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CHAPTER |. INTRODUCTION

Properties of Cerium

Cerium metal exists in five established allotropic forms under vari-
ous temperature and pressure conditions (1). These allotropic forms are
designated as a, B8, v, 8, and a'. The a' phase exists only at pressures
greater than 50 kb (2), and the § phase exists only near the melting
temperature, 1072°K (3). Therefore the a, B, and y phases are those most
frequently encountered under common experimental conditions. Initial
structure studies of cerium indicated that both face-centered cubic (fcc)
and hexagonal close-packed (hcp) phases existed at room temperature and
ambient pressure (4). The fcc structure was confirmed by subsequent
studies and is currently identified as y-Ce. (See Table 1.1 for addi-
tional crystallographic data.) The o phase was identified next both at
room temperature and moderate pressure (5), and at low temperature and
atmospheric pressure (6). This phase was found to be a collapsed fcc
structure with a volume decreased by nearly 17% from that of y-Ce. B-Ce
was the last of the common allotropes to be identified (7). This phase
has a double-hexagonal close-packed (dhcp) structure.

The transformation behavior of cerium hampered experimental inves-
tigation for many years. B-Ce forms from y-Ce as the sample is cooled
below 250°K. This transformation is incomplete and impurity dependent,
however, and at 116°K the remaining y-Ce in the sample transforms to
a-Ce. Further cooling will cause the B-Ce portion to be partially
transformed into a-Ce. The fractions of a and B cerium in a specimen

at low temperature depends largely on the cooling rate and the thermal



Table 1.1. Properties of cerium

Atomic Mass 140.12 amu

Lattice Parameters

a-Ce? (8) fcc a= bh.824 R
B-Ce (9) dhcp a= 3.6810 %
b =11.857 R
y-Ce (9) fcc a= 5.1610 R
Thermal Neutron Data (10)
Nuclear Scattering Length b= .48 x 10_]2 cm
Nuclear Cross Sections o = 2.7 x IO-ZA cm2
coh
s, = 0.01 x 10°2% cm
incoh
o = 48 x 10_2}4 cm2
abs

a . " z
Value given is room temperature, hiagh pressure
data. )



and mechanical history of the sample (1,7,11). There is also large
hysteresis in the transition temperatures during a thermal cycle. During
warming the B phase does not completely transform to y-Ce until a tem-
perature of ~500°K is attained (12,13,14).

Due to these allotropic transformation properties many early ex-
periments were performed on samples containing mixed phases. Care must
be taken in interpretation of the results, particularly when the sample
was subjected to thermal cycling. This point will be explored more
fully in Chapter IIl in the comparison of the present results to the
results of former experiments.

Recent measurements performed on pure phases are more reliable. A
cerium sample which has not previously been cooled below the B transition
temperature will contain only the y phase. Methods have also been
developed for the preparation of allotropically pure a and B cerium
(15,16) .

Reliable measurements of the properties of the cerium allotropes
are of interest in their own right, but much of the experimental work
has been motivated by the intriguing isostructural a-y transformation.
The first explanation given by Zachariasen and Pauling (quoted in Refer-
ence 5 and 6, respectively) invoked a simple transfer of the localized
Lf electron into the valence band to produce the observed volume collapse.
Thus, one would expect to find a valence of three in y-Ce and four in
a-Ce. Later work by numerous investigators suggested various fractional
valences for the two phases. In an extensive survey of all available

data made in 1963 it was concluded that at ambient pressure valences of



3.06 for y-Ce and 3.67 for a-Ce were most consistent with the data (17).
It should be noted, however, that large inconsistencies exist, particu-
larly with regard to more recent positron annihilation measurements (18).
Apparently the electronic structure of cerium is too complicated to be

described well by a simple valence scheme.

Neutron Scattering

When large single crystals of y-Ce were successfully prepared at
Ames Laboratory (19) it provided an opportunity to study this allotrope
using neutron scattering. Various neutron scattering techniques yield
a variety of valuable information. Elastic nuclear scattering provides
structural information. |Inelastic nuclear scattering yields the spectrum
of lattice vibrations. The neutron possesses an intrinsic magnetic
moment and is therefore subject to magnetic scattering also.

Magnetic scattering of neutrons is fundamentally different from
nuclear scattering. In magnetic scattering the neutron scatters from
the localized electrons of the atoms. Since the electron cloud is of the
same order of magnitude as the neutron wavelength, interference effects
in the scattering region occur. This gives rise to an observable form
factor governing magnetic scattering. Magnetic excitations can be
studied using inelastic magnetic scattering. (Nuclear and magnetic
inelastic neutron scattering are discussed further in Chapter I1). In
some materials magnetic ordering gives rise to a ''magnetic lattice
structure' which can be determined from magnetic elastic scattering.

Polarized neutron scattering identifies the magnetic contribution

to elastic scattering. From these measurements the magnetic form factor



and the magnetic susceptibility due to the localized electrons can be
calculated.

Recent polarized neutron scattering measurements on y-Ce (20) have
shown the scattering to be of a L4-f nature, indicating that the 4-f
electron is localized in this allotrope. However, comparison of the
calculated susceptibility to bulk susceptibility measurements indicates
that there may be a partial delocalization of the 4-f electron even in
the y-phase (21).

The dynamical properties of a lattice can be studied using inelastic
nuclear scattering. This technique yields the lattice vibrational
spectrum and the elastic constants. From the observed spectrum one
obtains the interatomic force constants from which various elastic and
thermodynamic properties can be calculated. In addition, insight into
structural transformations can be obtained since these transformations
are intimately related to interatomic forces. Therefore, one would ex-
pect the vibrational spectrum of y-Ce to provide insight into the a-y
transformation.

Given the preceding rationale, the present study was undertaken.
The main thrust of the work was geared to obtaining the lattice vibra-
tional spectrum as well as information regarding the magnetic excitations
of y-Ce using inelastic scattering techniques. A brief review of the
elementary fundamentals of lattice dynamics is given below. Chapter |1
deals with basic principles of inelastic neutron scattering and the
details of the experiment. Chapter 1l presents analysis and discussion

of the experimental results.



Review of Lattice Dynamics

Lattice dynamical studies allow prediction of macroscopic physical
properties of a solid in terms of microscopic models. These models are
based on the observed thermal vibration spectrum of the crystal lattice.
For the most intuitive picture, one may regard phonons] as normal modes
of the vibrating lattice. Thermal neutron scattering is ideal for
studying the frequency spectrum because the energies of the neutrons and
phonons are of the same order of magnitude. Therefore, creation or
annihilation of a phonon by a neutron produces a change in neutron energy
which is easily measurable. The change in direction of the scattered
neutron gives the momentum transfer. Knowledge of the frequency and
momentum of the phonons allows construction of the phonon dispersion
relation from which the interatomic forces can be calculated.

The phenomenological approach to the theory of lattice dynamics is
to set up and solve the equations of motion of a vibrating lattice. |In
the original theory formulated by Born and Huang (22) the adiabatic
approximation was invoked with ionic crystals in mind. The approximation
states that since the frequency of motion of the electrons is much faster
than the frequency of motion of the vibration of the ions, the electrons
may be assumed to follow the nuclear motion ''adiabatically'. In other
words the electron state is deformed smoothly as the nuclei move and the

electrons do not make transitions from one state to another. Thus the

A phonon is defined as a quantum of energy in a vibrational wave
in a lattice. It has become commonplace to refer to the wave itself
using the same term.



effective potential for the motion of the nuclei depends only on the
instantaneous nuclear coordinates and contains the energy of the elec-
trons explicitly. The electrons do not individually participate in the
propagation of a lattice wave but serve as a medium through which the
internuclear forces are exerted. The application of the adiabatic
approximation to metals has been questioned since the electronic ground
states in metals form a quasi-continuum and nuclear and electronic motions
will be coupled. However, a quantum mechanical analysis reveals that
""non-adiabatic' terms can be safely neglected (23,24). Therefore, a
standard Born-von Kadrman analysis has been applied in the current
work and will be briefly reviewed below.

For a given crystal, if the origin of the coordinate system is the
equilibrium position of one of the atoms, then the equilibrium position

of the origin of the 2-th primitive cell is given by

- > -»>
a. £ La. ¥+ 4.3

R(R) = 2ja) + 2y3) + L;a,

(1.1)

with the Ei's integers and the ai's primitive translation vectors.

>

R(k) gives the equilibrium position of the k-th atom in the 2-th
primitive cell. Therefore, the total vector from the origin to a given

atom in the lattice is
R(e, k) = R(2) + R(K) . (1.2)

The displacement of an atom from its equilibrium position is given

-
by U(2, k). The total kinetic energy of the crystal is therefore,



T=4

-2
i Mg 00(2, k) , (1.3)

b
%k
where o denotes the x, y and z components of ﬁ(i, k).

Within the context of the adiabatic approximation the total poten-
tial energy of the crystal is assumed to be a function of the instantane-
ous positions of all the atoms. |In most cases of interest it is safe to
assume that the atomic displacements ﬁ(ﬁ, k) are small compared to the

lattice spacing. Therefore, the potential energy, %, can be expanded in

a Taylor's series of ﬁ(z, k).

¢ = @0 + QI + q& + q% + ... (higher order terms)
=@ +I I (g, KINU(2, k) +% I b) I 9 (2k, 2'k")
U e km ® . 2,0 k,k' a,8 OF
1
X Ua(z, k)uB(z , k') 4+ ... (1.4)
where
30
a
0
32¢

o . (2k, 2'k') = : ‘ (1.6)
aB aua(z, k)aus(n , k')

0

The first term in Equation (1.4) is an eneray reference level
and may be taken as zero. The second term also vanishes because the

displacements are taken about equilibrium lattice positions. Therefore,

au (2, k =0 : (1.7)
a



All the remaining terms are finite and non-vanishing but in the harmonic
approximation only wz is retained. Anharmonic effects arising from
higher order terms do exist in crystals but they are usually small

enough to be neglected. These effects produce a finite phonon lifetime
thereby broadening the one phonon peak (25). Anharmonic effects also
shift the position of the peak slightly, usually to lower frequency (26).
In some rare gas solids the vibrational displacement of the atoms is
nearly half the interatomic distance. Anharmonic effects are large in
such cases (27). However, under the conditions of the present experiment
the harmonic approximation can be applied.

The system is assumed to be conservative so that the Hamiltonian

operator, Hop’ may be equated to the total energy function.

HOD -+ H

T+ @ (1.8)

.2 L |
H=1% inkua(z,k)+% b L by cpus(zk,ﬂk)

Tz
2k e,0" k,k' o,B
X Ua(sz,, k)UB(:z. , k')

The a component of the force acting on atom (2, k) is given by

_ oH

IR o Lli2)

where P is the momentum equal to M Ua(z, k). Thus the equations of

k

motion for a vibrating lattice are given by

Fa=Mkua(z,k)=- I z:pa

(ek, z'k')UB(E‘, k') i (1.10)
L' k' B

B
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The wuB are called interatomic force constants by analogy with the
classical harmonic oscillator spring constants.

Since translational invariance must be satisfied, the potential
cannot be affected by the displacement of every atom by the same amount,
U. In other words the entire body of material is moved as a unit. This
corresponds to a phonon with wave vector a'= 0 (i.e., infinite wave-

length). For this kind of displacement the sum of the forces on every

atom must be zero.

0=1[z2 ¢ @ (2k, ¢'k"Ju(z', k')] : 0 [ s o
gkt O 4=0
0= [(p (2k, 2k) + ¥ I o (ee', kk")Uu(e', k')]1>_ . (1.12)
&b LA kfk' 9P q=0
Therefore, one obtains
“’as(’“" gk) = - ¢ I tpaB(ﬁk, 2'k") . (1.13)

LU#L k'#k

The ''self force constant', wae(ﬁk, Lk), is given by the negative of the
sum of the force constants describing the forces acting on atom (%, k)
due to every other atom in the lattice.

Another constraint arises from rotational invariance. The potential
will not be affected if the entire crystal is subjected to an infini-
tesimal rotation.

An infinitesimal rotation can be expressed by a vector

§=06 +8 +8 . (1.14)

- . ;
ea is a unit vector directed along the a axis and represents an infini-

tesimal rotation about the o axis. The displacement, U(%, k), generated



>
by such a rotation acting on a position vector, R(2, k), is perpendicular

to both ﬁ(i, k) and gu' It is perpendicular to ga because « is the
axis about which the rotation is performed and 3a is directed along that
axis. It is perpendicular to K(Q, k) because it is an infinitesimal
rotation. A finite rotation would cause R(2, k) to sweep out a circular
arc. An infinitesimal rotation produces a displacement tangent to this
arc. Hence, the displacement is perpendicular to R(2, k).

Thus, the displacement produced by an infinitesimal rotation can be

represented by a cross product.
u(z, k) = [ x R(z, K] . (1.15)
Consider a rotation about the x axis. Then,

u(e, k)

‘e*x x R(%, k)

eny(ﬂ,, k)2 - esz(sa, k)¢ . (1.16)

The ea's are unit vectors and therefore have a magnitude equal to unity.

This displacement becomes

I

u(e, k) Ry(f‘., k)2 - Rz(z, k)y : (1.17)

Substituting into Equation (1.10) yields

= = ! - |
0 lzl kzl cPaZ(!lk, L'k )Ry(z, k) cpay(ﬂ,k, 2k )RZ(E, k) (1.18)

for an infinitesimal rotation about the x axis. Since the crystal is
undistorted there are no restoring forces and the expression is set
equal to zero. Similar constraints arise from rotations about the y and

z axes. All of these terms may be expressed compactly by using the



Levi-Civita symbol EuBY defined as follows:

€ 0 if any two Cartesian indices a, B, Y are zero;

aBy

I

1 if (e, B, Y) are a cyclic permutation of x, y, z;

-1 otherwise.
Using this notation Equation (1.18) may be generalized to

L ] ] ] ]
0= I ¥ :pw(ak, L'k )Ru(z , k )€6u (1.19)

L B
£ KY ¥ ¥
for all o, B, and k.
The force equation, which is subject to the two invariance con-

straints discussed above, has plane wave solutions of the form

U (2, k) = ek’a(a’)e”a'm- k)-wt] (1.20)

where 3 is the phonon wave vector. Substituting into Equation (1.10)

one obtains

2, 2y . neye-19e [R(2, K-R(2', k"] >
M, w ek’a(q) = ;1 :i I ¢a6(2k, L'k')e ek.,B(q)
B
(1.21)
Equation (1.21) may be rewritten as
2 > kk' ,» >
M w ek’a(q) = kZ‘ g D.g (q)ek.’s(q) ; (1.22)
where
kk' > -a+[R Rl k!
DaB (q) = 3 (puB(R’k’ E'k')e q [ (Er k) K(E ] k )] (].23)

94'

and is called the dynamical matrix.
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Notice that D:’;I(a) is independent of % because the % dependence
in qhB(Qk’ 2'k') appears only as a difference, R(2) - R(2'). Therefore,
the frequency solutions to the equation of motion are periodic functions
of a, and all unique normal mode frequencies may be found by using a
reduced set of wave vectors. This reduced set define a region of a
space around q = 0 called the reduced Brillioun zone (28).

Equation (1.22) is a set of 3n linear homogeneous equations in 3n

unknowns, where n is the number of atoms in a primitive cell. To obtain
a non-trivial solution
kk' - 2 _
det | D o (q) - M Salikt | = © . (1.24)
Solving the secular equation yields 3n eigenfrequencies of vibration,

w=wj(a) J= 15 2, 3, i540 30 (1.25)

and 3n accompanying eigenvectors,

ek',s(a’ i) . i=1,2,3, ..., 3n (1.26)

These eigenvectors must satisfy orthogonality,

+> . > Ly _ s
E e (@ Jle (a, ') =5, (1.27)
o
and closure
* <> +
f et glas Jleg (q, J) =8 8.0 . (1.28)

The equation of motion [Equation (1.22)] together with the

definition of the dynamical matrix [Equation (1.23)] is the formal
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statement of the Born-von Karmdn theory of lattice dynamics. These
equations may be specialized for the monatomic case of the present study.
The primitive fcc lattice has only one atom per unit cell (see Figure

1: 13 K(l), given by Equation (1.1) is sufficient to describe the
location of every atom in the lattice. Therefore, throughout the
preceding development the k and k' indices may be omitted. The equation
of motion becomes

Mue (3) = ; Do (De, @ (1.29)

and the dynamical matrix is now given by

0,8@) = T 900, ge i RRGDT (1..30)
Solving the secular equation yields three eigenfrequencies,
w = w, (@) i=1,2,3 (1.31)
and three eigenvectors,
e, @ 1) . i=1,2,3 (1.32)

In principle one can calculate the frequencies of all the normal
modes of the lattice if the interatomic force constants are known. The
number of independent force constants is significantly reduced by the
symmetry of the crystal. Specifying the interaction to be of a given
type, such as axially symmetric, places additional constraints on the
force constants. |In spite of the simplifications introduced by symmetry,

for practical calculations the number of force constants must be
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limited in some way. Usually practical calculations are performed by
taking into consideration only the force constants up to a few nearest
neighbors.

Application of fcc symmetry conditions to first neighbor force con-
stants is discussed in the following section. (Reduction of the number
of independent force constants out to eight neighbors is completed in
Appendix A.) A discussion of constraints imposed by two types of

central force models concludes Chapter |I.

Symmetry Considerations
The number of independent force constants in a given problem may be
reduced by crystal symmetry (29). However, for any system a preliminary
reduction may be obtained from permutation symmetry. Assuming that ¢
is a well-behaved function, the order of differentiation in Equation

(1.6) is unimportant. Therefore, in general,

% T %Ba . (1.33)

All symmetry operations which leave a lattice invariant may be

represented by

8 = (s|X(m) + V(s)} . (1.34)

m

S is a matrix representing a proper or improper rotation.] ?(m) is a

- - + - - -
lattice translation and V(S) is a translation by some fraction of the

1 s . . . .
An improper rotation is a pure rotation followed by a reflection
or inversion.
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lattice parameter. All operations which bring the lattice into coinci-
dence with itself can be obtained from a combination of these three

-+
basic operations. |If R(%, k) locates an atom in the undistorted crystal,

the effect of Sm on the crystal is defined by

smﬁ(a, k) = SR(z, k) + X(m) + V(S) = R(L, K) . (1.35)

Here §§(£, k) is a vector resulting from the application of the rotation
matrix S to R(2, k). The components of SR(%, k) are obtained from the

matrix product,

S S S R (%, k)
XX Xy Xz X

S S S R (2, k)
yx Tyy Tyz Y

S S S R_(2, k)
Zx zy b vz

Symmetry operations may also be applied to a distorted crystal with

atomic positions given by
T(e, k) = R(e, k) + U(2, k) . (1.36)
Then the application of Sh to ?(2, k) is given by

8 72, k) =Rz, k) +8U(g, k) +V(s) + X(m) . (1.37)

Substituting from Equation (1.35) we have

8 F(e, k) = 8 R(s, k) + 5U(x, k) (1.38)

which may be written as

sm?(z, k) = R(L, K) + U'(L, K) . (1.39)
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Therefore, when sm is applied to a distorted crystal it carries the
displacement a(ﬂ, k) to the equivalent position (L, K). The displacement
ﬁ'(L, K) at (L, K) is given by Sﬁ(ﬁ, k). Similarly if U(e', k') is
carried by sh to (L', K'), then
8
e il >
(e, k') = OY(L', K') = SU{2*, k') . (1.40)
The potential energy of the pair (2k, 2'k') must be equal to the

potential energy of the equivalent pair (LK, L'K'). Therefore, from

Equation (1.8),

z UB(E', k')¢hs(£k, l‘k')Ua(l, k) = & U&(L', K')¢uv(LK, L'K')UL(L, K)

aB Hv
(1.41)

Recall that according to a matrix product,

vilL', K') = g szuB(n', k') (1.42a)
and

U;(L, K) = 2 SuaUu(z, k) . (1.42b)
Substituting into Equation (1.41) one obtains

an(Rk, EkY) = § SUBQLv(LK, L'K')S”a ‘ (l.hé)

uv

In matrix notation this may be represented as

©(2k, 2'k') = SP(LK, L'K')S (1.44)

where S is the transpose of the rotation matrix S.



If a symmetry operation leaves a given pair of sites unchanged,

Equation (1.44) becomes
®(2k, 2'k') = S®(2k, £'k')S . (1.45)

Therefore, by applying the symmetry operations which do not change a given
pair of atoms, or which leave their positions reversed, one can compare
the original and transformed matrices to obtain the independent force
constants.

Before applying fcc symmetry operations to a first neighbor pair,
it is useful to examine a relation which provides the number of indepen-
dent force constants to be expected for a given pair of atoms. The
equation is derived from group theory (30) and only the result is

presented here.

N = {z[x(S)]2 = 5 x(S'z)} ‘ (1.46)

1
9
Here g is the total number of symmetry operations which leave the bond
between an atom pair invariant or reversed.] Z[X(S)]2 is the sum of the
squares of the characters of the "invariant' operations. I x(S'z) is
the sum of the characters of the squares of the ''reversal'' operations.
In other words, the ''reversal'' operations are applied twice and the
characters of the resultant total operations are summed.

Characters of a symmetry operation may be obtained from tables in

standard group theory books. The character is equal to the trace of a

| P : 2 ; . .

While it may be inappropriate to refer to a directional 'bond"
between atoms in a metal crystal, the term will be used to designate the
line joining the atom pair for lack of a better word.
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three dimensional matrix representation of an operation. Therefore,
characters may also be obtained by writing the matrix for a given opera-
tion explicitly and finding the trace.

To reduce independent force constants by crystal symmetry one first
finds all the symmetry operations which leave the bond between a given
pair of atoms invariant or reversed. The number of independent force
constants can then be calculated according to Equation (1.46). Next one
applies the symmetry operations according to Equation (1.45) until the
number of independent force constants is reduced to the predetermined
number.

For example, the number of independent first neighbor force constants
for a monatomic fcc lattice may be determined as follows. Consider the
fcc structure shown in Figure 1.1. Let & be length measured along the
cubic cell edge. Take the origin at £ = (0, 0, 0) and the first neigh-
bor of interest at &' = (4, %, 0).

Operations which leave that bond invariant are (1) reflection in
the (110) plane; (2) reflection on the (001) plane; (3) a two-fold
rotation about the bond axis (the [110] direction); (4) the identity.
Operations which reverse the bond are (1) a two-fold rotation
about the z axis ([001] direction); (2) a two-fold rotation about an axis
perpendicular to both the z axis and the bond axis ([110] direction);
(3) reflection in the (110) plane; (4) inversion of coordinates.

Using the appropriate characters, Equation (1.46) becomes,
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Figure 1.1. Cubic and primitive unit cells of a monatomic fcc lattice.
Coordinates of the designated first neighbors are given in
terms of the cubic cell length
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=
il

UM+ N2+ M2+ @A+ 1) + () + () + D1} (L4
N=23

Therefore, there are three independent first neighbor force constants.
Recalling permutation symmetry the initial force constant matrix

may be written

XX Xy Xz
©(000, 110) = (xy Yy YZ) . (1.48)
Xz Yz zz

Permutation symmetry alone gives six independent force constants. Let

a mirror reflection in the (110) plane be applied first.

_ 0 1 0
s(110) = (l 0 0) . (1.49)
0 0 1
Therefore,
0 1 0 XX XYy Xz 0 1 0
¢ (000, 130) = (1 0 0)(xy yy yz)(l 0 0) (1.50)
0 0 1 XZ yz zz 0 0 1
0 1 0 Xy XX Xz
= ( 1 0 O ( Yy Xy yz)
0 0 1

Yz xz zz

rYY Xy vz \
© (000, ¥30) = k XY XX Xz
yz xz zz

(L-51)

Comparing Equations (1.48) and (1.51) we see that xx = yy; xz = yz.

The force constant matrix now contains five independent force constants,

XX XY Xz
) (1.52)

¢ (000, $30) = ( Xy XX Xz
Xz Xz 22
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Applying a reflection in the (001) plane,

1 0 O XX XY Xz 1 O @
© (000, %30) = ( 0 1 0) ( Xy XX xz) ( 0 1 0) (1.53)
0 0 -1 XZ Xz zz g 0 -1
XX XYy =Xz
©(000, %10) = ( Xy XX -xz) (1.54)
-XZ =XZ ZZ

Comparing Equations (1.52) and (1.54) gives the final constraint,
xz = -xz =0

Thus the force constant matrix reduces to the following simple form

involving only three independent force constants.

xx xy O
@ (000, $30) = (xy xx 0 ) (1.55)
0 0 zz

One can calculate independent force constants for the n-th neighbor in
the same way. The independent force constants of an fcc lattice out to
eight neighbors are determined in Appendix A.

Additional constraints can be imposed on the force constants by
invoking a specific type of interaction. Two types of central force

models are described below.

Central Force Models
If the potential energy between a pair of atoms is a function only
of their separation, R, the interatomic force between the pair is a
central force. Two types of central force models are commonly used.
In the axially symmetric model, the forces between each given atom pair

are central, but not necessarily derived from the same potential. The
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potential energy function between first neighbors need not be the same
as the potential energy function between third neighbors, although both
are functions of R. Therefore, the axially symmetric model imposes
constraints on each set of n-th neighbor force constants. On the other
hand, if the central potential is the same for every n-th neighbor pair,
an additional constraint can be derived from the equilibrium condition
which involves all the force constants. This second type of model is
often called simply the '"'central force' model which can be somewhat con-
fusing. In both the axially symmetric model and the ''central force"
model the potential energy is a function only of R. Both involve central
forces and differ only in the details of the model as described above

(31). The axially symmetric model will be discussed first.
For R = |R(2, k) - R(2', k') | (1.56)

Equation (1.6) may be rewritten

( 82¢(R)
@ (2k, 2'k') = e (1.57)
af \ au (%, k)aug (2", k') ) .
B ) 3¢ (R) 3R
B [raua(z, k) ( R aua(sz.', k") ” R=R,
Let
a /3¢(R) X B
P2k, 2'K") = ['aum(z, a5 ) J ) , (1.58)
R=R,
where

aR

X8 = R BUB(Q', Ty the 8 component of R.
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Let Ua(ﬂ, k) - Ua; then Equation (1.58) becomes

226 (R) Xg R 30(R) 5,1
@ B(zk, 2'k') = [ - i + Xq ( ek )
o 3R R au 3R AU R
(6 oL
20(R) 1 aX,
" _.___.J . (1.59)
3R R AU et

Carrying out the derivatives and evaluating at RO’ one obtains

2

3" a(R) X, X 3d(R) -X
o (2k, 2'k') = Ba . X -——Ji—)
af 2R2 (R)Z R B\ (R )3
R=R 0 R=R 0
0 0
39(R) | ]
+ _'éus (1.60)
aR R=R R
o
This can be expressed as
XGXB XaxB
B § ws Pt = et
mas(zk, 2'k") wt(zk, L'k )( 8p 5 )2 ) - mr(zk, L'k") - )2
0 0
(1.61)
where ¢r, the radial force constant, is given by
2
¢ (2k, £'k') = E—E%EL (1.62)
aR R=R
0
and wt, the tangential force constant, is defined by
9, (tk, 2'k') = - 3R . (1.63)
0 R=R
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Thus for axially symmetric forces only two independent force constants
exist for each type of neighbor.

Consider the first neighbor force constants of an fcc crystal.
Recall from Equation (1.55) there are only three independent force con-
stants for first neighbors. These are designated as 1XX, 1XY and 1ZZ.
The first neighbor is located at R = % (1, 1, 0). Substituting into

Equation (1.61) one obtains

2
1XX =—’—(M) v oy 2 ‘I’ZR) (1.64)
av2 \ 3R 3R
2
lxy,__l_(a_m_)) " _;_(_BLZ(R)_) (1.65)
av2 \ aR R or R
0 |0
_ V2 [ 39(R)
12z = 2 ( 48 ) X (1.66)
0

Eliminating the derivatives among the equations yields the constraint

imposed on first neighbors by an axially symmetric potential.
1XX = 122 = 1XY (1.67)

The axially symmetric constraints for an fcc crystal out to eighth
neighbor interactions are listed in Table 1.2.

If the potential energy is constrained to be an identical function
of R for all n-th neighbor pairs an additional constraint may be
derived. This ''central force' constraint arises from considerations of

crystal equilibrium. For a monatomic cubic crystal in equilibrium the
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Table 1.2. Axially symmetric constraints to
eight neighbors for fcc crystals
Ne i ghbor Constraints
] (xx) - (1zz) - (xy) =
2 none
3 (3xx) - (3YY) - 3(3yz) =0
2(3xx) - 2(3YY) - 3(3xz) =0
4 (4xx) - (b4zz) - (4xy) =
5 3(5XX) - 3(5YY) - 8(5XY) =0
(5xX) - 9(5YY) + 8(522) =
6 none
7 3(7XX) - 3(72Z) - 4(7xY) =
2(7vY) - 2(7zz) - (7xY) =0
3(7vz) - (7xY) = 0
2(7xz) - (7xY) = o0
8 none




27

value of the lattice constant must minimize the total potential energy.

Therefore,

d _
(?p— [E anb(Rn)]) ‘ _ = 0 ; (1.68)
n p=a

where p is the general separation along a cube edge (non-equilibrium
lattice constant), Rn is the non-equilibrium interatomic separation of a

given set (n) of neighbors, and zZ is the number of equivalent neighbors

in the set.

For fcc crystals,

Z], 22, 23, sow B 2. 6, 2H. s (1.69)
Rps Ry Ry = P/V2, P, V6 P/2, ... (1.70)
(Ro)]! (RO)Z’ (Ro)s’ Sms a//z_, a, /galzg LY (1-7])

The equilibrium condition given by Equation (1.68) becomes

o - 6/2—( 33(R) ) + 6f 32(R) ‘ + 1276 [ 22(R) ) -
aR aR aR _
(1.72)
Recall from Equation (1.66) that
39 (R) a
= (122) —
( " ) (Ry) a

Similarly the derivatives in each term of Equation (1.72) can be
evaluated by applying the axially symmetric condition [Equation (1.60)]

to each set of neighbors. These values are tabulated in Table 1.3.
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Table 1.3. Derivatives of ¢(R) in central force models evalu-
ated for n-th neighbor atoms for fcc crystals

! 30(R ' 22a(R
vt k_?’i_))(no)n [ )(Ro)n
1 a/v2 (1z2)a/v2 2(1xx) - (122)
2 a (2YY)a (2Xxx)
3 V6 a/2  [4(3YY) - (3xX)]a/v6 [5(3%x) - 2(3YY)1/3
4 Y2 a (422)v2 a 2(Lxx) - (4z2)
5 Y10 a/2 (522) V10 a/2 [9(5xx) - (5YY)1/8
6 Y3 a [(6xx) - (6YZ)1V3 a (6XX) + 2(6YZ)

7 ANk a/2 (2(722) - (7Y2) 11k a/k 2(7xX) = (7YY)

8 2a 2(8YY)a 2(8xX)
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For an fcc crystal, taking interactions to eight neighbors, the

""central force'' constraint is given by

(12z) + (2YY) - 2(3xXX) + 8(3YY) + 4(42Z) + 10(52Z) + L(6XX) - L(6YZ)
+ 28(72z) - 14(7vZ) + 4(8YY) =0 ’ (1.73)

The axially symmetric model will be discussed further with respect
to the present study in Chapter I1l. First, however, inelastic neutron

scattering basics and experimental details are presented in Chapter II.
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CHAPTER 11. THE NEUTRON SCATTERING EXPERIMENT

Inelastic Nuclear Scattering

Before proceeding to the experimental methods and details of the
present study, it is useful to examine the basic principles of inelastic
nuclear neutron scattering. As mentioned in Chapter |, the nuclear
scattering of thermal neutrons from a crystal may be elastic or inelas-
tic depending on whether or not the neutron exchanges any energy with
the lattice. Elastic scattering is used for structure analysis and
crystal alignment. Inelastic scatterjng provides the phonon spectrum
for lattice dynamical studies.

Each of these kinds of scattering contains coherent and incoherent
contributions. Coherent scattering arises from identical scattering
conditions (i.e., identical nuclei) occurring throughout the lattice.
If more than one isotope is present in the sample an incoherent con-
tribution to the total scattering will also be present due to the dif-
ference in scattering amplitudes of nuclei of different isotopes. Nuclei
possessing non-zero spin give rise to another incoherent contribution
due to the interaction of the spin of the neutron with the spin of the
nucleus. All of the stable isotopes of cerium have a nuclear spin of
zero; therefore, incoherence in cerium is due only to isotope content.
The incoherent scattering cross section that arises from the isotope
content of natural cerium is very small (see Table 1.1).

For phonon measurement all scattering contributions except inelas-

tic coherent scattering are considered as background. The background



31

also includes scattering due to multi-phonon processes. Therefore,

only the one-phonon inelastic coherent neutron scattering cross section

is described below. Since scattering theory is discussed thoroughly by

numerous authors (32), only the results are presented here. The differ-

ential cross section is given by

d“o 2 K' h“(n + % + %)
coh i _+Z+_ F'(a)!z
ddv Vo q,j,T Ky 2v J
x §hv z by, @188 - @+ D] . (2.1)

The terms of Equation (2.1) are defined below. Following these brief

definitions the dependence of the cross section on several of the terms

is discussed in more detail.

Y/

o4

~4

hv

hv.
J

solid angle
primitive unit cell volume
phonon wave vector

identifier for mode of vibration

reciprocal lattice vector (this definition includes the factor
of 2n)

scattered neutron wave vector

incident neutron wave vector

ﬂz(K'2 - KS)
= = energy change of the neutron when scattered -

2m
n

m is the neutron mass
-
(q) = energy of the created or annihilated phonon

>
K, = K' = momentum transfer, i.e., scattering vector
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n = —————=——— = average phonon occupation number
(eh\)/kT !)
- -
iTeR(k) -W
k > > k
F.(Q)=£—;—6-U(k. q, jle e
J k M

inelastic coherent neutron structure factor

=x
il

" mass of atom k

coherent nuclear scattering amplitude for atom k

o
2
1l

B(k) = position vector for atom k with respect to the primitive

cell origin

ﬁ(k, a, j) = displacement vector for atom k

W, = 1 <[a . ﬁ(k, a, j)]2> = the Debye-Waller factor

The upper and lower signs in Equation (2.1) correspond to phonon
creation and annihilation respectively. The two delta functions impose
two conditions necessary for a non-zero scattering cross section. The

first delta function requires energy conservation.
) = +hv, (d) (2.2)

The energy lost or gained by the neutron must correspond to the energy
change of the lattice - the creation or annihilation of a phonon of the
appropriate energy. The second delta function requires momentum con-

servation.
=K, -K=7+3 (2.3)

The momentum change of the neutron must correspond to the momentum

change of the lattice.
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I
According to the E—-factor in Equation (2.1) it would appear that a
0

neutron energy gain process (phonon annihilation) would produce a larger
scattering intensity than a neutron energy loss (phonon creation)
process. However, the population factor, (nh + ¥ + }) must also be taken
into account. At room temperature the population factor for an energy
gain process is 5.5 for phonons having a frequency of 1.0 THz (1 THz =

‘012

cps). However, this factor becomes less than 0.6 for phonons with
frequencies above 6 THz. Furthermore, experimental resclution and
methods of measurement affect the observed intensity. For example,
resolution is higher for an energy loss process. Resolution

effects and measurement methods are discussed more fully in a later
section.

In addition to the frequency dependence which enters Equation (2.1)
through the population factor the cross section is a function of the
phonon frequency directly through the 1/v factor. Therefore, the
intensity decreases as the phonon frequency increases.

The structure factor, Fj(a) contains several terms which produce
important effects on the cross section. These terms exert a particularly
strong influence since the cross section depends on IFJ(Q)IZ.

The coherent scattering length of the nuclei, Bk‘ affects all
phonon measurements independent of frequency or experimental parameters.
The variation of Ek among most common isotopes is roughly an order of

magnitude. The value for cerium (see Table 1.1) lies in the lower one-

third of this range. The effect of cerium's low coherent scattering
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length on the present experiment will be discussed in the section
describing experimental details.

The form factor also contains the dot product, 3 . ﬁ, which
requires the scattering intensity to go to zero for a mode with dis-
placement [1] perpendicular to the scattering vector, a. According to
Equation (1.20) this is equivalent to a mode with polarization vector,
g(a). perpendicular to a. If an experiment is arranged so that a
always lies in a mirror plane of the crystal, no scattering will be
observed for modes polarized perpendicular to that plane. The scattering
will be strongest for those modes having g(a) nearly collinear with 6.
This feature of the form factor allows for the identification of observed
modes .

According to the a . ﬁ term, it appears that the largest scattering
intensity will be obtained by using the largest possible a values.
However, the Debye-Waller factor, e-zwk, decreases the intensity for large
a due to the Q2 factor appearing in the exponent. This effect is usually
minor at room temperatures for experimental 6 values commonly used. At
very high temperatures, where <U> becomes large, however, the Debye-
Waller factor significantly reduces the intensity with increasing a.

Due to resolution effects, optimizing the cross section formula by

judicious choices of K K', and a does not insure optimum experimental

0’
results. The description of the effect of resolution on the observed
scattering is incorporated into the discussion of measurement tech-

niques. First, however, basic principles of magnetic inelastic scat-

tering are presented. A description of the triple axis instrument is
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then given to facilitate understanding of the measurement techniques

discussed thereafter.

Inelastic Magnetic Scattering
As mentioned in Chapter |, magnetic scattering of neutrons occurs
because of the neutron's intrinsic magnetic moment. Only inelastic
magnetic scattering is discussed here. The differential inelastic mag-
netic cross section is proportional to the quantities given in Equation

(2.4) (33). Constant factors have been omitted for simplicity.

2 . o
:QEU ~ EE [f(6)|2<n + D imlx (@, v) e (2.4)

Here Flal is the magnetic form factor, n is the magnetic excitation
occupation number, and x(a, v) is the generalized susceptibility. The
other symbols retain the definitions presented in connection with
Equation (2.1).

The magnetic scattering intensity depends strongly on the magnetic
form factor squared. |f(ﬁ)[2 drops off with increasing 6 (see Figure
3.11), therefore, the inelastic magnetic scattering cross section also
decreases with increasing ﬁ.

The Debye-Waller factor, K', KO’ and analogous population factors
appear in both the magnetic and the phonon cross sections. The effect
of these terms on the magnetic cross section follow the pattern pre-
viously discussed for phonon scattering.

The generalized susceptibility is a function of both a and v. For

a given a value, variation of the magnetic cross section is given by
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EL (n + ])x(a, v). Since K', KO, and v are known experimental parameters,
;?Q, v) can be extracted from the data.

The generalized susceptibility enters the cross section formula for
magnetic scattering because of its intimate relation to the magnetic
moment of the atoms in the crystal. (Recall x(a,'u) is a response
function describing the response of a material to a magnetic field which
varies both in space and time.) Since it is the interaction of the
magnetic moment of the neutrons with the magnetic moment of the atoms
which produces magnetic scattering, it is intuitively reasonable that
X(a, v) should appear in the cross section.

Magnetic inelastic scattering can produce well-defined, narrow
peaks in the scattered neutron intensity or a single broad feature
covering a wide energy range. To understand these two features of
magnetic scattering consider the following example.

In the absence of magnetic and electric forces a rare-earth
paramagnetic ion (well above the Curie temperature) has a ground state
degeneracy of (2J + 1). Due to the presence of other ions in the
crystal, however, the ion under consideration is subject to an electric
field. This crystal field does not break down the L-S coupling of a
rare-earth ion because the unfilled 4f shell is shielded by the 5d and
5p electrons. The crystal field produces sublevels in the J states,

3 to 10—]

however, with an expected separation of 10 eV (34). Transi-
tions between these states can be induced by an exchange of the

appropriate amount of energy with a thermal neutron.
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The two types of magnetic elastic scattering arise from the relative
separation of these sublevels. |If they are well-defined discrete states,
the intensity of the scattered neutrons will contain narrow peaks
corresponding to resonances in x(a. v). On the other hand, if these
levels are very closely spaced forming a quasi-continuum, x(a, v) will
exhibit only a single broad peak which can be extracted from the data.
Detection of both kinds of magnetic inelastic scattering is discussed
more fully in the section on measurement techniques.

First, however, the triple axis instrument which is used both in

phonon and magnetic inelastic scattering is described.

The Triple Axis Spectrometer

A standard triple axis spectrometer is shown diagrammatically in
Figure 2.1. An intense beam of neutrons from a nuclear reactor having a
spectrum of thermal energies is incident on the monochromating crystal.
They are Bragg diffracted at an energy E0 which is dependent upon the
angle Zem. The monochromatic beam produced passes through a collimator
made of parallel strips of cadmium. Since cadmium has a very high absorp-
tion cross section for neutrons, these Soller slits limit the horizontal
divergence of the beam. The collimated beam strikes the sample set at
angle Y. Those neutrons scattered at angle ¢ pass through another set
of Soller slits to the analyzer. The analyzing crystal is set at an
angle of ZBA to Bragg diffract neutrons of a given final energy, E', into
the detector.

The calculations of the angle variations, and the driving of motors

to set those angles for a given scan are performed by an on-line
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-Neutron Beam

Reactor Foce-/

Monochromator
Shielding Drum—

Sample
(2nd axis)

Monochromator
Crystal (Ist axis)

Soller Slit
Collimators

Analyzing Crystal
(3rd axis)

I—Beam Stop l—Detector

Figure 2.1. Schematic diagram of a typical triple axis spectrometer
viewed from above
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computer. Usually a monitor is located between the monochromator and
the sample. The monitor is essentially a detector with a very low
counting efficiency (n0.1%) so that it samples the beam without serious
attenuation. Counting each point in a scan for a given monitor count
instead of for a given time corrects for any variations in reactor
power that occur during the measurements.

Specific features of the various triple axis instruments used for
the present experiment are described in the section on experimental
details. Basic techniques utilized in a standard inelastic neutron

scattering experiment are discussed below.

Measurement Techniques

For most lattice dynamical studies, the triple axis instrument is
used to measure phonons having E lying along directions of high symmetry.
The first Brillioun zone of an fcc lattice is given in Figure 2.2. High
symmetry lines and points are labeled with standard group theoretical
notation. |In most inelastic experiments performed on fcc crystals the
phonons measured are those with wave vectors lying along the high
symmetry directions shown: A[001], £[110], and A[111].

These directions are chosen because the phonons with a lying along
these directions have polarizations which are purely longitudinal or
transverse to the corresponding 3. For a monatomic lattice there will
be one longitudinal mode and two transverse modes for each of the three
directions.

For the designated high symmetry directions the dynamical matrix

may be factored by a technique analogous to the symmetry reduction of
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the force constant matrix. Solving Equation (1.24) using the factored
dynamical matrix, one finds that the freguencies of the phonons in these
directions are given by simple linear combinations of interatomic force
constants. The resulting eigenvectors give the polarizations.

Due to the symmetry of an fcc crystal the frequencies of the two
transverse modes in the [001] direction are the same. The [111] trans-
verse modes are also degenerate. Therefore, only seven independent
branches of the dispersion relation remain to be determined. These are

L [001]1: T [@01]1, L [1161; T. [110], T2 [110], L[111] and T [111]; where

1
L denotes a longitudinal polarization, Tn a transverse polarization, and
the phonon wave vector 3 lies along the designated direction. As men-
tioned in Chapter |, the phonon frequencies are periodic functions of 3.
Therefore, only phonons with wave vectors lying within the first
Brillioun zone need to be determined.

In an fcc crystal six of the seven phonon modes of interest lie in
the (110) mirror plane. Only T, [110] is perpendicular to this plane.
The TI [110] mode may be obtained from scattering in the (100) plane.
Figure 2.3 represents the (110) plane of an fcc lattice in reciprocal
space. The first Brillioun zone is outlined around each reciprocal
lattice point. The a, ?, a, and e vectors shown correspond to the
scattering process used for the measurement of several different phonons.

The polarization vector of a T, [110] phonon is perpendicular to this

1
diagram. Figure 2.4 represents the (100) plane of an fcc crystal in
reciprocal space. Vectors corresponding to scattering processes for

some standard T] [110] measurements are included. Al though they can be
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aj

Figure 2.3.

(110) plane of the reciprocal lattice of an fcc crystal.

The momentum-space vectors associated with Ehree phonons
are also shown, with polarization vectors, e, indicated by
dotted lines, «++++, The first Brillioun zone around the
designated origin is labeled with standard group theoretical
notation
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Figure 2.4, (100) plane of the reciprocal lattice for an fcc crystal

with the momentum-space vectors of three phonons.
tion vectors, e, are shown with dotted lines, <«-
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measured in either plane, a T [001] phonon is included in Figure 2.4
since some of the T [001] data of the present work were measured in the
(100) plane. (See Table 2.2).

A common experimental procedure used in obtaining the phonon
branches is the ''constant Q' method (25). This method was used in nearly
all of the measurements of the present work and is the only method dis-
cussed.

In the '"constant Q' method the scattering vector, 6 = KO - K is

2
held constant while the energy transfer, hv = EFT—(K'Z

- Kg) is varied.
The result is a vertical scan through the dispersion curve shown in
Figure 2.5a. |f the magnitude of K' is held fixed during a given scan,
the vector KO and the origin of -K' follow the dashed arc shown in

Figure 2.5b. The majority of the measurements reported here were of this

type.

The components of the 6 vector are given by

Qx KO cos p - K' cos(d + y) (2.5)

y Ky sin ¥ - K sin(o + y) p (2.6)

o
]

For given values of Qx’ Qy’ and K', the variables KO’ &, and y can be
calculated to perform the desired scan in energy.
For a constant Q scan with fixed final energy, the phonon cross

section formula appears to be dependent on %— % . However, the KO
0

dependence can be removed if a uranium fission monitor is used in the
experiment. The efficiency of such a monitor is proportional to 1/V,

where V is the incident neutron velocity. Therefore, the Ko dependence
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A vertical scan through a dispersion curve as produced by
the ''constant-Q'' method
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Figure 2.5b.

The motion of momentum-space vectors in the reciprocal
lattice for a gonstant Q scan using fixed final energy
(i.e., fixed |K'|)
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in the cross section is effectively removed by the monitor. All of the
present measurements were made using such a monitor.

The constant Q method may also be used to observe magnetic excita-
tions. A constant Q scan avoids intensity variation due to the magnetic
form factor in the cross section. It is important to avoid phonons when
attempting to detect magnetic scattering. Due to the periodic nature of
momentum space, every reciprocal lattice point is an equivalent Bril-
lioun zone center (see Figure 2.3). For a monatomic lattice all the
phonon branches go to zero at the Brillioun zone center. Therefore, by
performing magnetic scattering measurements about reciprocal lattice
points (i.e., with a = ?), one phonon scattering is avoided.

A magnetic excitation can be differentiated from a phonon peak by
examination of the 3 dependence of the scattered intensity. For an
identical energy scan repeated at larger 6, the intensity of a phonon
peak will increase due to the a - U term in the phonon cross section.

On the other hand, the intensity of a magnetic excitation will decrease
due to the magnetic form factor in the magnetic cross section.

If the magnetic scattering of the material does not exhibit well-
defined excitations but follows a single broad structure in the
generalized susceptibility, a constant Q scan over a very wide energy
range is necessary to extract Im x(a, v). Performing a constant Q scan
with fixed K' and using a monitor removes the KO factor from the
magnetic cross section in the same way that KO is eliminated from the
phonon cross section. Therefore, the observed scattering intensity

depends only on (n + 1)Im x(a, v) for this type of measurement. The
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generalized susceptibility can be determined by dividing out the fre-
quency dependent population factor from the observed intensity at each
point in the scan.

The magnetic form factor can also be examined using inelastic
magnetic scattering. |If a magnetic measurement is performed at constant
energy transfer the scattered intensity will vary as a function of
lf(a)|2. In this type of measurement one must be careful to avoid phonon
energies in the range of a that is scanned.

Both phonon and magnetic excitation measurements are subject to
experimental resolution effects. The magnetic excitation linewidth is
given by x(a,v) which is a characteristic of the material, hence it is
different for each experiment. The theoretical linewidth of the phonons,
however, (in the context of the harmonic approximation) is given
explicitly in the cross section. Therefore, experimental resolution
effects have been more thoroughly studied in connection with phonon
measurements and are presented below in this context only.

The presence of the two delta functions in the phonon cross section
formula implies infinitely sharp resolution in energy and momentum.
However, finite experimental resolution allows the detection of
neutrons corresponding to energies of h(v + Av) and momentum transfer,
(a + Ag), when the instrument has been set to detect neutrons of
energy hv and momentum 3 only. Factors contributing to the broadening

of the resolution are the horizontal divergence of the beam allowed in
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each collimator, vertical divergence of the beam, and mosaic spread] in
the monochromator, sample, and analyzer.

One resolution effect arises from the orientation of the instrument.
To simplify the problem consider elastic scattering from two crystals
only, the monochromator and sample in Figure 2.1. Notice that the
sample is nearly parallel with the beam incident on the monochromator.
If the sample was rotated by 90° it would still reflect the neutrons
from the same set of crystal planes but the diffracted beam would be
nearly antiparallel to the beam incident on the monochromator. A per-
fectly parallel arrangement produces neutron groups with widths governed
by the mosaics of the sample and the monochromator. The "antiparallel"
arrangement width is much greater, being roughly proportional to the
sum of the mosaics and the angle of collimation (10). The observed
resolution in inelastic scattering follows the same pattern. For best
resolution the beam scattered from the sample should be roughly parallel
to the beam incident on the monochromator, and the final scattered
beam from the analyzer should be ''parallel' to the beam incident on the
sample. This results in the standard 'W' configuration shown in Figure

2.1.

]Real crystals do not consist of a single perfect lattice, but are
divided up by dislocations into small blocks. These separate blocks
will display a spread of misorientations relative to one another known
as mosaic spread. The crystal will then diffract neutrons of a given
energy through a small range of angle settings instead of at just one
precise angle.
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For inelastic measurements the resolution may be improved over the
above ''instrument'' resolution by the correct choice of the direction of
a. If one considers a group of neutrons with a small spread of ﬁn
falling on the sample (instead of a single ''ray'') and traces the effect
throughout the entire system the following results (35) are obtained:
(1) For a '"W'" configuration the best resolution results when 3 is
directed such that the resultant a vector is counterclockwise from the
reciprocal lattice vector, ?. (A1 3 vectors in Figures 2.3 and 2.4
are of this type.) (2) The intensity and resolution of the scattered
neutron group are dependent on the slope of the dispersion curve. Since
the slope of a dispersion curve changes with 3, the resolution and
intensity of the phonons are also 3 dependent. Most dispersion curves
flatten out at large 3 values. This produces a broadening of the
phonons as the zone boundary is approached.

Another experimentally observed 'rule of thumb'' for good resolution

deals with matching the magnitudes of K . K', and a. If the magnitudes

0
of these quantities are nearly the same, the resolution is usually better
than if they differ by a significant amount. This point is explored
further in the context of the present experiment in the discussion of
experimental details.

Resolution effects arise from detection of neutrons with a small
range of frequency and momentum instead of a single value. Another
experimental problem is the accidental detection of neutrons scattered

by other processes besides the phonon or magnetic scattering being

studied. Such spurious processes can arise in one of several ways.
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The most common problem is the unintentional detection of Bragg
scattering in the sample. The settings of ¢ and { for a given scan may
accidentally coincide with angle settings appropriate for Bragg scattering
in the sample. |If the analyzer scattered only coherently the Bragg
diffracted beam would not enter the detector. Due to elastic incoherent
scattering in the analyzer, some of these neutrons do enter the detector.
This may be designated as a B-B-Incoh process; a Bragg process in the
monochromator and sample, and incoherent scattering in the analyzer.

This process can be identified by placing a second monitor between the
sample and the analyzer. The second monitor detects a strong peak due
to the intense Bragg scattering in the sample. Measuring the phonon
from a different lattice point, or changing KD or K' will alleviate the
problem.

Incoherent scattering in the sample and higher order Bragg diffrac-
tion in the analyzer may also give rise to spurious neutron groups. |If
the analyzer is set to diffract neutrons of final wavelength A' (energy
E'), higher order Bragg planes can scatter x'/2 (LE'), A1'/3 (9E'), etc.
into the detector. |If neutrons incident on the sample have an energy
E0 = LE' and undergo elastic incoherent scattering a B-Incoh-B process
can occur. This problem can be prevented by using an analyzer reflection
with a zero structure factor for second order scattering. The final
energy, E', can also be changed so that the new EO = LE' does not occur
within the given scan range.

The third spurious process involves contamination in the beam

incident on the sample. Incoherent and higher order scattering in the
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monochromator may contribute undesired energies to the beam. Phonons
from the monochromator may also scatter into the incident beam. If the
sample is coincidentally set properly, it may scatter these ''contami-
nating'' neutrons in such a way that their final energy is E' and they are
passed by the analyzer. Repeating the measurements under different con-
ditions will remedy the situation.

Given the previous brief review of the relevant scattering cross
sections and the experimental instrumentation and methods, the details
of the y-Ce experiment itself are presented below. Following a discus-
sion of the measurements the data used for the analysis are tabulated.
The analysis of the phonon and magnetic excitation data is presented in

Chapter 111,

Experimental Details and Results

The measurements reported in the present work were performed on a
y-Ce sample obtained from 0. D. McMasters and K. A. Gschneidner, Jr. of Ames
Laboratory. (Initially, a few measurements were begun on a small sample
of y-Ce, but when a larger crystal became available it was immediately
put into use. Data from the first sample are included in Appendix B.)
The second, larger crystal was an allotropically pure, cigar-shaped
boule. The purity analysis of the cerium stock from which the boule was
made is given in Table 2.1. No purity analysis of the sample itself
was made.

Examination with a double axis diffractometer identified a poly-

crystalline section on one end of the sample, numerous small crystallites,



Table 2.1. Purity analysis of cerium stock #Ce-52374$
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and two fairly large crystals in the specimen. After some initial con-
fusion, these two large crystals were easily identifiable from the dis-
tinctive difference in their shapes revealed by Polaroid photographs of
their (111) and (002) reflections. The difference in count rate between
the two crystals on these reflections was roughly a factor of two. For
obvious reasons the larger crystal of the two was used for the measure-
ments. From the Polaroid photographs this crystal was estimated to
have a velume of approximately 3 cm3. No measurements of mosaic width
were made for this crystal, however, the mosaic width was estimated to
be in the range from 15-20 minutes of arc. During the orientation
procedure an oxide film developed on the sample due to cerium's rapid
oxidation rate. After the polycrystalline section of the sample was
removed with a spark cutter, the oxide film was cleaned off using a 50%
solution of HNOS. The sample was then sealed in a thin walled aluminum
container and kept under high vacuum or in a helium atmosphere through-
out the experiment.

The phonon and magnetic excitation data were collected at two dif-
ferent installations, Ames Laboratory, Ames, lowa and Oak Ridge National
Laboratory, Oak Ridge, Tennessee. Measurements were begun using the
Ames Laboratory Research Reactor, ALRR, which is a CP-5 type reactor
operated at 5 Megawatts. Cerium's low coherent scattering cross section
coupled with the intensity loss due to resolution effects as the zone
boundary is approached prohibited completion of the experiment at Ames
Laboratory. The measurements were finished using the High Flux Isotope

Reactor, HFIR, at Oak Ridge National Laboratory. This reactor operates

at 100 Megawatts.
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All of the measurements reported here were taken at room temperature
and nearly all the scans used a neutron energy loss (phonon creation)
process. (See data tabulations in Table 2.2 and Appendix B.) Virtually
all of the Ames Laboratory data were found to agree within error with
those taken at Oak Ridge. Therefore, most of the data used for the
analysis (Table 2.2) were ORNL data because they represent the largest
collection of data obtained under consistent experimental conditions.
Data obtained at Ames Laboratory are tabulated in Appendix B for compari-
son. The experimental conditions under which the Ames Laboratory data
were taken are therefore described only briefly below. The experimental
conditions under which the HFIR data were obtained are then presented in
somewhat more detail.

Measurements at Ames Laboratory were begun on a triple axis
spectrometer which was built by Mitsubishi Electric Company and modified
by Ames Laboratory. Pyrolytic graphite was used for both the monochro-
mator and analyzer. The instrument was operated in a fixed Ey, variable
E' mode. The incident neutron wavelength was Ao = 2.455 R, corresponding
to an incident frequency vg = 8.4 THz. Since most of the cerium phonons
have frequencies below 3 THz, the match between |K0|, |K'|, and |a| was
not very good, producing poor resolution. No filters were used with
the Mitsubishi spectrometer and higher order contaminations in the beam
coupled with the above resolution effect produced ambiguities in much of
the data obtained with this instrument. The experiment was moved to a
second spectrometer, the Triax, when it became available.

The Triax, which was built by Ames Laboratory, was operated in the

fixed E', variable EO mode. This allowed much more flexibility to match
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|Kl and IK with |3|, and to choose A. corresponding more closely to the

ol

1 R peak in the Maxwellian neutron energy spectrum produced by the reactor.

0

A pyrolytic graphite monochromator and analyzer were used, and a pyrolytic
graphite filter was also used thereby reducing higher order contaminations
in the beam. Therefore, a significant improvement in the intensity,
resolution, and general quality of the data was obtained. However, the
inherent intensity problems due to cerium's low coherent scattering

cross section and the poor resolution at large a values prohibited com-
pletion of the measurements at Ames. Therefore, the experiment was

moved to the High Flux |sotope Reactor.

At Oak Ridge National Laboratory the HB-3 triple axis spectrometer
was used. Due to the extremely high flux of the reactor, care must be
taken in correctly identifying the observed scattering. Therefore, the
HB-3 incorporates a second monitor placed between the sample and the
analyzer toldetect spurious processes. (See the discussion of spurious
processes in the section on measurement techniques.) The HFIR measure-
ments were conducted using a beryllium monochromator (101) reflectién and
a pyrolytic graphite analyzer (002) reflection.

The HB-3 instrument was operated in a fixed E' mode at all times.

A value of v' = 6 THz was used for large a phonons, and a value of

v! = 3.3 THz was used to improve the resolution for the narrower low
frequency, low 3 phonons. A pyrolytic graphite filter was inserted
between the sample and analyzer for the 3.3 THz measurements due to the
increased probability of detection of contaminations at this frequency.

(Recall that a second order process in the monochromator will scatter
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neutrons at an energy of hEo. To measure a phonon with a frequency of
2 THz with a neutron energy loss process Eo,must be 5.3 THz if E' is

3.3 THz. Therefore, E0 is low enough that a significant flux of

neutrons with an energy of hEO is present in the reactor spectrum.

Thus, measurements conducted with E' = 3.3 THz are much more suscep-

tible to contamination problems than measurements performed with

E' = 6 THz.)

As previously mentioned, nearly all the Triax phonons were re-
measured with the HB-3. All reliable Triax measurements agree within er-
ror with HFIR measurements except for several L [001] phonons. Here the
HB-3 data are systematically lower by approximately 5% through the middle
one-third of the zone. The L [001] phonons from the HB-3 data were incor-
porated in the analysis as they were self-consistent and HB-3 data in gen-
eral were in excellent agreement with the Triax data on all other branches.
(It should be noted that the area of discrepancy contained only two
phonons from the Triax data which were considered to be reliable.)

The data used for the lattice dynamical analysis are presented in
Table 2.2. All phonons listed there are HB-3 data except those desig-
nated as Triax data. The wave vector for each phonon is given in terms
of the reduced wave vector unit £ defined by a = %}-g. T is the
reciprocal lattice point about which the given phonon was measured.

Approximately 35% of the HB-3 phonon centers were determined with a
peak fitting program. Several phonons near the zone boundary were
broad and centers were too ill-defined to be determined accurately by

eye. The fitting program was originally used for these phonons. The
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Table 2.2. Phonon frequencies used in lattice dynamical

analysis
Branch 3 (£ units) v (THz)? +Av (THz) T (2 n/a)
L [001] R .345 .02 002
15 .52 .02 002
.2 .76b .03 002
.3 1.0k .06 004
b 1.35 .06 004
.5 1.70 .07 004
.6 2.0k .07 004
.7 2.45b .05 002
.8 2. 72 .08 004
.9 2.94 .08 004
1.0 3.04 .07 004
T [o01] . .29 .01 202
.9 .60 .015 202
.3 .97 .025 220
h 1.27 .02 220
.5 1.50b .0k 220
.6 1.735b .0k 220
7 1.99 .05 220
.8 2.04 .06 220
.9 2.10 .09 220
L [110] o1 .58 .02 220
.2 1.28P .03 220
.3 1.735P .025 220
4 2.09) .03 220
.5 2.20 .05 220
.6 2.20P .0k 220
.7 2.19 .06 220
.8 2.15 .05 220
.9 2.04 .06 220
1.0 2.05 .06 220

®A11 phonons listed In this table were obtained with
neutron energy loss, fixed E'.

b : ;
From Triax measurements - all other phonon frequencies
listed are from HB-3 measurements.
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Table 2.2. Continued

Branch a (£ units) v (THz)® +Av (THz) T (2 n/a)
T2 110 al i .01 002
.15 6] .01 002
.2 .95b .01 002
+3 1.4 .02 004
4 1.79 2 004
215 2,13 .04 004
.6 2.30 .06 004
¢ 2.59 0 1 004
.8 2.82 07 004
L 2.90 .07 004
T, [110] K .27 .01 202
15 .40 .01 202
2 .5k .01 202
3 .825 .02 202
A 1.09 .03 202
5 1.30 .03 202
.6 1.43 .05 202
.7 1.62 .07 202
.8 1.79 .05 202
3 1.85 .06 202
L. 1110} M| .84 .04 222
.15 1.20 .05 222
w2 1.55 .06 222
3 2. 27 .08 222
4 2.66 .08 222
=9 2.75 .07 222
T LE1)3 | 425 .01 222
.15 .60 el 222
w2 + 755 <015 222
w3 +99 .03 222
A .825 .025 222
i <75 .03 222
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other phonons fit with the program served as a check on the visual
center determinations. The center values given by the program for these
""double checked' phonons agreed well within error with the centers
determined visually. The errors listed in Table 2.2 were also obtained
visually. Several typical phonons are shown in Figure 2.6.

The dispersion curves constructed from the measured phonons are
given in Figure 2.7. The line through the points is a hand drawn
smoothed curve and does not represent any fitting procedure. Fitting of
the dispersion curves to various models is discussed in Chapter III.
First, however, a brief summary of the magnetic inelastic measurements
is given below.

Spurious structure observed during phonon measurements conducted
with the Mitsubishi prompted investigation of magnetic excitations in
y-Ce. Considerable disagreement over the nature of magnetic scattering
in y-Ce exists in the literature (36-38) and values listed for possible
discrete magnetic excitations ranged from 1.4-2.56 THz. Several pre-
liminary scans through the appropriate energy range were performed at
Ames with inconclusive results.

A series of constant-Q measurements at ''zone center equivalent"
lattice points was performed at ORNL. Comparison of a set of scans with
Q= (0,1,1), Q= (2,2,2), and Q = (3,3,3), for example, allows for iden-
tification of any peaks exhibiting a Q dependence in their intensity
given by |f(a)|2. This particular scan series is shown in Figure 2.8.
Although some structure in the background was observed in several of the

'magnetic' scans, the data did not consistently indicate a scattering
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Figure 2.6. Representative y-Ce phonons from various branches. Notice
the broadening of the transverse modes for large Q values
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which could be construed to arise from a discrete magnetic excitation
in cerium. However, useful information was extracted from the observed
magnetic scattering. Analysis of the magnetic scattering is included in

Chapter 11l following the discussion of the lattice dynamical analysis.



64

CHAPTER I11. ANALYSIS

Dispersion Curve Fitting

In order to extract elastic and thermodynamic properties from the
experimentally determined dispersion curves, the phonon data must be fit
with a suitable force model. This procedure yields the elastic con-
stants (if they are not already known) and the interatomic force con-
stants. The interatomic force constants can in turn be used together
with the relevant dispersion relations to generate the phonon density of
states. From the density of states the temperature variation of the
lattice specific heat and of the Debye temperature can be calculated.
Therefore, the fitting procedure is described first in this section.
Then the density of states and calculated thermodynamic properties
are discussed and the results are compared with previous experimental
results obtained from measurements on polycrystalline samples.

Chapter |Ill concludes with the analysis of the magnetic scattering
data.

In the present work the experimental dispersion curves (Fiqure 2.7)
were fit with the Born-von K&rmdn force model discussed in Chapter |I.
The complicated interactions of the localized electrons, conduction elec-
trons, and ion cores, which produce the interatomic forces in a metal, are
unknown and are phenomenologically represented by the interatomic force
constants. Therefore, the interatomic force constants obtained by
fitting the dispersion curves of a metal have little physical signifi-

cance and should be regarded as fitting parameters. Their usefulness
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lies in that they can be used with the phenomenological dispersion
relation [Equation (1.24)] to calculate a phonon density of states which
is consistent with the measured dispersion curves. In order to obtain
the best fit possible with the computer program which was available,
interatomic force constants out to eight nearest neighbors were in-
cluded in the fitting procedure for y-Ce.

Before discussing the fitting procedure itself, it is useful to
examine the simplified form in which the dynamical matrix and equation
of motion can be written for the three symmetry directions of an fcc
lattice. The relationships between basic parameters involved in the
fitting procedure are then discussed in order to clarify the descrip-
tion of the fitting procedure presented thereafter. Following the dis-
cussion of these topics, the results for the Born-von Kérmdn fitting of
y-Ce are presented.

The expression for the dynamical matrix can be simplified by
translational invariance and inversion symmetry. Writing
Equation (1.30) with the ''self force constant', waB(zl), written

separately from the rest of the sum, one obtains

ye-1a-[R(2)-R(2')]

Doe(@ = @5(22) + I P (2r L' (3.1)

L'#L

From translational invariance the ''self term' is given by Equation

(1.13).

¢ (22) = - 1 @ (22')
ap vy OB
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Therefore, the dynamical matrix may be written as

= : e iar[R(2)-R(21)]
D gla) = E'Zﬂ Py (22') + llzﬂ P28 )e . (3.2)

Each point in an fcc lattice is a point of inversion symmetry. Therefore,
Y o - ! F
P, (28') = @ g2 - 2 ) . (3.3)

Equation (3.2) becomes,

q+[R(2)-R(2"')]

D () =- 1 @ (") +% 1z 9 ()
of gi#g OB gr#y OB
4 oiar[R(2)-R(2")1y
=- £ @ () +} I g (222 cos(a[R(2) - R(e)D)
L1#£L L'#£8
=- I 0 (000 - cos(@-[R() - RLIDY . (3.4)
L'#£2
Recall from Chapter Il that the dynamical matrix factors for lattice

vibrations propagating in the three symmetry directions of an fcc lat-
tice. The physical interpretation of the factorization of the dynamical
matrix is that phonons propagating in the symmetry directions correspond
to entire planes of atoms vibrating in phase. For example, an [001]
phonon corresponds to a lattice motion in which every atom in a given
(001) plane vibrates in phase with every other atom of the designated
(001) plane. The mathematics of the problem therefore reduces to a
one-dimensional analog with each particle in a linear chain representing
a whole plane of atoms. The force constants between successive 'par-

ticles' in the one-dimensional analog correspond to the force constants
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between successive planes of atoms in the real crystal. These inter-
planar force constants are linear combinations of the interatomic force
constants (hereafter denoted as AFC's).

The expression for the dynamical matrix for modes in the three
symmetry directions may be simplified in the following manner. Consider
a series of {001} planes and a reference atom at R(%) = 0. Every atom
in the two (001) planes adjacent to the plane containing the origin will

> e
have the same q * R(%') value given by
q - R(2') = |q]d . (3.5)

Here d is the perpendicular distance from the original plane to the
first plane on either side.

In terms of the reciprocal lattice, d may be written as

d = 21T/T—q> . (36)

where Ta is the reciprocal lattice vector connecting the designated

origin and the nearest reciprocal lattice point in the direction of 3.
->

Recall that q may always be written in terms of the reduced wave vector

coordinate, E, as defined in Chapter Il. Thus Equation (3.5) becomes

-»_g_'yl—rﬁ
lald === [§] £

(3.7)

The boundary of the first Brillioun zone lies halfway between the origin
and the nearest lattice point in the direction of ¢ (see Figures 2.3

and 2.4). Therefore,
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- _ = _ H_ - )
5/2 =9, =3 B ax ; (3.8)

where a is the wave vector of a zone boundary phonon. Equation (3.7)
max

may be written as

2= nEL e .9
o= o

If planes of atoms successively further away from the original plane are
designated by integers p, p+l, p+2, ..., etc., Equation (3.9) is readily

generalized to

& _ pmE .10
Iqldp : - (3.10)

m

The dynamical matrix can therefore be rewritten in terms of the

interplanar force constants and £ yielding

e oy by o pTE |
Dj(E) = E @p(J) LI cos( £ )J . (3.11)

m

Here ¢$(j) is the sum of all the AFC's, qhB’ between the reference atom
at the origin and the atoms in the p-th plane on either side of it.
The summation extends over pairs of planes which are successively
further away from the original plane on opposite sides of it.

The equation of motion [Equation (1.29)] for a given mode, j,

becomes

Representing the interplanar force constants with a capital phi
(¢) is fairly standard notation and has therefore been adopted in the
present work. These &'s are not to be confused with the potential
energy function denoted by ¢ in Chapter I.



Mkmﬁ(i) = i 2, (3) [ 1 - cos( g;g )_] . (3.12)

The ¢p(j) are the interplanar force constants and are equal to the
negative of the ¢é(j)'s of Equation (3.11). In practical fitting
procedures the number of AFC's included in the summation which yields
¢p(j) depends on the number of nearest neighbors to be included in the
Fiti

A rigorous derivation of the AFC composition of the @p(j)'s for
each symmetry mode of an fcc lattice (39) will not be repeated here.
The results to eight nearest neighbors (8NN) are given in Table 3.1 (31).
Each row gives the coefficients of the designated AFC's in the summation
that yields the corresponding ¢p(j). For example, the interplanar
force constant between a reference {001} plane and the first two planes

on either side for a L [001] mode is given by
o, (L [001]) = 8(1xX) +16(3YY) + 8(5YY) + 16(722) . (3.13)

In order to illustrate the origin of the coefficients listed in
Table 3.1, consider the following simple example. For the unit cell
shown in Figure 3.1, the first {010}-type plane adjacent to the refer-
ence plane contains two first nearest neighbors to the atom at the
origin. These two first nearest neighbors are labeled 1 and 2. Adding
the other unit cells that surround the origin, one obtains a total of
8 first nearest neighbors in the closest {010}-type planes on either
side of the reference plane. All of the first nearest neighbor posi-

tions in these planes can be generated by performing appropriate
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8NN AFC composition of the interplanar force constants, ®

and of the elastic constants, Cij> of an fcc crystal

Table 3.1.
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Figure 3.1. {010}-type planes of an fcc monatomic lattice shown with
respect to the cubic unit cell. The first plane from the
origin contains two first nearest neighbors to the atom at
the origin numbered 1 and 2
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symmetry operations on the position of atom 1. Therefore, the matrix
qﬁe which gives the AFC's between the atom at the origin and the n-th
first neighbor can be generated by applying appropriate symmetry opera-

tions to q& Recall from Chapter 1, [Equation (1.55)]

8"
1 xx xy O
@, = ( xy xx 0 )
e 0 0 2Z
qu can be generated by applying a rotation of n/2 about the y axis.
2 0 0 1 xx xy O 0 0 -1
Pe = ( 0 1 0) ( xy xx 0 )( 0 1 0 ) ’ (3.14)
-1 0 O 0 0 zz 1 0 0
Therefore,
2 zz O 0
Pup = ( 0 xx -xy ) . (3.15)
0 -xy xx

Performing the symmetry operations that generate the six other first

neighbor positions, one obtains

3 xx =xy O
e = (-Sy xx 0 ) (3.16)
0 zz
4 zz 0 0
¢a8 = ( 0 xx xy ) (3.17)
0 Xy XX
5 XX xy 0
¢GB = ( xx xy O ) (3.18)
0 0 z2

XX -xy 0
o - ( ) (3.19)

P, =|-xy xx 0
“H 0 0 zz



7h

¢7 zz O 0 ( )

= 0 XX XYy ) 3.20
oB ( 0 Xy XX
8 zz O 0

®p = (0 xx-w) (3.21)
0 =-xy xx

The summation of these qﬁe's gives the first neighbor AFC composi-
tion of the interplanar force constants between the designated planes

for [010] modes. The resultant matrix is given below.

(bxx + bLzz) 0 0
( 0 8xx 0 )
0 0 (bxx + h4zz)

An examination of the displacements associated with a transverse [010]
mode reveals that only ¢xx and mzz will be involved. A lonagitu-
dinal [010] vibration involves wyy which is equal to Px for the
first nearest neighbor. (See Chapter |, Symmetry Considerations.)
Therefore, the elements (4xx + 4zz) of the above matrix are associated
with ¢I(T [010]) = ¢I(T [001]), for the two transverse modes. The 8xx
term is associated with ¢](L [010]) = ¢‘(L [001]) as given in Table 3.1.
In order to include the desired number of neighbors in a practical
fitting procedure, a sufficient number of interplanar force constants
must be included in the summation over planes in Equation (3.12). For
example, the eighth nearest neighbor of the atom at the origin in Figure
3.1 is at a distance of 2a along the cube edge. (See Figure A.1.)

Therefore, there is no eighth neighbor in the first, second, or third

successive planes from the reference plane. Thus, ¢h must be included
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for transverse and longitudinal [001] modes in order to incorporate 8NN
AFC's into the analysis.

Table 3.1 also contains the AFC composition for two modes in the
[0E1] direction. In an fcc crystal this direction lies along the X-W
line on the surface of the first Brillioun zone (see Figure 2.2).
Lattice vibrational modes propagating in the [0£1] direction are not
purely longitudinal or transverse. However, their polarizations are
governed entirely by symmetry (40), therefore, the dynamical matrix
factors for these modes in a manner analogous to the factorization
obtained for the [001], [110], and [111] directions. Hence, [0E1]
interplanar force constants may be obtained from the linear combinations
of AFC's given in Table 3.1. Working through the mathematics one obtains

"sel f-terms' for these modes which are called zero plane force constants,

@0. The equation of motion for [0£1] modes therefore becomes
M wz(g) =06 + I 0 (j) [l - cos EEE—)] (3.22)
k™j 0 o P £l ' )

The [0£1] modes of y-Ce have not yet been measured, however, they are
discussed further in connection with the density of states which was
obtained for y-Ce.

The AFC composition of the elastic constants given in Table 3.1 are
obtained by considering the long wavelength limit of lattice vibrations.
If the wavelength of a lattice wave propagating in a given symmetry
direction is very long compared to the interatomic spacing, the problem

becomes one of non-dispersive wave propagation in an elastic medium (41).
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Therefore, as £ + 0, Equation (3.12) must become the equation of motion
for the corresponding acoustic vibration.
The velocity of an acoustic vibration is given by

2
w

N S (3.23)
_ -5 3.23
/ 0 q

where p is the density of the crystal and Cj is the elastic constant (or
linear combination of elastic constants) associated with the mode j.

For cubic crystals there are three independent elastic constants, <
Sy €20 which are associated with the various phonon branches as

indicated in Table 3.2.

Table 3.2. Elastic constants associated
with each symmetry direction
of a cubic crystal

Branch pvj? = ¢,(c >0
T [001] Sy
L [001] Gy
T (11] %—(c]] - €y, + )
L [111] -;- fery + 2oy +l|c,_m)
T, [110] Chl
T, [110] (e = €5

L [110]

(e +cqy + 2¢,)
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Equation (3.23) may be solved for mz in terms of Cj‘ and .

2 2.2
C.q C. bn"g
2 oo . (_.L . ) (3.24)
p p a

A monatomic fcc crystal contains four atoms per primitive cubic cell.

Therefore, the density is given by

L
0 =—-'%k-- : (3.25)

a

Substituting these values into Equation (3.12) and expanding the cosine

term in the small £ 1imit, one obtains

3 223
a C. 2.2 pmE
—p(—-’-lmzr’)=z¢(j)[l-(l- ; +)J
4 p a p P 2£m
¢ P_2
(aCj)(ﬁm) = I ¢p(J) 5 8 (3.26)

p

Therefore, the elastic constants can be obtained from the interplanar
force constants which in turn will give the AFC composition of each
elastic constant. (If Cj represents a combination of elastic constants,
a set of n equations corresponding to Equation (3.26), written for n
different modes, must be solved simultaneously to yield the individual
elastic constants.)

As an example, consider the AFC composition of the Chy elastiE_con~
stant. The velocity of the T [001] mode as £ - 0 is equal to //Egﬂ

(see Table 3.2). Therefore, Cuy is given by a summation of T [001]



78

interplanar force constants. From Equation (3.26) we have

ac,, (& [OOI]m)z =4 0, (T [001]) +2 o)(T [001]) + ... . (3.27)

For the [001] direction g; = |1 (see Figure 2.3). Therefore, substituting

the AFC composition of 2, and o, into Equation (3.27), one obtains

acy), = F(L(1xx) + 4(122) + 8(3xx) + B(3YY) + ...)

+ 2(2(2vY) + 8(3YY) + L(4xx) + 4(b4zZ) + ...)

acy), = 2(1XX) + 2(122) + L(2YY) + 4(3xX) + 20(3YY) + 8(4xX) + 8(hzZ) + ...,
(3.28)

as given in Table 3.1.

If the elastic constants have been measured they provide additional
parameters which can be added to the fitting procedures. |f they are
not known the fitting procedure may be used to calculate elastic con-
stant values which are consistent with the fit made to the dispersion
curves.

The fitting program used in the present analysis was a linear least
squares fitting program obtained from McMasters University, Ontario,
Canada. |In principle Equation (3.12) is satisfied for every measured
frequency, w, . In order to obtain a least squares fit to the data, the

program minimizes the expression

ol = > w(i)(Mkm(i)z -3 ¢n(i)fn(i))2 . (3.29)
I n

Here W(i) is the standard least squares weight given by
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oo d ] )2
w(i) = k;i—m (3.30)

where v, if the frequency of the i-th phonon and Av, is the error
assigned to frequency Vi The ¢h(i) are the AFC's and fn(i) is the
fitting function.

The fitting function is obtained from the AFC composition of
the interplanar force constants. The summation in the equation

of motion [Equation (3.12)] may be rewritten in terms of AFC's such

that
i @p( 1 - cos %EE-) = I [_E a ¢n ( 1 = cos Elé )} 3 (3.31)
P m ptn " m

where the anp's are the coefficients given by each row of Table 3.1.

Interchanging the summations yields

I Qn[ I anp( 1 - cos %15 )1 ; (3.32)

n p m

Therefore, the fitting function is defined by

f {1) =

n

anp( 1 - cos EIE.) . (3.33)

z
p m

Minimizing o> in Equation (3.29) with respect to 9, yields

[l
o
]

u(D2Mu(D? - 1 g f (D) (NF, ()
I n

WD Mw(D2F () - T W) (2 @f ()F, () . (3.34)
i i n
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Defining the following quantities,

By = f w(i)Mkw(i)sz(i) (3.35)

Mok = ? W(i)f (i)f, (i) , (3.36)
one obtains

0=8 - E Mo® (3.37)

All of the quantities in the summations giving Bk and Mn , are known .
Therefore, by minimization with respect to each @ Bk and Mn L are
evaluated for each ¢k and stored as elements of a linear array and a

square array respectively.

This procedure yields
<> >
B = Mep : (3.38)
and the ©'s may be obtained by a standard matrix inversion

-

M'B = o . (3.39)

If the AFC's are to be fit to elastic constant data as well as

phonon data, the quantity to be minimized, 0'2, is given by

a'? = o ¢ T W) Mac,E2 - £ o £, (3.40)
X j°m nn
i n
2 . . 3
where o~ is given by Equation 3.29, wc(j) is an appropriate weight, and

€ion a R ; " "
fn(J) is the fitting function for the elastic constants. The elastic

constant fitting function can be obtained from Equation (3.26).
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0=aC,22 - & (J) p2/2 (3.41)
Jj'm 5 P

Writing the AFC composition of the interplanar force constants explicitly,

one obtains

2 2
0=aC.t5 -2 (Za 9)p/2
jm p pn MO
2 2
0=aC.£ - L @ La p /2
jrm o o Tnp
0 =ac.tX -1 ¢f()) (3.42)
ji°m . % 'n ' ’

Minimization of Equation (3.40) with respect to @k yields

2
_ _ 90~ : B ey . I
0 = Ty +* ? W(J)aCJEmfk(J) ? W(j) [i ¢ f () F ()] . (3.43)
Defining Bi and Mﬁk by
c _ ; 25 p
B, = § W(J)aCJEmfk(J) (3.44)
M, = : WOIESGIFL (), (3.45)

and using the results of Equation (3.34-3.37), one obtains

_ _ & _ c
o= Bk E Mnk(pn * Bk 5 Mnkq’n (3.46)

Combining terms yields

0 =8 - E "Qk“h . (3.47)
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and the solution is obtained in the manner outlined in Equations
(3.38-3.39).

Additional constraints may be added to the fit by procedures similar
to the addition of elastic constants. Extra constraints may be included
in order to produce a fit consistent with the axially symmetric conditions
listed in Table 1.2. Also, additional constraints are necessary for
fitting beyond 4NN in order to remove linear dependencies in the equa-
tions so that one may solve for the AFC's. In order to obtain solutions
for the AFC's there must be as many independent interplanar force con-
stants as independent AFC's for a given n-th neighbor fit. The method
of determining the number of independent interplanar force constants is
described below.

In Chapter | we found that not all the AFC's were independent
but were reduced by symmetry. Similarly, the number of independent
interplanar force constants can be determined by examining the
degeneracies in the dispersion curves which arise from crystal
symmetry.

From Figure 2.7 one finds that there are seven degenerate branches
at T(000), involving seven different sets of interplanar force constants
¢(j). However, there are only three independent elastic constants
which characterize these seven different modes as £ -~ 0. Therefore,
there must be four conditions relating the interplanar force constants.
At X(001) there are five branches and only two different frequencies.

Therefore, there must be three more constraints relating the interplanar
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force constants due to these degeneracies. Finally, one additional
condition is imposed by setting all of the @p(j) equal to zero for

planes beyond those which are required to include the designated number
of neighbors. Therefore, there are eight constraints in all which relate
the interplanar force constants.

Examination of Table 3.1 reveals that there are fewer independent
interplanar force constants than AFC's for fitting beyond four nearest
neighbors. Appropriate additional constraints on the AFC's must then be
included in the fit in order to remove linear dependencies which remain
in the equations. The manner in which additional constraints are added
into the fitting program used in the present analysis is discussed
below. First, however, the use of Table 3.1 in determining the number
of extra constraints necessary for a given n-th neighbor fit is
illustrated.

For a 6NN fit there are 18 independent AFC's as listed in Table
3.1. Only those ¢p(j)'s involving INN-6NN AFC's are included in a 6NN
fitting procedure. Therefore, there are 24 relevant interplanar force
constants in the three symmetry directions which were measured for y-Ce.
However, there are B conditions relating the ¢p(j)'s as discussed
above. Thus, there are only 16 independent interplanar force constants,
and two additional constraints must be imposed on the AFC's in order to
obtain solutions from a 6NN fit.

For an 8NN fit there are 26 independent AFC's. There are 29 inter-

planar force constants in the three symmetry directions, 21 of which
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are independent. Therefore, five additional constraints on the AFC's
are required for fitting to 8NN.

If the [0£1] branches were included in an 8NN fit, eight more
interplanar force constants would be added to the fit. (Note in Table

3.1, &, (A [0&E1]) and ¢3(A [0£1]) are zero out to eight neighbors.)

1
However, the degeneracies associatéd with the [0E1] frequencies require
fifteen conditions on the total set of 37 interplanar force constants.
(See examples of fcc dispersion curves with [0£1] branches included in
Reference 35.) Therefore, there are 22 independent interplanar force
constants for an 8NN fit in which [0£1] data are included. To solve for
the 26 independent AFC's, four extra conditions must be added to the fit.

The program used in the present analysis provided for the addition
of two different types of extra constraints in the fitting procedure.
Designated AFC's may be set equal to appropriate constant values, or
axially symmetric constraints involving the relevant AFC's may be im-
posed. In each case the constraints must involve the appropriate AFC's
in order to remove the linear dependencies remaining in the equations.
(For the present analysis appropriate constraint combinations were
determined by experimenting with the computer program rather than
attempting to analyze a set of 26 equations.)

Both of the above types of constraints are added to the fitting
procedure in a manner analogous to the addition of elastic constants.

Equating a given AFC to a designated value, h, may be expressed by

0 = h- i 6n¢h , (3.48)
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where

Gn = 1 for the 9, whose value is h;

§ =0 for all other ¢ .
n n

Including a set of designated AFC's fixed at given values in Equation
(3.29) requires an extra term given by

, 2
EW(h -ZI69) . (3.49)
m n

Here Né is the weight with which each particular fixed value is added to
the fit. The minimization procedure designated by Equation (3.34) now

includes the extra terms given below,

- LW E§96 ‘ (3.50)

I
. wmhmak k
m m n

This expression can be simplified by defining

gl = i W'h 8, (3.51)

= ¥ H;Gnd 5 (3.52)
m

|}
Mnk k

Therefore, the extra constraint terms can be expressed by

B, - L M (3.53)

nkwn

These terms become elements of the appropriate arrays given below when

minimization is carried out with respect to each ¢k.

B - m @ (3.54)
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The above arrays may be combined with B and M, as given in Equation
(3.38), and the solution obtained by matrix inversion.
Axially symmetric constraints may be included in a similar manner.

Each axially symmetric condition (Table 1.2) may be written as

= : (3-55)

z Gnmq’n
n

where Gnm is the appropriate coefficient for each wn of a given equation,

m. For example, to express the constraint on the first nearest neigh-

bors;
S (1xx0) 1 ' .
6(IZZ),i = S, -1 ’ (3.56)
Gn,l = 0 for all other ¢

A set of axially symmetric constraint equations may be added to the

fit by including the following term in Equation (3.29),

(3.57)

"
- wIll (i anmtpn

m

where w; is the weight with which the constraint equation, m, is added

to the fit. Proceeding with the minimization yields

2 "
LW L8 b (3.58)
m n
(The minus sign arises from the change in sign invoked in Equation
(3.34).) Using our standard type of definition,
MY = I W' § ; (3.59)

nk m nm km
m
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the additional constraint term becomes,

- I M (3.60)

nkwn
n

Upon minimization with respect to each @ a two-dimensional array ﬂ;k
results and may be added to ﬂhk of Equation (3.38) in order to obtain
solutions.

The weights with which the extra constraints (and elastic constants)
are added to the fit are arbitrary. The degree to which a given con-
straint is obeyed is determined by the relative importance of the ''con-
straint term'" and the ''phonon data term' in 0'2. The magnitude of these
terms is governed by the number of data points, the number of constraints,
and the weights associated with each term.

Another option available in the program is fitting with an axially
symmetric model. |If all of the axially symmetric constraints on 1 to n
neighbors are imposed for an n-th neighbor fit, the AFC's are constrained
to obey the axially symmetric model. This procedure is not to be confused
with the addition of several axially symmetric constraints merely as addi-
tional conditions which are necessary to remove linear dependencies and
thereby obtain solutions. The terminology used to denote these various
fitting procedures in the context of the present work is defined below.

An n-th neighbor fitting for n < 4 requires no additional con-
straints and is hereafter designated as a general tensor fit. For n > 4
additional constraints are necessary and these fitting procedures are

called modified tensor fits. |If any n-th neighbor fit is constrained
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to obey all of the axially symmetric conditions on 1 to n neighbors it is
called an axially symmetric fit.

The AFC's generated by the fitting procedure are used to evaluate
the dynamical matrix for the measured £ values of each mode (see Equa-
tion (3.11)). The program then calculates a frequency for each of the
measured phonons in accordance with the phenomenological dynamical
matrix that has been produced. The deviation of the calculated values
from the measured values is given by the parameter, xz, defined as

" 2

1 v(i) - v(i)
2 ( calc exp
6 — : (3.61)
X N i=] /_\.\)(l)exp )

The sum is over all data points, and N is given by
N = n-=-m (3.62)

where n is the total number of data points and m is the number of
fitting parameters.
Various fitting schemes which were utilized in the present analysis

are listed below.

1) LNN; general tensor.

2) L4NN; axially symmetric.

3) 6NN; modified tensor fit - two axially symmetric con-
straints on the fifth neighbors.

L) 6NN; modified tensor fit - two AFC's fixed at values
given by the 4NN general tensor fit.

5) 6NN; axially symmetric.
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6) B8NN; modified tensor fit - two axially symmetric conditions
on the fifth neighbors, three axially symmetric conditions
on the seventh neighbors.

7) BNN; modified tensor fit - five AFC's fixed at values
given by a 6NN fit.

8) B8NN; axially symmetric.

The variation of x2 for these fitting procedures is shown graphi-
cally in Figure 3.2. (The axially symmetric fits were run twice, first
with weights of 100, then with weights of 1000 on all the axially sym-
metric constraints. Therefore, xz is presented for both of these dif-
ferently weighted procedures.) The axially symmetric fits usually have
a slightly higher value of x2 for a given n-th neighbor fit, however,
the differences in xz between the axially symmetric fits and general or
modified tensor fits is quite small. The most striking feature of
Figure 3.2 is the large improvement in fit up to three nearest neigh-
bors followed by a much more gradual reduction in x2 with the inclusion
of more neighbors. This indicates that the most important interatomic
forces in y-Ce are fairly short range. However, residual long range
interactions are also present which depend on the detailed electronic
response to the nuclear motions. Therefore, the fit continues to
improve out to eight neighbors.

The 8NN modified tensor fit, which was the best fit obtained,
is shown in Figure 3.3. This fit was produced by all 8NN modified

tensor fitting procedures, independent of the specific extra
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Figure 3.2. Variation of XZ with the number of neighbors included in
the fit for axially symmetric, general tensor, and modified
tensor fitting procedures
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Dispersion curves for y-Ce calculated from the 8NN modified tensor fitting proce-
dures. The experimental data points and error bars are also given for comparison
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constraints that were introduced. Table 3.3 lists four different com-
binations of constraints which were imposed in order to produce 8NN
fits. Although all of these fitting procedures produced identical fits,
and generated the same elastic constant values, the AFC's which were
generated were slightly different.

The AFC's and elastic constants produced by the 8NN fit #1 (as
designated in Table 3.3) are presented in Table 3.4. Throughout the
remainder of the analysis, the results which are discussed in detail
are those obtained from the AFC's listed in Table 3.4. The AFC's and
elastic constants obtained from other fitting schemes are tabulated in
Appendix C.

Since the AFC's are used in the calculation of the density of
states, the above variation in their values among the 8NN fitting
procedures produces some changes in the density of states. The varia-
tion in the density of states, however, has no noticeable effect on the
thermodynamic properties which are calculated from it. There is also
evidence that the density of states would be more uniquely defined if
data from the [0£1] directions were included in the fit. This point
will be examined further in the discussion of the density of states

which follows.

Density of States
The method of calculating the density of states from the AFC's is
described in detail elsewhere (42) and will be reviewed only briefly

below. The AFC's generated by the fitting program give the value of
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Table 3.3. Constraint combinations used for 8NN fit-
ting procedures

Fitting Procedure Constraints

Axially Symmetric

3(5xX) - 3(5YY) - 8(5XxY) =

(5xX) - 9(5YY) + 8(522) =

8NN Fit #1 2(7vY) - 2(722) - (7xY) =
3(7vz) - (7xy) = 0
2(7xz) - (7xY) = 0

3(5XX) - 3(5YY) - 8(5xY) =

(5xx) - 9(5YY) + 8(522) =

8NN Fit #2 3(7xXX) - 3(722) - L(7xy) =
3(7vz) - (7xy) = 0
2(7xz) - (7xY) = 0

AFC Values Fixed

8NN Fit #3 1XX, 1XY, 2YY, 3YZ, 3XZ

8NN Fit #4 1XY, 2YY, 3XX, 3YZ, 3XZ




94

Table 3.4. AFC's and elastic constants obtained from 8NN
fit #1
AFC Value (Error) th dynes/cm
1XX 0.47237 (0.04239)
122 -0.08721 (0.07570)
1 XY 0.44955 (0.02800)
Z% -0.31061 (0.05936)
2YY 0.02849 (0.02731)
3XX 0.04096 (0.0L4LL8)
3YY 0.02046 (0.02509)
3YZ -0.04848 (0.02004)
3XZ 0.00663 (0.00728)
LxX -0.01327 (0.01451)
477 0.03369 (0.03180)
Lxy 0.02206 (0.03668)
5XX 0.00434 (0.02172)
5YY 0.00002 (0.01191)
527 -0.00052 (0.01556)
5XY 0.00162 (0.01213)
6XX -0.02288 (0.00801)
6Y2 0.00989 (0.02331)
7XX 0.00695 (0.01070)
7YY -0.00866 (0.01011)
722 -0.00517 (0.00405)
7YZ -0.00233 (0.00617)
7XZ -0.00349 (0.00925)
7XY -0.00698 (0.00225)
8XX 0.00045 (0.00022)
8Yy 0.01145 (0.00933)
. 12 2
Elastic Constants Value 10 =~ dynes/cm

1y 0.23888
Sy 0.18605
€1y 0.08890

(c]} Cpy + Chh)/3 0.11201

(C]l + ZCIZ + l‘chb)/3 0.38695

(c” c}z)/Z 0.07499

() *+ c9 * Cyy)/2 0.34993
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the dynamical matrix at any point a in the first Brillioun zone. The
density of states program uses the dynamical matrix to solve for eigen-
frequencies corresponding to 3 values that form a cubic mesh in momentum
space. Consider an eigenfrequency, \JO(E), and a slightly different fre-
quency, vO(E) + Av, both of which lie on constant frequency surfaces.
The number of frequencies between vo(a) and vo(a) + Av is proportional
to the volume confined between the two constant frequency surfaces. By
calculating the appropriate volumes, the density of states is obtained.

By examining the general mathematical form for the density of
states, one obtains insight into the relationship between features of
the density of states and features of the dispersion curves. The

density of states may be written as (43),

3 ds
g(w)dw = (-Z-L;-) f V—E’-dw : (3.63)
g

Here ( %;—)3 is the volume of the sample, dSw is an area element in
momentum space, and vg is the group velocity of the lattice vibrations.
Since vg represents the slope of the dispersion curves, one expects a
very large density of states where vg + 0. In comparing dispersion
curves and density of state curves one must bear in mind that the dis-
persion curves represent phonons in only a few symmetry directions while
the structure of the density of states is governed by off-symmetry modes
as well. However, in general the flat areas of the dispersion curves

can be related to structures in the density of states.
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The density of states for y-Ce corresponding to the AFC's from the
8NN fit #1 is shown in Figure 3.4. Comparison to the dispersion curves
(Figure 3.3) identifies the peak at 2.2 THz with the flattened portions of
the L [110], T [001] and T] [110] branches near the zone boundary. The
peak at 2.6 THz corresponds to the flattening of the L [111] branch near
the zone boundary. There is no feature in the dispersion curves, however,
which corresponds to the large peak at 1.43 THz in the density of states.

If AFC's from other 8NN fits are used in the density of states
program, the position of the unidentified peak changes dramatically.

The other peaks change somewhat in structure and position for different
AFC's, however, these variations are minor. On the other hand, the
center of the unidentified peak varies over a range of 1.38-1.74 THz for
different sets of AFC's produced by various 8NN modified tensor fitting
schemes. (The various density of states are presented in Appendix C.)

In consulting the density of states and dispersion curves for other
fcc metals, it was discovered that the A [0£1] branch is usually very
flat (35,44). Therefore, the AFC's from a 6NN fit were used to calcu-
late frequencies for the [0E1] branches which were consistent with the
fit obtained to the measured data. The calculated [0£1] branches are
shown in Figure 3.5. For the A branch the slope goes to zero at a fre-
quency of 1.65 THz. The corresponding 6NN density of states given for
comparison in Figure 3.6 locates the unidentified peak at 1.65 THz.

According to the above analysis, the ''mobile' peak in the density
of states apparently arises primarily from [0£1] phonons. The variation

of AFC's with imposed fitting constraints and the subsequent variation
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Figure 3.4. Density of states for y-Ce calculated from the AFC's
generated by 8NN Fit #1
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Figure 3.5. vy-Ce [0£1] branches calculated from the AFC's produced by
6NN Fit #1 (see Appendix C for the constraints on this
fitting procedure)
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in the density of states would probably be appreciably diminished by
including real [0£1] data in the fitting procedure. Plans are now under-
way for the measurements of the [0£1] branches of y-Ce in collaboration
with Dr. R. M. Nicklow of Oak Ridge National Laboratory.

The variation in the position of the [0£]1] peak induced by various
fitting procedures has no noticeable effect on the lattice specific
heat or Debye temperature which are calculated from the density of
states. The results of the present analysis of the thermodynamic
properties of y-Ce are presented below and the comparison of these
results to former thermodynamic measurements on y-Ce is presented in a

later section.

Thermodynamic Properties
Before presenting the specific thermodynamic results obtained for
y-Ce it is useful to examine the method by which these properties are
calculated. The internal energy function for lattice vibrations is

given by (43)

Uu = f dwg (w) n(w) dw (3.64)
0

where n(w) is the phonon occupation number as defined in Chapter I,
g(w) is the phonon density of states, and the integration is performed
over all frequencies, w. The lattice specific heat at constant volume

is given by the derivative of the above expression.

2 o il
v 9y K- "p (KT _ P

v
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Equation (3.65) can be integrated numerically for any temperature,

T > 0, given the phonon density of states g(w). Therefore, using the
output from the density of states program, C&(T) for y-Ce was generated.
Figure 3.7 gives the lattice specific heat curve generated from the
"8NN fit #1'" density of states. No appreciable change was induced by
using any of the slightly different 8NN densities of states.

At room temperatures the value of C£ approaches the classical

Y
Dulong-Petit value of 3R where R is the universal gas constant. For
very low temperatures, the lattice specific heat varies as T3 over a
small region as predicted by the Debye model (43).

It is customary to express lattice specific heat information in
terms of the temperature variation of the Debye temperature, 90. The
method by which GD(T) is obtained is given below.

In the context of the Debye model, the phonon density of states is
given by sz, where A is a constant. Since the Debye model is a con-
tinuum approximation which treats a solid as a non-dispersive medium,
one would expect g(w) & Amz only for very low frequencies (long wave-
lengths). At T % 0 the population factor in Equation (3.65) may be
assumed to be essentially equal to one for a few low frequencies, and
equal to zero for all other frequencies. Therefore, at T & 0 the ex-

pressions for the Debye specific heat and the real specific heat may be

equated.

/ Amhdu) = | g(m)mzdw (3.66)



102

| l | [ | | ]
LATTICE SPECIFIC HEAT
.40 |— fée )/—'Ce ==
295K
L.2E— =
o
M
w1.00|_ .
o
w
-
— .80 s
=
=)
60 I— ]
40| =
.20 [— -
o L I T R N

0 40 80 120 160 200 240 280 320
TEMPERATURE (°K)

Figure 3.7. Temperature dependence of the lattice specific heat of y-Ce.
The specific heat curve was generated from the density of
states shown in Figure 3.4



103

Thus the constant, A, may also be calculated from the density of states

by numerical integration.

f g(w)wzdm

A = (3.67)

Obtaining a value for A allows one to calculate the Debye tempera-

ture, 6. If g(w) is normalized such that
[ alw)de = 1 ; (3.68)
0

then
wD 2
f Aw"dw = 1 (3.69)
0

since the total number of states in the Debye model must equal the real
number of phonon states. (Notice that the upper limit of the integral

over the Debye density of states must be a finite value, w in order

D’
to obtain a finite number of states.) The Debye temperature is defined
by

e0
D D
T (3.70)

Therefore, one obtains from Equations (3.69) and (3.70),
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3 3 3
LM Mk
3 3 h
0 h 1/3
by = (E) [3/A] . (3.71)

The value of A calculated from Equation (3.67) is obtained in the
approximation that T &% 0. Therefore, incorporating this value of A into
Equation (3.71) yields the Debye temperature at zero degrees, eg.

If the Debye approximation was valid at all temperatures, the
Debye temperature would be a constant equal to eg. However, the Debye
specific heat varies significantly from the real lattice specific heat
as the temperaure is increased and higher frequency modes are thermally
excited. The Debye model can be ''forced' to yield the correct specified
heat value at any given temperature, however, by allowing the value of
BD to vary. The value of BD is adjusted by successive iterations until
the specific heat given by the Debye model is equal to the specific heat
generated by the real density of states for a given temperature, T.

This procedure yields the temperature variation of the Debye temperature,
GD(T) which gives a measure of the deviation of the real lattice specific
heat from the Debye model.

The Debye temperature for y-Ce is given in Figure 3.8. Near room
temperature BD becomes temperature independent as the specific heat
becomes model independent and approaches the classical value of 3R.

Specific heat and Debye temperature values for y-Ce obtained from
former experiments are compared with the above results in the following

section. Features of the dispersion curves and calculated elastic

properties are also discussed.
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Lattice Dynamical Results - Comparisons

The present experiment was performed on one of the first single
crystals of y-Ce successfully produced by Ames Laboratory. Therefore,
the current results represent the first single crystal lattice dynamical
measurements to be performed on ‘Y-Ce.l Unfortunately, no data on
single crystals are available for comparison of the calculated elastic
and thermodynamic properties. The various calculated values must there-
fore be compared with the results of former measurements which were
performed on polycrystalline samples. Before, the comparison of these
properties is discussed, however, the dispersion curves of y-Ce are
compared with the dispersion curves of other fcc metals.

One of the primary motivations for measuring the dispersion curves
of y-Ce was to obtain insight into the a-y transition and the possible
mixed valence nature of y-Ce. However, there exists no well-developed
theoretical description of these phenomena. Therefore, the unique
features of the y-Ce dispersion curves are discussed only qualitatively
below. The relationship of these features to the other intriguing
properties of y-Ce is yet to be determined.

The lattice vibrational spectrum of a crystalline element is gen-

erally expected to be similar to that of other elements having the same

]The measurement of the magnetic form factor of y-Ce by polarized
neutron scattering discussed in Chapter | (20) was also performed on a
single crystal of y-Ce produced by Ames Laboratory. The comparison of
these results to the magnetic scattering observed in the present experi-
ment is presented in the section on Magnetic Scattering Analysis which
follows the current discussion.
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crystal structure which lie in the same column of the periodic table.
These elements have analogous electronic structures, which suggests that
the interatomic forces may be similar. |If the atoms in a crystal behave
like a system of classical ''‘balls and springs'', one can obtain a rough
idea of the relationship between the phonon frequencies of two such
elements by considering the expression for the frequency of a classical

harmonic oscillator.
_ k (3.72)

Here m is the mass and k is the spring constant. The difference in the
atomic masses of the two elements will obviously affect the frequencies.
The effective 'spring constant' of a crystalline element is unknown,
however, it must be related to the interatomic spacing over which the
interatomic forces act. Therefore, the homology rule for phonon fre-
quencies of similar crystalline elements is given by

2 ag .
2 _) _ (3.73)

2

Here v is the frequency, M is the mass, and a is the lattice parameter.
Another estimate of the ratio of frequencies to be expected for

two similar crystalline elements is obtained from the Lindemann rule

(44). This empirical equation relates the Debye temperature of an

element to its melting temperature.
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4 (3.74)

Here TM is the melting temperature, M is the mass, V is the volume, and
C is a constant. This equation can be modified using the relationship
between Debye temperature and frequency [Equation (3.70)] to yield

another estimate of the frequency ratio for two similar crystalline

elements.

%

2
<v,o > M. T a
2
17 ( 2 M 2) (3.75)
W2 M Tz 3y

The electronic structure of cerium is more similar to that of
thorium than any other element in the periodic table. Thorium is also

an fcc metal and the dispersion curves have been measured (45). There-

fore, a frequency comparison can be made.

Using the appropriate masses, and lattice parameters, the homology

rule predicts

Wee? = 1.3 . (3.76)

However, if the melting temperatures are included in the context of the

Lindemann rule one obtains

> = -95¢vo, > : (3.77)

Apparently the y-Ce frequencies are governed by more complex interactions

than the homology rule takes into account. These interactions are
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reflected in the melting temperature, therefore, there is a large dis-
crepancy between Equations (3.76) and (3.77).

A comparison of the measured frequencies of y-Ce and thorium yields
another interesting result. (The dispersion curves of thorium are given
in Figure 3.9 for reference.) Comparing the zone boundary frequencies
of y-Ce (Figure 3.3) and of thorium, one finds that the y-Ce frequencies
are indeed lower as the Lindemann rule suggests. However, the actual
numerical values are even lower than those predicted by the Lindemann
equation. The y-Ce frequencies lie 4-11% below the predicted Lindemann
results for three of the four non-degenerate zone boundary frequencies.
The T [111] zone boundary frequency is 43% lower than predicted.

A similar lowering of the phonon frequencies has also been observed

1

for CeSn3 which is currently being studied at Ames Laboratory. The
correspondence between the behavior of the phonons in y-Ce and CeSn3 is
of particular interest since CeSn3 is a mixed valence compound.

A systematic lowering of phonon frequencies reflects interatomic
"spring constants'' that are weaker than expected, i.e., the lattice is
"softer' than expected. Lattice ''softening'" in y-Ce has also been
observed in room temperature bulk elastic measurements performed as a
function of pressure on a polycrystalline sample (46). As the pressure
was increased toward the y-o transition pressure, the compressibility
steadily increased. At the transition itself the compressibility de-
creased dramatically. Similar behavior was observed in the measurement

of elastic moduli as a function of temperature (47), however, here the

results were complicated by the formation of the intermediate B-phase.
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At this point it is tempting to correlate the a-y transformation
with the general softening of the phonons and elastic properties of y-Ce,
and with the striking frequency decrease of the T [111] zone boundary
phonon. Any relationship among these phenomena is presently unknown,
however, a temperature-dependent study of the T [11]1] zone boundary
phonon may yield significant results with respect to these questions.

An experiment of this type is now being planned in collaboration with
Dr. R. M. Nicklow of Oak Ridge National Laboratory.

Another interesting feature of the y-Ce dispersion curves is the
flatness of the L [110] branch. The corresponding branch in the thorium
curves exhibits a very sharp curvature. Most fcc metals have a larger
curvature in the L [110] branch than y-Ce, although many do not exhibit
as sharp a curvature as does thorium (35,43,48). The implications of
the peculiar flatness of the L [110] branch is y-Ce are unknown, however,
this behavior is consistent with an overall softening of the phonons.

In addition, it is interesting to notice that the L [001] and
T [001] branches of y-Ce lie very close together throughout a consider-
able portion of the first Brillioun zone. Therefore, the 1 and Chy
elastic constants associated with these modes are very close in value
(see Tables 3.2 and 3.4).

No single crystal elastic constant measurements have been performed on
Y-Ce. Therefore, no data exist for a direct comparison with the elastic
constant values generated by the fitting procedures of the present analy-
sis. However, polycrystalline bulk elastic moduli for y-Ce have been de-

termined by several authors (46,47,49,50) Unfortunately, polycrystalline
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elastic moduli cannot be accurately calculated from single crystal
elastic constants via simple averaging techniques unless the crystal

is nearly isotropic (51). However, a calculation of this type was
utilized in the present analysis in order to determine whether the single
crystal measurements were consistent with the results from former experi-
ments on polycrystalline samples.

The averaging technique first proposed by Voigt (52) assumes the
existence of uniform local stress throughout the polycrystalline sample.
The relationships expressing the stress of a single crystal in terms of
a given strain are averaged over all possible lattice orientations. On
the other hand, the Reuss average (53) is performed assuming
uniform local strain. Therefore, in the Reuss procedure
the relationships expressing the strain in terms of a given stress are
averaged over all possible lattice orientations. Both of these models
are physically unrealistic. In the context of the Voigt average the
forces between the individual grains cannot be in equilibrium, and
according to the Reuss method the distorted grains cannot fit together.
In order to approach the problem rigorously, one would need to solve
the equations of equilibrium for every crystallite, taking into account
the appropriate boundary conditions at their surfaces of separation
(51). Therefore, the averaging techniques are approximations which
yield fairly accurate results only for nearly isotropic crystals.

The Voigt and Reuss expressions for the bulk modulus (B = I/KT,
where KT is the isothermal compressibility) and shear modulus (u) of a

cubic crystal are given in Table 3.5a. |In these equations the Cij are
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Table 3.5a. Voigt and Reuss expressions for the bulk
modulus, B, and shear modulus, p, of cubic

crystals
Voigt Equations Reuss Equations
- 1 .
B = ]/B(CII + chz) B = 3(511 + 2512)
- - -1 i
W= 1750y = ey * 3ey) b= 1/5(hs - bsy, + 3sy,)
elastic constants and the Sij are compliance moduli. The relationships

between the elastic constants and compliance moduli for a cubic crystal
are given in Table 3.5b. Since there are only two independent elastic
Table 3.5b. Relationship of compliance

moduli and elastic constants
for cubic crystals

" 1
il

g
S = B = !
N 12 %1 ° B
By Ty “_l 2
“11 €i9

moduli for polycrystalline materials (as discussed below) all of the
elastic moduli of interest can be calculated from B and pu. Before the
comparison of the calculated Voigt and Reuss values and the former
results is presented, a brief description of the measurement of bulk

elastic moduli is given below.
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An ideal polycrystalline material is treated as an isotropic con-
tinuous medium. Therefore, polycrystalline materials are characterized
by only two independent wave velocities, i.e., longitudinal and trans-
verse with respect to the directon of propagation. Standard elastic
moduli may be calculated from experimentally measured longitudinal and
transverse wave velocities (VE, and v, respectively) according to the

t

expressions given below.

Adiabatic compressibility: Ks = [p(vi - L4/3 v%]—] (3.78)

2
ol 4 - 3(v2/vt)

Young's modulus: Y = p VtL 5 (3.79)
1 - (vg/v )
t
Shear modulus: u = p vi (3.80)
2 - (vy/vy)’
Poisson's ratio: o = (3.81)

201 - (vglvt)zl

In these equations the p denotes the density of the material.
Experimental values for these bulk elastic moduli of y-Ce obtained
from wave velocity measurements are given in Table 3.6. The values
obtained from References 46 and 50 are probably the most reliable as the
other experiments involved thermal cycling and undetermined amounts of
B-Ce may have formed in the sample and influenced the results.
The calculated Reuss and Voigt values for polycrystalline elastic

moduli given in Table 3.6 were obtained using the elastic constant values



Table 3.6. Comparison of measured and calculated elastic moduli values

Adiabatic Compressibility Young's Modulus Shear Modulus Poisson's Ratio Reference
10_12 dynes/cm2 1012 dynes/cm2 10]2 dyneSIsz

L. 64 .337 .136 .240 L9
Polycrystalline 4.6h4 .336 .135 .237 L7
Measurements 5.05 .300 .120 .248 50
5.05 .299 .120 .248 L6
718 .317 142 119 Voigt

Present Work Average
7.18 L2774 17 172 Reuss

Average

qll
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given by the 8NN fit #1. In order to calculate the adiabatic compress-
ibility, the Reuss and Voigt values of the bulk modulus obtained according
to the relationships given in Table 3.5a were inverted to yield the iso-

thermal compressibility, K The adiabatic compressibility was then

T

calculated from the relation
TV9 .

K = Ky - —=>— (3.82)

T c
. p

Here T is the absolute temperature, V is the atomic volume (9), o is the
linear coefficient of thermal expansion (54), and Cp is the specific
heat at constant pressure (55). The values of these properties for y-Ce
used in the calculation of KS were obtained from the indicated refer-
ences. Young's modulus and Poisson's ratio were then obtained from the

following relationships.
Y =2 (1 + o) ‘ (3.83)

K, = 3{1 - 2q) 1Y (3.84)

The agreement between the calculated and measured values listed in
Table 3.6 is particularly good for Young's modulus and the shear modulus.
The values for Poisson's ratio and the compressibility agree less well.
However, within the context of the approximations employed in obtaining
the averaged values, the calculated moduli are indeed consistent with the
values obtained from polycrystalline experiments.

Polycrystalline wave velocity measurements can also be used to

calculate 8, From Debye theory one obtains (56)
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1/
o /2 -
\’o=(mm) L ——
where vp is the Debye cut-off frequency, Na is Avogadro's number, p is the

density, (MW) is the molecular weight, and v is the average sound
velocity. For a polycrystalline sample which is assumed to be elastically
isotropic (small grain size with respect to acoustic wavelength) the

average sound velocity is given by

g [1/3(2/v3 + l/vz)]_]/B . (3.86)

Therefore, incorporating the definition of the Debye temperature

[Equation (3.70)] into Equation (3.86) yields

1/3 -1/3

h i, 2 1
y = ;(%&)—) {;(;—zwcg” . (3.87)

There is no explicit temperature dependence given in the above

expression for GD, however, v, and v_ are functions of temperature.

t 'S
Thus, for wave velocity measurements performed at a given temperature,

T the Debye temperature given by Equation (3.87) is equal to BD(T)

evaluated at T].

The above temperature dependent 6_ value, however, is not derived

D
under precisely the same assumptions as eD(T) generated by a lattice
dynamical analysis. In a lattice dynamical analysis the Debye parameter

at a given temperature, T], is adjusted until the specific heat cal-

culated from the Debye model density of states becomes equal to the



118

specific heat calculated from the experimental phonon density of states.
The Debye temperature obtained from wave velocity measurements, however,
is calculated from a Debye model expression [Equation (3.87)] at all
temperatures, without the benefit of adjustment to yield ''correct' re-
sults. Thus the value of the Debye temperature (for a given temperature,
T]) calculated from the present lattice dynamical analysis cannot be
expected to agree precisely with the corresponding Debye temperature
calculated from wave velocity measurements.

A comparison of room temperature 8_ values is given in Table 3.7.

D
The values listed for the present analysis were calculated from the
density of states produced by 8NN fit #1. Again, the polycrystalline
values given by References 46 and 50 are probably the most reliable, as
those given by References 47 and 49 may have been influenced by undeter-
mined amounts of B-Ce in the sample due to thermal cycling.

The agreement between the wave velocity and lattice dynamical SD
values for y-Ce is very reasonable considering the differing methods by
which they were calculated. The results of the present experiment are
again consistent with the results of polycrystalline measurements.

The lattice specific heat calculated in the present analysis is
more amenable to comparison with former experiments than is the Debye
temperature. Thermodynamic measurements yield the specific heat at con-

stant pressure, Cp. However, this Cp value is easily related to the

specific heat at constant volume according to

c = CV+Cd s (3.88)
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where Cd is the dilatation term given by

2
c = —Tvga o ( 3 . 89)
d KT
Here T is the absolute temperature, V is the atomic volume, a is the
linear thermal expansion coefficient, and Ky is the isothermal com-
pressibility. The total specific heat at constant volume for a metal is

normally given by

L

= cv

& * cf, ' (3.90)

where C$ is the lattice specific heat and Cﬁ is the contribution to the
specific heat arising from the conduction electrons. However, an extra
term, C;, must be included in the expression for CV for y-Ce due to the
contribution of the thermal excitation of 4f electrons from the ground

state to the next higher level(s) of the 4f multiplet. This term can be

calculated according to

-EJ/kT
b (2J+])EJ e

f_ 4 {4
Cv =Yg | “E /KT ] (3.91)

£ (2041) e Y
J

where Na is Avogadro's number, J is the total angular momentum quantum
number, and the EJ values are the energy levels of the multiplet. For
most rare earth metals this term essentially goes to zero and can be

ignored, however, for y-Ce it is large enough to be included. Therefore,
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Equation (3.88) applied to y-Ce becomes

_ L © f
cp = C, +Cy+Cy+C, . (3.92)

The only recent experimental determination of Cp for y-Ce is based
on an enthalpy measurement performed in 1960 (55). The sample used for
the enthalpy measurements was less pure (with respect to other elements)
than the y-Ce used in the present experiment. Also the allotropic
content of the sample used for the enthalpy measurements is unknown
since the measurements were performed between 0°C and 1100°C and g-Ce
can begin to form at temperatures as high as 5°C. However, the value
obtained for C_ at room temperature from the enthalpy measurements
agrees very well with the room temperature Cp value which was calculated
according to Equation (3.92) using the lattice specific heat value ob-
tained from the present analysis. This comparison is given in Table 3.7.

The value of Cp at 300° which was calculated from the present
analysis was determined in the following manner. The value for
Cf was determined according to Equation (3.91), and a value for Cs was
estimated from values given by former analyses of the Cp data given by
Reference 55 into component terms (57,58). The dilatation term
[Equation (3.89)] was recalculated due to the availability of more recent
values for V (9), o (54), and KT,which are more accurate than the values
used in the analysis given by References 57 and 58. (KT was calculated
according to Equation (3.82) from the Ks value given by References 46

and 50 in Table 3.6.)
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Table 3.7. Specific heat and Debye tempera-
ture of y-Ce at room temperature

Property Value Reference

Cp(cal/°K) 6.45 55

6.46 Present work
144 L9
139 47
8,(°K) 135° 50
135 46

119 Present work

A value for 8p was not quoted in Refer-
ence 50. The Debye temperature listed was
calculated from the wave velocity values
given by Reference 50.
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The measured Cp value and the Cp value obtained from the present
analysis agree very well at room temperature. This is to be expected,
however, since Cé, which is the largest contribution to Cp, is approaching
a constant value of 3R at this temperature. A comparison of the present
specific heat results and other experimental values for the temperature
range between the Debye and the Dulong-Petit regions would be more
meaningful. However, no low temperature specific heat data for y-Ce are
available due to the formation of the B and a phases upon cooling.

The temperature dependent transformation properties of y-Ce and the
lack of single crystal data for y-Ce preclude a rigorous comparison of
the lattice dynamical results of the present analysis with former ex-
perimental results. However, according to the analysis presented in this
section, the elastic and thermodynamic results of the present work are
consistent with the results of former measurements on polycrystalline
samples. The experimental results for magnetic scattering by y-Ce will

be discussed in the following section.

Magnetic Scattering Analysis
The present experiment has produced several significant results
concerning the magnetic scattering of y-Ce. These single crystal
measurements have firmly established the 'quasi-continuum' nature of
the magnetic level structure of y-Ce. Former inelastic magnetic scat-
tering measurements on y-Ce were performed on polycrystalline samples.
Due to the difficulty in identification of various contributions to the

scattering from polycrystalline samples, peaks observed in the
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frequency range of 1.4-2.3 THz were variously ascribed to one-pnonon or
magnetic scattering by various authors (36,37).

The inelastic magnetic scattering from a single crystal, however,
can be isolated from the one-phonon scattering by performing the
measurements at ''equivalent zone center' Q values where the phonon fre-
quencies go to zero. (See Chapter ||, Measurement Techniques.) This
procedure was utilized in the present experiment and the observed scat-
tering gave no indication of a discrete magnetic excitation lying any-
where in the frequency region .8-3.8 THz. Therefore, the peaks observed
in former polycrystalline measurement can be unambiguously ascribed to
phonon scattering.

In the context of the present experiment the magnetic scattering
was observed using constant Q scans. The variation of the scattering
intensity with Q value, for a given energy transfer, can also be obtained
from the data by analyzing several scans which were performed over the
same energy range with different Q values. For example, the data
obtained from the three constant Q scans given in Figure 2.8 have been
plotted as a function of Q for energy transfers of 2.9, 3.1, and 3.5 THz
in Figure 3.10. This type of analysis, for the same three constant Q
scans, was performed for four different energy transfer values in all.
The results are summarized in Figure 3.11. The magnetic form factor
obtained from Reference 20 is included in Figure 3.11 for comparison.

The magnetic inelastic scattering data given in Figure 3.11 exhibit
the expected decrease in intensity with increasing Q, however, they

begin to differ significantly from the measured form factor at large Q
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Figure 3.10. Q dependence of the magnetic scattering of y-Ce for several
energy transfer (Av) values. These graphs were constructed
from data given in Figure 2.8
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Figure 3.11. Q dependence of the observed magnetic scattering of y-Ce
compared with the form factor given by Reference 20
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values. This deviation would undoubtedly be removed by correcting the
observed scattering intensities for the contributions due to background
scattering. This background arises from multiphonon processes (as
described in Appendix D) and from experimental factors such as scattering
off the sample container, electronic noise in the counting circuits,

etc.

The general features of the magnetic inelastic scattering results
of the present analysis correspond to the results of similar measure-
ments performed on a polycrystalline sample of fcc Ce0.7hTh0.26 (38).
The phonon contribution to the observed scattering of ceD.?hThO.ZB was
estimated by making identical measurements on a sample of Lao.73Th0.27
which was the same size as the Ce0.7hTh0.26 sample. Since La is

non-magnetic, the observed scattering from La must all be

0.73Th0.27
nuclear in origin, i.e., phonon scattering. Therefore, the inelastic
magnetic scattering contribution is extracted from the observed scat-
tering intensity of Ceo 7hTh0 26 by performing a point-by-point sub-
traction of the intensity observed for La0'73Th0.27. (The La0'73Th0‘27
scattering intensity was suitably weighted before subtraction to account
for the different scattering amplitudes of Ce and La.)
An estimate for the background in these measurements was obtained

£ h . \ %

rom the scattering intensity observed for the La0.73Th0.27 sample at
energy transfers above 30 meV (7.25 Thz). This energy transfer value

is well above phonon energies, and since La exhibits no magnetic scat-

tering, all scattering observed above 30 meV is assumed to be due to

coherent multiphonon scattering, incoherent processes, and experimental
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factors. This background is assumed to be constant at all energy
transfer values and is also assumed to be a valid background level for

the Ce hThO.ZG scattering intensity.

0.7
The polycrystalline ce0.7h7h0.26 data which have been corrected for

one-phonon and background scattering are qualitatively similar to the

results of the present experiment. No detailed comparison of the

hTh data and the uncorrected y-Ce data can be made. However,

Ceo. 740 26
the preliminary examination of these data presented below reveals an
interesting result.

According to Figure 3.11 the energy scans made at Q values of
241 R-] and 4.2 3-] correspond to the magnetic form factor fairly well.
Therefore, there is little background correction necessary for the
energy scans performed at these Q values. A qualitative comparison of
these two energy scans with the CeO.?hThO.ZG energy scans reveals that
the y-Ce intensity drops much faster than the Ce0.7hTh0_26 intensity.
Now, the broad single feature in the scattering produced by a quasi-
continuum of magnetic energy levels is characterized by a half width, T.
Therefore, the faster intensity drop in y-Ce corresponds to half width,

r that is narrower than T Earlier magnetic scattering work on

Ce’ Ce-Th~

polycrystalline y-Ce suggests a value of FCe that is roughly half as
large as T ce=Th (37). (These polycrystalline measurements were cor-
rected for phonon scattering in a manner similar to the procedure used
for CeO.7hTho.26') The value for FCe estimated from the present data,

however, appears to be even less than the former T " value by as much

C

as 50-60%. At present, this feature of the magnetic scattering of y-Ce
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has been compared only qualitatively with former measurements. A more
rigorous comparison between the present y-Ce data and former y-Ce and
Ceo.7hTh0.26 results will be made when additional data for y-Ce are
obtained and an accurate background correction is applied.

The corrections used for the polycrystalline y-Ce and ce0.7hTh0.26
data are reasonable approximations incorporated to yield estimates for
the one-phonon and background contributions to the total scattering.
However, the single crystal data obtained in the present experiment will
be amenable to a more accurate correction procedure after additional
data are obtained. The supplementary data will be measured in collab-
oration with Dr. R. M. Nicklow of Oak Ridge National Laboratory. The

proposed correction procedure and the extra data required to perform

this correction are discussed in Appendix D.

Summary
The phonon and magnetic measurements of the present experiment have
produced the following significant results concerning the lattice dynam-
ical and magnetic properties of y-Ce.
- The phonon spectrum is relatively soft, which is consistent with
results obtained for CeSn3.
- The L [110] and T [111] branches of the dispersion curve are
anomalous.
- The N and hy elastic constants are quite close in value.
- No discrete magnetic excitations were observed.
- The magnetic scattering is qualitatively similar to the results

from CeO.?hTh however, T

0.26’ te © Teesth®
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The various lattice dynamical and magnetic similarities among y-Ce,
CeSnS, and CeO.?hThO.ZS are particularly intriguing since CeSn3 and
Ce0.7hTh0.26 are mixed valence compounds. Therefore, a complete
theoretical description of the observed properties of Ce and its com-
pounds may provide a basis for understanding a whole class of mixed

valence materials.
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APPENDIX A

The symmetry reduction of the independent interatomic force con-
stants for two to eight neighbors in an fcc crystal is presented below.
The various neighbor positions are illustrated in Figure A.1 for refer-
ence.

The second nearest neighbor from the origin is the nearest atom
along the cube edge i.e., at 12 = (1,0,0). There are eight symmetry
operations that leave this '"bond' invariant and eight that reverse it

as listed below.

"Invariant' Operations

1 0 0
1) ldentity. (o I o)
0 0 1
1 0
2) Reflection in the (010) plane. ( 0 -1 0)
L0 0 1
1 0 O
3) Reflection in the (001) plane. 0 1 0)
0 0 -1

4) Reflection in the (011) plane.

,_H\ ,ﬂﬁ\ e
00 —
-0
1
— o
N ——

- 0
1 0 0O
5) 2-fold rotation about the bond axis. 0 -1 0)
0 -1
1 0 0
6) Counterclockwise (CCW) 4-fold rotation ( 0 0 -I)
about the bond axis. 0 1
]l 0 O
7) Clockwise (CW) 4-fold rotation about ( 0 0 1 )
the bond axis. 0-1 0
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Z
(o]o])!
N (1,1,1)
¢ CW 6l (372,/2,1)
®
7
(1,172,1/72)
®
3
CW Y
0I10,
oA (1,1,0)
(172,1/2,0) 4 (3/2,1/72,0)
® ®
(0,00) | 0,00 5 (200~ CW
S
. e 8 oo X

Figure A.1. N-th neighbor positions in a monatomic fcc lattice for 1-8
neighbors. Clockwise rotation directions about each axis
are also indicated
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2)

3)

7)

8)
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CCW 4-fold rotation about the bond
axis, followed by reflection in the
(001) plane.

""Reversal'' Operations

Inversion.

2-fold rotation about the [010]
direction.

2-fold rotation about the [001]
direction.

2-fold rotation about the [011]
direction.

Reflection in the (100) plane.

CW 4-fold rotation about the bond

axis, followed by reflection in the
(1005 plane.

CCW L4-fold rotation about the bond

axis, followed by reflection in the
(1005 plane.

CCW 4-fold rotation about the bond
axis, followed by a 2-fold rotation
about the (001) axis.

The number of independent interatomic force constants for the second

neighbor therefore becomes [Equation (1.45)]

]

Il

T]E”(”z + 70021 + [6(3) +2(-1) 1)

2

(A.1)
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Here the first square bracket is the sum of the squares of the charac-
ters of the '"invariant'' operations, and the second square bracket is
the sum of the characters of the ''squares'' of the reversal operations.
From Equation (A.1) there are only two independent interatomic force
constants for the second neighbor. Applying the CCW 4-fold rotation

about the bond axis one obtains,

0 XX XX XZ 1 0
-1 ) ( Xy Yy vyz ) ( 0 0
0 zy yz zz 0 -1

oo —
-0
o — O
S—

(000, 100)=(

XX =XZ Xy
) (A.2)

(000, IOO)=( -xz 2z ~yz
Xy =Yz YY

Comparing the original matrix with the transformed matrix yields the
following results; xy = -xz and xy = xz, therefore xy = xz = 0; yy =
zz; -yz = yz = 0. Therefore, the interatomic force constant matrix for

second neighbors becomes,

( XX 0 0
©(000, 100)=( 0 vyy 0)

e (A.3)
The third nearest neighbor to the origin is located at £3 = (1, %u

%). There is only one symmetry operation other than the identity that
leaves this position unchanged with respect to the origin as listed

below.
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“"Invariant'' Operations

1) ldentity.

2) CW L4-fold rotation about the [100] ;1 0 0
direction, followed by reflection (o 0 1 )
in the (010) plane. 0 1 0

'"Reversal'' Operations

1) lInversion

2) CW 4-fold rotation about the [100] -1 0 O
direction, followed by a 2-fold ( 0 0 -1 )
rotation about the [010] direction. 0-1 0

Thus, Equation (1.45) becomes
_ 2 2
Ny =3 LL32+ A+ 13+ 3D
(A.L)
N3 =4

indicating that there are four independent interatomic force constants
for the third neighbor. Applying the above 4-fold rotation and re-

flection, one obtains,

1 0 O XX XYy Xz (1 0 0
@000, 13}) = ( 0 0 I) ( Xy Yy yz ) \ 0 0 1 )
0 1 0 Xy yz zz 0 1 0O
XX XZ Xy
©(000, 14%) = ( Xz 2z yz ) . (A.5)
Xy vz Yy

Comparison to the original matrix reveals that xz = xy and yy = zz.

Therefore, the interatomic force constant matrix for the third neighbor
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becomes
XX XZ XZ
(000, 1%4) = (xz yy vz ) . (A.6)
Xz yz vyy'

The ""bond" between the fourth neighbor and the atom at the origin
in forms a face diagonal of the cubic unit cell. Therefore, the fourth
neighbor lies along the same line as the first neighbor, only at twice
the distance, 2& = (1,1,0). Thus, the symmetry operations that leave
the fourth neighbor position invariant with respect to the origin are
exactly the same as those that leave the first neighbor 'bond'" un-
changed (see Chapter |, Symmetry Considerations). Hence the independent
interatomic force constants for the fourth neighbor are the same as for

the first neighbor and one may write

;X% xy 0
®(000, 110) =K Xy —xx o) (A.7)
0 0 zz

3 1

T 7 0) as shown in

The fifth neighbor is located at £ = (
Figure (A.1). Here there is only one operation that leaves the bond

invariant besides the identity.

"Invariant'' Operations

1) Identity.

2) Reflection in the (001) plane. (

(= = R
Q= O
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""Reversal'' Operations

1) Inversion

- 0
2) 2-fold rotation about the [001] ( 0 -1 0)
direction. 0 0 1’

Equation (1.45) becomes

N=3 (32 + ()% + [3+3])

N =4 (A.B)

for fifth neighbors. Application of the above reflection to the inter-

atomic force constant matrix yields

31 1 0 O XX Xy Xz 1 0 0
cp(ooo,—io) = (o 1 0)(xy Yy yz)(O ] 0)
0 0 -1 XZ Yz 22# 0 0 -1
3] XX Xy =Xz
©(000, 5 5 0) =( Xy yy ‘YZ) (A.9)
-Xz -yz 2z
Therefore, xz = 0 and yz = 0, and the matrix becomes
3 XX Xy 0
® (000, 5-5-0) = ( Xy Yy 0) . (A.10)
0 0 zz

The body diagonal of the cubic unit cell connects the atom at the
origin with the sixth neighbor. Therefore 26 = (1,1,1). Here there

are four "invariant' and four '"reversal' operations as listed below.

"Invariant' Operations

1) ldentity.



2)

3)

L)

1)

2)

3)

h)

Thus, for the

-
]
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CCW 3-fold rotation about the
bond axis.

CW 3-fold rotation about the bond
axis.

Reflection in the (110) plane.

'""Reversal'' Operations

Inversion

CCW 3-fold rotation about the bond
axis, followed by inversion.

CW 3-fold rotation about the bond
axis, followed by inversion.

2-fold rotation about the [110]
direction.

sixth neighbor Equation (1.45) yields,

5 U2+ M2+ 3+3D)

2

Applying the CCW 3-fold rotation one obtains

(000, 111)

]
_———
o — 0O
-0 O

—_——

o — O

.

o — O
T —

il = I = )

o — 0O

o O - -0 O

o O -

o = 0O OO —

- O

S —

(A.11)
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2z xz yz
(000, 111) =(xz XX xy) ) (A.12)
yz xy yy

Therefore, xx = zz, xz = xy = yz, and yy = xx. Thus, the matrix of
independent interatomic force constants becomes
XX yz yz\

(000, 111) = ( YZ XX yz
\yz yz xx

J, (A.13)

- (3

5 ), as shown

1
2

in Figure (A.1). There are no symmetry operations which leave this bond

The seventh nearest neighbor is located at 27 1,

invariant or reversed, other than the identity and inversion, respec-

tively. Therefore, from Equation (1.45),

3 13)% + 3}

=
]

N=6 . (A.14)

Thus, the matrix for seventh neighbors cannot be simplified beyond the
reduction obtained from permutation symmetry as discussed in Chapter I.

XX Xy Xz )

3 ]
9(000, 55 1, ) = ( Xy yy yz,
Xz yz zz

(A.15)

The eighth neighbor is located at £ = (2,0,0), which is along the
cube edge and at twice the distance of the second neighbor. Therefore,
all the symmetry operations which leave the second neighbor bond in-

variant also leave the eighth neighbor bond invariant. Therefore, from
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Equation (A.3),

XX 0 0
0 vyy 0) . (A.16)

(000, 200) = (
0 0 vyy
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APPENDIX B

Data taken at Ames Laboratory are tabulated in this appendlx.
Several phonons obtained with the first small y-Ce crystal are listed in
Table B.1. The scattering from this sample was very weak and contaminated
from higher order processes, therefore, these data are subject to large
errors. As previously mentioned, a great deal of the Mitsubishi data
obtained from the second sample was also ambiguous due to spurious
structure in the scans. Measurements performed with the Triax identified
the phonon scattering in these ambiguous regions. Therefore, Table B.2
presents only that Mitsubishi data from the second sample which was later
confirmed as phonon scattering. The Triax data itself is presented in
Table B.3. No errors are listed for any of the data in this Appendix as
they were not used in the analysis. All measurements listed here were
performed with neutron energy loss except those indicated by a super-

script "a'" which were energy gain measurements.

Table B.1. Mitsubishi data from the
first sample

Branch q (g) v (THz) T
5 .05 A 111
: 10 .88 111
oy 1.35 111
T [T i | 53 002

s 1.03 002
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Table B.2. Mitsubishi data from the second

sample

Branch q (&) v (THz) T

L [001] N .35 002
.2 .78 002

3 1.20 002

b 1.552 002

.5 1.882 002

.6 2.202 002

.7 2.453 002

.8 2.73 002

T [001] .2 .55 11
.3 .968 220

R ]1.252 220

5 1.502 220

.6 1.702 220

) 1.902 220

.8 2.00° 220

L [110] . .62 220
.2 1.25 220

T2 [110] 4 .45 002
.2 .95 002

.3 1.40 002

A 1.80 002

5 2.253 002

L [111] .2 1.7 111
3 2.252 11

T [111] B .50 002
.2 .75 002

- 93 002

b .82 002

+5 o ) 002

3Phonons taken with a neutron energy
gain process. All other data listed were
obtained with a neutron energy loss process.
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Table B.3. Triax data from the second sample

sample
o >
Branch q (£) v (THz) T

L [001] .2 .76 002
.3 1.15 002

A 1.5] 002

.6 2. 10 002

2 2.45 002

T [001] 3 .985 220
W4 1.285 220

;5 1.50 220

.6 1.735 220

.7 1.90 220

1.0 2.00 220

L [110] s .60 220
a2 1.28 220

3 1.735 220

4 2.09 220

«5 2:20 220

.6 2.20 220

od 2.10 220

.9 2.04 220

T, [110] A .45 002
2 .95 002

53 1.40 002

b 1.82 002

vh 205 002

.6 2.35 002

L [111] sl .88 111
.2 1.65 111

T [111] . 4o 002
ald Wi 002

3 + 35 002

b 875 002

5 77 002
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APPENDIX C

This appendix contains listings of the AFC's and elastic constants
generated by various n-th neighbor fitting procedures. The densities of
states generated from various sets of AFC's are also presented

graphically. A key to the tables is given below.

Table C.1) 4NN Fit #1 - general tensor fit.
LNN Fit #2 - axially symmetric fit, weight = 100,

6NN Fit #1 - modified tensor fit, two axially symmetric con-

ditions: 3(5XX) - 3(5YY) - 8(5XY) =0

(5xX) - 9(5YY) + 8(52z) = 0
6NN Fit #2 - modified tensor fit, 1XY and 1ZZ fixed from
values given by 4NN Fit #1.

6NN Fit #3 - axially symmetric fit, weight = 100.

Table C.2) 8NN Fit #1 - modified tensor fit, axially symmetric con-

ditions listed in Table 3.3.

8NN Fit #2 - modified tensor fit, axially symmetric con-
ditions listed in Table 3.3.

8NN Fit #3 - modified tensor fit, AFC's fixed listed in
Table 3.3.

8NN Fit #4 - modified tensor fit, AFC's fixed listed in
Table 3.3.

8NN Fit #5

axially symmetric fit, weight = 100.

Each density of states graph was generated by the set of AFC's which

was produced by the fitting procedure designated in the figure caption.
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Table C.1. AFC's and elastic constants produced by various 4NN and 6NN
fitting procedures
AFC Value (10& dynes/cm)
LNN Fit #1 LNN Fit #2 6NN Fit #1 6NN Fit #2 6NN Fit #3
1 XX 0.50005 0.47576 0.42557 0.44847 0.44023
1ZZ -0.06055 0.00289 -0.01475 -0.06055 -0.03568
1XY 0.48640 0.46400 0.48532 0.48640 0.46919
2XX -0.28760 =0.22032 -0.24278 -0.33739 -0.28168
2YY 0.03582 -0.02704 0.00675 0.05256 0.01302
3IXX 0.02644 -0.01262 -0.00612 0.03968 0.01276
3YY -0.00486 0.01008 0.04433 0.02142 0.03205
3YZ -0.05901 -0.03720 -0.03726 -0.03726 ~0.02034
3XZ 0.00082 -0.00876 0.004L6 0.00446 -0.00007
Lxx -0.00378 0.01867 -0.00001 -0.02291 0.00228
Lzz 0.00911 -0.00884 -0.00L460 0.04120 0.01636
Lxy 0.00129 0.01611 -0.02495 -0.02603 -0.01124
5XX = = 0.02032 0.02032 0.01677
5YY = - -0.00618 0.01672 -0.00520
5212 - - -0.00949 -0.03240 -0.00846
5XY = = 0.00994 0.01048 0.00854
6XX = = -0.02986 -0.02986 -0.03298
6YZ - - -0.00289 -0.00289 -0.00677
. 12 2

Elastic Constants Value (10 ° dynes/cm”)
11 .22738 .23236 .23579 .23579 .22990
Chy .20800 .20907 .18129 .18129 .18316
n::]2 .08659 .08854 .11569 .11569 11145

(c]'- c]2+ chﬁ)/3 .11626 .11763 . 10046 . 10046 .10054

(¢ +2c, *he,,)/3 41805 41523 .39745 . 39745 .39514

(c]]- clz)/z .07040 .07191 .06005 .06005 .05923

(cy* c 2+2.:M4)/2 .36498 . 36952 -35704 . 35704 .35383
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Table C.2. AFC's and elastic constants produced by various 8NN fitting

procedures
AFC Value (th dynes/cm)
8NN Fit #1 8NN Fit #2 8NN Fit #3 8NN Fit #4 BNN Fit #5
1 XX 0.47237 0.41188 0.44847 0.45906 0.44419
122 -0.08721 0.03377 -0.03941 -0.06059 -0.03885
1XY 0.44955 0.4949] 0.48640 0.48640 0.47537
2XX -0.31061 -0.24004 -0.35876 -0.35876 -0.27709
2YY 0.02849 -0.00680 0.05256 0.05256 0.02874
3XX 0.04096 -0.03718 0.02909 0.03968 0.02254
3YY 0.02046 0.05953 0.02639 0.02110 0.03232
3YZ -0.0L4848 -0.04848 -0.03726 -0.03726 -0.00708
3XZ 0.00663 0.00663 0.00446 0.00446 0.00215
Lxx -0.01327 0.00437 =-0.0253] -0.02531 -0.00458
Lzz 0.03369 -0.00159 0.05777 0.05777 0.01246
Lxy 0.02206 -0.02331 -0.00609 -0.00609 -0.00036
5XX 0.00434 0.04719 0.04028 0.02969 0.01267
5YY 0.00002 -0.01762 0.01206 0.01206 -0.01151
52z -0.00052 -0.02572 -0.04849 -0.03790 -0.01476
5XY 0.00162 0.02430 0.02005 0.02005 0.00983
6XX -0.02288 -0.02288 -0.02288 -0.02288 -0.02996
6YZ 0.00989 0.00989 -0.00568 -0.00568 -0.03114
7XX 0.00695 -0.01448 -0.01102 -0.00573 0.00184
Yy -0.00866 0.01276 0.00931 0.00401 -0.00125
722 -0.00517 -0.00517 -0.00517 -0.00517 -0.00037
JYZ -0.00233 -0.00233 -0.00015 -0.00015 -0.00011
7XZ -0.00349 -0.00349 0.00212 0.00212 0.01514
TXY -0.00698 -0.00698 -0.00698 -0.00698 -0.00407
8XX 0.00045 0.00045 0.00045 0.00045 0.00018
8YY 0.01145 0.01145 0.01145 0.01145 0.01666
2 12 2
Elastic Constants Value (10 ° dynes/cm”)
c .23888 .23888 .23888 .23888 .23981
Cuy . 18605 . 18605 .18605 . 18605 .19433
€12 .08890 .08890 .08890 .08890 .09235
(c]]- cl2+ chh)/3 11201 .11201 + 11201 L1201 .11393
(Cll+2C]2+hchh)/3 . 38695 . 38695 .38695 . 38695 . 40060
(CI " CIZ)/Z .07499 .07499 .07499 .07499 .07373
(c]]+ c|2+2chh)/2 .34993 .34993 .34993 .34993 . 36040




146

] | | l I |
FREQUENCY DISTRIBUTION

90 - fcc y-Ce -
29p K

70— -

50 =1

g(v) (arb. units)

40 o

20 ~1

0 L | L | | | [ |
000 040 080 120 160 200 240 280
FREQUENCY (THz)

Figure C.1. Density of states calculated from AFC's given by 4NN Fit #1
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Figure C.3. Density of states calculated from AFC's given by 6NN Fit #1
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Figure C.4. Density of states calculated from AFC's given by 6NN Fit #2



150

| | 1 [ I I l
FREQUENCY DISTRIBUTION

fcc y-Ce
160 295 K

140} -

2120 —

.un

g(v) (ar

60—

40|

20

oy l 1 ) | I I
0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80
FREQUENCY (THz)

Figure C.5. Density of states calculated from AFC's given by 8NN Fit #1
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Figure C.6. Density of states calculated from AFC's given by 8NN Fit #2
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Figure C.7. Density of states calculated from AFC's given by 8NN Fit #3
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Figure C.8. Density of states calculated from AFC's given by 8NN Fit #4
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APPENDIX D

In order to isolate the contribution of magnetic scattering to
the total intensity obtained from inelastic neutron scattering measure-
ments, it is necessary to apply an appropriate correction. The correc-
tion procedure which has been proposed for the magnetic measurements
performed in the present experiment is presented below.

As previously discussed in Chapter |, there are incoherent and
coherent contributions to the nuclear scattering cross section for
neutrons. Each of these contributions contains terms due to elastic,
one-phonon, and mul tiphonon processes. The contribution of each of
these three terms to the differential incoherent cross section is
given below in Equation (D.I)] (33). A similar expression for the

differential coherent cross section is obtained by replacing Gi

ncoh
with Toh 1P Equation (D.1).
& o) _ Y Tincon k' _-2w(d) (0.1)
dfidE '’ incoh L KO '
2 2
x To(h) + Apd 8l gy )
k w

TR
+ﬁ—lﬂ- ¢ WA TUOT py 51

IThis equation is obtained in the 'Gaussian' approximation. In
general, the scattering intensity becomes more and more dominated by
mul tiphonon processes as the incident energy increases. Therefore, in
the 'Gaussian' approximation the multiphonon term in the cross section
is given in a form which has the correct asymptotic behavior at high
energies.
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Reading from left to right in the square brackets, the first term
represents the elastic contribution, the next term is the one-phonon
contribution, and the last term is the multiphonon contribution to the
total incoherent scattering cross section. The various parameters of
Equation (D.1) which have not been previously defined in the context of

the present work are defined below.

N = number of scattering nuclei

hm W (d)
y(0) = B —
Aq
2
A2 - ke I , where € is the mean kinetic energy per

3% v(0) v2(0)

atom given by

€= —g— fdwg(w)ﬂw{”(w)+|§}
0
x = w/A
(s
y = 2W e ZAZ Yz(o)

o [ -x2
F(x,y) =Z ——:r(l yP ekz_p_)

p=2 pl(2mp)

The elastic contribution to the coherent and incoherent cross
sections can be avoided by measuring the scattering at finite energy

transfer. For single crystal measurements, the one phonon
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contribution can also be avoided by measuring the scattering at ''zone
center' ( values as previously discussed. Therefore, to correct
single crystal magnetic inelastic scattering data for nuclear scatter-
ing contributions, one must evaluate only the multiphonon terms of
Equation (D.1) and of the corresponding coherent cross section equation.
(The function, F(x,y), has been tabulated in Reference (33)).

Knowing the behavior of the multiphonon scattering contribution as
a function of Q and energy transfer, one can normalize the background
scattering intensity by measuring the scattering intensity at very
large Q values. For appropriately large Q values the magnetic form
factor is essentially zero (Figure 3.9) so that the magnetic scatter-
ing can be neglected. Thus, the total scattering intensity observed at
the designated large Q value can be ascribed to multiphonon processes
and experimental background.

Therefore, the additional magnetic measurements which will be per-
formed on y-Ce will complete the experimental curve of Figure 3.11,
and provide the above background normalization. An accurate correction
will then be applied to all of the magnetic scattering data which have
been obtained and a complete analysis of the magnetic scattering of

Y-Ce will be performed.
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