec tor. The maximum licensed power 

of the r eac t or is 10 kilowatts . 

The central graphite region of the reactor cont ains five removable 

stringers which may be r eplaced with experimental devices . The 

experimental work done for this research involved using two of the 

s tringer locations . The vibrating neutron absorber and one detector 

(detector 1 of Figure 5.3) were placed in the Central Vertical Stringer 

(CVS) . Another detec t or was placed in a stringer located northwest of 

the CVS (detector 2 of Figure 5 . 3) in the internal reflec t or . Figures 

5 . 1 and 5.2 show plan and elevations views of the reactor core . A 

third de tec t or was fully inserted in the central s tringer location in 

the thermal column. The detectors used in the internal r eflector 

were N. Wood model G- 5-9, 5/8 inch (1.59 cm) x 9 i nch (22.9 cm) BF3 
detectors opera t ed as ion chambers, and the detector used in the 
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Central Vertical Stringer (eVS) 

Figure 5.1 Plan view of the UTR-10 reactor showing l ocations of 
the CVS and the other central graphite region 
stringers 
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Detector 2 

,,--~~~~~~+-~ Detec tor 1 

~'--~~~~~~~+--~- Absorber 

Motion 

Central Graphite Region 

Detector Calculated Positions ~N 
(origin at N.W. corner of core) 

w 
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Detector 1 
Detector 2 

41. 67 
55 . 88 

59 . 61 
68.26 

aTo centerline of detector 

Figure 5.3 Central gr aphite region showing exact detec t or l ocations 
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thermal column was a Westinghouse model 6377 compensated ion chamber 

(CIC) . The current output from the BF3 detectors was measured by pre-

amplifiers locally constructed, (Aines Laboratory) which produced a 

voltage output . The output from the CIC was measured by Keithley model 

417 picoameter . All signals were bandlimited using a high pass filter 

(Krohn-Hite model 3321) set at a cutoff of 0.1 Hz and a low pass filter 

(local construction) set at 15 Hz. 

The vibrating neutron absorber used in this research is the same 

apparatus used by Borland [6]. It consists of a graphite block which 

fits into the CVS . It has slots for detectors, as well as a hollow 

center for the vibrating neutron absorber parts. The vibrating 

absorber is a small piece of cadmium metal attached to an aluminum 

rod. The rod is suspended in the graphite block by a pivot in the 

top of the assembly . The rod is driven back and for th in the gr aphite 

block by two electrical coils, also located in the top of the device. 

These coils alternately attract iron plates secured to the top of 

the rod creating a vibrating motion in the Cd strip . This motion 

has a maximum amplitude of 1.28 cm. The centerline of the motion is 

approximately 2 inches above the center plane of the reactor. A 

linear variable differential transformer (LVDT) was used to measure 

the motion of the absorber. The apparatus is shown in Figure 5 . 4 . 

The signals from the detectors and the LVDT were sen~ ~o a 

HP3582A Spectrum Analyzer. The analyzer uses the Fas t Fourier 

transform to obtain the frequency content of the signals. The square 
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root of the Auto Power Spectral Density (APSD), transfer functions, 

transfer f unction (TF) magnitude and phases, and coherence functions 

are all available on the analyzer. The cross power spectral density 

(CPSD) is not measured directly, but can be calculated from the 

appropriate APSD and transfer function (TF) using the equation CPSD 

TF/APSD. A HP 85 minicomputer was used to store data from the analyzer, 

calculate the Cross Power Spectral Density and generate plots of the 

results. All runs used rms averaging with 16 averages. 

Reactor flux response to a moving neutron absorber, such as was 

used in this ·experiment, can be thought of as having two separate 

components. These components are the local response and the global 

response [1,2]. The local response is due to the flux depression in 

the area of the reactor very near ·the neutron absorber . The global 

response is the overall reactor flux response to the absorber moving 

in a flux gradient. As the absorber moves into a region of greater 

flux, negative reactivity is added to the reactor and the whole 

reactor flux level falls. Similarly, when the absorber moves into 

a region of less flux, positive reactivity is added and the flux level 

increases. The effects of the local and global flux responses add or 

subtract depending on detector placement relative to the vibrator . A 

detector near enough to the neutron absorber to experience a local 

response will indicate a total response greater or less than either 

the local or global response alone depending on whether the components 

are in phase or not. 
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The detector in the CVS (detector 1 of F~gure 5,3) is close 

enough to the absorber to see a large l ocal effect . It is assumed 

that the other BF3 detector (detector 2 of Figure 5.3) and the CIC 

will see only the global response. Since at the time the experiment 

was run, the south core had a larger 'fuel loading than the north core, 

calculations served t o indicate that there was a positive flux gradient 

through the central graphite region from north to south (Figure 4.2). 

The higher flux was in the south core . For this distribution, when the 

absorber moved north it added reactivity and the overall flux level 

(i.e ., the global response) increased. However, the detector in the 

CVS was on the north side of the apparatus and was exposed to a 

decreasing flux due to the local response. Thus, the local and global 

responses are out of phase for this detector . If the local response at 

the loca tion of this detector is greater than the gl obal response, 

the resulting composite signal will be out of phase with the r est of 

the detectors. Data will be presented which show that this is the 

case . 

The LVDT signal was also found to be out of phase with the global 

response. This was determined by moving the absorber by hand and 

observing the LVDT signal on a digital multimeter. Both the CIC and 

the BF3 detectors undergo a phase shift of 180° due to the detection 

electronics. For this reason, the global response signals will be in 

phase with the LVDT. The local r esponse signal will be out of phase 

with both the LVDT and global response signals . A summary of the 
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expected detector responses and LVDT signal is shown in Figure 5.5 

where the global component is based on a positive flux gradient from 

north t o south. Phase changes other than 180° resulting from sign 

changes are assumed to be negligible. Th.is includes the phase of the 
0 reactor frequency response (approximately 11 ) and a small phase shift 

through the instrumentation. 

The experiment was run with the reactor at a power level of 200 

watts. The vibrating absorber was excited with a 1.5 Hz square 

wave signal and with a pseudo random binary sequence (PRBS) signal. 

The graphs of interest, produced by the minicomputer, are the APSDs 

of the individual signals and the phase, coherence, and CPSD plots of 

combinations of the signals. 

The APSD is a measure of how the "power" of a signal is dis-

tributed in frequency. The APSDs of the signals will first be 

examined. Figures 5.6 through 5.10 are plots of the background 

s i gnals indicated by each detector. In these plots, and all that 

fo llow, detector 1 refers t o the BF3 detector in the CVS, detector 2 

refers to the BF3 detector in the other stringer, and thermal column 

detector refers to the CIC located in the thermal column. Figures 

5.6, 5.7, and 5.8 show the detector spectra at a reactor power of 

200 watts with no absorber motion. Figures 5.9 and 5.10 show the 

BF3 detector's signa ls with the reactor shutdown but the vibrator 

in motion. These measurements were taken to check for noise from 
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the coils or other parts of the detection system electronics . An 

additional check for noise pickup was made by operating the vibrator 

at 1 . 5 Hz with the vibrator blocked so that the cadmium strip could 

not move and with the reactor a t 200 W. No indication of a 1 . 5 Hz 

response was found in the spectrum of any of the detectors. These 

plots es t ablish a baseline which indicates a bottom level for 

determining the usefulness of data. For the BF3 detectors, this level 
-9 2 is approxima t ely 10 v /Hz and for the CIC it is appr oximately 

10- 7 v 2 /Hz . 

Figur es 5.11 through 5.17 show the APSDs of the three detector 

signals and the LVDT signal for the 1.5 Hz square wave and PRBS 

inputs . Several points are i nte r esting to not e on these gr aphs . 

Figure 5 . 12 shows the PRBS signal for detectors 1 and 2. The signal 

for detector 2 is seen to be only at the l evel of the background, 

thus , PRBS information from detector 2 is probably meaningless . 

The same is seen t o be true for the CIC. This is because the "power" 

of the PRBS signal is spread out over a f r equency band. The APSDs 

of each de t ector signal for the periodic absorber motion are seen t o 

be well-above background l evels . The LVDT signal fo r the PRBS input 

(Figure 5 .17) shows that a frequency band out to about 5 Hz is 

present in the signal. 

Next, the r elationships between signals will be discussed . These 

relationships include phase information , coher ences , and CPSDs. Of 
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special interest are the coherence plots. The coherence function 

is defined as 

2 CPSD12 (5.1) 

The coherence function provides a measure of how well two signals are 

correlated. A coherence of greater then 0.5 indicates strong 

correlation with a coherence of 1.0 being complete correlation. All 

phase information was found to be as expected, with detector 1 180° 

out of phase with detector 2, the CIC, and LVDT. CPSD plot s are used 

to show the relationship between signals as a function of frequency 

as seen by two detectors or a detector and the LVDT . 

The Figures 5 . 18 through 5.23 show the phase, coherence , and 

CPSD information between detector 1 and detector 2. Figures 5.18 and 

5.19 show the coherence functions for 1.5 Hz and PRBS inputs, 

respectively. The periodic signals are strongly coherent at the 

fundamental frequency and its harmonics but the PRBS case shows a 

very small coherence. This indicates that PRBS information for this 

combination of signals is essentially meaningless. The phase plots, 

0 Figures 5.20 and 5.21 show the expected 180 phase shift fo r the 

periodi c signal. No information can be inferred from the phase plots 

of the PRBS signal because of the very small coherence. The CPSD 

plots (Figures 5.22 and 5.23) show a strong signal for the periodic 

input; the PRBS CPSD is, however, not very meaningful . 



w u z w er w 
I a 
u 

l. (21 

'21. 8 

0.6 

'21. 4 

0.2 

'21. l2f 

~ 
I 

1 2 

1.5 HZ SIGNAL 

~~~-DET 1-DET 2 

3 4 5 6 7 8 9 10 

FREGJUENCY<HZ) 
Figure 5 .18 Detec tor 1 - detector 2 coherence for a periodic vibrating absorber motion 



PRBS 
1. l2J 

121.8 - ---DET 1- OET 2 

LlJ 
u 0. 6 z 
LlJ 
Ct: 
LlJ 
I -..J 

121.4 vi a u 

121.2 

121. 121 
e 1 2 3 4 5 6 7 8 9 10 

FREc:JUENCY<HZ) 

Figure 5 . 19 Detector 1 - detector 2 coherence for a PRBS vibrating absorber motion 



200 

150 

100 

I"\ 50 (j 
w 
0 
v 

w -..J 
(j"\ 

en -50 
< 
I 
Q_ -100 

-150 

-200 
0 1 2 3 4 5 6 7 8 9 10 

FREQUENCY <HZ) 

Figure 5 . 20 Detec t or 1 - detec tor 2 phase fo r periodic vibrating absorber motion 



200 

150 

100 

A 
t:> w 
0 
v 

w -...J 
-...J 

CJ) -50 < 
I n. -100 

-150 

-200 
B 1 2 3 4 5 6 7 8 9 10 . 

FREQUENCY <HZ) 

Figur e 5 . 21 Detec tor 1 - detec t or 2 phase f or PRBS vibrating absorbe r motion 



r\ 
N 
I 

1.0E-012r-~--..--~...,..--------~1~·-S __ H_Z-r-S_l_G_N_A~L--~-.-~~-T-----------. 

~---~OET 1- OET 2 

~ 1.eE-013...,_----+--1---+---~1-----+------+---~1----+-------+-----li--~ 
( 

> 
\J 

0 
00 
~ 
U 1.0E-014t------+--H---+-----J--~--1----4-------J-----+------4-----~~ 

FREQUENCY <HZ) 

Figure 5 . 22 Detector 1 - detector 2 CPSD f or PRBS vibrating absorber motion 



1.0E-014 PRBS 

CET 1-CET 2 

I'\ 

N 
I 

' 1.0E-015 N 
( 

> v 

0 
Ul -...J 

Cl.. 
\D 

u 1. 0E-016 

FREQUENCY <HZ) 

Figure 5.23 Detector 1 - detector 2 CPSD for PRBS vibrating absorber motion 



80 

Figures 5.24 through 5.29 show the detector 1 ~ CIC detector 

signal combinations. The coherence for the periodic input (Figure 

5 .24) shows a very strong correlation and the coherence of the PRBS 

(Figure 5.25) is low but larger than for the detector 1, detector 2 

combination . The common induced components in the signals apparently 

are strong enough to contain some information. As expected , the 

phase plots (Figures 5.26 and 5.27) show the 180° phase shift for 

both the 1.5 Hz and PRBS signals . At this time, it is necessary to 

note that when the spectrum analyzer sees a phase shift of more than 

180°, it flips the signal to the opposite sign. These phenomena 

can be seen in Figure 5.27 around 1 Hz and, in general, other phase 

plots. A comparison of the CPSDs (Figures 5.28 and 5.29) shows that 

the PRBS case generates considerably less common responses in the 

two signals than the periodic input. 

The next set of gr aphs, Figures 5.30 through 5 . 35, show the 

detector 1 - LVDT signal combinations . These signals show the 

strongest relationship of the experiment. Strong coherence is seen 

(Figures 5.30 and 5.31) for both the periodic signals and the PRBS. 

The phase graphs (Figures 5.32 and 5 . 33) show the 180° phase shift 

between the signals as expected . 

Figures 5.36 through 5.41 are for the detector 2 - CIC detector 

combinat ions . The coherences, Figures 5.36 and 5.37, show trends 

similar to those previously observed with the periodic input having 

a stronger coherence than the PRBS input. Both the periodic and 
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PRBS phase plots (Figures 5.38 and 5.39) indicate the response at the 

CIC and detector 2 are in phase. Since both detectors see only the 

global response, this is as expected. The CPSD for the PRBS 

(Figµre 5.41) shows a small common response. 

Figures 5 .42 to 5.47 show the signal combinations for detector 2 

and the LVDT. As can be seen in Figures 5 . 42 and 5.43, the coherence 

is strong for the periodic signal, but the PRBS signal shows little 

commonality . Although it shows considerable scatter, the periodic 

signal seems to show about zero phase shift (Figure 5.44). This is 

what is expected. More averages are needed in this plot to smooth 

out the curve . The PRBS phase (Figure 5.45) also shows scatter and 

is probably meaningless, as indicated by the low coherence. The 

CPSD of the detector 2 - LVDT combination (Figure 5.46) shows a 

strong peak at the fundamental frequency, but the PRBS plot (Figure 5.47) 

is again quite low. The reason it has as high a magnitude as it does 

is due to the powerful contribution of the LVDT signal. 

The final set of graphs in the set, Figures 5.48 through 5 . 53, 

are of the thermal column CIC detector and the LVDT, These graphs 

show good correlation (Figures 5.48 and 5 . 49), phase information 

(Figures 5.50 and 5.51), and CPSD plots (Figures 5.52 and 5.53) for 

both the periodic and PRBS signals. The reason the CIC appears to 

see a larger response to the vibrating absorber than detector 2, 

even though it is farther away from the absorber, is because it is a 

larger detector and has a higher efficiency. 
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VI. COMPARISON OF EXPERil1ENTAL RESULTS 
WITH THE THEORETICAL MODEL 

The rat io of the responses of detector 1 and 2 was calculated 

from Equation 2.40 using the results from the theoretical model. As 

reported in Table 1, this ratio is 8.59 based on a separation between 

the vibrator and detectors that is equal to the centerline to center-

line distance. When the distance from the vibrator to detector 1 was 

changed to the distance from the vibrator centerline to the near edge 

of the detector, this ratio was found to be 10.6. The measurements 

were also used to obtain the response ratio. From the plots of the 

detector 1 and 2 APSDs for periodic motion (Figures 5.11 and 5.13), 

the actual flux ratio corresponding to the calculated ratio is given 

by the ratio of peak APSD values at 1 . 5 Hz. 

Ratio= (APSD ) 1 / 2/(APSD )l/2 
detl det2 

Recall that the computer program calculated the squar e root 

of the APSD . The ratio of response is found to be 

9.07 

This measured ratio falls between the two calculated values 

given in Table 1. As pointed out in Chapter IV, the calculated 

ratio of responses is sensitive to the assumed location of the near 

detector to the vibrator. In the model, the vibrator is assumed 

not to displace graphite, whereas in the actual reactor there is 

an air void . This will affect the rate at which the response drops . 
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This might be accounted for by using an effective separation distance 

for the calculated response. These results serve to indicate that 

an appropriate effective spacing falls between the centerline to 

centerline spacing and centerline to detector edge spacing . 

Comparisons of theory and measurements of a qualitative nature 

can also be made . The theoretical model predicts that the response 

will drop off rapidly with distance between the detector and vibrator. 

The results of the measurements support this calculation . The model 

fails, however, to predict the 180° phase change between the two 

detectors in the internal reflector. This phase shift would appear 

as a change in sign between the two detector responses. There may 

be several aspects of the model which contribute to this failure to 

model the phase correctly . Among other points; (1) the f lux gradient 

at the vibrator location may not be correctly predicted (the dG/dy 

term), (2) the fuel regions are not correctly modeled at the edges , 

and (3) additional modes may improve the convergence resulting in 

better agreement between theory and experiment . 
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VII. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

Since the actual reactor flux response ratio measured by the 

experiment and presented in Chapter VI falls in the range of the 

ratios predicted by t he computer programs and presented in Chapter 

IV , it is concluded that the Green 's function model of the UTR-10 

reactor r epresents a reasonable first step in a theoretical development. 

Refinements can be made in the model t o make it more consistent with 

experiment al results. These refinements include reviewing the c r oss 

sections and other reactor parameters used in the model, and devising 

a way to add more modes to the solutions . The present value of 21 

modes is restricted by problems in the library subroutines. These 

problems stem from the inability of the computer to handle the i ll-

conditioned matrices encountered in the higher mode solutions of 

matrix A. Adding modes to the solutions could improve the calculat ed 

value of the Green ' s f unctions . It would also be desirable to 

improve the calculation of dG/dy
0

• In addition, it would be interesting 

to develop a model which accounted for the graphite regions at the ends 

of the fuel tanks . 

Another conclusion which can be made from the experiment is that 

the phases between the detector signals and the absorber motion wer e 

consistent with the local-global interpreta tion of the response. The 

global response of detectors was readily identifiable f rom the phase 

shift associated with the reactor transfer function , e . g . detec t or 2 

and the thermal column detector . The coherence funct ion was found t o 
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be a useful indicator of the commonality of signals for the purpose 

of phase shift measurements. When the coherence func tion was greater 

than 0 . 2, meaningful phase information was obtained (Figure 5 . 25 

and 5.27) . 
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X. APPENDIX A: LISTING OF COMPUTER PROGRAMS 

This appendix contains listings of the computer progr ams used 

in the Green's function modeling of the UTR-10 reactor. The first 

program, GFP-20, uses the criticality equations to calculate the 

determinant of matrix A. 
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I . //CJOO J OB UJ780,ltJH 
2 . //STEP! EXEC WATFIV,PEGION=l9lK tLI B= ' SYS2 .llfATFIV . IMSL. DOU6 LE ' 
J . //GO .SYS IN DD :c: 
4 . 
5 . 
6 . 
7 . 
8 . 
9 . 

I 0. 
I 1 • 
12 . 
I J . 
14. 
1!5 . 
16. 
I 7 . 
18. 
I 9 . 
20 . 
2 1. 
22 . 
2 J . 
2 4 . 
2!5 . 
26 . 
27 . 
28 . 
2 9 . 
JO . 
JI . 
32 . 
JJ . 
34 . 
J!S . 
36 . 
37 . 
38. 
39. 
40 . 
4 I • 
4 2 . 

4 ' · 44. 
4 !5 . 
46 . 
4 7 . 
48 . 
49 . 
!5 0 . 
!5 1. 
!52 . 
!S J. 
54 . 
!55 . 
!56 . 
!57 . 
!58. 
!59. 
60. 

SJOB 
c 
c 
c 

c 

c 

c 

c 

c 

'W JH ', TI ME =!S , PAGES=IO 
TH I S PROGRAM IS GfP20 -IT CALC S . DET A FOP 2 GROUPS 
THE PROGRAM IS ~SEO TO LOC AlE THE VALUE Of Z WHI CH RE SULTS 

IN A ZERO DETERMINANT OF MATRIX A 
DOUBLE PRECISION PloSIGAO M, S l GAFLoOflL oOF2L .Alt Bl . B2 . BJ , B4o B!5 
DOUBLE PRECISION YO.SRM.SRFL. SFL . SFR .NUL.MUL .A 2 . 0L . RL . NU2L tM U2L 
OOUBLE PRECI SION 8TFLtBT2FL,BK, S AM.SAFLtOMl . OM2 . BETA 
DOUBLE PRECISION DEXP , OSORT,FI SL .BZ.OABS , OS I N. OCO S 
DOUBLE PRECI S I ON BTM, BT2M ,ALFL.AFL .A LM.AL2M .STEP . Z 
DOUBLE PRECISICN S I GAFR,OFlR.OF2R . SAFRt SRFR ,BT 2 FR. BTFR 
DOUBL E PRE CISION ALFR .AFR t FISR tMU?.R .MUR. NU2R .NUR,QR , RR 
REAL A(20.201.B! 20 l.GIC100).G(l00l.wKAREA(700 ). 0l.02 t OET 
INTEGER J,J,K.L,M,N.IA• IOGT.IER• IJOB . P 
Pl =J .111 15926!54 
THESE ARE THE lWO GROUP PARAMETERS 
SIGAOM=O . OOOJOC61 
SI GAFL:0 , 0!5!5110!5 
S I GAFR: 0 . 055719 
OFIL= l. 4 2 14 47 
OF I R= l. 421447 
OF2L=O , 231576 
DF2R:O , 231!576 
DMl =1 .1 52864 
DMZ =O , 9 91111 0 
BET A= O, 006!5 
SAF L= 0 , 002076 
SAFR=O , 002082 
SAM=0 . 5326J68D- 07 
SFL=0 .08233 
SFR=0 . 083'>7 
SRFL=D. 033611 
SRFR=O. 0344 7 
SRM=0.00287363 
Y0 =22 .6 !5 
6!5=32 . 36 
B4=16 . 11 
63 =22 . 6 !5 
62=16. 11 
Bl = 32 • J 6 
BJ=YD+BJ 
THI S IS THE ESTIMATED VALUE OF Z 
l=67. 
A 1 = 111 , 7 60 
THIS IS THE STEP SIZE BY ltHICH Z IS IN CRE MENTED IN TH E SEARCH 
STEP=D, 1 
THE M~IN LOOP CAL CULATE S A NElt OE T A FOR EACH Z 
DO 20 K = I • 1 00 
Z=l +s TEP 
BZ=!PI/Zl:C::C:2, 
IJ06:4 
N=20 
IA= 20 
TH E ELE MENT S Of A ARE INITIALLY SE T=O . FOR EACH STEP 
DO 10 I :1, 2 0 
B( I l=O. 
DO 11 J=1.20 
A< I ,JI :: 0, 



61. 
62. 
6 3. 
64. 
65 . 
66 . 
67. 
68. 
69. 
70. 
71 . 
12. 
73. 
74. 
75. 
76 . 
77. 
78. 
79 . 
80. 
81. 
82. 

8 '· 84 . 
85. 
86. 
87. 
88. 
89. 
90. 
91. 
92 . 
93 . 
94 . 
95. 
96. 
97. 
98 . 
99 . 

1 oo . 
10 1. 
102 . 
103 . 
1 0 4. 
105. 
106. 
107. 
108. 
l 0 9. 
110. 
11 l. 
11 2 . 
11 '· 114. 
115. 
116. 
117. 
118. 
119. 
120. 

11 
10 

c 

c 

CON Tl NUE 
CONTIN UE 
01 ::o. 

1 20 

THESE S TE PS CAL CULATE THE SOLUTION EQUATION P ARAM ETERS 
BK=<Pl/All**2· 
BT2M=BK+!SIGAO~/OM2l+BZ 

BTM=OSORT<BT2M l 
BT2FL=BK+!S1GAFL/OF2Ll+BZ 
BT2F~=BK+<SIGAFR/OF2Rl+BZ 

BTFL=OSORT(BT2FLl 
STFR=DSORT<ST2FRl 
AL2M=BK +(SAM+SRM l/OMl+BZ 
ALM::D SORT<AL2M) 
AFL=B(+(SAFL+SRFLl/OFlL+BZ 
AFR=BK+<SAFR+ SRFR ) /OFlR+SZ 
ALFL= OSOR T< AFL l 
ALFR=DS ORT< AF R) 
A2=< SRM/OM2 )/(A L2~-B T 2 Ml 

FISL::(SFL*SRFL)/(0flL*DF2Ll 
FISR=ISFR*S RFR)/(0F1R *DF2R l 
MU2L= IAFL+STZFLl/2 .+0SQRTl(AFL+ST 2FL l **2.-4* CBT 2FL*AFL - F ISLll /2 . 
MU2R=C AFR+BT 2FRl/2 .+0SORTICAFR+ST2Fq) **2 ·-4* CBT2FR* AFR- FISRl l /2. 
MUL =OSOR TIM UZL) 
MUR =OSOR TIMU2R l 
NU2L = IAFL+BT2FLl/ 2 .-0SQRT( (AFL+BT 2F L l ¢*2·-4*1B T2FL* AFL- FISL))/2. 
NU2R= CAFR+ST2F R l /2 .-0SORT(IAFR+BT2FR l **2 ·-4* 1BT2Fq¢ AFR-FISRll l2 . 
NUL =os o R TIO AB S c NU2ll) 
NUR =DSORTI DABSCNU2Rll 
OL=IS~FL/OF2L)/(MU2L-BT 2FLl 

QR::(S~FR/OF2Rl/(MU2R -ST2FRl 

RL = -C SRFL/OF2Ll/(NU2L+B T2F L) 
RR=-<SRFR/OF2R l / CNU2R+BT2FRl 
MATRIX A IS LOADED HERE 
A(l•ll = l• 
ACl.2) :: 1. 
A!2 . 3l=l. 
A( 2 ,4 )::1. 
A(3.t) ::OEXPC-ALM*B ll 
AC3.2l =OEXPCALM*B ll 
A(J,5> = -1. 
A(3.6l = -1• 
A(3.7> = - 1. 
A(3 , 8l =O . 
A(4•1>=-A2*DEXP(-ALM*B1l 
A(4.2l = -A2* DEXPIALM¢Bl) 
A(4,Jl =OEXPl-BTM*Bl l 
A(4 . 4l =OEXP (BTM *B ll 
A(4 . 5 l=OL 
Al4. 6l=OL 
A14.7l=RL 
Al4.Bl=O. 
A( 5 ,ll = - DM 1 ¢ALM *OEXP l-ALM*B ll 
A(5o2l =O M1¢ALM*DEXP(ALM9Bll 
A( 5 , 5 l :: OF lL * MUL 
A(St6l =- OF1 L¢MUL 
A( 5 . 7l=O• 
A( 5 , Bl=-OFlL*NUL 
Al6tll=OM2*A2*ALM* DEXPl-ALM*81l 
Al6.2l =-0"'2*A2 ¢ALM*DEXPIALM*Bll 
AC6 . 3l=-OM2*BTM*OEXPl-BTMQB ll 



1 2 1. 
122. 
12 3. 
12 4. 
125. 
126. 
127. 
128. 
129. 
1 30. 
131. 
132 . 
1)3. 
134. 
135. 
136. 
137. 
138. 
139. 
140. 
14 l. 
142. 
14 3 . 
144. 
145. 
146. 
147. 
148. 
149. 
150. 
15 1. 
152. 
153. 
154. 
155. 
156. 
157. 
158 . 
159 . 
160. 
1 61 • 
162. 
16 3. 
164. 
165. 
166. 
167. 
168. 
169. 
170. 
l 71. 
172. 
173. 
174. 
175. 
176. 
177. 
178. 
179. 
180. 
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AC6o4l =O M2*BTM¢0EXPCBTM¢8ll 
AC6. 5 l = -OF 2L¢ 0 L¢ MUL 
AC6 .6) =OF2L¢0L ¢MUL 
A(6o7l = O. 
A( 6 .8 l = OF2L QRL ONUL 
AC7. 5 l=OE XPC -MULOB2) 
AC7. 6l=OEXPCMUL¢ B2l 
AC7.7l =OCOSI NUL ¢82l 
A<7.8l =OS IN(NUL ¢82l 
AC7 .9):-1 . 
A<7.10l= -l. 
AC8. 5l=-OL¢0EXP(-MUL¢B2 l 
A(8.6l=-QL¢0EXP <M UL* B2l 
AC8.7l = -RL¢0C QS (NUL¢ B2l 
A(8.Sl=-RL¢0SIN (NUL¢B2 l 
AC8. 9 l =A2 
AC8.10l =A2 
AC8olll = -l• 
AC8.1 2 l = -l• 
AC9. 5 l =-OF1L¢MUL¢0EXP <-MUL ¢ B2l 
AC9.6 l = OF1L ¢ MUL ¢0EXO(MUL¢ 82l 
A(9.7) = - 0F1L¢NLL¢0SIN CNUL¢62l 
AC9.8l = DF1L ¢NULOOCOS(NUL¢82l 
AC9.9l=OM1 ¢ ALM 
AC9.1 0 >= -0M1 ¢ ALM 
AC10. 5 ) =0F2L¢0L OMUL*DEX P(-MUL ¢B2l 
AC 1o.6 l =-OF 2L ¢ CL¢,..UL¢0E XP C MUL ¢62 l 
AC10.7l=OF2L¢ RL¢ NUL¢0SIN(NUL¢ 82l 
A (I 0 • 8 l = -OF 2L!:- RLO::NUL¢0C DSC NUL ¢62 l 
A<10.9l=-OM2¢A 2¢ ALM 
AC10.1 0 l=OM2¢ A2¢ALM 
A ( 1 0 • 1 l l =OM 2¢6 TM 
ACl0.1 2 l=-OM2¢B TM 
AC11.9l=DEXP(-ALM¢83l 
AC 11•1 0 I =OE XP ( ALM*B3 l 
A ( 11 t I 3) =-1. 
ACll.14):-1. 
A(ll .15 l=-1. 
A(ll.16)=0. 
A(12t9)=-A2 ¢ 0 E XPC-ALM¢63) 
AC12.10l=-A2¢0EXPCALM¢83l 
A( 1 2 • 11 l =OEXP C -BTM¢83 l 
AC12.12 l=OEXP(BTM¢83l 
A(1 2 .1 3l=OR 
AC12.14 l=OR 
A ( 1 2 • 1 ~ ) =RR 
A(12.16l=O· 
AC1 3 . 9 >=-0M1 0:: ALM¢0EXP C-ALM¢83l 
A(13.10l=OM1 ¢ ALM¢ 0EXP(ALM¢83l 
AC13t13l =OF1R ¢ "'UR 
A(13.t4 >=-OFlR :CMUR 
A(13.t 5 ) =0 . 
AC13,16l=-O F 1RO~UR 

AC14.9l =OM2 ¢ A2 ¢A LM¢0EXP(-ALM¢83) 
A(14.1 0 l =-OM2¢ A2¢A LM OOEXP IALM OB3 > 
A( 14.11 >=-OM2¢8TM¢0!:XP( -BTM¢ B3l 
A(14t12l=OM20BTMOOEXP(BTM¢83) 
A(14t13l =-OF2R¢0R¢ MUR 
A(14.14 l =OF2R cQR¢ MUR 
A(l4.t5l=O. 



181. 
182 . 
183 . 
184. 
18 5 . 
186. 
187. 
188. 
189. 
190. 
191. 
192. 
193. 
19 4. 
195. 
196. 
197. 
198. 
199. 
2 00. 
201. 
202. 
203. 
20 4. 
2 05. 
206. 
2 07. 
208. 
209. 
2 1 o. 
2 11. 
2 12. 
213 . 
214. 
2 15. 
2 16. 
2 17. 
2 18. 
2 19. 
220. 
221. 
22 2 . 
2 2 3. 
2 24. 
22 5 . 
226. 
227. 
228. 

c 

c 
c 
c 

12 
2 0 
25 

SENTRY 
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A(l4o16> =0F 2R* ~ R*NUR 

All5ol3> =0E XP(-~UP*B41 

A!15ol4 >=OEXPCMUR*f 4 l 
A!l5ol5l =OC OS!NUR*B4l 
A(l 5 ol 6 ) =0S IN!N LR*B4> 
A(l5ol7>=- 1 • 
A(15.18)=-1. 
A!16. 1 3>=-0 R*D E XP<-MUR*B4) 
A(l6ol4> =-0R* OEXPIMUR*B4l 
All6ol5> =-RR*DC CS CNUR* B4) 
A(l6ol 6 >=-RR* DS I N!NUR* B4) 
A!l6ol7>=A2 
~( 16o l8 > =A2 
A(l 6 o19l=-l. 
A I 1 60 2 0 I=- 1 • 
A!17.1 J l=-OF1R O ~UR*DE XP<-MUR¢84) 

A(l7ol4 >=OF1R¢ ~UR¢0E XP(MUR*B4> 
4!17ol5)=-0F1RONUROOSIN(NUR084) 
A(l7o16> =DF1RO~LR OOCOSCNUR*B4) 

4(17ol7):DMI OALM 
A(l7ol8l=-DM1 0 ALM 
4(l8olJl=DF 2R* OROMUROOE XPl-MURo84) 
All8ol4 l=-DF2R OOROMUR* DEXP(MUR* B4l 
A(l8ol5l=DF2 RoRRONURODSIN<NUR ¢ B4l 
A(l8ol6>=-0F2RORRONUR oDCOSCNUROB4) 
Al18.17l = -DM2 ¢ A20 ALM 
A(l8ol8l=OM 20A20 ALM 
A!l8ol9l =DM 20BTM 
A(l8o 2 0> =- DM208TM 
Alt9.17>=DEXPl-ALM*B5l 
A!19o1B>=DEXPlALM 085) 
A( 2 0ol7l=-A 2*DEXPC-ALM*B5l 
A(2 0 ol8l=-A 200E XPCALMOB5l 
4(20.19 J=OEXP <-BTM¢B5l 
Al20o20l=OEXP(BTM¢85) 
THE SUBROUTINE LINV3F I S USED TO CALCULATE DET A 
CALL LINV3F (AoBolJOB.N.lAoDloD2.~KAREAolERl 

THE PROGRAM STOPS IF A TERMINAL ERROR IS RECIEVED FROM THE 
SUBROUTINE. THE TERMINAL ERROR INDICATES THAT THE 
DETERMINANT IS NEAR ZERO. 

IF <IER.E0.130) GO TO 25 
OET =O 1 * 2 •**D2 
~R I TE ( 6 • 12 l 0 E T • Z 
FORMAT <•THE CETERMINANT IS •.El2o 5 o• AT Z= •eF8o5l 
CONTINUE 
STOP 
ENO 
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The nex t progr am, GFP- 24, cal culat es the Gr een's functions, 

G. 
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1. //C300 JOB U3780 .W JH 
2 . //STEP 1 EX:C FORTGC GoRE GION=300K o TIME:( o40 l oL I B= • S YS l. IMSL . OOUBL: ' 
3. //FORT .SY SIN DO '' 
4. C THIS PROGRAM IS GFP2 4PL-IT CALCS./PLOTS THE G.F . FOR 2 GROUP S 
5 . DOUBLE PRECISION Pi oS I GAOMo SI GAF Lo DFlL oOF2 L•AloBloB 2 , B3 , e4 . B5 
6. DOU BLE PREC ISICN YO.SRMo SRfL,SFLo SFRoNULoMUL oA2 oOLoPLoNU2L oMJ ~L 

7 . DOUBLE PREC I S I CN BTFL oBT2FL .BK oS AMo SAFL oOM l o0M 2 , BETA 
8. DOUBLE PRECISION OEXPoDSORToFI SL , BZ , OABS oDS INoDCOS 
9 . DOUBLE PRE CI S I ON BTM.BT 2MoALF L ,AFL,ALM,AL 2 Mo S TEPoZ 

10 . OOUBL~ PRECISION S I GAFRoOFlPoOF2Ro S AFRoSRFR oBT2FRo8 TFR 
11. DOUBL E PRECISION ALFRoAFR,FISRoMU2RoMURoN U2 RoNUR,QR,RR 
12 . DO UBL E PRECISICN Y2Kl oY2K2oY2K3 oY2K4oY2K5oY2K6 
l 3 . 
1 4. 
15 . 
16. 
1 7 . 
18. 
19. 
20 . 
21. 
22. 
23. 
2 4. 
25. 
26. 
27. 
28. 
29. 
30 . 
31. 
32. 
33. 
34, 
3 5 . 
36. 
37. 
38 . 
39. 
40. 
41. 
42. 
43. 
44 . 
45. 
46. 
4 7. 
48. 
49. 
50 . 
51. 
52 . 
53. 
54 . 
55. 
56. 
57 . 
58. 
59. 
60. 

c 

c 

c 
c 

c 
c 

DOUBLE PRECI S ICN y3,xo.v.ee.ve.x1.G1 
REAL A( 24 . 24l o8( 24),WKAREA1700loDlo0 2 oXl100 loGl1 00l oG31100l 
INTE:;ER loJoKoLoMolA ol DGT o IER.JJOBoYl 
PI= 3 . 1 4 1 592 65 4 
THESE ARE THE TW O GROUP PARAMETERS 
SIGAOM=0.00030661 
S I GAF L= 0 . 055405 
SIGAFR= 0 .055719 
DFlL=l.421447 
DFlR= 1. 421447 
DF2L=O. 231576 
DF2R=0.231576 
OM 1 =1 • 1 5286 4 
OM2=0.99181 0 
BETA: 0 . 006 5 
SA FL= 0, 0 020 76 
SAFR=O. 002082 
SAM=0 . 53263680-07 
SFL=0 .08 233 
SFR=D • 0 8 397 
SRFL=O • 03364 
SRFR=O. 03447 
SRM=O. 0 0 287363 
Y0=22.65 
85=32.36 
84=16.11 
B3=22 .6 5 
B2=16.11 
81=32. 3 6 
Z=68. 32 755 
Yl=6l 
Al=lll.760 
STEP IS THE SIZE OF THE INCREMENTS IN Y ACROSS THE CORE 
STEP=l4 2 .24 / 60. 
X0=55 .88 
x 1=55.8 8 
Y=O. 
BZ=IPl/Zl>::*2• 
I JOB= 2 
N=24 
IA=24 
THIS STARTS THE MAIN LOOP WHICH CALCUL ATES THE GREENS 

FUNCTIONS AT EACH Y 
DO 50 L = 1, Y 1 
X(L ) :Y 
G(Ll= O. 
THIS IS THE MOOE LOOP- THE LIBRARY SUBROUTINE RETURNS 

A TERMINAL ERROR MESSAGE FOR K)13 



61. 
62. 
6 3. 
64. 
65. 
66. 
67. 
68. 
69. 
70. 
71. 
7 2 . 
73. 
74. 
7 5 . 
76. 
77. 
78. 
79. 
8 o. 
81. 
82. 
83. 
84. 
85. 
86. 
87. 
88. 
89. 
90. 
91. 
92. 
93. 
94. 
9 5 . 
96. 
97. 
98. 
99. 

1 oo. 
10 1. 
102. 
103 . 
1 04. 
105 . 
10 6. 
10 7. 
10 8. 
1 0 9. 
11 0 . 
111. 
11 2 . 
1 l 3. 
114. 
1 15. 
116. 
11 7. 
118. 
119. 
120. 

c 

II 
10 

c 

40 

c 
41 
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DO 20 IC= 1 , 1 3 
INITIAL LY THE ELE MENT S OF A AND B ARE SET =O • 
DO 10 I = l. 2 4 
0 ( I ) : 0 . 
DO 11 J: I, 2 4 
A!loJl = O. 
CON Tl NUE 
CONTINUE 
8(14) =1. 
Dl =o. 
TH ESE S TEPS CALC ULAT E THE SOLUTI ON EQUATI ON P ARAM ETERS 
61(:(( ¢P l / Al > **~· 

BT2 M= 8K +! S I GAO ~ /DM2 )+6Z 

BT M=DSO RT( BT2 M) 
6T2FL=BK+! S I GAFL/Of2L l+ BZ 
BT 2 FR= BK+I S IGAF R/OF2 Rl+B Z 
BTFL=DS ORT!BT2FL) 
BTFR=DS ORT! BT2FR ) 
AL2 M=BK+<SAM+S R~) /0Ml+BZ 

ALM =DSORT(A LZM) 
AF L =BIC +( SAF L+S RFLl /DFlL+B Z 
AF R=SK +I SAfR+ S RF R ) /DflR+BZ 
ALF L= D S ORT< AFL) 
ALFR: ) S QRT<AFRl 
A2:( S~ M/DM2 ) /( A L2 M-BT 2M) 

FI S L= < ( 1.-BETA ) ¢5 FL¢5RfL ) / (0FlL¢ 0F2L) 
FI SR= ( ( 1 .-BETA )¢5FR¢SRFR) / ( OF 1R¢ 0F2R) 
MU2L=<AFL+BT2FLl/2 .+ DSQRT!IAFL+BT2FL) ¢¢2 .-4¢ !8T2FL¢ AFL-FIS l ll/2 . 
MU2R= <AFR+BT2 FR)/2.+DSORT((AFR+BT2FR) ¢¢2 .-4¢ (BT2FR¢ AFR-FISR)) / 2. 
MUL::OSQRT<MU2L) 
MUR::DS ORT<M U2R) 
NU2 l = !AFL+B T2FLl /2 .-D SQRT((AFL+BT2Fll ¢¢2 .-4¢ (8T2Fl¢ AFL-FISL))/2. 
NU2R= !AFR+BT2F Rl /2 .-DSORT!(AF R+BT2FRl ¢ ¢2.-4¢1BT2FR¢ AFR-FlSRll/2. 
NUL =DSQ R TI DAB S ( NU 2 U) 
NUR =D sa R TIOAB s ( NU 2R ) ) 
QL = ! S RF L/DF 2Ll/!MU 2L-BT2FLl 
OR= ( SQF R/ OF 2Rl / !M U2R-BT2FRl 
RL = -<SRFL/DF2l) / (NU2L+BT2Fll 
RR:: -( SRFR/ DF2R l / (NU2R+BT2FRl 
I F !NU2L.LT.O. ) GO TO 40 
RL = ISRF L/OF2L) / (NU 2L-BT2Fll 
IF (NU 2R .LT.O.) GO TO 41 
RR= ( S ~FR/OF 2Rl / !NU 2R -BT 2FR) 

LO AD MATRI X A HERE 
A(loll = l. 
A(l.2 ) :: 1. 
A( 2 , J l = l. 
A( 2,4l = l. 
A( J oll = DEXP ! - AL M¢B ll 
A(Jo 2 l = OEXP (A LM¢8 1) 
A(J, 5 >= -1 . 
A( J , 15 ) : -1, 
A( 3 o7l = -l. 
A( 3 ,8l =O . 
A( 4 ol l = - A2¢0EXP ( - AU4¢ Bl l 
A(4o 2 l = -A2¢0E XP( ALM¢81l 
A!4o3l =O EXP !-BTM¢8 1l 
A(4o4):0EXPIBT~¢81) 

A(4,5 l = OL 
A!4.6l = OL 
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• 121. A(4.7) :RL 
12 2. Al4.8l =O . 
12 J. Al5.1) = -DM1 CAL ~ OOEXPl-ALM 061) 

12'1. A(5o2l=DM1 CALM ODEXP(ALM061 ) 
125. Al 5 o5 l =OF 1L ¢MUL 
126. Al5.6> = -DF1LOMLL 
12 7. Al5o7):0, 
128 . A(5o8l=-DF1LON~L 

1 29 . A(6.ll=DM20 A2 0AL MOOEXP l-ALM OB 1l 
130. A(6.2l =-DM2CA20ALM OOEXP IALMOB 1l 
131. A(6.J):-OM2CBTM OOEXP l-9TMOB ll 
132. A(6,'ll=OM20BTMOOE XP IBTMOB1l 
1J3. A(6, 5 ):-0F2LOOLOMUL 
134. A(6,6l =OF2 L OOLOMUL 
1 35. A(6o7l = O. 
136. Al6o8l=DF2L ORLONUL 
137. A(7,5l=OEXPl-M~LOB2l 

138 . Al7o 6 l =D EXPIMUL OB2 l 
139. Al7.7l=OCDSINULOB2) 
14 o. Al7.8l =OSIN INUL OB2 l 
14 1. Al7o9l = -l. 
142. Al7.10) =-1. 
14 3. A(8 .Sl=-OLOOEXPl-MULOB2l 
144. Al8o6l = -OL ODEXP( MUL092) 
145. Al8o7l = - RLOOCOSINULCB2l 
146. Al 8o8l=-RLCDSININULOB2l 
147. Al8 . 9l=A2 
148. A(8 ol Ol =A2 
149. Al8olll=-1• 
150. Al8t12>=-1. 
151. A(9,5l =-DF1L OMUL OOEXP !-MUL OB2 l 
152 . Al9.5l =D F1L OMUL OOEXP (MULOB2l 
153. A(9.7)=-DF1LONULOOS IN(NULOB2l 
154 . Al9 t 8l=OF1LONULODCCS!NULOB2l 
155. A(9o9l = OM1 0 ALM 
156. A(9.1 0 l=-OM1 0AL~ 

157 . Al10o 5l=OF2LOOLOMULODEXP l -MULCB2l 
158 . Al1 0o6l=-DF2LOOLOMULODEXP !MULOB2l 
159. All0o7l =CF2LOR LONULOOSININULOB2 l 
160. All O, 8 l = -OF 2Lt.:S:LONULODCOS (NULOB2 l 
161. A(10.9l = -DM2CA20ALM 
162. A(l0.10 >=OM20A20 ALM 
163. A(10.11 l=DM20BTM 
164. A(10ol2l=-DM20B TM 
165. A!11t9l =DEXP l-ALMOY0) 
166. A( l lt 10 l=DEXPI ALMOYO) 
167. A(ll.131 =-1. 
168. Alll•l'+l =-1. 
169. A(12.9l=-A200EXPl-ALMOY0) 
170. Al1 2 o 10l=-A200EXPIALMOY0l 
171. All2.11 l=DEXP!-STMOYO l 
172. Al12o12 l=DEXPIBTMOYOl 
173. A!12.t3l=A2 
1 7 4. A(12.t'll=A2 
175. Al1 2 o 15 >=-1. 
176. A<l2ol6l =-1• 
177. All3o91 =-0M10ALMODEXP<-ALMOYOl 
178. A!l 3 o1 0l=DM10ALMOOEXP(ALMOY0l 
179. A(l3ol3l =DM10ALM 
180. A(1 3 ol4l =-DM10-LM 



181. 
182. 
18 3. 
184. 
185. 
186. 
18 7 . 
188. 
189. 
190. 
191 . 
192. 
193. 
194. 
195. 
196 . 
197. 
198. 
199. 
200 . 
20 1. 
202. 
203. 
204 . 
205. 
206 . 
207. 
208. 
209. 
2 1 o. 
2 11 . 
212. 
21 3 . 
214. 
215 . 
2 16. 
217. 
2 18 . 
219 . 
22 0 . 
221. 
222. 
22 3 . 
22 4 . 
225. 
22 6 . 
22 7 . 
228 . 
229. 
230. 
2:31. 
2 32. 
233. 
23 4 . 
235 . 
236. 
237 . 
238 . 
239. 
211 o. 
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A(14.9l =A2C ALM*OEXP(•ALMOY0 l 
A(14.10l=·A20AL MCOEXP (ALMOYO I 
A( 140 l l l =·BTM¢0EXPl·BTM¢Y0l 
A(l4ol2l =BTMOOEXPIBTM¢Y0l 
A(l4ol3l =·A20 ALM 
A( l 4o l 4 l =A2 0 ALll 
A ( l 4 • 1 5 l =BT M 
All4.16l=·BTM 
A(l5ol 3 l =OEXPC·ALMOB3l 
A( l 5o 14 l =DE XP ( ALM (<83) 
A ( 1 5 • 1 7 ) =· 1 • 
A(l5ol8l =·1. 
A(l5.19l=·l. 
A ( 1 5 • 2 0 ) =O • 
AC16ol3l=•A 2¢DEXPl·ALMCB3l 
A( 16o 14 l=·A2:):0EXP (ALM OB3 l 
A(l6o15l=DEXP<·BTMOB3 l 
A ( 16 o 16 ) =DE XP I e TMOB3 l 
A(l6.17l=OR 
A ( 1 6, 1 8 l =OR 
A ( 1 6 • l 9 l =RR 
A 116 • 2 0 l =O . 
A(l7ol3l =·DM1 C"LM OOEXP(·ALMC83) 
A(l7ol4J=DM1 * ALM CDE XP<ALM OB3l 
A(17ol7l=DF1R OllUR 
A(l7ol8l=·DF1ROMUR 
Al17ol9l=O. 
A<17o20l=-DF1R*NUR 
A(18ol3l=DM 20A20ALMODEXPl-ALMOBJl 
A< 18 o llll=-DM20A20ALMOOEXP<ALMOBJ) 
A(l8o15l=-DM20e TM ODEXP <-BTMOB3l 
A( 1 Bo16):0M20BTMCOEXPCBTMOBJ) 
A(l8 o l7l =-DF2R OOROMUR 
AC18 o l8l=DF2ROOROMUR 
A(l8 o l9 ) :Q , 

A(l8o20l=OF2R CRRONUR 
Al19ol7l=DEXP(·MUROB4l 
AC19ol 8 ) =OE XP I MUR*B4) 
A< 190 19 l =DCOS ( NUROBll) 
All9 o 20l=DSIN(h~ROB4l 

A(l9o2ll =-1. 
Al 1 9. 22 >=-1. 
Al20o17):•0ROOEXPl•MURCB4) 
A(20ol8J =-OROD EXPIMUR OB 4l 
Al20 ol9l =-RRODCOSCNUROB4l 
Al20o20):•RRODSI NINUROB4l 
A ( 2 Oo 2 1 ) =AZ 
AC20o 22 l=A 2 
A<20o 2 3 >=-1. 
Al20 o2 4l=-1• 
A(21 . 17l=-DF 1R OMUR ODEXP l-MUROB4l 
A(2l o l8l =DF1ROMURODEXP <MUR084) 
AC2lo19 ) : •DFlRONURODSIN I NUROB4l 
Al21o2 0 ):0f1RONURODCOSINUROB4l 
Al21 o 2 1 l =DMI OALM 
AC21o2 2 >=-DMlOloLM 
Al22o17l =DF2ROORO MUROOEXP(•MUROB4l 
A(22 o l8>=-DF2ROOROMUROOEXP(MUROB4l 
Al22 o l9):0F2RORRONUROOSIN( NUROB4l 
AC22o20):•DF2RORRONUROOCOS(NUROB4) 



2111. 
242 . 
24 J . 
2 4 4. 
24 5. 
246 . 
2111. 
248 . 
2 49. 
250 . 
251. 
252 . 
25 J . 
25 11. 
255 . 
256 . 
257 . 
258 . 
25 9. 
260 . 
261 . 
262 . 
26 J. 
26 11. 
265 . 
266 . 
267 . 
268 . 
269 . 
270. 
271. 
212. 
273 . 
274. 
275. 
276. 
27 7. 
218 . 
279 . 
280 . 
281. 
282 . 
283 . 
284. 
285 . 
286. 
281 . 
288 . 
28 9 . 
290. 
29 1. 
292 . 
293 . 
2 94. 
295 . 
296. 
297 . 
298 . 
299 . 
JOO. 

c 
c 

c 
30 
c 
c 

60 

65 

A( 22 • 21 l=-DM2¢ .I0 20 ALM 
A(2 2o22 l=DM 2C: A2 ¢ ALM 
A(22o231=DM2¢B TM 
A1 22 o 211 l=-DM2¢BTM 
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Al23o21 l=DEXP(-ALMOB51 
A(2J.22 l=DEXPI .IOLM .:<05 1 
A(24.21 l:-A2¢0EXP(-ALMC:B5 1 
A(24.2 21=-A 2¢DEXP(ALMOB51 
A( 24o2Jl=DEXP<-BTMC:B5 1 
A(24o24l=DEXP<BTM C:B51 
THESE ELEMENTS OF A HAV E DIFFERENT VALUES DEPEND ING ON THE 

SIGN OF NU 2 L 
IF (NU2L.LT.O.I GO TO JO 
A(JoBl=-1. 
A(4o8l =P L 
A(5,71 =DF1L(,NUL 
A(6o7) : -0F2L¢RLC:NUL 
A(7.7l=DEXPl-NVLC:B2 1 
A(7.8l = DEXP(NULOB2l 
A(8.7) = -RL¢DEXPl-NUL¢82 1 
Al8o81=-RLC:DEXP INULC:B2 1 
A(9.71=-DFILC:NUL¢0EXP(-NULC:B21 
A(9o8l=DF1L¢NULC:DEXP(NULC:B2l 
A(1 0o7l=OF2L¢RLC:NULC:DEXP(-NULC:B2l 
A(10.Bl=-DF2L C: RL C:NULC:DEXPINUL C:B21 
IF (NU2R.LT.O.l GO TO JO 
A( 15. 20 l=-1. 
A(16.201=RR 
A(17.19l=DF1QC:~VR 

A(l8.191 =-DF2R¢RRC:NUR 
A(19.191=DEXP<-NURC:B4 1 
A( 19.20 I =DE XP ( NUROB4 l 
Al20.19l=-RRC:DEXPl -NUR C: B41 
A(20.201=-RRC:DEXP(NUR C:B41 
A(21.191=-DF1R~NURC:DEXP<-NURC:B41 

Al21o 20 ):0F1RO ~VR ODEXP(NURC:B41 

A(22o191=DF2RORRONURC:DEXP< -NUROB41 
A(22o20 >=-DF2R ORR ONURODEXP(NUR C:B41 
THE L IBRARY SUBROUT INE LlNVJF IS CALLED TO SOLVE FOP. X IN AC:X=B 
CALL LINVJF <A.B.I40B.No!AoD1.D2o~K4REAolERI 

THESE S TEPS CAL CUL ATE THE GREENS FUNCTIONS FOR EACH MODE-
THE VAL UE OF Y DETERMINES ~HI CH EOUATION IS TO BE USED. 

IF <IER.EO.lJOl GO TO 25 
IF <Y.GT.Bll GO TO 60 
V2Kl=B<JlC:OEXP<-BTMOYl+B<lllC:DEXPCBTMC:Yl-A2 0 (0(1)¢DEXP(-ALMC:YI 

(. +B( 2lODEXP( ALM~Yl I 
YB=Y2<1 
GO TO 6 9 
CONTINUE 
BB= Bl +B 2 
IF ( Y • G T , BB l G C T 0 6 I 
YJ=Y- ( BB-02 l 
IF <NU2L.LT.O.l GO TO 65 
Y2K 2=-0LO(Bl5lC:DEXP(-MULC:Y3 l+Bl6I OOEXP(MULC:YJ) l-RLC: (B(7) 00EX~ 

t(-NULOYJl+Bl8IODEXP(NUL OYJI) 
YB=Y2(2 
GO TO 69 
CON Tl NUE 
Y2K2 = -0LC:(B(5) 00EXP(-MULC: YJl+B(6)«>EXP<MUL C: YJll-RLO( B<71 * DCOS 

(. <NULOYJ I +B< 8)C<OSIN<NULOYJ) I 



301. 
302. 
303. 
304. 
305. 
306. 
307. 
308. 
309. 
310. 
311. 
312. 
31 3. 
314. 
315. 
316 . 
31 7 . 
3 18. 
319 . 
320. 
32 1. 
322. 
323. 
324 . 
325. 
326. 
32 7. 
328. 
329 . 
330. 
33 1. 
332. 
333 . 
334. 
335. 
336. 
337. 
:n8. 
339. 
340. 
341. 
34 2 . 
343. 
344. 
345 . 
346. 
347. 
348. 
349. 
350 . 
351 . 
352. 
353. 
354. 
355 . 
356. 
357. 
358. 
359. 
360. 

61 

62 

63 

66 

64 

69 

c 

20 

c 
c 

51 
50 
c 
c 

55 

70 

YB = Y2 K2 
GO TO 6 9 
CONTINUE 
BB=BB+Y 0 
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IF CY. GT.BB> GC TO 62 
Y3=Y-I BB-YO l 
Y2K3=91 l ll ¢ 0EXPl-BTM(<Y3>+Bl1 21>:<DE XP IBTM•:<Y3 l-A2 * 1Bl9H•DEXP 

&l-ALM ¢ Y3l+Bl10l *O EXPIALM* Y3)) 
YB=Y2K3 
GO TO 69 
CONTI" UE 
BB=B!'l+B 3 
IF I Y. G T • BB l G C T 0 6 3 
Y3=Y-IBB-B3l 
Y2 K 4= 3 ( 15) f.t0EX p ( -e TM*Y3) +B ( 16 l *D EXP ( BTM¢ Y 3) -A2 f.t ( e ( 1 3 )>~DEXP 

&(-ALM ¢ Y31+Bl14)00EXP(ALM* Y3ll 
YB=Y2K4 
GO TO 6 9 
CONTl"IUE 
BB=B3 +B 4 
IF (Y. G T .ea) GC TO 64 
Y3=Y-!BB-B4l 
IF INU2R.LT.O.) GO TO 66 
Y2K5=-0RO!Bll7l ¢0EXP(-MUROY3)+8(18) 00EXPlMUROY3))-RR0(8(19l 

&ODEXPl-NUROY3l+Bl20)00EXPINUROY3ll 
YB=Y2 <5 
GO TO 6 9 
CONTIN UE 
Y2K5=-0RO(B(17) 00E XP(-MUROY3)+B(lB) OOEXPlMUROY3l)-RR0(8(19l 

&¢0COS(NUR(< Y3l+Bl20IOOSINlNUROY3)l 
YB=Y2K5 
GO TO 6 9 
CONTINUE 
Y3=Y-BB 
Y2K6=9123)00EXP(-BTMOY3)+8(24)00EXPCBTMOY31-A20(8(21)¢0EXP 

&<-ALM¢Y3)+6(22l ODEXP(ALM¢YJl) 
YB=Y2K6 
CONTINUE 
Gl=G<L> 
ALL THE GREENS FUNCTIONS ARE SUMMED AT EACH Y 
G(Ll=2./Al*DSINIDKOX0)00SINIBK* XllOY6+G(Ll 
CONTINUE 
IF (Y.LT.(Bl+B2l.OR.Y.GT.(Bl+B2+B3+Y0)) GO TO 51 
THE SUBROUTINE CENT IS CALLEO WHEN Y JS IN THE 

CENTRAL GRAPHITE RE GION 
CALL CENT<G•L•Y.IER.YOl 
IF lIO::R.E0.1301 GO TO 25 
Y=Y+STEP 
CONTINUE 
THESE STEPS PRINT ANO PLOT THE RESULTS- ADDITIONAL STEPS MAY 

BE AOOED HERE WHICH PUNCH 
Y=O. 
00 70 I=I.Yl 
WR I TE ( 6 • 55 l Y • G ( I> 
FORMAT ( • Y= • ,f6.2•' GREENS FUNCTION= ',012.5) 
Y=Y+ST E P 
G31I l =ALOG10( G(I ll 
CONTINUE 
CALL GRAPH (61.X.G3.11.1.10.o.-a.o.15.o.o.o.3.o.-3.o. 

r.•v. c ... ;•.•GREENS FUNCTIONS;•,•GFP2•PL;•.•x=CENTER;•) 



361. 
362 . 
363 . 
364 . 
365 . 
366 . 
367. 
368 . 
369. 
3 70. 
371. 
372 . 
373. 
374. 
375. 
376. 
377. 
378 . 
379. 
380. 
381 . 
382 . 
383 . 
38<+. 
385. 
386. 
387. 
388 . 
389. 
390 . 
391. 
392 . 
393. 
394 . 
395 . 
396 . 
397. 
398 . 
399 . 
400 . 
40 1 . 
402. 
4 03. 
404. 
405. 
406 . 
407. 
408 . 
409. 
410. 
4 1 1. 
412 . 
413 . 
414. 
415. 
416 . 
417 . 
418. 
419. 
420 . 

25 
26 
27 

c 
c 

77 
76 

130 

GO T) 27 
WR I TE I 6 .26 I IC • L 
FORMllT ( • IC = •.12.• L= ' •121 
STOP 
END 
SUBR~UT 11\:E CENTIG.LoYoJERoYOl 
THIS SUBROUTINE IS USED TO ADO 7 MORE MODES TO THE GREENS 

FUNCTION W~EN Y IS IN THE CEN TRAL GPAPHITE REGION 
DOUBLE PRECISION PioSIGAOM oAI .BloB2oB3oYOoSRM oA2oE 
DOUBLE PRECISICN BKoSAM . DMloDM2,DEXP.OSORT . BZ 
DOUBLE PRECISION BTMoBT2MoALM oAL2MoSTEPoZ 
DOUBL= PRECISION y3 . xo . v . BB . vB.Xl.GloY21C3oV21C4 
REAL A(808)06(8),WICAREAl700l o01 o02 oOET,Gl100 l 
INTEGER I.J.ICoLoM oNo lAo IDGToIER.XJOBoP•Yl 
PI=3 . l '+ 1592654 
SIGAOM=0.00030~61 

DMI =1 . 152864 
OM2=0 . 991810 
SA M=0.53263680-07 
SRM=O.O 0287363 
63=22 .6 5 
62= 16. 1 1 
Bl= 32 . 3 6 
Z=68 . 32 755 
A1 =111.7CO 
X0=55 . 88 
x 1= 55. 8 e 
B Z = I P I / Z ) ~'* 2. 
IJOB=2 
00 75 I( = 14 . 21 
BIC= I K¢P I/Al l'-'*2• 
BT2 M=BK+IS I GAOM/OM2l+BZ 
BT M =DSQ R TIB T2 M l 
AL2 M:BI( + (SAM+SRM) /OM 1 +B Z 
AL M=OSOR TIAL2M) 
A2: ( SRM/OM2 l / IA L2~-BT2M l 

N=8 
IA=8 
DO 76 I =l o 8 
Olll=O . 
oo 77 J = 1.8 
A( J, Jl=O. 
CONTINUE 
CONTINUE 
B!6l=l . 
A(loll = t. 
Allo2l= l . 
Al2 oll = -A2 
A ( 2 o2) = -A2 
Al 2 o3):1. 
A(2 oll ): t . 
Al3 ol):OEXP<-A LM*YO) 
Al3 o2l=DEXP I AL M* Y0) 
A( J , 3>=-1. 
Al 3 o4) : -t. 
Al4oll= - A2*DEXPl-ALM*V0l 
Al 4o 2l=-A2*DEXP ( ALM¢V0 l 
Al4 o3l=OEXP(-BTM*VOl 
Al4 oll ) :DEXP <BT M*VOI 
A( fto5l=A2 



4 2 1. 
422· 
4 2 3 . 
424 . 
425. 
426 . 
427 . 
428. 
429 . 
430. 
431 . 
432 . 
433. 
434. 
435. 
436. 
437. 
438 . 
4 39. 
44 o. 
44 1 . 
44 2 . 
443. 
444. 
44 5 . 
446 . 
4 47. 
44 8 . 
449. 
4 50 . 
4 51 . 
452 . 
453 . 
454. 
4 55 . 
4 56 . 
457. 
458. 
459 . 
460. 
461 . 
462 . 
463. 
464 . 
465 . 
466. 
467. 

72 

73 

75 

85 
86 
87 
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AC4. 6l= A2 
A(4, 7)=-l• 
AC4. Bl = -l. 
AC 5.l l = - D M1 0ALM ODEXP l-AL~OY 0 ) 

Al5.2l =D Ml OALM¢DEX PCALMOYOl 
A ( 5 • 5) = D M lf.< ALM 
A( 5 .6) = - DMl ,~AL"' 

Al6. ll= A20ALM ODEXPC-ALMOY0 l 
A(6.2> = -A20 ALM *DEXP( ALM OY0) 
Al 6 . 3l=-BTM ODEX PC-BT MOY0 l 
A( 6 , 4)=BTMODEXPCBTMOY0) 
AC 6 • 5 ) = - A2 '' ALM 
A1 6 . 6l= A20ALM 
A(6. 7l =B TM 
Al6• 8>= - BTM 
Al7• 5>=DEXP( -AL"'OB3l 
AC 7 . 6 l =DEXP CALM OB 3l 
A( 8.5l= - A20DEXPC -ALMOB3 ) 
A(8•6> = -, 2CDEXP IAL,..OB3 l 
AC8.7l =DE XPl -B T,.. CB3 ) 
AC8.Sl =DEXPIBT,..OB3) 
CALL L INV3F CA.B.IJOB.N.IA.Ol.D2 oWKAREA.I ERl 
IF <I ER . E0 . 130) GD TO 85 
BB =Bl+B 2 +v o 
IF IV. G T.BB> GO TO 7 2 
Y3 = Y-I BB -YO) 
Y2K3=313lODEXP(-8TMOY3)+8(4 ) 0DEXP CBTMOY3l -A20 CBCll OOE XP 

&C -ALMOY3> +BC2l*DEXP CALM OY3)) 
YB= Y2( 3 
GO TO 73 
BB=BB+B3 
Y3 = Y-C BB -B J > 
Y2K4 =3 C7l ¢DEXP C-BTMOY3l+6(8 ) ¢0EXPCBTMOY3l-A20 CBC 5 )0 DEXP 

&C- ALMOY3l +B C6l ODEXP(ALM OY3) ) 
YB =Y2K 4 
CONTI 'W E 
GCLl =2 . / Al ODS INCBK ¢ X0l ODSI NCBK o Xllo YB+ GCLl 
CONTINUE 
GO TJ 8 7 
WRIT~ C 6 .86 l K • L 
FOR MA T (' IN T~E SUBROUTINE CE NT JER=l 30 AT K= ' .J2, • L = • .! 2 l 
QE TU:?'I 
END 

//GO . SYSIN DO 
//GO . F T14 F001 DD DSNAME=& SM. UNIT=SCRTCH.DISP= IN EW. PASSl • 
// SP ACE= C8 00, (1 20 .1 5)) . 0CB= IR ECFM =VBS .LRECL=796.BLKSI ZE=800) 
//S MPLTTR EXEC PLOT . P LOTTER=PR INTER 
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1 . //C300 J OB U3780, WJH 
2 . //S TEPl EXEC FORTGCG,REGIDN=320K , TI ME= l •L I B= ' SYS 1 . IMS L. DOUBLE ' 
3. // FOR T . SYSl N DD ::: 
4 . C THIS OROGR AM IS GFP25PL-IT CALCS. DEL G/DEL YO FOP 2 GROUP5 
5 . C THE PROGRAM WILL ALSO PLOT OR PU NCH THE RESULTS 
6 . DOUBLE PRECIS I ON P lo SIG AOM, SlGAFL , OF1L oOF2 LoAl • Bl, B2 , B3 oB4, B5 
7. YO . SRM. SRFL . SFL . SFR oNUL.M UL oA 2 . 0L . RL . NU2L oMU2L DOUBLE. PRECISION 
B, BTFL oBT2F Lo BK , S AM, SAFL , OMl , OM2 ,B ET A DOU BL:: PRECJSICN 
9 . OE.XP , O~URT , F I SL , OZ, ll "0 5 ,0~ IN , DlOS OOUl:!LE PREC I S ION 

10 . BT M, BT2MoALFL ,AFL,A LM. AL2 M, STE P , Z, S TEP l OOUBL:: PRECISION 
11 . SIGAFR , OF l RoOF2R • 5 AF R.SR F Ro9 T2 FR, BTFR DOUBLE PRECIS I ON 
12 . ALFR .AFR , FISR .MU2RoM URo NU2 R,NUR, QR , RR OOUBL:: PRECISION 
13 . Y2K 1,Y 2K2 , Y2K3 , Y2K4,Y 2 K5 , Y2K6 OOUBL:. PRECIS I ON 
14 . DOUBLE PRECISICN v3 . xo . v .ee . v6 . X1.G1(1 00 ), G2 (1 00l 
15. RE AL Al24,24l , e C24 l•W KARE Al700 ), 0l , 02 , X(1 00 l• Gll 00 l 
16. I NTEGER 1 , J , K,L,M ol\o IA o IOG Tol ER oIJ06 0PoYl 
17. PI=3.141592654 
18. 
19 . 
20 . 
2 1. 
22 . 
23. 
2 4. 
25. 
26 . 
2 7. 
2 8 . 
2 9. 
30 . 
3 1 . 
32 . 
3 3. 
3 4. 
35 . 
36 . 
37 . 
38. 
39. 
40. 
41 . 
42 . 
4 3 . 
44 . 
45 . 
46. 
47 . 
4 8 . 
4 9 . 
50 . 
51. 
52 . 
53 . 
54 . 
55 . 
56 . 
57 , 
58. 
59. 
60 . 

c 

c 

c 

c 

THES:: ARE THE TWO GQOUP P ARAM ETE RS FOR EACH FUEL REG I ON 
SIGAO M=0.00030f61 
SIG AFL= 0 . 05540!: 
S I GAF R:O .0557 1 9 
DFIL=l • 4 2 14 47 
OF lP=l , 42 1447 
DF 2L=O . 231576 
OF2R:O , 23 1576 
DMl= l .1 52864 
OM 2 = 0 , 9 9 18 1 0 
BE TA =0 . 0065 
SAF L=O . 002076 
SAFR =O • 002082 
S AM =O . 5 326368D- 07 
SFL=0 . 08233 
SFR:0 . 08397 
SRF L=O , 0336 4 
SRFR=0 . 0344 7 
SRM =0 , 00287363 
35= 32 . 36 
64 = 16 . 1 1 
6 3=22 . 6 5 
62= 16 . 1 1 
Bl =32 . 36 
Z=68.32755 
Yl =2 
Al= ll l . 760 
STEP IS THE SI Z!:: OF DEL YO 
STEP= l. 28/1 00, 
Y0=22 . 65 
STEP ! I S THE NU ,.BE R OF PO INTS IN TH E Y DI RE CT IO N 
S TEP 1 =14 2 . 2 4/6G . 
X0=55 , Se 
x 1=55 . 8 8 
9 Z: ( P I / Z l :::>:: 2, 
I JOB=2 
N:24 
I A=24 
THIS LOOP LOADS VALUES OF DEL G INTO Gl OR G2 
DO 50 L = 1 , Y 1 
v=o . o 
I F CL . EO .l l GO TO 52 
Y0=22 . 6 5+STEP 



61 . 
62 . 
63 . 
64 . 
65. 
66 . 
67. 
68. 
69. 
70 . 
71 . 
72 . 
73. 
74 . 
75 . 
76 . 
77 . 
78 . 
79 . 
80. 
81. 
82 . 
83 . 
84. 
85. 
86. 
87. 
8 8 . 
89. 
90. 
91. 
92. 
93. 
Q4. 
95. 
96. 
97 . 
98. 
99 . 

100. 
1 01 . 
102. 
103 . 
104. 
105. 
1 06. 
107. 
108 . 
10 9 . 
11 o. 
l l l. 
112. 
l l 3 . 
114. 
115. 
116. 
117 . 
118. 
11 9. 
120 . 

c 
52 

c 

c 

11 
10 

c 
c 

40 

c 
41 
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THl S 3EGINS THE MAIN LOOP FOR MOVING ACROSS THE CQRE . Y OIREC T l ~N 

DO 51 M = l, 61 
X(M) =V 
GOO =O . 
THE L I BR ARY SUBhO~TINE WILL NOT CONVERGE FOR K>l3 FOR THI S MAT RIX 
00 20 K =I , l 3 
ALL ELE MENTS OF A & B ARE SE T=O • FQQ EACH MODE 
DO 10 I =1,24 
8(1):0. 
DO 11 J = l , ;: 4 
,_,I, Jl=O. 
CON Tllll UE 
CON TIN UE 
8114>=1. 
01=0. 
THESE S TEPS CALCULATE THE NEW SOLUTI ON EQUAT ION PARAME TERS 

FOR EACH MCDE 
BK= I K (' D I/ Al I('* 2 • 
BT2M=3K+ISIGAOM/DM2 l+BZ 
BTM=DSORT(BT2M I 
BT2FL=BK+(SIGAFL/DF2 Ll+BZ 
BT2FR =BK +! SIGAFR /OF2Rl+OZ 
BTFL=DSORT(BT2FL > 
BTFR=DSORT! e T2FRl 
AL2M= BK +I S AM+ SR M) /0Ml+ BZ 
ALM =DSOR T!AL 2MI 
AFL=BK +I SAFL+ SRFLl/DFlL+B Z 
AFR =BK+ I SAFR+ SRFR) /DF lR+BZ 
ALFL=DS ORT ( .6FL) 
ALFR=DS ORT l AFR l 
"2= 1 S~M/OM2l/IAL2M-BT2Ml 

FISL= (I 1 .-BETA l*SFL*SRFL ) / (OF l L*Df2L l 
FI SR= ( ( 1 .-BETA l *SfR*SRFR )/ (OF 1R* DF2R) 
MU2L=l"FL+BT2FLl/ 2 .+D SORTllAFL+BT2FLl **2·-4*1BT2FL¢AFL-FI SLll/2 • 
MU2R= IAFR+B T2FR l /2 .+DSORT (IAF R+BT2FRl¢*2 .·4¢ 1BT2FR* AF R·FISRl l /2 . 
MUL=DSORT (M U2L l 
MUR =DSOR TIMU2 R ) 
NU2L=IAFL+BT2FLl/2.·DSORTl(AFL+BT2FL)¢¢2.-4* 1BT2FL¢ AFL-FISL))/2. 
NU2R=I AFR+BT2f~l/2 .-DSO RTICAFR+BT2FRl¢*2·-4*1BT2FR¢AFR ·F ISR) l/ 2 . 

NUL =DSO RT<DABS I NU2Ll l 
NUR =DSORT<D AB S (NU 2Rl) 
OL=ISRFL/DF2Ll/CMU2L-BT2FL) 
OR=IS~FR/DF2Rl/(MU2R-BT2FRI 

RL = -< SRFL/DF2L)/CNU2L+BT2FL) 
RR=-<SRFR/OF2R)/INU2R+BT2FR) 
IF INU 2 L.LT.O.J GO TO 40 
RL = I S~F L/Df2L) / (NU2L-BT2FL l 
IF (~J2R.LT.O.l GO TO 41 
RR=ISRFR/OF2Rl/INU2R-BT2FRI 
MATRIX A JS LOADED HERE 
All.tl =l . 
A<1•2l = l· 
A( 2 .31 = 1. 
A(2 , 4l = l. 
A(3,ll =DEXPl -ALM *B ll 
A(3,2l =D EXP(ALM*Bll 
Al3o 5 l = ·l· 
Al3o6l =·l. 
A(3o7l = ·l. 
A(3o8l =O. 



121. 
122 . 
123. 
124. 
1 25. 
126. 
12 7. 
128. 
129. 
l J O. 
1 31. 
132. 
133. 
134. 
1 35 . 
136. 
13 7 . 
138. 
139 . 
14 o. 
14 1. 
14 2 . 
143 . 
144. 
145. 
146. 
147. 
14 8. 
14 9 . 
150. 
15 1. 
152 . 
153 . 
154. 
155 . 
156 . 
15 7. 
15 8. 
15 9 . 
160. 
161. 
162 . 
163 . 
164 . 
165 . 
166. 
167. 
168. 
169. 
170 . 
171. 
172 . 
173. 
174. 
175. 
176 . 
177. 
178. 
179 . 
18 0 . 
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A(4oll=-A2 0DEXP t-ALMOBI I 
Al4o 2 1= - A2*DEXP tA LMOB ll 
A(4o3l =OEXPt - BT MOBl l 
A(4.4) =0EXP tBT~ OB ll 

A(4 051 =O L 
A(4o 5 l = OL 
A(4,7l = FIL 
A(4,81 =0 • 
A!5.ll = - OM1 0 ALMOOEXP (-ALM*B ll 
Al5. 2 1= DMl O AL M ~OEXP<ALMOB ll 

A(5 , 5 l=OF1L ''MUL 
A! 5 . 6 l = -OF 1LOMUL 
A(5 . 7l=O. 
A( 5 ,B) : • OF 1 LONUL 
A(6,ll =D M2 0A20 ALM OOEXP!-ALMOB11 
Al 6 o2 l = · DM20A20ALMODEXP IALMOB ll 
A(6o3 l = · OM20BT~OOEXP! -BTM06l l 

Al 6 o4l=DM20BTMOOEXP!BTMOB1l 
A!6o 5 ) : ·DF2LOOLOMUL 
A( 6 o6):0F2LOOLOMUL 
A(6,7l =O . 
A( 6 ,81 =0F2LORLONUL 
A(7,5l=DEXPl-MUL OB2 l 
A(7, 6 1 = 0EXP(MUL OB2 1 
A(7 , 7l =DCOS !NULOB2 1 
A(7,8l =DSI N!NUL OB2 l 
A(7,91 = ·1. 
Al7.I O l =·l. 
A(8, Sl= ·OL ODEX~ (-MULOB2 l 

A(8o6) : ·QLODEXP!MULOB2 1 
A(8,7l=·RLODCOSINUL0621 
AC8•8>=-RLOOSINCNUL062l 
ACB . 91 = A2 
ACB.IOl =AZ 
AC8,lll=·l. 
AC8ol 2 1 = ·1. 
AC9, 5 1 = · DF1LOMULODEXP C-MUL OB21 
A(9, 6 1 =D F1L OMUL ODEXP!MULOB2 l 
AC9•71 = - DF1 LON LLODS IN(~ULO B2 1 

A(9,81 =DF 1L ONULOOCOS !NULOB2 1 
AC 9 ,9) = DM10ALM 
AC9,10l =·OM1 0 ALM 
ACl 0.5 l =OF 2LOQL OMULOOEXP C·MULOB2l 
AC10• 6 >= · DF2LOOLOMULODEXP CMUL OB2l 
AC 10.71 =DF2 LORL ONULODSINCNULOB21 
AC10,Sl =·DF2LORLONULODCOSC NUL OB2l 
AC10, 9 1 = ·DM20A20 ALM 
A ( 1o,1 0 l =D M20A 2lC>ALM 
ACl0.11 l =DM2¢:6TM 
A(lO.I Z l=-DM206 TM 
A!11 . 9l =OEXP(·ALMo YOl 
AC 11.10 l :DEXP C .tLM S:: YO I 
A!ll.1 31=·1 . 
A<ll.14) : ·1. 
AC1 2 o 9 1 =-A20DEXP ( · ALM OYOl 
AC l2o 10) =-A200EXP (ALM OYOl 
AC 1 2 , ll l =DEXPC-&TMOYOl 
AC1 2 .1 2l=DEXP CBTM S:: YOI 
A C 1 2 • l 3 l =A 2 
AC I 2 • 1 4 l =4 2 
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192. 
19 J. 
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200 . 
201 . 
202 . 
2 OJ. 
204 . 
205 . 
206. 
207 . 
206. 
209. 
2 10. 
21 l . 
2 12 . 
2 13. 
214. 
215 . 
216 . 
217 . 
218 . 
219. 
22 o. 
22 1. 
222. 
22J . 
22 4. 
22 5 . 
226 . 
227 . 
228 . 
229. 
230 . 
23 1. 
232 . 
2JJ . 
234. 
235. 
236 . 
237. 
236. 
239. 
240. 
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A(l 2 .J 5 l =-l• 
A(12.t6l =-t. 
A(l J o9l= - DMl OALM OOEXPC -ALM OYOl 
ACl Jo l Ol=DMI OALM ODEXP(AL MOYOl 
AClJ,t J l =DMlOALM 
A(l 3.t 4 >=-DMl :::ALM 
AC14t 9l=A20AL MODEXPC -ALM::: YOl 
A(14tl0l=-A 20ALM ODEXPCAL MOY0) 
A(l4.Jl >=-BTM •~CEXP<-BTMOYO l 

AC14,1 2l=BTMOOEXP(BT MOY0l 
A(J4,1 3l=-A 20 ALM 
A( 14o l 4) =A2 •~ALM 

A ( l 4 .t 5 l =BT M 
A(l4.t6l=-BTM 
ACJ 5 ,J J l =DEXPC-AL ~OBJl 

A( 1 5, l 4 l =DE XP ( ALMOBJ I 
Allf>tl7l=-1. 
A(l ~.l6l=- l. 

A ( 1 5 , l 9 I =-1 • 
AC l 5 , 2 0 l =O . 
A(l6olJl=-A 200EXPC-ALMOBJl 
A( 16014 I =-A 2•~0EXP(ALMOB3 I 
AC16ol 5 1=DEXPC -BTM OBJ ) 
AC 160 16) =DE XP I B H4 (:63 I 
Al16.t7) : 0R 
A(16,JBl =OR 
A ( 1 6 • 1 9 l =RR 
A(16o20l=O. 
A(17t13l=-OM1 0 ALMOOEXP(-ALMOBJl 
A(l7ol4 l=OMIOALMOOEXPIALM OB3l 
Al17t l7l=OF1ROMUR 
A(l7ol 8l= -DF1 POMUR 
A( l 7 .t9):0. 
A(l7o 20 l=-DF1R (NUR 
A(18tl 3 l=OM20A20ALMODEXP l-ALMOB3 l 
Al18t14>=-DM2 0 A20A LMODEXP CALM OB3l 
A(18t1 5 l=-DM20f TM OOEXP l-BTMOB31 
AC18ol6l=DM20BTMOO EXP(BTM OB3l 
A(18o17l =-DF2R~OR OMUR 

AC1Bo1Bl=OF2ROCROMUR 
AC1 8.t9 l =O. 
A!1Ao 20 l =OF2RORRONUR 
AC19ol71=0E XP l-MUR OB4l 
Al19tl 8 l =DEXPIMUROB4l 
All9o191 =0COS l~UROB4l 

All9o?.Ol=DSININUROB4l 
Al19, 2 1 ) : -1, 
A(l9o 22l=- 1. 
A120ol7l = -ORODEXP C-MUROB4l 
A( 2 0ol8l =-OROOEX P(MUR OB 4l 
A(20,19l =- RRODCOS(NUROB4) 
A(20. 201=-RRODS IN!NUR084) 
A(20, 2 1 l =A2 
AC20 o 22 l =A2 
AC20,23 l =-1. 
AC 2 0, 2 4 >=-1. 
Al 2 lol7l=-OF1R OMUR ODEXPC-MUROB4) 
Al2l o l81=DF 1RO MUROD:XP CMUR OB4l 
AC21 • 19l=-OF1RONURODSIN<NUROB4l 
Al2lo 20 l=OF1RONUR OOCOS(NUROB4l 
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259. 
260. 
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c 
30 
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c 
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Al 2 lo2 l l=OMl»ALM 
Al2lo 22 >=- OMl Q: .ALM 
Al22ol7l =D F 2R*OROMUROOEXP l-MU ROB4l 
Al22ol8 l = -DF2R OOR OMURODEXPI MUR0~4) 

Al 22 ol9l=DF 2ROPRONURODSIN IN UROB4l 
Al 22 o20l =-DF 2RORRONURODCOS INUR OB4l 
A(22o 2 1 ) : -OM2 0 .A 2f, ALM 
Al 22 o22l=OM20A 20ALM 
Al22o23l=OM20BTM 
A(22o24)=-DM20BTM 
A(23o21 ):OEXPI -.A LMOB5l 
Al 2 Jo 22 l =OE XP C ALM OB5 ) 
A( 24 o21 l =- A20DEXPC-ALMOB5 l 
AC24o 22 J=-A20DEXP( ALMOB5 l 
AC24o 2J J =O EXP<-BTM OB5J 
AC 2 4o 24 l =DEXP ( f TM OB5 l 
THESE ELEMENTS .ARE DIFFERENT OUE TO THE DIFFERENT SOLUTIONS 

TJ THE DIFFERENTIAL EQUATIONS DEPENDING ON THE SIGN OF NU2L 
IF INU2L.LT.O.l GO TO JO 
A(3o8) = -1• 
AC4o8l=RL 
AC 5 • 7 l =O F lL ONUL 
Al6o7):-DF2LOR LONUL 
Al7o7l =OEXPC-NULOB2 l 
AC7o8l =D EXPCNUL OB2l 
AC8 o7l = -RLODEXPC -NULOB2J 
AC8o8l = -Rl...ODEXPCNULOB2l 
A(9o7l=-DF1LONULOOEXP<-NULOB2> 
AC9o8l=DF1LONULOOEXPCNULOB2l 
AC10•7>=DF2LORLONULOOEXPC-NUL062l 
AC10o8l =-DF2LORLONULODEXP CNUL 062l 
IF CN!J2 R.LT.O.) GO TO JO 
Alt5. 20 l=-1. 
A C 1 6 • 2 0 ) =RR 
AC17.19l=OF1RONUR 
AC18ol9l=-DF2R ORR ONUR 
All9o19l =DEXP C-NUR OB 4l 
AC 190 20 >=DEXPI NUR OB4 l 
AC20.19l =-RROOE XPC-NUR064l 
A(20.20l=-RROOEXP<NUR OB4l 
AC21o19l =-DF1RONUROOEXPC-NUROB4l 
AC21•2 0 l=OF1RONUROO~XPI NUR064) 

Al22.t9J=OF2RORRONUROOEXPC -NUROB4 l 
AC2 2 o 20l=-DF2RORR ONUROOEX PCNUROB4l 
THE LIBRARY sueROUTINE LINV3F S OLVES FOR x IN AOX=B 
CALL L INV3F CAoB.IJOB.NolAo0loD2ollKAREAoIERI 
THESE STEPS DETERMINE llHI CH SOLUTION EQUATION IS APPROPIAT E ~OR 

TH E CURRENT VALUE OF Y AND CALCULATE THE GREENS FUNCTIONS 
IF CI ER .E0.1J0) GO TO 25 
IF IV.GT.Bil GO TO 60 
Y2Kl=~C3J ODEXP<-BTMOY)+BC4lOOEXPCBTMOYl-A20 CB<ll OOEXPC-ALMO Y) 

~·ec 2lODEXPC ALMlC<Yl) 
YB=Y2K1 
GO TO 69 
CONTINUE 
BB= Bl +B 2 
IF CY. GT.BBi GO TO 
Y3=Y-CBB-B2l 
IF CNU2L.LT.O.l GO 

61 

TO 65 
Y2K2=-0LOC615l OOEXPC-MULOY3l+BC6l OOEXPCMULOYJll-RLOC6C7)00EXP 
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338. 
339 . 
340 . 
341. 
342. 
343. 
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357. 
358 . 
359 . 
360. 
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62 

63 

66 

64 

69 

20 

c 
c 

53 

54 

5 1 
50 
c 
c 
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&(-NULOY3)+6(8)00EXP!NULOY3ll 
YB=Y2K2 
GO TO 6 9 
CONTINUE 
Y2K2=-QL0(6(5)00EXP(-MULOY3)+8(6)00EXP(MULOY3)l-RL0(6(7lOOC OS 

&(NULOY3l+6(8)00SlN(NULOY3ll 
YB=Y2K2 
GO T:J 6 9 
CONTINUE 
BB=B9+YO 
IF (Y.GT.BBl GC TO 62 
Y3=Y-(BB-Y0) 
Y2K3=9< 11lODEXP<-BTMOY3l+B(12lOOEXPCBTMOY3)-A20(8(9lOOEXP 

&(-ALMOY3l+B(l0lODEXP(ALMOY3ll 
YB=Y2K3 
GO TD 6 9 
CONTINUE 
BB=BB+B 3 
IF (Y.GT.BB) GC TO 63 
Y3=Y-( BB-83) 
Y2K4=9C 15lCDEXP<-BTMOY3J+B(16lODEXP(BTMOY3l-A20(6(13lODEXP 

&(-ALMOY3l+B(l4lODEXP(ALMOY3)) 
YB=Y2K4 
GO TO 69 
CONTINUE 
BB=BB+ B 4 
IF <Y. GT .BB l GC TO 64 
Y3=Y-<BB-B4l 
IF <NU2R.LT.O. l GO TO 66 
Y2K5=-QR0(8(17lODEXP(-MUROY3)+8(18lODEXPIMUROY3ll-RRC(8!19) 

&ODEXP(-NUROY3l+Bl20)00EXPINUROY3ll 
YB=Y2(5 
GO TO 6 9 
CONTINUE 
Y2K5=-QRO!BC17lODEXP(-MUROY3)+6(18lODEXP<MURoY3ll-RRO(B( 19l 

&ODCOSINUROY3l+B(20lODSlN(NUROY3)) 
YB=Y2K5 
GO TD 6 9 
CONTINUE 
Y3=Y-aB 
Y2K6=9(23)0DEXPl-BTMOY3 l+Bl24l ODEXP(BTMOY3l -A20(8(21l ODEX P 

&(-ALMOY3l+B(22lODEXPIALMOY3ll 
YB=Y2K6 
CONTINUE 
G(Ml=2./AlODSIN<BKOXO)ODSINIBKOXllOYB+G(M) 
CONTINUE 
IF (Y.LT.(Bl+B2l. OR.Y.GT .(Bl+B2+B3+YO)) GO TO 53 
THE SUBROUTINE CENT IS CALLED IF Y lS IN THE CENTRAL GR APH IT E 

~EGION TO FURTHER CONVERGE THE SOLUTIONS 
CALL CENT(G,M,Y,IER,YOl 
lF CIER.EQ.130) GO TO 25 
IF (L.EQ.2) GO TO 54 
Gl(Ml=G(M) 
G2( Ml =G <I") 
Y=Y+S TEP I 
CON TI NUE 
CONTI "IUE 
DEL G/DEL YO IS CALCULATED HERE. ADDITIONAL STEPS MAY 8E 

INSERTED HERE TO GENERATE PLOTS OR TO PUNCH CARDS 
DO 70 I= 1 ,61 
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G<I >=<G2<I>-G1 (!))/STEP 
llRITE (6o55l G<II 
FORMAT (E\2.5) 
CONTINUE 
GO TO 27 
WR I TE ( 6 • 26 I K • L 
FORMAT ( • K = • • I 2 • • L = • • I 2 I 
STOP 
ENO 
SUBROUTINE CENT( G oMoYelEReYC) 
THIS SUBROUTINE ADOS 7 EXTRA MODES TO THE CALCULATION 

FOR THE CENTRAL GRAPHITE REGION 
DOUBLE PRECISION PleSIGAOMoAl.BloB2oB3•YOoSRMoA2 oE 
DOUBLE PRECISJCN BKoSAMoDM1oDM2eDEXPoOSORToBZ 
DOUBLE PRECISION BTM.BT2MoALMoAL2MeSTEPoZ 
DOUBLE PRECISION y3.xo.v.BB.vB . x1.G<100l.Y2K3eY2K4 
REAL A(8o8) oBl81olilKAREAl700le01o02 
INTEGER IoJoKoLeMoNeIAoIOGT•IER•IJOB•P•Yl 
PI = 3.141592654 
SIGAOM=0.00030661 
OMl=l.152864 
OM2=0.991810 
SAM =O • 5 3263680-07 
SRM=O. 0 0287363 
83= 22.65 
B2= 16. l 1 
Bl= 32. 3 6 
Z=68. 32 755 
A1=111.760 
X0 =55.88 
Xl = 55. 8 8 
BZ = <PI/Zl~2 . 

IJOB= 2 
THE L IBRARY SUBROUTINE llILL NOT CONVERGE FOR K>2 1 FOR THIS MAT RIX 
DO 75 K = 14 • 21 
BK = <K*PI/All**2 • 
BT2M=BK+ISIGAOM/OM2 1+BZ 
BTM=DSORTIBT2M) 
AL2M= BK + (SAM+SRMI /OMl+BZ 
ALM =OSORTUL2M) 
A2 = 15RM/OM2)/(,L2 M-BT2Ml 
N=B 
IA=B 
00 76 I =1 •8 
B( I >=O. 
00 77 J = t.8 
A<IoJl=O. 
CONTPWE 
CONTINUE 
B(61 =1. 
A(1,tl = 1. 
A(l,2l = 1. 
A(2ell=-A2 
A ( 2 e2) = - A2 
A(2e31 = 1. 
A(2o4l = l. 
A(3o1l=DEXP<-ALM¢YOI 
A(Jo21=DEXP(AL~*YOI 

Al3o3l = -1. 
Al3o41=-1. 
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Al4.ll = -A2*0EXFl-ALM ¢ Y0 1 
Al 4 o2 l = -A2¢0EXPIALM¢Y0) 
Al4o J):OEXPl-BT~¢YOI 

A(4.4l =OEX P!BTM ¢YO> 
Al4 o5 l =A2 
Al4 o6 l =A2 
Al4.7l =-l . 
A(4 08l=-1. 
A(5 . ll=-OM1¢ALM¢0EXP(-ALM¢ Y0) 
Al 5.2l=OM1¢ALM¢0EXP(ALM¢Y0) 
A( 5o5) : 0Ml(: ALM 
A( 5 .6 l = -OMl f.• ALM 
Al 6oll=A2¢ALM¢0EXPl-ALM¢YO > 
Al6o 2 l=-A 2¢ ALM ¢0EXP IALM¢ YO> 
A(6.3l =-B TM *OEXP <-BTM¢YO> 
A( 6 . 4 l =BTM*OEXP<BTM¢ YOl 
A(6 o5 l= -A2¢ ALM 
A( 6.6l = A2¢ ALM 
Al6o7l =B TM 
A ( 6 • B) = -B TM 
A(7o 5 l =O EXP<-ALM¢03) 
A<7•6>=0EXP(AL~¢03l 

A(8. 5 l =-A2¢0EXP (-ALM¢ B3l 
A(8o6l = -A2¢0EXP(ALM¢03l 
A(8o7l =OEXP(-BTM¢83 ) 
Al8.8l =O EXP<BTM¢03) 
CALL L INV3F IA.B.IJOB.N1IA.Ol1021WKAREAoIERl 
IF <IER . E0 .1 30 l GO TO 85 
BB =B1 +B 2 +YO 
IF IV.GT.BB> GO TC 72 
Y3=Y-<BB-YO l 
Y2K3=B<3l*OEXPl-BTM¢YJl+B(4l¢0EXPIBTM¢ YJl-A2¢(B(1 ) ¢ 0EXP 

&<-ALM¢YJ )+0( 2 ) ¢0EXPIALM ¢ YJ)) 
YB=V2KJ 
GO TO 7 3 
BB =BB +B J 
YJ=V-IBB-B3l 
V2K4:B (7)¢0EXPl-BTM¢VJl+Bl8)¢0EXPIBTM¢Y3l-A2¢(B(5)¢0EXP 

& ( - A LM¢Y J l+B 16 l O::OE XP( ALM ¢ YJ l l 
YB=Y2K 4 
CONTINUE 
GIMl=2./A1¢05Ihl8K¢X0)¢05INIBK¢X1l¢YB+GIM) 
CONTINUE 
GO TO 87 
WRITC: (6.86) K.L 
FORMAT (' IN THE SUBROUTINE CENT IER=130 AT K= • .121' L= ' .J 2 1 
RETURN 
END 

//GO.SYSIN 00 ¢ 



141 

GFP- 27 calculates the thermal fluxes, ~2. 
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I. //C300 J03 U3760oWJH 
2. //STEP! EXE C WATFIVoREGION=192KoLI B= ' SVS2 .WAT F!V .IM SL .OOU8Lf ' 
3 . //GO . SVSIN OD C 
4. SJ 'le 0 WJh 1 oTIME =5 . PAGES=IO 
5 . C THIS PROGRAM I S GfP27PL-IT CAL CS./PLOTS FLUXES FOR 2 GROUP S 
6. OOU6LE PRECISION Pl1SIG AOMo SIGAFL , DflLoOF 2 L oAlo611 82 183 o84 o65 
7. 
6 . 
9 . 

10 . 
l 1. 
12. 
13. 
14 • 
15 . 
16. 
17. 
1 6. 
19. 
20 . 
2 I. 
22. 
23. 
24. 
25 . 
26 . 
27 . 
26. 
29. 
JO. 
31. 
32. 
J 3. 
3 4. 
35 . 
36 . 
37 . 
36. 
39 . 
40. 
41. 
42 . 
4 J. 
44. 
45. 
46 . 
47. 
48. 
49. 
50 . 
51. 
52 . 
53 . 
54 . 
55. 
56. 
57 . 
56 . 
59 . 
60. 

c 

c 

11 
10 

c 

OOUBL: PRECISION VO oSRMoSRFLoSFL oSfq,NULoMUL oA 2 oOL 1RL,NU2L oMU2L 
DOUBL E PRECISION BTFLoBT2FL18K1SAM1SAFL1DM l1 DM21BET A,X O 
DOUBLE PRECI S ICN OEXPo0 50RT1FI SLoBZ1DA8S o DSIN ,DCOS 1D0 0VoVJ 1VB 
DOUBLE PRECISION fl T~ oBT 2M oALFLoAFLoALMo AL2M , 3TEP 1 Zl 

DOUBL E PPECISION SIGAFR10FIRo OF2R oS AF R1SRFR 1BT2FR,eTFR 
DOUBLE PRECISION ALFRoAFR oFISRoMU2R oMUR1NU2R .NUR 10RoRR 
RE AL ' I 2 0, 2 0 I , e I 2 0 lo GI 1 0 0 I , WK (70 0 I , 0 I , 0 2 , X I 100 l 
!NTEGE il loJ1K1L1M1N1IA 1 lOGT 1lERolJOB 1P1lZ 
COMPL: X w1201.z120.201 
Pl = J.14 1592654 
THES: ARE TH~ 2 GROUP PAR AMETERS 
SIGAOM=0.00030661 
SIGAFL = 0 .05 540 ~ 

SIGAFR = 0.055719 
OFlL=l.421447 
DF I R=l. 421447 
DF2L=0.231576 
OF2R= O. 2315 76 
DMl:l,152804 
DM2 =0 . 991810 
BET A=O , 0065 
SAF L=O • 002076 
SAFR=O • 002082 
X0=53 .811 
SA M=0.53263680-07 
SFL=0 . 08233 
SFR =D • 0 8 397 
SRFL=O. 03364 
SRF;;'=0.0344 7 
SRM =O. 0 0287363 
V0=22.65 
85=32. 3 6 
84= 15 . 11 
B3=22.65 
B2=H>.1 1 
Bl =32. 36 
83=VO .. B~ 
Z1=68,J2755 
Al = lll.760 
8Z =IP I/ Z 11 *';2, 
IJ08=2 
N=20 
IA= 20 
IZ=20 
ALL :~EMENTS OF A ARE INITIALLV SET=O, 
00 10 1 =1 . 20 
DO 11 J=1 • 20 
A(loJl =O. 
CONTINUE 
CONTINUE 
Dl=O. 
THESE STEPS CALCULATE THE SOLUTION EQUA TI ON PARAMFTERS 
BK=IPl/All*¢2. 
BT2M=6~ .. ISIGAO~/DM21+8Z 
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93. 
94 . 
95. 
96. 
97. 
98. 
99. 

100. 
101 . 
102. 
10 J . 
104 • 
105. 
106. 
1 07. 
108. 
109. 
11 0. 
I 1 1. 
11 2 . 
11 3 . 
114. 
115. 
116. 
11 7 . 
118 . 
119. 
120 . 

c 
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BTM =)50RT l 6T2 M) 
BT2FL=BK+ISI GAFL/OF2 Ll+BZ 
6T2FR=BK+ISIGAF ~/DF2Rl+ BZ 

BTFL=DSCRTl6T 2 f L ) 
6TFR= OSOR TIBT2FR> 
AL2M=BK+ I SAM+ SR ~l /CM1+BZ 

ALM=DSOR TIAL2 M J 
AFL = B~+( SAFL+SRFLl/D FIL+BZ 

AFR =9K+ISAFR+SRFRJ/DFIR+BZ 
ALFL:::DSORT<AFLJ 
ALFR=DS or.a (A FR ) 
A2=1SR M/DM2)/(AL2M·BT2M) 
FISL= I SF L¢5RFLl / I DF1L¢0F2Ll 
F ! SR= <SFRCSRFR l / ( CF 1R ODF2R l 
MU2L=IAFL+BT 2 FLl/2 .+DSORTllAFL+9T 2FL) OC2 .·4 0 (BT2FL OAFL ·FI SL )J /2 . 
MU 2R= IAF R+BT2FRl/2.+0SORT llAFR+BT 2FRl 002 .·40 (6T2FRCAF R·FISRll/? . 
MUL=DSORT<MU2L l 
MUR=DSORTIMU2R J 
NU2 L= (AFL+6T 2 FLl/2 .·DSORT( (AFL+BT2FL)0¢2 .·40 (BT2FLOAFL-FISLJl/2. 
NU2R=<AFR+6T2 FRl /, .-DSORTllAFR+BT2FQl 0*2 .-40 IBT2FROAF R-FISRJ l /2 . 
NUL =D SORT(OABS INU2Lll 
NUR=O SORTIDABSINU2~ )) 

OL= IS ~FL/OF2Ll/IMU2L-BT2FLI 

OR=ISRFR/OF 2Rl/IMU2R-BT 2FR> 
RL=-<SRFL/DF2Ll/l~U2L+BT2FLl 

RR=-<SQFR/DF2 Rl/(NU2R+BT2FRl 
THESE STEPS LOAD MATRIX A 
A(l,ll = l• 
All.21 = 1. 
4(2.3> ='1· 
Al2 o4 l = 1. 
A(3,ll =OEXP l-AL~OU ll 

A(3, 2 l =OEXPIAL~OBll 

A( 3 , 5l=-l . 
A(3,6l = ·I. 
A(3,7l = -l• 
A(3o8l =O . 
A(4oll=-A200EX Pl-ALM061) 
A(4,2) ::: -A20DEX PIALMOB1l 
A(4,3l=OEXP<-BTMOB1) 
A(4,4l = OEXPIBT~*Bll 

A(4, 5 l=OL 
A(4,61=0L 
A(tt,7l =R L 
A(4,8) =0 . 
A(5,ll = ·OM1 0AL~OOEXP(-ALM*Bll 

A(5,2l =0 Ml * ALMOOEXP(ALM*Bll 
A( 5 , 5l=OF1L OMUL 
A(5,6> = -DF1L OMLL 
A(5,7l =O . 
A( 5 ,B> =-OF!LO NUL 
A( 6 •l >=O M20 A2¢ 1oLM*DEX P( -ALM<;Bl) 
A(6 •2 >= ·OM20 A2 0 1oLM¢0EXP IALMf>B 1 l 
A(6,3l = -DM20BT~OOEXPl-BTMOB1l 

A(6,4l rD M2*BTMOOEXP(BTM OBll 
AC6.5l = -DF2LOOLOMUL 
A(6,6l =D F2L *OL OMUL 
A(6,7l =O . 
AC6, 8l=DF2LORLONUL 
A(7,5l = OEXPl-MULOB 2 l 



12 1. 
122 . 
12 3 . 
124. 
125. 
126 . 
127 . 
128. 
12 9. 
130 . 
131 . 
132. 
133. 
134, 
1 35 . 
1 36 . 
137. 
138. 
139 . 
l 4 o. 
14 I, 
142. 
14 3 . 
144. 
14 5 . 
146 . 
14 7 . 
14 8. 
149. 
1 50. 
15 l. 
152 . 
153 . 
l 54. 
155. 
156. 
157. 
158 . 
159. 
160. 
161. 
162. 
l 63. 
164. 
165. 
166 . 
1 67. 
168. 
169. 
170 . 
171. 
172 . 
17 3. 
174 . 
175 . 
1 76 . 
177. 
I 78. 
179 . 
180. 

A(7.6l =OEXP(MULOB2l 
A(7.7l=DCOS(NUL00 2 l 
A(7.8l =OS IN(NUL OB2 l 
A(7 oill=·I . 
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A(7ol 0 l : ·l. 
A(8, 5 l = · OL ODEX P(·MUL0 0 2 l 
A(8. 6 ) : •QLOOEX P(MUL*B2l 
A( 8.7>=·RLOLJCOS(NUL¢62l 
A ( 8 o 8l = ·RL005I ~<NULOB2 l 

A( 8 , 9l= A2 
A ( 8 o l 0) =A2 
A(8ol ll =·l. 
A(8.1 2 l = •l, 
A(9. 5 ) : · Df1L OMUL OOEXP l •MUL OB2 l 
A(9.6):0f1 LOMULODEXP IM UL¢62) 
A(9.7l = ·Of1LONL LOOS 1N ( NULOB2 ) 
A(9o 8l = OF1LONULODCOS (N ULOB2l 
A(9 oil l =O ... l ~:ALM 
A(9 ol 0 l=·OMIOALM 
A(1 0 o5 l =Df2L OO LOMULOOE XP(•MUL OB2 l 
A ( 1o, 5 ) = ·OF 2Lf.:CL(:MUL*OE XP ( MUL ¢82 l 
A(l 0 o7l=Df 2LOR LONULODSIN(NULOB2 l 
A(1 0 o B l = ·Of2LO~LONULOOCOS INUL OB2l 

A(t 0 . 9l=·DM20 A2 0ALM 
All O.t O l =OM2 0 A2 0 ALM 
A( 10. t 1 l =D M 2:~B TM 
A(t0.1 2 l : • OM2C eTM 
A(lt.9l =OEXP(·ALMOB3 l 
A( 11.1 0 l =OEXP(ALM(:BJ l 
A(ll•lJl =·l. 
A(ll o l4):·1. 
A(llol5l =·l. 
A ( 1 1 • I 6 ) : O . 
A(12o9l=·A200EXP (•ALM OB3 l 
Al 12• 10 l = ·A2>';0 EXP ( ALM OB3 l 
Al 12.11 l =OEXPI ·BTM¢83 l 
All 2 o 12 l =DEXP <e TM OB3 l 
A(1 2 ol 3 J =OR 
A ( 1 2, l 4 l =OR 
A ( 12 • 1 5 l =RR 
A ( 1 2 • 1 6 l =O. 
A(l3o9l = · OM1 0 ALM¢0EXP l·ALMOB 3l 
Al13ol 0l=DM1¢AL"'*DEXPIALMOB3l 
Al l J ol J):OflR O ... UR 
A(13,14 l =· Of l ROMUR 
A(l 3.t ~ l =O , 
A ll 3 ol 6 ) :•0flRONU~ 

A(14. 9 l =OM2¢A20 ALMOD EX P l·ALMOB31 
A(14ol O ) : •OM20 A20ALM OO EXPIALM OB3l 
A(l4 oll l =·OM2¢ BTM(•0EXP < ·BTM*B JI 
All4o l2l=DM20B TMOOEXP(BTMOB3l 
A(14. J3l=·OF2ROOROMUR 
A( l 4o l 4 I =Df2ROORO ... UR 
A(l4ol 5):0 , 
A(J4,1 6 J =DF2RORR ONUR 
A(l 5 o l3J=OEXP(•MUPOB41 
A(l5ol4l =DEXP ("' UROB4l 
A(l5o1 5 J =DCOS (~UROe4l 

A11 5 .1 6 l =OS IN (~UROB4l 

A(15.t7l=·l. 



18 1 . 
182. 
183 . 
184. 
185. 
186. 
187. 
188. 
189. 
190. 
191. 
192. 
193. 
194. 
195. 
196. 
197. 
1~8 . 

199. 
200 . 
201. 
2 02 . 
203 . 
2 04. 
205 . 
206 . 
2 07. 
208. 
2 0 9. 
210 . 
2 11. 
212 . 
213 . 
214 . 
2 15. 
2 16. 
2 17. 
218 . 
21 9. 
220 . 
221. 
222. 
223 . 
224. 
225. 
226. 
227. 
228. 
229 . 
230. 
231 . 
2 32 . 
2 33. 
23 4. 
235. 
23 6. 
237 . 
2 38. 
2 39. 
2 40. 

c 

40 
c 
c 

c 
c 
c 

42 

c 

c 

60 
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A ( 1 5 • 1 II ) =-1 • 
A(l6 • 13l =-OROOEXPC-MURCB4) 
.. c 16.14) =-ORCOEXP CMUR OB4 I 
AC16.15l=-~ROOC O SCNURGB4} 

AC16.16}=-RROD~ININUROB4) 

AC16.17l=A2 
A(16ol8 }:A2 
A( 1 6 .1 9 l=-1 • 
A(16 . 20 }:-l . 
A(17.13>=-DFIRCMU~ OOEXP(-MUR0 84) 

A( 17.14 >=DFIRCMUR ODEXP( MURCB4l 
AC17.15l=·DF1RONURODSIN( NUROB 41 
A(l7.16>=DF1RONURODCOS CNUR064) 
AC1 7ol7):0MIOALM 
A( 1 7 . 18) =-DMlO.lLM 
AC 18, 13)=OF2ROQR(,MUR*DE XP ( ·MURCB4) 
.l(18ol4 >=·DF2ROQRCMURCDEXP(MURCB4) 
A(l8o l5 ) =DF2RCRRONURODSIN (N UR(l64) 
A(l 8. 1 6)=-DF2RO~RONURODCOS INURCB 4) 

A(l6.17):•DM2CA2CALM 
4( 18 , 18) =OM20 4 2CALM 
4( 18.19):0M206TM 
4Cl 8o2 0 1=·0M20fTM 
4(19.17 1=0EXP ( •ALM CB5 1 
4(19.181=0EXP!ALM 065 ) 
AC20ol7> =-A200EXP( ·ALMOB5) 
4C 2 0 . 18> =-A200EXP( ALM OB5) 
A(20.191=0EXP(•BTMCS5) 
A( 20 o2 0> =DE XPCf TM OB5 l 
THE IOENTITY M~TR IX IS ADDEO TO A 
DO 40 J =1•20 
A( l,l ) :: AtI .I) +! . 
CONTIN UE 
THE LIB RARY SUBROUTINE EIGRF DE TERM I NES THE E IGENVALU ES 

ANO ASSOCIATED E I GENVECTORS OF M.lTRIX A 
CALL =IGRF (A.N.IA.IJOB.w . z.1z.wK.IERl 
THE ~IG ENVECTORS ASSOCIATED WITH EIGENVALUE=t • ARE 

LOCATED IN Z( 1.201; THEY ARE THE COEFFICIEN TS OF THE 
FLUX SOLUTION EQUATIONS 

00 42 I= 1 . 20 
6( I > = ~EAL ( Z (I• ZO) > 
CON Tl NU E 
IF <IER . E0 .130 > GO TO 25 
Y=O . 
THIS IS THE STEP SIZE IN THE Y DIRECTION 
STEP= 142.24 /60. 
THIS LOOP CALC UL ATES THE FLUXES ACROSS THE CORE 
00 20 K=lo61 
X<K>= Y 
66=0. 
IF CY.GT.Bl) GC TO 60 
Y2K1 =3!31COEXP(·BTMOY)+B(4)*0EXP(OTMOY)•A20(6(1)00EXP(·ALMOY) 

(,+BC 2> i:io E XPC ALM>:rY)) 
YB=Y2Kl 
GO TD 6 9 
CONTINUE 
BB=Bl•B 2 
If CY.GT.BB> GC TC 61 
Y3=Y- ( B e-62) 
Y2K2=·0L0(6(5)00EXP(•MUL9Y3)+8(6)>:rO EXP (MUL >:r Y~)l•RL0(8(7)>:rO COS 



24 1. 
2 4 2 . 
?. 4 3. 
2 44. 
2 45. 
246. 
2 47. 
248. 
24 9. 
250. 
25 1. 
252. 
2 5 3. 
25 4. 
255. 
25 6. 
257. 
258. 
259 . 
2 60. 
2 61. 
262 . 
263 . 
264. 
2 6!5. 
266 . 
267 . 
2 68. 
2 69. 
270. 
27 1. 
272 . 
2 73. 
274. 
275 . 
2 76. 
277. 

6 1 

63 

64 

69 

20 
c 
c 

5 1 
50 
25 
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£. (NUU:Y3 l+B ( 8 ) ~:0S JN(NUL:~ Y3ll 

YB=Y2K 2 
GO TO 6 9 
CONTIN UE 
BB=BB + B 3 
IF ( Y. G T. BB l G C T C 6 3 
Y3=Y-(BB-83l 
Y2 K 4 :B ( 11 >*DE XP ( -e ™ '' Y3 l +B ( 1 2 l *DEXP <BTMt.:Y3 l -A 2:~ ( 8 ( 9 ) f.:DE XP 

&(-AL~ *Y3l+B (l 0l*DEXP(AL M*Y3ll 

YB=Y2K4 
GO T O 69 
CONTINUE 
BB=BB+B 4 
IF IV .GT.BBi GO T O 6 4 
Y3=Y-( BB-B4 l 
Y2K 5=-0R*<B <l3l OOEXP( -MUROY3 l+B(14l *DEXPCMUROY3 ll-RR0(6( 15) 

&CDCOS (N UROY3l+B(1 6 l ODSIN<NUROY3ll 
Y6= Y2K 5 
GO T:J 6 9 
CONTINUE 
Y3=Y- B B 
Y2K6:B ( 1 9 ) ~:OE XP ( - e TM >~ Y3) +B ( 2 0 ) OOEXP <BT M* Y 3) -A 20 (a ( 17 J>:<DEX P (-ALM 

i;.. ~:y3 )+3 ( 18)00E XI' (ALM* Y3 l l 
YB=Y2K6 
CO NTI NUE 
G<Kl =OSIN(XOOPl/All OYB 
Y=Y+STEP 
CONTI 'IU E 
THIS LOOP PUNCHES THE FLUXES: OT HER S TEP S MAY BE INSERTEC 

HE RE TO PRINT OR GR APH THE FLUXES 
DO 50 I= 1 •61 
WRIT!: < 7 .51lG (Il 
FORMAT (El2.5) 
CON TI NUE 
STOP 
ENO 

SEN TRY 
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The l as t program, GFP- 28 , cal cula t es d~/dy . 
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1. //C3oo Joa u:neo. wJH 
2. //STEPl EXEC FORTGCG.~EGI ON =192K o LIB=·svs1.IMSL . DOUBLE ' 

3 . //FORT . SYSl'I OD ·~ 

4. c THIS PROGRAM I S GFP28- IT CALCS . 0 PHl/O y Fon 2 GROUP~ 

5 • C AT THE PO INT Y 0 ONLY 
6. OOUBL~ PRECISION PI.SIGAOM,SIGAFL . OFlL.DF2LoAloe 1.02 . 03 . 04 , 05 
7. DOUBLE PRECISIGN YO . SRM.SRFL.SFL.SFR .NUL oM UL oA 2 oOL oRL.NU 2L.MU2L 
8. DOUBLE PRECIS I CN BTFL.BT2FL . BK oSAMoSAFL.DMl.DM2 . AETA . XO 
9. DOUBLE PRECISICN OEXPoDSORT,FISL,BZoDABS,DSIN , OCO S . BB.Y oY3oY3 

10. OOUBL:' PRECISION BT"loBT2MoALFL oAF L · ALl".AL2M.STEP . Zl 
11. DOUBLE PRECISICN S IGAFRoDF1R . DF2R oSAFR,SRFR oBT2FR oBTFR 
12. 
13. 
1 4 . 
15. 
16. 
17. 
16. 
19. 
20. 
21 . 
22. 
2 J. 
2 4. 
25 . 
26. 
27. 
28. 
29. 
JO. 
31. 
32 . 
33 . 
34. 
JS. 
J6 . 
J7. 
38. 
39 . 
40. 
4 1. 
42 . 
4 3. 
44. 
45. 
46. 
47. 
48. 
49 . 
50. 
51. 
52 . 
53 . 
54. 
55. 
56 . 
57. 
58 . 
59, 
60. 

c 

c 
c 
c 

c 

DOUBL E PRECISION ALFR.AFR.FISR.MU2R.MUR.NU2R . NUR oOR,RR 
REAL A120o20loBl201.G1(1DloGl101oWK(7001 . D loD2oD ET . G2 
INTEG::R I,J,KoLoMol<•IA .IDGToIER . IJOBoP•I~ 

COMPLEX wc201.z120.20> 
Pl=3.14 1592654 
THESE ARE THE TWO ~ROUP PARAMETERS 
SIG AOM =0 .00030661 
SIG AFL=0 . 05540'!: 
SIGAF~= 0 ,055719 
OF IL=l . 42 1447 
OFlR=l. 421447 
DF2L=O . 231576 
DF2R=O. 231576 
OMl=l .1 52864 
OM2=0 ,99181 0 
BET A=O. 0065 
SAFL=O. 002076 
SAFR=0 .002082 
X0=55.88 
SAM=0 . 5 3263660-07 
SFL=0 . 08233 
SFR=O . 0 8 397 
SRFL=O· 03364 
SRFR=O . 0344 7 
SRM=0 . 00287363 
Y0=22 . 65 
85= 32. 3 6 
04=16.11 
63=22.65 
92 = 16. 1 1 
Bl= 32. 3 6 
B3=YO+B 3 
z 1 = 68 • 3 2 755 
Al = lll o 760 
BZ=IPI/Zl) *''2 • 
IJOB=2 
N=20 
IA=20 
IZ=20 
Glll=O. 
Y=B 1+ 32 +YO 
STEP= 1 , 2 8/ 1 00 • 
Y=Y-STE P 
THE FLUX IS CALCULATED THREE TIMES AT YO-STEP oYOoANO 

YO+STEP, ANO DEL PHI/DEL Y I S DETERMINED FROM 
I IPHl+STEP>-PHI>/STEP 

00 20 K = 1, 3 
THE E~EMENTS OF A ARE INITIALLY SET:o, 
DO 10 I=l,2 0 



61. 
62. 
6 3. 
64. 
65. 
66 . 
67. 
68. 
69. 
70. 
71. 
72. 
7J . 
7 4. 
75 . 
76. 
77. 
78 . 
79. 
80. 
81. 
82. 
83. 
84. 
8 5 . 
86. 
87. 
88. 
89 . 
9 0 . 
91. 
92. 
93. 
94 . 
95 . 
96. 
97. 
98. 
99. 

1 oo. 
101. 
102. 
103 . 
10 4. 
105. 
106. 
10 7. 
108. 
1 09. 
110 . 
111. 
112. 
113. 
114. 
11 5 . 
116. 
11 7. 
118. 
119. 
120. 

11 
10 

c 

c 

DO 11 J: l • 2 0 
Allo J ) :O . 
CONTINU E 
CONT I'4 UE 
0 1=0 . 
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THE S)LU l! ON EOUATION P ARAM ETE RS ARE CAL CUL ATED HERE 
BK=IP I /Al) ~:¢2 . 

BT2M:aK+ISIGA O ~/DM 2 l+BZ 

BTM=OSOR TIBT2 M l 
BT2 FL =B K+ISIGAFL/DF2L l+ BZ 
BT2FR=BK+ISIGAFR/DF2R)+BZ 
BTFL= DSORTIBT2FL) 
BTFR:DSORTIBT2FR> 
AL2 M=BK +I SAM+ SR~l/DM1+BZ 

ALM =DSORT (AL2 M) 
AFL =B J:: +I SAFL+ S RFL) /OF lL +B Z 
AFR=B.:: +I SAFR+ SRFRl/DFlR+B Z 
AL FL=DS ORT< AFL l 
ALFR: )SORT( AF R l 
A2=1S~M/DM2)/ (A L2M -B T 2M) 

FISL= I SFL¢S RFLl/IDF1L¢DF 2L) 
FI SR= I S FROS RFRl/IDFlR¢DF2Rl 
MU2L= IAFL+BT2FLl l2. +0SO RT llAFL+BT2FL I002 .-40 (BT 2 FL OAFL-FISL))/2 . 
MU 2R= IAFR+BT2FR l /2.+DSORTllAFR+ BT2FR l 0*2·-'+0 IBT 2 FRO AFR-FI SR))/ 2 . 
MUL =DSORTIMU2 L l 
MUR =DS O RTIMU2R ) 
NU2L:(AFL+BT2FLl/2.-DSORTllAFL+BT2FLl 0*2 ·-40 IBT2FLOAFL-FISL)J/2 . 
NU2R=IAFR+BT2FRl/2.-0SORTllAFR+BT2Fq) ¢¢2 .-4¢ ( 8 T2F ROAFR-FISR)) /2 . 
NUL=DSORTIDABSIN U2Lll 
NUR=DSOR TIDABS INU2R ll 
OL= I S~F LIDF 2Ll/ IMU2L-BT 2FL) 

OR= ISRFR/OF2R l / (MU2R -BT2FR l 
RL = -I S~ FL/DF2Lll(NU2 L+BT2F Ll 

RR= -I SRF R/DF 2R ) / INU2R +BT2FRl 
MATRIX A I S LO.o\ DEO 1-iERE 
Alloll = l. 
A(l, 21= 1. 
A1 2 o3l = l. 
Al 2 o'<l = l . 
Al 3 ol l =DEXP l-ALMOB 1l 
A( 3 o 2 l =DEXPIAL~08 1) 

.o\l3o 5 l=-I. 
Al306l =- 1. 
Al 3 o7l=- 1. 
Al 3o8 l :O • 
A(4oll = -A20 DEXP l-AUI0 81) 
Al4o 2 ) = -A2*DEXP IALMOB1l 
Al4o3 l=DEXPl-BT ~081l 

Al4o41 =DEXPIBT~OBl l 

A(4 o5 l = OL 
Al4o6 l =O L 
Al4o 7 l = RL 
Al4o 8):0 . 
AC 5 oll = -DM1 0AL~OOEXP (-ALM081 ) 

Al 5 o2 l=OM1 0 ALM OOE XP CAU4 0 Bl l 
Al5o 51=DF1 L t.:MUL 
Al5o 6 1 = -DF1LOML L 
Al 5 o7l=O. 
Al 5 o8l=-DF 1 L¢ NUL 
Al6 ol >=D M2 ic: A2 * ALM <:OEXPC -ALM¢61) 



l 2 l • 
122. 
l 2 3. 
124. 
125. 
126. 
127. 
128. 
129. 
1 30 . 
1 31. 
132 . 
133. 
134. 
135. 
136. 
137. 
138. 
139. 
140. 
141. 
142. 
143. 
144. 
145. 
146. 
14 7. 
148. 
149. 
150. 
151. 
152. 
15 3. 
15 4. 
155. 
156. 
157. 
158. 
159. 
160. 
161. 
162. 
163. 
164. 
165. 
166. 
167. 
168. 
169. 
170. 
171. 
172. 
173. 
174. 
175. 
176. 
177 . 
178. 
179. 
180. 
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A( 6 . 2 ) = -OM2 ''A 2 e AL"'('OE XP (AL Mc~ l) 
A(6,3l = -OM20BT ,.. OOE XP (-BTM0 611 
A(6,4l =D M206TM OOEXP(6TM ¢6ll 
A(6,5l = - DF2L¢0L OMLL 
A( 6 , 6 l = OF2L('QL l.'MU L 
A(6,7l = O , 
A(6,8l : Df2L ORL ONUL 
A(7, 5 l=DEXP(-MULOB2 l 
A(7,6l =DE XP(MUL 062) 
A(7,7l = DCOS(NUL 062l 
A(7,8l = D S JN(NUL¢6~ l 

AC 7 ,9) = - l • 
AC 7 .1 0) = -1. 
A(6,5l = -OLOOEXP( -MULOB21 
A(8,6l = -OL ODEXP(MUL OB2l 
A(8,7l =-RLOOC OS(NUL 06 2) 
A(8,8l=-RLODSJ~(NUL062 ) 

A(8,9l = A2 
A ( 8 • l 0 l = A2 
A(8'111=-l. 
A(8,1 2 l = -1. 
A(9,5l : - OflLOM~LOOEXP(-MUL062 l 

A(9,6l =O F1L OMULOOEXP!MULOB2l 
A(9,7) : -0flLONUL OOSIN!NUL062) 
A(9,8l =O FIL ONULOOCOS CNUL062 l 
A(9 ,9 ) : OMIOALM 
A(9ol0)=-0M1 0 ALM 
A ( 1 o, 5 l =OF2LOOL(,MULC<OEXP ( -MUL *62) 
A(l0,6):-0f2L¢ 0LOMUL*DEXP(MUL062) 
AC10,7):0F2LORL¢NULOOSINCNUL*621 
ACl0,8) =-OF2LORL¢NULOOC OS(NUL062l 
A(10,9) = -0M 20A20ALM 
AC10ol0l=OM2*A2 ¢ ALM 
A(l0.11 l=OM 20B TM 
A(l0.1 2 )=-0M2 ¢ 6TM 
A(ll,9l =OEXPC-ALM063) 
A(ll.10l =OEXP(ALM063) 
A(ll.13) =-l• 
A ( l 1 , l 4 ) =-1 • 
A( 11.15 ) : -1, 
A ( 1 1 , 1 6 ) =O , 
AC1 2 •9> =-A200EXP C-ALM*B 31 
A!12.lO>=-A2¢0fXP(ALM*63) 
A(l2ol1 >=OEXPC-6TM>C:63l 
A(12•1 2 l =OE XPC6TM¢ 63) 
A ( 1 2, l 3 ) =OR 
A ( 12 • 1 4 l =OR 
All2.1 5 l=RR 
AC 12• 16) =O. 
AC13.9l=-OM1*ALMOO EXPl-ALMOB3l 
A(l3.10l=OM1¢ALM¢0EXPCALM* 63) 
AC13,13l =OF1R* MUR 
AC13.t'4 >=-OFlROMUR 
AC13.1 5 ) :Q , 
A(13.16 >=-OFl RO NUR 
A( 14o11) =OM2 OA 20 ALMOOE XP (-A LMO 63) 
A(l4•10l =-OM20 A20ALM * OEXP(ALM¢63l 
AC 14.11 ) =-O M2*BTM:C:DEXP ( -BTM*83) 
AC14.12l =OM2¢6TMODEXP(BTM063) 
A(14.131=-0F2R OOR*MUR 



18 I. 
18 2 . 
183 . 
18 4 . 
185 . 
186. 
187. 
188 . 
189 . 
19 0 . 
191 . 
192. 
193. 
194 . 
195. 
196. 
197 . 
198 . 
199. 
200 . 
20 1. 
202 . 
20 3 . 
20 4 . 
20 5. 
206 . 
20 7 . 
208 . 
209. 
2 1 o. 
2 l l. 
2 12 . 
213 . 
2 14 . 
2 15 . 
2 16. 
217 . 
2 18. 
2 19. 
220 . 
221 . 
222 . 
22 3 . 
2 24 . 
225 . 
22 6. 
2 27. 
22 8 . 
22 9. 
23 0. 
2 31 . 
232 . 
2 33 . 
234. 
2 35. 
236. 
237. 
238 . 
23 9. 
2 40. 

c 

40 
c 
c 

c 

4 2 

c 
c 
c 

60 

151 

A(14ol4l=DF2ROCRC MUR 
A ( 1 4 • 1 5 l =O. 
A(14ol 6 l =DF 2RORRONUR 
A<l 5 o 13 l =DEXP l-MUR(:64 ) 
A(lS.14 >=DEXPIMUR Oe41 
All5ol 5 ) :0COS <N UROB4l 
A ( 15 . 16) =OS IN ( NlJR 084) 
AllS.17) : -1. 
All5 o18) : -1. 
A( l 6o l 3 ) =-O R*DE XP ( -MURC< B4) 
Al 16014) : -OROD EXP ( MUROB 4 l 
Al 16.1 5 >=-RR OD COS <,.,UR <:B 4) 
A(l 6 o l6): - RROOSIN(NUROB4l 
Al 16.1 7 l =A2 
All 6 '18l=A2 
A(16ol 9) =-l• 
A(l6. 20 l=-1. 
A(17ol3l =- DF 1ROMUP ODE XP(-MUR« B4) 
All7 o 14 ):DFIROMUR OOEXP(MUROB4) 
Al17o1 5 ):-DF1R ONUR OOS IN(NUR084) 
A ( 1 7 . 16 l =OF 1R>e:NUR¢ 0COS ( NUR :~B4) 

Al17o 1 7 l =DMl OALM 
A(17ol8l =- DMI OALM 
All8ol3):0F2ROOROMUR OOEXP(-MUR OB4) 
A(l8o14 >=-OF 2ROOROMUROD EXPI MUR :::B4l 
A(18ol 5 l =OF2R ORR:::NURODSININUROB4l 
A<l8ol6l=-DF2RORR ONURODCOS (NURo84) 
All8ol7l=-OM20 A2 0 ALM 
A(l8ol8l =OM 2:::A20ALM 
Al18.19l=OM20B TM 
A( 180 2 0 l =-OM2>l< eTM 
A(l9o17l=DEXPl-ALMOB5 l 
A(l9 . 18l=DEXP<ALMOe s > 
Al 20 .1 7l=-A20 DEX P<-ALMOB5 ) 
A(20ol8 ) : -A 2t.• DEXP( AL Mt;f; 5 ) 
Al20,19) =0EXP l- BT MOB5 l 
A(20 o?O l =OEXPI B TM f.:B5l 
THE I DE NTITY MATRIX I S ADDEO TO A HERE 
00 4 0 I = 1 . 20 
A(l.J) : A(J,J)+). 
CONT I 'I U E 
THE L IBRARY SUBROUT IN E EIGRF I S USE D TO CAL CULAT E THE 

E I GEIWALU ES AN D ASSOC IATED EIGENVEC TORS OF MA TRIX A 
CALL ~ I GRF (AoNoIA.IJOB .w. z.Iz .wK . I ER l 
THE FU NDAMENTAL E I GE NVE CTOR I S LOCATED IN Z (Io 20l 
00 4 2 I = l o20 
B( I >=RE AL ( Z CI• 2 0 l) 
CONTINUE 
IF II ER . E0 .130 > GC TO 25 
THE SE S TEPS DETERMINE WHI CH SOLUTI ON EQUATION I S USED F OR TH E 

I S USED FOR THE VALUE OF Y- IN THIS CASE ONLY THE CE~TRAL 
:'. :lUATIONS . Y2 K3 ANO Y2K4o ARE USED . 

BB=O. 
I F IV. GT . Bl> GC TO 60 
Y2Kl =B l 3 ) t;0EXP l-BTMOY)+8(4)~EXPIBTM¢Y)-A 20 (8 (l ) f.: 0EXPl - ALMOY) 

&+B!2) 00 EXPIALMOY)) 
YB : Y2 Kl 
GO TO 6 9 
CO NTINUE 
BB=B l +sz 



2 41. 
242 . 
24 3 . 
2 44. 
2 45. 
246. 
24 7 . 
2 48. 
249 . 
250 . 
25 1. 
252 . 
253 . 
254. 
255. 
256. 
257 . 
258 . 
259 . 
2 60. 
2 61. 
262 . 
2 63. 
264. 
265. 
266 . 
2 67. 
268 . 
269 . 
270. 
27 1. 
272 . 
273. 
2 74. 
2 7 5 . 
276 . 
2 7 7 . 
278 . 
279. 
2 80 . 
28 l. 
282 . 
283 . 
2841. 
285 . 
286. 
287. 
288. 
289. 
290. 
291. 
292. 

61 

63 

64 

69 
c 

70 
7 1 

98 

20 

c 

3 2 

30 

415 
25 
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lF IV. GT . BB) GO TO 61 
Y3=Y·!BB·B2l 
Y21C 2= • QL(<( B ( 5) ¢DE XP I •MUL.:. Y 3 )+B 16) *C>i:'.XP !MU LOYJ l) · RL* ( B ( 7 ) ¢DCOS 

&(NULOY3l+B ( 8) ¢ 0SIN(NULOY3ll 
YB=Y21(2 
GO TD 69 
CON TI NUE 
BB=Ba+B3 
IF < Y. G T • BB l G C T 0 6 3 
Y3=Y·IBB·B3) 
Y21C 4 =B ! lllCOEXP(·BTMOY3l+B(12lOOE XP IBTMOY3l·A2C ( B l 9 l CDEXP 

&(•ALMCY3 l+Bl10) 0DEXP(ALMCY3ll 
YB= Y2 I( 4 
GO TO 6 9 
CO NTIN UE 
88=83+84 
IF CY . GT.BB) GC TO 6 4 
Y3:Y•( BB·B4 l 
Y21C5:• QR C(B(l3)COEXP(•MUR CY3)+6 (1 4) COEXP(MUROY3ll•RRC(6( 15 l 

&COCOS ( N UROY 3) +B ( 16 l OOS I N (NURO Y3 l) 
YB=Y 2 1(5 
GO TJ 6 9 
CONTINUE 
Y3 =Y•BB 
Y21C6:3( 19lCOEXP(•B TM CYJl+8(20) 0D EXPC BTMCY3l·A20 (8117l ODEXP l·ALM 

&CY3 l+B ( 18lCOE XP (ALM*Y3l) 
YB=Y21(6 
CONTINUE 
THESE STEPS CALCULATE DEL PHI/DEL Y 
IF Ctc:.EO.ll GO TO 70 
L=IC·l 
G2=G< L > 
GO TO 71 
G2=G< K > 
G( l():DSINIXOCPI/All* YB 
GlCICl=CG(IC)·G2l/STEP 
llR ITE (6 098) ICoG<IOoG2. GlCICl 
FORMAT c• 1C=•.t2.•G( ICl= "•D12.5•"G2= "•012.5. 0 Gl<1C> = "•D1 2 . 5l 
Y=Y+STEP 
CONTINUE 
Y=Bl+B2+YO·STEP/2. 
THESE STEPS PRINT ANO PUNCH THE RESULTS 
DO 30 IC=2o3 
llRITE (6.32) YoGl(IC) 
FORMA T ( • AT Y= • oF8.3o • 0 PHI/O X 
Y=Y+STEP 
CONTINUE 
llRITE ( 7o45) GlC3> 
FORMAT IE12.5l 
STOP 
ENO 

//GO.S YS I N DO 0 



1. 
2. 
3 . .. . 
5 . 
6 . 
7. 
8 . 
9 . 

10. 
I I. 
12. 
I 3 . 
I 4 • 
1 5 . 
16. 
17. 
18. 
19. 
20 . 
2 1. 
22 . 
2 J . 
24 . 
25 . 
26 . 
27 . 
2 8 . 
29 . 
30 . 
3 I • 
J2. 
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//CJOO .JOO U!780,W-H 
//STEPI EXEC FORTG(G,REGION = IQ 2K 
//FORT .SYSI'ol 00 0 
C THI S PROGRAM IS PLOT- IT PLOTS TH E DE TEC T OR RESPONSE 
C THE VALUES Of ~LL INPUT ARE AL SO PRINTED 
C THE INPUT COMES FFOM GFP2 4• GFP25o GFP27 , AND GFP28 

REAL PHillOO l, C:1 (1 00 ), G21 1 00) , GJ l1 00 l• G4,X(l001 
INT EGER I 

10 

20 

12 

22 
11 

14 
IJ 

16 

17 

27 
15 

READ (5o10) G4 
FORMAT IE12 .5) 
WRITE (6,20) G4 
FORMAT ( • G4: • •El2.5) 
00 11 1=1.61 
READ (5ol21 )((l),G31J) 
FORMAT ( f6.2eE 12.5) 
WRITE (6,22) Xll),G3111 
FOR MA T ( ' Y = • , f 6 , 2 , • G 3 = ' , E 1 2 • 5 I 
CON TI NUE 
00 13 I=l,61 
RE AD 1 5 .14) G211) 
FORMAT IE12,51 
CONTINUE 
DO 15 I =I ,6 I 
RE A 0 ( 5 , I 6 ) G I I I ) 
FORMAT I E12 .5) 
PH I ( J ) = G 4 ¢G 3 ( J I + G 2 ( I) oG I ( I I 
WR I TE I 6 , 1 7 I X I I ) , PH I I I I 
FORMAT I' Y= ' ,f6 . 2 •' DE L PHI= '• E l 2 . 5 1 
WR I TE I 6 , 27) G 2 ( I ) , GI I I ) 
FORMAT l • G2= • ,f 12.5,• G I = • . E12.51 
CONTINUE 
CALL GR A PH I 6 I , )(, PH I , 11 o1 .t 0 . 0 , 8 , 0 , 1 5 • 0 , 0 • 0, 0 • 0 5 , 0 • 0 

33 . t..•v. CM.:•.•oETECTCR RESPONSE :•.•PLOT:• .•x=55 .88 :'l 
34. STOP 
3~. END 
3 6 . // G 0. S VS I N DD e 
J7 , //GO ,FT14f 001 DD OSN AME =t.SM oUNIT=SCRTCH, DISP= (Nf W,PA SS ), 
38. // SPACE=l800 ,(1 20 • 151 ),0C8=1RECFM= VB S .LRECL=796,BLK SIZE=800) 
39, //S~PLTTR EXEC PLOTePLOTT ER=PRINTER 
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XI. APfENDIX B: CONSTANTS USED IN THE COMPUTER PROGRAMS 

This appendix contains a list of variable names used in the 

computer programs and the variable ' s common names. The letters Rand 

L af ter some of the variable names found in the program refer to the 

right (south) and left (north) cores, respectively. 

Variable Name 

PI 
SIGAOM 
SI GAF 
DFl 
DF2 

Al 
Bl 
B2 
B3 
B4 

BS 
Y¢> 
SRM 
SRF 
SF 

SAM 
SAF 
DMl 
DM2 
Beta 

z 
XO 
y 
Xl 

Common Name, Description 

'IT 

L;i20 (graphite) 
La20 (fuel) 
D {fuel, group 1) 
D (fuel, group 2) 

Total x dimension 
0- Bl dimension 
Bl- B2 dimension 
B2-B3 or Y4>- B3 dimension 
B3-B4 dimension 

B4- B5 dimension 
B2- Y¢> dimension 
LRl (graphite) 
LRl (fuel) 
1:: f (group 1) 

1: al (graphite) 
1:a1 (fuel) 
D (graphite, gr oup 1) 
D (graphite, group 2) 
e 
z dimension 
x position of perturbation 
y position of detector 
x position of detector 

The values used for the reactor cross section data given in the 

programs of Appendix A are data used for program testing . The values 

used in the final calculations are listed in Appendix C. 
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XII. APPENDIX C: REACTOR DATA 

This appendix lists the reactor data used for the t heoretical 

model. The computer program LEOPARD [8] was used to generate the 

two-group cross sections for the calculations. Input dat a for t he 

LEOPARD code is also included. 

The input data required for LEOPARD are volume fractions of 

aluminum and water and the atom densities of U-235 and U- 238. If 

desired, a nonlattice fraction can be included to account fo r the 

portion of the core that is not part of the repeating unit cell. 

The procedure used for preparing the input for LEOPARD basically 

followed the procedures described by Al-Ammar [5] and Salih [10). 

A nonlattice fraction was calculated using the aluminum cor e 

tank , aluminum dividers, nonfuel bearing aluminum in the edges of the 

fuel plates , and water between these edges. The height of the material 

was taken as 23 inches (58.4 cm), the length of the f uel bearing 

portion of the fuel plates . The following volumes we r e used : 

Aluminum in core tank 302 in 3 (4. 95 103 3 x cm ) 

Aluminum in dividers 115 in 3 (1. 89 103 3 x cm ) 

Aluminum in edges of 33 in 3 3 (541 cm ) 
fuel plates 

Edge water 152 in 3 (2.49 x 10 3 3 cm ) 

Based on a total core tank volume of 2 . 98 103 . 3 (4 . 89 4 3 x in x 10 cm), 

the nonlattice fraction was calculated as 
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4 . 95 x 103 + 1.89 x 103 + 541 + 2.49 x 103 

4 4.89 x 10 
0.202 . 

The fraction that is aluminum is 0.748 and the fraction that is water 

is 0.252. The U-235 and U-238 atom densities were based on 1483 gm 

for the north core and 1502 gm for the south core (loading pattern B). 

Using the relationship 

23 
t I 3 (gm of fuel)(6.02 x 10 ) a oms cm = (235)(volume of fuel plates) 

the following atom densities were calculated . 

North core 

U- 235 - 1 . 27 x 1021 atoms/cm3 

U-238 - 8 . 30 x 1019 atoms/cm3 

South core 

U-235 - 1.29 x 1021 atoms/cm3 

U-238 - 8. 51 x 1019 atoms/cm3 

The LEOPARD input data follows: 

SHEET A COLUMN 

TITLE 

a. 1 3 
b. 0 6 
c . 1 9 
d. 2 12 
e. 1 15 
f. 1 18 
g. 1 21 
h. NE 
i. NE 
j . NE 
k. NE 
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(Sheet A continued) 

1. NE 
m. NE 
n. 0 42 
o. NE 
p. NE 
q. -2 51 
r. 0 54 

SHEET B North Core 

Volume Fractions: 

Index Pellet Clad Moderator Extra ---
9 1. 0 1.0 o.o 0 . 748 

18 o. 00127 0.0 0.0 0.0 
20 0 . 0000830 0.0 o.o o.o 

100 0.0 0 . 0 1.0 0.252 
777 o.o 0 . 0 o.o 0 . 0 
777 0.0 o.o 0 . 0 o.o 

Temperatures, buckling, and peaking factor:l 

80. 80. 80 . 80. 0.002904 1.0 

Radii and nonlattice factor: 1 

0 . 02 0.04 

1 Pressure: 

14 . 7 

0.48 

l Applies to both cores 

0.2019 
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SHEET B South Core 

Vo lume Fractions: 

Index Pelle t Clad Moderator Extra 

9 1. 0 1. 0 0.0 0 . 748 
18 0.00129 0.0 0.0 0 . 0 
20 0 . 0000851 0.0 0 . 0 0 . 0 

100 0.0 0 . 0 1. 0 0 .252 
777 0 . 0 0 . 0 0 . 0 0.0 
777 0.0 0.0 0 . 0 0 . 0 

SHEET B Gr aphite 

Volume Fractions: 

I ndex Pellet Clad Moderator Extra 

4 1. 0 1. 0 1. 0 0 . 0 
777 o.o 0 .0 0 . 0 0 . 0 
777 0.0 0. 0 0.0 0. 0 

Temperatures, buckling , a nd peaking factor: 

Same as cores 

Radi i and nonlattice factor: 

0.02 0 . 04 0.48 

Pressure: 

Same as cores 

The two gr oup output data are presented in the following tables 

for l oading pattern B. 
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North Core LEOPARD Output_ 

Dl 1. 4064 

D2 0.22302 

Eal 0.19756xl0- 2 

Erl 0 . 34250xl0-l 

Ea2 0 . 53385xl0- l 

vE f 0 . 7802lxl0-l 

South Core LEOPARD Output 

Dl 1. 4064 

02 0 . 22313 

Eal 0.19912xl0- 2 

Erl 0 . 34238xl0-l 

Ea2 0 . 53788xl0- 1 

vE f 0 . 78879xl0- l 

Graphite 

Dl 1.16541 

D2 0 . 99152 

Eal 0 . 0 

Erl 0 . 25256xl0- 2 

Ea2 0 . 20127xl0- 3 

The core dimensions used were: 

Cor e length (gr aphite plus fuel) - 142 . 24 cm 
Cor e width - 111.76 cm 
Wid th of core tanks - 16.11 cm 
Wid th of interna l r eflec t or - 45 . 30 cm 
Wid t h of external reflector s - 32 . 36 cm 


