
Magnetic feedback stabilization of a 

toroidal theta-pinch using helical fields 

by 

Randy Lee Hagenson 

A Thesis Submitted to the 

Graduate Faculty in Partial Fulfillment of 

The Requirements for the Degree of 

MASTER OF SCIENCE 

Department: Chemical Engineering and Nuclear Engineering 

Major: Nuclear Engineering 

Signatures have been redacted for privacy 

Lowa ~tate university 
Ames, Iowa 

1973 



ii 

TABLE OF CONTENTS 

SYMBOLS 

ABSTRACT 

I. INTRODUCTION AND LITERATURE SURVEY 

II. THEORETICAL DEVELOPMENT 

A. Assumed Magnetic Field Configuration 

B. Assumed Plasma Perturbations 

c. Expansion Calculations 

D. Growth Rates of Instabilities 

III. COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS 

IV. DISCUSSION AND CONCLUSIONS 

V. TOPICS FOR FURTHER STUDY 

VI. LITERATURE CITED 

VII. ACKNOWLEDGMENTS 

vi 

viii 

l 

4 

4 

9 

9 

43 

49 

57 

60 

61 

62 



iii 

LIST OF TABLES 

Table 1 . Summary of Scyllac experiments 

Table 2. Sunnnary of results from Scyllac 

Page 

50 

51 



iv 

LIST OF FIGURES 

Fig. 1 . Ratio of maximum radial field to the plasma perturba-
tion it produces versus ha for t = 0. 31 

Fig . 2. Ratio of maximum radial field to the plasma perturba-
tion it produces versus ha for t = 1. 32 

Fig . 3 . Ratio of maximum radial field to the plasma perturba-
tion it pr oduces versus ha for t = 2. 33 

Fig . 4 . Ratio of maximum radial field to the plasma perturba-
tion it pr oduces versus ha for t = 3. 34 

Fig . 5 . The quantity - (R/a)6c,0i_ versus ha necessary for 
tor oidal equilibrium. 35 

Fig . 6 . The quantity - (R/a)Ot[Ot+l or Ot-11 versus ha neces -
sar y fo r toroidal equilibrium. 36 

Fig. 7 . The quantity - (R/a)Oi[Ot+l or Ot-ll versu s ha neces-
sary for toroidal equilibrium. 37 

Fig . 8 . The quantity - (R/a)Ot[ Ot+l or OL-11 versus ha neces-
sar y for toroidal equilibrium. 38 

Fig . 9 . The quantity - (R/a)Br(L)Br(L - l)/B5 versus ha neces-
sary for toroidal equilibrium. 39 

Fig. 10 . The quantity - (R/a)Br(L)[Br(L - 1) or Br(L + l)l/B5 
ver sus ha necessary fo r toroidal equilibrium. 40 

Fig . 11. The quantity - lR/a)Br(L) [BrfL - 1) or Br(L + l)l/B5 
versus ha necessary for toroidal equilibrium. 41 

Fig. 12 . The quantity - (R/a)Br(L)[Br(L - 1) or Br(L + l)]/B; 
ver sus ha necessary for toroidal equilibrium. 42 

Fig. 13. Normalized growth rate versus ha for various S values 
and L = 1 . 45 

Fig . 14 . Normalized growth rate versus ha for various S values 
and L = 2 . 46 

Fig . 15. Normalized growth rate versus ha for various S values 
and L = 3 . 47 

Fig . 16 . The quantity - (R/ a) 60 bi_ versus S for experimental 
trials and theoretical solution . 54 



Fig . 17 . 

Fig . 18. 

v 

The quantity - (~) B(t = l)B(~ - 1 = O) versus S for 
Bo 

exper imental trials and theoretical solution. 

B(t - 1 = 0 ) The quantity ver sus S for ha= 0.19 . 
Bo6o 

55 

56 



vi 

SYMBOLS 

a - undisturbed plasma radius 

BIN - magnetic field inside the plasma 

BOUT - main confining field outside of plasma 
0 

Br component of the magnetic field in the radial direction 

Bz component of the magnetic field along the minor axis of the torus 

Be component of the magnetic field about the minor axis 

C Bessel function coefficient due to external helical windings 
m 

D Bessel function coefficient due to induced diamagnetic currents m 

F force applied by the helical fields m 

FR toroidal force 

f flux function due to toroidal curvature 

G.t+l a portion of the second-order flux function 

h 2n divided by the wavelength of the helical field 

I - modified Bessel function of the first kind m 

K - modified Bessel function of the second kind m 

L denotes the helical field being used 

M sum of the applied and induced helical fields m 

m implies L or L ± 1 

p - plasma pressure 

R - major radius of torus 

Rt - a portion of the applied plasma force function 

r - minor radius of torus 

u angle variation of the helical fields 

VA Alfven velocity 



vii 

V - growth rate of an unstable displacement of the plasma column g 

WL+l - a portion of the applied helical fields 

x - magnetic scalar potential 

Zt+l - a portion of the applied helical fields 

z - minor axis of the torus 

~ ratio of plasma pressure to external magnetic field pressure 

y induced field arising from applied helical fields and toroidal 

curvature 

O - plasma perturbation set equal to zero for p lasma equilibrium 

O - plasma perturbations arising from applied helical fields m 
~ induced vertical field perpendicular to plane of t orus 

e angle about the minor axis of the torus 

~ - displacement of the plasma column 

p - plasma column density 

• - magnetic flux function 



viii 

ABSTRACT 

Ribe [7, 10] recently obtained equations describing necessary t and 

t + 1 helical fields which can compensate the natural toroidal drift 

present in the toroidal geometry. However, even though the numerical 

results are in good agreement with experimentation [8, 9, 12], the 

ordering used by Ribe [7, 10] is incorrect. Ribe [7, 10] assumes that 

6 <<ha ~ 1, but experimentation [9, 12] indicates that ha << O ~ 1 

which is referred to as the new ordering. Using the new ordering 

expansion calculations are presented which produce the same final 

results as those given by the old ordering. Thus, the present expansion 

greatly extends the region over which the equations are applicable. 

Good agreement is found between theoretical results and experimental 

results from the Scyllac toroidal sector [9]. When the theoretical 

plasma equilibrium conditions are satisfied, the containment time is 

increased from 2.2 µsec (without helical fields) to nearly 12 µsec. 
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I. INTRODUCTION AND LITERATURE SURVEY 

During the past decade and a half , linear theta-pinch experiments 

have demonstrated the production of hot, dense plasmas. The limitation 

on confinement time has been due to end losses and not to macro-

instabilities. 

In order to avoid this end loss problem, a toroidal theta-pinch 

can be used. However, it was shown by Greene, Johnson, and Weimer [4] 

that the plasma is shifted outward in the torus by an amount which 

increases with 13, where the value of 13 is taken as 

13 = 1 -

Here, B is the magnetic field inside the plasma, and B represents the 
0 

main confining field outside the plasma. Thus, 13 has a maximt.nn value 

of unity when B equals zero. This corresponds to a perfectly dia-

magnetic plasma from which the magnetic field is perfectly excluded. 

The results given by Greene, Johnson, and Weimer (4) indicate 

that the toroidal shift becomes very large for 13 greater than about 

0.082. Since the theta-pinch uses a 13 of about 0 . 9, the plasma is 

innnediately driven to the wall of the toroidal device. 

References (3, 6, 11] then studied possible ways of obtaining a 

toroidal equilibrilllll. The conclusions that were drawn indicate that 

equilibrit.nn could be produced using additional helical windings . How-

ever, the specific fo rm of the necessary fields was still not known. 

A toroidal equilibrium was then demonstrated by Blank, Grad, and 

Weitzner [l] for a high beta plasma having a sharp boundary. The use 
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of simple helical windings produced the necessary fields for plasma 

equilibrium. Knowing the general form of the necessary helical fields, 

numerical results for design experiments were then needed. 

Ribe [7, 10] produced equations describing necessary t and t ± l 
helical fields which can compensate the natural toroidal drift present 

in the toroidal geometry. The necessary numerical results were also 

given for use in designing a theta-pinch . However, even though the 

numerical results were in good agreement with experimentation [8, 9, 12], 

many of the assumptions used by Ribe [7, 10] in deriving the design 

equations were incorrect. 

In order to solve the stabilization problem, it is necessary to 

assume the magnitudes of the t and t + l helical fie lds that must be 

applied in order to cancel the toroidal drift. The magnitudes of the 

plasma perturbations, given by 6, caused by the helical fields must 

also be assumed. Ribe [7, 10] assumes that 6 << ha~ 1, which will 

be referred to as the old ordering. However, various experiments [9, 12] 

indicate that 6 may become rather large when ha= 0.15, where 2n/h is 

the pitch of the helical field, and a is the undisturbed plasma radius. 

Hence, the ordering should be changed to ha << 6 ~ 1, which will be 

referred to as the new ordering. 

This led Weitzner [13] to devise a new theory using the new 

ordering. The solutions found correspond in the appropriate limit to 

those given by Ribe [7, 10] except for the growth rate of the plasma 

column caused by the helical fields . The new ordering predicts a 

growth rate about 50% less than that predicted by the old ordering. 

However, Freidberg [2] has shown that the theory given by Weitzner [13] 
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can be improved upon by including higher-order tenns using ni.nnerical 

technique~. When this is done, the growth rates predicted by the 

new ordering and the old ordering are in good agreement. 

The theory using the new ordering produces results only in the 

limit as ha approaches zero. Whereas, the results given by Ribe [7, 10] 

are in terms of the applied fields, which make it possible to design a 

theta-pinch reactor. 

This thesis intends to use the new ordering in order to produce 

results of the same form as given by Ribe [7, 10]. 

The following coordinate system will be used: 

In the toroidal system R is taken as the major radius, and r is taken 

as the minor radius. The minor axis of the torus is denoted by z, and 

the angle about z is given by 9. 
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II. THEORETICAL DEVELOPMENT 

A. Assumed Magnetic Field Configuration 

The magnetic field is assumed to be given by 

B (1) 

where the scalar potential x includes 

1 x = h Mt (hr) sin(t8 - hz) 

1 + h Mt-l (hr) sin[(t - 1) 8 - hz) 

1 + h Mt+l (hr) sin[(t + 1) 8 - hz] 

+ (T)r + -f-) sin 8 • 
h r 

(2) 

The main field B(o) is distorted by the toroidal curvature which 

is indicated by the terms 

r - - cos R 
r 2 2 

8 + ""2' cos 8 
R 

where r represents the plasma radius, and R denotes the major toroidal 

radius. Latest experiments on the Scyllac theta-pinch [9] indicate 

that a toroidal system will use r = 1.0 centimeter and R = 800 centimeters. 

This results in r / R = 1.25 x 10-3 and implies that the magnitude of 

this term can be taken as third-order. 2 2 2 The term r /R cos 8 can 

then be taken as sixt h -order and is not significant in the theoretical 

derivation. 
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The helical fields are described by Bessel functions of argument 

ha. The term 2n/ h is the pitch of the helical field, and a is the 

undisturbed plasma radius. 

The modified Bessel function 

(3) 

represents the t-order helical field that would be applied in order to 

cancel the toroidal distortion. The quantity Ct is given by the 

external helical windings, and the Dt term is due to induced currents 

in the plasma configuration . Scyllac [9] experiments use an t = 1 

magnetic field that has an approximate magnitude of 

Mt 
-(-) = 0.07 - 0.08. 
B o 

Thus , the t-order field will be taken as a first -order quantity. 

The second-order quantity 

(4) 

represents a smaller applied helical field that is necessary to fully 

cancel the toroidal drift. 

The second-order sin 8 terms represent quantities that will be 

induced by the helical windings. These terms consist of T)r sin 8 

which represents a vertical field perpendicular to the plane of the 

torus. This field arises from external wires carrying currents on 

both sides of the plasma. Other terms including y/h2r sin 8 will 

also be present due to toroidal curvature. 

In the following ordering procedure ha is taken as a first-order 

quantity. 
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It is seen that 

(5) 

The following order ing will be used for all t and t ± 1 except 

the case M..e, _1 = M
0 

which must be treated separately. The ntnnber in 

parenthesis represents the order . The equations can be written as 

B(l) B(o)..e, 
(6) = hr Mt cos u, 8 

B(l) 
r 

B(o)M' 
t sin u, (7) 

B(l) o, (8) z 

B (2) = 
B(o){t + 12 

Mt+l cos (u + 8) 8 hr 

B(o){t -
+ hr 

12 
Mt-1 cos(u - 8) + B(o)(n+ hir2) cos 8, 

B (2) = B(o)M ' sin(u + 8) +B(o)M' sin(u - 8) r t +l t-1 

+ B (o) (11 - h(2) sin 8, (10) 

B (2) - B (o)M cos u, (11) z t 

B(3) B(o)M cos(u + 8) - B(o)M cos(u - 8) -
B(o) r 

= -z t+l t -1 R 

(12) 

where 

u = t a - hz, 

and 

Mt -1 # M 
0 

(9) 

cos 8 
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It is seen that the t and t + 1 B fields can be considered as - z 

higher-order because ha is taken as first-order. 

One can show that the Br and Ba terms should be of the same order. 

For small ha the small argument approximations can be used for the 

Bessel functions given by 

I 1 (ha)m (13) = m! m 2 

I I 1 1 (ha)m-1 (14) m 2 (m 1) ! 2 

K 1 (m - 1) ! (~a)m (15) m 2 

K' -t m! (~)m+l (16) m 

where 

m = 1, 2 , 3, 4 .... 

It is noted that the approximations for the modified Bessel 

functions are accurate to within 1% of the true I and r' fo r values m m 

of ha as large as 0.25. However, the values for K and K' given m m 

above may be 6-7% off for ha as large as 0 . 25. 

Using Eq. (3) and noting t hat inside the plasma coltm1n DL must be 

zero because Kt approaches infinity at r = 0, one obtains 

M 1IN = 
L 

where the superscript "IN" implies that the expression describes the 

inside of the plasma column. 

Using the small argtm1ent approximations, one obtains 
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1. 

Thus, on the inside of the plasma column B~l) and B~l) are approxi -

mately equal for small ha. The same arguments indicate that on the 

outside of the plasma column B(l) and B(l) are not equal, but they 
r 8 

are definitely of the same order. It can also be shown by the above 

procedure that B(2) and B(2) are of the same order of magnitude . 
r 8 

In the special case where t = 1 and t - 1 = 0, the ordering must 

be changed . Taking Mt-1 M and I I the ins i de of the = Mt-1 M only on 
0 0 

plasma column gives 

M I 2 0 0 
--r = M --*T = I ha . 

0 0 

The B field for the M case is actually an order of magnitude z 0 

larger than the B field on the inside of the plasma. Here M is taken r o 

as first-order, and M1 is left as a second-order quantity. Only the 
0 

ordering of one term must be changed in Eqs . (6-12). The term 

- B ( o) M cos ( u - 8) 
t-1 

must be moved from third- to first-order when Mt -l = 
Eq. (8) must be changed to 

- B(o)M cos hz, 
0 

and Eq. (12) must be changed to 

M . 
0 

In this case 

(17) 
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( ) B(o)r 
- B o M cos(u + 8) - -- cos 8 2 R 

(18) 

B. Assumed Plasma Perturbations 

The equation of a field line expanded about a particular radius 

r = a is assumed to be 

r(z, 8) = a[l + o(o) cos u + o<l) cos 8 
J, 

+ O(l) cos (u + 8) + O(l) cos (u - 8) ]. 
L+l L-1 (19) 

The perturbations given by oL cos u and o..e+l cos(u ± 8) are derived 

from the applied helical windings. The expression o cos 8 results from 

the nonhomogeneous toroidal magnetic field and gives rise to the 

toroidal drift. This 6 cos 8 term is taken as first-order. In order 

to have plasma stabilization, the O term must be zero. 

Experiments on the Scyllac sector [9] have shown that 6i_ cos u 

may be approximately 1 .0 for most experiments. This term is then 

taken as zer o -order. The perturbation given by 6
0 

= OJ,-l is about 

0.2 in most experiments and is taken as first -order . 

C. Expansion Calculations 

One begins with 

B · 'V 1lf = 0 . ( 20) 
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Previous wo~k done on magnetic field structures by Morozov and Solov'ev 

(5] indicates that the magnetic flux surfaces obey 

$(r, 8) t hr2B(o) - B(o)r k M~(nhr) cos n(i.,8 - hz) = constant 

(21) 

wher e 

£, = 1, 2 , 3 .. .• 

Equation (21) is valid only for a linear theta-pinch wi th helical 

windings . It will be seen that an additional term will arise in the 

equation describing the magnetic surfaces when a toroidal curvature is 

present . 

Tile first -order flux function can be taken to be 

,,, (1) = l hr2 - I f 2 rMi., cos u (22) 

from Eq. (21) . Tile term t hr2 is due to the main confining field B(o), 
I and - rMi., cos u arises from the applied helical windings . 

Expanding Eq . (20) produces 

0 

+ l ].... $(3)] . 
r 08 

(23) 

It should be noticed that B(o) ~ $(l) is a second-order quantity 
(o) 

b h . .d d f. B(o) _o ,i. (l) and _B ~ ,i.(l) ecause a 1S cons1 ere 1rst-order, while Or f r ae f 

are both first -order quantities. 
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There are no first-order tenns in Eq. (23). The second- order 

terms require that 
B(l) 

0 = B(o) ..Q_ ,1, (l) + B(l ) ..£... *(l) + _8_ ..Q_ W(l) ' (24) 
0z 't' r Or r 08 

and the third-order tenns also require that 

0 B(l) .£... 
z Oz 

$(1) + B(o) ..£... 
Oz 

$(2) + B(l) ..£... $(2) 
r Or: 

B(2) $(1) 
B (1 ) 

$(2) 
B(2) 

+ .£... + _0_ ..£... + _0_ ]__ $(1) (25) Or . r r 08 r 08 

Checking to see if $(l) satisfies Eq. (24) gives 

B (o) ( - hrM1 u] + B (o) [M' u] [hr - M' // u] sin sin cos u - hrM.l cos J, .l 

.lB(o) / 
+ hr MJ, cos u[J,M,e sin u] = O. (26) 

Bessel's equation 

11 M~ ( J,2 ) 
M.l = - hr + 1 + h2r2 MJ, (27) 

is then used to substitute for M~' in Eq. (26). The approximation that 

M; .l2 
hr + h2r2 M.l (28) 

must then ·be used. This is a good approximation since .t2Jh2r 2 is 50 

to 100 times larger than 1. Equation (26) is then satisfied when 
• • II Eq. (28) is substituted for M,e. 

Substituting into Eq. (25) for the more general case where MJ,-l # M
0 

gives 
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B(o) ~ +(2) + [B(o )M; sin u ] [~ V(Z~ 

[
.tB ( 0 ) ] [l 0 ( 2 )] ( 0 ) I, I + hr Mt cos u ~ 08 $ + B ~.t±l sin(u + 9) 

+ (11 - ~)sin e) [hr - M~ cos u - hrM~'cos u] 

+ B(o)[(.t ± l) M cos(u + 9) 
hr ir+-1 -

+ (11 +~)cos 9] [ J.M~ sin u] = 0. (29) 

The notation M.t+l implies that 

M.t+l cos(u ± 8) = M.t-l cos(u - 8) + Mir+-l cos(u + 8) . (30) 

It is now assumed that 

$(2) = f(r) cos 8 + G.t+l cos(u ± 8) (31) 

where f(r) cos 8 results from the toroidal curvature of the field, and 

G.t+l cos(u ± 8) may result from the .t ± 1 helical field, or the inter-

action of the .t helical field with f (r) cos 8. 

Substituting $(2) into Eq. (29) gives 

0 (o) (o) I . I I 
B hG.t+l sin(u+ 8) +B M.t sinu[f (r)cos 9 +G.t+lcos(u± 8)] 

.tB (o) 
+ 2 M.t cos u[- f ( r) sin 9 - ( .t ± l)G..e,+l sin (u ± 8)] 

hr 

+ B (o) [M~1 sin(u ± 8) + (~ - )rz) sin 8] [hr -~: Mt cos u] 

+ B (o) ~\! 1) Mt +l cos (u ± 8) + (~ + *2) cos 8)r t M; sin u] . 

(32) 

The sin(u + 8) terms require that 
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G.t+l sin(u ± 8) [ 
M

1

f
1 

UM J 
- rM~_l - ~h ± 2.R,2 sin(u + 8), (33) 

2h r 

which gives 

( [ I M~f I fM.R,.t J ~ 2) f(r) cos 8 + - rM.t+l - ~ ± 2 2 cos(u ± 8) . 
2h r 

(34) 

It is noted that the terms 

-~:Mt(~ -)'.z) sin e cos u + tM~ (~ + Jr2) cos e sin u 

(35) 

also produce sin(u ± 8) tenns. However, because of the following ap-

proximation, these tenns are considered small. 

Experiments on the Scyllac five-meter toroidal sector have shown 

that the toroidal drift is effectively cancelled using B.t=1 /B
0 

"""'0.08. 

Larger helical fields were tried, but the containment times were 

shorter. Taking the square of the .t = 1 field gives 

2 2 [B.t=l] = [0.08 cos( 8 - hz)] 0.0032[1 +cos 2(8 - hz)]. 

Thus, the square of this first-order quantity has produced a third-

order term instead of the expected second-order result. The consequences 

of this can be shown by first obtaining the relation between f(r) and 

(~ - y/h2r 2) from Eq. (32) by equating sin 8 terms which gives 
I I 

M.tG.t±l sin(± 8) sin(± 8) 
2hr 

(36) 

Substituting Eq. (36) into the first term of Eq. (35) gives 
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.R.,2 ( ) . f,2 IM~G~ .t(.t±l)M.tG&±l 
- 2hr Mi, 11 - N si.n(u ± 8) = - 2hr M.R.,L 2hr + 2h2r3 

.t
2
M I M (i, + l).R.,M M '] 

+ 1-+1 t + - .Hl 1- • ( + 8) (37) 2 2 2 2 sin u • 
2h r 2h r 

In the original expansion to determine w(2), terms such as G.t+l 

and M~+l were not multiplied by an .£,-order field. But in Eq. (37), 

these terms ar e multiplied by the square of an t-order field and can 

then be considered higher-order . In Eq . (37) the sin(u ± 8) terms 

can be considered fourth-order instead of third-order . The use of 

this assumption will be used throughout. 

However, the above assumption does not imply that all squared 

.£, -order terms should be ignored. For example, assuming that the 

fol l owing is contained in a first -order expansion 

[M ' s'n u]2 [ / . ]3 ... Mi, sin u 
0 = M' sin u + _ _.£ ____ + - - ---- + • • · · , 

.R., hr h2r2 
(38) 

one should retain the squared term. According to the above assumption, 

the M~ sin u term must be multiplied by the square of an f,-order 

fiel d before it can be ignored. Thus, the cubed term in Eq. (38) 

can be ignored. 

The assumption used for the remainder of the derivation can be 

generally stated. Terms such as M.t+l' f(r), and a/R can be ignored if 

multiplied by the square of an £ -order field. However, the square of 

an .£,-order field must be retained if it does not multiply other 

terms such as Mt+l' f(r), or a/R. 

For the case M.t-l = M
0

, W(2) remains unchanged. However, 

Eq. (36) must be changed because 
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B~l) ~ ~(l) B(o)M
0 

cos(hz)[- hrM{ sin( 8 - hz)] 

does not equal zero. This results in another sin 8 tenn which gives 

~ - h~ri) 
MOM{ sin(± 8) 'GI sin(± 8) 

sin 8 2 
+~o 

2hr 

M'~ sin(± 8) 
+ 0 

2h2r 2 (39) 

for the Mt-l = M0 case. 

One can now find the flux amplitudes 0 by expanding ~(r, 8) = m 

~(a , 8) in a Taylor series expansion which can be written as 

$(r, 8) ,1,(1) o (1) (r - a) 2 o2 (1) 
= 'I' + (r - a) di:' $ + - 2 - dr'2 ~ + .•. 

+ $(2) + (r _ a) ~ $(2) + (r - a)
2 ~ $(2) + 

ur 2 dr'2 
(40) 

where 

(r - a) = aoio) cos u + ao(l) cos 8 + aoi~i cos(u + 8) . 

Taking the first-order expansion, one obtains 

$(r, 8) cos 

1 2 $(r, 8) = 2 ha I - aMt cos u + aoi cos 
2 

[ a 0 t cos u] [ £ 2 
+ _......;.;;.._2--- h + - 2 Mt cos u 

ha 

+· -
;,2 l 

- ;-- M~ cos J . 

(41) 

Using $(r, 8) t ha2 and taking the cos u terms from Eq. (42) 

requires that 
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The last term in the brackets can be ignored, because it is the 

square of an £-order field. Thus, OJ, is taken as 

M' 
J, 

ha (43) 

One now uses the second-order terms in Eq. (40) to find 6 

and o..e,+1 . The terms used include 

(2) 
'11 + .... (44) 

Ignoring terms that are too small gives 

0 
M'f' fM J, 

I J, J, 
f(r) cos 9- aMJ,+l cos (u ± 9) - Zh cos (u ± 9) ± 2 2 cos (u ± 9) 

2h a 

+ [a6 cos 0 + a6.t-+-l cos(u ± 0)] r• -(ha+ ~~)Mt cos j 
+ [aOJ, cos u] [f ' (r) cos 9 + G;±l cos(u ± 8)] 

+ [ •6t cos u][a 6 cos 0 + a6t±l cos (u ± 0) J [h -

- ::2 Mt+ !2 
M~)cos u] . 

The cos 8 terms require that 

Ignoring the appropriate cos(u ± 9) terms and solving for 61,+l 

gives 
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[M~±l OJ, 6 l ( p,2 ) _ fMi,J, ] 
o.t+l cos(u± 8) = _h ___ 2_ +2 1+22 a-1..e+ 3 4 cos(u±8), 

_ a h a 2h a 

and using Eq. (45), f(r) can be eliminated. 

6..e+l cos (u ± 

- MP,..e 
+---

2h2a2 

cos (u ± 8) 

Utilizing Eq. (43) allows one to ignore the last three terms. The 

result is given as 

lMLJ cos (u :!: 0). 
(46) 

Both Op, and o..e+l are valid for all cases including MP,-l = M0 • 

Equation (46) can be written as 

Finally, a pressure balance across the plasma interface at r = a 

is considered. Using a Taylor series expansion allows one to write 
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Using the pressure balance, 

2 811> + B = B • B (49) 

where the left side of Eq . (49) is describing the inside of the plasma 

at a pressure p. The dot product of B is then taken on the outside of 

the plasma. 

It is then possible to write 



19 

B B = rB(o) +B(l) +B(2) +B(3) +r(o) .£_ B(l) +/o) .£_ B(2) L z z z arz arz 

+ r(o) .£_ B(3) +r(l) .£_ B(2) +r(o)r(l) cl B(2~ 2 

Or z Or z Or2 z J 
+ [B(l) +B (2) +r(o) _Q__ B(l) +r(o) ..Q_ B(2) 

r r arr dt" r 

+ r(l) _Q__ B(l) +r(o)r(l) cl B(l)J2 
ar r ar2 r 

8 8 rare 0r 8 
+ [B(l) +B (2) + (o) .£_ B(l) +r(o) .£_ B(2) 

+ (1) _Q__ B(l) +r(o)r(l) i_ B(l~ 2 (50) 
r er 8 er2 8 J 

where terms that are too small have to be deleted. All products in-
2 

volving r(o) are too small according to the assumptions being used . 

In the special case of Mi-l = M
0 

and B~l) is nonzero, the deriva-

tive 

.£_ B (1) 
dr z 

_Q__ M cos hz hM' cos hz dr 0 0 

is a third-order term. Thus, all tenns in Eq. (50) smaller than 

r(o) _Q__ B(l) can be neglected. 
Cr z 
By definition 

where p is the zero-order plasma pressure. 

Equation (50) must be conserved for B(o) = B and B(o) 
0 

as derived from Eq. (49) and Eq. (51) . 

(51) 

The following will not be valid for the special case when Mi-l = M
0

• 

The second-order terms must be zero for a stable plasma configuration . 

The second-order expansion consists of 
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0 

Substituting in the appropriate values from Eqs. (6-12) gives 

2 2 
0 = - 2B(o) M.t cos u - 2B(o) aO.t cos u hM~ cos u 

2 
+B(o)(M 1 

.t 

2 
sin u] 2 +2B(o) M~ sin u[ao.t cos u][hM~'sin u] 

2 
B(o) .t2 2 2 2.tB(o) 

+ 2 2 M.t cos u + ha M.t cos u[ao.t cos u] 
h a 

[ 
.tB ( 0 ) .tB ( 0 ) I J 

- 2 Mt cos u + ~a~ M.t cos u • 
ha 

Taking the cos u terms, all expressions can be considered higher-

order except 

gives 

2 
- 2B(o) M 

t cos u. 

Imposing the condition that B(o) = B and B(o ) 
0 

2 
B(o) MOUT 

.t 

2 
cos u = ( 1 - (3) B ( o) M~N cos u 

where the superscripts denote the outside and inside of the plasma. 

Thus, it is seen that 

(53) 

The third -order terms consist of 
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where all terms multiplied by the square of an ! -order field have been 

ignored. Substituting in the values gives 

0 ~ - 2B(o)
2 

[Mt±l cos(u± 9) +*cos 0] - 2B(o)
2 

[a6t cos u] 

[hM~±l cos(u± 8)+~cos0] 
2 

- 2B(o) [a6l±l cos(u± 0) +a6cos 8 ] [hM~ cos u] 

2B(o)
2

[a6Lcosu][a6L±l cos(u± 0) +a6cos 8][h~tcos u] 

+ 2B (o) \M; sin u] h±l sin(u ± 9) + (11 -;;t) sin 0] 

2 
+ 2B(o) [M~sinu][a6L±l cos(u± 0)+a6cos8][hM~1 sin u] 

+ 2B (o) 
2 
[~a Mt cos u] [<t ~al) M.!±l cos (u ± 9) + (11 + 3.z) cos 0] 

+ 2B(o)
2

[~a M.t cos u] [aOL±l cos(u± 8) +a6cos 0] 

[~ M; cos u - h~z Mt cos u]. 

Taking the cos(u ± 8) terms gives 

2 2 
2B(o) M cos(u_+ 8) -B (o) 

.£+1 

2 
- B(o) haa.t' cos(u ± 8) , 

1, 

a 
R 6 L cos ( u ± 8) 
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and imposing the boundary conditions B(o) 

gives 

B and B(o) 
0 

(1 - (3) l/2B 
0 

OUT IN ] a 2 2 [M"+l ] cos (u ± 8) - (1 - 13) [M ) cos (u + 8) = - Ob -R + fu a cos (u ± 8) . 
~ t ±l - 2 ~ 

(55) 

Finally , one takes the cos 8 terms and obtains 

0 

Imposing the necessary boundary condition gives 

(56) 

Using Eq . (53) and Eq. (54) it is seen that 

MOUT cos u - (1 - C)MIN cos u = 0 J, ~ J, 

and 

MOUTMOUT ( B) u = (l _ C) 2M: _ _LNlM:N t+l J, cos u ± cos f-' NT ~ cos (u ± 8)cos u 
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which gives 

Substituting these into Eq. (56) gives 

2 R.., 2 2 n2 IN2 
~ = - ~ a ot+l oz +f-2" 013(1 - f?)Mz 

h a 

f?(l - 8) .t(P, ± 1) MI!\iIN 
h2a2 p, Z±l 

- ~<1 - ~) 6tM~[~ + fu2·~[):2J (57) 

Ignoring the a/R term on the right side of Eq . (57) because it 

is multiplied by the square of an P, -order field, and substituting in 

for 61,+l from Eq. (46) gives 

B (1) 
z 

or 

2a = _ h 0 M 1IN _ (l .... f?)MIN[MIN 
R a J, J.:±1 t i.±1 .ec~ ~ 12] + (ha) 2 o~ o 

h a 
2 2 + ( l _ f?) _z_ &-!IN _ 

h2a2 J, 

The special case Ml,-l = M
0 

will 

is not zero, and one obtains in 

2B(o)B(l) 
2 

0 2B(o) M 
z 0 

MOUT - (1 - f?)MIN = 0. 
0 0 

However, the third-order terms 

66 MIN(2 - 8).t2 
J, J, 

now be treated. 

the first-order 

cos hz, 

2 2 
B(o) : °i_ cos hz - B(o) hafi.1{ cos hz 

(58) 

In this case 

(59) 
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should also be included with Eq. (S9). This gives 

This is the same result that is obtained fo r the general case 

given by Eq. (SS) . Thus, Eq. (SS) is valid fo r all cases including 

M.t -1 =M. 
0 

(1) 2 
The term B must be added to the second-order expansion, but z 

this doesn't add any cos u terms. Thus, Eq . (S3) is valid for all 

cases. 

In the third-order, one must add the terms 

for the case M.t-l = M
0

• 

One obtains the cos 8 terms given be low as 

2 
2B (o) a - cos 

R 

2 2 
- B(o) h 2a 2 o (6 + 6) + B(o) hafi (M 1 +M 1

) cos 8 
l. 0 2 l. 0 2 

2 
cos 8 - B(o) ha6i_M; cos 8 

J:. (0) 2 2 2 {}..f_ II v cos 8 + B h a 5i --i cos 8. 

Using Eq. (S3) and Eq. (SS) and applying the necessary boundary 

conditions gives 
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(60) 

In Eq. (60), the term 

is actually a fifth-order quantity. It will be seen that fifth-order 

terms are important for the t - 1 = 0 case. Thus, one should add all 

fourth-order and fifth-order terms to Eq. (60) . There are no fourth-

order cos e terms . However, a nwnber of fifth-order expressions exist 

that are rather complicated and make the expansion calculations very 

difficult to do . Thus, only one of the simpler fifth -or der expres -

sions will be retained. This is given by 

Including this expression in Eq . (60) gives 

(61) 

where Eq. (47) has been used. Equation (61) is merely a generalized 

form of Eq . (58) that has been made to include Mt-l = M
0

• This makes 

it possible to write 

' ' 
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for all cases , including MJ,-l = M
0 

It is now necessary to calculate the coefficients CJ,, DJ,, 

C.Rt+l' and DL+l · 

S . s:.I N s:.OUT f E (43) . etting vJ, = vJ, rom q. gives 

(63) 

where D~ must be zero, because K~ goes to infinity as r goes to 

zero. 

Using the pressure balance at r =a provided Eq. (53) , which 

can be written as 

(64) 

Using Eq. (63) and Eq. ( 64) allows one t o eliminate C~N · Sol ving 

for DOUT gives 
J, 

COUT [ 13 I J, J 
J, l K J, 

(1 - 13) I J,KJ, 
1 - ------,.---

K J, I J, 

The expression for D~UT can t hen be substituted into OJ, where 

This results in the expression 

(65) 
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where the identity 

(66) 

has been used. 

It is also seen that 

(67) 

and 

Thus, c~ can be eliminated to obtain 

(68) 

In a similar way, one can derive the t ± 1 quantities by first 
..OUT IN 

setting O_t+l = Ot+l. From Eq. (46) it is found that 

where Eq. (53) and Eq. (67) are used. 

The last equation comes from the pressure balance. Using Eq. (55) 

it is seen that 

Going through the same procedure that was used to derive Eq. (65) 

gives 

(71) 

where 
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- (1 - ~1 · 
] a 2 2 ] 2 2 KW. It 
2 6t[R+fu a ]+2 ha 60t K' I' 

1.±1 t 

It is also seen that 

IN 
=cu1 1u1 

(72) 

(73) 

which gives 

(74) 

It is now possible to use the derived equations to express the 

shift necessary to give toroidal equilibrium. Substituting Eq. (68), 

Eq . (71) , and Eq . (74) into Eq. (62) gives 

6~ - MLha ~ 6L (2 - ~Hi+ h2
a

2J. 
(75) 
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Substituting in for W.t+l' one can see that the term involving 

~ 6.t : can be ignored, because it would be multiplied by the square 

of an .t-order field in the above expression. 

The condition for equilibrium is that 6 = O. Taking Eq. (75) 

with 6 = 0 gives 

- 2 
hR6.t = 

In order to plot the various results, it is assumed that a 

vacuum field exists which implies that 

and 

D = 0, (m = .t, .t ± 1). m 

The maximum magnitude of the radial field is just 

From 

B(m) 
r 

-B-= 
0 

CI , (m = .t, .t ± 1). mm 

Eq. (65) it is easily seen that 

B(t) [ '] 1 r 2 I I .tK J, 
() -B- = (ha) I.tK.t 1 - (1 - ~) I7i< . 

.t 0 J, .t 

Taking Eq. (46) , Eq. (71), and Eq. (74) for 6 = 0 gives 

6.t+l 

I 

M.t+l ---ha 

I COUT 
= I .t±l -----=,......,........;;.;J,...,±1.c._ ____ ,,_ I [I' K ] . .t+l haJ< I ,e+l .t±.1 - (1 - ~) 

t±l I .t±l K t±l 

This allows one to write 

(76) 

(77) 

(78) 
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(79) 

It is then seen that Eq . (78) and Eq. (79) are of the same 

form, and both can be writ ten as 

1 r 2 / mm B (m) [ I K '] 
7) -B- = (ha) ImKm 1 - (1 - ~) I7i("" 

m o mm 
(80) 

where m = t , L ± 1 = 0 , 1, 2, 3 . ••• 

Equation (80) is plotted in Figs. 1-4 on the next few pages for 

various ha, m, and ~ values. 

Using Eq. (76) for O = 0 and recognizing that 
I 

Mt +l 
ha 

and 

for 0 = 0, allows one to immediately write 

2 
- h2a2 

1 (81) 

Equation (81) is plotted in Figs . 5-8. Substituting Eq. (80) 

into Eq. (81) gives 

(82) 

Equation (82) is plotted in Figs . 9-12 . 
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0 . 05 0 . 10 
ha 

Fig . 1 . Ratio of maximum radial f ield to the plasma pertur bation it 
produces versus ha for t = O. 
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Fig. 2. Ratio of maximum radial field to the plasma perturbation it 

produces versus ha for J, = 1. 
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Fig. 3. Ratio of maximum radial field to the plasma perturbation it 

produces versus ha for L = 2. 



34 

0.28 

0.24 

0 .20 

~ co 0.16 -0 
IXl -,....... 
~ ......., 

H 
IXl 

0 . 12 

0.08 

0.04 

0.10 0 .15 0.20 0 . 25 
ha 

Fig . 4 . Ratio of maximtun radial field to the plasma perturbation it 
produces versus ha for t = 3 . 
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Fig. 5. The quantity - (R/ a) Co Oi. versus ha necessary fo r toroidal 
equilibrium. 
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Fig. 6. The quantity - (R/a) OJ,[ 01,+l or OJ,_1 ] versus ha necessary for 
toroidal equilibrium. 
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Fig. 7. The quantity - (R/a)OJ,f Ot +l or Ot-11 versus ha necessary _ for 
toroidal equilibrium. 
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Fig. 8 . The quantity - (R/a)Of, (0.R,+l or Ot-11 versus ha necessary for 
toroidal equilibrium. 
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Fig. 9. The quantity - (R/ a) Br (.t) Br( t - l) /B~ versus ha necessary 
for toroidal equilibrilUil. 
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Fig. 10 . The quantity - (R/a)Br(J,)[Br(J, - 1) or Br(J, + l)]/B~ 
versus ha necessary for toroidal equilibrium. 
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Fig . 11. The quantity - (R/a)B,(t )[B,(t - 1) or B,(t + l)]/B~ 
versus ha necessary for toroidal equilibrium. 

ha 
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D. Growth Rates of Instabilities 

Multiplying Eq. (49) by acos 8 and integr a ting over 8 produces 

the force per unit length along t he plasma column. This procedure 

takes plasma pressure in force per area and integrates over the plasma 

area in order to obtain the plasma force. Only the cos 8 terms don't 

integrate to zero . The above integration is equivalent to multiplying 
2 Eq. (75) by j3B a/8. 
0 

The balance of forces along the plasma column can then be repre-

sented by 

F = R 

The forces can 

F = R 

F .t 

where 

and 

Ft + F .e±l . 

then be written as 

f3B2a2 
0 

4R 

.12 2 2 2 2 - 8 B
0

h a O.ta l:Rt , 
2 

2 I .t l I .t t -----::7 
I ,2 ha I J, 

J, 

(83) 

(84) 

(85) 

(86) 

(87) 



44 

The growth rate of an unstable m = 1 displacement given by ~ = ao 

can now be found. By setting 

where 

2 -
na p~ = Ft 

v t 
~ = ~ e g 

0 

p = plasma density, 

V = growth rate of unstable column, g 

one finds that 

v2 
g 

This can be written as 

Q 1/2 
(-.!<R) 2 t 

where 

B 
v = 0 

A (4 np)l/2 
Alfven velocity. 

Equation (89) is plotted in Figs. 13-15. 

(88) 

(89) 

In order to obtain the necessary force for toroidal equilibrium, 

one sets O = 0 in Eqs. (85-87) obtaining 

and using 

F = 
R 

the result is 

= M~±l L I~±l z 
~ = ha It+l 1±1 ' 
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and l, = 1. 
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Equation (90) gives the balance of forces required for toroidal 

equilibrium. 

Before comparing these analytical resul ts with the experimental 

results from Scyllac (9), one must determine which magnetic fields are 

actually being measured. The Scyllac [9) uses £ = 1 and £ - 1 = 0 

helical fields . For the £ = 1 field, Br(t = 1) is being measured 

(90) 

experimentally which allows one to directly apply Eq. (80) and Eq. (82) . 

However, as seen on page 8 of this thesis, the measured £ - 1 = 0 

field will actually be B (£ - 1 = 0). Thus, one must use the relation z 

(91) 

to modify Eq. (80) and Eq. (82) for use with experimentally measured 

t - 1 = 0 fields . 
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III. COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS 

An extensive number of experiments have been done on the Scyllac 

toroidal sector [9]. The Scyllac has a major radius of 237.5 cm and 

extends through an angle of 120°. The coil arc length is 5 meters, 

and the helical fields have one-period lengths of 33.2 cm. The 

toroidal sector is operated with nine variations of t = 1 and t - 1 = 0 

magnetic fields to furnish toroidal equilibrium. 

Equation (80) is used in the lab to calculate 0
0 

and °i_ , except for 

three experiments in which 00 is measured experimentally. 

The experimental results are compared to Eq. (81) and Eq. (82) 

which should be satisfied for 6 = O. This corresponds to an ef-

fective cancellation of the toroidal force. 

Finally, Eq. (90) is used to determine if the toroidal force is 

effectively cancelled. 

It is hoped that a correlation can be made between plasma con-

tainment time, and the agreement between theoretical and experimental 

values. 

Each experiment will be denoted by a letter. Field configurations 

for each of the nine experiments is listed in Table 1 . 

Experiment A involved no t = 1 or t - 1 = 0 fields, but was the 

control experiment in a smooth-bore coil . The toroidal force caused 

the plasma to drift to the wall in about 2.2 µ.sec. The major parameters 

for this and all other experiments are taken for ~ = 0.8. At this ~' 

the ion temperature is about 1 Kev, and the density on the axis is 

2 - 3 X 1016 particles/cm3 for a 10 m Torr deuterium filling . 
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Table 1. Summary of Scyllac experiments 

Experiment 

A 

B 

c 
D 

E 

F 

G 

H 

J 

Bo 
(KG) 

50 

42.6 

40.0 

40.0 

40.2 

40.9 

41.0 

41.0 

36.3 

B .t=O 
B 

0 

0 

0.22 

0.105 

0.105 

0.089 

0.071 

0.09 

0.09 

0.08 

0 

0.06 

0.08 

0.086 

0.090 

0.096 

0.07 

0.07 

0.08 

8 Experimentally measured. 

0 

0.3a 

o.2a 

0.28 

0.27 

0.6 

0.24 

0 

0.54 0.8 

0.68 0.75 

0.68 0.65 

1.19 0.8 

0.82 0.95 

1.06 0.85 

a 
(cm) 

1.0 

1.0 

1.0 

0. 7 

0.88 

o. 7 

Average 
coil 

radius 
(cm) 

7.21 

8.11 

8.57 

8.57 

8.50 

8.42 

8.02 

8.02 

10. 25 

Experiment B used an t - 1 = 0 groove cut into the main compression 

coil. The t - 1 = 0 groove depth was 1.8 cm in the main compression 

coil. This groove depth produced a rather large t - 1 = 0 field. 

The t = 1 field was produced by coils that proved to be 35% stronger 

in the region of the t - 1 = 0 grooves. As can be seen in Table 2, 

the toroidal force F1 0 was much too large, although the containment 
' 

ti.me was double that of Experiment A. 

In Experiment C the t - 1 = 0 groove depth is reduced to 0.9 cm 

which produced a nearly equ~ t = 1 field in both the land and groove 
\ 

region. Looking at Table 2, the F1 0 force is too small to cancel the 
' 
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Table 2. Summary of results from Scyllac 

(B) o <\ (B) o <\ R B0 Bl R B0 B1 
(-) - (-) - F Containment a o a o a B2 a B2 ....L2. 0 0 

FR 
time 

Experiment (Exp•) (Theor.) (Exp.) (Theor.) (µ.sec) 

B 62.9 40 . 0 3.13 2 . 0 1.58 4-6 

c 30 . 6 37.5 1.99 2.21 0 . 832 6-9 

D 22.6 32.5 2.14 2 . 84 0 .694 5-7 

E 80.4 81.0 2.67 2. 71 0 . 998 12 

G 132. 66.0 1. 70 0 . 85 2. 02 8 

J 86.2 87.0 2.17 2.20 0.99 10 

tor oidal force FR, although F1 0 /FR is closer to one than in Experiment B. 
' 

The containment time has also greatly increased. 

In Experiment D the beginning of the i - 1 = 0 fields is delayed 

about 0 . 2 µsec by means of stainless steel rings inserted into the 

l - 1 = 0 grooves. The general plasma motions are similar to Experiment C 

except the containment time is shorter. The necessary ~ = 1 field 

to achieve toroidal equilibriwn was 35% more than in Experiment C. 

The value of current necessary for toroidal equilibrium is also much 

mor e critical when the stainless steel inserts are used. 

Experiment E uses semi -cylindrical shells made of 1 . 5 mm thick 

copper in the i = 0 groove regions . These shells are made to cancel a 
I vertical field generated on the minor axis of the torus by the applied 

helical fields . This is indicated theoretically by Eq . (39) . These 

shells do an effective job of cancelling the vertical field . However, 
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the great increase in containment time is probably due to the satisfying 

of the equilibrii.nn equations. 

Experiment F used 3 IIUD copper shells . The values of ~ and a were 

not obtained. The behavior of the plasma is about the same as the 

1.5 mm copper shell response. Using the 3 mm shells produces a con-

tainment time of only about 4- 7 µ.sec. This is probably due to the 

violation of the equilibrii.nn equations. 

In Experiment G the conversion from t = 1 windings to t = l 

grooves is made. The grooving of the t = l field into the main 

compression coil gives a constant ratio of the t = l field to the main 

compression with time. It is also hoped that this groove design will 

simplify the production of the t = 0, l configuration. This field is 

produced by eight discrete sections of wavelength 33 .2 cm. 

The above configuration produced discharges that are more re-

producible from discharge to discharge than if the t = 1 winding is 

used. 

In Experiment H the grooved t - l = 0 and t = 1 compression coil 

is used. In this case the equilibrii.nn equations were satisfied , and 

a containment time of 12 µsec was reached. The superposition of a 

600 G vertical field of either polarity had little effect on the con-

tainment time. 

In Experiment J the grooved compression coil is designed to pro-

duce very accurate t 1 = 0 and t = l fields. Each wavelength is 

divided into 260 steps which should provide an improvement over the 

double- grooved coil in Experiments G and H. 
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Plasma equilibrium is obtained by adjusting the initial deuterium 

filling pressure in order to satisfy the equilibrium equations for 

their B dependence. The satisfying of the theoretical equilibrium 

equations results in a rather high containment time as shown in Table 2. 

A superimposed vertical field can be varied from - 430 to 700 G 

with little change in plasma behavior . 

Figures 16 and 17 are derived from Table 2, Fig. 5, and Fig . 9 . 

It is also necessary to use Eq. (91). These plots indicate that only 

Experiments E and J satisfy the theoretical conditions for plasma 

equilibrium. 

It was noted before that 6 was experimentally measured from 
0 

luminosity profiles for Experiments B, C, and D. Figure 18 compares 

these measured values with the expected theoretical values taken from 

Fig . 1 where Eq . (91) must be used once again . As seen in Table 1 

these values of 6 are only accurate to one significant figure. Thus, 
0 

one cannot infer too much from Fig. 18. 

It was assumed throughout the rest of the experiments that 6 
0 

and 6i would be more accurate if calculated from Eq. (80) rather than 

measured experimentally . 
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IV. DISCUSSION AND CONCLUSIONS 

In the present ordering Qt and Ot±l are considered zero-order 

and first-order, respectively. While the old ordering done by Ribe [7, 

10] considers Qt and Ot+l as first- and second-order quantities. Taking 

ot as a zero-order quantity created many problems when using the many 

Taylor series expansions. It allowed for the creation of so many new 

terms that the entire problem became insolvable. Thus, the assumption 

made for the present expansion involved the ignoring of terms multiplied 

by the square of an t -order field. According to current experimentation, 

the assumption seems to be a rather good one. 

Ribe [7, 10] also considered ha to be a zero-order quantity, while 

in the present expansion ha is taken as a first-order quantity. It 

has been seen in the derivation that the use of ha as a first-order 

quantity has important consequences. The magnitude of many of the 

fields are changed, and Mt-l = M
0 

must be treated as a special case. 

Thus, the present ordering drastically changes the expansion 

calculations. However, the final result is the same as that derived 

by Ribe (7, 10] using the old ordering. The present expansion greatly 

extends the region over which the equations are applicable. The 

equations should be accurate for present experiments where ha is 

taken as a first-order quantity. 

If the toroidal drift is to be effectively cancelled, the experi-

2 mental and theoretical values of (R/a)°i_ 6
0 

and (R/a)B.ts=lBt=O/B
0 

should 

be equal, and the expression F1 , 0 /FR should equal one. 
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The general conclusions drawn from Table 2 is that when the 

theoretical equations are satisfied, (as stated above) the containment 

time is much longer than when they are not. This can be seen from 

Experiments E and J in Table 2. Even though each experiment uses 

different coil configurations, the most important factor concerning 

containment time is that the theoretical equations are satisfied. 

Thus, stuffing the L = 0 grooves with stainless steel inserts, 

to delay the t = 0 field 0.2 µsec, has little effect on containment 

time. In fact, a 35% increase in the t = 1 field is necessary in 

order to give toroidal equilibrium. 

The replacing of the t = 1 winding with the grooved t = 1 coil 

seemed to improve time and spatial uniformity of the t 1 field . 

However, the general plasma motion in the grooved case is not much 

different from the plasma motion obtained while using t = 1 windings. 

It is noted that a transverse field varying in magnitude from 

- 430 to 770 G can be superimposed on the helical fields with little 

change in plasma motion. However, it is concluded that this may be 

due to end effects of the 5-meter device. The vertical fields may 

have more of an effect when the full torus is used. 

These experiments have certainly demonstrated the usage of the 

t = 1, 0 toroidal equilibrium. They have also indicated the good 

agreement between experimental plasma equilibrium and theoretical 

equilibrium predicted by the present expansion using sharp-boundary 

MHD theory. 

The plasma containment time has been increased to as high as 

12 µsec using t = 1, 0 fields. At this time an m = 1 motion drives 
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the plasma toward the wall. 'nlis may be due to the long wavelength 

m = 1 instability or an imbalance between F1 0 and FR as the plasma , 
parameters vary with time. 

Further experiments on the Scyllac will best be done on a full 

torus in which end effects can be avoided. 
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V. TOPICS FOR FURTHER STUDY 

It may be possible to improve the solution by including more 

tenns in the Taylor series expansions and then using numerical techniques 

to obtain a solution. 

The sharp boundary model may be somewhat questionable. Another 

simple model may be tried that approximated a diffuse boundary. How-

ever, the complexity of the problem may become too great. 

The greatest need for further study lies in the area of experimenta-

tion. Experiments on a completed torus could answer many questions. 



61 

VI. LITERATURE CITED 

1. A. A. Blank, H. Grad, and H. Weitzner in "Plasma Physics and 
Controlled Nuclear Fusion Research," IAEA, Vienna, March 1969, 
vol. 2, pp. 607-617. 

2 . J. P. Freidberg, Physics of Fluids, 14, 2454 (1971). 

3. H. Grad and H. Weitzner, Physics of Fluids , 12, 1725 (1969). 

4 . J. M. Greene, J. L. Johnson, and K. E. Weimer, Plasma Physics, 
11_, 145 (1965). 

5. A. I. Morozov and L. S. Solovev, Reviews of Plasma Physics, ~. 42 
(1966). 

6. R. L. Morse, W. B. Riesenfeld, and J. L. Johnson, Plasma Physics, 
10, 543 (1967). 

7. F. L. Ribe, "Free Boundary Solutions for High-Beta Stellarators of 
Large Aspect Ratio," LA-4098, Los Alamos Scientific Laboratory, 1969. 

8. F. L. Ribe, "Progress Report of the LASL Controlled Thermonuclear 
Research Program for a 12-Month Period Ending October 1971," 
LA-4888-PR, Los Alamos Scientific Laboratory, 1971. 

9. F. L. Ribe, "Progress Report of the LASL Controlled Thermonuclear 
Research Program for a 12-Month Period Ending December 1972," 
LA-5250 - PR, Los Alamos Scientific Laboratory, 1972. 

10. F. L. Ribe and M. N. Rosenbluth, Physics of Fluids, 13, 2572 (1970) . 

11. M. N. Rosenbluth, J. L. Johnson, J. M. Greene, and K. E. Weimer, 
Physics of Fluids, 11_, 726 (1969). 

12. K. S. Thomas, C. R. Harder, W. E. Quinn, and R. E. Siemon, 
Physics of Fluids, 12., 1658 (1972) . 

13. H. Weitzner, Physics of Fluids, 14, 658 (1971). 



62 

VII. ACKNOWLEDGMENTS 

The author wishes to express his gratitude to Dr . B. M. Ma of the 

Department of Nuclear Engineering for his many helpful suggestions 

during this study. Also, thanks go to the Air Force for their support 

of an assistantship under which this work was accomplished. 

The author wishes to express his gratitude to his wife, Mary 

Jane , for her encouragement and help in preparing the manuscript . 


