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1. INTRODUCTION 

1.1 Automation 

Automation is a vast multi-disciplinary field where the advances and progress in the 

technology of one branch of knowledge is brought to bear on another field, creating advances 

and enhancements in the latter field. It is a branch of engineering that seeks to improve task 

efficiency by utilizing machines programmed to perform tasks that either cannot be performed 

(efficiently or otherwise) by humans. More generally, automation is often identified with the 

"computerization" of repetitive, time consuming or calculation intensive tasks that if not 

automated result in loss of accuracy, increasing time overheads and overall decrease in 

operational efficiencyl. Thus, the overall philosophy remains the utilization of machines to 

perform a given task so that the objective of "better efficiency" may be obtained. 

Early automated systems were essentially mechanical devices. These systems were 

often not flexible and were designed to perform only a certain set of well-defined tasks. The 

main components of such systems usually included hydraulic devices, cams and levers. They 

could not be reconfigured or modified beyond some minor changes to enable them to perform 

distinctly different tasks. With the introduction of relays and motors, the performance of these 

systems with regard to operational time decreased. However, the latter components still did 

not provide the ability to program the machine or system to perform distinct tasks. The 

1 The definition of efficiency is subjective to the particular field and area of work. It is used here in a 
general sense. 
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current phase in automation is often traced to the introduction of electronic components into 

systems that were formerly mechanical. Vacuum tubes, formed a part of the first "electronic 

control systems" and provided a degree of programmability and superior performance while 

occupying less space and consuming less power than the earlier mechanically automated 

systems. The early application of computers to automation was the class of analog computers. 

They were often employed off-line to study and process raw data (especially in scientific 

institutions) and in performance simulation. The high cost and the large size of such systems, 

precluded their use as an embedded controller in a vast majority of scientific and industrial 

instruments and machines. However, in the last two decades, the single most important factor 

that has brought ease of use, greater control power has been the rapid evolution in the field of 

microprocessors. Operating on digital logic, the microprocessor has brought "intelligence" to 

machines. 

Microprocessors and associated systems, make possible the acquisition, storage and 

treatment of a large quantity of information in a short time period. The superior speed of these 

logic devices make them an especially sought after commodity in the automation field to 

implement system automation schemes. Microprocessor based systems, because of their 

generic architecture and computing power are widely used in many of today's instruments. 

The incorporation of such devices on instruments allows one to program the instruments and 

thus increase the capabilities of the instrument. Further, the rapid advances in software have 

also contnouted to making microprocessor based systems more generic, flexible and powerful. 

Usually, instead of building automatic systems with raw microprocessors from the 

bottoma microprocessor-based system, such as a computer, may be used. With computers 
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becoming more powerful and compact, automation has come to rely more on the power of 

software than ever before. The latter allows more flexibility and ease of use in building and 

maintaining an automated system 

With the development of ''virtual instrumentation" (in the late 1980s) the flexibility and 

power of disparate instruments can be homogeneously used to achieve a task objective. 

Virtual instruments allow one to build a complete instrument implemented in software while 

using relatively simple and cheaper devices to do the actual data acquisition. It also allows the 

seamless integration of different devices so that the integrated device combines the features of 

all these instruments and presents a uniform interface to the user. Also, the rapid advances in 

computer to computer communication systems have led to networked systems spread across 

the geographically separated sites. Networked instruments allow efficient communication and 

retrieval of information. Thus, the available resources are utilized efficiently to serve a given 

objective (for example, Supercomputers are often utilized for information processing while the 

instrument that collects the information itself is a geographically separated, distinct entity). 

1.2 Nondestructive Evaluation And Automation 

Materials and manufactured products are often tested prior to delivery to the user to 

ensure that they will meet expectations and remain reliable during a specified period of 

service. A testing of the product that in no way impairs or changes the properties of the 

product is called nondestructive testing (NDT). Very often such testing is crucial at the 

manufacturing stage and/or during product service, especially if the product failure leads to 
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possible loss of human life, damage to the environment, etc. Structures and components used 

in aircrafts, nuclear installations, etc. are often subjected to heavy stress, fatigue and 

corrosion. As a result, defects such as such cracks are likely to form and grow. NDT 

techniques are often employed in studying such structural changes, defect initiation and 

growth. Such study utilizing NDT, is often referred to as nondestructive evaluation (NDE) 

[Blitz]. 

Manual operation ofNDT methods has the advantage that the operator is in a position 

to make immediate decisions when proceeding from one stage of testing to another. This 

determination by the operator requires skill and technical knowledge that is acquired by formal 

training and experience. Often however, the inclusion of the human element results in such 

advantage being gained at the cost of time and risk of human. error. If multiple channels of 

information are present, then such analysis in optimum time frames becomes extremely 

complex and inefficient for the human operator to perform. A well-defined automation scheme 

helps in efficient information collection, processing and output. In addition, it very often helps 

improve experiment repeatability and stricter experiment parameter control while not 

sacrificing accuracy. With advances in neural networks and AI it is also often possible for the 

system to ''learn'' from the human operator and perform the same task. Further, with the 

presence of embedded computers and dedicated control it is possible to incorporate some 

form of fault tolerance and recovery. Such features are driving automation systems towards a 

more "smart" future. 
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1.3 Aim and Scope of this Work 

Eddy current scanning is highly sensitive to the relative position of the probe to the 

component under scan. Ensuring that the probe maintains a constant lift-off and is 

perpendicular to the surface being scanned is of great importance to the scanning process, as 

the signal strength is best under the above constraints. Earlier work on scan automation 

attempted to use the probe signal to control the lift-off variations (which are an important 

source of noise) so that a constant lift-off could be maintained over a non-planar complex 

surface[Bugar ]. 

This work focuses on developing a systematic method to, 

• achieve probe perpendicularity and constant lift-off all through a given scan, in 

order to obtain accurate and repeatable eddy current measurements. 

• eliminate the time overhead present in developing motion control software that is 

specific to a given geometry, so that we have one generic method or algorithm to 

scan objects having any given geometry. 

To attain these objectives an automated scanning system was developed that would 

integrate the scanning process from scan conception to scan realization. A key component of 

this automated scanning process (and the main focus of this work) is the development of a 

postprocessor algorithm to realize in practice, the scans generated (at the conception stage) in 

software. This work is organized in the following manner. 

Chapters 2 through 4 provide the introductory and background material. Chapter 2 

descnoes the basic concepts of eddy current theory and its utilization in nondestructive 
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evaluation of metals. Chapter 3 describes the existing scanning (or inspection) hardware 

(called the Eddy Current Testbed) upon which the new automated system was developed and 

describes the issues involved in automating the scanning process. Chapter 4 describes the 

overall eddy current inspection process and the experimental module of this inspection process 

(whose automation is the focus of this work). 

Chapters 5 and 6 address the specifics of this work. Chapter 5 provides a brief theory 

of kinematics and then proceeds to descnoe the postprocessor algorithm that allows the 

existing hardware to conduct the complex scans generated first in software. Chapter 7 

presents a summary of the work, the conclusions arrived at and suggests possible 

enhancements and/or modifications for future work. 
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2. EDDY CURRENT BASED NDE 

The eddy current method of nondestructive testing, as currently practiced, was 

pioneered by Fredrich Forster in the 1940s and there has seen rapid progress in its 

development. Eddy current tests can be made on all materials that are electrically conducting. 

They include the sizing of surface and subsurface cracks, measurements of the thickness 

metallic plates and of non-metallic coatings on metal substrates, assessment of corrosion and 

measurements of electrical conductivities and magnetic permeabilities. An important 

advantage of eddy current testing, is that there is no need for physical contact with the surface 

of the objects being scanned. Thus, careful preparation (other than the removal of mechanical 

adherents) is unnecessary. 

2.1 Eddy Currents - Basic Principle 

The practice of eddy current testing, consists of exciting an alternating current at given 

frequency through a coil, often called a probe-coil or simply a probe, located as near as 

possible to the electrically conducting object being tested, and thus induces eddy currents in 

the latter. As a result, changes take place in the components of the impedance of the coil 

which can be related to the design of the coil, the size, shape and position of the test object 

and the values of its magnetic permeability (J.l) and conductivity «j). The impedance of the 

coil is also affected by the localized variations in J.l , (j and the geometry of the object under 

test as a result of the presence of the defect. 
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With the eddy current method, the current passmg through the coil generates 

electromagnetic waves through an electrical conductor in its vicinity. The associated magnetic 

field H induces the flow of electric currents, ie. eddy currents, which follow circular paths in 

planes perpendicular to the direction of H , in accordance with the below equation 

curlH=J (2.1) 

where J is the current density. The coil and the metal sample form respectively the primary 

and the secondary components of a transformer, and the impedance of the coil is consequently 

affected by the behavior of the eddy currents. Neglecting the ohmic resistance of the coil, this 

impedance at a frequency ro/2rc., is purely inductive and has a value Zo = jroLo, when 

completely removed from the test object and any other electrical conducting and 

ferromagnetic materials. When the coil.is located in the testing' position, the value of the 

impedance changes from Lo to L and a resistive component R is introduced. The changes in 

the impedance components are determined by the speed and the attenuation coefficient of 

electromagnetic waves in the test sample and the corresponding phase changes in the relevant 

electrical and magnetic vectors, ie. B, Hand J are responsible for introducing the component 

R of the impedance. 

2.2 Measurements 

The probe coil arrangement has a distinct effect on eddy current measurement. In 

general there are three possible coil arrangements namely encircling for tubes and rods, 

internal axial for tubes and surface scanning. The latter are used for testing surfaces which are 
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either plane or have very small curvature within the region directly below the cross section of 

the coil. For enhanced sensitivity, transformer probes, which have separate transmitting and 

receiving coil windings may be used if: deep penetration of eddy currents is required in the 

material under test. Prior to any eddy current testing , a cahoration should be made with a 

standard sample. If it us free from defects, the relationships between the impedance of the 

components of the coil, the frequency and the electrical and magnetic properties of the 

material can often be obtained theoretically. 

The essential parts of eddy current equipment are the exciting oscillator, the measuring 

circuit, usually an AC inductance bridge, and the detecting coil (or coils). The object is 

scanned either manually or. with the aid of a mechanical device. Eddy Current testing 

determines the components of either the impedance of the detecting coil or the potential 

difference across it. Most applications require determinations of only changes of impedance, 

which can be measured with a high degree of sensitivity with an AC bridge (Fig. 2-1). The 

principle of operation of most commonly used eddy current instruments is based on Maxwell's 

inductance bridge. In the bridge circuit, the impedance components coLJ and R3 are compared 

with the known variable impedances, It. and coL. connected in series and forming the 

balancing arm of the bridge. If Rl and R2 are the ratio arms, the balancing condition is given 

by, 

(2.2) 

where, Rl and Rz are fixed resistors and equal to one another while inductance L. and 

impedance It. are variable. 
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It must be noted that test circuits vary greatly depending upon applications. Some 

instruments also incorporate lift-off compensation, which essentially reduces the sensitivity of 

the signals to lift-off variations. This reduction in sensitivity is achieved locating the frequency 

at which the sensitivity to lift-off is a minimum. The input EMF to the bridge circuit is an AC 

oscillator, often variable in both frequency and amplitude. The highest sensitivity of detection 

is achieved by properly matching the impedance of the probe to that of the measuring 

instrument. Thus, with a bridge circuit which is initially balanced, a small variation of the 

probe's impedance upsets the balance and a potential difference appears across the detector 

arm of the bridge. The detector arm of the bridge circuit takes the form of either a meter or a 

IINDICATOR 

Fig. 2-1: A typical bridge circuit 
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storage cathode-ray oscilloscope, a phase-sensitive detector, a rectifier to provide a steady 

indication and, usually, an attenuator to confine the output indication within a convenient 

range. Many detectors also incorporate storage facilities. Instruments like the lIP4194A 

Impedance/Gain Phase Analyzer also incorporate communication features that allow the 

instrument to communicate with other instruments using the lIP-ill protocol (IEEE 488.2 

standard), in addition to a multiple feature detector arm that allows the data to be viewed in 

more than on form.. 
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3. THE TESTBED SCANNING SYSTEM 

3.1 The Scanning Process 

Eddy Current scanning is highly sensitive to the relative position of the probe to the 

component (or the objece) under scan. The signal strength is dependent on the relative tilt of 

the probe to the object's surface being scanned. The signal is best when the probe is oriented 

perpendicular to the surface being scanned. The signal is also dependent on the lift-off of the 

probe from the surface. To scan a surface the probe is held at a given point on the surface and 

measurements taken. The measurement (usually an impedance value) is very sensitive to the 

orientation of the surface w.r.t the probe tip; For the best possible detection of flaws the probe 

should be preferably, perpendicular to the surface at the scan point. Maintaining the 

orientation and the liftoff at all the scan points (when a subset of the object's surface is 

scanned) is crucial if one seeks to detect small flaws (say, of the order of 10 - 30mils). If the 

probe orientation and lift-off vary as the scan proceeds over the surface then it becomes 

difficult to separate the changes in impedance that occur as a function of liftoff from the 

changes in impedance due to the presence of the flaw. Thus, the flaw is effectively hidden in 

the data and it is a complicated task to extract the flaw signal from the scan data in such cases 

where the lift-off and orientation parameters are not maintained at a constant value. The task 

2 Component. object or sample all refer to the object being scanned by the probe and are used 

interchangeably. 



13 

of maintaining a constant lift-off and a constant orientation of the probe, is a relatively easy in 

the case of scans over flat plates, but becomes a non-trivial problem if the scanned surface has 

a geometry that incorporates second order or higher curves. As is evident positioning of the 

probe while maintaining a strict control over the above two parameters is not an easy task in 

such cases and calls for a good positioning apparatus. Precise control of the probe in such 

cases, in a laboratory environment is achieved by using motors (usually micro-stepped 

steppers) to achieve fine scan resolution. 

Some common scans that are performed include, a ''raster scan" where the probe 

motion is similar to the electron scans on the television. This is also similar to the one-way cut 

executed on milling machines. Here, the probe traverses the surface, collecting <tata, in a 

constant direction. Once a line of scan is complete the probe moves back to the start point of 

the current line and then steps to the next line.(in the perpendicular direction}. Thus, the data 

collected can be considered conceptually, to be a two dimensional matrix of m x n points with 

say, m lines and n points in each line (Fig. 3-1). 

• 
. _-------_._---_ .. _- • 

------------- -----------
• 

( • 
.. ---_ ..... -----------_._--

• 
( 

Fig. 3-1: A raster scan (m = 7 and n points per line) 
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Thus a "surface of points" is obtained and corresponds to the surface scanned. 

Depending on the special nature of the geometry the scan may be circular etc. In each case the 

parameters that affect probe impedance are to be controlled and maintained at a known value, 

so that the data is principally affected by the flaw alone. 

In the laboratory environment, the probe's positioning can be effected by motors 

whose motion is controlled from a programmable device (most stepper motors come with a 

manufacturer provided controller and a Motor driver). In many cases the place of the 

programmable device is taken by a dedicated computer running a custom developed scanning 

software that positions the probe or moves the probe while collecting the data. The sequence 

of Motor motion etc. is all determined by the software (program) written to scan the specific 

object's.surface as desired by the experimenter. In the case of say, a raster scan over a flat 

plate, the program (or programmer) specifies the Motor to move so that the probe travels 

along a straight line. The program specifies the step size, the place to stop and make a 

measurement etc. and the point at which to step on to the next parallel line (The initial lift-off 

and orientation once set are not affected appreciably in this scan as the motion is only in a flat 

plane). 

As is evident the scanning process tends to increase in complication as the surface to 

be scanned becomes more complicated in its geometry. It is precisely this problem that is 

sought to be addressed in this work. The following chapter gives a description of the 

hardware components that work in tandem to execute a scan ("scan realization"). The next 

chapter descnoes the problem hinted at briefly at the beginning of this paragraph. 
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3.2 The Scanning Hardware 

This chapter describes the hardware arrangement that aids in the actual execution of 

the scan. The Eddy Current (EC) Test Bed Station (called ECTB) serves as the hardware 

platform for the scan execution. It is built around a computer controlled measurement 

workstation and is designed to achieve precise, repeatable EC measurements on parts with 

even 3D geometry. The three main components of the scanning hardware comprising the 

ECTB are, 

• A positioning system that actually positions the probe over the surface of 

the object being scanned. 

• A data acquisition unit that performs the functions of exciting the probe 

coil and collecting the impedance value at that point. 

• A dedicated computer functioning as a controller. The computer is an in 

loop computer that commands the actual task sequence, collects the data 

and helps in data processing(in an off-line mode). 

Fig. 3-2 provides a schematic of how the data are linked together. 

The following sub-sections descnoe each ~f the above scanning hardware components 

in greater detail. 

3.2.1 The Positioning Hardware 

The positioning hardware consists of two sets of four axis machines, each having its 

own Motor controller. The Motor controllers can function either in a stand alone mode or in a 

remote mode. Each of the Motor controllers can control upto four stepper motors. Each of 
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the axis is controlled by a stepper Motor The stepper motors have a position feedback 

mechanism (an encoder3
) that allows the corresponding controller to function in a closed loop 

mode. Thus, each command (command steps) is checked against the steps moved by the 

Motor and the controller corrects any error. Section 3.2.1.1 provides more detail . 

., - - - .. 

Fig. 3-2: scanning Hardware - components 

3 Optical encoders. 
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3.2.1.1 The Motor Controller 

The controllers are Compumotor's, "Model 4000 Motion Controllers controllers™". 

Each controller can function in an oft:line stand alone mode where it executes a program 

previously downloaded to it by a serial or a parallel link (RS 232-C or GPID) (Fig. 3.3). The 

Motor controller has the following features: 

• Menu-driven operation. 

• A BASIC like motion control programming language that works from the 

controller and another command driven language that is used to control the 

controller from a remote site. 

• A teach mode using analog joy-sticks or operator panel jog sticks. 

• A non volatile battery backed RAM (16K - 64K) 

• Optional contouring and IEEE -488 standard features. 

The controller is a microprocessor based controller running a M68000-12Mhz processor. The 

controller has separate drive and encoder ports. The controller, as described above, allows 

command execution in a downloaded mode or in an immediate execution mode. In the down 

loaded mode the program commands are entered on a computer (a remote unit) and then 

down loaded to the controller via an RS-232C or a GPID link. These commands are defined in 

the manufacturer provided custom programming language, called the MC4000 Command 

language. Commands may also be sent one at time The latter feature has the advantage of 

allowing the computer to track the motion etc. but suffers from the disadvantage of tying up 

the computer (This can be overcome if the operating system allows process multi- threading, 
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as in UNIXIWIN, NT, so that one process does not tie up the computers resources - as in 

DOS and WIN 3.1}.The remote ~ommand language provided is the X command language. 

The X command language allows interactive operation of the individual axis in an independent 

manner, as though the four axis were controlled by four individual controllers, tied through a 

daisy chained serial link. There are no global commands. 

3.2.2 The Hardware Arrangement 

The probe is mounted on one of the machines and the object is either mounted on the 

other (if physical considerations permit such a mounting) or is placed on the underlying table 

surface. The probe and object arrangement is as shown in Fig. 3.4. This arrangement lends 

each of the entities (probe and the object) the maximum possible degree of freedom of motion. 

The probe and object machines are controlled by their individual controllers, that are in turn 

controlled remotely by a dedicated computer that acts as the GPm controller for the whole 

system The computer also controls the data acquisition instrument (The HP4194A). All the 

instruments run the GPm protocol providing a standard communications interface. 

3.2.3 The Data Acquisition System 

The data acquisition system show in Fig. 3.2 is an HP4194A 1M Gain/phase Impedance 

Analyzer. It is a sophisticated instrument with the ability to acquire, display and analyze the 

data, being controlled from the control panel or from a remote instrument. It runs the HP-m 

communication protocol which agrees in standard to the IEEE 488.2 instrument protocol. The 

Impedance analyzer acquires the data in an analog form and internally process the data and 
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stores it its internal registers in a digital format. The data is available on demand to remote 

instruments, controllers etc. It has features for multi-frequency scans and facilities to control 

the averaging and integration times for each scan data that is obtained; There are 3 integration 

times (Small, Medium and Long) and the number of averages can range from 21 to 2256. 

The HP4194A TM feature eleven Impedance and four Gain-Phase measurement 

functions and covers a frequency range of 100 to 40MHz for Impedance, and from 10Hz to 

100MHz for gain-Phase. The output level, with an adjustable dc bias level of ± 40V, ranges 

from 10mV to IVrms for Impedance and from -6SdBm to + ISdBm for Gain-Phase. The basic 

accuracy is 0.17% of impedance and 0.1 dB/O. SO for Gain-Phase. 

The 4194A's menu-driven software uses eight softkeys located next to the menu are of 

the CRT (Cathode Ray Tube). This allows, the inst~ent to be programmed from the front 

panel Measurements inside the 4194A is stored as complex data. Using this storage technique 

and the math processing capabilities of the 4194A, several display formats may be derived 

from the same trace data and changes in scale may be made without repeating the 

measurement. 

3.2.4 The Instrumentation System Controller 

The Controller is a dedicated IDM PC compatible computer controlling the positioning 

and data acquisition systems. The controller functions in-loop, essentially in a feedback mode 

and verifies each scan state for its validity. The instrument interface used is the National 

Instrument's NI-488.2TM GPID interface. 
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Thus far, the controller utilized the MS-DOSTM and the WIN. 3.11 TM operating 

systems. Since these operating systems are not multi-tasking systems, the computing resource 

is essentially tied up while the system is in operation (scanning and collecting data). Further, 

these operating systems also do not provide good process security and hence have a tendency 

to crash the controller in case the individual software malfunctions. In order to overcome 

these limitations, the controller software is being ported over to the new 32 bits WINDOWS 

NTTM platform, which provides multi-threading and better process security. It is better suited 

to handle distnouted client-server computing, towards which the automation system could 

move. Further, it provides upward compatibility to software developed under WIN 3.11 and 

MS-DOS, thus easing the transition to a more powerful system 

3.3 Need for Automation 

The above chapters provided a background to the main focus of this work. As was 

seen, the Eddy Current scanning process is very sensitive to variations in its lift-off and the 

signal can also vary depending on the orientation of the probe to the object surface. The probe 

signals are at their best when the probe is perpendicular to the object. If this is not the case, 

the probe signals will vary depending on the orientation of the probe to the surface. Thus, a 

strong background component is introduced into the overall signal data. This background 

inclusion makes the immediate detection of flaw signals a more complicated task. Hence the 

experimenter must take care that the positioning system attempts to place the probe in a 

position as perpendicular to the object as is possible. In cases, where the object scanned is a 
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flat plate or a cylinder etc. programming the probe motion is a relatively simple task. Here, the 

programmer (or the experimenter) is intuitively using the symmetric nature of the object 

geometry to determine the motions that are required to position the probe. It is immediately 

clear that this is a non-trivial problem in the case of an object possessing a complex cmvature 

and that the use of intuitive ideas may not be always feasible in accurate positioning. 

Developing a software that is valid only for the particular geometry at hand results in a 

process where each time a different object is to be scanned, a new software is developed. This 

results in developmental time overheads. 

The above factors, thus motivate the need for more detailed information regarding the 

object geometry. This information can be obtained from a standard coordinate measuring 

machine (CMM) that scans the object surface to provide a data file containing the object 

geometry information. This provides a way to handle the accurate geometry information that 

the probe requires in order to be positioned petpendicular (or at any known orientation) to the 

object. It is also evident that scanning such a complicated object is more efficiently handled by 

a software that utilizes the coordinate information to automatically position the probe. 

The above factors are essential in motivating the need for an automated scanning 

system, that provides a structured and standardized method of setting and executing scans. 

The following chapters descnl>e the development of a system designed to achieve these 

objectives. 
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4. AUTOMATION OF THE TESTBED SCANNING SYSTEM 

This chapter descn"bes the testbed system components, first adopting a black box 

approach. Once the overall relationship between the individual components is established, we 

go into the functioning of each of the components and establish their need and their 

contn"bution in automating the scanning process. Section 4.2 provides a block diagram view of 

the various subcomponents that go into the eddy current scan realization process and 

discusses the relationship between the sub-components in the scan realization module. 

4.1 Inspection Process - System Components 

Figure 4.1 establishes the relationships between the various components that 

contn"bute. to the Eddy Current Flaw detection and· evaluation process. It must be noted that 

the flow of process shown, does not imply a rigid relationship, but rather serves to establish 

the conceptual relationship between the various components that go into the inspection 

process. For example subcomponents in stage VI (discussed in the next section) rely on stage 

lltoo. 

(1) The first step in the inspection process begins with the acquisition of geometry 

data into the computer. This data is either the result of a part designed in-house or 

is obtained from a part that has already been designed and manufactured. The 

geometry if designed is usually done with the aid of a workstation. commercial 

packages such as I-DEAS™, a solid modeling package, are typically used in 

designing and developing the part or object model This software model is then 
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ported to the next stage where it is input into a Computer Aided Milling Machine 

Manufacturing package (CAM). Alternatively an integrated package that includes 

CAD (Computer aided design) and CAM can be used4
• This has the advantage of 

avoiding problems associated with porting files from one computing platform to 

another. 

I:':::~~:=:I. 

Fig. 4-1: A system layout of the eddy current inspection process 

4 A CAD/CAM system is an integrated software tool that prepares engineering design details, 

finished blue prints and NC programs. The latter are used to run the CNC (Computer Numerical Control) 

machines that control the part manufacturing etc. They often include visualization user interface tools. 
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(II) This is the scan generation stage. In this stage, the component designed in stage 

I, is utilized in obtaining a probe path over a desired portion of the component 

surface. Due to the perpendicularity constraint imposed in the scanning process, 

the motion of the probe is not unlike the motion of a milling machine tool. It is 

because of this similarity that a milling machine package was chosen to aid in 

developing a desired probe path. The advantages of using this approach are, 

• Provides visual feedback which is quick and intuitively more easier. 

• Scan area selection is accurate and also easily modified if required. 

• Provides the coordinate positions of the tool (also corresponds to 

the desired probe positions) that can be used to determine the probe 

motions at the scan execution stage. 

(ill) Once the probe motions have been generated by the CAM, it is now possible to 

branch into either stage ill, V or VI depending on the particulars of the situation. 

If the component has already been llanufactured and the geometry data available, 

then stage ill and IV are essentially redundant. It is then possible to proceed 

directly to the scan execution stage (stage VI). Either way, a POD (Probability of 

Detection) Model of the flaw inspection can now be obtained after stage I and II. 

stages V and VI (Fig. 4-1) are essentially independent of each other. stage VI 

(the scan execution stage) is however dependent on stage ill and IV. In stage ill 

the part is manufactured (if not already manufactured) and then the manufactured 

component or object is scanned using a coordinated measuring machine (CMM­

stage IV) The latter process verifies that the object has been manufactured as per 
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the design. A CMM verification can also done on already-manufactured objects. 

This provides a valid feedback mechanism on object geometry. The next stage is 

the scan execution stage. 

(IV) In stage VI, the scan is actually executed on the testbed. The scan execution (or 

the scan realization) stage utilizes the coordinates generated in stage II by the 

CAM. The scan execution results in data being acquired over the desired 

surface(selected in stage II). The scan data (obtained from the probe) is then post 

processed to remove noise, and any data pattern that reflects the effects of the 

background. There are two main components in the scan realization stage, 

namely, 

• A post-processor stage where the coordinates of the probe motion 

generated in stage II, are processed so that the individual motion 

components (translation and rotation) of the probe (and/or the 

object) are determined. This determination is essential as the 

positioning hardware cannot execute all the possible probe motions 

that show on the CAM path generation. (stage II). A new set of 

parameters indicating the actual probe (and/or object) motions is 

created. This intermediate stage results in the creation of a '))Ost 

processor". 

• The post processor is utilized by the machine interface software, to 

control the sequence of machine motions and the acquisition of 

scan data. 
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• The postprocessor is utilized by the machine interface software, to 

control the sequence of machine motions and the acquisition of 

scan data. 

The following section, concentrates on stage VI (testbed) and explains the sub­

components of that stage. 

4.2 Scan Automation Components 

There are four principal modules that are involved in the scan realization stage (stage 

VI). As seen in Fig. 4-2 these include, 

• A scan generation module 

• A testbed post processor module 

• A post processor motion visualization module 

• An interface software 

4.2.1 The Scan Generation Module 

Consider Fig. 4-2. The CAD/CAM module in Fig. 4-2 is the same module that was 

discussed in the preceding chapter. Given a data of the object whose surface is to be scanned 

by the probe, this module helps in generating a probe path over the surface to be scanned (in 

software). The presence of visualization tools, aid in easy selection of the probe motion and in 

arriving at the optimum number of scan lines etc. that are required for a good scan over the 

object surface. A milling machine CAM package was used and the tool positions were 

interpreted as the probe positions. 
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SCAN 

Fig. 4-2: A flow diagram of the scanning process. 

Once the desired probe path is generated on the CAM station, a coordinate file called 

the NC intermediate (NCI) file is generated. This file describes the coordinates occupied by 

the probe's tip and center in 3D space at each of the scan points. A typical NCI file is shown 

in Fig. 4-3. The headers of the NCI file are shown bold. The parameters corresponding to the 

headers follow in a line directly below (Please see Fig. 4-3 which shows a representation of 

the NCI file). The headers represented by the numbers "11" are the scan points. The eight 

parameters that follow below the header represent the six coordinate positions, and a velocity 

and scan point status indicator (shown double underlined). The numbers are standard and pre-
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double underlined}. The numbers are standard and pre-defined by the manufacturer. For e.g., 

12 represents the Start of scan, 22. the}vfiddle of scan and .ll the End of scan. Thus the NCI 

file provides the raw data that describes the motion of the probe over the object's surface in 

3D space. 

1001 
o 1 1 1 1 1 0500040. 0 O. O. O. O. O. O. 02 

<Header - Start of File> 
<Parameters> 

11 
O. O. 0 
(probe center) 

11 

<Header - Five Axis> 
0.1142028 -0.9978952 6.2700608 40. 12 <Coordinates> 

(probe tip) (vel.) (state _of_scan) 

-0.0048063 2.4906220.36650920.1567081 1.64216976.6574981 40. 22 
11 

11 
75.92571 75.70678 -0.24712 75.86059 76.7949 6.0085940. 22 
11 
75.9450077.98028 -0.66548 75.95914 79.18902 5.5683940. J2 

1003 
O. O. O. 

< Header - End of File> 
< Home Position coordinates> 

Fig. 4-3: A Typical NCI File 
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4.2.1.1 NCI and Probe kinematics 

It must be pointed out that the six coordinate positions descnoed by the NCI file 

provides a complete description of a vector in 9{l space. Further, the probe path generated is a 

five axis motion data. This latter fact implies that the set of all probe motion includes at most 

three translations along the three principal axis (X, Y, Z) and two rotations about any two of 

the principal axis. For example, a motion to reach a given target position might be composed 

of (say) 10mm along (an already defined) X axis, 4mm along Y axis, 7mm along the Z axis 

and 12° rotation about X axis and gO rotation about Y-axis. Thus five parameters are to be 

known when ever a target position is to be reached from a given current position. Thus, the 

NCI specifies the ("current" and ''target'') probe positions. A post processor determines the 

actual specific translations and rotations required to get from "current" to ''target'' position. 

4.2.2 The Testbed Post Processor Module 

The actual design and development of the post-processor is descnoed in the next 

chapter, where a brief introduction to the theory of kinematics (forward and inverse) is also 

provided. The post processor as explained generates a translation and rotation parameter file. 

These parameters descnoe the probe and object motion. To test the validity of the probe and 

object motions that the post processor derives from the NCI file, a visualization program was 

utilized to actually see the path that the probe takes in going from the "current" to the ''target'' 

position. This visual aid helps in detecting motion accumulation errors, probe and object­

surface interference during the motion. It actually confirms (visually) that the probe is indeed 

in the desired target position. 
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4.2.3 The Post Processor Motion Visualization Module 

This simulation developed on a Silicon Graphics™ selVes as a feedback module that 

checks to see if the individual motions of the probe and object result in the probe correctly 

attaining its target position (as given in the NCI file). Since this module displays the motions 

generated, it conceptually gives rise to the decision block (shown in Fig. 4-2). It allows any 

possible errors to be flagged at this stage much before the actual motion is executed on the 

hardware, preventing any potential mishaps (probe or object surface damage). 

4.2.4 The Interface Software 

This is the software that executes the individual motions that comprise a scan and 

coordinates the data acqUisition process. This module utilizes the post processor as its input. 

Conceptually it is shown in Fig. 4-2 in one module along with the hardware, as Its design and 

functioning are tied with the modeling of the hardware. 

In snmmary, the above discussion thus far, focused in a top-down model on the Eddy 

Current automation process, where we proceed from a bird's eye-view of the inspection 

process to examining each of the inspection modules in some detail. An introduction to the 

two main components of the scan automation process (section 4.2.3 and section 4.2.4) was 

provided. They are the main focus of the next chapter. The following chapter discusses probe 

kinematics problem and the design and implementation of the post processor module. 
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5. DEVELOPMENT OF THE TESTBED POST-PROCESSOR 

The preceding chapters provided the background and motivation for this work. They 

discussed the definition of automation, established the need for automation and described the 

Eddy Current Inspection process. Stage VI as described, is the scan realization stage which is 

the experimental module in the inspection process. This chapter and the following chapter 

discuss the ''motion automation" of the scanning system, that executes the scan (generated 

and simulated visually in stage IT and confirmed again by simulation of the post processor 

module). The design and development of an ''inverse kinematics algorithm" that is at the core 

of this automation project is presented after a brief introduction to kinematics theory. 

5.1 Kinematics - Basic Theory 

This section introduces the terminology and the background which are required to 

develop an abstract model of the physical hardware to realize the scans conceived in the CAM 

(NCI file). 

5.1.1 Kinematics 

Definition: 

Kinematics: It is the science of motion which treats motion without regard to the 

forces that cause this motion. It deals with the study of position, velocity, acceleration and all 

higher order derivatives of the position variable( s). At the simplest level a complete 

description of the location of a body in three dimensional space requires the knowledge of two 

important factors: position, and orientation. 
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There are two fundamental problems in kinematics (as shown in Fig. 5-1). 

• Direct kinematics or forward kinematics. 

• Inverse kinematics. 

In its simplest form, forward kinematics deals with the prediction of the final state of 

an entity (say a robot arm etc.), if certain motion operations like translation and rotation are 

performed on the entity. 

Joint angles. 
Arm 

coordinates 

Joint angles. 
Arm 

coordinates 1-__ ----1 

Position and 
orientation of the 1-----__ -1 

end arrector 

_______ J 

Fig. 5-1: Representation of direct and inverse kinematics 

One of the most useful area where this technique finds application is in the area of 

robot kinematics. Here an arm may have multiple links. In that case, the final position is a 

function of the state of each of the individual links, i.e., since the links of a robot arm may 

rotate and/or translate with respect to a given reference frame, the total spatial displacement 

of the end-effector is due to the angular rotations and linear translations of the links. A 4x4 

homogenous transformation matrix to describe the spatial relationship between two adjacent 
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rigid mechanical links is used6
• We do not go further into this, as the technique of interest in 

solving our problem is the inverse kinematics technique; (for further reference on forward 

kinematics see [CRAIG] and [LEE]). 

5.1.2 The Inverse Kinematics Problem 

Problem statement: Given the position and orientation of the end-effector of the 

manipulator, calculate all possible sets of joint angles which could be used to attain this given 

position and orientation. 

Inverse kinematics is not as straight forward as the forward kinematics. This is 

because, the equations that describe the problem are non-linear in nature, and often due to the 

second (or higher order) equations that describe the motion space multiple solutions present 

themselves. In the case of a complex (robot) arm. with multiple links, there may not be an easy 

closed form. solution. In case no solutions exists, then it implies that the manipulator may not 

attain the desired "target" position, ie., the target is not present within the work area of the 

manipulator or end-effector. The presence of multiple solutions can also be explained by the 

fact that there simply exists more than one way to get from one position in a given 3D space. 

To define and manipulate mathematical quantities which represent position and 

orientation we must first define a coordinate system and develop conventions for its 

representation. This is shown below. 

6 This method by Denavit and Hartenberg [1955] reduces the direct kinematics problem to finding an 

equivalent homogenous matrix that relates the "hand coordinate frame" to a "reference coordinate 

frame" [CRAIGj. 
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5.1.2.1 Reference Frames 

Consider Fig. 5-2. The point P is descnoed with respect to the frame {F} 7. This 

description requires three quantities and is given by vector FP. Now the location of some 

point Q on this body is made with respect to P. Since P and Q are present on the same body, 

then Q is fixed with respect to P (thus despite any motion of the body w.r.t {F}, P will view Q 

as being stationary only). Because of this view ofQ w.r.t P, it is convenient to represent the 

location ofQ w.r.t P by a BODY-ATTACHED frame {B}. Thus, Q as seen from P is given 

by the vector PQ. Their vector description is now descnoed. Let the frames, {F} and {B} be 

represented by the 3 principal unit vectors (fb fz and f3) and (bh bz and b3) 

Fig. 5-2: Reference frames 

7The format {X},is used throughout this chapter to denote frames. 
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respectively. Then the point P is given by the vector FFP = Pift + P2f2 + P3f3 and the vector 

coefficients that represent the distance magnitude of the points (P and Q) from their respective 

fr 
.. 8 

arne ongms. 

5.1.2.2 Position and Orientation 

Now, position is usually a 3 x 1 vector. For e.g.: FP = [;:] and PQ = [U' To 

descn"be the body shown in Fig. 5-2 completely, we need not only the position but also its 

orientation. This is achieved by describing the BODY-AITACHED frame {B} relative to 

frame {F} to get a complete description of the object. There are 3 principal vectors in frame 

{B} namely bb b2 and b3 of unit magnitude. As seen from {F}, the tip (the arrow end in Fig. 

5-2) of each of these three vectors can be expressed in terms of {F}. When written in the 

coordinate system of {F} the vectors are expressed as (3 x 1 vectors) Fbh Fb2, Fb3 • It is then 

convenient to stack up these vectors as the three columns of a 3 x 3 matrix expressed as, 

FROTH = [Fbi Fb2 Fb3 ] = r21 r22 r23 (say). [
rll r22 r33] 

[h] [rll => J2 = r21 

.h r31 

r22 

r22 

r32 

r31 r32 r33 

r33] [b ] [rll r23 b: => r21 

r33 b3 r31 

r12 

r22 

r32 

8 The superscripts F and B indicate the corresponding frames of reference 

(5.1) 

(5.2) 
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The matrix FROTB is called a rotation matrix. It represents the orientation information. In 

summary, position is represented by a vector and orientation by a matrix. 

5.1.2.3 Transformations 

It is often advantageous to descnbe the same quantity in terms of different frames of 

reference. This requires the use of mappings to change descriptions. Mappings involve, 

translated frames, rotated frames or a combination of the two. The mapping technique is 

illustrated with reference to Fig. 5-3. Consider the position ofQ in Fig. 5-3. The location ofQ 

w.r.t {F} is given by a vector FQ. Now by vector addition, 

(5.3) 

(5.4) 

thus, eqn.(5.2) becomes, 

(5.5) 

(5.6) 

The determination of the unknown coefficients Xl , X2, and X3 is done by the following 

method using the innerproduct of two vectors. This yields the coefficients, 

(5.7) 

9 Innerproduct of two vectors A and B is given by A • B = /AIIB/cosa, where a represents the angle 
between the two vectors A and B. 
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The determination of the innerproducts bx • fx requires the orientation knowledge of 

{B} w.r. t {F}. This knowledge is also present in the rotation matrix shown in eqns. (5.1) and 

(5.2) and can be used to determine the coefficients, Xl , X2, and X3. This latter technique is 

equivalent to the above technique but allows a more compact way of expressing the above 

steps. This is shown below. 

z 

z 

vector FQ 

fl X 

Fig. 5-3: Transforming the frame description 

The equation, FFQ = FFP + BpQ consists of two quantities expressed w.r.t two 

different frames. To be actually summed up it must be expressed in terms of one frame of 

reference, so that the corresponding quantities can then be summed.This is done by using (5.2) 

and expressing BpQ solely in terms of {F} (shown as FpQ). Thus, 

FpQ= FROTB BpQ 
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[
Xl] [PI] [r11 r12 rI3]-1 [q,] 

=> X2 = P2 + r21 r22 r23 q2 

X3 P3 r31 r32 r33 q3 

(5.8) 

5.1.2.4 Basic Concepts o(Motion in Space 

For mathematical understanding, motion is divided into two components, namely, (1) 

translation and (2) rotation. 

To go from a given position, (called here, the "cu"ent" position) to a desired position, 

(called here, the "targef' position) we need to use a combination of the above two motions. 

The exact type of motion actuany employed is dependent on the positions and the'freedom of 

degrees available to the given object undergoing the motion. Given the "current" and "target" 

positions, the science of determining quantitatively the exact motion components is called 

''Inverse kinematics". As mentioned previously multiple solutions or no solutions may exist. 

Some important properties of motion are highlighted below: All the below properties apply to 

motion in 3D space too. 

• Translation is commutative. This implies that the order of motions does not matter. 

If x-axis motion is followed by y-axis motion, then the final position reached is the 

same even if the order is reversed. 

• Rotation is not commutative. This implies that if an entity rotates, first along the x-

axis followed by a rotation along the y-axis, then the position reached may not be 
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the same if the order is reversed. This is seen by the fact that rotation IS 

represented by a matrix and matrix multiplic~tion is not always commutative. 

• Given a translation motion component and then a rotation motion component, the 

two are commutative. This implies that an entity may translate and rotate or vice-

versa. 

5.2 Symbols And Notations 

The previous section described the basic concepts of kinematics that lay the ground for 

the development of the post processor algorithm. This chapter summarizes the symbols and 

notations introduced earlier and to be used in the succeeding section. 

• Vectors are represented in bold and uppercase letters. Only the unit vectors are 

however represented in bold and lower case; ; e.g., PQ, el, el etc. 

• Reference frames are represented by the notation {REFERENCE FRAME}; e.g., a 

frame A is represented as {A}. The origin of any {A}, is denoted by A 

• The notation Ap implies that the vector P is descnoed with respect to {A}. 

Alternatively, the equivalent notation AP is also used; in the latter case the 

reference is implicit. Here, A refers to the origin of {A}. 

• Scalars quantities are not in bold case and may be shown in lower case or upper 

case; e.g., p, q , CC, CT etc. 

• The subscripts 1, 2 and 3 represent the coefficients of the vector along the three 

axis x, y and z respectively; e.g., pI, P2 and P3 belong to the X, y and z axis .. 
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• The rotation matrices are denoted by either ''ROT'' or by the compact notation 

~:<angle). 

p = 1,2,3 

• The variables representing the target state have a prime (') attached to them to 

distinguish them from other variables 

5.3 Design of the Motion Automation Algorithm 

Overview: The post processor is a software module that contains the actual motion 

components that constitute an entire scan (generated in the CAM and contained in the Ncr 

file). As was explained earlier, the hardware needs to be given the basic individual motion 

segments and hence the post processor serves as a communication layer (between the 

software scan generation stage and the hardware realization stage) that contains within it a 

knowledge of the hardware and also an understanding of the NCr data. The design of the 

motion automation algorithm is the design of a post processor for the given hardware. 

This section proceeds with the design, by first descnoing the intuitive idea behind the 

algorithm and then proceeding to present a formal mathematical model of the algorithm. The 

next chapter descnoes the software implementation of the mathematical model in abstract 

terms. 

5.3.1 A method to Enhance the Scanning Capability 

A smaller representation of the hardware schematic (shown in chap. 3) is again shown 

in Fig. 5-4. Now, the scans conducted before the development of this algorithm were limited 
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to scanning in a flat plane over a given surface and to scanning over a given part of a circular 

object, particularly the pin (the object geometry is shown in chapter 7). The motion control 

programs developed to conduct such scans took advantage of the object geometry simplicity 

and presence of any symmetry [Bugaru A]. 

These programs as is evident, could not be reused and thus each time a new object 

needs to be scanned a new program must be written to address the needs of scanning that 

particular geometry. Further, in the case of complicated geometries, this is a non-trivial task 

with lot of developmental time overhead. Also as can be seen in Fig. 5-4, the probe can rotate 

only about one axis (the x-axis). 

This imposes the limitation that the probe can conduct only such scans that do not require the 

probe to rotate about tWo principal-axis (say x-axis and y-axis in Fig. 5-4). But, it can be seen 

that although the probe cannot rotate about the y-axis, the object or sample to be scanned can 

rotate about the y-axis. This presents an interesting opportunity whereby the object is rotated 

to compensate for the probe's lack of freedom of rotation. 

The above fact implies that it is possible to enhance the utility of the hardware so that 

the hardware can now execute scans that are more complicated then simple flat scans or scans 

requiring probe rotation along only one axis. This allows the hardware to utilize more than 4 

axis (three translation and one rotation axis) so that effectively, it can place the probe on the 

object, as per the position given by the NCI file. Thus scans utilizing 5-axis of motion, 

generated on the CAM, can be executed on the hardware. 
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Y-AXIS 

REFERENCE FRAME Z Lx 
Y 

Fig. 5-4: Hardware schematic representation 

Now, an algoritlnn that detennines the translation and rotations required of the 

probe lO
, and transfers to the object all motions that cannot be realized by the probe, (due to 

lack of freedom of motion) provides in general, 

• a means to enhance the scanning capability of the hardware by utilizing the 

freedom of motion of the object 

• a way to break down any complex scan into its constituent motion components. 

This allows different types of scans to be automatically executed on the hardware, 

thus automating the scamring process and reducing or eliminating any object 

specific motion control in the software. 

10 In order to go from "current" to "target" position or from some nth step to n+lth step. 
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5.3.2 Motion from nth to n+1th Step 

The below subsection explains the conceptual idea behind the algorithm design by 

means of two simple examples. 

5.3.2.1 Simple Probe Motion and Object Motion 

Consider a motion fonn step nth to n+lth step, as shown in Fig. 5-5. Here, to get 

from step nth to step n+lth, the probe undergoes translation, which moves its "center" from 

"current"(CR) to "target"(TR) position. At the position "TR" it undergoes rotations about the 

x-axis and the y-axis and its "tip" is then aligned along with the target position. In Fig. 5-5 the 

probe undergoes two rotations (P x and P y) to align with the desired position. At this position 

the probe is perpendicular to the object surface at that point. 

CENTER 

z 

y 

(CR) 

-----------... 

x 

---~ 
TRANSLATI6N-----_ (TR) 

TARGET 
POSITION 

Fig. 5-5: Motion from nth to n+lth step. 
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The concept of object rotations is explained below with reference to 2D (9{2) space. Here, in 

this example, the probe is restricted from rotating and the object is made to rotate (to get the 

target position on the object) to the probe. 11Iis principle applies in 3D space too. In Fig. 5-6 

the probe center is translated to the desired position., but the object is rotated and translated 

to the position of the probe tip (the position "INTR"). Notice that the object in Fig. 5-6 must 

rotate by the same angle (in magnitude, but not necessarily in direction) as the probe would 

have, if allowed. However the object's rotation about the point "0" resulted in the desired 

position not being directly under the tip of the probe. Hence, to compensate, the object 

needed to be translated too to get the desired position under the probe tip. This example 

illustrates that if the object rotates, translation too varies. This is condition is illustrated 

mathematically in the algorithm design. 

CENTER 

------..---
PROBE 

TRANSLATION 
(1) 

INTR 
TIP 

Px 

./ 
/' 

./ 

INIU ~p," OBJECT -? ROTATION 
INTR //, (2) 

/ , 
/ 'A ~ OBJECT \,) 

OBJECT 
TRANSLATION {OJ 

(3) 

Fig. 5-6: Probe and object motions 
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5.3.2.2 Algorithm Design 

This section describes the modeling of the scanning hardware. There exists three 

laboratory frames with respect to which all motion is referenced. There are two entities called 

the "probe" and the "object" (the scanned object). The three reference frames are, 

(1) A fixed frame (F), serving as the universal frame. This is the laboratory frame. It 

has three mutually perpendicular unit vectors given by rei, rel, and rel lying along 

the three principal directions X, Y and Z respectively. These directions lie parallel 

to the motion of the hardware axis show in Fig. 5-4. 

(2) A probe attached frame {C}. This is a body attached frame. Its unit vectors in the 

three principal directions are given by Pet. Pel and Pel. The probe rotates about its 

X axis (vector Pel). Also, Pel II r~l and this relationship is invariant through the 

scan. The probe frame (C) is thus conceptually obtained from the lab. frame (F) 

by the translation vector Fe and the rotation <p around reI. Thus we represent the 

relationship between the probe frame and the fixed frame mathematically as, (Pea) 

= ~«I>~ rep V a, II = 1,2,3 and [11>]. = [~ 

rotation matrix for rotations about the X axis. 

o 
COS(j) 

sin (j) 
- S ~n (j)]. This is the 
COS(j) 

(3) An object attached frame (O). This is a body attached frame. Its unit vectors in 

the three principal directions are given by Gel, Gel and Gel. The object rotates about 

its Y-axis (vector °el). Also, °el II rel and this relationship is invariant. The 

Object frame {OJ is obtained conceptually from the lab. frame (F} by the 
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translation vector FO and the rotation 9 about rez. This is represented 

mathematically by, tOea} = ~ElI3 fep ,V a, 13 = 1,2,3 and [El]a = 

[ 

co~O 

-sinO 

o SinO] 1 0 . 11lis matrix is the rotation matrix for rotation by 9about the 

o cosO 

Y-axis. We introduce the constraint that the object frame, {O} does not explicitly 

translate. Its translation, if required, is transferred to the probe frame {C}. The 

above implies, FO = FO'. 

The superscripts represent the type of frame, while the subscripts 1, 2 and 3 represent 

the X, Y and Z axis respectively. Fig. 5-7 shows the frame relationships, and the initial 

location of the entities (probe and object). We now proceed to describe the design of the 

algorithm. 

GIVEN: 

1. The initial position of the probe in the probe frame (at t = 0, position = #1) is given 

by, cr = -L Pe:h where L is the length of the probe (known). 

2. Also, from the NCI file we know the current (step n) and target (step n+lth) 

positions of the probe tip and center (six coordinates describe a vector in space). 

These positions are the positions of the probe as viewed by the object, and hence 

they are described with respectto {O}, i.e., °ea 'V a. = 1,2,3. 

The current position of the center (OC) and tip (OT) are given by, 

OC = LCa °ea = c. °el + Cz °el + c3
0 el. and, 

a 
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OT = Lta °ea = tl °el + h °el + h °el. 
a 

The target position to be attained (position n+ 1) by the probe center and tip are given 

O'C' = OC' = Lcca. o'ea. = cCloel + cC2 0 ei + CC3 °el and 
a 

O'T' = OT' = Ltta. o'ea. = ttl °el + tt2 °el + tt3 °el. 
a 

PROBE FRAME 

FIXED FRAME 

Fig. 5-7: Frame relationships 

OBJECTIVE: 

o~ 

We now define the components of a motion (from nth to n+ 1th step). The probe 

needs to move from CT to some C'T'. Conceptually this motion consists ot: 

1. Translation from C to C'. Let this be given by (say) S. 

2. Rotation about the fixed X and/or Y-axis so that T lies after the motion in the 

position given by T'. The object too can rotate. However, for the sake of 
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simplifying the calculations and reducing actual motion time, we inhibit the 

object's translation. 

3. The (possible) rotations of the object and the probe however will change the 

orientations of {C} and {O} w.r.t {F}. 

The above conditions result in the motion being represented by the equations below: 

1. FC' = FC + S . (5.9) 

2. FO' =FO 

3. V (l, J3 = 1,2,3. ~q> and ~e represent the 

incremental change in orientation (of {C} and {O} w.r. t {F}) in moving from n to n+ lth 

position. 

The above equations represent the current state and the SIX parameters (three 

translations and two rotations) needed to reach the next state. These parameters are as yet 

unknown and we represent them (as above) by S, ~<p and ~e. Our objective thus is the 

determination of these three unknowns. 

DETERMINATION OF ~<p AND ~e: 

In the nth step, let the orientation of the probe w.r.t the fixed frame be given by some 

<p and let the orientation of the object w.r.t the fixed frame be some e. After the motion (in the 

n+ lth position) let these quantities be <p' and 9'.Now, the relationship between CT and C'T' 

can be expressed as, 

cr = ·L Pe3 =·L L [<I>~]3 re~ and 
p 
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~ C'T' = L (L\<I»J3 (CT) (5.10) 
fJ 

Also, CT and C'T' are related as shown below: 

CT = OT - OC = L (ta - catea = L (ta - ca ) (8/eJ3) (5.11) 
a ~p 

C'T' = O'T' - O'C' = OT' - OC' 

~ C'T' = L (tta - ccate'a = L(tta - CCa ) (8'J3feJ3) (5.12) 
a ~p 

From, (5.10) and (5.12), equating the two expressions of C'T', we have, 

L (L\<I»p (CT) = L(tta - cca ) (8'pfep). 
p ~p 

~ L (L\<I»p (ta - ca ) (8prep) = L(tta - cca ) (E>'J3fep). (5.13) 
p ~p 

Neglecting the unit vectors of {F}, we write (5.13) as, 

L (L\<t»p (8p) (ta - ca) = L (8' p) (tta - cca ) (5.14) 
p ~p 

Note that in the above equations, L\<I> and 8' p are the rotation matrices and are not to 

be confused with the angels L\<p and S'. Also, the running indices a. and P range from 1 to 3. 

Now, (5.14) may be expressed in matrix notation as, 

[

1 ] [ cosO sin 0] [11 - C1] [COSO' 
cos ilrp - sin ilrp 1 12 - c2 = 
sinilrp cosilrp -sinO cosO 13 -c3 -sinO' 

1 sin 0'] [::~ = :::] 
cosO' 1t3 -cc3 

(5.15) 

Now, 
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[

cosO' 

-sinO' 

1 SinO'] 

cosO' 

= [COSIl.O 

-sin Il.O 1 

Sinll.O] [COSO 

cosll.O -sinO 

1 SinO] 

cosO 

(5.16) 

and let, 

(5.17) 

The above matrix can now be solved for ~e and ~q>. As expected, there is more than 

one solution 11 for the unknowns. The equations to solve for the unknowns are, 

using standard techniques to solve trigonometric equations. 

Due to the presence of multiple solutions, the selection of the correct solution pair of 

~e and ~q> is important. This selection can be made by ensuring that the solution satisfies the 

condition, { rt} ~ { ~ }. 

Thus, we now know the angle of rotation of the object (~e) and the probe (~q». The 

translation vector S is next determined. Note that the determination of translation requires a 

knowledge of the object's current orientation (~e) determined above. 

11 . d nkn because, 3 three equations an two u owns 
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DETERMINATION OF THE TRANSLATION COMPONENT: 

The translation to be provided to the probe is denoted by the vector S. As mentioned 

earlier, there are two factors that go into the determination of the final translation (S). These 

are, (1) the translation by the probe center (C) from the current position to the target position. 

and (2) the translation by the object. This latter translation is (inherently) present whenever 

the object rotates (i.e., de :;c 0) and when the object is not symmetric in geometry about its 

center of rotation. The effect of this translation is to bring the point to be scanned (the target 

position) directly underneath the current position of the probe. The derivation of an 

expression for the translation is shown below: 

Now, FC' = FC + S 

~ FO' + O'C' = FO + OC + S 

~ S= O'C' - OC (since, FO' = FO i2 

~ S = Lcca o'ea - LCa °ea (5.18) 
a a 

The above equation descnoes the translation vector in terms of the object frame {O}. 

Now, the actual physical translating units (the motors) are fixed and their orientation with 

respect to {F} remains always the same throughout the scan, irrespective of the orientation of 

the probe and/or the object. Hence, we need to express the translation S with respect to 

(w.r.t) the fixed frame {F}. 

12 FO' = FO. since we explicitly constrained the object from translating and instead transferred the translation 
that is to be undergone by the object to the probe. (see 5.3.2.2) 
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Now, the unit vectors,C'ea }a=1,2,3 have an orientation of8' (= 8 + A8) w.r.t the unit 

vectors, {fea }a=l,2,3 of the fixed frame and the vectors Cea }a=l,2,3 have a orientation of8 w.r.t 

the unit vectors of the fixed frame {F}. We thus need to express equation (5.18) w.r.t the 

fixed frame. Thus, expressing (5.18) w.r. t the fixed frame we have, 

S = L cCa (L8:! fea ) - LCa (L8! fea ) 
a pap 

=> S = L0! { L (A8): CCy fea - cl3 fea } 

p r 

or (fea , S) = L 8! { L (A8): cCy - CI3} (5.19) 
P r 

In matrix form, (5.19) is, 

[

::] = [COSO I SinO] { [COSliO I Sinl1B][:::]_[::] } 
S3 -510 0 cosO -510 ~O cos~O ee3 e3 

(5.20) 

The above expression in the matrix form gives the translation components, S1, S2, and 

S3 (coefficients) of the vector S in the three principal directions, X, Y and Z of the fixed frame, 

{F} respectively. 

We have now derived a closed form expression for the rotations 8 and <p of the probe 

and object respectively and the translation to be undergone by the probe, given by the 

translation vector S. The equations descnoing the rotations and the translation are 

summarized below. 
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The equations to determine rotations are (from 5.17): 

[

1 ] [~1] [COS.1B Sin.1B] [711] 
1. cos.1cp -sin.1cp ~2 = 1 712 

sin .1cp cos.1cp ~ 3 - sin .1 B cos.1 B 71 3 

(5.21) 

The equations to determine the translation are (from 5.19): 

[

::] = [CO'O 1 Sino] { [CO,I>O 1 SiOl>O][:::]_[::] } 
S3 -smO cosO -smL\O cosL\O cC3 c 3 

(5.22) 

The post processor reads in two consecutive pairs of NCI data (the current and the 

target positions), applies the above algorithm and determines the five parameters, namely .18 , 

.1<p s., S2, and S3. A neW set of parameters is thus created, which are used directly by the 

hardware interface program to position the hardware. 

5.4 Solution Characteristics 

The characteristics of the solution derived are 

• There is no order dependency between 8 and <po Hence in the actual scan 

execution, the object and the probe may be operated in any order. This also 

contains the potential to execute the object and probe motions in parallel and thus 

cut down the motion segment time. 

• The order of the operations, (translation and the set of rotations) can be 

interchanged. 
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• The solution derivation as shown above assumes that the object rotates about the 

Y-axis and the probe rotates about the X-axis. This is not a rigid requirement and 

can be changed. We however, assign the axis about which the object rotates (in the 

hardware) as the Y-axis and the probe rotation axis as the X-axis. A right hand 

rule is used to establish the direction of the unit vectors of the frames. 

• To avoid accumulation errors (due to calculation truncations) which occur m 

actual calculations, we use OCCalculated and OT Calculated of stage n as the OC and OT 

for stage n+ 1. Conceptually, 

(OCCalculated, OTCalculatcd)n+] = (OC, OT)n + (.19, .1<p, S)n . 

Ideally we would like (OCCalculated, OTCalculated)n+] = (OC', OT')n. 
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6. ALGORITHM TESTING AND SCAN RESULTS 

6.1 Experimental Evaluation Of The Motion Algorithm 

The goal of developing a scanning system that does not include any object geometry 

specific features, was tested by designing two test pieces with cUlVed surfaces. The following 

section descnoes the test pieces and the scans. 

6.1.1 Test Parts-Description 

Two test pieces( aluminum blocks) were manufactured with one block having a uni­

directional curvature and the other having a bi-directional CUlVature (Block-l and Block-2, as 

shown in Fig. 6-1 and Fig. 6-2) On each of these blocks 3 sets ofEDM notches were created. 

The dimensions of the notches were 40x5 mils, 20x5 mils and 10x5 mils. The detection of 

these notches on the complex surfaces would serve as a good test for the automation system 

Fig. 6-1: Single curvature (Blockl) Fig. 6-2: Double curvature (Block2) 
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6.1.2 Types of Scan 

To test the sc~g system three types of scans were conducted on the two blocks. 

The results obtained from these three different scans clearly highlight the sensitivity of the 

measurements to the perpendicularity of the probe. The three types of scans are here classified 

as, Flat, no-tilt and Full scans. Each of these scan procedures is described below (Fig. 6-3). 

• Flat scan 

In the flat scan the probe scans the material surface in a flat plane over the material 

surface. In this scan the probe does not follow the object's surface contour. Hence, in 

this scan the air gap is non-uniform and varies greatly over the scan surface 

• No-tilt scan 

In the second type of scan, the no-tilt scan, the probe follows the surface, but is not 

always oriented perpendicular to the material surface. The probe lies parallel to the z­

axis of the fixed frame {F} at all times. Thus the surface at a given scan point (or 

specifically the tangent to the surface at a given scan point) could be at a relative angle 

other than 90 deg. 

• Full scan 

In this third type of scan, the probe follows the object surface with its orientation 

perpendicular to the object's surface through the scan, thus maintaining the probe 

perpendicular to the tangent to the surface at a given scan point. 
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Scan direction - - -. 
(A) AatScan 

Scan direction - - -. 
(B) Probe not Following the tilt 

-----------------Scan direction - - - -. 
(C) Probe following the tilt 

Fig. 6-3: The three different types of scans 
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6.2 Scan Results And Evaluation 

This section describes the scans conducted on the two test pIeces and the data 

obtained from these scans. 

The data plots for block-l are shown in Fig. 6-4, Fig. 6-6 and Fig. 6-6. The figures provide 

three dimensional view of the impedance data as it varies over the surface of the object. The 

first two figures show the impedance plot for ''flat'' and ''no-tilt scans" respectively (for scan 

types, see 6.1.2). As is seen from the data plots the background data surface in these two plots 

is not flat; the background signal presence is very clear in Fig. 6-4 where the lift-off variation 

is very drastic, as the probe scans the surface in a flat plane only. In the case of Fig. 6-5, the 

probe attempts to follow the surface, but does not orient itself perpendicular to the surface at 

the scan point. In both cases, there exists a relative non-perpendicular orientation between the 

probe and the sample surface at the scan points (as the probe is not constrained to be 

perpendicular to the scan point). 

Fig. 6-4: Block-I. no-tilt scan - real part Fig. 6-5: Block-I. Not-tilt - Imag. part 
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In the above scans only the 40mil. wide notches are detectable. In the no-tilt scan the 

40mil EDM notches were easily seen (after noise and background subtraction), while hardly 

any flaw signal is seen in the case of the flat scan. Now, Fig. 6-6 shows the impedance plot for 

block-l with the probe perpendicular to the object surface. To orient the probe perpendicular 

to the curvature, the post-processor program calculates the probe and object translation and 

rotation angles such that the probe is always perpendicular to the material surface at all the 

scan points. The object is also rotated where probe rotation alone does not result in the probe 

achieving a perpendicular orientation. As is seen, the data from the scan reveals two sets of 

EDM notches (40mil. and 20 mil wide EDM notches) much more clearly than the previous 

data (Fig. 6-4 and Fig. 6-5). 

Fig. 6-6: Block-l - complete scan 
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The next three plots pertain to the flat, no-tilt and full scan for block-2. Comparing the 

three plots clearly demonstrates the effect of probe tilt. In this case too the background data 

hides the flaw data effectively in the case of the first two types of scan. The relative probe-

sample non-perpendicularity is seen as a non-planar background in Fig. 6-7 and Fig. 6-8. In 

Fig. 6-9, however, the probe is maintained at a perpendicular orientation to the object surface 

at all times and as expected, the background is a flat plane. In this case the signals from the 

notches are clearlyvistole, with even the smallest set ofEDM notches being seen (IOmil). 

Fig. 6-7: Block-2 - Flat scan 

It is interesting to note the effect of the background on the data collected. The 

variation in the background is much more pronounced when the probe scans the surface in a 

flat plane. Here (Fig. 6-7), the air gap varies widely over the entire scan surface, resulting in a 

very low probability of detecting the presence of a flaw (simulated here, by the EDM 

notches). In Fig. 6-8, the lift-off variation is limited by conducting the no-tilt scan. 
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Fig. 6-8: Block 2 - no-tilt scan 

In Fig. 6-8, the probe in scanning the surface attempts to follow the variation in the Z 

axis (of frame {F}), but always maintains a perpendicular orientation with respect to {F}. 

Thus the effect of the background is not as pronounced here as in case of the flat scan over 

block-2. Thus here, the bigger EDM notches could be detected by the probe clearly, but the 

smallest set of EDM notches still remain undetected as they are hidden by the non-planar 

background. 

In Fig. 6-9, the probe follows the surface while maintaining its perpendicularity to the 

surface at all times. As expected and as seen in Fig. 6-9, the background is mostly planar. This 

is because the probe at all points essentially "sees" only a flat surface as it is positioned 

perpendicular to the surface. All the EDM notch signals stand out in this scan, with even the 

smallest notch being seen. In the case of Block-2, ensuring that the probe remain 

perpendicular to the swface requires the object to rotate too. Thus, scanning this block in 

particular, helps us in verifying the theory that the object rotation can indeed compensate for 

the lack of rotation of the probe. 
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Fig. 6-9: block-2 - Complete scan with probe foUowing curvature. 

In snmmary the testing proceeded fr~m the relatively simple uni-cwvature of block-l 

to the more complex double cwvature ofblock-2. The single cwvature scan required hardly 

any object rotation as the 'probe could rotate in one plane and this is sufficient to handle such 

scans. In the case of the double cwvature scan the object had to be rotated too as the nature 

of the surface otherwise required that the probe be able to rotate in at least two planes. Tests 

were conducted on these objects and data sets from the scans on the objects showed the very 

high sensitivity of the probe to relative surface orientation. It was seen that a perpendicular 

orientation produced a mostly planar surface over which the flaw signals clearly stood out, 

thus increasing the probability of detection, 



65 

7. SUMMARY AND CONCLUSIONS 

Eddy current inspection is very sensitive to changes in lift-off of the probe from the 

sample and to the orientation of the probe with respect to the sample. Positioning the probe 

perpendicular to the sample is a task that is a function of object geometry. This work 

concentrated on the development of a motion algorithm to automate the probe positioning 

process, so that given any object it is possible to maintain probe perpendicularity and constant 

lift-off over all the scan points. 

Developing motion control software with object geometry features embedded in it 

limited the scope of applications and reusability of that software. Further, developing object 

specific· custom software to control the scans resulted in unnecessary time spent in code 

duplication as many abstract features were reimplemented. Also, developing such code was a 

programmer subjective process and more open to the possibility of errors each time a scanning 

software was developed. All the above factors were addressed by the development of a 

postprocessor algorithm that takes in the scan parameters generated by a CAM software and 

determines the exact motions needed by the probe and object. 

By developing an algorithm to determine the component motions of the scan, the 

scanning software was partitioned from the particulars of the motions for a scan (which are 

dependent on the geometry of the object being scanned). Object geometry information which 

was embedded earlier in the motion control software is now input to the algorithm at runtime. 

This development has resulted in cutting down the scan development time while not 

sacrificing the accuracy of measurements. With the development of the algorithm 
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(implemented as a postprocessor) the scanning process from the scan visualization to the scan 

realization has been integrated. It is now possible to realize a (software) visualized scan by 

manipulating the hardware, without having to develop any object specific scanning programs. 

The use of CAD/CAM tool path generation provides the scan visualization features, that 

allow easy and user-friendly modifications to scan paths, providing more flexibility in the scan 

conception stage. Thus in summary, when a given object needs to be scanned, a software scan 

plan using visualization aids is first developed. The scan plan is then used by a postprocessor 

that generates hardware specific probe and object rotations so that these (hardware) motions 

result in the probe being positioned perpendicular to the object at each of the scan points. 

This work was organized in the following manner. Chapter 2 provided a brief 

introduction to eddy current theory. Chapter 3 described the three main hardware 

components, namely the positioning hardware, the measuring unit and the control unit. The 

latter three components formed the eddy current testbed site that executes the actual scan. 

Chapter 4 described the eddy current inspection process and described the experimental 

module of this inspection process. The automation of this experimental module formed the 

main focus of this work. 

Chapters 5 descn"bed m detail the design of the post-processor algorithm (that 

automates the experimental module) and its characteristics. Chapter 6 discussed the types of 

scans performed, to test the utility of the algorithm and highlighted the need for maintaining 

probe perpendicularity and constant lift-off through the course of a scan. Results from 

experiments on two test blocks with embedded flaws were presented. 
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7.1 Suggestions for Future Work 

The solutions derived for the rotation of the probe and the object (Chapter 5) are not 

order dependent. This feature could be exploited to parallelize the individual motions, 

reducing the time taken reach the ''target position". This would however, require care to 

ensure that there is no probe and object interference during the course of the motion. Also, if 

the current "stop" and "go" method of data acquisition is replaced with an "on the fly" 

method, it would reduce the total scan time. Another improvement that would be clearly 

helpful, is the development of a method to uniquely map the probe position of on the software 

to the physical point on the object. Currently, this mapping is done using a trial and error 

process and is susceptible to human errors. The current implementation of the data acquisition 

system is a sequential process running under a single tasking operating system. 

The power of automated scanning can be further enhanced, by porting the software to 

run under a multi-tasking operating systems. This feature will free the computer from being 

tied up in scan control and allow for more efficient use of existing computing resources. 

Integration of the computer to a network of work stations will further improve scan efficiency 

by allowing concurrent data visualization, scan control (start, abort etc.) or scan status 

monitoring from other remote sites via the internet. 
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