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ABSTRACT 

The Jurassic Fort Dodge Formation of Webster County, Iowa exhibits 

well-developed joints. The joints are generally planar, vertical, 

laterally extensive, and are limited to the gypsum bed, which is up to 10 

m thick. Dissolution of gypsum by groundwater flowing along these joints 

has formed long, straight solution channels easily seen from the air 

permitting aerial photographs to be used for a quantitative study of the 

joint orientations. This study was done on three quarries, and the gypsum 

exposed there exhibited joint systems with orthogonal, random, and 

uni-directional strikes. The orthogonal and random sets are probably 

extension fractures produced by a stress field with a vertical aI' a 

horizontal, tensile a2 and a3 , and a low deviatoric stress. These 

conditions were possibly the result of uplift which forced the crust to 

cover more area at a new, larger radius position within the Earth. Uplift 

was probably due to unroofing and isostatic rebound, either from erosion 

of now-missing Cretaceous strata during the Tertiary or from glacial 

ablation during the Pleistocene. The weight of the Cretaceous strata may 

have also caused partial dehydration of the gypsum, but the weight of the 

glaciers would not because of the lower temperatures involved. The 

uni-directional joint ·set is located near, and is parallel to, a 

northeast-southwest trending fault in the basalt of the Keweenawan 

baseoent. This fault, which is delineated by aeromagnetic data, was 

active throughout the Paleozoic Era and could have been reactivated by 

either of the above loading and unloading models. The uni-directional set 

of joints is thought to be the result of this reactivation. 
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The Fort Dodge gypsum is quite pure, with only 1-3.5% insoluble 

minerals. Soxhlet extractors were found to be effective in concentrating 

these impurities and leaving them intact. The most common impurity is 

very fine sand-sized to silt-sized quartz showing signs of eolian origin. 

Some of the quartz, however, is authigenic, forming euhedral crystals and 

spherical quartz clumps. Calcite is also common, and was probably 

deposited contemporaneously with the gypsum as an evaporite mineral. 

Other minerals include dolomite, orthoclase, kaolinite, illite, hematite, 

limonite, muscovite, and pyrite. 
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INTRODUCTION 

Previous Studies 

The gypsum member of the Jurassic Fort Dodge Formation is thought to 

be an evaporite unit deposited in a restricted marine basin under arid 

conditions (Bard, 1982; Dasenbrock, 1984). These researchers showed that 

the gypsum underwent considerable recrystallization. Several questions 

remain, however, related to the joint patterns and insoluble minerals in 

the gypsum. In particular, the insoluble minerals in the gypsum have not 

been fully characterized because their low concentration (1.0-3.5%) makes 

studying them difficult. Characterization of these impurities could give 

further clues about the climate and conditions at the time of deposition, 

as well as information about diagenesis. Another interesting problem is 

that of the joints in the gypsum and the conspicuous solution channels 

formed along them. These features have been described by Bard (1982) and 

Dasenbrock (1984), but the cause of the joints has never been determined. 

The stresses responsible for their formation might also have been a 

controlling factor in the extent to which dehydration and rehydration of 

the gypsum have occurred. Delineation of preexisting structures 

responsible for the joints might also have predictive value for the gypsum 

industry because in heavily jointed areas much of the gypsum has been 

subject to intense dissolution by ground-water and is not worth quarrying. 

Another important factor in the joint study was that it could take 

advantage of the large expanses of freshly exposed gypsum that occurred in 

3 quarries simultaneously during June of 1985. 
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Local Geology 

The Fort Dodge Formation is located near the city of Fort Dodge, in 

Webster County, Iowa. It consists of a very pure laminated gypsum member 

up to 10 m thick overlain by red beds of the Soldier Creek member. The 

areal extent of the gypsum member was determined by Dorheim (1978) and is 

shown in Fig. 1. Previous maps showing the extent of the Fort Dodge 

Formation (Hale, 1955; Wilder, 1917-1918) have included some areas where 

only the Soldier Creek member is present, and these maps were not used in 

this thesis. The formation unconformably overlies Pennsylvanian shales 

and sandstones of the Cherokee Group of the Des Moines Series in some 

places and the St. Genevieve Limestone of Mississippian age in others 

(Hale, 1955). It is overlain unconformably by about 20 m of Pleistocene 

glacial till. The formation has been tentatively dated as Late Jurassic 

in age by means of gymnosperm pollen (Shaffer, 1969). Marine microfossils 

have been observed in the Soldier Creek member (Johnson, 1986) but they 

are reworked from formerly adjacent rocks of Pennsylvanian age. More 

detailed descriptions of the origin and diagenesis of the deposit are 

presented by Bard (1982) and Dasenbrock (1984). 
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Figure 1. Location map of the study area in Webster County, Iowa. 

The stippled patches near Fort Dodge indicate the known 
extent of gypsum in the subsurface, as determined by 
Dorheim (1978) from well cuttings and a resistivity survey. 
The dashed line labelled 'N. B. Z.' is the Northern Boundary 
Zone of the ~lidcontinent Geophysical Anomaly. Names and 
locations of quarries shown on the map are as follows: 

1: North Welles (SW 1/4, NE 1/4, Sect. 33, T 89 N, R 28 W) 
2: Celotex (SE 1/4, SE 1/4, Sect. 34, T 89 N, R 28 W) 
3: Carbon (SE 1/4, NW 1/4, Sect.4, T 88 N, R 28 W) 
4: National (location shown is approximate) 
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SECTION 1: JOINTS 

General Description 

Almost all exposures of the Fort Dodge gypsum exhibit well-developed 

joints. The joints can be seen in quarry walls and on the top surface of 

the exposed gypsum where overburden has been removed by quarrying 

operations. Spacing between the joints varies from 1 to 15 m. The joints 

themselves are generally planar, vertical, and laterally extensive. Their 

occurrence is vertically restricted to the gypsum layer. The joints were 

studied in three gypsum quarries, the North Welles and Carbon quarries 

belonging to U.S. Gypsum Company, and the Celotex quarry (Fig. 1). The 

National quarry was not studied quantitatively because the quarrying 

method used there leaves only a limited amount of gypsum exposed. 

Almost all the joints have well-developed solution channels along 

them due to dissolution of gypsum by ground-water flowing along the 

joints. The channels are up to 2 m wide and up to 4 m deep and in so~e 

places extend all the way through the gypsum to the underlying strata. 

The channels usually extend laterally across the entire quarry exposure, 

and are straight, reflecting the nature of the joints that they follow. 

This relationship allows the use of solution channels to measure the 

strikes of the joints, a technique which eliminates the error of measuring 

recent joints caused by blasting or other quarrying activities because of 

the time it takes for a solution channel to develop. 
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Method of Study 

The orientation of joints in the Fort Dodge gypsum was studied 

quantitatively using aerial photographs. This method was effective for 

four reasons. (1) The solution channels that follow the joints are easily 

seen from the air, but are difficult to measure on the ground without an 

aerial photograph to help monitor the progress of the survey. (2) Except 

for a minor set of horizontal joints which will be discussed later in this 

paper, all of the joints are vertical or nearly vertical, so one need only 

measure the strike of a joint to get a good idea of its orientation. (3) 

The quarrying method used by some of the gypsum companies involves 

scraping the overburden off of large expanses of gypsum before blasting 

begins, thus exposing many joints at once. (4) The top surface of the 

gypsum is relatively planar. This enables a correction for parallax 

distortion to be applied to the aerial photograph in which strikes are to 

be measured. Without this correction, any departure from vertical of the 

camera angle will cause an apparent rotation of the joint traces in the 

final photograph, resulting in an inaccurate survey. The correction 

technique, described in Appendix A, produces a second-generation 

photograph in which the strikes of the joint traces have been restored to 

their true orientation and can be directly measured with a protractor. 

Joint Orientations 

Plate I is an aerial photograph of the North Welles quarry, 

accompanied by a rose diagram of joint orientations. Joints in this 

quarry exhibit an approximately orthogonal distribution, with sets 
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Plate I. Aerial photograph of the North Welles quarry, U.S. Gypsum 
Company 

The rose diagram shows joint orientations taken from a 
parallax-corrected version of this photograph, as discussed 
in Appendix A 
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trending at about N 400 E and N 430 W. These two sets are believed to 

have formed contemporaneously, as shown by their intersecting, 

non-abutting relationship and similar development of solution channels. 

The data are replotted in Fig. 2A, using a weighted average method to 

locate the most common orientation (peak) within a set. This was 

accomplished by drawing a smooth curve to connect the data points 

(effectively introducing a continuously variable class size) and using the 

values along the curve to weight each orientation. The average 

orientation of each set was then calculated using the weighted values of 

the orientations within that set. This method is more accurate than 

picking the average orientation from a rose diagram by eye, because it 

allows the local skewness and kurtosis of a set to help define its 

average. Greater accuracy makes angles between the sets inherently more 

accurate as well, and aids interpretation. 

Plate II shows the Celotex quarry and its joint orientations. An 

extra correction was performed on the data for the Celotex quarry (in 

addition to the parallax correction discussed in Appendix A) because an 

elongate outcrop shape, like that of the Celotex quarry, can bias the rose 

diagram. This bias is similar to that identified by Terzaghi (1965), 

whereby a scan line (or elongate outcrop) will cross many joints 

perpendicular to it, but will cross few that are nearly parallel to it, 

even though both sets may have equal frequency. The correction was made 

by dividing the quarry into two equidimensional halves, and the joint data 

from each half were added together. In this procedure, some of the longer 

joints (parallel to the long axis of the outcrop) are counted twice. This 
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Figure 2. Joint orientation plots of the three quarries 

1: North Welles quarry 
2: Celotex quarry 
3: Carbon quarry 
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Plate II. Aerial photograph of the Celotex Corporation quarry 

The rose diagram shows joint orientations taken from a 
parallax-corrected version of this photograph, as discussed in 
Appendix A 
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is one way of weighting the joints by their length so as to eliminate the 

bias due to outcrop shape. The other two quarries' exposures (North 

Welles and Carbon) were equidimensional enough to preclude the need for 

this correction. 

The abutting relationships between joints in the Celotex quarry 

indicate that not all the joints formed at once. The joint distribution 

appears to be random, but several orthogonal sets can be tentatively 

identified (Fig. 2-2). ~fuether the distribution is multi-orthogonal or 

random is discussed in a later section. 

Plate III is an aerial photograph of the Carbon quarry with its rose 

diagram of joint orientations. The joints were probably contemporaneously 

formed, shown by their crossing, non-abutting relationships and similar 

development of solution channels. Orientations are replotted in Fig. 2-3. 

The Carbon quarry has a dominant joint set at N 41 0 E and subsidiary sets 

at N 830 E and N 50 W. The subsidiary sets are about 450 to either side 

of the major set and about 900 to each other. 

A minor set of horizontal joints was found in the North Welles 

quarry. These joints occur along laminations with excess detrital 

material and decapitate some of the small topographic highs on the 

gypsum's slightly undulating upper surface. Two of the horizontal joints 

in the North Welles quarry could technically be called faults because they 

show signs of slight movement in the form of accretion steps, which are a 

chemical depositional feature found along some faults indicating direction 

of relative movement during their deposition (Hancock, 1985). 
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Plate III. Aerial photograph of the Carbon quarry, U.S. Gypsum Company 

The rose diagram shows joint orientations taken from a 
parallax-corrected version of this photograph, as discussed 
in Appendix A 
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Origin and Timing of Joints 

North Welles and Celotex quarries 

As a first approach, one can attempt to classify the joints in the 

Fort Dodge gypsum as extensional, shear, or hybrid, based on their angular 

relationship to the stress field which caused them. Fig. 3 shows the 

different stress conditions thought to be responsible for shear and 

extension fractures. The vertical joints of the Fort Dodge Formation most 

closely rese~ble the fractures in Fig. 3B, which are caused by a stress 

field with a horizontally directed, tensile 02 and 03. The vertical line 

formed by the intersection of the joint sets defines the 01 orientation, 

and the joints would be classified as extensional. 

What is the origin of such stresses? The study area is located in 

the Interior Province of the Central Stable Region (Eardley, 1962). 

Orogenic deformation plays a limited role here, so the most probable cause 

of the orthogonal North Helles and random Celotex joints is epeirogeny 

from loading, unloading, or both, as a result of sediment deposition and 

erosion or glacial advance and retreat. Extension joints such as those in 

Fig. 3B can be created by loading if 01 is vertical and the sides of the 

block are unconfined. The sides of the gypsum were probably confined in 

the loading phase, however, because the substantial ductility of the 

overlying sediments, tills, and/or ice, would favor hydrostatic stress 

conditions that would confine the gypsum on the sides, as well as on top. 

Such confinement during loading would cause shear fractures to develop 

rather than extension fractures (Hancock, 1985). The lack of shear 

fractures in the North Welles and Celotex quarries reduces the possibility 
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Figure 3. Diagrammatic fracturing of rock. (A: Shear fractures 
formed in general (triaxial) strain (after Reches, 1983). 
This mode of failure is favored when all stresses are 
compressive, the deviatoric stress (01 minus 03) is high, and 
the average pressure is high (Hancock, 1985). B: Extension 
fractures. Th~s mode of failure is favored when O2 and 0 3 are 
negative (tensile) and the deviatoric stress and average 
pressure are low (Hancock, 1985). The extension fracture model 
most closely fits the distribution of the Fort Dodge joints) 



19 

that loading caused the joints in the gypsum. The remaining option 

generally invoked to to explain vertical orthogonal and random joints is 

that of unloading (Price, 1966). A diagram of how this situation comes 

about is shown in Fig. 4. As overburden is removed by erosion or 

ablation, the rock ~ss rises isostatically and must cover more area at 

this new, larger radius position within the earth. 

Fig. 4 also illustrates how far a rock unit needs to rise in the 

earth in order to make joints. In the North Welles quarry, for example, 

the joints are about 10 m apart and about 0.5 mm wide, so L in Fig. 4 is 

10 and dL is 0.0005. Although isostatic rebound occurs by upward flexure 

with a radius of curvature much smaller than the radius of the earth, 

using the radius of the earth (6378 km) for R in the diagram will give us 

a maximum of how far the rock mass has risen. Solving for dR yields 320 

m. The amount of overburden that would have to be removed to cause this 

amount of uplift, at equilibrium conditions, can be calculated from the 

following formula, derived from Archimedes' principle: 

d 
m E = U x --d--
e 

E is the thickness of overlying material being removed by erosion, U is 

the amount of vertical uplift, d is the density of the supporting medium m 

at the compensation depth (the mantle-- 3.3 g/cm3 , Ahnert, 1970), and de 

is the density of the material being removed by erosion. If the material 

being eroded is rock or sediment, then de is approximately 2.4 g/cm3 , and 

440 m of strata must be eroded to cause a rebound of 320 m. If we assume 

that this overburden was due to Cretaceous (or other upper Jurassic) 
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Figure 4. Conditions causing the formation of orthogonally and 
randomly striking vertical joints (after Price, 1966). (A 
bed of length L is extended to length L + dL after an 
uplift through distance dR) 
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sediments that have since been removed by erosion, then they need to have 

been approximately 440 m thick. The existence of this much Cretaceous 

strata in central Iowa has never been proven, but is a possibility since 

there is an unconformity between the Soldier Creek and the overlying 

glacial till, and the Tertiary period in Iowa was characterized by 65 

million years of " erosion (Anderson, 1983). If this was the case, the Fort 

Dodge gypsum probably also underwent extensive erosion during this time, 

and the gypsum that we see today may be a small remnant of a deposit that 

was very large at one time. 

Alternatively, the major overburden may have consisted of ice rather 

than rock. We can consider this option because extensive Pleistocene 

glaciations have occurred in the area (Flint, 1971) (Fig. 5). If we use 

the density of ice, 0.92 g/cm3, for de in the above equation, it follows 

that 1150 m of ice Dust be removed to get 320 m of rebound. The existence 

of this much ice during the Pleistocene can be confirmed by another, 

independent estimate. The thickness of an ice sheet can be roughly 

calculated from its lateral extent by the following equation, modified 

from Paterson (1981): 

H = 3.3 L1/2 

H is the oaximum thickness of the ice sheet, and L is the lateral distance 

from the center of the sheet to the edge. The equation was derived by 

assuming a parabolic profile for the ice and a yield shear stress of 50 

kPa (0.5 bar). An estimate of L for the above equation can be obtained 

from Fig. 5. The nomenclature and timing of the classical glacial 
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Figure 5. Extent of Pleistocene glaciation in the central United 
States (after Flint, 1971). (The outline of Webster County 
is shown in northwest central Iowa) 
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episodes are under some debate at the moment (Boellstorff, 1978), but the 

map is sufficiently accurate to give us an idea of the magnitude of the 

parameters involved. If L is approximately 275 km for the (classical) 

Nebraskan ice sheet at its maximum extent, H turns out to be 1730 m. This 

is more than the 1150 m of ice that we require, and shows that there was 

enough ice to cause a considerable amount of post-glacial isostatic 

rebound when it retreated. 

An interesting side issue at this point is that the above estimates 

of ice and strata thicknesses are useful in deciding if the Fort Dodge 

Formation has been under enough pressure to cause the gypsum to dehydrate 

to anhydrite. Dehydration is favored at high pressures, high 

temperatures, low pore pressures, and high salinities (MacDonald, 1953; 

Hardie, 1967; Berner, 1971). These relationships are shown in Fig. 6. 

Observations by Blatt et ale (1972), also plotted in Fig. 6, indicate that 

the normal pressure-temperature gradient in the earth causes gypsum to 

dehydrate at about 305 to 610 m (1000-2000 ft.), so about this much 

Cretaceous overburden is required to dehydrate the gypsum. If we assume 

that the overburden was ice rather than rock, the argument is not as 

straightforward because the tendency of ice pressure to dehydrate the 

gypsum is countered by the lower temperatures involved. The pressure from 

1730 m of ice is equal to about 660 m of strata (157 bars). Although this 

is well into the depths at which dehydration commonly takes place in the 

earth according to Blatt et ale (1972), heat from the normal geothermal 

gradient i~n't there to help drive the reaction. At the bottom of a 

glacier, the temperature must be well below OOC, or pressure would melt 
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the ice. Point 3 in Fig. 6 shows that at DoC and 157 bars, gypsum will 

not be dehydrated, even if pore pressure is low (open systefl-- hydrostatic 

pressure only) and enclosing solutions are saturated in NaCI. The only 

way that the Fort Dodge gypsucr could have been partially dehydrated by ice 

burial is if there were enough strata overlying it to provide insulation 

from the ice, a higher geothermal gradient, and more overburden pressure. 

There are several problems with this. Even if there was a great thickness 

of Cretaceous strata over the gypsum at one time, most of it would have to 

have been eroded by the end of the Tertiary period because there is little 

time available to erode it afterwards. Also, the insulating ability of 

the strata turns out to be negligible because the cooling effect of 

long-wave climatic cycles, such as ice ages, penetrates fairly deeply into 

the earth's crust-- much more so than short wave cycles such as diurnal 

fluctuations. Cooling cycles on the order of 10,000 years penetrate about 

2000 m into the earth before they are damped out (Garland, 1979). As a 

result, the geothermal gradient in the first 1000 m below a glacier will 

be radically altered toward lower temperatures, and the pressure

temperature gradient will be similar to that shown by line 3-6 in Fig. 6. 

We can follow this line to the first reaction curve to determine the first 

possible point at which dehydration can take place if opticrum conditions 

are met. This occurs at a depth 390 m below the glacier (390 m below line 

3-4, read off the equivalent depth rock scale), so at least this much 

strata is required between the glacier and the gypsum for dehydration to 

occur. Not only is this amount unlikely to have been there during the 

Pleistocene, but much more would be required if surrounding solutions were 



27 

not saturated in NaCI or pore pressure was greater than just hydrostatic 

pressure. Observations by Blatt et al. (1972) (Fig. 6) indicate that 

optimum conditions for dehydration are not usually met. In conclusion, 

the glaciers did not help dehydrate the gypsum, even if there was an 

unlikely amount of strata between the ice and the gypsum. The only 

mechanism that could have dehydrated the gypsum is the existence of 300 to 

400 m or more of post-Jurassic strata. Evidence for this has been 

reported by Dasenbrock (1984), who reported seeing boxy ghosts of 

anhydrite in some alabastrine gypsum nodules in the Fort Dodge gypsum, 

indicating that local conditions once favored partial dehydration. 

Immediately after each ice sheet retreated, the gypsum would be 

subjected to a stress field with horizontal, compressive 0 1 and O2 , and a 

vertical, compressive 0 3• Such a stress field was proposed by Dasenbrock 

(1984) to explain the vertical extension of some of the gypsum layers, 

which was accompanied by formation of horizontal veins with vertical 

fibers late in the diagenetic history of the deposit. As rebound in the 

area progressed, however, the 01 and 02 would diminish and eventually 

become the tensile O2 and 03 possibly responsible for joint formation. 

Glacial ablation could thus be responsible for both of the stress fields. 

Erosion of strata, however, would probably bypass the first stress field 

mentioned above (vertical 03) and just induce the second configuration 

(horizontal tension) because crustal rebound would be able to keep up with 

erosion, which would be much slower than ablation. 

In proposing post-glacial rebound as a jointing mechanism, one must 

also take into account the dynamic aspects of rebound. Has there been 
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enough time since the major glaciations for rebound to occur? Models and 

case studies indicate that post-glacial rebound is relatively rapid. The 

mouth of the Angerman River, Sweden, for example, has experienced 270 m of 

uplift (90% recovery from its initial 300 meter downwarping) in the last 

10,000 years (Turcotte and Schubert, 1982). This suggests that the Fort 

Dodge area, which had its last glacial retreat about 12,000 years ago 

(Nilsson, 1983), has also had plenty of time for rebound to take place. 

It also suggests that there was enough time for complete rebound between 

the North American glacial episodes as well, as interglacial periods 

lasted on the order of 200,000 to 400,000 years each (Nilsson, 1983). 

To summarize, the Fort Dodge gypsum probably underwent compression 

during the Nebraskan glaciation, expansion as a result of un~oading during 

the Aftonian interglacial period, renewed compression during the Kansan 

glaciation, and expansion again during the Yarmouth-Sangamon interglacial 

period. The Illinois glaciation did not reach the Fort Dodge area, and 

the Wisconsin glaciation was not as extensive as the Nebraskan and Kansan, 

so its effect on the crust was relatively small. Boellstorff (1978) has 

discovered another till under the Nebraskan at its type section, so there 

may have been another, earlier loading-unloading cycle as well. The 

specific dates of the earliest glaciations will be discussed in the 

section on solution channels and dissolution rates. 

Repeated glacial loading and unloading would not necessarily c~eate 

new joint sets every time, because the older, original sets could 

accomodate,new stresses. This probably happened in the North Welles 

quarry, as indicated by its single orthogonal system. In the Celotex 
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quarry, however, repeated glaciations and rebounds may have produced 

mUltiple joint sets. This would partially explain why the linear joint 

frequency in the Celotex quarry is four times that of the North Welles 

quarry. Increases in joint frequency can sometimes be explained by a 

proportional drop in bed thickness (Price, 1966), but are ruled out in 

this case because the gypsum beds of the North Welles and Celotex quarries 

are of approximately equal thickness. Differential uplift as a cause for 

joint frequency variations is also unlikely, as both quarries are at 

similar elevations. 

The question still remains as to whether the joint_sets of the 

Celotex quarry are random or multi-orthogonal. The possibility of 

repeated phases of jointing is of little help, because repeated phases can 

create either random or multi-orthogonal patterns. The apparently equal 

spacing and nearly perfect right angle relationships of many of the joints 

sets (see Fig. 2-2) lend credibility to a multi-orthogonal distribution, 

but even random distributions have local, spurious concentrations that can 

be misleading. The following argument indicates that the temporal 

evidence between the proposed multi-orthogonal joint sets is 

contradictory, and that the safest conclusion to be drawn is that the 

joint distribution of the Celotex quarry is not multi-orthogonal, but 

random. 

If the joint sets are truly multi-orthogonal, it should be possible 

to determine temporal relationships between the sets. Joint sets formed 

later should not be as well-developed as earlier sets (Price, 1966) 

because any initially large tensile stresses would have been relieved by 



30 

the earlier joints. This, coupled with the fact that later orthogonal 

sets tend to bisect the angles between previous orthogonal sets, should 

enable us to determine the order in which the sets occurred. Application 

of the above logic to the data in Fig. 2-2, however, does not lead to 

definitive conclusions. The least well-developed set is set fbI, so it 

formed last. The 'd' set cannot be first or second because it is 

immediately followed by set 'b' (using bisecting relationships). This 

leaves a-c-d-b or c-a-d-b as possible permutations. Unfortunately, 

abutting relationships shown in Plate II tell a different story. Some of 

the joints from both 'a' and 'c' sets abut against other joints, and were 

thus formed later, and other joints abut against them. Part of the 

problem is that neither joint frequency nor abutting relationships are 

completely reliable as temporal indicators. Although the abutting 

relationship is accurate for the two joints involved, application to joint 

sets can be ambiguous (Hancock, 1985). Even if one set occurs first, 

residual stresses can cause late joint additions to the first set which 

abut against joints of the second or third set. These latecomers may 

locally have abutting relationships with the other sets that define a 

circular temporal order, such as a-b-c-a. To sum up, there is no 

conclusive temporal evidence in the Celotex quarry to suggest the 

occurrence of distinct, sequentially occurring orthogonal sets. 

One possible cause for this apparently random pattern may be the 

modification of the ordinarily uniform stress field by variations in the 

compactibility of the underlying beds. The underlying Cherokee group has 

sandstone and limestone lenses supported in a shale matrix (Hale, 1955) 
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and must exhibit a high degree of local variation in compaction 

characteristics. Such variation would favor random joint developcent, 

perhaps even initiated during the loading process. An area underlain by a 

uniform lithology would favor orthogonal development, formed strictly 

during the unloading process. 

Carbon quarry 

The vertical orthogonal North Welles and random Celotex joints can be 

adequately explained by the above mechanism of glacial loading, unloading, 

and rebound. The parallel joints of the Carbon quarry, however, indicate 

a different local stress field, and perhaps a different mechanism. 

Possible explanations include large scale exfoliation and influence from a 

local structure, such as a fault in the underlying rock formations. In 

the first case, a situation similar to exfoliation might come about 

because the Carbon quarry is close to the southeast edge of the gypsum 

subcrop. This would imply that the main set is extensional in origin and 

the two subsidiary sets are conjugate shear sets, all caused by a 

horizontal compressive force operating along N 400 E, parallel to the 

major joint set. O2 would be vertical, and 03 would be horizontal and 

possibly tensile. The fact that the main joint set is semi-parallel to 

the edge of the gypsum may help this argument, but the fit is not close. 

It is also unusual to have conjugate shears at 450 to 0 1• Stresses normal 

to the shear plane usually combine with the internal coefficient of 

friction to. hold the rock together at this angle. Also, there are no 
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hybrid shear joints between the extensional joints and conjugate shears, 

as would be expected in such a mix. 

Possible causes other than exfoliation arise if one looks at nearby 

structures. The study area is located in the Interior Province of the 

Central Stable Region (Eardley, 1962), but there are several conspicuous 

structures in the vicinity which indicate structural activity at one time 

or another. Nearby structures include the Manson disturbed area, the Fort 

Dodge graben, and the ~tidcontinent Geophysical Anomaly, all shown in Fig. 

1. The ~mnson disturbed area is a possible Tertiary meteorite impact site 

(Anderson, 1983) centered to the west of the area. The Manson disturbed 

area is probably too far away, however, to have affected the joints in the 

Carbon quarry while not affecting the other two quarries. The Fort Dodge 

graben is another structure. It extends through Fort Dodge proper at 

o about N 70 E (Hale, 1955). It too, though, is probably too far fro~ the 

Carbon quarry to influence it while leaving the other quarries unaffected. 

The only other significant structures in the area that might have caused 

the joints in the Carbon quarry are basement faults in the rocks involved 

with the ~tidcontinent Geophysical Anomaly (M.G.A.). 

The M.G.A. is located in the northern Great Plains of the United 

States and consists of a large gravity high and a change in the intensity 

of the ambient magnetic field. The anomaly is caused by a series of 

dense, magnetized basalt flows of the Keweenawan system (Thiel, 1956) 

which crop out in northwestern \Jisconsin and continue in the subsurface to 

the southwest, through southeastern ~tinnesota, Iowa, southeastern 

Nebraska, and northeastern Kansas. These basalt flows are 1.1 billion 
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years old (Goldich et al., 1966) and are related to rifting activity that 

occurred during Precambrian time (King and Zietz, 1971). Some of this 

basalt was encountered at 698 m (2290 ft.) while drilling a well in Fort 

Dodge (Hale, 1955). The edges of the rift were precisely determined by 

King and Zietz (1971) using gravity and magnetic data. The M.G.A. 's 

northwest edge, sometimes called the Northern Boundary Zone, passes just 

northwest of Fort Dodge, and is shown in Fig. 1. Gravity and aeromagnetic 

maps of Webster County are shown in Fig. 7 and Fig. 8. 

The rift exhibits many faults. It is offset in a few places by 

transform faults (Chase and Gilmer, 1973), but none of these are in Iowa. 

In Iowa, the basalt blocks form a horst bounded by high angle faults with 

throws of about 5800 m (19,000 ft.) (Van Eck et al., 1979). These 

boundary faults trend approximately N 430 E in Webster County, parallel to 

the main joint set of the Carbon quarry. Additional faults, parallel to 

the boundary faults, occur throughout the 60 kilometer width of the rift 

(Van Eck et al., 1979). One of these northeast-southwest trending 

interior faults is probably responsible for the parallel joints in the 

Carbon quarry. The aeromagnetic map in Fig. 8 shows evidence for such a 

fault near the quarry. The northeast part of the map shows an abrupt, 

high magnetic gradient, the contours of which trend N 400 E. This 

gradient probably delineates a basement fault trending northeast-southwest 

which passes just southeast of the Carbon quarry and continues to the 

south-southwest. The main joints of the Carbon quarry are probably due to 

this fault. The Carbon quarry's minor sets at 450 to the main set would 
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Figure 7. Gravity map of Webster County, Iowa (after King and Zietz, 
1971) 

Contour interval is 10 milligals. N. B. Z. is the Northern 
Boundary Zone of the ~lidcontinent Geophysical Anomaly 

1: North Welles quarry 
2: Celotex quarry 
3: Carbon quarry 
4: National quarry 
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Figure 8. Aeromagnetic map of Webster County, Iowa (after Coons et al., 
1967; King and Zietz, 1971) 

Contour interval is 20 gammas. N. B. Z. is the Northern 
Boundary Zone of the ~lidcontinent Geophysical Anomaly 

1: North Welles quarry 
2: Celotex quarry 
3: Carbon quarry 
4: National quarry 
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then constitute a small orthogonal system developed independently of the 

major set. 

Is there any evidence that this fault has moved since the Fort Dodge 

gypsum was deposited? Although the rift system is over 1 billion years 

old, there is ample stratigraphic evidence of movement along the boundary 

faults, as well as along interior faults, throughout the Paleozoic (Coons 

et al., 1967). The Thurman-Wilson fault in southwest Iowa, for example, 

defines the southeast edge of the rift in that area, and was active during 

the Pennsylvanian (Chamberlain, 1980). The deposition of the 

Pennsylvanian Cherokee Group in the Fort Dodge area was also largely 

controlled by the rift structure (Chang, 1984). The Cherokee Group strata 

are generally the ones that under1y the gypsum. Even later, post

Jurassic, structural activity in the Fort Dodge area is confirmed by 

displacement of the gypsum beds by 15 to 23 m (50 to 75 ft.) along the 

Fort Dodge Graben (Hale, 1955). Although measurable post-Paleozoic 

movement along the major faults of the rift structure has never been 

confirmed, minor adjustment along the interior fault near the Carbon 

quarry could account for the parallel joint development found there. This 

adjustment was possibly induced by loading and unloading by Pleistocene 

glaciers or Cretaceous sedinents. It is also possible that post-Jurassic 

movement along the fault created a structure responsible for protecting 

the gypsum from more extensive erosion, but this has not been confirmed. 

The interior fault also has important predictive value for gypsum 

exploration because of its control on jointing of the gypsum. Any gypsum 

closer to the fault than the Carbon quarry is likely to be heavily jointed 
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(with N 400 E joints) and mostly or totally dissolved away by increased 

ground-water flow along the joints. Quarrying this gypsum would probably 

not be economic, and mining it would be plagued with roof support problems 

because the gypsum would be in the form of individual remnant blocks such 

as those found in the Carbon quarry. 

Horizontal joints 

The horizontal joints in the Fort Dodge gypsum are weakly developed 

in all quarries, but nonetheless warrant an explanation. They are 

probably exfoliation features following weaknesses along bedding planes 

with excess detrital material. The limited lateral extent of these joints 

indicates that exfoliation occurred after the vertical joint sets were 

formed, as they can not be traced across the vertical joints. Accretion 

steps on the faces of two joints in the North Welles quarry indicate 1-2 

cm of horizontal movement of the upper blocks, with one moving toward N 

120 Wand the other toward N 140 W. Although these two directions are 

remarkably parallel, there are too few horizontal joints in the Fort Dodge 

Gypsum to fully document a recent systematic horizontal shear stress in 

the area. Overhanging relationships of the upper blocks on their supports 

indicate that movement occurred after the solution channels were 

developed. This suggests that perhaps the local topography of the gypsum 

surface controlled the movement. 
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Solution Channels and Dissolution Rates 

If Tertiary erosion, rebound, and expansion are responsible for joint 

formation, then the joints and subsequent solution channels are probably 

less than 20 million years old. Based on this amount of time, a typical 

solution channel with a half-width of one meter would have experienced an 

average dissolution rate of about 1 mm per 20,000 years. 

If, on the other hand, the joints have been formed by post-glacial 

rebound and expansion, they must have been forced since the first major 

Pleistocene glacial retreat. According to the classical glacial episodes, 

the first glaciation was the Nebraskan, which has been given an age of 1.0 

million years by Boellstorff (1978), and an age of 1.2 million years by 

Cooke (1973). It was previously mentioned, however, that Boellstorff 

(197H) has found additional tills below the Nebraskan type section. These 

are interbedded with volcanic glasses that have been fission-track dated 

at about 2.2 million years. This limits the age of the (post-glacial) 

joints and subsequent solution channels to two million years. A typical 

solution channel with a half-width of one meter thus experienced an 

average dissolution rate of about one millimeter per 2000 years during 

this time. At this rate, the entire present thickness of the gypsum (10 

m) could be dissolved in 20 million years. This would indicate that much 

of the of the Fort Dodge Gypsum has been dissolved and is now missing, and 

that the gypsum deposit must have been much thicker and more laterally 

extensive in the past. The small, isolated deposits of gypsum shown in 

Fig. 1 are probably remnants of this once large, thick, continuous 

deposit. 
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The solution channels are now filled with sediments from the 

overlying strata. In the North Welles and National quarries the overlying 

unit is the Soldier Creek member of the Fort Dodge Formation, and in the 

Carbon and Celotex quarries it is Pleistocene glacial till. The finer 

grained fraction of these overlying beds probably helped limit 

ground-water flow and protected the gypsum from more extensive erosion and 

development of solution channels. Bard (1982) suggested that the Soldier 

Creek member was more effective than glacial till in protecting the 

underlying gypsum, but deep (4 m) solution channels filled with Soldier 

Creek sediments in the National quarry indicate that the difference 

between the Soidier Creek and the glacial till is relatively minor 

compared to other ~ontrols, assuming that the solution channels were 

dissolved by ground-water in post-Soldier Creek time. One such control 

may be the permeability difference between the underlying Pennsylvanian 

shales and sandstones of the Cherokee Group. Occasional channel 

sandstones in the Cherokee Group would be subject to more ground-water 

flow than the surrounding shales. The greater dissolution of gypsum 

overlying such areas may be the mechanism responsible for the formation of 

large, vertical solution cavities locally found in the gypsum. 
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SECTION 2: INSOLUBLE MINERALS 

Samples of the laminated gypsum were taken from the northwest corner 

of the North Welles quarry every 10 to 20 cm, starting 20 cm from the top 

and ending 370 cm from the top. This covered most of the gypsum member, 

which is 4 m thick here but is thicker in other parts of the same quarry. 

Some features were also sampled, including large and small gypsum nodules 

and tiers of fibrous gypsum. The nodules are most common in the upper 

levels of the gypsum and are white, fine-grained (alabastrine) features 

thought to be secondary growths which push impurities out of the way as 

they grow. They range in size from a few millimeters to tens of 

centimeters and have blocky ghosts which suggest an anhydrite precursor, 

indicating that local dehydration of the gypsum has occurred (Dasenbrock, 

1984). The tiers of fibrous gypsum occur to at least sone extent 

throughout the deposit but are most well-developed at the very top, where 

they were sampled. They are thought to be recrystallization features 

developed under vertical tensile stress. The long axis of the gypsum 

crystals in the tiers is perpendicular to the bedding and was parallel to 

03 at the time of formation. In the case of the Fort Dodge gypsum, the 

long axes of the crystals do not necessarily coincide with the 'c' 

crystallographic axis, so the tiers are not true satin spar (Dasenbrock, 

1984). The tiers have a brick-red color where they are overlain by the 

red beds of the Soldier Creek member, presumably because the tiers have 

incorporated some of the red material of the Soldier Creek into them when 

they were.growing. The red color does not appear anywhere else in the 

gypsum. 
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Insoluble minerals make up a very small portion of the Fort Dodge 

gypsum and are thus difficult to see and identify. To obtain these 

impurities in reasonable quantities, a distilled water method using 

soxhlet extractors was used to dissolve away the gypsum and concentrate 

the insoluble minerals. This procedure, as well as sample preparation 

techniques used for X-ray diffraction (XRD) and the scanning electron 

microscope (SEH), is described in detail in Appendix B. Samples were 

weighed before and after gypsum dissolution to determine the percent of 

insoluble matter. The vast majority of the material is of very fine sand 

size (0.0625-0.125 mm) or smaller, and was examined with a binocular 

microscope (wet sample), XRD, and SEH. 

Mineralogy and Morphology 

The insoluble minerals identified by XRD consist of quartz, calcite, 

orthoclase, illite, and kaolinite (Fig. 9). These minerals occur 

throughout the gypsum, not only at all depths, but in all features except 

the nodules. Dolomite, hematite, limonite, pyrite, muscovite, and 

possibly tourmaline were seen under the microscope, but were too rare to 

be detectable by XRD. Dolomite occurs as disseminated anhedral particles 

and well-formed rhombohedra. Hematite and limonite occur as yellow-orange 

coatings on many of the quartz grains and as yellow-orange amorphous 

globs. Some of the larger globs (0.1 mm) have pyrite cores with a grainy, 

multi-colored metallic luster. The cores were more easily seen under the 

binocular microscope after the samples had been boiled in concentrated 

hydrochloric acid in preparation for SEH examination. Muscovite was also 
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Figure 9. X-ray diffraction data (molybdenum radiation) 

Mineral peaks identified: Q = quartz, C 
clase, K = kaolinite, I = illite 

calcite, 0 = ortho-

A: Impurities in the laminated gypsum. Sample taken 320 cm 
from the top of the gypsum 

B: Soldier Creek sediments. Undissolved and untreated 
C: Undissolved gypsum nodule. All peaks are from gypsum, 

indicating a very mineralogically pure feature 
D: Impurities in the red tiered gypsum. Sample taken from the 

top of the gypsum. Compare with the overlying Soldier 
Creek sediments (B) 

E: Impurities- in the basal layer 
F: Impurities in the tan tiered gypsum 
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common, seen as tabular transparent grains exhibiting perfect cleavage 

when broken. Rare elongate crystals with rectangular outlines were 

tentatively identified as tourmaline. All of the above minerals except 

pyrite and limonite were previously detected by Dasenbrock (1984). XRD 

and microscopic examination were not able to confirm the presence of 

zircon, previously found by Dasenbrock (1984). 

Quartz is by far the most abundant impurity, and has three distinct 

morphologies in the gypsum (Plate IV). Most of it occurs as very fine 

sand or silt-sized particles less than 0.1 mm across. These show poor 

sorting and a wide variety of roundness, ranging from angular to 

well-rounded. Most of them are frosted, and about 30 to 50% are stained 

yellow to orange, presumably from limonite or hematite. They occur 

throughout the vertical range of the deposit and, when concentrated along 

bedding planes, have the appearance of clay. This aspect has caused some 

researchers to mistakenly refer to them as clay minerals. Another quartz 

morphology is that of euhedral crystal form (Plate IV). These crystals 

tend to be doubly terminated and clear, though some have a small ~lky 

core. They usually range in size from just under 0.1 mm to 0.3 mm in 

length and 0.05 to 0.2 mm in width, but some crystals as long as 1.0 mm 

were seen. They are most abundant in the upper part of the deposit, and 

few are seen below the point 270 cm from the top except in the impure 

basal layer. The third type of quartz occurs as spherical growths of 

crystals (Plates IV and V). These 'quartz clumps' usually appear as clear 

bumpy spheres up to 0.3 mm across, and all of the ones examined had a 

small milky core. The 'bumps' or 'knobs' are euhedral to subhedral quartz 
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Plate IV. SEM photomicrographs showing different types of quartz 
particles found in the Fort Dodge gypsum (stereopairs, 15 kv 
acceleration voltage) 

Top: A doubly terminated euhedral quartz crystal, probably 
authigenic, is in the upper left part of the 
photograph. A quartz clump, probably also authigenic, 
is on the lower left. All other grains are quartz of 
very fine sand to silt size thought to be of detrital 
(eolian) origin. 

Bottom: Doubly terminated quartz crystal, probably authigenic. 
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Plate V. SEM photooicrographs of quartz cluops in the Fort Dodge gypsum 
(stereopairs, 25 kv acceleration voltage) 
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crystal terminations, and the milky core in some of the broken ones 

appears to be calcite, as it effervesces in dilute hydrochloric acid. The 

quartz clumps occur throughout the vertical extent of the gypsum. 

Calcite is second in abundance among the insoluble minerals. Only the 

lower half of the gypsum deposit has calcite crystals large enough to be 

seen (0.1 mm). The upper half of the deposit is also calcareous, but when 

its insoluble minerals are given the acid test under the microscope, the 

effervescence can not be traced to any particular crystals. The larger 

crystals have a euhedral to subhedral habit, forming multi-faceted, 

elongate crystals which are difficult to tell from the euhedral quartz 

without the help of acid. 

Orthoclase peaks are found in the XRD data (Fig. 9), but the mineral 

was difficult to distinguish under the microscope, probably because of the 

apparently small size of the feldspar grains. Staining the orthoclase was 

attempted but not particularly useful because the small, loose nature of 

the grains made it difficult to obtain moderate yet thorough etching 

during the preliminary etching step. Also, the yellow color produced by 

the standard sodium cobaltinitrite method (Bailey and Stevens, 1960) is 

similar to the yellow stain possessed by many of the quartz grains. 

Kaolinite and illite were also detected by XRD, but the grains were too 

small to be seen under the microscope except for the faint glitter in the 

sample from light reflecting off clay particles in suspension. 

Little difference could be seen in the mineralogy from feature to 

feature. .Even the immediately overlying Soldier Creek beds have nothing 

mineralogically different from the insoluble minerals of the main gypsum 
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deposit; they simply have a greater abundance of impurities than the 

gypsum. The tan tiers, however, had some well-indurated bits of very fine 

sandstone with calcareous cement. 

General Abundance 

The amount of impurities in the gypsum generally varies between 1.0 

and 3.5% (Fig. 10). The upper half has slightly more impurities, but 

there is also erratic variation with depth. The sharp variations probably 

represent fluctuations in the rate of sediment influx compared to the rate 

of gypsum precipitation. The more general trend showing more impurities 

in the upper half may be due to authigenic growth of euhedral quartz 

crystals, as will be discussed later in this thesis. An additional sharp 

depth-related trend is shown by an impure basal layer near the Carbon 

quarry not plotted in Fig. 10. This is a macro-crystalline selenite layer 

10 cm thick found below the bottom of the main gypsum sequence. It shows 

a much higher impurity content of 34.3% and is separated from the 

overlying laminated gypsum by a 4 cm thick mixture of soft brown fine sand 

and clay. 

The abundance of insoluble material also varies from feature to 

feature. The nodules, for example, are nearly pure gypsum (Fig. 9C). 

Upon dissolution they give practically nothing (0.3%) for XRD analysis. 

This supports the theory that, if nodules are secondary, impurities are 

pushed out of the way as the nodules grow. The two tiers that were 

sampled have a higher impurity content than the laminated gypsum. The 

sample of the red tiers had 4.9% insolubles, and the tan tiers had 12.7%. 
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Figure 10. Vertical variation in the amount of insoluble minerals in the 
Fort Dodge gypsum 
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Visual inspection shows that most of this material is concentrated either 

at the boundaries of the tier or in the central parting between double 

tiers. The gypsum that makes up the tier is itself relatively pure. 

Origin 

The insoluble minerals show evidence of primary detrital, primary 

chemical, and secondary (authigenic) origin. The euhedral quartz and 

quartz clumps are probably authigenic because transport would probably 

have rounded the grains and imprinted features onto them that would have 

been seen on the SE}I. The morphology of the quartz clumps suggests radial 

quartz growth from a calcite core, although no radial structures or 

patterns could be seen under the oicroscope. 

The remaining quartz particles probably have a detrital, eolian 

origin in an arid environment. This is indicated by several factors. A 

hot, arid environment is to be expected because it is the most reasonable 

way to obtain the high amount of evaporation required to concentrate sea 

water enough to precipitate gypsum. Iowa was at about 300 north latitude 

during the late Jurassic, and this is the latitude which many of the major 

deserts of today occupy. In such environments, the wind often becomes the 

dominant geomorphic agent, and is quite effective in moving particles less 

than 1.0 mm diameter. The low concentration and evenly dispersed nature 

of the quartz particles would also not be expected if they were brought in 

by continuous or ephemeral streams. Streams would also tend to dilute the 

sea water ,concentrate and stop the precipitation of gypsum. Most of the 

quartz particles are also frosted, a common feature of eolian sand grains 
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(Glennie, 1970). To further test the eolian hypothesis, the particles 

were examined with the S&~. Many microscopic surface features have proven 

to be accurate environmental indicators (Krinsley and Doornkamp, 1973). 

The (non-euhedral) quartz grains of the Fort Dodge gypsum have no features 

that ~ndicate subaqueous transport, such as mechanically or chemically 

formed V-shaped indentations. They do, however, exhibit abundant cleavage 

plates (Plate VI), which are often produced in eolian environoents 

(Krinsley and Doornkamp, 1973). The limonite and hematite coating on some 

of the quartz grains gives further support to the idea of a hot, arid, 

eolian origin, as deserts are well known for the production of red 

(hematite) and yellow (limonite) coatings on particles (Walker, 1979). 

The evaporite-red bed association in the geologic record is also common, 

and the relationship between the gypsum and the overlying red beds of the 

Soldier Creek member may be such an association. Some of the hematite and 

limonite was probably redistributed to form the amorphous globs and 

pyrite. 

The orthoclase is probably also of eolian origin, based on its low 

concentration and wide dispersion. The kaolinite and illite could be 

either detrital (eolian) or authigenic, as breakdown products of the 

orthoclase. 

The calcite and dolomite are probably of primary chemical origin, 

based on the fact that carbonates are often associated with evaporite 

deposition. Calcite is the first mineral to be precipitated in marine 

evaporite sequences (Clarke, 1924). As evaporation continues, gypsum 

begins to precipitate contemporaneously with calcite. Continued 
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Plate VI. SEM photomicrographs of a very fine sand-sized quartz grain 
showing upturned plates indicative of eolian origin \15 kv 
acceleration voltage; the boxed area in the top photograph is 
shown enlarged in the bottom photograph) 
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precipitation of gypsum may increase the Mg/Ca ratio enough to cause 

dolomite to be precipitated or calcite to be dolomitized (Dean, 1978). If 

this was the case for the Fort Dodge gypsum, the disseminated nature of 

the calcite and dolomite indicates that the carbonate facies of a marine 

evaporite sequence does not always have to be deposited in a 

geographically restricted area close to the mouth of the bay, but can be 

dispersed and interbedded with the other evaporite minerals. 
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SUNNARY 

Evidence suggests that the orthogonal vertical joint sets of the 

North Welles quarry and random vertical joints of the Celotex quarry are 

extension fractures created by uniform horizontal tension. Such joints 

are usually explained by uplift of the crust, which is forced to cover 

more surface area at the new, higher radius position within the Earth 

(Price 1966). Uplift in the Interior Province of the Central Stable 

Region was probably caused by unroofing, and there are two equally 

probable unroofing mechanisms: erosion of about 450 m of Cretaceous 

strata during the Tertiary period, and ablation of about 1700 m of ice 

during the interglacial episodes of the Pleistocene. Both of these models 

account for enough isostatic rebound to cause joints, but only the 

Cretaceous strata model allows for possible dehydration of the gypsum to 

anhydrite because the weight of the glaciers would not be enough to 

compensate for the low temperatures involved. Formation of the random 

Celotex joints may have also been influenced by inhomogeneity of the 

underlying beds during loading. The parallel joints of the Carbon quarry 

may have resulted from late movement along an interior basement fault 

associated with the ~lidcontinent Geophysical Anomaly. The location and 

trend of the fault can be recognized on the aerooagnetic map of Webster 

County, and movement could have been triggered by crustal loading and 

unloading by either of the above models. The weakly developed horizontal 

jOints are probably late exfoliation features that occur in the upper 2 m 

of the gypsum. They developed along bedding planes weakened by a 

relatively high amount of detrital material. 
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The Fort Dodge gypsum is a relatively pure deposit, with only 1.0 to 

3.5% insoluble minerals on the average. The major minerals are quartz, 

calcite, and orthoclase. There are minor amounts of kaolinite, illite, 

limonite, hematite, muscovite, pyrite and possibly tourmaline. Quartz is 

by far the most abundant of these, and has three distinct morphologies: 

euhedral quartz crystals, quartz clumps, and very fine sand to silt-sized 

grains. The sand and silt grains probably have an eolian origin in an 

arid environment, while the euhedral quartz crystals and quartz clumps are 

probably authigenic. Calcite and dolomite were probably deposited 

contemporaneously with the gypsum, and could represent the carbonate 

facies that is ideally the first facies to be deposited in marine 

evaporite sequences. The orthoclase and muscovite are probably of eolian 

origin, and the kaolinite and illite could be either detrital (eolian) or 

authigenic, as breakdown products of the orthoclase. The iron minerals of 

limonite and hematite occur as coatings on eolian quartz grains, and were 

probably introduced into the basin as such. Some of the iron may have 

been rearranged to produce the orange-yellow globs observed, some of which 

have a pyrite core. 
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APPENDIX A. METHOD OF PARALLAX CORRECTION FOR QUANTITATIVE JOINT 

ORIENTATION STUDIES USING AERIAL PHOTOGRAPHS 

Background 

The aerial photographs of the gypsum were taken with a 50mm lens from 

the side window of a 4-seat airplane at an altitude of about 400 feet. It 

was impossible to obtain a camera angle that was perfectly vertical, even 

under the best banking conditions. The photographs thus have inherent 

distortion of the joint trace orientations due to the parallax angle of 

the camera. This distortion can be categorized into two types which I 

will refer to as 'converging railroad track' and 'parallelogram'. In 

converging railroad track distortion parallel lines on the outcrop do not 

remain parallel in the photograph, but converge slightly toward the end 

that is farther away (Compton, 1962). This is more pronounced at the 

edges of the picture, and is exaggerated if a wide angle lens is used at a 

low angle of incidence. This type of distortion is assumed to be 

negligible in the present photographs because a 50 mm lens was used at a 

reasonably high angle of incidence, and the quarries are located in the 

center of the original pictures, where this type of distortion is least 

developed. The parallel nature of the joints in the Carbon quarry and in 

the aerial photographs indicate this is a valid assumption. 

Parallelogram distortion is the second type of distortion, and in 

this study was significant enough that it had to be dealt with. In 

parallelogram distortion, initially parallel lines remain parallel, but 

squares are distorted into parallelograms because they are not being 
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viewed face-on. All angular relationships on the surface containing the 

lineations change, so correction is required if the data taken from the 

photographs are to represent true directions. 

Method for Correcting Parallelogram Distortion 

The scale and compass orientation of each aerial photograph were 

field checked by surveying a large 900 (N-S and E-W) cross on the top 

surface of the gypsum in each quarry, and plotting these crosses on an 

overlay at their identical locations in the respective photographs. Each 

cross was then extrapolated by drafting methods to construct a 61 X 61 m 

(200 X 200 ft.) parallelogram, whose size, orientation, and shape 

(departure from square) indicate scale, north direction, and amount of 

parallax distortion. If there were no distortion in the photograph, the 

plotted cross would have arms of equal length at 900 to each other, and 

would project as a square. 

To correct for parallelogram distortion, each photograph with its 

parallelogram overlay was mounted on a tilt board, which was then mounted 

onto a tripod equipped with a universal joint. The prints were then 

re-photographed in a tilted position using a Canon F-1 with a 420 mm lens. 

Each print was tilted in such a way that the parallelogram overlay 

appeared as a square in the viewfinder of the camera. A stereoscopic 

technique was used to accomplish this; one eye looked through the 

viewfinder of the camera, while the other eye looked at a perfect square 

drawn on white paper. Once the proper tilt angle was obtained, the 
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parallelogram overlay was removed and a photograph was taken of the 

uncorrected print on the tilt board. 

Each parallelogram was re-drawn on the new, corrected photograph 

using surface markings on the gypsum to locate it in the same position as 

·in the first photograph. To determine the effectiveness of the correction 

technique, a comparison was made between the old and new parallelograms, 

which, ideally, should have four sides of equal length meeting at 900 and 

two diagonals of equal length at a 450 angle to the sides. Table 1 shows 

that the corrected photographs indeed have less parallax distortion than 

the original ones, and the parallelograms in them approach being perfect 

squares. Bearings of lineations on the new photographs are within 10 to 

30 of true, and distances measured with the scale are 96% accurate or 

better, depending on their bearing. For comparison, a study based on the 

uncorrected photographs would result in errors on measured joint 

orientations of up to 50. 

Limitations 

This procedure is the photographic equivalent of the electronic "tilt 

correction" feature found on some scanning electron microscopes. This 

feature restores lineations on planar, tilted specimen surfaces to their 

untilted lengths and angles-- seen if one's line of sight is perpendicular 

to the specimen surface. Objects above or below the planar surface, 

however, such as undulations or three dimensional objects, are distorted 

further from their true shape and orientation by tilt correction. Proper 

application of this correction method is thus restricted to cases where 
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Table 1. Comparison of parallax distortion on uncorrected and corrected 
photographs of the three quarries 

Angle Accuracy 
Scale Accuracy in degrees 

Quarry ---------------------- ----------------------
Uncorrected Corrected Uncorrected Corrected 
----------- --------- ----------- ---------

North Welles > 91 % > 99% within 5 within 1 

Carbon > 91 % > 96 % within 4 within 3 

Celotex > 88 % > 97 % within 4 within 2 
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the surface containing the lineations is relatively planar. The top 

surface of the Fort Dodge Gypsum is such a case. Although there is 

considerable relief (up to 5 m) due to the solution of the gypsum along 

the joints, most of this relief is restricted to narrow channels that 

delineate the joints themselves, while the tops of these channels are at 

roughly the same height. This is especially true of the Carbon quarry, 

where deep, narrow channels run between flat-topped remnant blocks of 

gypsum. In such cases, the trends of the joints were taken from the top 

of the channel, level with the top surface of the gypsum. The correction 

technique is also restricted to photographs with a limited amount of 

'converging railroad track' distortion, as it does not correct for this. 

Another drawback to the photographic tilt correction technique is the 

degradation of picture quality in the corrected photograph because of the 

extra photoduplication steps involved. For this reason, the aerial 

photographs included in this thesis (Plates I, II, and III) are of the 

uncorrected photographs rather than the corrected ones. In this study, 

the higher resolution, uncorrected print was used to initially find the 

joints, and the lower quality, corrected print was then used to take their 

true strike. 
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APPENDIX B. SANPLE PREPARATION 

In order to study the non-gypsum part of the Fort Dodge Gypsum in 

detail, a method was needed" to dissolve the gypsum while leaving the 

remaining minerals and their surface features intact. A hot distilled 

water method using soxhlet extractors was used to accomplish this. The 

soxhlet extractor setup is shown in Figure 11. It consists of a boiling 

flask, condenser unit, and soxhlet extractor, all made of glass, and an 

electrical heating element. The heating element boils water in the 

boiling flask, and the steam travels up through the steam tube and into 

the condenser. Condensed steam (distilled water) drips from the condenser 

into the soxhlet extractor, where the sample to be dissolved is held in a 

permeable extraction thimble made of cellulose. The water level in the 

soxhlet rises until it reaches the top bend of the siphon tube. The water 

then siphons itself back into the boiling flask and the cycle starts over 

again. Regular tapwater is used to cool the condenser but does not enter 

the system. 

Samples to be dissolved in the soxhlet extractors were crushed to 

get them to fit into the extractors and to speed dissolution. 

Unfortunately, crushing can contaminate the fine impurities and affect 

their surfaces. To prevent this, each crushed sample was dry-sieved, and 

only the clean coarser fraction (2.00-10.00 mm) was used, with its 

enclosed, fine-grained impurities still intact. The 0.590-3.360 mm size 

fraction was used for dissolution initially, but the 2.00-10.00 mm 

fraction was used after it was discovered that some of the euhedral quartz 
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Figure 11. Diagram of a soxhlet extractor setup 

Arrows show the directions of water and steam flow 
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crystals are as long as 1.0 mm. Most of the impurities, however, are of 

very fine sand size (0.0625-0.125 mm) or smaller. 

During dissolution, samples of the water in the soxhlet extractors 

were occasionally removed, cooled to room temperature, and measured for pH 

using a ~wrkson Model 88 digital pH meter calibrated with a pH 7.00 buffer 

solution. The pH of water in the extractors ran between 8.30 and 9.52. 

It was thought that under these conditions, calcite would be preserved. 

To make sure, a test sample of 90% coarse gypsum (with a known impurity 

content) and 10% powdered calcite was mixed up. Fifty grams of the 

mixture were run in a soxhlet extractor for six weeks. All of the gypsum 

was dissolved in this time, but only about 3.5% of the calcite was 

dissolved. 

A typical 30 gram sample of gypsum takes approximately 2 weeks to 

dissolve, depending on grain size, boiling rate, and condenser efficiency. 

Six banks of extractors were run simultaneously in this study in order to 

get a substantial number of samples in a reasonable amount of time. Once 

the gypsum in the sample was dissolved, the concentrated impurities were 

washed out of the extraction thimble and into a filter funnel equipped 

with a Gelman Metricel membrane filter with a 1.2 micrometer pore size. 

The samples were then filtered and dried using suction. The concentrated 

impurities to be run in the X-ray diffractometer were ground slightly with 

an agate mortar and pestle to mix the grains and break up any large 

clumps. Fig. 12 shows that using the extractors greatly increases the 

resolution of X-ray diffraction peaks of impurities with low 

concentrations, including that of calcite. Samples for the scanning 
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Figure 12. X-ray diffraction data (molybdenum radiation) showing 
resolution improvement after gypsum dissolution 

Top: Fort Dodge gypsum, before gypsum dissolution. The 
sample was taken 150-160 cm below the top of the 
gypsum, and had 2.9% insoluble minerals. 7he quartz 
peak (Q) can barely be seen; all other peaks are from 
gypsum. 

Bottom: Sample of the insoluble minerals from the above 
interval after gypsum dissolution. Major peaks 
indicate the presence of quartz (Q), calcite (C), 
orthoclase (0), kaolinite (K), and illite (I) 
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