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INTRODUCTION 

Collateral vessel function has not been precisely defined due to in-

complete evaluation of the hemodynamic changes which take place during 

collateral vessel recruitment and function. Many factors influence col-

lateral hemodynamics during arterial stenosis and thrombosis. In this 

study, an attempt will be made to measure some of these parameters and to 

determine if the vasodilators acetylcholine (ACh) and prostacyclin ( PGI2 ) 

may improve collateral circulation during arterial thrombosis. 

In many tissues, the arterial vasculature is designed to maintain 

nutrient supply during arterial occlusion. During occlusions, a network 

of preformed anastomosing arterial branches called collateral vessels 

supply nutritive blood flow to areas previously fed by occluded parent 

arteries. 

Collateral vessels have been classified as stem, midzone, and reen-

trant vessels, depending on their location relative to an occlusion 

(Longland, 1953). The most proximal elements, stem vessels, supply blood 

to the midzone vessels, which are composed of a multitude of channels 

normally invisible in arteriographs (Winblad et al., 1959 ) . Although 

midzone vessels have a high resistance, they can enlarge to allow blood 

flow into the distal elements, reentrant vessels. 

During an arterial occlusion, reentrant vessels may conduct retro-

grade blood flow into the parent vessel distal to the occlusion, thus 

supplying sufficient blood to the tissues distal to the occlusion to keep 
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them viable. The degree to which the viability of the distal ischemic 

bed is maintained is a functi on of the extent of collateralization, how 

rapidl y an occlusion develops, vascu l ar tone, the location of arterial 

occlusion relative to the distribution and size of the collateral ves-

sels, and the metabolic rate of the ischemic bed tissue. 

Occlusion of an artery is not a simple mechanical event . It causes 

tissue ischemia and endothelial cell damage , which result in the release 

of vasoacti ve substances (Imhoff , 1961) . Two such substances known to be 

released during t hrombot ic occlusion, serotonin (Kordenat and Kezdi , 

1979) and t hromboxane A- 2 (TXA2) (Schaub et al., 1982) , regulate blood 

flow to distal tissues and may cause tissue death following an occlus i ve 

incident (Schaub et al., 1977a, 1977b). 

Previous studies of col lateral blood flow (CBF) have generated 

severa l observations about their functions. It wa s observed that the 

resistance of a stenosis is dynami c and is interdependent upon peripheral 

and collateral bed hemodynamics (Roth et al. , 1976 ; Wallinsky et al ., 

1979). Mechanical occlusion (stenosis ) produced the greatest stimulus 

for CBF (Winblad et al ., 1979), wh i le the presence of an intravascular 

arterial thrombosis inhibits development of CB F (Schaub et al ., 1976, 

1977a, 1977b) . Strenuou s exercise is the onl y documented therapeutic 

method to improve CB F during a mechani cal occl usion (Thul esius , 1963; 

Khudaiberdyerv and Kuli kov, 1970). 

Thi s study wa s designed to monitor and analyze hemodynamic variables 

whi ch interact to influence collateral vessels; to compare stenosis with 

and without the effec t s of thrombosis at the same vascular site; and to 
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determine the effects of ACh and PGI2 on CBF. By utilizing t he hi nd limb 

of the dog as a model, a more comprehensive experimental design has been 

incorporated in this study than in previous experimental models. 
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REVIEW OF LITERATURE 

Vascular disease in which nutritional blood flow to a body region has 

been compromised is a co111T1on problem in medicine today. Arterial throm-

bosis has been fo und to be one of the acute manifestations of a vascular 

disease which reduce or interrupt normal blood flow to a region . 

In order to better understand the mechanisms involved in promoting 

survival of an organ or tissue during thrombotic insult , the study of 

collateral blood flow {QC) is warranted, and further investigation may 

provide valuable knowledge. 

Stenotic Factors Which Affect Normal Blood Flow 

Artificial stenoses have been employed in major nutrient arteries 

(arteries supplying nutritional blood flow to tissues) by many investiga-

tors in order to study impairment of circulatory function (Mann et al., 

1938; Folts et al. , 1974; Kubicka et al., 1979) . During these experi -

ments, the cross - sectional area of a vessel was reduced to study the 

relationship between lumen reduction or length of the stenotic segment 

and the degree of inhibition of blood flow. 

In the carotid artery of the dog, the cross-sectional area (the area 

of a section at right angles to the lumen of the vessel) of the lumen was 

reduced 50% by insertion of an 8 mm long bakelite tube with an appropri-

ate internal diameter without modifying blood flow through the artery. A 

90% lumen reduction depressed blood flow by 50% (Mann et al . , 1938) . 

Other investigators found that significant flow reduction through the 
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vessel by insertion of 2 mm long plastic cylinders of varying internal 

diameters within a coronary artery did not occur until 78% reduction of 

luminal cross-sectional area was achieved (Folts et al ., 1974). Kubicka 

et al. (1979) first noticed flow decreased with 75% reduction of lumen 

cross - sectional area. A 98% cross-sectional area reduction dropped ves -

sel blood flow to 25% of its original value . Kubicka inserted a double 

limb extracorporeal shunt into the right common iliac artery of five 

dogs. One limb of the shunt maintained blood flow to the leg between 

maneuvers. The second limb of the shunt was constructed to allow place-

ment of 1 cm long inserts, from 4 mm to 0.5 111n in internal diameter, in 

order to produce repeatable, progressive arterial stenoses . Flow pro xi-

mal to the shunt was measured by the electromagnetic blood flow (EMF) 

technique following each progressive stenosis. Measurements were made 

with the circulation intact, then repeated following ligation of major 

collateral arteries such as the median sacral, internal iliac , and pro -

funda femoris. Reduction of the number of potential collateral vessels 

did not affect the maximum blood flow observed by progressive arterial 

stenos is. 

Percent decrease in cross-sectional area was an incomplete measure of 

the degree of a stenosis as found by Gould (1978 ) . He stated that 

stenosis geometry modified resistance, pressure differential (6P) , and 

flow reserve capacity of a vascular bed. Flow reserve refers to maximum 

flow rate which is achievable during oxygen deficit following a period of 

complete occlusion. Young and Tsai (1973 ) in their experiments found 

that stenosis geometry, in addition to flow turbulence and separat ion, 
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determined pressure drops across stenoses. Roth et al. (1976) and Young 

(1979) described factors other than stenosis geometry which modify vascu-

lar hemodynamics in critical stenoses. They stated that stenosis resis-

tance (RS) was not fixed but rather dynamic in nature. When the pressure 

gradient was held constant, a change in RS was primarily determined by 

collateral circulation and peripheral resistance (RP). Gould et al. 

(1975) also showed that the resistance of a fixed stenosis could be vari-

able; a decrease in RS increased flow through the stenosis ( R=~P). 
Q 

Stenosis length is another factor influencing blood flow. A four-

fold increase in length of a critical stenosis produced a 25% reduction 

in flow (May et al., 1963). A stenosis is "critical" when a small de-

crease in lumen size is associated with appreciable reduction in blood 

flow. There was no effect of stenosis length upon blood flow during sub-

critical periods. Feldman et al. (1978) found that smaller decreases in 

cross-sectional area were necessary to reach critical stenosis when 

stenosis length was increased. In addition, it was found that stenoses 

in series produced additive effects. These findings were supported by 

results of Gould and Lipscomb (1974) and Young (1979) . 

It appears that RS is not static and could increase when the distal 

vascular bed dilated due to release of vasoactive substances (Wallinsky 

et al., 1979). In a stenosis less than 100%, RS through the section up-

stream from a peripheral bed wa s a function of the sum of the resistances 

of the two elements when collateral flow (QC) was absent (please refer to 

Figure 2), QP = PA-PV. Kreuzer and Schenk (1973), along with Schwartz et RS+RP 
al. (1980), found that at constant driving pressure distal vasodilation 
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reduced RP, thus increasing QS and elevating RS . In a later study, 

Schwartz et al. (1980) observed that a lowering of coronary pressure 

proximal to the stenotic segment increased RS due to passive narrowing of 

the vessel from elastic recoil. Investigations by Santamore et al. 

(1980) and Wallinsky et al. (1979) agreed with Schwartz's findings that 

proximal vasoconstriction greatly increased stenosis severity . Such a 

passive narrowing could occur physiologically in or due to a tissue isch-

emia, thus depressing arterial pressure there and perhaps promoting 

vasodilation distal to the stenosis. 

While 6P and Qare the primary determinants of RS, both RC and RP 

also can be effective modulators of RS . All of the hemodynamic 

parameters are variable and are interdependent (RS on QS and 6P; RS on RC 

and RP). Over the course of a long-term experiment, all variables are 

dependent upon anesthesia, surgery, physiological deterioration, and sys-

temic buildup of extrinsic vasoactive agents. 

Cardiovascular Occlusive Disease and Thrombosis 

Prolonged or repeated occlus ion of the arterial inflow to a tissue 

bed may endanger tissue function and viability. Impaired function is 

seen most frequently in tissues experiencing mechanical limitations of 

blood flow. These limitations can be due to compression, to thromboem-

bolism, or to arterial occlusive disease. Dysfunction occurs when tissue 

oxygen demand exceeds oxygen supply as in peripheral arterial occlusive 
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disease, which annually debilitates many patients and re su lts in pro-

longed and extensive morbidity and may result in loss of life. 

Vasodilator drugs have been used in pharmacotherapy of peripheral 

arterial occlusive disease. Their efficacy in restor i ng circulation to 

ischemic tissue beds has been limited . Adrenergic blocking agents have 

been successfully used in the treatment of occlusive peripheral vascular 

disease; however, they possess several untoward effects which limit their 

usefu lness. 

Beneficial peripheral effects of alpha receptor blocking agents, 

e.g ., phenoxybenzamine and methysergide maleate, may be overshadowed by 

systemic effects leading to refle x tachycardi a and electrocardiogram 

modification. They promote systemic hypotension and may produce periph-

eral vascular insufficiency (Bergersen and Goth, 1976); therefore, the 

use of these agents is questionable. 

The ergot alkaloids, mild alpha blockers, have been contra indicated 

in treatment of per ipheral occlusive vascular disease due to powerful 

vasodilatory actions unrelated to their antiadrenergic properties (Gilman 

et al . , 1980) . The flow distribution to the already malperfused, isch-

emic region(s) could be compromised by active dilation of the blood ves-

sels elsewhere . 

Pharmacologic agents suitable for modulating the distribution of 

blood flow between prestenotic/thrombotic areas and the collateral-

dependent areas ideally should not produce untoward effects on the sys-

temic circulation, blood pressure regulation, and cardiac function. 
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Experimental Arterial Thrombosis 

Experimental thrombosis models have been studied in order to more 

fully comprehend the nature of va soacti ve substances released during car-

diovascular occlusive diseases . Kingsley et al. (1967) stated that inju-

ry produced from roughening the intima of the arterial wall is a factor 

in the promotion of thrombus formation. Sheppard and French (1971) in-

serted and rotated a roughened metal probe within the aorta of several 

rabbits. Within 45 minutes after removal of the probe, platelet aggrega-

tion was observed at the injury site. 

Many investigators employed electrical stimulation to disrupt the 

intimal lining of arterial vessels and encourage thrombosis (Duval et 

al., 1970; Piton et al., 1978; R.omson et al., 1980; Sedlark et al., 

1980). 

Gianturco et al. (1975) induced a gradually forming arterial throm-

botic occlusion in man. Their technique was recoJTmended in a clinical 

trial but was not performed experimentally. They employed a stainless 

steel coil and Dacron tuft which induced a thrombus plug to form. 

Szarnicki et al. (1981) employed this same device for transcatheter 

embolization of major systemic pulmonary arterial collateral vessels in a 

human patient for correction of pulmonary atresia. In the Szarnicki 

study, a stainless steel wire coil with a Dacron tuft attached to its 

inside diameter was integrated into a "loading cartridge" arrangement. 
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The loading cartridge was advanced through an angiographic catheter pre-

cisely placed fluoroscopically and released from the catheter at a pre-

viously determined site. After the coil wa s extruded from the catheter 

tip, it assumed a helical shape with the Dacron tuft enmeshed in the wire 

coil. Proper sizing of the coil wa s determined by the diameter of the 

vessel to be embolized. The risk of distal embolization was minimized 

with the correct coil size. Rapid thrombus formation occurred and a plug 

formed at the precise placement site . Angi ograms were taken to document 

complete vessel occlusion. 

Kordenat et al. (1972 ) and Kordenat and Kezdi (1979 ) produced gradua l 

coronary arterial thrombosis in a canine model by insertion of a hel i cal 

copper coil within the lumen of a coronary ves sel. This technique, with 

several modifications, wa s our method of choice {please refer to the sur-

gical procedure section). 

The thrombotic occlusion model used by Ko rdenat to produce a slowl y-

forming thrombus consisted of precisel y placing a helically-shaped coil 

of copper wire (thrombogenic) into a selected co ronary arterial bra nch . 

The animals were anesthetized lightly with sodium pentobarbital , and a 

concentric, double lumen catheter wa s utilized to insert the coil into 

the artery. In this technique, the tip of the inner catheter, upon which 

the wire coil had been emplaced, wa s inserted into the left anterior de-

scending coronary artery (LAD ) . The wire coi l wa s directed into the LAD 

under fluoroscopic (image intensifier) visualization. By pull ing the 

inner catheter back wh i le holding the outer cathete r stationary, the end 

of the outer catheter pushed agai nst the wire coil and it was released 
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into the LAD. The copper wire coil, of sufficient size to become fixed 

in the LAO, was approximately 1.5 to 2.0 ITIT1 in overall diameter and 5 to 

7 1T1T1 long. The occluding thrombus began to form immediately and was com-

plete 15 to 20 minutes after the wire coil was inserted . Coronary blood 

flow via the LAD became successively depressed. Complete occlusion was 

confirmed electrocardiographically (S-T segment configuration changes) 

and angiographically. The gradually occluding intracoronary thrombus 

produced experimental infarction. This thrombosis model simulated coro-

nary thrombosis without pre-existing arteriosclerosis in man (Kordenat 

and Kezdi, 1979). 

Van Aken et al. (1980) and Barnes (1981) proposed that collagen may 

induce intravascular platelet aggregation and thrombosis. Van Aken in-

verted a fl~p of the aortic wall into the lumen of rats to expose blood 

to collagen and thus produce thrombosis. In a similar fashion, Constan-

tine et al . (1972) inverted a segment of a side branch of the carotid 

artery in dogs to produce thrombosis. 

Collateral Blood Flow 

The first report of the existence of CF was in 150 by Antyllus, a 

Greek surgeon who observed that vessel ligation did not always result in 

damage to the perfused area (John and Warren, 1961). Lower in 1669 and 

Haller in 1757 documented the presence of anastamosing blood vessels in 

the heart (John and Warren, 1961). Continued growth of a stag's antler 

after main nutrient artery ligation in a study by Hunter, cited in John 
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and Warren (1961), focused interest upon and promoted further research 

into collateral vessel development. 

The mechanisms for recruitment of QC and the impetus for recruitment 

of collateral vessels still are not clearly defined. Previous studies 

have shown controversial results. 

Dornhorst and Sharpey-Schafer (1951) measured a significant decrease 

in collateral bed vascular resistance associated with arterial occlusion 

by clamping the femoral artery in the dog. The decrease was thought to 

be the result of depressed sympathetic vascular tone and increased pres-

sure gradients resulting from the occlusion, which may have initiated the 

release of vasodilator substances. Their findings were supported by Im-

hoff (1961). He stated that the simpl e occlusion of the distal feline 

aorta (without thrombus formation) resulted in the release of vasoactive 

agents from the blood vessel and tissues distal to the occlusion, the 

release of these substances being associated with the initiation of CF. 

Berne (1970) concluded that adenosine and other vasoactive substances may 

have been responsible for peripheral vasodilation distal to the occlu -

sion. A three-fold increase in blood adenosine levels was detected from 

tissues distal to an occlusion site (Olsson, 1970). Proposals that 

adenosine in ischemic tissue regions promotes collateral vessel vasodila-

tion were supported in a later study by Berne (1980). 

Coffman (1966) found genesis of QC was dependent upon predominant 

vasomotor tone and the existing state of vascular reactivity. Studies by 

Theis (1933) and Donald and Ferguson (1970) supported Coffman's conclu -

sions with the discovery that sympathectomy enhanced collateral blood 
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flow, but experiments conducted by Rutherford and Valenta (1971) and All-

wood (1962) found that sympathectomy did not improve QC. 

Some have stated that following occlusion, increased pressure dif-

ferentials and flow velocities were the predominant stimuli for col-

lateralization (Longland, 1953; Winblad et al., 1959; John and Warren, 

1961; Leibow, 1963; Giron et al ., 1971; Barnes, 1980). 

One of the most notable observations with respect to recruitment of 

CF was that strenuous exercise markedly improved post-occlusion CF 

(Khudaiberdyerv and Kulikov, 1970; Rutherford and Valenta, 1971; 

Thulesius, 1963; Abramson, 1980; Fedor et al., 1980). After exercise 

training, patients with occlusive disease exhibited improved circulation 

to affected extremities over that of the pre-exercise period . 

Earlier, the benefits of exercise upon QC in the human subject had 

been subject to doubt. Allwood (1962) found that during exercise of the 

calf muscles in the subjects with occlusive vascular disease, CF to the 

foot and calf was diminished. Closure of small blood vessels due to re-

distribution of blood flow during exercise wa s suggested as the reason. 

When blood is directed away from a region of the body, driving pressure 

in the peripheral blood vessels may decrease. This decreased in-

traluminal pressure changes the tension exerted on the arterial wall by 

the smooth muscle in the wall and may allow the radius of small vessels 

to decrease. As hypotension progresses, a vessel's caliber could de-

crease progressively until it reaches critical closi ng pressure, at which 
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time the lumen completely closes. It is more probable that decreased 

vascular resistance elsewhere is the reason that the dependent vascular 

bed is deprived of blood flow. 

Thrombus Inhibition of Collateral Blood Flow 

Imhoff (1961) and Schaub et al. (1976, 1977a, 1977b ) noticed only 

transient inhibition of pre- existing collateral vessels during simple 

ligation of the feline distal aorta. Ligation of the terminal aorta in 

Imhoff's study produced transient hind limb reflex abnormalities, but 

aortic occlusion by an experimentally induced blood clot resulted in hind 

limb paralysis, rear extremity hypothermia, and lack of a femoral pulse. 

Schaub similarly studied the responses of feline hind limb collateral 

circulation in two models of aortic occlusion : simple ligation and 

thrombus formation. For the simple ligation model, the caudal aorta was 

permanently ligated approximately 5 mm distal to the origin of the caudal 

mesenteric artery. The sixth lumbar arteries and the left deep circum-

flex iliac artery were ligated. Ligatures were secured around the right 

deep circumflex iliac artery and the aorta at the level of the trifurca-

tion at the external iliac arteries. After evacuation of the blood from 

the aorta, the ligatures were tightened. The blood was evacuated by 

flushing the aorta with 37oc saline solution or by digital evacuation 

prior to tightening the ligatures. 

Hemodynamic responses following simple ligation then were compared 

with those following thrombotic occlusion of the caudal feline aorta 
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(Schaub et al., 1976, 1977a, 1977b). In the thrombus occlusion model, 

experimental occlusion of the aorta by thrombosis was produced by tem-

porarily ligating the aorta approximately 5 IM1 distal to the origin of 

the cauda l mesenteric artery . The right and left deep circumflex iliac 

arteries were acutely ligated as were the sixth lumbar arteries . The 

aorta was ligated at the trifurcation after positioning a 16 gauge needl e 

within it . The temporary ligation was removed allowing blood to enter 

the region, then the aorta was occluded again. Ten to 20 units of 100 

µ/ml of thromboplastin were injected into the trapped blood , causing a 

clot in a 1. 5 cm segment of aorta. The needle then was removed . 

Postsurgically, all ligation cats treated in Schaub's studies ini-

tially showed depression of reflexes, demonstrated by ataxic gait and 

hind limb muscular weakness. After three days, however, all reflexes 

improved and only slight gait impairment was noticed . Aortog rams indi-

cated substantial blood flow adjacent to the area of aortic ligation, and 

the fifth and seventh lumbar vessels appeared dilated compared to the 

anterior lumbar vessels . 

Cats subjec ted to aortic thrombosis had severely depressed or absent 

reflexes after recovery from anesthesia. Three days after occlusion, 

these subjects exhibited no improvement in neurological reflexes , and 

aortograms showed a lack of collateral vessel development. 

Thus, occlusion by blood clot appeared to have impaired caudal blood 

flow to greater degree than did simple ligation and resulted in hind limb 

paralysis . Schaub et al. (1977a, 1977b) proposed that while the thrombus 

did not provide any greater mechanical impairment to blood flow than did 
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the simple ligation model, the release of vasoconstrictor substances by 

the thrombus was the cause of the more extensive impairment of collateral 

flow. 

The release of a vasoconstrictor substance from aggregated platelets 

was suggested in an earlier study by Zucker (1947), who observed that 

vasoconstriction occurred not only in injured, platelet -containing blood 

vessels, but also in adjacent vessels. This adjacent vasoconstriction 

did not appear to be due to trauma or reflex, thus implicating vasoactive 

agents released by the platelets. 

Schaub et al. (1977a, 1977b) suggested that serotonin was the vasoac-

tive agent released by aggregating platelets or vessel endothelium which 

inhibited collateral blood flow by inducing vasoconstriction. Serotonin 

may reduce QC by its direct vasoconstrictive action on vascular smooth 

muscle. He reported that treatment with reserpine or para-

chlorophenylalanine (p-CPA), both serotonin antagonists, improved col-

lateral circulation to the feline hind limbs following clot formation in 

the descending aorta. Later Schaub et al. (1982) added that it was more 

probable that recirculation of platelet-derived thromboxane-A2 (TXA2) 

provided the impetus to depress QC. (Please refer to the section enti-

tled "Prostaglandins and the Prostacyclin-TXA2 Interactions".) Perhaps 

other agents besides serotonin and TXA2 may mediate post thrombotic in-

hibition of CF . 

The exact mechanisms of action for the vasoactive agents affecting CF 

have not been defined; vasoconstriction, platelet aggregation, or en-

dothelial cell damage have been postulated (Schaub et al., 1977a, 1977b). 
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To date, the most definitive method for evaluating improvement of CF by 

therapeutic agents appears to be an arterial thrombosis model (Schaub et 

al • , 1977 a, 1977 b). 

Prostaglandins and the Prostacyclin-TXA2 Interactions 

In this section, the role of prostaglandins and other autocoids in 

regulating local blood flow will be discussed. The prostaglandins, by 

their various actions, have been established as physiological mediators 

of blood flow regulation. A number of unstable but highly active inter-

mediates have been isolated and characterized (please refer to Figure 1 

for a diagram of the sequence of events leading to the release of vasoac-

tive endoperoxides which regulate local blood flow). 

PGAl, PGEl, and PGBl were found to have vasodilatory effects in man 

and experimental animals (Goodman and Gilman, 1975). Dusting et al. 

(1978} investigated the vascular actions of arachidonic acid and its 

metabolites in perfused femoral beds in the dog, PGI2, PGE2, PGH2, and 

arachidonic acid induced vasodilation. PGI2 had an acute vasodi l atory 

effect over five minutes in duration with a prolonged recovery period. 

The femoral bed was more sensitive to PGE2, and this dilator was 2-15x 

more potent than PGI2. PGH2 wa s of equal potency to PGI2, but its dura-

tion of action was shorter. 

TXA2 is formed in the platelets and causes vasoconstriction (Bunting 

et al., 1976; Needleman et al., 1976} and platelet aggregation (Harker 
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and Slighter, 1972; Moncada and Vane, 1977 ) . Dusti ng et al. (1978) ob-

served vasoconstrictor effects from PGF2- «, TXA2, and the endoperoxide 

analog UH6619. PGF2-« was a weak vasoconstrictor. TXA2 was more effec-

tive in the mesenteric than in the femoral vascular bed, although its 

action lasted less than two minutes . Studies by Harrmarstrom and Falar -

deau (1977) and Hamberg et al . (1975) suggest that TXA2 stimulates the 

release of serotonin, a powerful vasoconstrictor of vascular smooth mus -

cle, from blood platelets. 

PGI2 is formed in arterial and venous walls and acts to promote 

vasodilation wh i le inhibiting platelet aggregation (Gryglews ki et al., 

1976; Bunting et al., 1976; Tateson, 1977; Moncada and Vane, 1978). Mon-

cada and Vane hypothesized that endoperoxides released by the platelets 

were converted to PGI2 in the microsomal fraction of the intimal cells. 

The PGI2-TXA2 Interaction 

Two of the most prominent hormones i n modulating vessel caliber and 

blood clotting are PGI2 and TXA2. These prostaglandins are synthesized 

endogenously in the arterial and venous intima and within blood platelets 

(Goodman and Gilman, 1975). Though TXA2 and PGI2 both are formed from 

arachidonic acid via the endoperoxidase system, they have opposite ac-

tions (Harrmarstrom and Falardeau, 1977; Gorman, 1979). Their reciprocal 

actions provide a mechanism for regulation of local blood flow within the 

body . 
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Numerous experiments suggest that control of thrombogenesis is due to 

a balance between blood levels of PGI2 and TXA2 (Gryglewski et al., 1976; 

Moncada and Vane, 1978; Pace-Asciak, 1977; Dusting et al., 1978). Inves-

tigations by Miller et al. (1977) showed that TXA2 acted on platelets by 

depressing cAMP levels. Tateson et al. (1977) and Moncada and Vane 

(1978) observed that PGI2 promoted increased cAMP levels in platelets. 

Gorman (1979) further delineated the mechanism behind the PGI2-TXA2 

interaction. He stated that TXA2 inhibits adenylate cyclase which de-

presses cAMP levels and promotes calcium release from platelets, causing 

their aggregation. Conversely, PGI2 activates the adenylate cyclase sys-

tem, stimulating high levels of cAMP and sequestering calcium within the 

platelets, thus preventing aggregation. It appears that TXA2 and PGI2 

have opposing effects on platelet cAMP levels, giving a controlled 

balance system in the regulation of vascular haemostasis (Moncada, 1980). 

Selective inhibitors of TXA2 or PGI2 have been used to elucidate the 

degree and direction of control exhibited by these two hormones on plate-

let behavior and vasomotor tone. Inhibition of PGI2 resulted in in-

creased platelet aggregation, due to predominant TXA2 effects. Inhibi-

tion of cyclooxygenase by indomethacin or meclofinamate promoted the 

vasoconstrictive effects induced by TXA2 (Dusting et al., 1978). These 

agents may prevent endogenous prostacyclin synthesis in the vasculature, 

thus enhancing TXA2-mediated vasoconstriction by reducing the counteract-

ing vasodilation by endogenous PGI2. 

During thrombosis, release of TXA2 by platelets has been shown to 

occur, resulting in vasoconstriction and platelet aggregation (Moncada 
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and Vane, 1978). Intra-arterial injection of prostacylin may counteract 

the constrictor effects of TXA2, may inhibit platelet aggregation, and 

may promote collateral perfusion to a thrombotically occluded vascular 

bed (Moncada and Vane, 1977). Antagonism of TXA2 formation led to a pro -

longed bleeding time and promoted vasodilation due to the prevailing ac -

tions of PGI2 (Nijkamp et al., 1977; Moncada, 1980). 

PGI2, a circulating hormone that is not degraded significantly in the 

lungs as are many other prostaglandins, has a half-life of 30-40 minutes 

(Dusting et al., 1978). In this study, we attempted to use PGI2 to pro-

mote collateral blood flow during thrombosis. 

Acetylcholine (ACh) 

ACh was chosen as the second vasodilatory agonist in this project 

because it is a well-known, powerful vasodilator and has a very brief 

duration of action (5-7 minutes), an advantage when several agents are to 

be infused consecutively. 

In the canine femoral artery, the response to ACh was reached within 

20 to 50 seconds after the beginning, and lasted for 5 to 7 minutes after 

the cessation, of a continuous infusion (Mons et al., 1970). The dila-

tion response was independent of retrograde propagation of nervous or 

myogenic impulses along the vascular wall, which implied local control 

was exerted. ACh causes vasodilation by stimulating muscarinic receptors 

on those vascular beds having postglanglionic parasympathetic effector 

ce 11 s. 
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MATERIALS AND MET HODS 

Experimental Design 

A collateral system of vessels supplies blood to the ischemic lower 

hind leg peripheral bed during partial or complete occlusion of the FA. 

Figure 2 depicts circulation of the canine lower hind limb. Arterial 

thrombosis has been shown to inhibit collateral blood flow development 

more than simple ligation (Schaub et al., 1976). It has been proposed 

that a thrombosis may modulate the level of ischemia in a distal tissue 

by releasing either adenosine (Berne, 1970), prostacyclin (Moncada, 

1980), serotonin (Schaub et al., 1977a, 1977b), or TXA2 (Schaub et al., 

1982). 

In this study, acute stenosis and thrombosis of the FA were compared 

in their abilities to affect collateral blood flow. An attempt was made 

to improve collateral blood flow during thrombosis by infusion of the 

va sodil ators ACh and PGI 2. ACh, a well-known vasodilator, was chosen due 

to its short duration of action. PGI2 was utilized for its ability to 

promote col lateral blood flow by inhibiting the vasoconstrictor effects 

of TXA2 and preventing platelet aggregation in a vascular bed downstream 

of a thrombosed artery (Moncada and Vane, 1978). The mechanisms of ac-

tion of ACh and PGI2 are different; each was discussed in the Review of 

Literature. 

While four animals provided the data reported in this study, an addi-

tional six were utilized in pilot trials to develop surgical procedures 
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and to calibrate the measurement systems, and three for perfecting the 

sequence of administration of RM. 

Each animal was subjected to five treatment periods. The treatments , 

in order of initiation, were 100% stenosis (100-S) , 0% stenosis (O-S) or 

control, thrombosis (Th ) , thrombosis with ACh infus ion (Th+ACh) , and 

thrombosis with PGI2 infusion (Th+PGI2) . 

The order i n whi ch the experimental flow states were induced could 

not be randomized fo r several reasons. The 100-S regimen preceded the 

0-S (control) period because it in itself established a flowmeter zero 

reading for QS during the control period. During 100-S, flow was con-

side red to be free · from the effects of vasoactive agents. Both 100- S and 

0-S states had to be implemented before inducing the third experimental 

state, Th, since this state was irreversible once the thrombus wa s 

formed. After thrombosis was verified both visually and by reduction of 

QS to essentially zero and after the Th circulatory parameters were mea -

sured, collected, and stored , ACh infusion wa s started. When the 

respo nse to ACh infusion stabilized , the Th+ACh period was identified and 

data were recorded. 

Since the duration of action of ACh is short and transitory , appro xi-

mately 5-7 minutes after the cessation of a continuous infusion (Mons et 

al. , 1970) , the evaluation of the second agent, PGI2, was possible if a 

reco very period of approximately 10 min- utes was i nstituted . It was 

infused as the final step in the experimental cyc le (Th+PGl2) because of 

its relatively long duration of action, appro ximately 30 to 40 minutes 

(Dusting et al., 1978 ) . 
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Pressures and flows were measured during each experimental period. A 

list of formulae used to calculate the experimenta l parameters is pro-

vided in the Appendix. Radioactive microspheres (RM}, 15µ in diameter, 

were injected during each circulatory state in order to determine periph-

eral and collateral blood flow to the lower hind limbs , arteriovenous 

shunti ng, and total kidney blood flow. Tissue samples were collected for 

subsequent analysis for determination of peripheral blood flow by the 

radioactive microsphere technique (RMT) at the conclusi on of each 

experiment. 

Protocol for Implementing the Experimental Design 

To induce the 100-S state, a vascul ar (bulldog} clamp was placed on 

the left FA approximately 4-6 cm above the origi n of the saphenous artery 

(SA) and app roximately 2 cm downstream from the EMF probe , between the 

sites for measurement of P1 and P2 (Plates 1 and 2) . Blood flow and 

pressures were allowed to equilibrate, and EMF blood flow and arterial 

and venous pressures were recorded . Immediately after sampling, 46sc-

labelled RM (15 µ) were injected into the left ventricle (LV) . After 

reference blood samples were withdrawn from the aortic and external 

thoracic arterial ca nnulae (according to Heymann et al., 1977), the vas-

cula r clamp was removed and the hind leg ci rculation was allowed to 

equilibrate. 

For the 0-S determination (control level), 118sn-labelled RM (15µ) 

were injected into the LV immediately after EMF flow and blood pressures 



Plate 1. The surgical incision for isolation of the left 
femoral artery and saphenous artery 
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a) Femoral Artery 
b) Saphenous Artery 
c) Femoral Vein 



Plate 2. The EMF probe and the vascular occluder in place on 
the femoral artery with the copper coil device 
emplaced within the femoral artery 
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a) EMF Probe 
b) Femoral Artery 
c) Thrombogenic Copper Coil Device 
d) Pl 

e) P3 
f) P2 
g) Pneumatic Vascular Occluder 
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were measured. After recording 0-S flow parameters, the FA was double 

clamped and a transverse incision was made in the left FA at the pre-

viously described stenosis site . To induce thrombosis, a polyvinyl tube 

15 mm in length and 4 to 5 mm in diameter, heat-shrunk over a thrombus-

inciting copper coil, then was inserted into the vessel lumen. The 

thrombogenic device was constructed by tightly coiling a thin copper 

wire, .005 mm in diameter, around a mandrel 2.0 to 3.0 mm in diameter. 

After this was done, a length of heat shrink polyvinyl tubing was secured 

around the copper coil. This thrombogenic device was trimmed to 15 mm in 

length and then removed from the mandrel. Thus, the copper wire coil was 

firmly attached i nside the leak-proof polyvinyl tube, and, once implanted 

in the FA, it would be exposed to flowing blood (Figure 3) . The copper 

wire initiated blood clotting and thrombus formation within the lumen of 

the thrombogenic device (Kordenat et al., 1972; Kordenat and Kezdi, 

1979). Ligatures were installed around the vessel and tube above and 

below the incision site in order to prevent hemorrhage, and then the oc-

clusions were released, thus allowing blood to flow through the coil. 

Within 30 to 60 minutes after insertion of the copper coil, a complete 

thrombotic occlusion of the FA (verified visually and by EMF measure-

ments) had resulted (the Th state). After the thrombus had formed, pres -

sures and zero flow were recorded and 85sr-labelled RM (15µ) were 

injected. 

Immediately after these measurements were completed , ACh was infused 

(Sigma Chemical Co ., St. Louis, Mo.; 0.123 ml/min, 500 mg/ml) in the 

aorta. After the response to the ACh had equilibrated, circulatory 
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Copper coi 1 

Polyvinyl tube 

Figure 3. Exploded view of the copper coil device implanted 
within the left femoral artery to induce thrombosis 
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parameters were recorded (Th+Ach), then 95Nb-labelled RM (15µ) were in-

jected . After all measurements were completed, the ACh infusion was dis-

continued and circulatory parameters were allowed to equilibrate . 

Finally, the sodium prostacyclin infusion (Burroughs Wellcome Co., 

Research Triangle Park, NC) was started and maintained at a rate of 0.494 

ml/min (4,000 µg/ml) until hemodynamic parameters stabilized, then 141ce 

microspheres (15µ) were injected. These were recorded once this state 

(Th+PGI2) was established. 

In order to standardize experimental procedure , the same isotope was 

used for each stage of the experiment in all subjects, hopefully imposing 

equal hemodynamic effect. 

Pressure and Flow Relationships 

Blood pressures were measured at the following locations: 

PA: Mean arterial blood pressure in the distal abdominal aorta , above the 

origin of the conmon iliac arteries and the several smaller arteries 

which supply driving pressure to the hind limb collateral vascular 

bed . 

P1: Mean arterial blood pressure in the FA proximal to the stenosis 

(driving pressure for flow through the stenosis). 

P2: Mean arterial blood pressure in the FA distal to the stenosis. 

P3: Mean arterial blood pressure measured through a catheter direct-

ed downstream in the saphenous artery. This variable estimates 
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the driving pressure for the peripheral bed during Th, Th+ACh, 

and Th+PGI2 treatment periods. 

PV: Mean venous blood pressure in the femoral vein (venous blood 

pressure). 

Equations and Diagrams 

The following equations were used to calculate vascular resistance at 

the femoral artery stenosis site (Rs) and in the collate ral (Re) and pe-

ripheral (Rp) vascular beds. 

Rp = P2-PV 
Qp 

Re = Pa-P3 
QC 

Dimensions of these variables are: 
p (Pressure) = mm Hg 

Q (Fl ow) =ml ·min-1 

R (Resistance) = mm Hg·min·m1-l 

A schematic representation of the experimental model with sites of 

pressure and flow measurement is shown in Figure 4. 
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Measurements 

Blood flow measurement 

Peripheral blood flow (QP) is a measure of the volume of blood 

returning from the hind leg distal to the proximal caudal femoral vein . 

The RMT was used to measure QP; this technique will be explained later in 

this section. 

Collateral blood flow (QC) was ca lculated to be the difference 

between QP and QS, QC = QP - QS. When the FA was occluded by mechanical 

means or by complete thrombus formation, then QC = QP. 

EMF blood flow measurement 

Blood flow through the FA (QS) was measured by a 3 mm noncannulating 

EMF transducer (Model 4, In Vivo Metric Systems , Healdsburg, CA) with an 

electromagnetic flow measuring system (Biotronix Model BL 610, Chicago , 

IL). Please refer to Plate 2 for a photograph of the EMF probe in place . 

Before beginning each experiment, the "cal" mode output of the EMF 

module, a reference voltage of 0.8 volt approximately equivalent to 150 

ml/min., was utilized to adjust recorder sensitivity so that subsequently 

recorded blood flow experimental data fell within the recording range of 

the polygraph. 

The actual calibration of the EMF system was accomplished just prior 

to the termination of the experiment. The EMF transducer was calibrated 

in situ on the FA over a range of flow rates from 10 to 250 ml/min. The 

setup consisted of inserting a cannula into the FA distal to the EMF 
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probe. Blood was pumped by the dog's heart into a graduated cylinder by 

timed collection. Flow rate was controlled by a screw clamp on the 

tubing . The regression equation to relate flow and the polygraph and 

computer voltage outputs was developed from 4 to 5 flow rate measurements 

for each EMF transducer across the flow range to perform the 

calibrations. 

Blood pressure measurement 

Arterial blood pressures in the hind limbs were detected by Statham 

pressure transducers (Model P230c, Statham Co., Hato Rey, Puerto Rico) . 

Venous pressure was monitored with a Statham Model PR-23- 10-300 pressure 

transducer . Each pressure transducer strain gauge diaphragm was mounted 

at the hydrostatic lev~l of the hind legs. Pressure calibration values 

from O to 200 cm of water pressure were obtained from a water manometer. 

Arterial pressure channel sensitivities were adjusted so that 200 cm 

of water pressure (147 nvn Hg) produced +1.3 volt output . Venous channels 

had a +1.3 volt output for 50 cm of water pressure {37 rrm Hg). The cal -

ibration procedure included a computer program which converted cm of 

water pressure into mm Hg pressure. Calibration factors were obtained 

from a sequential set of pressures applied to all four arterial pressure 

transducers. The arterial pressure transducers exhibited linear respon se 

to pressures greater than 50 rrm Hg. Very few arterial pressure values in 

the data were less than 50 rrm Hg. 

A separate pressure calibration factor for the low range (less than 

50 nm Hg) was determined for the venous transducer. Each pressure 
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transducer was ca librated by sampling four to five readings across the 

pressure range, and in the range of voltages received by the computer, 

the digitized values were converted to pressures (mm Hg) using the equa -

tion for a straight line (y = mx + b). 

To prevent blood clotting in the pressure, infus ion, or withdrawal 

cannulae , a 0.9% saline perfusion system was utilized . It consisted of a 

Model 1201, Harvard Apparatus Co. peristaltic pump (Harvard Apparat us 

Co., Millis, MA). The pump forced saline through a manifold system into 

all indwelling catheters when they were not being used for pressure mea -

surements or infusions. The system was connected through a four-way 

stopcock to each catheter junction. 

Data Processing 

Pressure and flow information was recorded on a multi -channel poly-

graph (Grass Model 7, Grass Instrument Co., Quincy , MA). Each pressure 

and flow channel of the polygraph was electrically zeroed and balanced at 

the onset of each experiment in order to accurately set baselines for 

pressure and flow measurements. Flow and pressure informat ion available 

at the output of the polygraph amplifiers wa s digitized through a custom-

built analog-to-digital converter and transmitted into a PET 2032 profes -

sional microcomputer (Commodore Business Machines (CBM) Inc., Santa Cla-

ra, CA). Digitized data were stored on 5 1/4" floppy discs by utilizing 

a CBM Model 8050, Dual Disc Drive. A 5-second period of pressure and 
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flow information was sampled at 20 samples per second during each ex-

perimental treatment. 

At the completion of the in vivo portion of each trial, the subject 

was euthanized with sodium pentobarbital (Sleep-Away, 1 ml/5 lb body 

weight, I.V., Fort Dodge Laboratories, Fort Dodge, IA), and the RM con-

taining tissues of the lower hind limbs (muscle, bone, skin and paw) , and 

the lungs and kidneys were isolated and saved for tissue perfusion 

determinations. 

The Radioactive Microsphere Technique (RMT) 

In the RMT, a known number RM of 15µ were injected into the LV of the 

heart for each step in the experiment. Uniform mixing of the RM with 

blood took place in the LV, and the mixture then was transported via the 

systemic arteries to all parts of the body, including the hind limb tis -

sues of interest and the lungs and the kidneys. 

Total lower limb peripheral blood flow (QP) was calculated from the 

sum of the individual tissue perfusion rates for muscle, bone, skin and 

paw. The RMT enabled one to detect not only any change in the rate of 

blood flow to each tissue type, but also in QP and QC to the lower hind 

limb, at each stage during the experiment. 

Arterio-venous (A-V) shunting of the RM was calculated by determining 

RM entrapment in the lungs according to the model cited in Wagner et al ., 

1969). The fraction of shunted blood can be obtained from the following 

formula: 



S = ~. where 
Q 
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S = fraction of blood flow passing through shunts 

Q1 = the quantity (counts per minute) of RM in the lungs 

Q = the counts per minute of the total injected dose 

Q1 represents microspheres which passed through or around systemic capil-

lary beds and which reached the lungs by way of the venous system. 

Kidney blood flow rates were calculated in order to verify that our 

measurements compared favorably with the normal values published by 

Nathanson and Jackson (1975) and Buckberg et al . (1971). 

In each ampule, radionuclide-labelled 15µ microspheres were suspended 

in 10% Dextran to which a few drops of 5% Tween 80 (po lyoxyethylene 80 

sorbitan monooleate) were added by the manufacturer to prevent micro-

sphere aggregation (Heymann et al., 1977) . Five nuclides utilized in 

this study were: scandium (46sc), tin (113s n), strontium (85sr) , niobium 

(95Nb) , and cerium (14l ce) . New England Nuclear Company (Boston, MA) 

supplied the 113sn co ntaining microspheres, and 3M Company (St . Paul, MN ) 

supplied the other four. 

Prior to experimentation, microspheres were systematica ll y examined 

for aberra nt or aggregated RM . Aliquots were examined under a microscope 

at lOOx. A drop of RM was precisely diluted with water; the mixture was 

placed on a slide. An optical measuring grid was used to determine 

average microsphere size. All samples were found to be within the ac-

ceptable range (15µ ~ 5µ) specified by the manufacturers. 
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In order to calculate the correct volume of RM suspension to be in-

jected for each nuclide, the amplitudes of the energy spectrum of each 

isotope were determined on a Model 1282 Compuga11111a Multichannel Pulse 

Height Analyser (LKB Wallac, Gaithersburg, MD). After the spectra were 

determined, the specific spectral regions for counting each isotope were 

established . The number of counts per minute per microsphere were deter-

mined by transferring 10-50 RM onto microscope slide coverslips by streak 

application. The number of RM on each coverslip was counted under a 

microscope . Each coverslip then was fragmented and placed within a 12 x 

75 llTI1 polyethylene culture tube (Number 14-956-10, Fischer Scientific 

Co., Pittsburgh, PA), positioned in the counter and measured for 

radioactivity. 

I11111ediately before injecting RM into the subject, the 5 ml vial con-

taining the RM was mixed vigorously for 10 minutes in a mixer (Model 

1290, Lab Line Instruments Co., Melrose Park, IL) to ensure uniform sus -

pension of the RM (Heymann et al., 1977). 

Reference blood samples (RBS) were employed to check for uniformity 

of RM distribution throughout the circulatory system . RBS collected from 

two widely separated withdrawal sites from the animal should contain 

nearly equal numbers (~5%) of microspheres if adequate mixing and dis-

persal of the RM had occurred. The RBS were withdrawn from two sites, 

the external thoracic artery and the right FA starting 30 seconds prior 

to the onset of RM infusion and ending two minutes post infusion. Blood 

was simultaneously withdrawn at 2.50 ml/min into separate 10 ml glass 

syringes by a dual infusion/withdrawal pump (Model 946, Harvard Apparatus 
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Co. , Inc ., Millis, MA). The collected RBS were transferred to 12 x 75 nm 

polyethylene cul ture vials and counted for radioactivity. 

Wi thdrawing a measurable number of RM at a known , constant flow rate 

also provided a standard for ca l culati ng the fl ow rates of the selected 

tissues and or gans. The calculation of flow using this reference tech-

nique was performed by comparing the number of RM in tissue with the num-

ber of RM collected in the RBS for each RM injection according to the 

following formula: 

Q = Qarxl t where 
1ar 

Q = unknown organ flow in ml/min 

Qar = withdrawal rate for arteria l reference sample in ml /min 

It = radioactivity in tissue or organ sample counter per minute 

( cpm) 

Iar = radioactivity in arterial reference sample (cpm) 

Animals 

Four mongrel dogs approximately two years of age were obtained from 

Laboratory An imal Resources, Iowa State Uni versity . All subjects were in 

excellent health and ranged in weight from 25 to 30 kilograms. 



39 

Surgical Procedure 

All subjects were anesthetized with 5% sodium pentobarbital (1 ml/kg 

body weight; Fort Dodge Laboratories, Fort Dodge, IA) via injection into 

the cephalic vein. Proper depth of anesthesia was maintained by addi-

tional injections as needed. An endotracheal tube was inserted to main-

tain an open airway. The animals were placed in dorsal recumbancy on a 

warm water heating pad (Model K 20/64N series, Hamilton Aquamatic K 

Module, Hamilton Industries, Cincinnati, OH ) to maintain body tempera-

ture. Lactated Ringers solution with 5% sodium bicarbonate were cons-

tantly administered at a rate of 3.5 ml/min I.V. The electrocardiogram 

was monitored with a Sanborn 780-6A Viso Scope (Hewlett-Packard, Corval-

lis, OR). 

The surgical sites were shaved. A cranio-caudal incision was made in 

the left mid-cervical region along the jugular furrow. The carotid 

sheath was identified and opened, exposing the left carotid artery for 

cannulation. An incision was made in the carotid artery, and a cardiac 

catheter was inserted and advanced towards the heart. The tip of this 

size 7 French catheter was bent by heating the tip to facilitate guiding 

it into the left ventricle. The catheter, attached to a recording pres-

sure transducer, was advanced until a typical left ventricular pressure 

waveform was observed, indicating that the catheter tip had passed 

through the aortic valve into the left ventricle. The exposed portion of 

the catheter then was secured to the carotid artery with a ligature. 
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Through it aortic pressure was detected with a Statham Model 230c pres-

sure transducer and displayed on the Viso Scope, and RM could be injected 

through it into the left ventricle (LV) later in the experiment. 

A skin incision 6 to 8 cm in length was made cranio-caudally midway 

between the point of the left shoulder and the manubrium sterni. After 

retracting the fascia of the thoracic inlet, the external thoracic artery 

was exposed. After applying vascular occluders, an incision was made and 

a can nul a was inserted retrograde for approximately 3 to 4 cm. Through 

this cannula, RBS could be withdrawn. 

An initial skin incision was made extending proximodistally over the 

middle 2/3 of the left medial femoral region. A fascial incision was 

made along the caudal border of the sartorius muscle, parallel to the 

course of, and exposing, the FA and vein (see Plate 1). After these ves-

sels were exposed, pressure cannulae were inserted retrograde into the 

origins of the left proximal caudal femoral artery (PCFA) and the SA for 

measurement of blood pressure in the FA above and below the sites intend-

ed for stenosis and thrombosis. Each cannula tip was advanced proximally 

almost flush with the FA lumen and secured with ligatures. Lower hind 

leg arterial driving pressure, P3 (distal to the FA stenosis) was moni-

tored by inserting a second pressure cannula through the incision in the 

SA in an antegrade direction away from the parent vessel. 

Proximal from the origin of the PCFA, the fascia surround ing the FA 

was dissected free and a noncannulating EMF probe (Model 4, In Vivo 

Metric Systems, Healdsburg, CA) was inserted around the FA to measure 

blood flow (QS) at the stenosis/thrombosis site. A pneumatic vascular 
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occluder (Model OC4, In Vivo Metric Systems, Healdsburg, CA) was similar-

ly emplaced on the FA 2 to 3 cm above the origin of the SA and approxi -

matel y 2 cm downstream from the EMF probe. It was used repeatedly to 

establish zero bl ood flow (baseline setting) in the FA . Before initiat-

ing the experimental treatment, the hyperemic response elicited by oc-

cluding the FA was allowed to disappear. During the 100-S interval of 

the experiment, the FA was clamped midway between the flowmeter and vas-

cular occluder to produce a complete stenos i s . 

To initiate a thrombosis, a vascular incision was made at this same 

site to insert a thrombogenic device into the left FA ( the thrombogenic 

procedure was discussed earlier in this section). 

A similar skin incision was made on the medial surface of the con-

tralateral (right) thigh. The right femoral vein (FV) was isolated 

between the proximal caudal femoral vein (PCFV) and the saphenous vein 

(SV), and a cannula was advanced distally to monitor lower hind limb 

venous blood pressure and to obtain blood for radioimmunoassay (RIA ) pro-

cedures . At approximately the same level as for the venous cannulation, 

a double lumen cannula was inserted into the FA and was advanced pro xi-

mally until its tip resided within the descending aorta at a point just 

below the renal arteries. One lumen of the cannula was used for infusion 

of PGI2 or ACh . The second lumen was used to monitor pressure in the 

descending aorta (PA). 

A hollow polyvinyl tube 15 ll1Tl in length and 2-3 rrm inside diameter 

containing a tightly wound copper coil was inserted into the left FA to 

initiate a thrombosis (Plate 2). 
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Tissue Assay 

Immediately after t he compl etion of each in vivo experiment , the ani-

mals were eutha nized and appropriate RM-containing tissues were collected 

and frozen at _5oc for l ater processing and analysis . Both hind limbs 

were removed below the stifle. Only those hind limb muscles below the 

stifle joint were taken; thigh muscles were carefully excluded . lower 

hind limb tissues were divided into four portions, muscle , bone, skin and 

paw, and frozen for later perfusion analyses . Whole lungs and kidneys 

were also removed for assessment of RM shunting and renal blood flow , 

respectively. 

All tissues were weighed (wet), desiccated in a drying oven (Model 

31543 GCA , Precision Scientific, Chicago , IL), and reweighed (dry) on a 

torsion balance (Model Sc 15, Welch Scientific Co., Chicago , IL) . While 

only wet weights were used for calculations of tissue perfusion, desic-

cated weights were used to ensure that tissue dehydration occurred which 

was adequate to avoid spattering during ashing . Each sample was ashed to 

reduce sample size at 3250C in a muffle furnace (Model Fl1625, Thermolyne 

Corporation, Dubuque, IA) fitted with a temperature control unit to main-

tain a constant temperature (Model 292P , Barber-Colman Co ., Rockford, 

IL). Ashing was continued until samples were reduced to white ash, in-

dicating that all combustible and volatile elements were removed . The RM 

remained in the residue. After ashing, each specimen was very carefully 

transferred to labelled 12 x 75 rrm polyethylene culture tubes within a 

vented , paper-lined hood, approved for use with radioactive materials . 
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Samples were crushed and ground to a fine consistency . A clear plexi-

glass box 2 feet wide by 1.5 feet in height and depth , open in the front 

for access, was utilized during transfer to prevent aerosolized ash from 

contaminating the hood. 

Tubes were transferred to the multichannel ga1TTTia counter and samples 

were measured for radioactivity. Raw counts were analyzed on the mi cro-

computer according to the procedure of Heymann et al. (1977)~ 

GanTna cou nter results were entered into the micrcomputer keyboard to 

calculate individual tissue perfusion and total QPC. Also, signal 

averaging of five second sampling intervals of digitized dynamic EMF flow 

and pressure waveforms was done to obtain mean values. Peripheral and 

collateral bed and stenosis hemodynamic parameters were calculated by 

utilizing mean values of flow, pressures, and radioactive microsphere 

perfusion data (please refer to the Appendi x for a list of formulae ) . 

Previously stated formulae were utilized by the microcomputer to process 

the experimental hemodynamic data stored on disc and to arrive at the 

final parameter results. 
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RESULTS AND DISCUSSION 

The objective of this investigation was to study the effects of 

thrombosis and stenos is upon the hind limb collateral and peripheral cir-

culations and to determine the effects of ACh or PGI2 upon these same 

vascular channels during thrombosis . 

Pressures and flows were measured to establish hemodynamic relation-

ships in the ipsilateral leg (the leg in which the stenosis was applied). 

Contralateral leg peripheral flow (QPC) was determined for comparison 

purposes. The values determined are presented in Tables 1 through 17 and 

Figures 5 through 14. In this set of figures (5-14), the points rep-

resenting the individual data points for each treatment are the important 

features and that the lines connecti ng the points do not reflect actual 

values (during transition from one state to the next). 

Hind Limb Hemodynamics 

The data from this experiment were not pooled, but rather, the indi-

vidual animal responses are discussed separately for three reasons. 

First, the low number of animals in this study (n=4) combined with the 

wide range of subject responses indicated that examination of individual 

responses would most accurately reflect the results . Results were 

analyzed by use of one-way analysis of variance (Snedecor and Cochran, 

1976). We did not find evidence that, during thrombosis, either ACh or 

PGI2 significantly changed QC or QP at the five percent confidence level 

(p < 0.05). Second, the nature of this investigation, with its highly 
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Table 1. Vascular hemodynamics in the hind limbs of dog 10 in each 
treatment period 

Parametera 

QPC 

QP 

RP 

OPP 

QC 

RC 

OPC 

QS 

RS 

OPS 

100% 

34.55 

12.16 

6.23 

75.85 

1.11 

50.40 

59.93 

11. 05 

5.43 

60.02 

0% 

74.79 

11.35 

9.46 

107 .43 

-13.60 

- 3.72 

50.53 

24. 95 

- 0.04 

- 0.94 

Treatment 
Th 

51. 66 

2.07 

40.46 

83. 77 

11.19 

6.84 

76.55 

- 9.12 

- 5.69 

51. 96 

Th+ACh 

49.53 

1.27 

84.72 

107 .59 

- 9.90 

- 4. 68 

46.37 

11.17 

9.55 

106.70 

Definitions of parameters: 

QPC 
QP 
RP 
OPP 
QC 
RC 
OPC 
QS 
RS 
OPS 

Peripheral blood blow in the contralateral leg 
Peripheral blood flow in the ipsilateral leg 
Peripheral resistance 
Driving pressure peripheral bed 
Collateral blood flow 
Collateral resistance 
Driving pressure collateral bed 
Stenosis blood flow 
Stenosis resistance 
Driving pressure stenosis area 

Th+PGI2 

49 .26 

5.15 

15 . 52 

79 .93 

- 1.57 

-48.23 

71 .03 

6.72 

4.98 

33.53 

aFlows expressed in ml/min, resistances expressed in nvn Hg/min/ml, 
pressures expressed in mm Hg. 
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Table 2. Hemodynamic parameters ( b 1 ood pressures) versus experimental 
condition for do9 10 

Stenos is 100% thrombosis - treatment 
Hemodynamic 
parametera 100% 0% None ACh PGI 2 

Pl 112. 34 139 . 02 159 . 60 204.91 148 . 54 

P2 52 . 32 139.96 107 .74 98 . 21 115 . 01 

P3 78.30 108. 71 85 .86 109 . 75 81 . 02 

PA 134.24 159.25 162.41 156 . 12 152.06 

PV 2.45 1.28 2.09 2.15 1.09 

Definitions of parameters: 

Pl Mean arterial blood pressure in the FA proximal to the stenosis 
(driving pressure for flow through stenosis) 

P2 Mean arterial blood pressure in the FA distal to the stenosis 

P3 Mean arterial blood pressure in a branch at the level of the 
DCFA (potent ial collateral blood flow) 

PA Mean arterial blood pressure 

PV Mean venous blood pressure at the FV (venous blood pressure ) 

apressures expressed in mm Hg . 
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Table 3. Vascular hemodynamics in the hind limbs of dog 11 in each 
treatment period 

Parametera 

QPC 

QP 

RP 

OPP 

QC 

RC 

DPC 

QS 

RS 

DPS 

100% 

17.66 

13.02 

3.58 

46 . 73 

24 .45 

2.54 

62.15 

-11.43 

-10.26 

117 .27 

0% 

138 .18 

14.85 

1. 71 

25.41 

-86.41 

- 0.96 

82 .64 

101. 27 

- 0.06 

- 5.25 

Treatment 
Th 

16.14 

22.64 

2. 79 

63 . 27 

33.55 

1. 77 

59 .23 

-10.91 

- 7.20 

78.47 

Th+ACh 

71.09 

13. 54 

3.53 

47 .83 

25.46 

4.67 

72 .11 

-11. 92 

- 8 . 59 

102 .38 

Definitions of parameters: 

QPC 
QP 
RP 
OPP 
QC 
RC 
DPC 
QS 
RS 
DPS 

Peripheral blood flow in the contralateral leg 
Peripheral blood flow in the ipsilateral leg 
Peripheral resistance 
Driving pressure peripheral bed 
Collateral blood flow 
Collateral resistance 
Driving pressure collateral bed 
Stenosis blood flow 
Stenosis resistance 
Driving pressure stenosis area 

Th+PGI2 

20 . 09 

8 .38 

4.17 

34.97 

14.58 

5.36 

78 . 22 

- 6.20 

- 5.47 

33.87 

aFlows expressed in ml/min, resistances expressed in mm Hg/min/ml, 
pressures expressed in mm Hg . 
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Table 4. Hemodynamic parameters (blood pressures) versus experimental 
condition for dog 11 

Stenos is 100% thrombosis-treatment 
Hemodynamic 
parametera 100% 0% None ACh PGI2 

Pl 116. 00 108.98 118.18 115 . 08 118 .28 

P2 - 1.27 114 . 23 39 . 71 12 . 70 84.41 

P3 51. 76 34.57 68.24 51. 79 39.71 

PA 113 . 92 117. 21 127.48 128.90 117 . 93 

PV 5. 03 9.15 4.97 3.96 4.73 

Definitions of parameters: 

Pl Mean arterial blood pressure in the FA proximal to the stenosis 
(driving pressure for flow through stenosis) 

P2 Mean arterial blood pressure in the FA distal to the stenosis 

P3 Mean arterial blood pressure in a branch at the level of the 
DCFA (potent ial collateral blood fiow) 

PA Mean arterial blood pressure 

PV Mean venous blood pressure at the FV (venous blood pressure) 

apressures expressed in mm Hg. 
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Table 5. Vascular hemodynamics in the hind limbs of dog 12 in each 
treatment period 

Parametera 

QPC 

QP 

RP 

OPP 

QC 

RC 

DPC 

QS 

RS 

DPS 

100% 

22 . 49 

26 . 57 

2. 80 

74 . 48 

25.53 

1.20 

30.66 

1.04 

15.79 

16.43 

0% 

23.33 

21.53 

3. 09 

66.55 

-15.63 

- 3.34 

52 . 18 

37 .16 

0.39 

14. 68 

Treatment 
Th 

12.18 

30.74 

2.50 

77 .11 

30.24 

1. 60 

48.25 

0.50 

81.18 

40.59 

Th+ACh 

5. 63 

22.08 

3.23 

71.41 

20 . 26 

2. 29 

46.35 

1.82 

13. 62 

24.79 

Definitions of parameters: 

QPC 
QP 
RP 
OPP 
QC 
RC 
DPC 
QS 
RS 
DPS 

Peripheral blood flow in the contralateral leg 
Peripheral blood fiow in the ipsilateral leg 
Peripheral resistance 
Driving pressure peripheral bed 
Collateral blood flow 
Collateral resistance 
Driving pressure collateral bed 
Stenosis blood flow 
Stenosis resistance 
Driving pressure stenosis area 

Th+PGl2 

11.12 

15. 98 

4. 52 

72.36 

15.62 

3.71 

57. 93 

0.36 

46 . 13 

16 . 60 

aFlows expressed in ml/min, resistances expressed in mm Hg/min/ml, 
pressures expressed in mm Hg. 
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Table 6. Hemodynamic parameters (blood pressures) versus experimental 
condition for dog 12 

Stenos is 100% thrombi sos-treatment 
Hemodynamic 
parametera 100% 0% None ACh PGI 2 

Pl 107. 66 105 . 74 125.01 117 . 91 122 .64 

P2 91.23 91. 05 84 .42 93.11 106 . 03 

P3 80 .18 72. 77 82.24 76.17 78 .46 

PA 110. 85 124.96 130.49 122.52 136 .40 

PV 5.70 6.22 5.13 4.75 6.10 

Definitions of parameters: 

Pl Mean arterial blood pressure in the FA proximal to the stenosis 
(driving pressure for flow through stenosis ) 

P2 Mean arterial blood pressure in the FA distal to the stenosis 

P3 Mean arterial blood pressure in a branch at the level of the 
DCFA (potential collateral blood flow ) 

PA Mean arterial blood pressu re 

PV Mean venous blood pressu re at the FV ( veno us blood pressure) 

apress ure s expressed in mm Hg. 
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Table 7. Vascular hemodynamics in the hind limbs of dog 13 in each 
treatment period 

Parametera 

QPC 

QP 

RP 

OPP 

QC 

RC 

DPC 

QS 

RS 

DPS 

100% 

22.75 

13 . 50 

3. 41 

46 .17 

12.10 

8.01 

73.54 

1.40 

28.86 

40.41 

0% 

28 .43 

36.25 

2.36 

85 .71 

-52.69 

- 0.75 

39.55 

88.94 

0.25 

22 . 37 

Treatment 
Th 

17.40 

10.40 

7. 00 

72.90 

-80.85 

- 0.65 

52.69 

91.25 

0.01 

1.18 

Th+ACh 

153.26 

13 . 50 

3.64 

49.18 

12 . 14 

3.47 

42 .07 

1.36 

12 .33 

16 . 78 

Definitions of parameters: 

QPC 
QP 
RP 
OPP 
QC 
RC 
DPC 
QS 
RS 
DPS 

Peripheral blood flow in the contralateral leg 
Peripheral blood fiow in the ipsilateral leg 
Peripheral resistance 
Driving pressure peripheral bed 
Collateral blood flow 
Collateral resistance 
Driving pressure collateral bed 
Stenosis blood flow 
Stenosis resistance 
Driving pressure stenosis area 

Th+PGI2 

62.22 

7.33 

7.03 

51.56 

11. 22 

7. 67 

86.05 

~ 3.89 

-14 . 65 

56 . 97 

aFlows expressed in ml/min, resistances expressed in mm Hg/min/ml, 
pressures expressed in mm Hg . 
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Table 8. Hemodynamic parameters (blood pressures) versus experimental 
condition for dog 13 

Stenos is 100% thrombosis-treatment 
Hemodynami c 
Qarametera 100% 0% None ACh PGI2 

Pl 132.56 132.94 133.00 143.25 134. 83 

P2 115. 78 110.57 131. 81 107 .53 77 .85 

P3 55.04 96.42 85.74 12.48 61 . 95 

PA 103.74 135.97 138.44 142.42 148.00 

PV 12.48 10.70 12.84 9.88 10.39 

Definitions of parameters: 

Pl Mean arterial blood pressure in the FA proximal to the stenosis 
(driving pressure for flow through stenosis) 

P2 Mean arterial blood pressure in the FA distal to the stenosis 

P3 Mean arterial blood pressure in a branch at the level of the 
DCFA (potential collateral blood flow ) 

PA Mean arterial blood pressure 

PV Mean venous blood pressure at the FV (venous blood pressure ) 

aBlood pressures expressed as mm Hg. 
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Table 9. Kidney blood flow (ml/min) in each treatment period 

Treatment 

Subject 100% 0% Th Th+ACh Th+PGI2 -- --
10 458.0 237 .o 29 1.0 183.0 469.0 

11 347.0 210.0 316.0 251.0 424 . 0 

12 395.0 454.0 366.0 344 .0 453 . 0 

13 372 .o 421.0 349.0 391.0 455 . 0 

Table 10. Muscle blood flow (ml/min ) 
each treatment period 

to th~ ipsilateral, left, leg in 

Treatment 

Subject 100% 0% Th Th+ACh Th+PGI2 

10 1. 69 3.35 0. 43 0.27 0. 96 

11 1. 76 1. 93 3.48 2. 77 1.31 

12 7.10 5.56 8 .55 5.06 ____ a 

13 2.31 8.44 1.48 3.89 1.27 

a1ncomplete data. 
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Table 11. Muscle blood flow (ml/min) to the contra lateral, right , leg 
in each treatment period 

Treatment 

Subject 100% 0% Th Th+ACh Th+PGI2 --
10 12.79 21.03 22.83 20.57 5.75 

11 1.68 1. 74 2. 96 23 . 09 2.53 

12 6.69 7.29 3.79 1.15 1. 08 

13 4.73 7.06 4.89 55.50 6.23 

Table 12. Skin blood flow (ml/min) to the contra lateral, right, leg in 
each treatment period 

Treatment 

Subject 100% 0% -- Th Th+ACh Th+PGI2 

10 4. 38 23.00 ____ a 2. 62 6.01 

11 3. 68 2.98 3.60 4.03 7.78 

12 4.21 3.08 1.68 1. 65 3. 97 

13 4. 68 4.89 2.88 10.85 9.17 

arncomplete data. 
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Table 13. Skin blood flow (ml/min) to the ipsilateral, left, leg in 
each treatment period 

Treatment 

Subject 100% 0% Th Th+ACh Th+PGI2 -- --
10 0.96 0.40 0.27 0.23 0.51 

11 2.42 1.55 1.33 0. 96 0.70 

12 7.39 4.17 3.11 3.61 2. 93 

13 1.23 2.01 0.67 0.70 0.41 

Table 14 . Bone blood flow (ml/min) to the contra lateral, right, leg in 
each treatment period 

Treatment 

Subject 100% 0% Th Th+ACh Th+PGI2 -- --
10 o. 65 1.12 0.54 0.26 10.16 

11 0.89 0.83 1.31 0.78 9 .16 

12 2.48 3.04 1.55 1.41 2.30 

13 2. 60 2.43 0.95 3. 83 15. 09 
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Table 15. Bone blood flow (ml /min ) to the ipsilateral, left, leg i n 
each treatment period 

Treatment 

Subject 100% 0% Th Th+ACh Th+PGI2 --
10 2. 72 2.29 0.55 0.30 1.33 

11 2. 77 2.60 5.15 2.54 2. 14 

12 2. 79 3.60 3. 08 3. 57 5. 50 

13 2.29 4.58 2. 28 2. 43 1.34 

Table 16. Paw blood flow (ml/min) t o the ipsilateral , left , leg in each 
treatment period 

Treatment 

Subject 100% 0% Th Th+ACh Th+PGI2 -- --
10 2. 11 0.36 0.14 0. 08 0.52 

11 1.19 1.87 2. 17 0.89 0.64 

12 1.44 1. 33 2.89 2.46 5.12 

13 1. 71 3. 96 1.51 0.85 1. 01 
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Table 17. Paw blood fl ow (ml/min) to the co ntra lateral , right , leg in 
each treatment period 

Treatment 

Subject 100% 0% -- Th Th+ACh Th+PGI2 

10 0.23 0.1 9 0.12 0.11 11.42 

11 3.48 51.15 1. 65 4. 60 ____ a 

12 0.89 0.91 0.46 0.42 2. 28 

13 1.58 2.17 1.22 1. 94 7. 12 

arncomplete data. 
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invasive experimental design, created considerable "physiologic reac-

tance" (Fry, 1960), treatment responses in the experimental animal which 

would not be consistent with those present in an intact, unoperated sub-

ject, which contributed to the variability of responses. Schwartz et al. 

(1961) reported that dissection of the canine femoral artery stimulates 

vasoconstriction of the distal vasculature. They stated that the sym-

pathetic pathway for peripheral vasoconstriction is associated with vas-

cular trauma. Third, two different types of hemodynamic responses to 

thrombosis were observed in this study . These contributed to the non-

uniformity of the data and may be ascribed to the existence of two 

populations of dogs, arachidonic acid sensitive and arachidonic acid in-

sensitive (suggested by Allen and Clark, 1983). 

Stenos is 

During the stenosis experimental period (100-S ) , a vascular clamp was 

applied to the FA at the previously described site (please refer to the 

Materials and Methods section) to produce 100% stenosis. After measure-

ments were taken, the clamp was removed, and measurements of the normal 

(control) state were taken after the circulation had equilibrated. In 

this way, 100% stenosis was compared with the nonoccluded state . 

In the ipsilateral leg, in dogs 10 and 12, QP was greater and RP was 

less during 100-S than 0-S~ however, the differences were small (Tables 1 

and 5, Figures 6 and 7). 
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QP was slightly less during 100-S in dog 11 (Table 3) and markedly so 

in dog 13 (Table 7) than 0-S. RP was elevated during 100-S in both ani-

mals' ipsilateral legs. 

Peripheral blood flow in the contralateral leg (QPC) was consistently 

depressed by stenosis of the ipsilateral leg in all four subjects (Tables 

1, 3, 5 and 7, Figure 5). This may have been due to the release of 

vasoconstrictor metabolites. 

Subjects 10 and 12 responded differently than expected to 100-S com-

pared to 0-S in that QP was less after release of the occlusion on the FA 

than during 100-S. This reaction could not only be due to changes in 

vasomotor tone of the peripheral vessels over the course of these two 

experimental stages, but also to trauma from the experimentally-induced 

arterial occlusion. Thus, clotting of the red blood cells within the 

peripheral bed of the ipsilateral leg in these subjects may have induced 

the drop in blood flow and RP increase after release of the stenosis. 

QC reversed (Figure 8) and RC declined (Figure 9) after release of 

the stenosis during the 0-S period. These findings are consistent with 

the belief that during occlusion of the FA in the mid-thigh region, flow 

in collateral channels reversed so that the lower hind limb could receive 

blood from the thigh collateral bed via the OCFA and other channels 

rather than the thigh musculature receiving distal femoral artery blood 

as appears frequently to be the normal case. 

Release of the stenosis resulted in a decline in RS in all animals 

(Figure 11) including dog 11 which had a slightly negative resistance 

value due to a negative pressure differential across the stenosis site , 
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which may be the result of a drift in the blood pressure baseline 

calibration . 

The decrease in QS due to stenosis, as compared with the 0-S period, 

indicates that occlusion of the FA interrupted flow through the stenosis 

region (Figure 10). However, had we measured complete occlusion of the 

FA during 100-S, QS should have been zero and RS should have been in-

finite in value (RS=~). The computer averaged values for QS did not 
s 

equal zero nor infinity for RS during 100-S due to slight inaccuracies in 

the digital averaging technique. 

In dog 11, the RS data were negative in value indicating a reverse 

pressure gradient through the stenosis site. P2 was greater than Pl 

during 0- S (Table 4). The return of QS during 0-S to a large positive 

value in part supports the contention that there was experimental error 

in measurement of the pressure gradient across the stenosis. 

Thrombosis 

After 0- S measurements were complete, the thrombogenic device was 

inserted within the FA at the stenosis site. In two out of four sub-

jects , QPC and QP decreased during thrombosis, and in three of four ani-

mals, RP was elevated compared to the 0-S data. 

In dogs 11 and 12, the response to thrombosis was such that QP and 

peripheral perfusion pressure (OPP) in the ipsilateral hind limb was not 

depressed by thrombosis as occurred in the other two subjects (Tables 4 

and 6, Figure 12) . QP and OPP were greater during thrombosis in dogs 11 
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and 12, and RP was depressed less during thrombosis than during stenosis . 

During the control period, RP was greater in dog 12 than during throm-

bosis, and RP in dog 11 was only slightly greater during thrombosis than 

the control value. Subjects 10 and 13 showed a marked decline in QP and 

elevation of RP compared to stenosis. The level of collateralization in 

dogs 11 and 12 may have been greater than in dogs 10 and 13 to account 

for the difference in response to thrombosis. In both dogs 11 and 12, RP 

was less during thrombosis than during stenosis. An elevated QP in both 

subjects which exceeded the increase in OPP during thrombosis accounts 

for the lower RP value during thrombosis compared to stenosis. During 

the control period (0- S), RP was greater in dog 12 than during thrombosis 

(Th). This wa s due to the relatively large QP value in these two 

subjects . 

In dogs 11 and 12 , it was possible that occlusion of the FA with a 

bulldog clamp may have induced vasospasm in the distal peripheral bed 

which could account for the greater decline in flow during 100-S than 

during thrombosis. Thrombosis failed to inhibit QP in dogs 11 and 12; in 

fact, OPP was elevated during thrombosis in both subjects. This may have 

been due to a lack of vascular reactivity. This lack of response to 

thrombosis in the peripheral bed may have been due to the length of time 

the subject was under anesthesia, systemic acidotic conditions, or local 

ischemic metabolites, whi ch compromised vascular responses and resulted 

in vasodilation, possibly irreversible in nature. Had the vascular 

smooth muscle remained responsive along with the receptors and extrinsic 

innervation, the peripheral bed may have vasoconstricted in response to 
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thrombosis. 

Another possibility is that vasodilator agents may have been predomi -

nant in dogs 11 and 12 but not in dogs 10 and 13 so that , despite the 

presence of a thrombus, dilation occurred. 

In dog 10, it appears from the QPC data that vascular response to 

thrombosis was less than durring 100-S in the contralateral leg. Periph-

eral perfusion to the contralateral leg was greater during all periods of 

thrombosis , compared to 100 percent stenosis. This observation suggests 

that vasodilation due to hypoxia and accumulation of metabolic byproducts 

may have occurred in the peripheral bed rendering it insensitive to 

vasoconstrictive metabolites released during thrombosis in this subject. 

The predomi nant effects of thrombosis were decreased QP and QPC (ob-

served in three out of four cases for QPC and two of four cases for QP ) , 

and elevated RP. In dogs 10 and 13 in which QP was inhibited by throm-

bosis, these results imply that vasoactive substances such as serotonin 

or TXA2, released by the thrombus, have vasoconstrictive properties. RP 

with thrombosis was from 2-6x greater than RP during 100-S alone. 

QC and RC were greater during thrombosis than during 100-S in three 

out of four subjects for QC and two of four subjects for RC. Thrombosis 

appeared to be an equal or greater stimulus than stenosis to initiation 

of collateral blood flow. Elevated resistance in the collateral bed may 

have resulted from the release of vasoconstrictor substances from the 

thrombus which would have impeded maximal collateral perfusion to the 

occluded area. However, in all four subjects, PA was elevated to a de-

gree that resulted in increased collateral driving pressure (DPC ) values 
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(Figure 14). Lack of a negative response to thrombosis was apparent in 

dogs 11 and 12; in fact, QS was greater than control (0-5 ) or stenosis 

(100-2) during the Th period. This may indicate that the ability of the 

peripheral circulation to responsd to vasoconstrictive substances 

released during thrombosis may have been compromised. It is more 

probable that dogs 11 and 12 were arachidonic acid insensitive animals, 

compared to dogs 10 and 13. 

In dog 13, the collateral bed failed to respond to thrombosis, but 

there was an incomplete occlusion of the FA at the thrombus site . Incom-

plete thrombosis was indicated by larger QS and smaller RS values com-

pared to the 0-S values. Completely occluding thrombos es did form in 

dogs 10 and 12, as confirmed by elevated resistance and almost nonexis-

tent flow across the stenosis/thrombosis segment of the FA, whi ch we con-

sidered equal to zero. In dog 11, a negative QS value (which should be 

considered equal to zero) was recorded which accounts for the negative RS 

value and is not consistent with the DPS value. The reason for these 

slight inaccuracies is due to the digital averaging scheme utilized for 

the computer. Measurement error and signal averaging of the blood pres-

sure over a nonwhole number of card iac cycles may have caused errors in 

the data. 
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Thrombosis and ACh 

After thrombosis of the FA, ACh was infused into the systemic cir-

culation to determine its effects on the peripheral and collateral cir-

culatory beds of the lower hind limb during thrombosis. Collateral flow 

was inhibited by ACh in dog 11 as QC declined 50% after ACh infusion and 

RC increased 200%. 

Peripheral and collateral perfusion were decreased by ACh in three 

out of four subjects (dogs 10, 11 and 12). QPC, QP, and QC were de-

pressed by ACh infusion during thrombosis. In these animals, it was pos-

sible that, in a systemic response to recirculating vasodilator agents, 

blood was shunted away from the hind limb circulation distal to the 

thrombosis site to other locations where ACh-modulated vasodilation also 

occurred. This "femoral steal'' effect correspond s to observations of a 

"coronary steal" effect in the coronary circulation reported by Flameng 

et al. (1973) and Schaper et al. (1973). This ''steal" effect may occur 

when administration of a vasodilator further compromises blood flow to an 

already malperfused tissue bed by shunting blood flow away fro m that 

region by decreasing peripheral re sistance in other vascular ti ss ue beds. 

Therefore, in dogs 10, 11 and 12, ACh infusion resulted in greater mal-

perfusion of the lower hind limb during thrombosis. An alternative ex-

planation for the observed decrease in QP and QC may be that the ACh 

acted to depress heart rate and contractility, thereby lowering cardiac 

output centrally and depressing hind limb perfusion peripherally. 
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This response was not evident in the other two subjects; dogs 11 and 

13 had 6x and llx increases in QPC, respectively, during ACh treatment. 

QP was also elevated and RP declined dog 13. It appears that in dog 13, 

peripheral perfusion to both ipsilateral and contralateral legs was im-

proved by administration of ACh . Improvement in QP and QPC during ACh 

administration may have been due to lesser degrees of central cardiac or 

peripheral 11 stea1~ effects of ACh. This may be due to a degree of 

vasoresponsiveness of the hind limb beds in these subjects not present in 

dogs 10 and 12 and in the ipsilateral leg in dog 11 . 

The response of the collateral circulation to ACh during thrombosis 

in dog 13 was difficult to assess due to the lack of complete thrombosis . 

But since QS approached zero and RS values were consistent with values 

obtained during 100-S, it appears that during this experimental period 

(TH + ACh) the FA finally was completely occluded by thrombus. 

Hind limb collateral perfusion during ACh administration in dog 10, 

characterized by negative values for QC and RC, was absent . That is, the 

thigh appeared to be receiving blood from the DCFA in quantity similar to 

that of the 0-S period. This observation i s difficult to reconcile but 

may be a result of a discrepancy in the portion of the circulation model 

depicting the pressure gradient across the collateral bed. 
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Thrombosis and PGI2 

PGI2 improved QPC during thrombosis as did ACh in dog 11 and 13. In 

dogs 10 and 12 , the response to PGI2 and ACh was similar in that both 

vasodilator drugs inhibited QPC during thrombosis. However, this inhibi-

tion was negligible except in dog 12, in which ACh produced a 50% decl ine 

in QPC . 

The reaction of t he ipsilateral leg to PGI2 infusion was different 

from that in the contralateral leg. QP declined and RP was elevated in 

three out of four animals in response to PGI2 , and in each, PGI2 promoted 

peripheral perfusion to a lesser degree than ACh . In dog 10, QP was ele-

vated 4x during Th + PGI2 over Th + ACh. In the individual (dog 13) in 

which ACh was minimally effective in increasing QP, PGI2 depressed QP, 

and RP was increased. It appears that although the value for RP was 

similar to that of the Th period, the equality was due to the fact that 

both QP and OPP declined during PGI2 infusion. 

Compared to the ACh treatment, QC declined and RC increased with PGI2 

infusion during thrombosis in all four subjects. PGI2 and ACh were both 

ineffective in promoting collateral circulation in these animals. The 

"femoral steal'' effect , previously mentioned in reference to ACh ad-

ministration , may also have resulted from systemic effects of PGI2 on 

vascular beds . Both ACh and PGI2 thus may have shunted blood away from 

the thigh collateral bed during thrombosis and increased malperfusion of 

the tissues distal to the arterial thrombosis . 
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Negative values for QC and RC expressed for the Th + PGI2 period in 

dog 10 suggest negative collateral flow. However, for dog 11, a negative 

QS value seems invalid during 0-S because the positive gradient discounts 

the possibility of negative QS. Therefore, the resultant negative RS 

values obtained during the other experimental periods suggest that QS may 

have been measured incorrectly. 

Ranges of Tissue and Organ Perfusion Rates 

Kidney blood flow 

Total kidney blood flow measured by he RMT in the four dogs ranged 

between 183-469 ml/min (Table 9). This range compared favorably with RMT 

values reported by Nathanson and Jackson (1975). They found that blood 

flow to the kidneys ranged from 200-800 ml/min in the dog. The agreement 

of our data with their published information suggests that we had accu-

rately measured blood flow with the RMT and that our dogs had reasonable 

cardiac outputs and renal blood flows. 

Muscle blood flow 

Lower hind limb muscle perfusion during 0-S averaged 4.89 ml/min in 

the ipsilateral leg (Table 10) and 9.28 ml/min for the contralateral leg 

(Table 11). Kane and Grim (1969) reported an average muscle blood flow 

of 5.6 ml/min. Their studies were conducted on noninstrumented subjects 

using an isotope washout technique. In light of the increased phys-

iologic reactance of our invasively instrumented subjects, our results 

compare to a reasonable degree. In our preparation, the ipsilateral leg 
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requi red extensive surgical intrusion. There was a lesser degree of in-

vasiveness in the contralateral leg. Our sub jects were not heparinized 

in order to permit thrombosis to develop in the FA. Therefore, due to 

the invasivity of the preparation, embolization at the micro and macro 

levels may have partially impeded perfusion to the ipsilateral limb. 

That is, surgical trauma may have stimulated vasoconstriction and distal 

muscle ischemia, thus inhibiting lower hind limb blood flow. 

Skin blood flow 

During 0-S, skin perfusion rates ranged from 2. 98-23.00 ml/min in the 

contralateral leg (Table 12) and 0.40-4.17 ml/min in the ipsilateral leg 

(Table 13). Skin blood flow ra tes were lower in the ipsilateral leg. 

Again, this may have been due to the high degree of surgical trauma to 

that leg. Kane and Grim (1969 ) stated that the average blood flow to the 

skin was 8.4 ml /min, which wa s comparable to what was measured in this 

study for the contralateral leg. The range of ski n blood flow rates mea -

sured in this experiment is reasonable as skin blood flow rates may vary 

greatly with the physiologi cal state of the animal and are affected by 

depth of anesthesia, ambient temperature, and release of vasoactive 

agents . 

Bone b 1 ood fl ow 

Contralateral leg blood flow rate to the bone tissue averaged 1.86 

ml/min (Table 14) and 3.28 ml/min in the ipsil ateral l eg (Table 15) 

during 0-S. Gross et al . (1981) sta t ed that in the dog, bone blood flow 
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may vary from 2-30 ml/min. Our results fall within the range of pre-

viously reported data for bone blood flow. It appears that the ip-

silateral leg had higher bone blood flow values than did the con-

tralateral leg . The greater su rgi ca l trauma in the ipsilateral leg has 

been shown to depress lower hind limb blood flow in other tissues, 

however bone blood flow to the more invasively prepared ips i latera l leg 

was greater than the contralateral leg. The invasiveness of the prepara -

tion of the ipsilateral limb did not inhibit flow to the bone more than 

in the contralateral limb, as it had in other tissues . This may have 

been due to physiological reasons not readily discernible . However , the 

bone blood flow measurements were at the low end of the normal range, and 

this may be attributed to anesthesia, the long duration of the experi -

ment, or the high degree of surgical invasiveness. 

Paw blood flow 

Blood flow to the paw during the control period (0-S ) in the ip-

silateral leg ranged from 0.36 to 3. 96 ml/min (Table 16) . Contralateral 

leg paw blood flow was calculated to be 0.19 to 2.17 ml/min during the 

control period in three out of four animals (Table 17 ) . A value of 51 . 15 

ml/min was determined for dog ll's paw blood flow. This value seems ex-

ceptionall y high compared to the values recorded for the other subjects, 

and the reason for this outlying value is not readily apparent. 
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Femoral Shunting ( 11Steal 11
) 

Ischemia-induced intrinsic release of vasoactive substances may have 

augmented the shunting of blood away from already malperfused regions 

during vasodilator administration. The infusion catheter for vasodilator 

administration was positioned within the terminal aorta so as to expose 

the beds fed by the terminal branches of the aorta first to the infu-

sates. Upon recirculation, the remainder of the circulatory beds of the 

body would be exposed to any intact agonists. It is possible recirculat-

ing ACh may have diminished cardiac output in some cases. PGI2 degrada -

tion is not complete in the lungs enabling it to reach other tissue beds. 

The thigh region may have been relatively more responsive than the lower 

hind limb to the vasodilators since it was subjected to less surgical 

trauma. Thus, it and other systemic nutritional beds could have been 

more responsive to vasodilator agents and more able to maintain perfusion 

rates. Blood flow may have been directed primarily to the thigh muscula-

ture's arterio-capillo-venous channels before reaching the lower leg. 

The lower hind limb may have been made insensitive to the actions of 

agents such ACh or PGl2 due to the vasoconstrictive effects of serotonin 

and/or TXA2, which may override the actions of the vasodilators during 

th rombot ic occlusion. Schaub et al . (1977a) found that serotonin was 

released during arterial thrombosis and postulated that TXA2 was also 
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associated with vasoconstriction which occurred during thrombosis. Non -

ischemic areas responsive to the vasodilators could achieve greater de-

creases in vascular resistance and , thus, increased flow. A nonrespond-

ing, constricted , or thrombotically-occluded and maximally dilated, cir-

culatory bed would maintain its relatively high resistance, with resul -

tant shunting of blood to other dilated areas. 

Percent Shunting of Radioactive Microspheres (RM) 

Shunting of RM via arterio-venous channels which would pass the 

nominal 15µ spheres was determined by dividing the number of RM reaching 

the lungs by the total RM dose injected into the left ventricle. In our 

study , we found that from 1.2 to 4.8 percent of the RM dose was shunted 

into the lungs . Kaihara et al . (1968) reported 5 to 10 percent shunting 

into the lungs with 15µ RM in dogs. Our results show that excess shunt-

ing did not occur in this study, supporting the validity of the data for 

the parameters measured by the RMT. 

Total Hind Limb Blood Flow 

Blood flow to the lower hind limbs was ca l culated by summing the four 

tissue fiow rates . Flow to the ipsilateral leg for dogs 10, 11 , 12 and 

13 during 0-S were 24.95, 101.27, 37.16 and 88 .94 ml/min , respec tively; 

and for the contralateral leg, 74.79, 14.85, 23 . 33 and 28.43 ml /min, 

respectively. Coffman (1966 ) measured femoral artery inflow for the ca -

ni ne hind limb , and the results averaged 36 .8 ml/min . Venous outflow was 
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determined by Kane and Grim (1969), and the results for two separate 

studies measured hind limb blood flow to be 45.8 ml/min and 74.2 ml/min. 

Our values compare well with previously documented values. 
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SUMMARY AND CON CLUSIONS 

The objectives of this research were to compare the capacity of acute 

stenosis and thrombosis of the FA to affect QC and to determine if QC 

could be enhanced by infusion of the vasodilators ACh and PGI2. In order 

to validate the experimental model for this investigation, pilot trials 

were initiated on nine dogs to establish seve ral procedures new to this 

laboratory: 

1. The RMT was successfully introduced for measu rement of QP, kidney , 

and hind limb tissue blood flows. 

2. Computer programs were implemented for data acquisition , storage, and 

calculation of parameters. 

3. A copper coil device which induced an intra -arterial thrombus to 

gradually form was employed. 

The actual experimentation was conducted on four mongrel dogs from 25 

to 30 kg in weight. Each animal wa s subjec ted to five experimental 

treatments; they were, in sequence, 100-S, 0-S, Th, Th + ACh, and 

Th+ PGI2. Hind limb collateral and peripheral hemodynamics were mea -

sured during all treatment periods. 

After hemodynamic measurements were made during the initial treatment 

period (100-S), the stenosis was removed, and cha nges in peripheral, col -

lateral, and stenosis hemodynamics were observed . QPC increased only 

slightly in dogs 12 and 13, but in dogs 10 and 11, QPC was markedly ele-

vated after release of the stenosis (during 0-S) . In the l atter two sub-

jects, stenosis of the ipsilateral leg greatl y inhibited periphe ral blood 



84 

flow in the contralateral limb. The inhibition of QPC could have been 

due to vasospasm in the contralateral leg in response to the vascular 

trauma of clamping the ipsilateral FA during 100-S (Schwartz et al., 

1961). 

QP was inhibited during 100-S in dog 13; again, this may have been 

caused by distal vasoconstriction associated with the vascular trauma of 

clamping the FA during 100-S. The increase in QP following the release 

of the stenosis in dog 13 may have been due to another factor, reactive 

hyperemia. The initial phase of the reactive hyperemia response is 

characterized by vasodilation and increased blood flow to a previously 

occluded site after release of the occlusion (stenosis) if the vascular 

smooth muscle can respond to the build-up of local catabolites. After 

the catabolites were flushed out and local oxygen levels restored, then a 

secondary vasoconstriction would result. However, this response was ab-

sent in the other three subjects, and this lack of response in these sub-

jects is consistent with the small change in RP between the 100-S and 0-S 

periods. The viability of the vascular smooth muscle may have been com-

promised, accounting for the lac k of response to stenosis in the periph-

eral bed in dogs 10, 11, and 12. 

It is interesting to notice that the small increase in RP during 0-S 

may have prevented greater QP in dog 10 despite the concurrent increase 

in OPP. Dog 13 exhibited an increase in OPP and QP, and RP declined 

slightly during 0-S. Collateral blood flow and resistance declined 

during this period, although DPC values were inconsistent between 

animals. 
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There were two different responses to thrombosis. This may have been 

du e to a lack of viability of the vascular smooth muscle in nonresponsive 

subjects, or more probably due to a lack of sensitivity of the vascular 

smooth muscle to release of arachidonic acid metabolites during throm-

bosis. According to Allen and Clark (1983), there may exist two discrete 

canine populations, arachidonic acid sensitive and arachidonic acid in-

sensitive animals. This may account for the two different responses to 

thrombosis in our study. In subjects which QP and OPP were elevated, RP 

was unchanged and OPC declined (dogs 11 and 12). The second type of 

response to thrombosis in dogs 10 and 13 was characterized by depressed 

QP and OPP, a larger RP value, and elevated OPC. In subjects whose pe-

ripheral circulation was inhibited by thrombosis, more blood may have 

been directed towards the collateral bed in response to thrombosis in 

dogs 10 and ·13, as shown by the larger OPC values. All subjects consis -

tently had greater QC, with little change in RC, while QPC declined 

during thrombosis . 

ACh appeared to improve QC in only one subject (dog 13) , while i t 

depressed QC slightly in the other three. The increased QC in dog 13 is 

not valid; the reason for the apparent increase from the Th to the 

Th + ACh period is not due to any ACh effect but is due to a lac k of com-

plete thrombotic occlusion of the FA during Th as evidenced by the large 

QS value . QS declined during the Th+ ACh period, indicating that com-

plete occlusion of the FA occurred at that time, an event which provided 

the stimulus for collateral blood flow which was absent in the Th period. 

ACh infusion inhibited QC in those three subjects in which a complete 
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thrombotic occlusion formed during the Th period. RC declined and RP 

increased due primarily to a decrease in DPC and elevation of OPP which 

suggests blood flow may have been directed away from the collateral bed 

due to a peripheral "steal" effect in which infusion of the vasodilator 

further compromised blood flow by shunting flow away from that region . 

QPC was improved by ACh in two subjects (dogs 11 and 13), while a 

slight decline occurred in dogs 10 and 12. QP was also improved in dog 

13, and RP declined slightly. PA was slightly elevated in dogs 11 and 

13, whereas dogs 10 and 12 had slightly depressed PA after ACh infusion, 

which suggest s that cardiac output may have been depressed by ACh in dogs 

10 and 12 but not in dogs 11 and 13, accounting for their elevated QPC 

values. This may also be due to lesser peripheral "st~al" or a degree of 

vasoresponsiveness not present in the contralateral hind limb beds of 

dogs 10 and 12 . 

PGI2 infusion was ineffective in improving QC over Th or Th + ACh 

levels in this trial, although DPC values were elevated over Th+ ACh 

levels in all ·subjects and were greater than Th values in all subjects 

but dog 10. In subjects 10 and 13, it is interesting to note that both 

the Th and the Th + PGI2 treatment periods produced increases in QPC. 

This may indicate a greater sensitivity to arachidonic acid and its 

metabolites in these subjects than in dogs 11 and 12 . However, QC was 

not improved in dogs 10 and 13, although the elevation of DPC with infu-

sion of PGI2 was more pronounced in dogs 10 and 13 than in dogs 11 and 

12. The slight increase in RC during PGI 2 infusion (which occurred in 

all subjects except dog 10) may have prohibited elevation of QC . 
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Only dog 10 had greater QP and depressed RP and RC during PGI2 infu-

sion than in previous Th and Th+ ACh periods, despite a decline in OPP. 

QPC values for dogs 11 and 13, which were elevated during ACh infu-

sion, declined with infusion of PGI2. QPC in dog 13 remained greater 

during Th + PGI 2 than during the Th period; however, PGI2 produced no 

significant difference in the other three subjects . 

In conclusion, we we re unable to demonstrate any significant dif-

ference with one-way analysis of variance (p < .05) in the four subjec ts 

between the peripheral and co llateral effects of stenosis or thrombosis, 

and neither ACh nor PGI2 were significantly effec tive in promoting CF 

during thrombosis ( p < . 05). 

There were problems in obtaining uniform response to our experimental 

treatments due to the high de gree of surgi cal invasiveness of the animal 

preparation . The occurrence of vasospasm, spontaneous intravascular 

thrombosis, and release of vasoactive substances may have occurred due to 

man ipulation at the surgical s ites. The validity of data obtained from 

such an extensively instrumented animal model may be questioned in l ight 

of the divergent nature of some of the results . 

The smaller number of subjects (n=4 ) and the high degree of indi -

vidual variation in this st udy made interpretation of trends difficult . 

The existence of arachidonic acid sensitive and arac hidoni c ac id insensi-

tive subjects in this study could have resulted in t he two different ob-

served responses to thrombosis and could have further impeded interpreta -

tion of the ACh and PGI2 treatments . 
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Simplification of the model in this investigation into a less inva-

sive preparation would be necessary to permit evaluation of more normal 

physiological responses. Future refinements could also include the use 

of EMF probes which are electronically zeroed to prevent baseline drift. 

Baseline drift made measurement of QS zero flow difficult and resulted in 

erroneous negative values for QS and RS in our experimental data. 

Finally, our choice of using P3 as an estimate for collateral bed 

downstream pressure (and lower hind limb driving pressure) may not have 

been appropriate to measure the hemodynami c events occurring in the col-

lateral bed. Nevertheless, P3 appeared to be the only accessible anatom-

ic site for tapping into the common point between these two arterial 

beds. Further experiments would be warranted to define the optimum 

placement of a blood pressure cannula with respect to measu rement of low-

er hind limb and collateral bed properties. 
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LI ST OF FORMULAE 

DPC = PA-P3 

OPP = P1-P2 

DPS = P2-PV 

PA-PV = QP(RP + RS· RC) 
RS+RC 

Q( RMT) = Qar ·It 
Iar 

QP 

QS 

QC 

RC 

RP 

RS 

s 

y 

Q =un known organ flow in ml/min 
Qar = flow of arterial reference sample in ml/min 
It = amount of radioactivity or cpm in tissue or organ sample 
Iar = amount of radioactivity or cpm in arterial reference sample 

= QS + QC 

= QP QC 

= QP QS 

PA - P3 = 
QC 

P - PV 
= 2 

QP 

= pl - p2 
QS 

= Ql 
Q 

S = fraction of blood flow passing through shunts 
Q1 = the quantity (cpm) of RM in the lungs 
Q =the total injected RM dose 

= mx + b 

y = y coordinate 
m = slope of the 1 i ne 
x = x coordinate 
b = y intercept 




