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GENERAL INTRODUCTION 

Treponema hyodysenteriae, a gram n egative spirochete. is the 

etiologic agent of swine dysentery (64) . Swine dysentery is a muco-

h emorrhagic diarrhea of young feeder pigs causing morbidity and 

mortality (63) . This disease h as been estimated to cost the pork 

producer 100 million dollars annually (125). It was reported that the 

lipopolysaccharide (LPS). a component of the outer membrane of gram 

negative bacteria (121). of T. hyodysenteriae could be contributing to 

the pathogenesis of this disease (129). This molecule has been shown 

to cause a wide range of effects on the mammaliam system that 

resemble the pathophysiolgy of a gram negative septicemia (i.e., fever 

and inflammation) (120, 121, 141) . 

This research was performed to define the role of LPS and 

endotoxin of T. hyodysenteriae in the pathogenesis of swine dysentery. 

The first part of the study was to define the chemical content of the 

treponemal preparations (LPS and endotoxin) and to examine the 

classical biologic responses elicited. The second part of this study was 

to examine the biologic effects of treponemal LPS and endotoxin 

preparations on lymphoreticular cells. 

Explanation of thesis format The alternative format was used in 

preparing this thesis. Two manuscripts were written for Infection and 

Immunity. The manuscripts are titled "Classic Biological Responses 

Induced by Lipopolysaccharide and Endotoxin of Treponema 

hyodysenteriae" and "Ability of Treponema Lipopolysaccharide and 
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Endotoxin to Induce Cytokine Release from Lymphoreticular Cells". 

A general review of the literature is followed by the first 

manuscript with an overall summary following the second manuscript. 

Literature cited are referenced at the end of each manuscript. The 

literature cited in the general literature review and overall summary are 

cited in a literature cited section after the second manuscript. 
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LITERATURE REVIEW 

Lipopolysaccharide (LPS) from the members of the 

Enterobacteriaceae, such as Escherichia coli and Salmonella minnesota, 

has been extensively studied, both chemically and biologically (29, 98, 

120, 119) . LPS is a heat resistant, amphipathic molecule ranging in 

molecular weight from 20,000 to 1,000,000 daltons (98). Structurally, 

classical LPS has three regions (92): 1) a polysaccharide region 

designated as the 0-specific side chain (183). This hydrophilic portion 

is associated with the serologic classification of the organisms. 

Polyclonal rabbit serum, immunized with a variety of antigenic 

preparations, is used to differentiate strains due to similiar antigenic 

epitopes within the 0-speciflc side chain (0-antigen) (58, 91, 90, 92). 

2) The core region is made up of 2-keto-3-deox:yoctonate (KDO). L-

glycero-D-mannoheptose phosphate, and other repeating hexose sugars 

that can vary in character and number between genera (92). 3) The lipid 

A region is composed of a galactosamine disaccharide backbone with six 

or seven saturated fatty acid groups connected through phosphoester 

and/or amide bonds (92, 98). The biologic activity (i.e., toxicity, 

pyrogenicity, lethality, ... ) of LPS has been shown to be associated with 

the lipid A region (57, 55, 181). 

The LPS molecule can be prepared using different extraction 

procedures which give different characteristics to the product. The 

purest preparation of LPS is extracted by a hot phenol/water procedure 

of Westphal and Jann (180). This procedure removes virtually all of the 



4 

protein (precipitated in the phenol phase) leaving lipid and sugar 

moities as well as other water soluble materials in the aqueous phase. 

Rough or R mutant LPS is prepared with a phenol/chloroform/petroleum 

ether extraction as described by Galanos et al. (56). This procedure was 

developed to increase the recovery of LPS that had shorter carbohydrate 

side chains or proportionally more lipid thus changing the chemical 

characteristics. Other methods have been described that leave more 

protein in the preparation than do previous procedures. The 

trichloroacetic acid method (TCA) described by Boivin and Mesrobeanu 

(28), translated by Staub (159), and the butanol/water method of 

Morrison and Leive (118) leave large amounts of protein associated with 

the LPS. Historically, the TCA method was the first used to extract 

endotoxin; however, due to the acidic nature of the TCA procedure and 

the possible hydrolysis of the LPS, Morrison and Leive (118) devised the 

butanol/water method. The butanol/water method is more gentle than 

the phenol/water method, but it does not yield a purified LPS 

preparation. The LPS preparation extracted by the butanol/water 

procedure has the lipid-associated protein (LAP) attached to the LPS 

molecule. The LAP and LPS together are commonly referred to 

endotoxin. This constitutes a fourth region of the moiety as well as a 

molecular form which is more native to that found on the bacterium 

(121). 

The list of biologic effects associated with LPS or endotoxin includes 

the stimulation of B cell mitogenicity, immunogenicity, polycolonal 

antibody induction, adjuvanticity, stimulation of macrophage (119). 
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effects on the non-specific immune system {i.e., complement) {120). as 

well as pathophysiologic conditions such as fever and disseminated 

intravascular coagulopathy (141). Due to the large number of cell types 

{i.e., lymphocytes, macrophages, platelets, neutrophils, endothelial cells) 

{98) affected by LPS, this molecule would appear to play a major role in 

alerting the body to a gram negative bacterial infection (113) . 

Lipopolysaccharide is described as a T-independent antigen, 

inducing B cell proliferation {5, 110) . Andersson et al. (7) reported that 

a majority of B cells respond to LPS but only a small portion of that 

population were specific for 0 antigen. The following year, lipid A was 

isolated and shown to induce the B cell responses associated with LPS 

(6, 36, 135, 143). 

Conversely, LPS was shown to have no effect on T cell proliferation 

(8, 109, 135). However, there is evidence which indicated LPS can 

enhance the proliferation of T cells in the presence of T-dependent 

lectins {53, 132, 151). 

As an immunogen LPS has been shown to induce exceptionally high 

serum antibody responses when administered at a low dosage. This was 

shown by stimulating a primary immune response to the 0-specific side 

chain in the popliteal lymph node of rabbits following immunization with 

only 1000 molecules of purified endotoxin (83) . Rudbach reported that 

when mice were primed with a few hundred molecules of LPS, an 

enhanced secondary response to endotoxin immunization was seen 

(144). 
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Previous reports have established LPS as a T-independent antigen, 

however, there have been conflicting reports suggesting T cell and/or 

macrophage regulation upon endotoxin-induced B cell proliferation 

(111, 117, 119). Travniczek et al. (170) and Yoshinaga et al. (185) 

reported that macrophage could exert suppressive effects upon LPS-

induced B cell proliferation. Smith and Eaton demonstrated the 

presence of a subset of T cells that could inhibit LPS-induced B 

lymphocyte responses (157). Corbel and Melchers reported on a need 

for the combination of T cells and macrophages as accessory cells for for 

LPS-induced B cell stimulation (43). 

Lipopolysacchartde can also serve as an adjuvant for a humoral 

immune response (131). An adjuvant serves to potentiate the immune 

response to an antigen when both are administered simultaneously. The 

adjuvant response of LPS was first described by Johnson et al. (72) in 

1956 and then localized to the lipid A region of the molecule (36, 124, 

127). The adjuvant activity, as with B cell stimulation, was reported to 

be a T cell-independent response (109, 155). Conversely McGhee et al. 

(99) showed that the tr an sf er of T cells from LPS responsive mice to the 

LPS hyporesponsive C3H/HeJ mice resulted in a good adjuvant response. 

Thus, implicating T cells in some of the biologic responses induced by 

LPS. Additionally, LPS given with a toleragenic dose of antigen induced 

an immune response to the antigen (5, 38). 

The classes of antibodies to LPS produced by B lymphocytes are 

IgM, IgG, and IgA (119). The primary response seen was IgM and IgG 

(7, 76). The class of antibody was shown to vary according to the amount 
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and type of LPS given, as well as the immunization procedure (i.e., route) 

( 119). 

Suppression of the immune response has been associated with the 

administration of LPS and was found to be dependent upon the time 

difference between LPS administration and immunization with antigen 

(88, 136, 171). For example, LPS administered with antigen will act as 

an adjuvant, however, if LPS is given 24 hours prior to antigen, 

suppression of the immune response to that antigen will be seen (171). 

There are two possible hypotheses suggested for this suppression: 1.) a 

suppressor B cell population is generated (136); or 2.) a suppressive T 

cell response is stimulated by the LPS (170). McGhee et al. (100) 

indicated the involvement of T cells in the suppression of the mitogenic 

and immunogenic responses of B cells in conventional mice but not in 

germ free mice stimulated by LPS. 

An aspect that has not been addressed is the biologic activity of LAP 

and other outer membrane proteins, specifically porins, which are co-

extracted with LPS. Porins are trimeric complexes that serve as 

channels through the outer membrane of gram negative bacteria ( 1 7. 

139, 149). The porins are contaminants extracted with the endotoxin in 

the butanol/water procedure. They also stimulated B cell proliferation 

and polyclonal activity (20, 161, 175, 176). Skidmore et al. (155, 156) 

reported that there were differences between extraction procedures 

when using LPS to stimulate B cell proliferation of C3H/HeJ mice. 

Morrison et al. (115) and Sultzer and Goodman (162) separated a 

protein-rich portion from the phenol phase of endotox:in and tested the 
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fraction for stimulatory properties. They reported that the fraction 

induced B cell proliferation and acted as a polyclonal activator (115, 

162). These reports suggest that LAP stimulated B cells without T cell 

or macrophage involvement (61, 102, 162, 163). Hogan and Vogel 

reported that the LAP stimulated tumoricidal activity via interferon 

primed macrophages in C3H/HeJ mice in the absence of a response to 

LPS (68). Additionally, the presence of T cells stimulated by LAP may 

play a role in establishing an IgG class of antibody produced by B cells to 

LPS (65). Other cell types such as fibroblasts and mast cells have also 

been shown to respond to LAP (114, 115, 161) . 

Expression of Ia antigen has been shown to be essential for the 

induction of an immune response (14). Ia antigens are class II major 

histocompatibility antigens expressed on the surface of antigen 

presenting cells (APC) such as macrophage, T cells, and B cells (15, 173, 

172). Unless antigen is presented to B cells in conjunction with Ia, no 

immune response to the antigen developes (15, 173, 172). Endotoxins 

have been reported to activate Ia expression on B cells and macrophage 

through a T-independent mechanism (15, 16, 179, 186). This 

information indicates that the basis for the immunomodulation following 

treatment with LPS involves differential expression of cell surface 

markers without direct involvement from T cells. 

Activated macrophages are APCs which process antigens for delivery 

to lymphocytes, but they also function to stimulate lymphoblast formation 

via cytokine release (172). Macrophages stimulated with LPS synthesize 

and release cytokines such as interleukin 1 (ILl). colony stimulating 
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factor, interferon (IFN). glucocorticoid antagonizing factor, and tumor 

necrosis factor (TNF) or cachectin (98). There are many other products 

such as arachidonic acid metabolites and complement components that 

are also produced by macrophage (1). Many of these monokines have 

been shown to augment immune responses. 

Interleukin 1 (IL 1) is a hormone-like protein (15,000 daltons) that 

is primarily secreted by macrophage, but may also be produced by B 

lymphocytes, fibroblasts, endothelial cells, glioma cells, astrocytes, 

corneal epithilium, and large granular lymphocytes (49). This cytokine 

is made in response to a wide variety of stimulants including 

immunologic interactions (i.e., T cell-macrophage interactions) (102, 

104). immune complexes, C5a, microbial stimulants (i.e., lipid A of gram 

negative bacteria, gram positive bacterial exotoxins, muramyl dipeptide, 

yeast cell walls, virus hemagglutinins, and double-stranded RNA) (3, 49). 

and chemical stimulants (i.e. , silica crystals, urate crystals and phorbol 

myristate acetate) (49) . 

Interleukin 1 induces numerous biologic effects, one of which is 

important to the humoral response. This monokine serves as a stimulant 

for the T and B lymphocyte blastogenesis (108). When T cells are 

stimulated with IL 1, they produce IL 2 which causes T cell proliferation 

(49). This T cell population thus enhances the immune response to an 

antigen. Interleukin 1 has been reported as an endogenous pyrogen as 

well as a mediator of inflammation (49). Interleukin 1 stimulates 

macrophage, neutrophils, fibroblasts, synovium, endothelium, and 

hepatocytes to release prostaglandins, collagenases, and acute-phase 
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reactants which lead to an inflammatory state (19, 44). An example of 

this type of phenomenon can be demonstrated by the local Shwartzman 

reaction ( 13) . 

Tumor necrosis factor is a hormone secreted by macrophages 

activated by stimulants such as LPS (25, 93, 95, 96, 97). This molecule 

is a dimeric polypeptide with a monomeric molecular weight of 17,000 

daltons (22) . When secreted by cell lines or macrophages, TNF can 

account for 1-2% of the total protein produced in vitro (25) . 

As the name implies, TNF causes hemorrhagic necrosis of tumors 

(24). This was first exploited by injecting bacterial culture broth into 

patients with cancer (39, 40, 126). The hope was to induce tumor 

regression, however mixed results were observed (39, 40, 126). The 

mechanism of TNF activity on tumors is unknown. 

When TNF has been induced by exogenous stimulants, such as LPS, a 

general wasting or cachexic state of the host was observed. In 1985, 

Cerami et al. (34) reported that TNF given to endotoxin-resistant 

C3H/HeJ mice caused anorexia and weight loss. and if enough TNF was 

given, death occurred. The condition was described as metabolic 

acidosis with changes in plasma glucose levels, and inflammatory lesions 

in the lungs, gastrointestinal tract, kidneys. adrenal glands, and pancreas 

( 168). 

Tumor necrosis factor stimulation can induce biosynthesis and/or 

release of specific proteins. These proteins vary in nature from 

inflammatory agents such as prostaglandin E2, leukotrienes. platelet 

activating factor, and collagenase (24, 48), to class I major 
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histocompatibility antigens (42). and IL 1 (44) . Induction of IL 1 

resulted in fever, and, thus allowing TNF to be referred to as an 

endogenous pyrogen (45) . 

Numerous studies suggest that TNF is a major contributor to the 

effects caused by LPS (23, 25, 52, 168, 169). Beutler et al. (23) showed 

that mice passively immunized with anti-TNF antibody were protected 

from a normally lethal dose of LPS. In 1986, Tracey et al. (168) reported 

that treatment of rats with recombinant TNF induced lesions consistent 

with those caused by lethal doses of LPS. Subsequently, Tracey et al. 

(169) reported that anti-TNF antibody would protect baboons from a 

lethal bacteremic shock induced by a LD 1oo dose of live E. colL This 

supported evidence that TNF was a m ediator of endotoxin induced 

lethality (85, 169). 

Macrophages stimulated with LPS h ave also been shown to secrete 

interferon (66). It should be noted that lymphocytes (T cells) and 

leukocytes are the primary sources of interferon (80, 84). Interferon is a 

15,000-17,000 KDa glycoprotein that functions as an anti-viral agent, 

slows the growth of tumors, activates macrophages and n eutrophils, 

enhances the activity of natural killer cells (46). and induces enhanced 

expression of Ia antigens (69, 184). Interferon was also reported to 

prime macrophage for the induction of TNF and IL 1 by LPS (26, 41, 59). 

Billiau suggested that interferon was very important in the Shwartzman 

reaction (27, 154). It has been shown that IL 1 and TNF without 

interferon could cause portions of the Shwartzman reaction but not the 

complete syndrome (27). 
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Macrophages can function as effector cells against tumor cell targets 

when stimulated with LPS (3, 133). The tumoricidal activity was 

observed without Tor B cell help (47, 145, 178). It has been 

established that macrophage can kill tumor cells when primed with 

interferon and then given a second signal, namely LPS (51, 103, 134). 

There has been some controversy as to whether the tumoricidal activity 

was caused by the macrophage directly (i.e., cell-cell contact) or by a 

released toxic factor (i.e., cytotoxin or TNF) (97, 164). Suzuki et al. 

(164) reported on the gamma-interferon induced anti-tumor cytotoxic 

activity against a TNF-sensitive cell line suggesting that activated 

macrophages have tumoricidal activity of their own. Subsequently, a 

report from that laboratory indicated a synergistic effect caused by 

interferon, TNF and IL 1 to induce the macrophage tumoricidal activity 

(35). 

Other cell types besides macrophages, B cells, and T cells are 

affected by LPS. As mentioned above, natural killer cells are activated to 

be cytotoxic (46). Endothelial cells have the capacity to produce 

prostaglandin mediators, leading to shock and disseminated 

intravascular coagulopathy (120). Lipopolysaccharide has been shown to 

bind to neutrophils stimulating enhanced phagocytic activity, glycolysis, 

and an increased reduction of nitroblue tetrazolium (120). After 

administration of LPS a leukopenia is observed followed by a leukocytosis 

showing the change in neutrophil populations (10, 101). Platelets have a 

high affinity for LPS as shown by the the uptake of labeled endotoxin 

when injected in vivo (33, 50). In a review by McCartney and Wardlaw 
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(98), it was suggested that platelets could play a large role in 

endotoxemia due to release of platelet contents by LPS stimulation. 

Lipopolysaccharide has been shown to interact with serum proteins. 

in particular the proteins of the complement system (120). 

Lipopolysaccharide can activate the complement cascade by either the 

classical or by the alternative pathway (122) . C3 and other components 

of the complement system have been shown to mediate some of the 

pathology and toxicity associated with endotoxemia (120). For example, 

complement-LPS interactions lead to generation of anaphylotox:ins (C3a, 

C4a, C5a), chemotactic factors, and activation of the coagulation system 

(105, 107). 

The coagulation system has an intrinsic and extrinsic pathway for 

activation ( 120). Lipopolysaccharide has been shown to activate 

Hageman Factor (116), the first component of the intrinsic pathway, as 

well as kalllkrein, which can initiate fibrinolysis (140). The extrinsic 

pathway is activated by secretory products of monocytes, which as 

described above are very receptive to LPS stimulation (98). In severe 

cases of endotoxemia, disseminated intravascular coagulation (DIC) 

occurs leading to shock and ultimately death. 

The evolution of the clotting system from the lower animals to the 

higher animals has some similarities. The clotting system is a 

containment mechanism for infection. Levin and Bang (87) developed a 

clotting system to measure LPS activity using the cytosol of amebocytes 

of Limulus polyphemus, a horseshoe crab. In the presence of Ca++, LPS 

acts on a proenzyme to initiate the gelation of the substrate (98). This 
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assay was reported to be sensitive to 0.1 ng/ml LPS and is available as a 

chromogenic assay (123, 152). 

Endotoxin-induced lethality of mice is a common assay used when 

characterizing LPS (54). The relative toxicity of LPS is often measured 

in vivo by the determination of the mean lethal dose (LD50) for mice. 

Various models have been developed using chemicals such as lead 

acetate (153), actinomycin D (18), and D-galactosamine (54) to increase 

the sensitivity of animals to LPS several thousand fold (29) . In 1979, 

Bradley suggested a mechanism to explain LPS toxicity (29) . 

Lipopolysacchartde is endocytosed by the phagocyte and transported to 

the mitochondria where LPS affects the proton gradient causing ADP and 

NAPH to pool in the cytosol of the cell. The accumulation of these 

compounds causes an increased glycolysis inducing lysosomal release 

and proteolysis which leads to cell destruction. With the release of the 

cellular contents (i.e., lysosomal hydrolases, prostaglandins) symptoms of 

endotoxemia will develop leading to shock. DIC, and death unless the 

body can recover from the ensuing damage (29) . 

There are two Treponema species which colonize the colon and 

cecum of swine. These spirochetes are gram negative, ..6 hemolytic, 

anaerobic organisms (64, 63) that have a DNA G+C ratio of 25-28% 

(106) . One of these species, T. hyodysenteriae, was shown to be 

pathogenic for swine (64, 167) and the other species. T. innocens. was 

reported as a non-pathogenic organism isolated from normal swine colon 

(79). The differentiation between the two species is based on the strong 

..6 hemolysis produced by T. hyodysenteriae versus the weak beta-
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hemolysis seen with T. innocens (78). In addition, biochemical 

identification by hydrolase activity, using an API-2YME kit, has been 

reported (70). Enteropathogenicity in mice is a third criterion used to 

distinguish pathogenic from non-pathogenic species (130). 

Swine dysentery was first described in 1921 by Whiting et al. (182); 

however, it was 50 years later that Taylor and Alexander (167) and 

Harris et al. (64) described T. hyodysenteriae as the causitive agent of 

swine dysentery. Swine dysentery is characterized as a muco-

hemorrhagic diarrhea of 6-20 week old feeder pigs. Incubation periods 

ranging from 2 days to 3 months in naturally infected pigs (62). The 

mortality and morbidity due to swine dysentery can be high (i.e., greater 

than 50%) in untreated h erds (125) . 

The lesions of swine dysentery are described as a catarrhal, 

necrotic, hemorrhagic colitis confined to the cecum and large intestine 

of the pig (60). In addition to the presence of blood and excess mucus, 

fibrin and denuded epithelium are often seen on the colonic surface (2, 

60). 

Swine dysentery is not a secretory diarrhea but an absorptive defect 

where water and ions from the colonic contents are not adsorbed 

leading to dehydration. The blood-to-lumen flux of Na+ ions and Cl- ions 

are not changed following infection (9, 150). This differs from diarrhea 

caused by E. coli where the blood-to-lumen flow of fluids and ions far 

exceeds the absorbtive capacity of the colon (9). 

The two virulence factors attributed to T. hyodysenteriae are the 

hemolysin and the lipopolysaccharide (LPS). The hemolysin was 
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characterized as a lipoprotein with a molecular weight of 19,000 daltons 

(77). oxygen resistant, heat labile at 60°C, and was stable over a large 

range of pH values (148) . Both T. hyodysenteriae and T. innocens has 

hemolysin. The two hemolysins differ due to sensitivity of T. innocens 

hemolysin to cardiolipin ( 14 7) T. hyodysenteriae hemolysin had no 

cytolytic action on either prokaryotic or eukaryotic cells. The hemolysin 

lacked any mitogenic activity but decreased the mitogenic response of 

concanavalin A or E. coli LPS when combined in the assay ( 146). Saheb 

et al. (146) suggested this decrease in the mitogenic response may have 

been due to inactivation of macrophage or inhibition of the mitogens. 

Kent and Lemcke (77) injected rat ileal loops with the hemolysin 

from T. hyodysenteriae and induced fluid accumulation, desquamation of 

epithelial cells, hemorrhage, and neutrophil accumulation. These 

authors suggested that the hemolysin may contribute to the 

pathogenicity of T. hyodysenteriae (77). When the hemolysin of T. 

hyodysenteriae was added to various porcine cells, fibroblasts were 

affected more than epithelial cells and porcine lymphocytes were more 

sensitive to the cytotoxic effects than porcine macrophages and 

neutrophils (77). 

Lipopolysaccharide has also been described as a virulence attribute 

of T. hyodysenteriae (130). Nuessen et al. (128) reported that the 

treponemal LPS was toxic for murine peritoneal macrophages and 

enhanced both complement (C3) and immunoglobulin G-Fc receptor-

mediated phagocytosis. It was also shown that the treponemal LPS was 

mitogenic for murine spleen cells, and stimula ted chemotaxis of porcine 
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leukocytes (128). Additionally, Nuessen et al. (130) reported that 

treponemal LPS was lethal for actinomycin D-treated C3HeB/FeJ mice 

but not for LPS-hyporesponsive C3H/HeJ mice. Following infection with 

T. hyodysenteriae, it was shown that the LPS-hyporesponsive C3H/HeJ 

mice failed to develop lesions, suggesting that responsiveness to LPS was 

required for pathogenesis to occur (130) . Nuessen and Joens (129) 

demonstrated serotype specific opsinization of the treponemal organism 

with convalescent serum and suggested that LPS could serve as a 

protective antigen. 

T. hyodysenteriae has been subdivided into seven serotypes based on 

the presence of lipopolysaccharide ( 11 , 94) . The serotypes are 

represented by the following strains of T. hyodysenteriae: B234, 

serotype l; B204, serotype 2; Bl69, serotype 3; A-1, serotype 4; 

B8044, serotype 5; B6933, serotype 6; Ack 300/8, serotype 7. Lemke 

and Bew (86) have also described three additional serogroups, which 

have not been compared to the previously listed serogroups. 

As mentioned earlier, most of the work in LPS research has been 

with Enterobacteriacae LPS. There are numerous reports that show a 

wide variety of chemical forms and biologic activities between genera 

and species of LPS (98). 

Coxiella burnetii. the etiologic agent of Q fever, has a host-controlled 

phase variation that regulates the virulent and nonvirulent form of the 

organism ( 160) . The virulent phase 1 organism has a smooth LPS that 

was 100 to 1000 times less toxic than E. coli LPS or Salmonella typhi 

LPS (4). The endotoxin toxicity was associated with the Lipid A portion 
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of the C. burnetii LPS (4). Joshi and Banerjee showed the phase I LPS 

was pyrogenic, caused weight loss, as well as many other biologic effects 

associated with LPS activity (7 4). The LPS-induced symptoms were 

similar to the bacterial infection; however, though the LPS-induced 

condition was accelerated, it was of shorter duration (74). 

Chlamydia psittaci, an obligate intracellular parasite, has a rough LPS 

that was biologically inactive in comparison to E. coli LPS (toxicity, 

pyrogenicity and local Shwartzman reaction). but was mitogenic and 

stimulated prostaglandin E2 from peritoneal exudate cells (31 , 32). 

Brucella abortus, a bovine pathogen, has two types of LPS, a smooth 

LPS that extracts in the phenol phase, and a rough LPS found in the 

aqueous phase of a phenol/water extraction procedure (81). The lipid A 

is unique due to its presence in both the aqueous and phenol phase. 

This LPS was reported to be mitogenic in spleen cells from athymic 

nude mice as well as LPS-hyporesponsive C3H/HeJ mice (112, 158). 

Pseudomonas aeruginosa LPS has been reported as mitogenic, 

immunogenic, toxic for macrophage, but not lethal for LPS-

hyporesponsive C3H/HeJ mice (137). Reports of small structural 

differences between the LPS of P. aeruginosa and E. coli have been 

suggested as the cause of different biologic activities in the LPS-

hyporesponsive mice (137, 142). 

Bacteroides, Fusobacterium, and Veilonella species have LPS that are 

quite different from that of E. coli LPS (165). There is a loose 

association of lipid to polysaccharide with no detectable KDO or heptose 

sugars (67, 165). B. fragilis LPS was not lethal to chick embryos at 
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doses >200 µg while Neisseria meningititdis LPS was lethal at a dose of 

1.2 µg. A local Shwartzman reaction was not induced by B. fragilis LPS 

when 1000 µg was injected while Salmonella typhi LPS showed a good 

response at 3 µg (75). The lethality and pyrogenicity of the B. fragilis 

LPS were established at 1 % that of Salmonella lipid A (165). B . jragilis 

LPS was shown to be rnitogenic for LPS-hyporesponsive C3H/HeJ mice 

(73) as well as capable of stimulating murine splenocyte mitogenesis and 

polyclonal activity in LPS responsive mice (73, 177). 

Several spirochetes have also been shown to contain LPS with 

varying biologic activity. Vinh et al. (174) reported that Leptospira 

interrogans serovarcopenhageni LPS had similar morphological and 

chemical characteristics to Enterobacteriacae LPS except for the 

absence of KDO. Cinco et al. (37) compared L. interrogans and L. biflexa 

and observed a rough LPS containing KDO with similar SDS-PAGE 

profiles. Isogai et al. (71) compared the biologic activity of L. interrogans 

serovar copenhageni to E. coli LPS. They reported that the Leptospira 

LPS was less toxic for mice, was pyrogenic (without the biphasic curve 

seen with E. coli LPS). acted as an adjuvant, and capable of clotting the 

Limulus amebocyte lysate test (71). 

The presence of LPS in Borrelia burgdorferi has not been fully 

established due to conflicting reports (12, 166). In 1985 Beck et al. 

(12) reported that LPS constituted 1.5% of the total dry weight of B. 

burgdorferi and that the LPS had classical biologic activity (pyrogenicity, 

mitogenicity, clots Limulus amebocyte lysate, and was cytotoxic for 

murine macrophages). Habicht et al. (62) reported that a B. borgdorjeri 
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infection stimulated large quantities of IL 1 suggesting that the LPS 

could be the mediator for the cytokine production as well as playing an 

important role in the pathogenesis of Lyme disease . 

Takayama et al. (166) reported on the absence of a LPS from B. 

burgdorjerL They used a phenol/water extraction as well as a phenol-

chloroform-petroleum ether extraction to determine the absence of 

KDO, glucosamine, and hydroxy fatty acids by gas-liquid chromatography. 

They also studied prostaglandin E2 production and the formation of a 

clot by the Llmulus amebocyte lysate showing no response from the two 

preparations suggesting that there was no classic LPS in B. burgdorferi 

(166). 

Reports to date suggest that the LPS of T. hyodysenteriae plays a 

role in the pathogenicity of swine dysentery. The following reports 

examine the biologic activity of treponemal LPS in more detail and 

discuss the role of LPS in the pathogenesis of swine disease . 
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SECTION I. CLASSIC BIOLOGICAL RESPONSES INDUCED BY LPS AND 

ENDOTOXIN OF TREPONEMA HYODYSENTERIAE 
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ABSTRACT 

The chemical composition and classical biologic activities of 

lipopolysaccharide (LPS, phenol/water) and endotoxin (butanol/water) 

preparations from virulent Treponema hyodysenteriae and avirulent T. 

innocens were examined. The LPS and endotoxin preparations from T. 

hyodysenteriae strain B204 contained approximately 76% and 34% 

hexose, 0.12% and 0.45% 2-keto-3-deoxyoctanate (KDO). and 0.1 % and 

8% protein, respectively. The LPS and endotoxin preparations of T. 

innocens strain Bl 555a contained approximately 4 7% and 38% hexose , 

0.45% and 0.4% KDO, and 0.1 % and 26% protein, respectively. A 

silver stained 7.5 - 15% sodium dodecyl sulphate polyacrylamide gel 

showed approximatey 5 bands for the T. hyodysenteriae preparations 

while the T. innocens preparations failed to develop discrete bands 

upon electrophoresis. The Limulus amebocyte lysate assay determined 

that the treponemal preparations had comparable amounts of endotoxin 

activity when E. coli LPS was used as a standard. The LD50 of LPS and 

endotoxin from T. hyodysenteriae for BALB/cByJ mice was 380 µg and 

80 µg, respectively. The adjuvant activity, ability to induce a dermal 

Shwartzman reaction, and pyrogenicity of the treponemal preparations 

were very weak when compared to E. coli LPS. The treponemal LPS 

preparations were not mitogenic for murine spleen cells but the 

endotoxin preparations were very mitogenic. The results indicate no 

major difference in the biologic activity from the LPS and endotoxin of 

these Treponema species . 
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INTRODUCTION 

Lipopolysaccharide (LPS) is a molecule found in the outer 

membrane of gram negative bacteria and is associated with numerous 

biologic effects on the mammalian immune system (30, 35). These 

responses include B cell mitogenicity (12), polyclonal antibody 

induction (40), adjuvanticity (16). macrophage activation (1, 45, 46), 

immunogenicity (21), pyrogenicity (53), lethality (53), induction of 

tolerance (7, 23), and inflammatory reactions (47). 

Different extraction methods for LPS have been reported. A 

relatively pure LPS is extracted with the hot phenol/water method of 

Westphal and Jann (60). Endotoxin (LPS with the lipid-associated 

protein (LAP)) is extracted using either the trichloroacetic acid method 

of Boivin and Mesrobeanu (6), translated by Staub (50). or a 

butanol/water method of Morrison and Leive (33). Endotoxin possesses 

all of the aforementioned biologic activities, including stimulation of the 

LPS-hyporesponsive C3H/HeJ mouse strain (14, 59). The ability to 

stimulate C3H/HeJ mice has been shown to reside with the LAP of 

endotoxin (5, 14, 32, 48). 

In contrast to the Enterobacteriaceae, there are numerous gram 

negative organisms which have LPS with varying chemical and biologic 

characteristics (17, 31, 42, 49). For example, the LPS of Bacteroides 

fragilis was previously reported not to contain 2-keto-3-deoxyoctanate 

(KDO) (13), however, development of more sensitive tests has shown 

the presence of KDO (44). Additionally, little carbohydrate has been 
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detected in B. fragilis, but a long fatty acid composition that was quite 

divergent when compared to E. coli LPS (61). This LPS has the distinct 

difference from classical LPS in that it stimulates spleen cell 

mitogenesis from the LPS-hyporesponsive C3H/HeJ mouse strain (17, 

59). 

The gram negative spirochetes Leptospira interrogans and Borrelia 

burgdorferi possess rough types of LPS and have varying biologic effects 

on the host system when compared to those established for classical 

LPS (4, 8, 56). Treponema pallidum, the causitive agent of syphilis, was 

reported to contain LPS. but this molecule failed to elicit pyrogenic 

activity (41). 

Previous investigators have indicated that the LPS of T. 

hyodysenteriae is involved in the pathogenesis of swine dysentery (39). 

The LPS has been used to show serotype specificity for T. 

hyodysenteriae strains (3, 25). Nuessen and Joens (37) reported that 

trepomenal LPS was stimulatory for murine splenocyte mitogenesis, 

was toxic for murine macrophage, and was chemotactic for porcine 

neutrophils. To date, there have been no published studies comparing 

the LPS from T. hyodysenteriae and the LPS from T. innocens to 

determine the role of this molecule in virulence. 

Therefore. the objectives of the current study were to compare the 

biologic activities of LPS and endotoxin from T. hyodysenteriae and T. 

innocens. These activities were compared with those of classical E. coli 

LPS. The results indicate that the treponemal LPS preparations are 

much less active than E. coli LPS and that virulence of the two 
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treponemal species examined is not associated with the biologic 

function of LPS or endotoxin. 
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MATERIALS AND METHODS 

Anim als Original C3H/HeJ and BALBI cByJ breeder mice were 

obtained from Jackson Laboratory (Bar Harbor, ME), and C3H/HeN 

breeder pairs were obtained from Harlan Sprague Dawley (Madison, 

WI) . Mice were housed at the Laboratory Animal Resources (LAR) 

facility at the College of Veterinary Medicine, Iowa State University 

(ISU). Ames, IA. The mice were given autoclave sterilized water and 

feed (Purina Lab Chow #5010, Purina Mills, Inc. , St. Louis, MO) ad 

libitum. New Zealand White rabbits were obtained from Small Stock 

Industries (Pearidge, AR) and housed at LAR, ISU. 

Bacterial strains Treponema hyodysenteriae strain B204 and T. 

innocens strain Bl 555a were obtained from ISU. Escherichia coli 

strain K.235 was obtained from Dr. Suzanne Michalek, Department of 

Microbiology, University of Alabama in Birmingham. The Treponema 

species were grown in trypticase soy broth containing dextrose (BBL 

# 11 768, Cockeysville, MD) and supplemented with 5 g/l yeast extract 

(BBL). 20 ml of each VPI A and B salt solutions ( stock A - 0.4 g CaCh, 

0.4 g MgS04, 1 liter H20: stock B - 2 .0 g K2HP04, 2.0 g KH2P04, 20.0 g 

NaHC03, 1 liter H20) , and 0.5 g/l L-cysteine. Medium was adjusted to 

pH 7 .3. After autoclave sterilization, 50 ml/I horse serum (Hyclone 

Laboratories, Inc., Logan, UT) was added and cultures grown under 

anaerobic conditions (10% H2, 10% C02. 80% N2) for 18 - 24 hours. 

The cells were harvested by centrifugation at 10,000 x g for 20 

minutes, washed twice in phosphate buffered saline (PBS - 8 g NaCl, 
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1.15 g Na2HP04, 0.2 g KH2P04, to 1 liter H20. pH 7.2) and once in 

distilled water. Whole cells were frozen at -20°C until the LPS or 

endotoxin extraction was performed. 

LPS and endotoxin extraction Lipopolysaccharide was extracted 

by a modified hot phenol/water extraction procedure (3, 60). Briefly, 

200 mg of lyophilized whole cells were suspended in 10 ml water and 

mixed with an equal volume of liquified phenol at 68°C. The mixture 

was stirred for 15 minutes at 68°C. After cooling, the mixture was 

centrifuged at 200 x g to separate the two phases. The aqueous phase 

was collected and saved and the phenol phase was extracted twice with 

half the original volume of water. The aqueous phases were pooled and 

dialyzed exhaustively against distilled water. The LPS containing 

material was concentrated and then centrifuged at 100,000 x g for four 

hours. The pellet was resuspended in pyrogen-free water and the 

centrifugation was repeated two times . After the last centrifugation, 

the pellet was resuspended in pyrogen-free water and lyophylized. The 

LPS was stored at -20°C until used. Esherichia coli strain K235 LPS 

was prepared by the Westphal and Jann method (60). 

Endotoxin was prepared by the butanol/water extraction procedure 

(33). Briefly, 250 mg wet weight of whole cell paste was suspended in 

1 ml water and then 1 ml of butanol added. The endotoxin partitioned 

to the aqueous phase below the butanol. The butanol phase was 

extracted with half the original volume of water three times. The 

pooled aqueous phase was digested with Pronase (20 µg/ml final 

concentration) in 0 .2 M Na3P04 buffer (pH 7.0) overnight at 37°C. The 
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d igested endotox:in pr eparation was centrifuged at 10,000 x g for 40 

minutes and the precipitated interphase removed. The endotox:in 

solution was exhaustively dialyzed, concentrated, lyophylized, and 

stored at -20°C until assays were performed. 

The LPS and en dotox:in preparations were dissolved in pyrogen-

free saline and sterilized by heating to 100°C for 10 minutes. These 

solution s were stored at 4 °C until use. The preparations were heated 

for 1 - 2 minutes at 100°C before use in assays. 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) LPS and endotoxin were analyzed by SDS-PAGE as 

described by Laemmli (20). using a 1 mm, 7.5 - 15% acrylamide 

separating gel with a 4% stacking gel. The gel was electrophoresed at 

35 mA per gel (Model SE600, Hoeffer Sientific Instruments. San 

Francisco, CA) for 2 - 3 hours until the dye front was 1 cm from the 

bottom of the gel. The LPS and endotox:in samples were visualized by 

the silver stain procedure of Tsai and Frasch (55) or a Coomaisse blue 

stain (Kodak R-250) (9) . 

Chemical determination The protein content of the LPS and 

endotoxins were measured as described by Lowry et al. (24) with bovine 

serum albumin as a standard. 

Carbohydrate content was determined by phenol-H2S04 method 

(2). Briefly, the a liquots of LPS were p laced into acid cleaned 13 x 100 

mm glass tubes with 50 µl of 80% phenol added to each tube. Five ml 

of H2S04 was added to each tube. The tubes were incubated 30 
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minutes at room temperature before reading adsorbance at 485 nm. D-

glucose was used as the carbohydrate standard. 

2-keto-3-deoxyoctonate (KDO) content was determined by the 

thiobarbituric acid procedure of Karkhanis et al. (18). 

Mitogenesis Mitogenesis was performed by inoculating 5 x 105 

murine splenocytes/well of a 96 well microtiter plate (Costar #3799, St. 

Louis, MO) in RPMI 1640 supplemented with 10 mM HEPES, 25 

units/ml penicillin, 25 µg/ml streptomycin, and 20 mM L-glutamine. 

Various concentrations of LPS or endotoxin were added to the 

appropriate wells. Cultures were incubated for 48 hours at 37°C in 5% 

C02 in air. Cultures were pulsed with 0.5µC 3H-methyl-thymidine 

(Amersham Corp., Arlington Heights, IL) during the final 8 hours of 

incubation. Cells were harvested onto filter paper discs using a 

microharvester (Bellco, Vineland, NJ), dried and counted using liquid 

scintillation. Cultures were performed in triplicate and results are 

expressed as the stimulation index (experimental CPM/ control CPM) 

(59). 

Lethality BALB/cByJ mice sensitized with galactosamine (22) were 

used to determine the relative toxicity of the treponemal LPS and 

endotoxin and the 50% lethal dose (LD50) was determined by the 

method of Reed and Muench (43). Briefly, the mice were provided 

with drinking water containing 2 mg/ml galactosamine ad libitum for 

48 hours. Mice were then given an intraperitoneal injection (i.p.) of 16 

µg galactosamine followed by an intravenous injection (i.v.) injection of 

the indicated dose of LPS or endotoxin. The assay was set up with 5 
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mice per group u sing 5 different concentrations of LPS or endotoxin. 

Mice were observed for 2 days and deaths recorded. 

Limulus amebocyte lysate assay (LAL) A chromogenic LAL assay 

(QCL-1000 Whittaker M.A. Bioproducts, Walkersville, MD) was 

performed as described by the manufacturer. 

Adjuvanticity Both in vivo (59) and in vitro (26) assays were used 

to determine adjuvant activity of the stimulants. In vivo, BALB/cByJ 

mice were given an interperitoneal injection of a suboptimal dose of 

sheep red blood cells (SRBC, 0.5%). Mice were simultaneously treated 

i.p. with either LPS or endotoxin at the indicated doses. After 4 days, 

mice were sacrificed by cervical dislocation, spleens were removed, 

minced, washed in Hank's balanced salt solution, and resuspended. 

The anti-SRBC plaque forming cell (PFC) response was determined 

using the Cunningham slide method (26) . 

The in vitro immune response to SRBC was examined using 

spleens from BALBI cByJ and C3H/HeN mice, previously primed with 

0.05% SRBC i.p. 3 days earlier. Mice were sacrificed and the spleens 

were aseptically removed, minced, the cells were washed and 

resuspended to 1 x 107 cells/ml in minimal essential medium (MEM) 

supplemented with 37 µg/ml NaHC03, 67 µg/ml gentamycin, 2 mM L-

glutamine, 1 mM sodium pyruvate, 0 .1 mM nonessential amino acids, 5 

x 10-2 mM 2-mercaptoethanol, and 10% fetal calf serum (FCS, JR 

Scientific, Irvine, CA). One half ml of cell suspension was added to each 

well of a 24 well cluster dish (Costar #3424, Cambridge, MA). Thirty µl 

of a 1 % SRBC suspension (5 ml of 10% washed SRBC in glucose (0.5 
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mg/ml)-PBS treated with neuraminadase (0.01 unit/ml) for 1 hour at 

37°C) (30) in HBSS were added to all wells except controls. LPS or 

endotoxin was added at the indicated concentrations. Cultures were 

incubated for 5 days at 37°C in modular inculator chambers (Billups-

Rothenberg, Del Mar, CA) flushed with a 7% 02. 10% C02, 83% N2 gas 

mixture. Cultures were fed daily with 1 drop of a Mishell-Dutton 

feeding cocktail (18.0 ml Hanks Balanced salt solution (lOx) , 20 ml of a 

0.1 g dextrose/ml HBSS, 8 ml MEM amino acid solution (50x), 4 ml 

nonessential amino acid (lOOx), 4 ml 200 mM L-glutamine, 15 ml 7.5% 

NaHC03, 0.6 ml gentamycin (50 mg/ml). supplemented with fetal calf 

serum (33% final concentration)). Cultures were harvested on day 5 and 

assayed for the anti-SRBC PFC response performed as described above. 

Pyrogenicity New Zealand White rabbits (3 - 4 kg) were injected 

with LPS or endotoxin i.v. in the marginal ear vein at the indicated dose 

in 0.5 ml pyrogen-free saline. Rectal temperatures were taken every 15 

- 20 minutes with a digital thermometer (Norelco, Stamford, CT). 

Dermal Shwartzman reaction New Zealand White rabbits weighing 

3 - 4 kg had their backs shaved 24 hours prior to receiving preparative 

intradermal injections (i.d.) of LPS or endotoxin in 0.1 ml. Twenty-four 

hours after the preparative administration, 50 µg E. coli LPS in 0.2 ml 

pyrogen-free saline was given i.v. in the marginal ear vein (provocative 

dose). The dermal injection sites were observed at 24, 30, and 48 

hours for induration, erythema and necrosis. Animals were euthaniZed 

at 48 hours and tissue was taken for routine histologic examination 

(hematoxyalin and eosin staining) ( 19). 
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Reagents Unless stated otherwise, all reagents and chemicals 

were obtained from Sigma Chemical Company, St. Louis, MO. 

Statistics The results are expressed as the mean ± S.E.M. where 

applicable, and significance was determined using the student t test. 
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RESULTS 

Chemical analysis of LPS and endotoxin The chemical analyses 

shown in Table 1 indicate that the treponemal LPS preparations 

containing negligible protein and a large percentage of carbohydrate 

(almost 80% for T. hyodysenteriae and 47% for T. innocens). The 

endotoxins had a larger amount of protein than the LPS preparations. 

The carbohydrate content was similar in 3 of the 4 preparations 

examined (Table 1) while the T. hyodysenteriae LPS contained almost 

twice the amount of carbohydrate in comparison to other preparations. 

The KDO content was determined to be approximately 0.4 - 0.45 % 

except in the T. hyodysenteriae LPS where the amount was 

approximately 0.12 %. 

TABLE 1. Chemical analysis of treponemal LPS and endotoxin 

T. hyodysenteriae T. innocens 

Component LPS Endo toxin LPS Endotoxin 

Protein (%) <0.la 8 <0.1 26 
Hexose (%) 76 34 47 38 
KDO (%) 0.12 0.45 0.45 0.4 

avalues are expressed as percent weight (w/w). 

SDS-PAGE Silver stained polyacrylamide gels (Fig. lA) showed a 

distinct profile with 5 bands for the T. hyodysenteriae LPS and an 
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unresolved profile for the T. innocens LPS. As can be seen in Figure 

IA.Jane E, the T. innocens LPS failed to resolve into distinct bands or a 

"tiger tail" pattern as is associated with the enteric LPS (lane B). 

However, T. innocens endotoxin (lane F) did resolve into distinct bands 

but failed to migrate into the gel as far as either the T. hyodysenteriae 

or E. coli preparations. Coomaisse blue stained gels (Fig. lB) showed a 

major protein band with an apparent molecular weight of 35 - 40 kDa 

in both T. hyodysenteriae and T. innocens endotoxin preparations. T. 

innocens endotoxin also showed 3 minor protein bands (Fig. 1 B, lane 

F). 

Mitogenic response Treponemal endotoxins were observed as 

very potent mitogens of BALB/cByJ spleen cells (Fig. 2). The 

treponemal LPS preparations failed to stimulate a measurable 

mitogenic response. In contrast to the lack of a response induced by 

treponemal LPS, the treponemal endotoxin preparations stimulated a 

mitogenic response in LPS-hyporesponsive C3H/HeJ mice (data not 

shown). 

Endotoxin activity The relative toxicity of LPS and endotoxin 

preparations has been examined by mouse lethality. The LD50 of T. 

hyodysenteriae LPS and endotoxin was determined to be 350 µg/mouse 

and 80 µg/mouse, respectively (data not shown). This is in comparison 

to E. coli strain K235 LPS which was previously determined to have an 

LD50 of 0.6 µg/mouse (59). 
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Electrophoretic separation of LPS and endotoxin from T. 
hyodysenteriae strain B204 and T. innocens strain Bl555a were 
performed on a 7.5 - 15% separating gel. The LPS and 
endotoxin were visualized by silver staining (A) and by 
Coomaisse blue staining (B). Lane A., molecular weight 
standard; B., E. coli LPS, 20 µg; C., B204 LPS, 80 µg; D., B204 
endotoxin, 40 µg; E., Bl555a LPS, 40 µg; F., Bl555a endotoxin, 
40 µg. Molecular weight determinations (K.Da) are indicated on 
left side of panel A and the right side of panel B. 
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Limulus amebocyte lysate assay The LAL assay indicated that the 

treponemal preparations had endotoxin units/ng comparable to 

standard E. coli LPS. It was determined there were 1.2 and 1.4 units 

endotoxin activity per ng T. hyodysenteriae LPS and endotoxin, 

respectively. T. innocens LPS and endotoxin had 0.2 and 2.4 units of 

endotoxin activity per ng. This was compared to the 1.2 units of 

endotoxin activity per ng of E. coli K235 LPS. 
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FIG. 2. Mitogenic responses of BALBI cByJ splenocytes stimulated by 
treponemal LPS or endotoxin. The assay was measured by 3H-
thymidine incorporation. A.) T. hyodysenteriae B204 LPS 
(triangle); B204 endotoxin (square); E. coli LPS (x); B.) T. 
innocens B l 555a LPS (triangle); Bl555a endotoxin (square); 
and E . coli LPS (x). Values from triplicate cultures are 
expr essed as a stimulation index (S.I.) defined as the 
experimental CPM/ control CPM (E/C). 



37 

Adjuvanticlty The adjuvant activity of LPS and endotoxin from 

both Treponema species was determined in vitro (Fig. 3) and in vivo 

(Fig. 4) using SRBCs as the test antigen. The results depicted in Figure 

3 demonstrate that the treponemal LPS was a weak adjuvant in 

comparison to E. coli LPS or the treponemal endotoxins. In the in vivo 

test (Fig. 4), the T . hyodysenteriae preparations at 100 µg/mouse did 

not enhance PFC response as well as E.coli LPS at 10 µg/mouse. 

Pyrogenlclty Rabbits were injected with SO, 100, and 2SO µg of 

the treponemal LPS or endotoxin. The results presented in Figure S 

demonstrated that 2SO µg of the treponemal preparartions were less 

pyrogenic than 10 µg of E. coli LPS. A mild febrile response was noted 

in rabbits treated with the T. hyodysenteriae endotoxin (Fig. SA). 

Niether the LPS or endotoxin preparartion of T. innocens were 

pyrogenic (Fig. SB). There was no pyrogenic response observed in 

rabbits receiving SO or 100 µg of the treponemal preparations (data not 

shown). 

Local Shwartzman reaction Gross lesions induced by LPS and 

endotoxin of the Treponema species were either nonexistent or 

consisted of very mild edema and erythema, while the E. coli LPS 

induced a necrotic lesion (Fig. 6). Hematoxylin-eosin staining of 

sections treated with T . hyodysenteriae endotoxin (SOO µg) as the 

preparatory treatment and E. coli LPS as the provocative dose showed a 

mild cellular response with some edema. At SOO µg, the T. innocens 

endotoxin induced a response with multifocal areas of inflammatory 
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cells. No lesions were observed on sites inoculated with the 

treponemal LPS preparations. 

Experiments were performed using either E. coli LPS or T. 

hyodysenteriae LPS as the provocative dose for the Shwartzman 

reaction with no difference in the resulting responses (data not shown). 
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FIG. 3. In vitro anti-SRBC PFC response. To measure adjuvant activity, 
C3H/HeN murine splenocytes were treated with 30 µl of 10% 
SRBCs with the indicated dose of treponemal LPS or endotoxin. 
On day 5, the anti-SRBC PFC response was measured. A.) T. 
hyodysenteriae strain B204; B.) T. innocens strain Bl555a: 
LPS (open bars): endotoxin (shaded bars): SRBC alone, (single 
star); and SRBC plus 10 µg E. coli LPS (two stars). Values are 
expressed as the mean + S.E.M. anti-SRBC PFCs per million 
splenocytes from triplicate cultures. 
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FIG. 4. The in vivo adjuvant activity of T. hyodysenteriae preparations 
were determined by injecting BALB/cByJ mice i.p. with 0.2 ml 
of a 0 .5% SRBC suspension containing the indicated dose of 
LPS or endotoxin. On day 4, anti-SRBC PFC responses were 
determined. 10% SRBC (open bar); 0.5% SRBC (closed bar); 
E. coli LPS plus 0 .5% SRBC (shaded bar); T. hyodysenteriae 
strain B204 LPS plus 0.5% SRBC (hatched bar); B204 
endotoxin plus 0.5% SRBC (horizontal hatched bar). Values are 
expressed as the mean± S .E.M. anti-SRBC PFC response per 
million splenocytes using 5 mice per group. 
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FIG. 5. Rectal temperatures of rabbits stimulated with LPS or endotoxin 
of Treponema species were measured. The results are 
expressed as the average change in temperature of 2 rabbits 
followin g t reatment with either 250 µg of a treponemal 
preparation or 10 µg of E. coli LPS (square). A.) T. 
h yodysenter iae B204 LPS (circle); B204 endotoxin (triangle); 
B.) T. innocens B l 555a LPS (circle); Bl555a endotoxin 
(triangle). 
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FIG. 6. Dermal Shwartzman reaction. Rabbits received an i.d. injection 
of LPS or endotoxin from each treponemal species. Two groups 
(two rabbits/ group) were given an i.v. injection in the marginal 
ear vein of either T. hyodysenteriae endotoxin or E. coli LPS. 
The rabbit depicted received 50 µg of E. coli LPS i.v. 20 hours 
after i.d. injections. The injection pattern from left to right on 
the top row was E.coli LPS (100 µg), T. hyodysenteriae LPS 
( 100 µg), Bacteroides fragilis LPS ( 100 µg); bottom row was 
saline, T. hyodysenteriae endotoxin (250 µg), T. hyodysenteriae 
LPS (250 µg). 
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DISCUSSION 

Lipopolysaccharide of T. hyodysenteriae has been previously 

isolated and characterized as containing 85 - 90% carbohydrate and 5 -

10% protein (3). The use of treponemal LPS and rabbit anti-serum 

established seven serotypes (3, 25). A study of the biologic activity of T. 

hyodysenteriae strain B204 LPS reported the preparation to be 

mitogenic, toxic, and enhanced phagocytosis (37). Nuessen and Joens 

(38) demonstrated that the LPS was responsible for the serotype-

specific opsonization of T. hyodysenteriae using convalescent pig serum. 

Additionally, Nuessen et al. (39) reported that the LPS of T. 

hyodysenteriae was lethal to C3HeB/FeJ mice but not for LPS-

hyporesponsive C3H/HeJ mice, and was chemotactic for murine 

macrophage. These papers suggested that the LPS of T. hyodysenteriae 

had biologic activity and played a role in the pathogenesis of swine 

dysentery. 

Other spirochetes, besides T. hyodysenteriae, have been shown to 

contain LPS (4, 8, 15, 29, 56). Mergenhagen et al. (29) demonstrated 

the presence of endotoxin in B. buccalis and B. vincentii. The presence 

of LPS has also been reported in B. burgdorferi, the Lyme disease 

spirochete (4). B. burgdorferi LPS was pyrogenic, mitogenic, and 

clotted the LAL (4). However, Takayama et al. (54) have challenged the 

existence of LPS in B. burgdorferi since they were unable to 

demonstrate the presence of LPS in either a phenol/water extract or a 

phenol/chloroform/petroleum ether extract of the organism. This 

conclusion was based on the inability to detect KDO, glucosamine, and 
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hydroxy fatty acids in the phenol/water extracts or the ability of the 

preparations to induce either prostaglandin E2 production or gelation 

of the LAL (54). 

Isogai et al. (15) and Vinh et al. (56) have isolated LPS from 

Leptospira interrogans. The L. interrogans LPS was shown to be toxic 

for mice and produced a febrile response in rabbits but neither 

response was comparable to the responses obtained with E. coli LPS 

(15). The leptospiral LPS also induced adjuvant activity, induced clot 

formation in the LAL, and caused bone marrow and liver necrosis in 

treated mice (15). Vinh et al. (56) determined that the fatty acid 

composition of LPS from L. interrogans consisted of hydroxylauric 

(C12:ol. palmitic (Crn:ol. and oleic acid (C18:1) without any C14 fatty acids 

(i.e., myristic acid (C14:0) and 3-hydroxymyristic acid (3-0H-C14:0D (56). 

They also demonstrated that the L. interrogans LPS contained an 

unusual form of KDO (56). In contrast to Takayama et al. (54), the 

biochemical and biological information indicate the presence of an LPS-

like molecule in L. interrogans. 

In the present study, the treponemal LPS preparations (Table 1) 

were shown to have a negligible protein component, while the T. 

innocens and T. hyodysenteriae endotoxin preparations contained 26% 

and 8% protein, respectively. The presence of protein in the 

endotox:in preparations was expected due to the nature of the 

butanol/water extraction procedure (33, 51, 57, 58). However, the 

three-fold difference in protein content between the endotox:in 

preparations was not understood. The carbohydrate content of the T. 
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hyodysenteriae LPS was similiar to that reported previously by Baum 

and Joens (76% and 89%, respectively) (3). As expected, treponemal 

endotoxins had a smaller proportion of carbohydrate than the LPS 

preparations due to the increase in the protein content in the sample. 

The KDO content (0.4 - 0.45%) was similiar in 3 of the 4 treponemal 

preparations. However, the KDO content (0.12%) of T. hyodysenteriae 

strain B204 LPS was almost four times less than the other preparations. 

These differences may be due to the physicochemical nature of the 

molecule extracted by phenol/water vs. butanol/water techniques 

and/or the differences between species of Treponema. Using gas-liquid 

chromatography, the LPS of T. hyodysenteriae was shown to contain 14 

and 16 carbon fatty acids, glucosamine, KDO, heptose, rhaminose, 

mannose, galactose and glucose (personal communication, Dr. Hyoik 

Ryu, Veterinary Microbiology and Preventive Medicine, Iowa State 

University). In addition, mild acid hydrolysis of treponemal LPS 

preparations yielded a water insoluble precipitate similar to that 

obtained from E. coli LPS (11). Collectively, these results indicate that 

the phenol/ water preparations from T. hyodysenteriae contain LPS-like 

molecules. 

The LAL assay has been used to measure endotoxin activity, but not 

quantity, in biological materials (28). This assay demonstrated that the 

treponemal preparations had endotoxic activity comparable to E. coli 

LPS. 

Treponemal preparations were analyzed by SDS-PAGE and two 

different profiles were obtained for the T. hyodysenteriae and T. 
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innocens preparations (Fig. 1). In comparison to the T. hyodysenteriae 

LPS (Fig. lA, lane C), the T. innocens LPS (Fig. lA, lane E) did not 

migrate as far into the gel and did not resolve into distinct bands. The 

endotoxin preparation of T. innocens was also less mobile in the gel but 

did resolve into numerous bands (Fig. lA, lane F). These observations 

may be related to the differences in lipid content previously reported 

by Matthews et al. (27) . However, these apparent physicochemical 

differences did not result in varying biologic activities between the T. 

hyodysenteriae and T. innocens preparations. 

Even though the treponemal LPS preparations were not mitogenic, 

the endotoxin preparations from both T. hyodysenteriae and T. 

innocens induced substantial mitogenic responses in murine 

splenocytes (Fig. 2). These results are in contrast to a previous report 

in which T. hyodysenteriae LPS was shown to be mitogenic (37). 

However, the protein content of the LPS preparation was reported as 

8% (37) and this would be consistent with the endotoxin preparations 

used in the present study. The protein component(s) of endotoxin 

preparations have been shown to be mitogenic (52). This would 

suggest that the protein and not the lipid A component of the 

endotoxin complex from the Treponema species was the major 

mitogenic moiety. 

In comparison to E. coli LPS (LD50 = 0.6 µg) (59). the T. 

hyodysenteriae B204 LPS (LD50 = 350 µg) and endotoxin (LD50 = 80 µg) 

were at least 100 times less toxic for galactosarnine treated mice. In 

addition to being mitogenic, the protein component of endotoxin 
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appeared to potentiate the toxicity of the LPS molecule. However, 

there is no reported evidence to suggest that the enterobacterial LAP or 

porin proteins are toxic (36). 

Endotoxin and LPS has adjuvant activity which non-specifically 

activates the immune response (44) . Adjuvant activity of the 

treponemal preparations were examined both in vitro (Fig. 3) and in 

vivo (Fig. 4). It was observed, in vitro, that T. hyodysenteriae LPS failed 

to induce an adjuvant response while the endotoxin did induce a 

significant adjuvant response at 2.5 µg per culture (Fig. 3A). The T. 

innocens LPS, like the T. hyodysenteriae LPS, was a poor adjuvant but 

the endotoxin preparation stimulated the anti-SRBC response at 25 µg 

per culture (Fig. 3B). In contrast to the in vitro data, LPS from T. 

hyodysenteriae as well as endotoxin (Fig. 4) induced in vivo adjuvant 

responses to SRBCs in vivo. However, the responses observed, even 

with 1 OOµg of LPS or endotoxin, were not as strong as the response 

obtained with 1 Oµg of E. coli LPS. As for the mitogenic activity, the 

enhanced adjuvant activity of the endotoxin preparations in vitro may be 

due to the presence of LAP or porins (52). 

Endotoxin and LPS may contribute to the pathogenesis of a disease 

by eliciting a pyrogenic response in the host. The ability of the 

treponemal preparations to elicit a febrile response in New Zealand 

White rabbits was examined (Fig. 5) . The endotoxins (250 µg/rabbit) of 

both species induced a slight but discernible biphasic febrile response 

in rabbits, while the LPS from both species failed to induce detectable 

febrile responses. Even though as much as 25 times the amount of E 
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coli LPS was given to the rabbits, the treponemal LPS preparations 

were not pyrogenic. The mild pyrogenic activity observed with the 

endotoxin preparations may have been associated with the protein 

component and/or their ability to stimulate endogenous pyrogens (i.e .. 

interleukin 1 and tumor necrosis factor (Fig. 1 and 3, pages 66 and 68, 

Section II)). 

A local Shwartzman reaction is often used as a measure of the 

relative toxicity of an endotoxic preparation. This response is observed 

in rabbits which have received an i.d. injection of LPS (priming dose) 

followed 18 - 24 hr later with an i.v. injection of LPS (provocative dose). 

Regardless of the source of the provocative dose, dermal necrosis was 

not observed when treponemal preparations were used as the priming 

dose (Fig. 6). However, a necrotic lesion was obtained when an E. coli 

LPS priming dose was followed by a T. hyodysenteriae endotoxin 

provocative dose (personal observation). The ability of the treponemal 

endotoxin to serve as the provocative but not the priming dose appears 

somewhat contradictory. The mechanisms by which a local 

Shwartzman reaction is induced are not clearly understood, but the 

activation of the host's coagulative enzymes and the deposition of fibrin 

thrombi in tissue play a major role in the development of necrotic 

lesions (35). The actions of the two injections are assumed to be the 

same; however, it is likely that the priming injection renders the host 

hyper-responsive to the provocative dose. The inability of the 

treponemal preparations to prime the rabbit for a local Shwartzman 

reaction would indicate that the host is not rendered hyper-responsive 
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and this would be consistent with the reduced toxicity and pyrogenicity 

observed. In addition, the ability of the treponemal preparations to 

provoke a Shwartzman reaction would be consistent with the ability of 

the treponemal preparations to gel the LAL. Even though the 

treponemal preparations are not as active as E. coli LPS, they do 

possess some endotoxic properties and may contribute to the 

development of lesions during infection with T. hyodysenteriae. 

In conclusion, the results indicated that the treponemal 

preparations were much less active than E. coli LPS in that the LPS of 

both treponemal species did not induce an inflammatory response, 

were not mitogenic, pyrogenic, or lethal even at high doses. In 

comparison to the LPS preparations, the endotox:ins were more toxic, 

were able to provoke a Shwartzman reaction, and induced good 

mitogenic responses. This suggested that the presence of protein 

renders the endotoxin complex biologically active or that the activity is 

due to the protein itself. Even though the role of LPS in the 

development of dysenteric lesions is not fully understood, the virulence 

or avirulence of T. hyodysenteriae and T. innocens can not be attributed 

solely to the biologic activity of LPS or endotoxin. 
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SECTION II. ABILI1Y OF TREPOMENAL LPS AND ENDOTOXIN TO 

INDUCE CYfOKINE RELEASE FROM LYMPHORETICULAR CELLS 
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ABSTRACT 

The biologic activity of lipopolysaccharide (LPS, phenol/water) and 

endotoxin (butanol/water) preparations from virulent Trepomena 

hyodysenteriae and avirulent T. innocens was examined . The 

treponemal preparations showed toxic activity on murine peritoneal 

exudate cells (PEC) though not at concentrations as low as E. coli LPS. 

Both treponemal LPS preparations showed no stimulatory activity for 

induction of interleukin 1 or tumor necrosis factor from PECs; 

however, the endotoxins did stimulate induction of these products but 

at doses 50 fold higher than E. coli LPS. Natural killer cell activity was 

augmented by treponemal endotoxin-treated mice. The T. innocens 

endotoxin augmented NK activity to levels equivalent to E. coli LPS. 

Suppression of the immune response was observed by the T. 

hyodysenteriae preparations. The results suggest that no major 

differences exist in the biologic activities between T. hyodysenteriae 

and T. innocens LPS or endotoxin. 
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INTRODUCTION 

Lipopolysacchartde (LPS) and endotoxin have been extensively 

studied and have been the subject of numerous review articles (i.e .. 4, 

23, 25, 26) . The biological effects attributed to LPS and endotoxin have 

been established using preparations isolated from Escherichia coli and 

Salmonella species. These molecules have multiple effects on the 

immune system which affect B lymphocytes, T lymphocytes, 

macrophages, as well as other cells of the body. Of these cells, 

macrophages play a major role in the immune system as antigen 

presenting cells (39). Macrophages also interact with lymphocytes, are 

highly bactericidal and tumoricidal, and secrete a wide range of 

bioactive molecules (39) . 

The list of cytokines secreted by macrophage is quite extensive. 

Stimulation and/or activation of macrophage causes production and 

secretion of interleukin 1 (IL 1) (21). tumor necrosis factor (TNF) (3). 

interferon (14), as well as other products such as collagenase, 

prostaglandins (1). and complement components (26). Through 

secretion of these cytokines, B cells are affected (26), T cells are 

induced to produce interleukin 2 (39). and natural killer cell activity is 

augmented (7b). Because of the numerous activities induced by the LPS 

molecule, many host defense mechanisms against gram negative 

bacteria are stimulated and aid in recovery from disease. For example, 

LPS induces fever which speeds up metabolism to fight an infection and 
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it can initiate the coagulation system which would contain an infection 

(26, 25). 

In addition to the Enterobacteriaceae there are numerous gram 

negative organisms which have LPS with varying biological and chemical 

characteristics. Some examples include Pseudomonas aureginosa (30), 

Bacteroides fragilis ( 1 7) , and Brucella abortus (22, 35). P. aureginosa 

has small structural differences in its LPS when compared to the 

enteric LPS but this LPS has biologic activity in the LPS-hyporesponsive 

C3H/HeJ mouse (30, 32). The LPS of B. fragilis contains KDO (31), 

heptoses, has little 0-specific polysaccharide, and has a fatty acid 

composition that is quite divergent when compared to E. coli LPS (42). 

B. abortus LPS is isolated from the phenol phase of a phenol/water 

extraction method (Westphal and Jann) (19). This LPS was different 

from classical LPS in that Brucella LPS stimulate spleen cell 

mitogenesis from LPS-hyporesponsive C3H/HeJ mice (22, 31, 32, 35, 

41). 

Spirochetes are also gram negative organisms. Leptospira 

interrogans and Borrelia burgdorjeri possess a rough type of LPS and 

induce varying biologic effects on the host immune system in 

comparison to E. coli LPS (2, 6, 40). L. interrogans LPS was reported 

to cause fever without a biphasic response, acted as an adjuvant, and 

was less lethal than E. coli LPS ( 15). B. burgdorf eri LPS was reported to 

be mitogenic, pyrogenic, clot the Limulus amebocyte lysate, and 

stimulate interleukin 1 production (2, 11). 
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Nuessen et al. (28) first implicated the LPS of Treponema 

hyodysenteriae as a virulence attribute in 1982. It was also reported 

that the LPS was toxic to murtne macrophages and enhanced both 

complement (C3) and immunoglobulin G-Fc receptor-mediated 

phagocytosis (28). Additionally, the LPS was mitogenic for murtne 

splenocytes and stimulated chemotaxis of porcine leukocytes (28). In 

1983, Nuessen et al. (29) reported that T . hyodysenteriae LPS was 

lethal for LPS-responsive mice but not for LPS-hyporesponsive 

C3H/HeJ mice. 

The present report compares the biologic activity of LPS and 

endotoxin extracted from T. hyodysenteriae and T. innocens. Results 

indicate that the treponemal LPS was toxic for murtne macrophages, a 

poor inducer of monokines, and failed to induce natural killer cell 

activity. However, the endotoxin preparations were often potent 

stirnulators of lymphoreticular cells, though no as potent as E. coli LPS. 
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MATERIALS AND METHODS 

Bacteria and cell lines Treponema hyodysenteriae strain B204 and 

T. innocens strain Bl555a were obtained from at Iowa State University 

(ISU), Ames, IA. Escher ichia coli strain K235 was obtained from Dr. 

Suzanne Michalek, Department of Microbiology, University of Alabama 

in Birmingham. The Treponema species were grown in trypticase soy 

broth containing dextrose (BBL #11768, Cockeysville, MD) and 

supplemented with 5 g/l yeast extract (BBL). 20 ml of each VPI A and B 

salt solutions ( stock A - 0.4 g CaCl2. 0.4 g MgS04, 1 liter H20: stock B 

- 2.0 g K2HP04, 2.0 g KH2P04, 20.0 g NaHC03, 1 liter H20). and 0.5 g/l 

L-cysteine. Medium was adjusted to pH 7 .3. After autoclave 

sterilization, 50 m l/l horse serum (Hyclone Laboratories, Inc., Logan, 

UT) was added and cultures grown under anaerobic conditions (10% 

H2. 10% C02. 80% N2) for 18 - 24 hours . The cells were harvested by 

centrifugation at 10,000 x g for 20 minutes. washed twice in phosphate 

buffered saline (PBS - 8 g NaCl, 1.15 g Na2HP04, 0.2 g KH2P04, to 1 

liter H20. pH 7.2) and once in distilled water. Whole cells were frozen 

at -20°C until the LPS or endotoxin extraction was performed. 

The cell lines used were purchased from the American Type 

Culture Collection and grown as prescribed. The IL 1 assay was run 

using the IL 1 dependent T helper cell clone Dl0.G4.l (TIB 224). The 

TNF assay used a TNF sensitive, murine fibrosarcoma cell line L929 

(CCL 1) (5). and to act as a target cell for the natural killer assay, YAC-1 

cells (TIB 160) were used. 
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Animals Original breeder pairs of C3H/HeJ and BALB/cByJ mice 

were obtained from Jackson Laboratory (Bar Harbor, ME). and 

C3H/HeN mice were obtained from Harlan Sprague Dawley (Madison, 

WI). Mice were housed at the Laboratory Animal Resources (I.AR) 

facility at the College of Veterinary Medicine. ISU. The mice were 

given autoclave-sterilized water and feed (Purina Lab Chow #5010, 

Purina Mills, Inc .. St. Louis, MO) ad libitUTTL 

LPS and endoto:rln e xtraction Lipopolysaccharide was extracted 

by a modified hot phenol/water extraction procedure (41). Briefly, 200 

mg of lyophillzed whole cells were suspended in 10 ml water and 

mixed with an equal volume of liquified phenol at 68°C. The mixture 

was stirred for 15 minutes at 68°C. After cooling, the mixture was 

centrifuged at 200 x g to separate the two phases. The aqueous phase 

was collected and saved and the phenol phase was extracted twice with 

half the original volume of water. The aqueous phases were pooled and 

dialyzed exhaustively against distilled water. The LPS containing 

material was concentrated and then centrifuged at 100,000 x g for four 

hours. The pellet was resuspended in pyrogen-free water and the 

centrifugation was repeated two times. After the last centrifugation, 

the pellet was resuspended in pyrogen-free water and lyophylized. The 

LPS was stored at -20°C until used. E.coli strain K.235 LPS was 

prepared by the Westphal and Jann method (41). 

Endotoxin was prepared by the butanol/water extraction procedure 

(29). Briefly, 0.25 g wet weight of whole cell paste was suspended in 1 

ml water with an equal volume of butanol added. The endotoxin 
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partitioned to the aqueous phase below the butanol. The butanol phase 

was extracted with half the original volume of water three times. The 

pooled aqueous phase was digested with Pronase (20 µg/ ml fmal 

concentration) in 0 .2 M Na3P04 buffer (pH 7.0) overnight at 37°C. The 

digested endotoxin preparation was centrifuged at 10,000 x g for 40 

minutes and the precipitated interphase removed. The endotoxin 

solution was exhaustively dialyzed , concentrated, lyophylized, and 

stored at -20°C until assays were performed. 

The LPS and endotoxin preparations were dissolved in pyrogen-

free saline and sterilized by heating to 100°C for 10 minutes. These 

solutions were stored at 4 °C until use. The prepartations were heated 

for 1 - 2 minutes at 100°C before use in assays. 

Macrophage viability Peritoneal exudate cells (PECs) from 

BALBI cByJ mice were harvested by peritoneal lavage 3 - 4 days after an 

interperitoneal injection of 2 mls fluid thioglycollate (Difeo, Detroit, 

MI). PECs were lavaged with phosphate buffered saline (PBS - 8 g NaCl, 

1.15 g Na2HP04, 0 .2 g KH2P04, to 1 liter H20, pH 7.2) supplemented 

with 10 units/ml heparin and 1 % fetal calf serum (FCS, JR Scientific, 

Irvine, CA). PECs were washed in RPMI supplemented with 37 mg/ml 

NaHC03, 25 units/ml penicillin, 25 µg/ml streptomycin (P / S). 2 mM L-

glutamine (L-glu). and 1 % FCS, then resuspended in the same medium 

at 5 x 106 cells/ml and aliquoted into sterile 13 x 100 mm 

polypropylene snap cap tubes. Dilutions of LPS or endotoxin were 

added to the tubes. The tubes were rotated end over end at 37°C for 24 

hours and then stained with 10 µI of PBS containing 0.5 mg/ml 
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propidium iodide (33) and/ or 100 µl of PBS containing a 1: 1000 

dilution of a 0 .5% (w/v) fluorescein diacetate-acetone stock solution. 

Using fluorescent microscopy, this procedure allows the differentiation 

of live (green) and dead (orange to red) cells. Cells were incubated for 

15 - 30 minutes at room temperature and were counted using a 

fluorscent microscope (Leitz Orthoplan, Wetzlar, Germany) or a 

fluorescence activated cell sorter (Coulter, Luton, England). 

Interleukin 1 assay Thioglycollate elicited PECs from BALBI cByJ 

mice were harvested (see above). washed, resuspended, and adjusted to 

1 x 106 cells/ml in RPMI 1640 (P/S. L-glu, NaHC03) . Cultures (1 ml) 

were stimulated for varying lengths of time with various doses of LPS or 

endotoxin and incubated at 37°C in 5% C02. At the indicated time, 

supernatant fluid was harvested by centrifugation and stored at -70°C 

until use. Dl0.G4. l cells were centrifuged through a density gradient 

(Ficoll-paque 1.077) to concentrate live cells. After washing three 

times to remove excess gradient material, cells were resuspended to 5 

x 105 cells/ml in RPMI 1640 (P /S, L-glu, 10 mM HEPES, 5% FCS) and 

0.1 ml was added to each well of a 96 well microtiter plate (Costar 

#3799, St. Louis, MO) . Cultures were incubated 72 hours and 0.5 µC of 

3H-thymidine (Arlington Heights, IL) was added during the last 8 hours. 

Samples were harvested on to filter paper discs with an automatic 

harvester (Bellco, Vineland, NJ). dried, and counted using liquid 

scintillation. 

Tumor ne crosis factor assay L929 cells were scrapped and 

resuspended to 5 x 105/ml in MEM (P/S, L-glu, NaHC03) 
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supplemented with 10% horse serum (Gibco, Irvine, CA). One tenth ml 

was added to each well of a 96 well microtiter plate (Costar #3799) and 

incubated overnight at 37°C in 5% C02. Supernatant fluid from LPS or 

endotoxin stimulated PECs was added at increasing dilutions along with 

MEM medium containing actinomycin D (final concentration of 

actinomycin Din a well was 2.5 µg/ml). Anti-TNF rabbit serum 

(Genzyme, Orvala, FL) was added to additional wells to inhibit TNF 

activity present in the supernatant. This assay was terminated after 18 

hours by washing plates with PBS to remove nonadherent cells. 

Residual monolayers were stained with a 0.2% crystal violet - 2% 

formalin solution for 20 minutes (10) . Plates were washed in water 3 

times, with the third wash standing 10 minutes. The stain was then 

solublized in 50% ethanol and quantitated by measuring the adsorbance 

at 595 nm on an ELISA reader (Biotek Instruments model EL 301, 

Winooski, Vf) (34). Quadruplica te wells were set up with results 

expressed as the percent cytotoxicity + S.E.M. 

Natural killer cell assay C3H/HeN mice were injected i.p. 24 

hours prior to the assay with LPS or endotoxin. Mice were sacrificed by 

cervical dislocation and individual spleens were removed and minced 

into single cell suspensions. Red blood cells were removed by 

hypotonic shock induced by resuspending each spleen in 2 ml of RPMI 

1640 (1% FCS, P/S, L-glu, HEPES) to which 6 ml of sterile distilled 

water was added. After 30 seconds, 2 mls of 3 .5% saline was added. 

Cells were then washed three times in the same medium to remove red 

blood cell debris. Cells were then resuspended to 5 xl06 cells/ml in 
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NK medium (RPMI 1640 supplemented with P/S, L-glu, HEPES, 10% 

FCS, 5 x 1 o-4 M 2-mercaptoethanol) and 0 . 1 ml added to each well of a 

96 well U-bottom microtiter plate (Falcon #3910, Oxnard, CA). YAC-1 

cells (1.2 x 107) were labeled with 200 µCi of 51Cr in NK medium 

supplemented with 0 .25% sucrose for 90 minutes. Cells were washed 

in NK medium three times. 

Spleen cells were resuspended to 2 x 105 /ml and 0 .1 ml was 

added to each well of a 96 well U-bottom microtiter plate. 51Cr labeled 

YAC-1 cells were then added to each well at ratios of effector cell 

(spleen) to target cell (YAC-1) of 100: 1, 50: 1, or 25: 1. Plates were 

incubated four hours at 37°C in 5% C02. Harvesting of the supernatant 

was carried out using harvesting frames (Skatron #7072, Sterling, VA) 

with a plastic tube (USA Scientific Plastics #USA8845, Ocala, FL). 

Samples were immediately counted in a gamma counter (Beckman 

Biogamma II, Beckman Instruments, Inc ., Fullerton, CA) The results 

were expressed as 

% cytotoxicity = experimental CPM - spontaneous CPM x 100 
total CPM - spontaneous CPM 

Suppression assay BALB/cByJ mice were injected with endotoxin 

or LPS i.p. 24 hours prior to an injection of 10% sheep red blood cell 

suspension (SRBC). Four days after the injection of the SRBCs, mice 

were sacrificed by cervical dislocation, spleens were removed, minced, 

washed in Hank's balanced salt solution, and resuspended in the same 

solution. The anti-SRBC plaque forming cell (PFC) response was 

determined using the Cunningham slide method (20). 
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RESULTS 

Macrophage viability The effect of LPS and endotoxin on 

macrophage viability was assayed by fluorescent microscopy using 

propidium iodide and fluorescein diacetate. The results depicted in 

Table 1 show that the treponemal LPS preparations were toxic to 

elicited PECs at 100 µg/million cells while the endotoxin preparations 

were not toxic. In comparison to E. coli LPS, the treponemal LPS 

preparations were less toxic for murine PECs. 

IL-1 production Both time and dose dependent assays were 

performed to determine the optimum conditions for IL 1 production. 

The data in Figure 1 shows that treponemal endotoxins were able to 

induce the secretion of IL 1 while the LPS preparations failed to 

stimulate IL 1 production. The optimal responses were observed at 

doses greater than 0.5 µg/ml (Fig. 2). The treponemal endotoxins 

induced responses much better than their corresponsing LPS 

preparations (Fig. 1 and Fig. 2) . The endotoxins (5 µg/ml) elicited 

responses similiar to those obtained with E. coli LPS (0.1 µg/ml) . 

Production of TNF There was no difference in the levels of TNF 

activity in culture supernatants from PEC stimulated with treponemal 

endotoxin preparations (Fig. 4). At the lower dilutions of PEC 

supematants (1:5 and 1:25). the T. innocens LPS induced better TNF 

activity ~ 65% cytotoxicity) than T. hyodysenteriae LPS Gs. 45% cyto-

toxicity). The levels of TNF induced by 5 µg/ml of the treponemal 

endotoxins were similiar to those induced by 0.1 µg/ml of E. coli LPS. 



68 

The presence of TNF in the supernatants from PECs stimulated with E. 

coli LPS and T. hyodysenteriae endotoxin was confirmed by the ability 

to inhibit the cytotoxic activity with rabbit anti-TNF antisera (Fig. 5). 

Tablel. Effect of treponemal LPS or endotoxin on BALBI cByJ 
peritoneal exudate cell viability 

Preparation amount added Viability (%) of PEca 

(µg) Elicitedb Residentc 

None 67.7 70.9 
E. coli K235 

LPS 25 24.5 56.4 
100 15.2 53.8 

T. hyodysenteriae 
B204 
LPS 25 63.1 78.0 

100 38.5 74.3 

endotoxin 25 73.2 78.0 
100 66.4 80.3 

T. innocens Bl555a 
LPS 25 60.l 72.l 

100 45.4 56.5 

endotoxin 25 76.1 83.3 
100 78.6 88.l 

aproteose peptone elicited or resident BALB/cByJ PECs, 1 x 106 
cells/ml, were incubated for 24 hours in the presence or absence of 
LPS or endotoxin. 

bViability of elicited PECs was determined using a fluorescent 
activated cell sorter. For each sample, 10,000 cells were counted. 

cviability of resident PECs was determined by ultraviolet 
microscopy and 300 cells or 10 microscopic fields (250x) were 
enumerated per sample. 
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The TNF activity of all PEC supematants could be inhibited with the 

addition of the anti-TNF rabbit serum (data not shown). 

Natural killer cell assay Augmentation of natural killer (NK) cell 

activity can be achieved by treating mice i.p. with LPS and endotoxin. 

This augmentation is the result of the elaboration of interferon. 

Therefore, as a crude measure of in vivo interferon production, the 

ability of treponemal LPS or endotoxin to enhance NK cell activity was 

determined (Fig. 6). The NK activity in mice treated with T. innocens 

or T. hyodysenteriae endotoxin was significantly higher than control 

response (p ~ 0.05). The T. hyodysenteriae LPS preparation augmented 

NK activity above the saline control (p ~ 0.1) but the T. innocens LPS 

preparation did not augment the NK response above control levels. 

Suppression assay In addition to the ability of LPS to enhance an 

immune response, it has been shown to inhibit the antibody response 

to antigens administered subsequent to LPS injection. The suppression 

of an anti-SRBC PFC response by LPS or endotoxin was assayed using 

C3H/HeN mice. Mice were given an i.p. injection of LPS or endotoxin 

24 hours before immunization with SRBC. At doses of 10 and 100 

µg/mouse, the T. hyodysenteriae endotoxin inhibited the subsequent 

anti-SRBC PFC response by 54% (Fig. 7). At 100 µg/mouse, the T. 

hyodysenteriae LPS suppressed the PFC response by only 38% while 1 O 

µg/mouse of E. coli LPS suppressed the response by 65%. 
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FIG. 1. A time dependent IL 1 response was determined for PEC 
cultures treated with treponemal LPS or endotoxin. The ILl-
dependent DlO.G.4 T cell clone was used to measure IL 1 
activity. The supernatants (1:20 dilution) were prepared using 
0.1 µg/ml E. coli LPS (square). 5 µg/ml LPS (circle), and 5 
µg/ml endotoxin (triangle). and RPMI control (X). A.) T. 
hyodysenteriae B204; B.) T. innocens Bl555a. Values 
represent the mean CPM + S.E.M. of triplicate cultures. 
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FIG. 2 . A dose dependent response for the production of ILl was 
determined for PECs stimulated with treponemal LPS or 
endotoxin. Supematants were diluted 1: 10. T. hyod.ysenteriae 
B204 LPS (open square): B204 endotoxin (shaded square): T. 
innocens B l 555a LPS (open triangle): and Bl555a endotoxin 
(shaded triangle). Supernatants from PECs stimulated with 0 .1 
µg/ml E. coli LPS induced 110,000 CPM. Values are expressed 
as the mean + S.E.M. of triplicate cultures. 



72 

A B 
120 

100 

~ !~; 
80 :$: 

•"4 I C) 

~ 
0 60 
~ 
0 ::::: 

~ 40 
:R 0 20 

0 
5 25 125 625 3125 15625 5 25 125 625 3125 15625 

Dilution (l/X) 

FIG. 3. Tumor necrosis factor activity was assayed by adding diluted 
culture supernatant from murine peritoneal exudate cells, 
stimulated with LPS or endotoxin, to L929 cells. After 20 - 24 
hours, plates were washed and then stained with crystal violet 
to visualize adherent cells. Absorbance of the samples were 
read at 595 nm. Each value represents the mean + S.E.M. of 
quadruplicate cultures and divided by the average of control 
cultures and multiplied by 100. A.) E. coli LPS, 0.1 µg/ml 
(open bar): T. hyodysenteriae B204 LPS, 5 µg/ml (slashed 
bar); B204 endotoxin, 5 µg/ml (shaded bar); B.) E. coli LPS, 
0.1 µg/ml (open bar); T. innocens Bl555a LPS, 5 µg/ml 
(slashed bar); and Bl555a endotoxin, 5 µg/ml (shaded bar). 



73 

T. endotoxin 

T anti-TNF 

E. coli LPS 

E anti-TNF 

0 20 40 60 80 100 

% Cytotoxicity 

FIG. 4. Tumor necrosis factor activity was suppressed by the addition of 
r abbit anti-TNF serum (2 units/well). Thioglycollate elicited 
BALB/cByJ PECs were stimulated with T. hyodysenteriae B204 
endotoxin (0.5 µg/ml) and E. coli LPS (0.1 µg/ml) and 
supematants were collected at 48 hours. The supematants 
were diluted 1 :75 and treated with 2 units/well anti-TNF and 
compared to untreated supernatant. Results are expressed as 
mean + S .E.M. of duplicate cultures. 



Bl555a Endo 

Bl555a LPS 

B204Endo 

B204 LPS 

E-LPS 

Poly-IC 

Control 

74 

0 20 40 60 80 
010 Cytotoxicity (E-S/T-S) 

*Significant at the 0.05 level. 

#Significant at the 0.1 level. 

• 

100 

FIG. 5. Natural killer cell activity was assayed by a 51Cr release assay 
using YAC-1 cells as the target and spleen cells from C3H/HeN 
mice as effector cells. The ratio of effector cells to target cells 
was 50: 1. Mice were given i.p. injections of LPS or endotoxin 
24 hours prior to assay. Treponemal preparations were given at 
100 µg/mouse, poly IC at 100 µg/mouse, and E.coli LPS at 
20µg/mouse. This assay was carried out in triplicate and values 
are expressed as the mean ± S.E.M. 
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FIG. 6. Studies on the suppressive effect of LPS and endotoxin on the 
anti-SRBC PFC response. LPS was given to BALB/cByJ mice 24 
hours prior to the SRBC immunization. On day 4, anti-SRBC 
PFCs were determined. Each group contained five animals and 
values are expressed as the mean + S.E.M. per million 
splenocytes. 
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DISCUSSION 

Swine dysentery is an inflammatory disease of the porcine cecum 

and large intestine (12) . Symptoms of the disease include fever, 

anorexia, and yellow to gray soft feces. Diarrheic stools often contain 

fibrin, mucus, and blood flecks as the disease progresses. Gross lesions 

are characterized as necrotic, catarrhal, and hemorrhagic (12) . 

The specific component(s) of T. hyodysenteriae that induce the 

inflammatory condition have not been defined. The initial event in 

many infections is the development of an inflammatory response, and 

bacterial LPS or endotoxin has been shown to contribute to these 

inflammatory conditions (27). Habicht et al. (11) and Beck et al. (2) 

reported that macrophages produced IL 1 following stimulation with 

whole cells of Borrelia burgdorjeri. In addition, it was shown that these 

IL 1 preparations could provide both the preparatory or provocative 

stimuli for a local Shwartzman reaction. As discussed in Section I, the 

treponemal preparations failed to induce a dermal Shwartzman reaction 

in rabbits, but were capable of providing the provocative stimulus 

following an intradermal injection of E. coli LPS. The inability of 

treponemal LPS or endotoxin to induce necrotic lesions indicated that 

these preparations were not inflammatory agents. This would be 

inconsistent with the results obtained with other LPS preparations (27) 

and may be explained by the inability of the treponemal preparations to 

induce endogenous pyrogens (i.e., IL 1 or TNF) . 
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Macrophages have been shown to secrete both IL 1 and TNF 

following stimulation with LPS or endotoxin (7a, 8, 27). Interleukin 1 

is a 15,000 dalton protein with hormone action (7a, 9). The effects of 

IL 1 on the immune system include enhanced expression of cell surface 

markers, enhanced antibody production, and stimulated T cell 

proliferation (7a, 9). Tumor necrosis factor is also a protein and has a 

molecular weight of 17,000 daltons (3). When macrophages are 

stimulated with LPS, TNF can account for as much as 1-2% of the total 

protein produced (3). Tumor necrosis factor has been shown to be the 

mediator of toxic shock following administration of endotoxin (37). 

Like IL 1, TNF induced the biosynthesis of various inflammatory agents 

including prostaglandins, leukotrienes, platelet activating factor, and 

collagenase (8). Depending on the magnitude of the response to an 

infectious agent, these monokines can have beneficial or deleterious 

effects on the host. The contribution of these monokines to the 

pathogenesis of swine dysentery is not known. However, the 

inflammation and edema observed in dysenteric lesions would be 

consistent with the synthesis and secretion of IL 1 and TNF. 

Murine PECs stimulated with the treponemal endotoxins produced 

a dose-dependent response (Fig. 2). Though comparable IL 1 responses 

were elicited by E. coli LPS and the treponemal endotoxins, the dose of 

endotoxin was 50 fold higher than that of E. coli LPS. The treponemal 

LPS preparations did not stimulate IL 1 release (Fig. 1 and 2). Beck et. 

al. (2) demonstrated that IL 1 can provide the preparatory and 

provocative stimuli for a Schwartzman reaction. The lack of IL 1 
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secretion from PECs treated with treponemal LPS may explain the 

inability of these preparations to induce a local Shwartzman reaction 

(Section I). 

The TNF activity, like IL 1 production, was stimulated by 

treponemal endotox.ins, but not the LPS preparations (Fig. 4). The 

presence of TNF in the culture supernatants was demonstrated by the 

addition of rabbit anti-TNF serum (Fig. 4). As observed for IL 1 

production, the level of TNF in PEC culture supernatant following 

stimulation with endotoxin was similar to that obtained withE. coli LPS, 

but the dose required was 50 fold higher. 

The endotoxin protein of P. aeruginosa has been shown to induce 

interferon both in vitro and in vivo at greater levels than LPS (18). The 

ability of the treponemal preparations to induce both IL 1 and TNF 

seem to coincide with the presence of protein in the endotox.in 

preparations. Therefore, the NK cell tumoricidal assay was used to 

indirectly measure in vivo interferon production following stimulation 

with treponemal LPS or endotoxin (7b). The NK activity was 

augmented by both endotoxin preparations (p $; 0.05). but little activity 

was seen from the treponemal LPS preparations (Fig. 5). 

The treponemal endotoxins were observed to have very little effect 

on murine PEC viability (Table 1). For resident PECs, T. innocens LPS 

was toxic at 100 µg/ml, but not at 25 µg/ml. At 100 µg/ml, T. 

hyodysenteriae and T. innocens LPS were toxic for elicited PECs. It has 

been previously shown that the lipid component of LPS is responsible 

for the associated toxicity (26). On a weight basis, the increased 



79 

toxicity of the treponemal LPS in comparison to the endotoxin 

preparations may be related to the increased amount of the lipid 

component. Results of this study differ with the previous report by 

Nuessen et al. (28) in that the treponemal LPS was shown to be toxic at 

15 µg/ ml and higher rather than 100 µg/ ml. This difference may be 

explained by the use of different preparations and/ or the method used 

to determine macrophage viability. For example, the determination of 

macrophage viability based on the number of adherent cells remaining 

after treatment with LPS may have been incorrectly interpreted. It was 

recently shown that LPS will cause macrophages to release from glass 

surfaces without affecting viability (16). This may have led the previous 

authors (28) to report toxic effects at lower doses of LPS than observed 

in the present study. In addition, the toxicity of the treponemal LPS 

relative to E. coli LPS cannot be compared since the previous authors 

(28) did make that comparison. 

Previous reports have established that endotoxin (butanol/water 

extraction) preparations contain LAP (23) as well as outer membrane 

porins (36). The addition of protein components change the LPS 

molecule, thus changing what is seen by the host system (13). The 

biologic differences between endotoxin and LPS could be accounted for 

by the addition of these protein moieties. These proteins may work 

alone to give the responses seen in this study. 

In addition to the effects on macrophages, LPS has been shown to 

suppress the immune response to a T cell-dependent antigen (38). 

This suppression was observed when the LPS was given 24 to 48 hours 



80 

prior to antigen presentation. Treatment of mice with the treponemal 

preparations resulted in significant reduction (p $ 0.05) of the anti-

SRBC PFC response (Fig. 6). 

We have shown that the treponemal LPS is biologically less active 

on the immune response than treponemal endotoxin or E. coli LPS. 

The results of the present study coincide with the results of the 

previous study (Section I). The contribution of treponemal LPS or 

endotoxin to the development of dysenteric lesions is unknown. These 

lesions may be the result of the host's own inflammatory response or 

the direct action of the spirochete. It has been shown that the 

treponemal endotoxin stimulated inflammatory agents (i.e., IL 1 and 

TNF) although at lesser amounts than that induced by classical LPS. 

This apparent difference in the ability to induce inflammatory agents 

may have little bearing on the development of lesions since the absolute 

amount of IL 1 or TNF required is not known. 

The LPS preparations of T. hyodysenteriae and T. innocens were 

shown to be less toxic for murine PECs than E. coli LPS and did not 

induce monokine production. The endotoxin preparations stimulated 

PECs to produce IL 1 and TNF. Although activity was comparable to E. 

coli LPS, the doses of treponemal endotoxin required for these 

responses were 50 fold higher. In addition, the biologic activity of the 

treponemal preparations was dependent on the presence of the protein 

component. Finally, the results suggest that the differences in 

virulence between T. hyodysenteriae and T. innocens is not based on 

the biologic activity of their LPS or endotoxin components. 
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GENERAL CONCLUSION 

Lipopolysaccharide (LPS) and endotoxin from Treponema 

hyodysenteriae and T. innocens were studied to determine the biologic 

activity, primarily using the murine model system. 

Ch emical composition varied slightly between the different 

preparations. T. hyodysenteriae LPS had similar hexose content but 

relatively little protein content compared to the treponemal LPS in 

previous reports. The classic LPS biologic responses (pyrogenicity, 

mitogenicity, adjuvanticity, lethality, Limulus assay, and dermal 

Shwartzman reaction) of treponemal preparations were relatively weak 

compared to Escherichia coli LPS. with the exception of the Limulus 

assay giving comparable activities to both. 

Stimulation of lymphoreticular cells by Treponema preparations 

was weak. It was observed that treponemal preparations were, when 

compared to E. coli LPS, less toxic to macrophage, weakly stimulatory 

for interleukin 1 and tumor n ecrosis factor production, weakly 

a ugm ented natural killer cell activity, and showed mild suppressive 

effects on the murine immune system. 

The results of this study indicate that there is little difference in 

the biologic activities of T. hyodysenteriae and T. innocens LPS and 

endotoxin. Virulence of the two organisms is not dependent on 

biologic activity of the LPS and the biologic activity of the endotoxin 

preparations coincided with the presence of protein. 
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