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INTRODUCTION 

The general problem of radiation damage covers a broad spectrum 

of topics (swelling, emb rittlement, etc . ) and materials (fuel, fuel 

cladding , pr essur e vessels , etc . ) . The subject unde r discuss ion has 

been narr owe d to radiation effects on s teels for ligh t - water - cooled 

reactor pressur e vess els which will henceforth be referred to as RPV 

steels. In par ticular, the paper will cover radiation effects on the 

mechanical pr operties of RPV steels and the subsequen t recovery of those 

properties upon annealing . 

When considering pressure vessels , the main area of concern is the 

reactor beltline material , i.e . , the material exposed to the highest 

neutron flux from the r eactor core . This region is subject to an 
11 2 appreciable neutron flux of approximately 10 neutrons pe r cm pe r 

second with an energy greater than 1 MeV. 

The steels used t o construct the RPV are generally called mild or 

ferritic steels. The metal has a low carbon content, although not as 

low as in a stainless steel, and a body- centered cubic , bee , crystal 

structure . 

The two steels mos t connnonly used in the cons truc tion of an RPV 

are ASTM A302 Grade B and ASTM A533 Grade B. The specifications for 

the composition of t he steels are listed in Table 1 . Table 2 l i sts 

the required mechanical properties. 



Table J . 

Slee L 

AS 33 13 

a 
Compositions of r eac t or pressure vessel s t ee l s 

c Mn p s Si 

0.20 1.15-1. 50 0. 035 0.040 0.15-0 . 30 
max max max 

0.25 1. 15-1. 50 0 . 035 0 . 040 0 . 15- 0. 30 
max max max 

Mo Ni 

0.45-0.60 

0.45-0.60 0.40-0 . 70 

a All composit i ons are lis t ed in we i ght percent with any balance be ing composed of iron. 
b 

Va lues for A302 B are from r e f e r e nce 1 . 
<..: Values for A5 33 B a r e from r efe r e nce 2 . 

Table 2 . Tensil e s tre ngt l1 and y i e l d s trength f or r eac l or pressure vesse l s t eels 

St ee l Tens ile Stre ng th (ks i) Yie ld Strength Minimum (ksi) 

80 .0 - JOO .O 50.0 

80 . 0 - 100.0 50 .0 

a Va lues for A302 B a r e from r e f e r ence 1. 
b Va l ues for A533 B are from r e f e rence 2 . 

N 
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RADIATION EFFECTS ON THE MECHANICAL PROPERTIES OF METALS 

When considering radiation effects on metals the main concern is 

neutron irradiation . In a reactor environment it is the neutron flux 

which caus es a l l but a negl i gib l e fr ac tion of the radia t ion damage , a t 

leas t whe n considering t he pressure vessel . Fission fragmen t s have a 

considerable effect in t he fuel but a r e not of concern with respect to 

radia t ion damage elsewhe re because of their limited range . 

When a neutron , with sufficient kine t ic energy , impinges upon a 

me t al i t can cause damage by imparting some of that energy to a metal 

atom, causing that atom to be displaced f r om its lattice site . This 

displaced atom is called a primary knock- on atom, PKA , and it can, in 

turn , cause further displacements . 

When an atom is di splaced from its lattice site , two point defects 

are created; a vacancy and an interstitial . Collections of the point 

defects on a microscopic scale have macroscopic effects on mechanical 

properties . 

Radiation Hardening 

The method by which the PKA and its associated defects can have an 

effect on the mechanical properties of metals was suggested by Seeger (3) 

in his zone theory of r adiation hardening . Near the end of the path of 

the PKA theTe is a region of approximately spheroidal shape in which a 

considerable frac tion , some 20 to 30%, of the atoms have been displaced . 

This region is variously called a displacement spike o r a de~leted zone . 

It is also noted that although some displaced a t oms may be captured by 
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vacan t sites within the same spike , there will remain zones with smaller 

densi ty than the matrix. 

A note should be made that although Seeger studied copper, which 

has a face- centered cubic, fee , c r ystal structure, his work is also 

applicable to bee metals. 

For the zone theo r y of radiation hardening t o be correct it must 

account for many experimental observations, including: ( a ) The critical 

shear stress, T , is found to be strongly dependent upon t he temperature 
0 

of deforma t i on after irradiation , (b) The increase of-: is virtually 
0 

independen t of the temperature of irradiation, provided the irradia tion 

takes place below the recovery temperatur e, TR , ( c) The radiation 

hardening of copper is unaffected by annealing below TR , ( d) The softening 

at TR occurs with an activation ener gy approximately equal to that of 

self- diffusion (3) , (e) The softening is not accompanied by recrystal-

lization . 

The Seeger theory can in fact account for all o f these observations . 

For (a) it explains the observed temperature dependence of T since the 
0 

cutting by dislocations through a forest of obstacles is both stress-

and t hermally- activated . The mechanism for zone f ormation, i . e . , a 

deple ted zone of reduced density formed by a PKA , is virtually temperature 

independent, as required in (b) . The elimination of the hardening 

zones through annealing is possible only at tempera tures where 

appreciable self- diffusion is possible, which satis f ies (c) . Fo r (d) 

t he theory pre dic ts that the ac tivation energy fo r sof tening s hould be 

approximately equal to, but slightly less than , tha t for sel f - di ff usion . 
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Finally, (e) is satisfied because the zones can be eliminated by the 

migration of individual atoms (or whole zones) without the need for 

recrystallizat ion. Another comment about observation (c) is also of 

impor t an ce . Observat ion (c) , at leas t in the case fo r copper , shows 

that t he main contribution t o the radia~ion hardening by neutrons is 

not caused by isola t ed point defects, since, f r om annealing studies 

showing the recovery of elec trical resistivity , it is known that the 

maj or i ty of point defects anneal ou t at temperatures below TR . 

The neutron irradi a t ion induced har dening will then be taken t o 

be caused by these deple t ed zones, after Seeger . A final note on the 

zone theory is it pr edic t s that , i n the absence of saturation effects , 

T should be proport ional to the square root of the fluence , <ll • This 
0 

idea will be covered in more de t ail later. 

The zones that are cr eat ed can cause two types of hardening ; 

la ttice and source hardening (4,5) . The nucleation of slip , 

source har dening , and/o r t he propagation of slip, lattice hardening , is 

made more difficult . The Hall- Petch equation (6) provides a functional 

fo rmat by which the two p r ocesses can be so rted out 

a y 
= o . + k d- l /Z 

l y 

where a is the yield stress, a. is the fricti on stress opposing disloca-y l 

tion mo t ion, k is a measure of the stress required t o unpin the dis-
y 

locations f r om barriers , and dis the grain diamete r . 

In the formation of these zones there is observed t o be a saturation 

ef fee t. Makin and ~inter (5) take the saturation effect into account . 
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Simply s t a t ed, t he saturation effect is an explanation for the observa-

tion tha t at high neu tron doses the hardening rate decreases . 

The theory for the cutting of an obstacle by a dislocation line 

h h l d b . 1 N l/2 h N s uggests t a t a. s ou e propor t i ona to , wer e 
1 z z is the 

obstacle dens i t y . N i s i nitially expect e d to be pr oportional t o ~' but z 

as ~ increases , the cr eation of new obs t acles is limi ted by al r eady 

exis t ing ones . 

If a volume, v , is ass oci a t ed wi th each obstacle wi t hin which no 

new obs tacle can fo rm , then a balance of the number of obsta cles can be 

set up . 

dN z 
dt = N oB <j> {1- vN } 

0 z 

wher e cr B is the cr oss sec t ion for the pr oduction of a deple t ed zone and 

N is the a t omic number density . Upon int egr a c:ion, the equa tion yi e lds 
0 

N z 
1 

= v [ 1- exp (- N 
0 
a B v ¢ ) ) 

H • f • • 1 \Tl/2 ence , 1 a . 1s pr opor t 1ona to~ 
1 z 

1 /2 
cr i = A[l- exp(- B ¢ )] 

1/2 whe r e A is pr oport ional t o l / v and B = N a v . o B 
Makin and Mi nter also investiga te the i dea sugges t ed by Seeger 

tha t all obs t acles will have the same ac tivation energy for a dislocac:ion 

to cu t t h r ough them , i . e ., the obstacles ar e of the same size . The 

satur a t ion t heo r y predicts that afte r a considerable irradiation, 

obstacles with a range of sizes will be present . Fo r samples studied i n the 

as-irradia ted condition t here was 3ood agr eement wic:h Seeger' s theo r y . 
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However , after mild annealing treatments , o . , which is proportional to 
1 

t he T of Seeger , is no t as t emper atur e sensitive as in the as - irradia t ed 0 

condi t ion . 

These resul t s help to validate the satur ation theory because they 

suggest tha t t here is a r ange of barrie r sizes . Ar low tempera t ur es 

t hos e barrie r s wi th smal l ac t i va tion ener gies will impede dislocat ion 

mo tion while a t h i gher t emper atures t hey will be t r anspar en t t o 

dislocations ( t hey can be over come by thermal oscillat ions alone) . On 

annealing , t he obs tacles with a low ac t ivat ion energy and, consequent ly , 

a small s ize wi ll disappea r first . Thi s r esults in a rap i d r educ t ion in 

temperatur e s ensiti vity of o. , as i s observed. 
1 

Up to t hi s point i t has no t been discussed why the yield s tress is 

expec t ed to have a square-r oo t dependen ce on dose . In a s t udy by 

Tucker and Wechsler (7) the functional dependence of yield stress on 

dose is examined in detail . Niobium, a bee metal , was used as a subjec t 

fo r the s t udy . 

The plan a r dispersed barr ier mode l is used t o explain the functional 

dependence of yield stress on dose. This model suggests that the defect 

clus t e r s ar e barriers to slip dislocation mo t ion on the slip plane. 

The model is t ested by comparing its pr edictions directly with trans-

mission electronmicroscope (TEM) observations . Niobium is well - suited 

for this study as the radiation- produced defect clusters are r eadily 

visible in TEM micrographs . 

In developing the planar dispersed barrier model t he interaccion 

between dislocation lines and barriers is scrutinized. Under the action 
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of a shear s tress, 1, the force, F, on an obstacle created by a dis -

location line p r essing against it is 

F = 1 b.2. 

where b is the Burgers vector of the dislocation line and t is the 

average interbarrier spacing. To arrive at the equation in terms of 

a , recall that 1 = cr/2 for a polycrystalline, equiaxed specimen . 

a = 21 = 2F/b°i 

The dose dependence of the yield stress enters through the dose 

dependence of t . 

From the conclusion that unirradiated (U) - and irradiated (I) -

barriers act jointly, the theory can be developed further . 

a = 2F/bi° 

where F is an effective critical force for a dislocation line to cut 

through a barrier. Also, Q, can be expressed as 

I = l /ln d + n.d. uu 1.1. 

where n and n. are the density of U- and I - barriers, respectively, 
u l. 

and d and d . are the sizes of U- and I - barriers, respectively . 
u l. 

Therefor e, 

a = 2F (n d + n.d,) 1/ 2/b 
u u l. 1 

Further, reasoning that a = a when n. u l. 
o, 

The final step in the development of t he planar dispersed barrier 

model is to take into account the size distribution of the defec t 

clusters, I 
c 
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n' d . d d. 
1 1 

where n' i s t he defect cluster dens ity per unit s i ze interval. 

2 then r eplace ni di in the equation for a 

0
2 = 0

2 + 4F2 I / b2 
u c 

I can c 

Thi s is , stric tly speaking, the correct f orm of t he equation with t he 

dose dependence entering implicitly through I . c 

I f , however , it is assumed that the density of the defect cluster s 

increases linearly with ¢ and that there is no change in s ize distribu-

tion an expli cit func t ion of ¢ can be determined. The above assumptions 

basically ignore the saturation ef fect . d. can be replaced by d , a mean 
1 

defec t clus ter s ize independent of ¢ and the clus t e r density can be 

expressed by 

n = n 0 ¢ 
0 c 

where n i s t he a t omic densi t y and a i s the c r oss section fo r pr o-o c 

ducing a de f ect cluster . 
2 

0 

Then, 

0
2 + 4F2 (n 0 <!> )/b2 
u 0 c 

Again , this i s only correc t fo r low doses befo r e the s atura tion effec t 

becomes apparent . 

By conducting annealing s tudies , the na t ur e of the defect cluste r s 

can be infe rred . F. A. Ni chols (8) l ooks at the recovery of r ad i ation 

dama ge in fe rritic s t ee ls . The defec t aggrega t es are characterized as 

being gr oups of vacanc i es in agreemen t wi t h Seege r. This poin t is 

r equired t o exp l ain t he defec t clus t e r s ' pe r sistence upon annealing up 
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0 to temperatures of 300 C. As interstitials would be mobile at tempera-

tures a great deal below 300°c, this seems like a plausib le argument. 

Ni chols suggests three different mechanisms fo r the annealing of 

the de f ec t clus t e r s . All three ar e char acterized by an activat ion 

ene r gy a t or near t hat fo r self- diffusion in order to agr ee wi t h 

exper imental observat ions . The first model assumes that the defect 

cluster s a r e r emoved by having individual vacancies leaving the voids 

and t r avelling to sinks such as dislocations , grain boundaries, and 

sur faces. The second model suggests that the clusters a r e annihilated 

by the self-diffusion- controlled climb of dislocations . Bo t h are 

character ized by having an activation energy equal to that of self-

diffusion but neither can account for the rapidity of the observed 

annealing rate . 

The third model suggests that there occurs the migration of 

enti r e clusters . In the early stages there is a coalescing to form a 

few larger clusters; which would r educe the ha rdening . In the final 

stages the larger aggr egates would be absorbed at grain boundaries , 

dislocations and surfaces . 

The t hird model is asser ted to be pr actical one because it is 

assumed that the cluster s migrate by the mechanism of sur face diffusion . 

Atoms diffuse along the vacancy cluste r (void) s urface from the leading 

to the trailing edge . By having the migration occur by surface diffusion, 

the annealing rate would be increased to the point where t heory and 

observation _would ag r ee and the ac tiva tion ene r gy would be only sligh t ly 

less than that for self- diffusion. The rate of annealing would incr ease 
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because the entropy term of the diffusion coefficient would be much 

larger allowing fo r a gr eater lattice diffusivity . 

The previous discussion has shovm that neutron irradiation 

produces vacancy defec t clus t er s which account fo r radiation hardening . 

Further, the planar dispersed barrier model i s the t heoretical basis 

for t he impedance of dislocation by defect clusters . And, finally , 

there is a satur a t ion effec t which r educes the hardening rate a t high 

neu tron fluences. 

Radiation Embrittlement 

Radia t ion embrittlement is anot he r phenomenon assoc iated with the 

neutron bombar dmen t of metals. Wechsle r (9) discusses the r eduction in 

the load bearing capaci t y of irradiated metals . A note should be made 

here t hat the following points are applicable to many mater ials , 

including RPV steels . 

To investigate the pr oblem of radiation embrittlemen t there must be 

a clear understanding of what is meant by br itt l e ness and by duct ili t y. 

The two quanti ties a r e mutually exclusive t o the extent that a mater ial 

which is comple tely br i ttle shows no ductility and vice versa . The 

ductility of a metal is a measure of its ability to undergo plastic 

deforma t ion before f racture . 

Ductil i t y has sever al measu r es including uniform elongation and 

reduc tion in a rea from tensile tests and the ductile- brittl e transition 

tempe r ature :rom notched ba r irapact tests . 

Uniform elongation occurs in a t ensile test up to the point whe re 

work har dening can no longer compensa te for a localized r eduction in area . 



12 

The uniform elongation is a measure of how much strain the metal can 

tolera t e before work ha r dening no longer compensates for the stress 

increase due to localized reductions in area . After this point is 

reached , plas t ic instabi l ity is a resu l t which leads to f r actu r e . 

Reduc tion in area , RA , is a measur e of how much the cross sectional 

area of the t ensile sample gage length decreases from its initial , 

uns trained value to its final, fractured value . It is represented 

by a simple equation 

RA= (A - A )/A 
0 f 0 

where A
0 

is the initial c r oss sectional a r ea and Af is the final c r oss 

sectional area of the fractured surface . 

The ductile- brittle t r ansition tempe r a t ure, DBTT, is, in pr inciple, 

the tempera t ure above which the metal behaves in a ductile fashion and 

below which it behaves in a brittle fashion . In actuality , there is a 

narrow temperature band over which the transition takes place . The 

DBTT is characteristic of RPV steels a nd will be discussed in great er 

detail fur t her on. 

Wechsler (9) discusses the effects of neutron irradiation on these 

measurements . Unifo r m elongation decreases upon irradiation while the 

reduction in area changes only slightly, if at all. Sometimes there 

is an a r gument as to whe t her or not embrittlement actually takes place 

since RA is not greatly affected . However, the decrease in uniform 

elongation shows that a reduction in load bearing capacity has taken 

place and , thus, a type of embrittlement has occurred . 
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The decrease in the uniform elongation is brought about by the 

premature onse t of plas tic instability . The instability is attribu ted 

to an observed inhomogeneous coarsening of slip . Coa r seness in slip 

i s characterized by local r egions undergoing sever e strains while the 

res t of t he gage length may not. The elo~gation in these localized 

regions may be lar ge bu t the strai n averaged over the entire gage 

length would be low. The heavily s trained regions reach a point of 

plastic ins t ability and fail, bringing about the decrease i n uniform 

elongation. 

In turn, the coarsening of slip is surmised t o be caused by 

dislocation channeling (7 ,9,10 ) . Dislocation channeling occurs in many 

pos t - irradiated metals when r adia t ion- pr oduced defect clus ters are 

removed by slip di slocat ions which are se t in motion along a favorably 

oriented slip plane, Once the defect cluste r s are removed, subsequent 

slip occurs in the barrier free region in pr efer ence to the nuclea tion 

of slip on new bands in the adjacent crystal . Dislocation motion is 

easier once a region has been cleared of obstacles , a l lowing furthe r 

deformation to take place in that region. 

The mechanism suggested (7 , 9 , 10) for barrie r removal in t he 

incipient channel is adiabatic heating. The s lip lines are formed 

ver y rapidl y with a release of sto r ed elastic energy . This r eleas e of 

energy, if preferen tially deposited nea r the defect clusters , would allow 

l ocalized annealing t o take place, t hus destroy ing the clus t e r s . 

The effect or neutron irr adiation on the DBTT is also important 

with res pect t o RPV s t eels. The DBTT will fi r s t be def ~ned in terms of 
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an unnotched tensile test and then corrections will be made for the 

conditions of the notched impact test. 

The mechanism for the increase in the DBTT upon irradiation is 

usually explained in terms of the Ludwick-Davidenkov criterion (9 ,11,12) . 

Fo r the tensile test two stresses are considered; a a nd the cleavage y 

fracture stress, a . The c riterion assumes that the material will be c 
brittle or ductile depending on whe t her o or 0 is reached first upon c y 

increasing the load . a is assumed to be relatively independent of test 
c 

temperature, strain rate , and microst ructure. a increases rapidly with 
y 

decreasing test temperature and it increases upon irradiation . Figure 1 

represen t s this situation schematically . Thus, if the DBTT is measured at 

the intersection of the two curves it will increase upon irradiation by 

the amount 6T because the intersection of the two curves will be shifted 

to the right . Therefore , since the increase in yield stress is due t o 

radiation hardening, the DBTT shift can also be accounted fo r by 

radiation hardening . 

A brief explanation by Olander (4) sheds further light on why there 

is neither expected nor observed to be an increase of a upon irradiation. 
c 

Looking at two equations from the Cottrell- Petch theory of brittle 

f r acture pr ovided the basis for the a r gument. 

a a . + k d - 1/ 2 
y 1 y 

and 

= = 2G y d- 1/ 2/ k 
c y 
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Figure 1 . Schematic diagram of the Ludwik-Davide~kov crite rion 
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where k and d are defined as befo re, G is t he shear modulus , and 
y 

y is the s urface energy related to c rack propagation . The effec t of 

radiation on t he DBTT can be explained by ref erring c:o the above two 

equa t ions . 

The parameter k depends on the stress required to unpin disloca-
y 

tions which, since bee metals are already strongly pinned by impurities , 

is not sensitive to radiation in RPV steels. Thus , a will not be c 

greatly affected by neutron irradiation. 

However, a . is quite sensitive to r adiation as discussed before . 
1. 

As a consequence , the yield stress will increase upon i rraciation . 

Both r esults agree with the Ludwik- Davidenkov criterion and with 

experimental obser va t ion . 

A note should also be made of the effects of a notch- impact t es t 

on the DBTT relative to a tensil e test. In particul ar, t he Charpy 

V- notch i mpac t t es t is of in t erest because it is used qui te of ten in 

studying RPV s t eels . 

The r e are two main differences between the Charpy test and a 

tensile test. The presence of the notch in the Charpy test leads to 

the pres ence of a triaxial s tress state compared t o a uniaxial stress 

state in the tensile test and the s train rate is much higher in a 

Charpy test. These both have the effect of increasing the DBTT (11,13) . 

In addition to the increase in the DBTT neutron, irradiation a lso 

p r oduces changes in another pr ope r ty measured by the Char py V- notch 

impact t est . The irr adiation pr oduces a decrease in f ractur e energy 

(absorbed energy fo r f ractur e) (9 , 14 , 15). 
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This decrease in the f r acture energy is mos t significant in the 

ductile domain or upper shelf regi on . Above the DBTT a point is 

reached whe r e increasing the test temperature no longer increases the 

f racture energy . This domain is called the upper shelf and the 

associated fracture ener gy is called the upper-s helf energy (USE) . 

Fracture in this domain is 100% duct i le. 

The decrease in the USE is the equivalent (under the notched 

impact test conditions of high s train rate and triaxial stress state) 

to the decrease in area under the stress s train curve (for a uniaxial 

tensile test) (9) . Thus , it is assumed that the decrease in the USE 

is ano t her manifes t ation of the coarsening of slip upon irradiation . 

The effect of irradiation on a typical Charpy test transition curve is 

shown schematically in fi gure 2 . 

The dis cuss i on on r adiation embrittlement has shown t hat t he 

decrease in ductility ( increase in brittleness) upon irradiation is due 

t o the coarsening of slip caused by dislocation channeling. At leas t 

the dislocation channeling accounted for the decrease in uni fo rm 

elongation in t he tensile test and the decrease in USE in t he Charpy 

impact test. However, no new mechanism was needed t o account for t he 

incr ease in the DBTT, as it could be explained by radiation hardening . 

In- Service Response of Reacto r Pressure Vessels 

Dur ing ope ration t he reacto r pr essur e vessel must be ~onitored 

so t hat its continued safe t. · d ope r a i on is assur e even t hough the mechanica l 

p rope rties a r e deg raded as a result of t he radiation- pr oduced defects 
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(as discussed before) . There are sever al s t anda r ds which regula t e the 

use of reactor pr essure vessels and they include the Code o f Federal 

Regula tions (16 , 17) , t he ASME Boiler and Pressure Vessel Code (18) , 

and various ASTM Standards (15,19). 

The above r egulations define the minimum mechanical pr opert ies 

allowed for cont inued safe operation of the plant . The mechanical 

properties cited usually involve the f r actur e ener gy as measured in the 

Charpy impact tes t, and t he fracture toughness , as measur ed in linear 

elas tic fracture mechanics, at a specific temperature (16 , 17,20) . 

These requiremen t s are i nvolved mainly with the beltline mater ial of the 

pr essure vessel because it is this material which unde r goes the greatest 

property changes upon i rradiation . Strictly defined, the reactor bel t -

line region is the shell materia l directly s urrounding t he effective 

height of the fuel element assemblies and any additional height of shell 

material for which the pr edicted adjustment of refe r ence temperature 

exceeds SO degrees Fat the end of service life (16) . 

The re ference temperature , RTNDT ' just mentioned is r oughly the 

same as the ductile- bri t tle transition temperatur e, DBTT, defined fo r 

the Charpy V- notch impact test . In referring back to figu r e 2 , RTNDT 

can r eplace , in a qualitative manner , DBTT . 

RTNDT has a rather strict definition as well (18) . A temperature, 

Ti'ffiT ' is chosen which is at or above the nil- ductility temperature as 

determined by a dropweight test . At a temperature not gr eater than 

TNDT plus 60 degrees F , t he material must exhibit at least 35 mils of 

lateral expansion and a f racture energy not less than 50 ft . lbs . 



20 

(bo th of which a r e measured in the Charpy impact test) . If thos e 

requirements a r e me t then TNDT is RTNDT . 

If the aforementioned requiremen t s are not met, additional cests 

must be conduc t ed to de termine the t emperature , T, at which they are 

me t. In this case, RTNDT is equal t o T minus 60 degrees F . Finally 

RTNDT muse be determined for t he base plate material, the weld metal, 

and the heat affected zone associated with the weld . 

In the determination of RTNDT a minimum upper shelf energy, USE , 

for the reacto r pr essure vessel is required. The limit is a 

minimum USE of 50 ft lbs (with the 35 mil lateral expansion requirement 

being r oughly equivalent to it ) . At pr esent, the USE must be 50 ft lbs 

or greater because the RTNDT criterion becomes inoperative when the 

USE falls below that level. It should be noted here tha t t he 50 f t lb 

level is an arbit r ary limit and that the Nuclear Regulatory Commission 

(NRC) is considering a revision which would r educe t he limit co 30 f t 

lbs . The motivation for this is that some plants are approaching t he 

50 f t lb level and may soon have an undefined RTNDT (21) . 

Having a definable RTNDT is i mportant becaus e it is used t o 

determine the pr essure- temperature operating li~its of the r eac t or sys t em . 

The method fo r de termining these limits is given in Appendix G of 

Section III of the ASME Boiler and Pressure Vessel Code (20) . The 

Appendix presents a procedure fo r ob t aining the allowable loading 

l i mits for fe r~i ti c pr essure retaining materials. The de t ermination is 

base d on the pr inciples of linear elastic f r acture mechanics . 
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Since the concept of fracture mechanics i s so important t o under-

standi ng the ideas of Appendix G it is briefly described her e . When 

using f r acture mechanics (6 , 22) it i s assumed that all str uctures contain 

certain fl aws (cracks ) o f various sizes . The r esistance t o crack gr owth 

(sometimes cal led t oughness or fractur e r esistance) and an a ttempt to 

quantify t hat r esistance are the main concerns of fractu r e mechanics . 

The res ponse of many di ff e rent kinds of cracks can be descr ibed but 

Appendi x G is solely concerned with a surface crack having a sharp tip. 

The local s tresses near t he t ip of a sur face crack depend on the 

pr oduc t of the nominal stress and the squar e r oo t of t he cr ack depth . 

This dependence i s descr ibed by what i s known as t he str ess intensity 

factor, K. K is a fun c tion of the app l ied load , the c r ack size , and 

t he dimensions and shape of the body. Also , K is usual l y given in units 

Of k . ( . h ) 1/2 s1 inc es . 

Since K describes t he s t r e ss distribution around the crack tip and 

since the intensity of the s tress field determines whether o r not a 

cr ack wi ll pr opa gate , the value of K i s a measure o f the ma ter ial ' s 

r esis t ance to cr ack growth . The critical value of K, where the c r ack 

becomes unstable and gr ows ca t astrophically , is called the f r actur e 

t oughness of t he ma t erial. 

The fi nal poin t t o be made on cr ack propagation is the manner in 

which a crack gr ows or opens up. There are t hr ee modes of crack gr owt h 

including t he opening ~ode , the forward shearing mode , and the edge 

sliding mode . The modes are often referred to as mode I , II, and III, 
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respectively. Of majo r concern to this discussipn is t he mode I form 

of crack pr opagation . 

In Appendix G t he mode I s tress intensity facto r, KI ' is determined 

for each loading component of the reactor pr essur e vessel (20) . The 

summation of the KI values is t hen compared t o a reference value, 

KIR ' where KIR is the f r acture toughness of the material i nvolved . 

It should be noted here that KIR is dependen t on t he temperature of 

the material. 

In defining the ope rating limits of the reactor pressure vessel the 

value of KIR is related t o the temperatur e of the vessel and t o RTNDT . 

KIR =cl+ c2 exp[ C3(T- RTNDT- 160 °F)] 

26 . 78 ksi / inches 

1 . 233 ksi /inches 

- 1 C = 0 . 0145 (de grees F) 3 

and T = t he temper ature of the pr essur e vessel in degrees F . 

Used in t he development of KIR is a maximum postulated defect which 

is , in t his case , a shar p sur face cr ack. The c r ack has a depth of 1/ 6 

t he wall thickness . Due to the safe t y factor s i nvolved the pr even tion 

against non- duc tile fracture i s ass ured even if the defec t is twice as 

large , in linear dimensions , as the one assumed (20) . 

When conside r ing the pr ess ure vessel (excluding di scontinuities 

at fl anges , etc . ) the main loadings come £Tom the system pr essure and 

from the t hermal s tress due to the t he rma l g r adient during star tup and 
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shutdown . A safety factor of 2 is introduced into the calculation of 

the KI value produced by the primary system pressur e . By t aking those 

fac t ors into accoun t and by summing up the KI values, the following 

inequality results 

wher e ~m = M m 
x the memb rane s tress (induced by the sys t em) and 

~t = Mt x t he temperature difference th r ough the wall of t he pressure 
vessel in degrees F . 

Mm and Mt depend on the wall thickness and can be determined from graphs 

in the Appendix (20). 

Since RTNDT changes during the lifetime of the reacto r (along with 

the other mechanical pr operties) and since the allowable pressure-

temperature limits change with it, a materials s urveillance program is 

needed to measur e these changes . Unde r a s urveillance program , fracture 

toughness data a r e obtained through periodic removal of material specimens 

from the reactor . The specimens are subjected , as nearly as possible, 

to the same neut r on and t emperature environment as the reac t or 

vessel (17) . Charpy samples and tensile samples are included in the 

surveillance capsule to monitor the property changes . 

Most present surveillance pr ograms have 5 surveillan ce capsules with 

a typical withdrawal schedule as follows (17) . The f irst capsule is 

withdrawn when the p r edict ed shift in RTNDT is 50 degr ees F or at 1/4 of 

t he service life, whichever is earlier . The second capsule is withdrawn 

approximately 1 /3 of the way between the first and the fourth , while the 

third capsule is withdrawn at 2/3 of that interval. The fourth capsule 
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is withdrawn a t 3 / 4 of the service life time, the fifth capsule being 

on s tandby . 

When conducting surveillance programs there a re several importan t 

fac tors which need to be considered if the program is to be a successful 

one. Among these are the selection of appropriate steels, careful 

neutron dosime try ( to permit correlation from the specimen loca t ion to 

the reactor vessel wall ) and proper temperature cha racterization. 

The selection of appropriate s teels may be the most important facto r. 

In a conservative design the limiting steel, i . e., the one most sensi tive 

t o neutron irradiation, must be included in the surveillance capsule. 

This is a necessary bu t difficult tas k because there is a variation o f 

irradiation response from steel-to- s teel and even fr om heat-to- heat 

of the same steel (9, 21). The regulations stipulate that the limiting 

steel will judge the pressure vessel operating limits (18) . If the 

radia t ion res ponse of the steels involved i s not known be fo rehand, care 

must be taken t o include samples of bas ically all the steels . 

To determine the neutron environment e ach caps ule contains neutron 

dosimeters (ac tivation foils ) . Two examples of reactions used for 

54 54 . 58 58 a ctivation analys is are Fe (n , p) Nn and Ni (n , p) Co (21 ) . 

Computer physics codes a re used t o predict the actual neutron environ-

ment at the wal l compared t o tha t at the surveillance capsule . 

Since the tempe ra ture can also affe c t the magnitude of r adiation 

induce d changes , i t t oo is monitored (21) . Since i t is not p rac ti cal 

to continuously moni t or the tempe r ature, low melting po int elements or 

eutectics are included . These pr ovide evidence of the max imum exposure 
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tempera ture. Some examples are : 97 . 5% Pb, 2 . 5% Ag (304 degrees C 

mel ting poin t ) and 97 . 5% Pb, 1 . 75% Ag , and 0 . 75% Sn ( 310 degrees C 

melting point ) . 

The importance of having a surveillance progr am of adequate 

scope has been pointed out with a problem that has arisen because of 

the extra radiation sensitivity displayed by s ome s tee l s. The sensi-

t ivi ty is caused by the presence of s ome trace elements (most notably 

copper and phosphorous ) (23- 28) . A lar ge po rtion of the problem involves 

weld oetal which was not originally thought to be limiting becaus e o f 

good initial properties. Later, however, they were f ound t o be overly 

sens i tive . The presence of copper and phospho r ous dr amatically increase 

t he magnitude of bo t h the change in RTNDT and the decrease in US E 

(23 ,24 , 29 , 30) and , although i t was discovered in the l a te 1960~, the 

cause of t he effect has not been definitely escablished (23 , 24) . 

The t!RC has taken into account t he inadequacy of early s urveillance 

pr ograms by issuing Regulato ry Guide 1.99 (26) . When adequate s urveillance 

da taarenot available, empiri cal equations f urnished in this guide a r e 

used to predict the changes i n RTNDT and USE based on the amount o f 

copper and phosphorous present and t he f l uence . As an example, fo r 

t he shift in RTNDT: 

A= [40 + 1000(%Cu - 0.0 8) + 5000(%P - 0 . 008) ] (f/1019) 112 

whe re A 

f 

pr edi c ted adjustment o f r eference temperacur e in ° F 

2 fluence in neutrons per cm , E > 1 ~eV 

%Cu = weigh t % o f Cu 

and %P = weigh t % of P . 
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If the copper amount is less than 0 . 08%, then 0 . 08% is t o be used in 

the equation and if the phosphorous amount is less than 0 . 008%, then 

0 . 008% is to be used . The equations given in Regulatory Guide 1 . 99 

ar e fo r nominal irr a diation t emper a t ur es of 550°F , the operating tempera-

t ure of the r eactor pr essur e vessel . 

Again, t he magnitude of the t r ace element effect is relatively 

lar ge . Predictions suggest t hat the change in RTNDT could be more than 

400 degrees F by the end of the ser vice life for some sensitive 

s t eels (mor e than double that for s t eels with low amounts of trace 

e lements) and the drop in USE could also be doubled (24 , 25) . 

As mentioned befor e, the mechanism for the enhancement of radiation 

ernbrittlement in the presence of trace elements is not completely 

understood. However, the prevalent model suggests that radiation-pro-

duced defects (and defect clusters) are stabilized against annealing 

by the presence of trace amounts of copper and phosphorous . 

Two va riations on the above model are suggested by Wechsler (23) 

and Smidt and Steele (24). Wechsler suggests that when trace elements 

are present in sufficient quantities they can migrate t o the defects 

and stabilize them so that they cannot anneal away dur i ng irradiation 

at the elevat ed temperatures . Smidt and Steele suggest that the 

nucleation of defect aggr egates is modified so they are , in effect, 

increased in number. Rather convincing evidence is p resented in both 

papers to show chat there is somehow an interaction be tween copper a corns 

and vacancies co fo rm a more s table defect . The following discussion is 

mainly concerned with copper rather than phosphorous . 
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The fi r st evidence cited demonstra t es that vacancies a re involved 

because the trace element effect is only apparent at t emperatures where 

vacancies a re mobile (392 degrees F and up (24)) . Also, no effect is 

seen at irradiation temperatures of 250 degrees F or lower, i . e . , the 

radiat ion response is the same for high and low copper s t eels a t the 

lower i rradiation temperatures . Thus, since interstitials are s till 

mobile at the lower temperatures they cannot be responsible fo r t he 

in teraction. It should be no t ed here that copper is a substi tutional 

impurity . 

Second is the fac t that , i n general , as the irr adiation temperatu re 

increases the irradiation produced hardening is decreased as dynamic 

recovery occurs . Almost a ll damage undergoes dynamic recovery , i n the 

materials with small amo unts o f trace elements , a t reac t or opera ting 

0 tempe r atures (550 F) . However, s t eels with l arge amounts of trace 

elements do not show complete dynamic recovery ; thus , a mo r e stable 

defec t has been formed . 

Finally, Smid t and Steele (24) poin t out that i n annealing experi-

ments t hey conducted , t he materials high and low i n residual elements 

have similar annealing responses . Bo th t ypes of ma terial tend to unde r go 

complete recovery t o the pre- irr adia tion hardness value af t er 1 hour at 

the same temperature (1024 degrees F, 550 degrees C) . Also , the 

similarity of the recove ry behavior suggests that a ny difference in 

i rradiation res ponse is most likely one of magnitude o f dynamic r ecovery 

rather than the forma t ion of any new t ype of defect aggregate . Again . 
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this points out the suspected stabilizing effect that copper has on 

vacancy aggregates. 

Most of the steels that exhibit this trace elemen t effect are 

weld metal s (21) . The high copper weld me tals have been identif i ed as 

life l imiting facto r s for many reac t or s (21, 25). This is not comple t ely 

surpris i ng because signi ficant amounts of copper can be i ntroduced by 

submerged arc weld i ng (SAW) process. Many welds in RPV's a r e formed by 

SAW . I n the submerged arc welding pr ocess a consurnmable electrode is 

used and this electrode is often lightl y coated with copper to pr ovide 

some pr o t ec t ion from rust and to ensure good electrical contact for 

good we ld characteristics (31) . 

The two major problems which arise from the trace element effect 

are wha t can be done to prevent the problem from recurring in reactors 

to be built and what can be done to correct the problem fo r reactor 

pressur e ves sels which are already constructed and which have high 

copper levels . 

The simplest approach to avoiding the trace element effect is to 

contr ol the amount of residual e lements . Significant improvement in 

radiation response is attained by restricting copper and phosphorous 

contents (32- 35). Because of this, vessel manufacturers have been con-

trolling the amount of copper and phosphor ous since 1971 (32) . 

Improved steelmaking practice was needed to control the copper 

content to 0 . 10% max a nd 0 . 012% P ~ax ( the levels above which a trace 

element effect becomes readily apparent ) . A major reduction in radiation 

sensitivity was achieved in commercial A533 B plates and weld metal 
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through the reduction of copper and phosphorous contents t o these 

levels (32). I t is noted here that optimum steelmaking practice can 

reduce the copper and phosphorous contents even lower but this further 

reduc t ion does not grea t ly improve radiation resistance (33) . Also , the 

cost of the pressure vessel is not significantly increased by the use 

of improved steel making practice when compared to the total cost o f 

the pressure vessel (34) . 

In discussing wha t can be done about those reac t ors already afflicted 

with the problem , two op t ions are being considered ; a thermal annealing 

treatment of the pressure vessel or an essentially complete volumetric 

fracture mechanics examination of the beltline material which conserva-

tively demonstrates that an adequate safety margin fo r operation is 

maintained . Both options are provided for in the Co de of Federal 

Regulations (16). 

The first option , a thermal annealing treatment, has received more 

atten tion and is looked at in greater detail here. If t hermal annealing 

is conducted several things must be considered (16 ,19). The recovery 

upon annealing must be determined by testing additional specimens with-

drawn from a surveillance capsule. Those specimens must be subjected to 

the same time at annealing temperature as the pressure vessel (the 

results provide the basis for an adjusted re ference temperature af ter 

annealing) . The response to s ubsequent irra dia tion af ter annealing 

must also be taken into account . Both the annea ling response and the 

re- irr adiation response are har d to predict because the mechanism f or 

the trace element e ffe c t is not well- known. 
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Two annealing alternatives are presently being considered : 

annealing at 343 de grees C (650 de grees F) or a t 399 degrees C 

(750 degrees F) (29). The 343 degrees Cheat treatment was selected 

as the maximum temperature a t which nuclear or pump heating could be 

employed . The maj or advantage of this f irst alternative is that the 

reactor coolant and , more importantly , the core internals are left i n 

place . The 399 degrees C treatment was chosen as an achievable 

temper atur e if auxiliary heaters are employed . This second al terna t ive 

i s advantageous be cause greater pr operties recovery can t ake place by 

virtue of the higher temperature, but, it is disadvantageous because 

the core internals , as well as the reacto r coolant , mus t be removed (29) . 

The r emoval o f the internals and the coolant would add to the complexity 

of t he problem. 

The 343 degrees C treatment produced a high degree of recovery 

(between 62 and 100%) in the USE but only l imited re covery in RTNDT 

(between 22 and 29%) after 168 hours a t tempera ture . However , the 
18 ? re-irradiation propertie s ( t o a fluence of 3 . 6 x 10 n /cm-, E > 1 MeV ) 

wer e either poorer or the same as not ch duc tility observed after t he 
19 2 first cycle of i rradia tion (with a fluence of 1 x 10 n / cm, E > 1 MeV) . 

The 168 hour treatment was chosen as the op t imum time because annealing 

for longer times does not s ignificantly i ncr ease the recovery of pr e-

irradiation properties (30) . 

The 399 degrees C, 168hour , trea t men t pr oduced 100% r ecovery of USE 

and 70% recovery o f RT~DT ' The s t eel showed good r e-irrac i a tion 
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18 2 proper ties (at a fluence of 7 . 2 x 10 n / cm , E > 1 ~eV) , with notch 

ductility pr operties be tter than that found after the first irradiation 
19 2 cycle (w i th a fluence of 1 x 10 n/ cm , E > 1 MeV) (29) . 

0 The s e cond alternative, anneal ing at 399 C, shows a good deal of 

pr omis e and is a poss i ble solut i on to the pr oblem con cerning what is 

t o be done about the pr essur e vessels afflicted with high copper and 

phosphor ous contents (29,30) . 

The pr oblems associa t ed with the in- service response of r eact or 

pr essure vessels have bee n addressed a t length . Included in the dis-

cussion wer e the var ious r egulations which assure adequa te safety 

marg i ns fo r oper ation. The need for a good surveillance pr ogram , in 

or der t o monito r t he changes in mechanical properties, was also 

demons tra t ed . Finally, t he ser ious pr oblem arising f r om the trace 

elemen t effect was discussed in detail . 



32 

EXPERIMENTAL PROCEDURE 

The purpose of this study is to investigate the change in mechani-

cal pr operties undergone by pressure vessel steel subjected to a 
18 2 neutron fluence of approxima t ely 1 x 10 n/cm , E > 1 MeV . The 

change in mechanical properties is characterized by the difference in 

microhardness be tween unirradia t ed and i rradiated samples . Annealing 

studies are also conducted in or der to determine an activation 

energy fo r the hardness recovery from the irradiated t o the annealed 

condition . 

Sample Pr eparation 

The specimens used a r e Charpy bar halves f r om an actual surveillance 

pr ogram. That is, the samples were broken in a Charpy test, b ut are 

still usable for hardness tests . The halves are sec tioned into 

quarters using a cu t off wheel mounted on a milling machine . Each of 

the quarters is then considered t o be a t est specimen. The quarters 

measure app r oximately 4mrn x 4mm x 27rmn and approximately 100 d iamond 

pyramid har dness tests can be made on one 4mm x 27mm face . 

In par ticular, the Char py bar halves are from weld metal sur-

veillance sampl es . This is appropriate material to study because, as 

mentioned in the section on in- service r esponse of the r eactor pressur e 

vessels , the weld is usually the life limiting material in the pressure 

vessel . However, these samples are not completely homogeneous , i.e . , 

they are not comple tely made of weld me t al . This may seem t o be 

contradictory since the Charpy impact tests conducted for the sur -
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veillance pr ogram we r e supposed to measure the weld me tal pr operties . 

Ther e is no cont r adic t ion, however, because only the cen tral portion 

of t he Char py bar conta ining t he notch needs t o be made of weld 

metal . 

With this i n mind , the Char py bar s we r e originally sec tioned f r om 

t he we ld metal r egi on s o t ha t the bar traver sed the weld me tal and had 

bo t h i t s en ds in base pl ate . The situat ion is shown schematically in 

f i gur e 3 . Three majo r r egions ar e con tai ned in each Char py bar half : 

bas e pl ate , we l d he a t - affec t ed zone , and weld me t al . 

Af t e r sec t ioni ng , t he s urface of the test specimen was polished 

to r emove any sur face defects (scrat ches , oxidation , e t c . ) and t o 

facilita t e measuring t he har dness indent ations . The ASTM Standard 

fo r diamond pyramid hardness testing (36) r equires that the surface of the 

specimen be pr epar ed so that the ends of the i mpression diagonals 

can be r ead with pr eci s i on . The manner in which the ha r dness of t he 

specimen is de t ermined is discussed i n detail in t he next section . 

The rne tal l ographic gr inding and polishing for the unirradiated 

samples i nclude 3 steps . For r ough polishing , 320 grit silicon 

car bi de (SiC) paper was us ed . Th i s was followed by gr inding with 

600 gr i t SiC paper. Bo t h gr inding s t eps we r e under taken on a rno t or -

driven grinding whee l . The final s t ep in the pr eparat i on was polishing 

with 0 . 3 micr on alumina powde r in a slur ry of ethylene gl ycol and 

isopr opyl alcohol . The slurry contained equal concentrations of the 

two liquids . The polishing was done on a motor-driven polishing wheel 

cover ed wi t h a nylon clo t h. 
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Figure 3 . Schematic illustra tion o f the cause of the Charpy bar he t e rogeneity 
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The same sequence of steps was used for preparing the irradiated 

samples . However, in order to minimize exposure to the hands , a semi-

automatic grinder /polisher was used . Also, to reduce any problem with 

contamination the grinder/polisher was pl aced in a glovebox . For 

e ach step in the grinding and polishing , a new bowl containing the 

pr oper abrasive had to be inserted. Except for changing the bowls and 

set t ing the controls , the process was au t omat ic. 

The final s tep in t he s ample pr eparation pr ocess was a very light 

etch using a 6% Nital e t chant (94% methanol, 6% nitric acid) . The 

e t ching was done for a very short time, app r oximat ely 2 seconds , 

followe d by a rinse with methanol. This amount of etching allowed t he 

experimenter to de l ineate between the base plate , heat affec ted 

zone (RAZ) , and the weld metal . Without the etching step it would not 

be possible to know which microst r uctur e region was being tested. 

Microhardness Testing 

The har dness of a material is a measur e of that material ' s 

resistance to local indentation. Hardness is determined by releasing 

a load ont o a mate r ial with an indenter of a specified geome t ry and 

then judgi ng how hard or soft the mate r ial i s by the size of that 

indent ation. 

This study uses the diamond pyramid test (also called the Vickers 

hardness test) . The indenter associated with this test is a square-

based pyramidal diamond (or sapphire) indenter having included face 

angles of 136 degrees (36) . The hardness number associated with the test 

is the diamond pyramid hardness number and is r eferred to as the DPH of 
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the material. DPH is obtained by divi ding the load in kilograms 

force by the surface area of the indentation in square millimeters. 

The projected area of the indentation on the surface of the metal 

is a square. The diagonals of that square are then measured and 

averaged, The following equation is then used to calculate the 

hardness: 

DPH = 2P sin(a/2) / d2 

where p load in kilograms-force 

d = mean diagonal length in mm 

and a= the included face angle of the indenter (136 degrees). 

At this point it should be noted that hardness is a more complex 

mechanical property of a metal than, say, the yield s tress. This is 

because of the triaxial stress state that exists underneath the 

indenter tip. Nevertheless, the hardness test is indicative o f 

changes in the properties of metals (6) and, thus, is suited for this 

study. 

To conduct the hardness tests a hardness tester was constructed 

using plans obtained from the Oak Ridge Nat i onal Labo r a t ory (37). Some 

modifications were made to the plans which allowed x and y trans-

lational motion of the indenter. This made it possible to conduct 

any number of hardness tests (up to several hundred) wi t hou t removing 

the specimen holder. The push rod drive mechanism was also mod i fied . 

A schematic diagram of t he apparatus is shown in figure 4. The 

0 hardness tester can operate at temperatures up to 850 C while the 
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sample is under either vacuum or inert atmosphere, but only room 

temperature tests were conducted in this study. 

The procedure for making a room temperature test is as follows . 

the specimen is raised t o within 1/8 inch of the indenter us ing the 

coar se control fo r the push rod drive. The fine control is then used 

to raise the specimen against the indenter until t he specimen supports 

the full load of the indenter plus added weights (2.045 Kgf). 

After a prescribed time, approximately 13.5 seconds as measured by a 

stopwat ch, the specimen is lowered to release the load. The time is 

measured from the moment the specimen supports the full load to the 

time the load is released. An electrical contac t circuit with a light 

indicates when the load is being fully supported and when the load is 

released . Subsequent indentations are made by translating the indenter 

along the specimen . The whole process is done manually . 

The application of the load must be done without shock or 

vib ration (36). This is assured by a slow specimen-indenter impact speed, 

estimated to be in the range of 3 to 6 nun/min. Further, at these low 

speeds the effect of loading rate on the DPH obtained is very s mall (38) . 

Measuring the har dness indentation is the final step before 

calculating the DPH . In this step, a filar eyepiece (wi th a pr ecision 

better t han 0 .5 microns) is used t o measure the diagonal length . It 

is important at this point to make sure that each indentation is a 

good one . This is done by making sur e that the inden tation is 

approximately synnnetrical and by focusing deep into the impression to 

determine that no irregularities are pr esent on the surface of t he 
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indentation. An asymmetrical indentation is often indicative of 

indenter misalignment and surface irregularities are indicative of a 

damaged indenter tip, both of which can affect the hardness value 

obtained . 

The final step in assuring good hardness results involved 

calibrating the filar eyepiece used to measure the impressions . The 

filar eyepiece was calibrated t o a standardized hardness block 

supplied by the Wilson Instrument Company. Supplied on the standard 

block were 5 rows of 5 indentations with an average diagonal length 

given for each row. The hardness impressions for each row were 

remeasured using the filar eyepiece. From these measurements an 

average diagonal length, d , was calculated for each row and then c 

compared to the actual average diagonal length (as determined by t he 

Wilson Instrument Co . ) , d . A correction factor, F. , for the i th a i 

row was determined according to the following equation. 

F. = d /d 
i a c 

An overall correction factor, F , was then determined by taking the 
0 

average of the five row correction factors. F was t hen used in any 
0 

hardness tests conducted by multiplying the measured diagonal lengths 

by F (F = 1 . 014) . 
0 0 

Annealing Procedure 

To determine t he activation energy fo r the hardness recovery some 

annealing treatments had to be conducted. Included were both 

isochronal and isothermal annealing runs. Isochronal annealing runs 
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invol ve t aki ng a test specimen and heating i t up t o the annealing 

temperature, TA , then holding it at t ha t temperature for some chosen 

t i me, an d , f inal l y , l e tting it cool down . Subsequent isochr onal 

runs for that s pecimen a r e conducted at higher t empe r a tures but wi th 

the time at temperatur e being held cons tant. The isochr onal time at 

temperature fo r this s tudy wa s l hour with t he annealing t empera ture 

r an ging from 293 degrees C t o 510 degr ee s C in approxima t ely 30 

degr ee increments. 

In iso thermal anneali ng t he annea ling t emper a t u r e rema ins cons t ant 

but the time a t t emperature can var y f r om one run to t he next. Two 

ser i es of i s othermal treatmen t s wer e conduc t ed with one a t 415 degr ees C 

and one at 445 degrees C. 

A vacuum furnace assembly was cons truc t ed for t he annealing 

t r eatments (see figur e 5) . The furnace was designed with two thermo-

coupl e pr obes which can var iously be ins e r ted or withdrawn from the 

heate d zone (cente r ) of the furnace . A s t ainless s t eel specimen holder 

was welded to t hermocoup l e probe number 1 . 

The gene r a l pr ocedur e fo r i so t he rma l and isochr onal treatments 

was the same . The s pecimen was placed in the s peci men holde r af t e r 

which t he f lange ( through which t he thermocouple pr obes pass) was 

bolte d in place . The whole system was t hen put under a vacuum of 
- 6 app r oximately 2 x 10 torr. Next, the furnace was brought up to the 

annealing t empe r ature as mon i t ored by thermocouple numbe r 2 with the 

specimen i n the withdrawn position (out of the heated zone). After the 

furnace r eached the annealing temperature, the specimen was inserted into 
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the heated zone. The specimen t ook approxima t ely 15 minu t es to reach 

the annealing temperature at which the specimen was held for a pre-

de termined time . Afte r that time elapsed, the specimen was withdrawn from 

the heated zon e . Again, all of this was conducted under vacuum. 

The final step was a series of room temperature hardness tests on _ 

t he weld metal t o charact erize its average hardness. Usually, 5 

tests were conducted at this time. 

The r eason for inserting t he specimen after the furnace is already 

at temperature and subsequently withdrawing it af ter t he desired time at 

temperature has elapsed is simple. The reason is t ha t the t emperature 

versus time response of t he specimen should resemble, as closely as 

possible, a step func tion . Even with the insertion and withdrawal t he 

temperature-time r esponse is not a s tep function. 

Since the temperatur e- time response is not a s t ep function, an 

equivalent time at temper ature must be calculated fo r the hea tup and 

cooldown of the test specimen. The i dea is shown schematically in 

f i gure 6 . An effective time at t emperature is calculat ed for the lined 

r egions in the figure. The t o tal corrected time at tempe rature is the 

sum of the ef fective times at tempera t ure and the actual annealing time 

( the nominal time while the specimen is actually a t the annealing 

temperature ) . 

The amount of r ecovery is pr oportiona l to the pr oduct t exp 
EA 

(- -) kT 

(see discussion in RESULTS, Ac tivation Energy Analysis) where t is the 

annealing time , EA is the activation energy for t he recove ry pr ocess . 

k is Boltzmann ' s cons tant, and T is the annealing tempe ratur e . With 
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TIME 

Figur e 6 . Schemat ic diagram of a specimen time- temperature r esponse 
during annealing 
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this in mind , we can calculate an effective time at temperature, 

teff' in the foll owing way: 
EA 

t~G~)= 

whi ch gives, 

The right hand side of the ~quation can be evaluated numerically for 

the r ise to, and fall from, the annealing temperature. 

The only hitch in the above process is that the ultimate 

object ive in making the annealing runs is to de termine the activation 

energy. The problem can be circumvented by first calculating a trial 

activation energy using the uncorr ected times at temperature. Then, 

using this trial activation energy we can calculate the effecti ve 

time at temperature. The ac t ivation energy is then recalculated 

using the corrected annealing times . 
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RESULTS 

Effect of Sample Preparation 

Two sets of tests were made in order to determine whether or not 

the sample preparation would affect the outcome of the hardness tests . 

The areas of concern were the sectioning (milling) and the etching 

processes. 

Two lengthwise hardness profiles were made on sample U- 7- 042-0H- 2 . 

The first pr ofile was made on wha t was an original surface of the 

Charpy bar half while t he second profile was made on the opposite 

(milled) surface of the sample . The two samples were gr ound and 

polished in an identical manner. Figure 7 reveals no diffe r ence between 

the two pr ofiles ( the difference in average weld metal hardness values 

is well within data scatter). Thus, it is concluded that t he sectioning 

process has no effect on the hardness values ob tained. 

In figure 7 it can also be seen that the sample has been divided 

into 4 different microstructure regions. Three general regions exist, 

the base plate, HAZ, and weld me tal, as discussed before. However, 

upon close examinat ion the HAZ was subdivided by hardness and micro-

structure into two regions . Micros tructure region III of the HAZ is 

relatively coar se grained with a high hardness value while microstructure 

region II of the HAZ is fine grained with a lowe r hardness value. It 

is not completely unexpected to find two different regions in the HAZ 

because of, among o t her t hings , differing cooling rates across the 

HAZ (31 , 39) . 
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Two series of photomicrographs were taken to show the changes in 

microstructure. The first series, shown in figure 8 , is a t low 

magnification (38x) and shows the general change from one region to 

the next. The second series of photomicrographs was also taken along 

the length of the sample and can be seen in figure 9 . The magnification 

for the second series of photomicrographs is at 250X to reveal the 

microstructure in greater de tail. 

The other area of concern in t he preparation process was the light 

etching of the metal (recall that this was done to allow the 

experimenter to test a specific microstructure region, e.g., weld 

metal, if so desired). Two hardness pr ofiles were made on U- 3- 007 - 0H- l 

in order to determine whether or not the etching had an effect on the 

hardness value obtained. The first hardness profile was made after 

the sample was polished but before etching and the second profile 

was made after the etching. Figure 10 shows that the e t ching process 

did not affect the hardness. Again, the difference in the aver age weld 

me tal hardness is well within the data scatte r. 

Effects of Irradiation 

The effects of irradiation were measured by making hardness 

measurements on irradiated and unirradiated samples from three d i fferent 

heats of steel . All three heats, numbered 3, 7 , and 10, show fairly 

significant r adiation hardening, as can be seen in figures 11 , 12, and 

13 , respectively. The fluence for each of the heats was approxi mately 
18 2 1 x 10 n /cm , E > ll1eV . 



Figure 8. Series of photomicrographs at 38X revealing the change 
in microstructure in going from one end of half of a 
Charpy bar towards the fractured surface (a) The first 
4 indentations are in the base plat e (b) Indentations 5 
through 8 are in Region II of the HAZ (c ) Indentations 
9 and 10 are in Region III of the HAZ, while 11 and 12 
are in the weld 
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(a) 

(b) 

Fi gure 9. Series of photomicrographs at 250X revealing the detailed 
gr ain appearance exhibited by the 4 different microstruc-
ture regions in a half of a Charpy bar. (a) Base plate 
r egion at left with the beginning of the transition to t he 
RAZ at r igh t (b) Rezion II of RAZ (c) Beginning of 
Region III of RAZ (d) Transition from Region III to weld 
with weld metal at right 
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Figure 9 (continued) (d) 
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In all cases , the weld metal shows about a 10% increase in 

hardness upon i rradiation. The base plate shows ver y little increase 

in hardness that can be distinguished f r om data sca tter . Heat 3 (in 

figure 11) shows the only notable increase in base plate har dness. The 

HAZ hardness does no t seem t o be affected at all by the irr adiation . 

Recovery Data 

All of the following annealing t ests wer e done on samples from t he 

same Charpy bar hal f . The isochronal annealing r uns were conduc ted on 

sample 1- 7- 007- 0H- 3. Two sets of iso thermal annealing runs were 

conducted: the 415 degrees C runs on 1- 7- 007- 0H- 2 and the 445 degrees C 

runs on 1- 7- 007- 0H- 4 . Unirradiated control samples (fr om the same 

heat o f steel as the irrad iated samples) were s ub jected t o the same 

annealing conditions as the irradiated samples . This was done in or de r 

t o determine if the hardness of the control samples was changed as a 

result of the annealing treatments . No such change was observed . 

The isochronal r ecovery curve fo r sample 1- 7- 007- 0H- 3 is plot t ed 

in figure 14 . The isochr onal annealing r uns were conducted fo r a 

nominal time of 1 hour (with an ac tual co rrect ed annealing time of 

1 hour and 10 minutes) . As can be seen in figur e 14, the r ecovery occurs 

between approximately 400 and 500 degrees C. 

The f ractional r ecovery , f , used in all the r ecovery curves is 

defined as follows . 

f = (H-Hf)/(H1- Hf) 

i;here H is the average weld netal hardness measu r ed after each annealing 
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run, H. is the average weld metal hardness in the irradiated, unannealed 
1 

state, and Hf is the average weld metal hardness in the unirradiated 

state. 

Figure 15 shows the 415 degrees C isothermal recovery of 

I - 7- 007- 0H- 2. Here the uncertainty posed by the data scatter was 

large enough so that an exponential, least squares data fit was made. 

There was no reason to believe that the annealing process had more than 

a single activation energy . Therefore , the general form of the 

exponential used was 

f = - bt e 

which is the general form for a singly activated, firs t order process. 

t is equal to the annealing time and b is a constant . 

The exponential form in Equation (1) was used instead of 

f = c e-bt 

where c is a constant because it is required that f = 1.0 at t = 0. 

Anything other than f = 1.0 at an annealing time t = 0 would be 

meaningless. 

It should be noted here that the annealing time plotted is the 

total corrected annealing time including the correction for an effective 

time at temperature during heatup and cooldown (see discussion in 

Annealing Procedure) . 

The 445 degrees C isothermal recovery of I - 7- 007- 0H- 4 is shown 

in figure 16 and the annealing time is also the total corrected time at 

temperature. Again an exponential, least squar es data fit was used. 

(1) 
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Activation Energy Analysis 

The method for determining the activation energy is briefly 

described here. Let Cd be the concentration of radiation- produced 

defect clusters, assumed here to be the hardening agents . The 

annealing ra t e is considered to be of the form 

(2) 

where K(T) is the rate constant and F(Cd) is a function whose fo rm 

depends on t he annihilation event. For a singly activated process we 

may take 

EA 
K(T) = v

0 
exp(- kT) 

where EA is the (single) activation energy and v
0 

is a t emperature 

independent f requency. Equation (3) in (2) gives 

= v 
0 

Upon integration of (4) , we have 

\cd 
) (C ) 

d 0 

= t v 
0 

EA 
exp(- kT) 

We may assume that the fractional departure from completion of the 

annealing, f, is propor tional t o Cd, so t ha t (5 ) may be written 

df 
F ( f) 

(3) 

(4) 

(5) 

(6) 
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Then , if we le t the left-hand side of (6) be given by g(f) we have 

g(f) = t 'J 
0 

(7) 

The Meechan- Brinkman me thod for determining the activation energy 

fo r the recovery process (40) uses one isothermal recovery curve and 

one isochronal recovery curve, as is shown schematically in f igure 17 . 

Since the isochronal anneal for time 6 t b at t emperature Tb is equivalent 

to the isothermal anneal for time 6 t at t emperat ure T , we see f r om a a 

Equation (7) that 

EA 
6 t b exp (- - ) 

kTb 
(8) 

In the Meechan- Brinkman approach, a number of iso t hermal time intervals, 

6 t 's are deduced corresponding to a number of isochr onal temperatures, a , 

Tb's. Grouping t he fac tors in Equation (8) accordingly, we have 

ln nt a 

E 
(ln Mb + ~) kT a 

where the expression in parentheses i s a constant . Thus, if ln 6 t a 

is plotted versus l/Tb ' a s traigh t line of slope (- EA/k) shoul d res ult . 

Figure 18 shows t he results of the Meechan- Brinkman analyses. The 

ac tivation energy calculated is 0 . 60 ± 0.06eV. The 6 t ' s o f the da ta a 

points on the figure are from the least squar es data fits for t he 

isothermal r ecovery curves. Least squares da t a f its were used for the 

straight lines in figure 18. The activation energies and thei r 

assoc i ated e rrors we r e calcula t ed f r om the least squar es line. 
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DISCUSSION 

The microstructure of the bars was similar to wha t was expected, 

except for the need t o subdivide the HAZ into two separat~ regi ons . 

Acco r ding to the Metals Handbook (31) the pr esence of more than one 

micr ost r uctur e r egion in an HAZ is not surprising . In a hardenable 

car bon steel , the base metal innnediately adjacent t o the weld metal may 

be coarse grained because a temperature in the range of 2200 t o 2800 

degr ees F has been reached. A temperature that high allows new grains 

to nucleate and grow . Fur ther away from the weld the HAZ is expected 

t o have a finer grai n s t ructure because even though it too was r aised 

above the transformation temperatur e, t he time at temperature was not 

sufficient to cause grain coarsening. 

Considering only the Hall- Petch equa tion (discussed in the Radiation 

Hardening section) the finer grained portion of the HAZ should have a 

higher hardness value than the coarse gr ained region. Jus t the opposite 

was found to be the case , though. With a little thought, the situation 

is not really anomalous because t he Hall- Pet ch equations does no t 

necessarily hold when comparing two different phases , e.g . , bainite and 

pear lite . It is possible to f ind sever al diffe r ent phases in t he 

HAZ (39) and, thus , it is entirely accep table for the coarser grained 

region to have a higher hardness than the finer grained region . 

The radiation response of the three heats of stee l was jus t as 

migh t be expected . The weld metal showed greater r adiation sensitivity 

than the base plate o r t he HAZ . This is in agreement with t he fact 
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that weld metals are, in gener al , the life limi t ing metal of the reac t or 

pr essur e vessel. 

Further, a radiation- produced hardness increase of 10% at a f luence 

of 1 x 1018 n / cm2 , E > lMeV, i s quite reasonable . Spitznagel e t al. (28) 

reported an increase in hardness o f approximately 20% fo r we ld metal 

subjec t ed t o a neu t r on fluence of 5 . 7 x 1018 n/cm2 , E > L~eV . 

Pachur (41) shows an increas e of between 5 and 13% fo r A533 B s teel 

irradiated to a fluence of 1 x 1019 n/cm2 , E > l~eV . Although there is 

obviously a variation in radiation r esponse , the results agree in gene r al . 

The isochr onal recover y cur ve is in good agr eement wi th wo r k done 

by Pachur (41 ) . The two se ts of results cannot be di r ec t ly compared in 

t e rms of f rac t ional recovery because the A302 B s t eel in Pachur's study 
20 2 was irradiated to a much hi ghe r fluence (1 x 10 n/cm , E > lMeV) . 

However, it i s interesting to note that full recovery occur s between 

app r oxi mately 400 and 500 degr ees C in bo t h cases. 

The isothermal recovery curves compar e favorably with work done by 

Spitznagel et al. (28). Spitznagel investiga ted the 42 7 degrees C iso-

therma l r ecovery of a weld me t al i rradiated t o a fluence of 5 . 7 x 1018 

2 
n/cm, E>lMeV. Sp itznagel' swor kshowed f = 0 . 75 a t t = 60 minutes and 

f = 0 . 53 at t = 1080 minutes . Thi s compar es to the 415 degrees C 

results of f = 0 . 93 a t t = 60 min. and f 0 . 35 a t t = 1080 min . 

The 445 degr ees C results show tha t at t = 60 min ., f = 0 .70 while 

no comparison can be made at the l onger time because t he recovery 

process is completed by that time. The times of 60 min . and 1080 min. 

were chosen because t hey co rresponded t o actual data of Spitznagel . 
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The value off= 0 .75 obtained by Spitznagel after 60 min at 427 

degrees C is roughly consistent with the values off= 0 . 93 and 0 . 70 

obtained in the present work after 60 min at 415 and 445 degrees C, 

respectively . In general, in view of the data scatter present in 

hardness testing, the results reported here are in agreement with the 

results of earlier work. 

The activation energy analysis is interesting because it gives 

some clues a s to what is occurring during the recovery process and , 

ultimately , to the nature of the radiation- produced defect clusters 

themselves . The activation energy calculated, 0 . 60 eV , is approxi-

mately equal to the migration energy for monovacancies in alpha iron, 

0 . 68 eV (42). The 0.68 eV is characteristic of vacancy migration 

along <111> directions in alpha iron. 

From the above , it could be surmised that the radiation- pr oduced 

defects are vacancy cluster s or small voids that anneal away by 

emitting single vacanc ies. 

An alternative explanation would be that the defect clusters are 

divacancies or t rivacancies. The migra t ion energy fo r, both , 

divacancies and trivacancies is 0.66 eV (42) . Also , from f ield ion 

micr oscope observations by Spitznagel, the vacancy clusters should 
0 

be app r oximately 7 to 10 A in size . This near ly agr ees with the 
0 

es t :ima ted size of trivacancies 5 . 7 A, while the s izes of divacan-

cies , quadvacancies, and q uint-...acancies are es tim ated t o be 
0 

2. 9, 8.6 and 11.5 A, respec tively (42). Thus , with close agreement 

between t he Estimated size and the migration energy t he defect clus ~ ers 
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cculd be t!"i·:acanch:s ~•1:ich migrate as a whole t o annih i la tion a t a 

s ink . ~igration oi entire defect cluste rs i s also suggested by 

Nichols (8) . The ac t ual size and nature of the c luster s canno t be 

determined by annealing studies , but it seems clear tha t they could 

be vacan cy i n natur e . 
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SUMMARY 

This investiga tion can be summarized by the following conclusions : 

1 . The three heats of pressure vessel steel all showed , approxima tely , 

a 10% inc r ease in the average weld metal har dness when irradiated 
18 2 to a fluence of about 1 x 10 n/ cm , E > 1 MeV . The base plate 

also showed a general increase in ha r dness . There was no 

noticeable incr ease in the har dness of the heat affected zone . 

2 . The activation ener gy, as de t e rmined by the Heechan- Brinkman 

method, for the recovery of radiation induced ha r dness was found 

to be 0 .60 + 0 . 06 eV . 

3 . The activation energy of 0 . 6 eV is app r oximately equal to that 

calculated fo r vacancy migration in alpha iron, suggesting that the 

radiation-produced defec t clus ters are vacancy in na ture . 
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