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I. INTRODUCTION

Many developments in the fields of biomedical research and
modern quantitative medicine involving the use of ultrasonic devices
have taken place during the last decades. New techniques have
been introduced based not only on new discoveries in the physical
sciences, but on previous quantities thought to be inaccessible.
Modern ultrasound equipment has played a vital role in the detection
of echo reflections from targets in human and animal subjects;
however, these signals are corrupted by the effects of the ‘noise’
produced primarily by the body under test and secondarily by other
physical factors.

The purpose of any filter is to separate one thing from another.
In the electric filter case (i.e., low-pass, high-pass, etc.), this usually
refers to passing signals in a specified frequency range and rejecting
those outside that range. Here, the filter is simply one of circuit
design involving the appropriate choice of resistors, capacitors, and so
on.

The problem we are dealing with is of a more fundamental na-
ture. The purpose of this thesis is to suggest a method that would
determine the optimal filter’s response, in function of its length, that
best separates the signal from the noise. The theory involved for

that matter is referred to as the Wiener filter theory.
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A. Brief Literature Review

In the early years of 1700s, Adrien Marie Legendre, a French
mathematician, was the first to develop the method of least squares
estimation.  After Legendre died in 1783, Karl Friedrich Gauss, a
German mathematician, carried that method on, and explored its usage
in the course of calculating planetary and comet orbits from tele-
scopic measurement data (Hostetter, 1987). Through the years,
various methods using the idea of least squares have become increas-
ingly important in many applications.  Communication systems, control
systems, navigation, signal and image processing; all were the center
of interest in the development of the fundamental ideas of least
squares estimation.

The goal of these techniques revolved around providing a solution
involving a linear transformation of the measurements to obtain the op-
timal estimate. In addition, a recursive formulation was derived in
which the measurements are processed sequentially (Pratt, 1978). In
digital signal processing terms, the method of least squares estimation
is a filtering process acting on incoming discrete-time measurement sig-
nals to produce discrete-time outputs that represent a close estimate
of the measured system parameters.

Norbert Wiener’s monumental early work on the extrapolation, inter-
polation and smoothing of stationary time series (Wiener, 1949) has

led to the fundamental minimum mean square estimation theory; that
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is, estimating signals from noisy observations.

In 1960, building on the work of Wiener, Rudolph E. Kalman
pioneered his first work on linear minimum mean square estimation
(Brown, 1983). His result, presently known as the Kalman filter, is
a fundamental departure from that of Gauss (Hostetter, 1987) in that
it introduces a generalization of recursive least squares. It is especial-
ly convenient for digital computer implementation. Nevertheless
Kalman’s work went hand in hand with the Wiener filter method men-
tioned earlier.

Both Wiener and Kalman filtering techniques continue to play a
prominent role in modern time series analysis. The applications in-
volve the creation of an optimal function that best yields the extrac-
tion and the separation of signals buried in noise and sidelobes that
confuse the maps and images making them hard to interpret. An ex-
ample problem which has received much attention in the literature is
that of image restoration. Here a blurred image is recorded, and it
is desired to remove the blur effect, which ultimately ‘restores’ the in-
tegrity and fidelity of the object being imaged. Image restoration
problems of this type occur in a wide variety of fields, including
radio astronomy and astrophysics and, recently, in biomedical imaging.

Image restoration by the method of least squares as applied to op-
tical images (Helstrom, 1967) was also an area of research. The
solution to such a problem, where the data was corrupted by noise

or experimental error, was treated by finding an optimal impulse
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response function that minimized the mean squared error between the
true image and the estimated one. Here the estimated image
depends on assumptions about the spectral densities of the images
and the noise.

In 1982, Michael P. Ekstrom published his work on Wiener’s
mean-square estimation as applied to a two-dimensional imaging sys-
tem. The extension of Wiener’s filtering theory was then expanded
to cover the multidimensional case. The problem was addressed by
discussing the physical realizability and causality of the Wiener filter
as they arise in 2-D. The optimal filter was then derived by solv-
ing a 2-D discrete Wiener-Hopf equation, using a 2-D spectral fac-
torization procedure.

In the area of diagnostic ultrasound, the Kalman filter has been
employed to accurately determine the locations of tissue structure
from observed reflected signals (Kuc, 1979). In their publication,
Kuc and his colleagues described the application of Kalman filtering
to improve the range resolution of ultrasound signals. The results
of their study demonstrated that improving the resolution capability,
by applying the Kalman filter, depends upon the quality of the ob-
served signal in terms of the signal-to-noise ratio, and on the ac-
curacy with which the observed waveforms were modelled.

The Wiener filter was then applied to that same area but as a
different tool. In 1982, Neal (Neal and Thompson, 1982) explored

the use of the Wiener filter as an ultrasonic scattering amplitude es-
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timation technique. Once again, the proposed method was based on
an estimate of the signal-to-noise ratio, but this time, as a function
of frequency for the backscattered signal from the target under test.

In the field of communications, the minimum mean-square error
theory was applied (Lu and Wise, 1984) in the context of a sym-
metric uniform quantization. In their paper, Lu and Wise believed
that although digital signals occupy a dominant role in modern com-
munication systems, physical signals are generally analog in nature.
Therefore, it is of essential importance to perform uniform quantiza-
tion when analog-to-digital conversion is taking place. They also ob-
served that, for several different distributions of the input signals,
log-log plots of mean-square error versus number of output levels ex-
hibit nearly linear behavior.

In the same field of communications, but in a different approach
to test for the minimum mean-square error, graphical communication
proved to be a growing area for the application of Kalman filtering
to handwriting signal encoding over the telephone channel (Yasuhara
and Yasumoto, 1984). The method was used to improve a handwrit-
ing signal transmitted in the presence of quantization noise. The Kal-
man filter improved not only the estimate of the signal, but the
signal-to-noise ratio of the reconstructed signal as well.

The Wiener and the Kalman filters also had their share in the
field of radio astronomy. In 1986, an adaptive regional Kalman filter-

ing technique (Zheng and Basart, 1986) was used to further improve
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noisy radio astronomy maps. Many simulation tests were done using
this technique. One test consisted of a noisy radio astronomy map
having a ‘ring’ structure with a dynamic range (maximum intensity
of source divided by RMS noise level in background) of 9.6. The
details of the ring were blurred. By applying the Kalman filter to
the noisy map, the dynamic range was increased to 82.0. The
reconstructed map not only showed an increase in the dynamic range
but also preserved the edges of the ring.

In the same year, another study was under way to determine the
optimal convolving function for creating the least corrupted uniformly
spaced data from noisy nonuniformly spaced data using the Wiener fil-
ter theory (Ghorayeb, 1986). It was observed that radio astronomy
data are collected on a nonuniform basis; therefore requiring the data
to be smoothed and then resampled on a regular rectangular grid.
The smoothing-resampling process degrades the data even further. In
this study, it was shown how the Wiener filter theory can be used
to determine the optimal selection of a smoothing function that yields
the best estimate of the source’s true signal. Two different types
of sources were simulated in computer experiments: a point source,
and a Gaussian source. The results from this study were significant-
ly improved for a high dynamic range situation; however, for the
low dynamic range case, the Wiener filter became unstable and thus
non-optimal with respect to the standard smoothing function used for

the same purpose at that time.
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B. The Goal of the Thesis

To date, the Wiener filter has not been applied explicitly as a
mean of ‘reconstructing’ an ultrasonic noise corrupted image. It is
the intent of this thesis to explore how well the Wiener filter works
when used as an optimal filtering operation to reduce the amount of
noise in the images produced by ultrasonic waves reflected from tar-
gets in the human or animal subjects.

This introductory chapter is followed by a review chapter showing
the general concept behind the principles and instrumentation of
ultrasound. Included in Chapter II also, is a description of the tis-
sue characterization when an ultrasonic wave is applied.

Chapter III provides a brief introduction of the noise characteris-
tics in images produced by ultrasound. It brings to the reader’s at-
tention the various forms of noise that a medical image contains.

It then progresses to demonstrate the signal processing side of the
noise and its effect on the signal and the signal-to-noise ratio.

The body of the thesis revolves around Chapter IV. This chap-
ter contains a description of the smoothing function (i.e., the transfer
function) that will best separate the true signal from the corrupting
noise. This is done by presenting the Wiener filtering method and
by employing the theoretical as well as the practical approaches that

lead to the ‘optimal’ choice of the convolving function.
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Chapter V converges into showing the experimental set-up used in
this research in addition to various tests and results deduced from
these experiments as well as conclusions drawn from their respective

analysis.



II. AN OVERVIEW OF ULTRASOUND PRINCIPLES AND INSTRUMENTATION

The theory behind sound waves has been extensively investigated
and as a result ultrasound equipment is widely used for clinical imag-
ing. The images produced by those ultrasonic waves are unique
since they represent the internal interaction with the mechanical proper-
ties of organs and other tissues in the human body, and hence,
serve as a powerful diagnostic tool of modern medicine. This chap-
ter is intended to cover the basic principles of ultrasound waves and
a brief overview of some of the devices involved in the application

of tissue characterization.

A. Physical Principles of Ultrasound

Ultrasound waves used in medical diagnostic equipment propagate
longitudinally into the body; that is, the motion of the particle is in
the same direction as of the path of transmission. Such a transmis-
sion is initiated by a piezoelectric (pressure/electric) transducer, which
also plays the role of detecting reflections of the transmitted
ultrasound pulses back from the target under test. A basic reflection

imaging configuration is shown in Figure 2.1.
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Figure 2.1. Basic reflection imaging system

The pulse generator excites the transducer, which transmits a sig-
nal shown in the solid curved lines. As soon as the propagated
wavefront hits a discontinuity, a reflected wave is produced, as sug-
gested by the arrowed lines in the diagram. The same transducer
receives this reflected wave and the signal is processed by a Signal
Processing Unit (SPU) and then displayed on a Digital Storage

Monitor (DSM). The SPU usually consists of an amplifier, an A/D



converter, a bandpass filter, and an envelope detector (Macovski,
1983).

An important aspect of sound waves is the speed of propagation,
v. It is assumed that the wave propagates at a constant velocity
throughout the body. Another important physical concept is the at-
tenuation coefficient, a, which is also uniform through the body. If
the body under test is modeled as an array of isotropic scatterers
(Hill, Nicholas, and Bamber, 1976), with reflectivity R(x,y,z), the resul-

tant processed signal s(t) is given by

s = =2 e2%% R(x,y,z) T(x,y) p’(t-22) 2.1)
Xyz z v

where

z = distance from the target to the transducer’s face

¢”2%% _ attenuation in the tissue through the round-trip distance of 2z

T = lateral distribution, on the transducer’s face, of the propagating wave

pt- 2z) = received pulse delayed by the round-trip time 2z/v
v
The received pulse, p’(t), is then the result of convolving the
transmitted pulse from the pulse generator, p(t), with the impulse
responses of the transducer and the corresponding linear filters in the
SPU. The loss in amplitude of the reflected wave due to diffrac-
tion spreading from each scatterer, as shown in Figure 2.1, is repre-

sented by the 1/z factor in equation (2.1) above.



B. Characterization of Tissue Using Ultrasound

As sound propagates, its intensity, I, generally diminishes with the

distance of propagation z (Havlice and Taenzer, 1979) according to

I=1,e2%2 (2.2)

where Io i§ the intensity at z=0 (surface of transducer). The attenua-
tion coefficient, o, depends highly on frequency, unlike the velocity
of sound, and is directly and linearly proportional to frequency.

This is true for most biological materials in the frequency range 1
to 10 MHz. In many common fluids, however, such as water, the
attenuation is primarily due to viscous absorption, and in these cases
the attenuation is proportional to the square of the frequency. Table
2.1 shows few typical values for attenuation at 1 MHz. We see,
for example, that a 3 MHz sound wave which has traveled a 10-cm
distance through fat is 17.40 dB below its initial intensity level,
while a 10-MHz sound wave traveling the same distance is 58 dB
below its initial intensity level. This explains why low frequency
ultrasonic waves are used for imaging structure deep in the body of
an obese patient. However, if the organ to be scanned lies just
below the skin, such as in a very thin person or in an infant,

higher frequencies are used. This limitation on frequency has dif-



Table 2.1. Attenuation coefficient for some materials at 1 MHz

Material Attenuation Coefficient
(dB/cm)

Water 0.0023

Air 11.000

Fat 0.58

Soft Tissue 0.81

Liver 0.95

Kidney 1.1

Muscle 1.70

Bone 12.0
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ferent impacts on equipment performance, since the frequency, f, and
the velocity of sound, v, in a specific medium determine the
wavelength, A, of the ultrasonic pulse, which is kept as short as pos-
sible to improve axial resolution (Haumschild, 1981). The equation

is given by

\'4
A= T (2.3)

It is seen then, that the higher the frequency the better the
resolution, which is the trade-off for having high attenuation and for
the sound beam not being able to propagate as deeply in the body
as the lower frequency one.

As mentioned earlier, it is assumed that the propagation velocity
of sound throughout the body is constant. In order to determine
the depth of a reflected echo, the round-trip time of the Ilatter is
used. This time can be converted to distance, z, from the
transducer’s surface to the target by knowing the speed of ultrasound
in the tissue. Some representative typical propagation mean velocities
in various materials are given in Table 2.2.

The soft tissues of the body do not exhibit major changes in
their acoustic velocities, but rather, they are limited to a very nar-
row range. This is fortunate, since fluctuations in velocity can
cause little or large geometric distortions in the produced images

and, thus, create uncertainties in the final diagnostic. = Additional
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Table 2.2. Ultrasound propagation velocities in some materials

Material Mean Velocity
(m/sec)
Water 1480
Air 330
Fat 1450
Soft Tissue 1540
Liver 1550
Kidney 1560
Muscle 1590
Bone 4080

geometric errors are caused by deflections of the propagating beam
as a result of velocity variations. However, this could be looked
upon as a useful technique for detecting malignant tumors which are
sites of an increased propagation velocity with respect to their sur-
rounding normal tissues. One last, but important, aspect of sound
wave propagation is reflectivity, represented by the term R(x,y,z)
when the body tissues are modeled as given by equation (2.1).
Reflectivity plays a very unique role as a contrast agent when body

images are being produced. It is used, in a narrow sense, as the
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simplest behavior occurring at the interface of two adjoining layers.
Changes in the characteristic impedance of the materials constituting
these layers determine the reflectivity of the surface.

The characteristic impedance, Z, of a certain medium, is defined

as the product of sound velocity, v, and medium density, P, as in

Z

vp (2.4)

Listed in Table 2.3 are some values of characteristic impedance

for a variety of media.

Table 2.3. Characteristic Impedance for various media

Medium Characteristic Impedance
(10%kg .m2 s}

Water 1.48
Air 0.0004
Fat 1.37
Soft Tissue 1.62
Liver 1.66
Kidney 1.63
Muscle 171

Bone 7.8
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The reflection coefficient, R, for a normally incident ultrasound
beam propagating through two interfacing media with acoustic impedan-

ces, Z1 and Z3, is given by

Zy - 71 2.5
Zo+ I

Table 2.4 gives the reflectivity at normal incidence for a variety
of tissue interfaces.

It is seen, from Tables 2.3 and 2.4, that the greater the dif-
ference of the impedances of the adjoining media, the greater the
amount of reflection coefficient at their respective junction.

The amount of sound reflected from an object depends, not only
on the difference between the acoustic impedances (Havlice and
Taenzer, 1979) of that object and its immediate vicinity, but also on

the size, shape and orientation of the object.
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Table 2.4. Reflectivity of normally incident ultrasonic waves for various

media interfaces
Media Reflectivity
Interface

Soft tissue - Water 0.05
Soft tissue - Air 0.9995
Muscle - Liver 0.01
Muscle - Kidney 0.03
Fat - Liver 0.09
Fat - Muscle 0.10
Fat - Kidney 0.08
Fat - Bone 0.69

Brain - Skull bone 0.66
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III. CHARACTERISTICS OF NOISE IN ULTRASONIC IMAGES

Unlike various types of imaging techniques, where noise is signal-
dependent (Macovski, 1983), the noise in ultrasonic systems is an addi-
tive random Gaussian process resulting primarily from the transducer
set-up, and secondarily from the location of the target under test,
especially in the human body. This chap'ter tackles the concepts
necessary to understand the physical characteristics which are of ex-
treme importance in the study of noisy stochastic processes. The dis-
cussion will then proceed to introduce the various kinds of noise
that can be present during a medical diagnostic situation. The
problem of introducing these parameters is presented and developed

for the two-dimensional process.

A. A Review

Ultrasonic signals can give numerical information about the struc-
ture and function of biological systems. The time taken by the trans-
mitted ultrasonic pulse to travel a round trip path can be used to
estimate the distance between the interface of the transducer to the
target being scanned; and thus, provides an accurate diagnostic
method which has a wide application in the field of clinical
medicine. From the earliest use of medical ultrasonics, however,

some diagnostic procedures have involved a tremendous amount of
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numerical analyses, of varying degrees of complexity, depending on
how noisy the produced images were.

In typical medical ultrasonic imaging systems, the observable sig-
nal, Si(t), may, for instance, be the intensity of the ultrasonic pulse.
This signal, at any one point in time, consists generally of two com-
ponents:  the information-carrying signal, S(t), and an unwanted noise

component, N(t), so that

Si(t) = S(t) + N() (3.1)

The nature of noise present in an image depends on the way in
which the image is generated. Typical forms of noise in medical

ultrasonic images are:

1) Fluctuation noise, which occurs when an image is formed by
counting the number of reflections arriving from the scatterers
originating at organ cells.

2) Fat noise, which is created by adipose tissues which constitute the
fat layers located either directly on top of the scanned organ or in
the subepidermis region under the skin surface.

3) Computation error noise, due to numerical computations of the
image as a result of a series of observations.

4) Systematic error noise, due to instrumentation malfunction (i.e.,

defect in transducer).
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5) Aliasing noise, from other targets which may or may not lie in
the field of view and, therefore, are the site of actual emissive
reflections that can cause prominent defects to the image.

6) Speckle noise, also known as the earlier stated ‘Fluctuation noise’,
which is seen when the reflectivity function, R(x,y,z), in equation
(2.1) is modeled as an array of scatterers. These scattered signals
add coherently; that is, they add constructively and destructively

depending on the relative phases of each scattered waveform.

B. Characteristics of Image Noise

We just saw, in the previous section, that unwanted signals (i.e.,
noise) come from a variety of sources, generally classified as man-
made interference or naturally occurring noise. By careful engineer-
ing, the effects of many undesirable signals can be reduced or even
eliminated completely. But there always remain certain inescapable
random signals, which present a fundamental limit to systems perfor-
mance.

Generally speaking, noise can be characterized by two forms: deter-
ministic and stochastic. = Deterministic noise is a process such that
the noise signal, N(t), at a particular time, is the same at each
replication of the observation. The noise is then completely self-deter-

mined and self-generated by its own process. On the other hand,
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stochastic noise is that process which, at a particular time, is a ran-
dom variable determined by various locations in the image and is dif-
ferent at each replication of the observation. Only the probability
characteristics, and not the actual values of the noise at some
specific time, are determined by the generating process.

One type of deterministic noise is designated as ‘Gaussian white
noise’. Such noise is characterized by its power spectrum which is
constant over a wide frequency range, and contains frequency com-
ponents in equal proportion throughout the spectrum. Now, the
reason why this type of noise is classified as ‘Gaussian’ is because
it is known to have a ‘Gaussian’ probability distribution and posses-

ses the familiar bell-shaped curve, as given by

e-(x-m)2/20'2

) 1 (3.1)
pXx) =
v2r o
where m = mean value
¢ = standard deviation

Figure 3.1 describes the continuous random variable p(x) which
may take any values in the [-e0, +co] range but is mostly significant
near the mean value m.

Because white noise contains all frequencies in equal proportion,
it is a convenient process for filter measurements and experimental

design work. Consequently, white noise sources with calibrated
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—- p(x)

P(w)

_— S~

Figure 3.1.  Statistical characteristic of Gaussian white noise
p(x): probability distribution
P(w): power spectrum
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power density have become standard laboratory instruments and as
will be seen later in this thesis, the noise generator is a computer

program (see Appendix) written in FORTRAN 77.

C. Signal-to-Noise Ratio

The signal-to-noise ratio, S/N, resulting from ultrasonic systems
governed by additive Gaussian noise, is the ratio of the received sig-
nal power at the transducer terminals to the average noise power
pn2. In estimating the signal, it must be emphasized that the attenua-
tion compensation takes place beyond the transducer and has generally
no effect on the signal-to-noise ratio. Therefore, reflections emanat-
ing from greater depths, which experience increased attenuation, result
in a reduced S/N ratio.

At a particular depth, zo, the S/N ratio is defined as the peak

signal power received at that depth, divided by the noise power, as

given by
Po’ - (3.2)
SN = ——
P02

where Po is the peak value of so(t), the signal envelope of s(t),
derived from depth plane z = zo. This signal so(t), in a single

transducer system, using steady-state diffraction theory, is given by
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e-Z(IZo P’ (t-_2_Z_0_) DD R(x,y,z0)

20 vV Xy

so(t) =
i(ke%220). 2

[T(x,y) ** & ") (3.3)
The peak value Po is given by

ey 2
e 2020 p'|T ¥ R(x,y,20) [T(x,y) ** eIk /22042 | (3 4y

20° Xy

Po=

where P" is the peak value of p’(t).

The summation expression, in equation (3.4) represents the product
of the diffraction patterns of the source and the reflectivity at plane
zo. If the reflectivity function R, representing the object being
studied at plane zo, is small compared to the beam size, the summa-
tion is essentially over R itself. Conversely, if the reflectivity func-
tion, such as in a tumor, is large compared to the beam pattern,
the summation is effectively over the beam pattern and is inde-

pendent of the size of the object.
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IV. OPTIMAL FILTERING

The Wiener Filter is an image restoration technique that uses a
statistical procedure in order to correlate the true image to the noisy
image and ultimately extract the signal from the noise. Knowing
the statistical characteristics of the noisy picture and of the added
noise, one can design an ‘optimal’ filter which can be used along
with a digital computer to reconstruct the original source. In prac-
tice, we never have the true signal. One possible approach is to
calculate the optimum filter for a variety of patients and then use
these results inversely as a look-up table. That is, given a ‘dirty’
image, one could find a similar image in the look-up table and then
reconstruct the source using the ‘optimal’ filter found in the table.

In this chapter, the mathematics behind the Wiener Filter method
are presented in preparation of setting up the steps that constitute

the procedure to be followed in order to create the ‘optimal’ function.

A. The Wiener Filter Method

It is the objective of this chapter to explore how well the
Wiener Filter technique would lead to the optimal selection of the
convolution function that best yields the actual signal distribution
from reflected ultrasonic observations made in the presence of random

noise. A simulation program is put together to achieve this task.
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The problem is dealt with in the one-dimensional space, rafher than
two dimensions, because the mathematics are simpler. The program-
ming, though, was implemented to meet the task of a multidimen-
sional situation. If the results from the one-dimensional case are
promising, the multidimensional case will be tested in future develop-
ments.

Consider the linear system shown in Figure 4.1. Let the input

to this system be the observed true source noisy signal Sj presented

in equation (3.1) and given by
Si(t) = S(t) + N(1) 4.1

where S(t) is the true signal and N(t) is the added noise. Let the
output of the system, So(t), be the actual measured signal. G(t) is
the transfer function of the system or, in more familiar terms, the un-
known ‘optimal’ function that is to be chosen in such a way to
make So(t) ~ S(t).

The So(t) can be given by

So(t) = J G(1) Si(t-t) dt 4.2)

0

The above equation follows from the standard convolution theorem.
Our goal, then, is to have So(t) approximate as closely as pos-
sible the time signal S(t). That is, we want to minimize [So(t) -

S(t)]. As a criterion for measuring the difference between So(t) and
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Si(t)=S(t)+N(t) So(t)

( G(@)

e/

Figure 4.1. ‘Optimal’ Wiener Filter linear system
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S(t), in some period 2T, we shall take the limit as given by

T
lim 1 J [So(t) - S(H]? dt (4.3)
T—>0 2T J-T

The above limit gives the square of the rms value of [So(t) -
S(t)]. We now choose a time interval, h, which is small enough
to create a Si(t) that is well characterized by its values at the
points t = kh where k refers to the integral values (i.e., k = -T,..,
T). Letting Si(t) = bk, then, the observed true source noisy signal
can be regarded as a discrete sequence b.T,..., bo,..., bT. Also let-
ting the true signal S(t) be the sequence (ax), a-T,..., ao,..., aT, the
added noise N(t) will have the form (bk-akx), that is (b-T-a.T),..., (bo-
a0),..., (bT - aT). Therefore, the linear system shown in Figure 4.1
will be regarded as having an input bn and an output to ap-

proximate the true source sequence, an. Equation (4.2) can be ap-

proximated by the following summation:

So(t) = X G(nh) Si (t-nh) (4.4)
n=1

Letting Gn = G(nh) for n > 0 and suitably choosing some value

M, (4.4) could be written as
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M
So(t) = X Gn Si(t-nh) (4.5)
n=0

Equation (4.5) says that So(t) is approximately given by a weighted
sum of a number of past values of the input Si(t). In case So(t)

and Si(t) are determined by their values at t = kh, we find

M
So(kh) = £ Gn Si[(k-n)h] 4.6)
n=0

If we let So(kh) = Sok and Sij[(k-n)h] = Sik-n), equation (4.6)

can be rewritten as

M
Sok = 2 Gn Si(k-n) 4.7
n=0

Equation (4.7) is now used to determine Gn so that the errors

M
€ = ak - X Gn bnk (4.8)
n=0

are as small as possible. For this to happen, Gn should be chosen

so that the average of the sum of the squares

x>

-T

M

k

is a minimum. Stated in formula, we choose Gp so that
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T M
I = lim 1 X (ak - = Gn bkn)?
T—>o ITF+1 k=T n=0

is a minimum.

4.9)

Equation (4.9) could be presented in a much easier form if we

introduce the auto-correlation functions representation of each of the se-

quences ak and bk; that is,

T
Ra(k) = lim 1 2 a] alk
T —00 2T+1 1=-T

T
Rp(k) = lim 1 Z b bk
T = 2T+1  1=-T

and the cross-correlation function

T
Rba(k) = lim 1 Y a] bix
T - 2T+1 1=-T

Note that if the true signal and the added noise are

related, then,

Roba(k) = Ra(k)

The worst situation that can arise is when Rpa(k)

completely uncor-

= 0. This

tells us that bx and akx have no correlation, which means that the

added noise cancels the true signal completely and only random
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residue, making it impossible to separate any part of the true signal

from the true source noisy signal by a linear system.

Expanding equation (4.9) we get

T
I = lim 1 T a’
T—>oo IT+1 k=T

M T
- 2% Gn lim 1 p ak bk-n
n=0 T-—>e 2T+1 k=T
M M T
+X X Gp Gnp lim 1 X  bk-n bkm
n=0 m=0 T—>oo 2T+1 k=T

Using the above auto- and cross-correlation functions repre-

sentation, we have

M M
I =Ra(0) 2 2 Gn Rpa(n) + X Gn Gm Rp(m-n)
n=0 m,n=0

If Gn are chosen to make I a minimum, we must have

oI
= 0 k=201 ...
e M

thus,

(4.10)
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M
O =-2Rpak) +2 X Gp Rpkkn) =0
Sﬁk n=0

So a necessary condition that the Gn make I a minimum is

M
z Gn Rp (k-n) = Rpa(k) 4.11)
=0

n

for k =0, 1, . . ., M
Equations (4.11) are a linear system of (M+1) equations with
(M+1) unknowns. We see that determining Gn depends on the
autocorrelation function of bk and the cross-correlation function of bk
and ax. It is of absolute necessity for the sequence ax and bk to
be elements of stationary random processes that are invariant under a
translation of time.
In summary, the Wiener Filter method can be characterized by
the following (Brown, 1983):
1. Both the true source noisy signal and the added noise should be
random processes with known auto- and cross-correlation functions.
2. The goal is to achieve minimum mean-square error for best
performance.
3. A solution for the ‘optimal’ filter weighting function should be

based on scalar methods.
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B. The Discrete Case

The standard formulation of the discrete, single-channel Wiener Fil-
ter problem leads to a system of ‘normal linear equations’. In the
preceding section, the mathematics that led to these equations (4.11)
were developed. The solution of these equations, that gives the
‘optimum’ function G(n), will be discussed in this section.

Since the system of equations is linear and holds for every n,
we take Z-transforms of both sides of equation (4.11).

The definition of Z-transform is

Yxx(z) = X Rxx(n) z™
n=0

Applying this to both sides of equation (4.11) gives
Ymi(z) = Ymm(z)G(z) (4.12)

This is shown in the following manner. Since,
Rmm(n) <—> Ymm (2)

and G(n) <> G(2)

then, by the convolution property of the Z-transform

M
% G(n) Rmm(k-n) <= G(2) Ymm(z)
n=0
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Hence, the system function of the ‘optimum’ filter is given by

_ Ymi(z) (4.13)

where m and t stand for measured and true, respectively; and where
Ymt(z) is the spectral cross-correlation function and Ymm(z) is the
spectral autocorrelation function.

This way of solving for the ‘optimum’ filter could, in fact, have
the same problem as that of deconvolution. This could be a
problem that negatively affects the output of an ‘optimum’ filter after
noise, with high rms levels, is added to the true signal. On the
other hand, this process might be a less favorable path to take for
solving the system of normal equations (4.11) for very noisy proces-
ses, since the spectral auto- and cross-correlation of these processes
will also be very noisy, which will, as a result, introduce noisy

‘optimum’ filters.
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V. THE PROCEDURE, THE TEST AND THE ANALYSIS OF RESULTS

In order to achieve our goal as far as the ‘optimal’ function is
concerned, as presented in Chapter IV, a simulation program was set
to constitute the procedure that leads to creating that function and ul-
timately restore the true signal. The steps of the procedure are:

1. Read in or create the true signal s(t) as it is supposed to be
before noise is added.

2. Add some noise with a specific variance and seed, to the true
signal in order to simulate the measured signal Sj(t).

3. Take the autocorrelation of Si(t) with itself, and the cross-

correlation of Sij(t) with S(t).

4. Using the results from step 3, find the ‘optimal’ filter as per

equation (4.13).

5. Convolve the latter with the measured signal Si(t) found in

step 2.

6. Lastly, compute the normalized mean-square-error for the computed

filter of the true and the restored signal.

As mentioned earlier, in practice, the true signal, due to
ultrasonic reflections that characterize a target organ or tumor in the
human body, is never known. As a consequence, a direct method
to determine the ‘optimal’ filter cannot be obtained from the only

known measured (true signal + noise) signal since one of the condi-
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tions of the Wiener filter, as stated earlier, is to assume that both
the true signal and the added noise are well-identified processes and
with known auto- and cross-correlations functions. So then, one pos-
sible approach to acquire is to compute the ‘optimal’ filter for a
variety of patients and then use these results inversely as a look-up
table. That is, given a noisy image or signal, one would be able
to find a similar image in the table, and then, re-construct the sig-
nal by using the corresponding °‘optimal’ function of the Wiener filter

as determined by that look-up table.
A. Experimental Set-up

Various types of ultrasonic signatures were simulated using a
program (see APPENDIX) that either creates the reflection via a math-
ematical model or reads in simulated results of pulse-echo waves
produced by various transducer prototypes (Brown, 1988).

The mathematical model representing the first simulative pulse-echo
wave was simply a ‘pill-box’ or in a more familiar term, a rectan-
gular function whose amplitude and width are two varying parameters.
Figure 5.1 shows the °‘pill-box’ in the time domain and its correspond-
ing frequency domain spectral magnitude.

Four simulated pulse-echo performances corresponding to four
various piezo film transducer prototypes #P10, #P13, #P17 and #P20

(Brown, 1988) were also used. It is not the intent of this work
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to go into a detailed explanation of the physical/chemical design of
these transducers. The only thing I would like to point out,
though, is that the transducers were constructed with copolymer
probes which used gold metallization. The testing and simulation
work on #P10 and #P13 showed very high sensitivity and a narrow
band response. On the other hand, #P17 and #P20 were designed
to show a more broad band pulse-echo response. Figures 5.2-5.5
show the time domain and the spectral magnitude simulation results

of pulse-echo performances for these transducers.

B. Tests and Results

As a first attempt to test for the effectiveness of the Wiener fil-
ter from an optimal point of view, using the software (see Appen-
dix) developed for that purpose, a simulated waveform representing an
‘ideal’ pulse-echo reflection was used. This waveform was created
by adding a signal of Gaussian white noise, with zero mean and
unity variance, to the rectangular pulse shown in Figure 5.1. The
program used to generate the Gaussian noise (see Appendix C) was
implemented to create a particular noise signal which depends on an
input variable called the °‘seed’. The seed determines how flat the
spectral density of the noise would be over a given range of frequen-

cies. It has been found, by trial and error, that a seed value of
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52.0 would provide a noise signal with a very wide-band spectrum,
which is exactly what is needed in order for the noise to be charac-
terized as °‘white’. This value of the seed was used at all times
during all tests.

This preliminary test was used to search for the occurrence of
an optimal finite length (i.e., finite number of coefficients) Wiener (fil-
ter. Two sets of computations were performed on the rectangular
pulse. In the ﬁfst one, the rms level of the noise was arbitrarily
chosen to be 0.5 and in the second one, the rms was reduced to
0.4. A filter length of 6, in the first test, proved to be optimal.
At that length, a minimum mean-square error (M.S.E.) of 0.108 was
achievéd as opposed to higher M.S.E. values attained after cbnvolving
the noisy data with the same filter but having a shorter or a longer
length. In the second test, a minimum M.S.E. of 0.038 was
reached using a filter length of 3.

Note that step 6 in the procedure, shown earlier in the chapter,
that leads to creating the optimal Wiener filter and thus restoring
the true signal, could be named the ‘DECISION MAKER’. This
‘DECISION MAKER’ provides the information about whether or not
an optimal Wiener filter, with .a specific length, was accomplished.
This step requires the computation of the M.S.E. of the true and

the restored signals by the following equation
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3 2
M.S.E. =%I 2 (Sit - Sin)

I

where Sit and Sir are the true and the restored pulse-echoes; respec-
tively. As one of the characteristics of the Wiener filter, the
M.S.E. should be as minimal as possible for optimal performance.

The assumption made, then, with respect to the presence of an op-
timal Wiener filter length at which a minimum M.S.E. is reached,
proved to be realizable.

The testing went on» next to cover more realistic situations. The
four simulated pulse-echo reflections shown in Figures 5.2-5.5 were
used. As mentioned earlier, the first two pulse-echoes, corresponding
to transducers #P10 and #P13, showed to have a narrow-band
response; while the last two reflections, corresponding to transducers
#P17 and #P20, were designed to provide a more wide-band pulse-
echo response (Brown, 1988).

Various tests were made on these reflections. All computations
were performed in the time domain. Once again, the measured sig-
nal (i.e., noisy signal) was simulated by adding Gaussian white noise,
with zero mean and unity variance, to the desired true pulse-echo.
Seven Wiener filter lengths (2 to 8) were used, during each of the
four tests, to check for the optimal situation when the M.S.E.
reached a relatively minimum value. The rms level value for the

added noise was again picked randomly for each case, just enough
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for the true signal to appear pretty corrupted. Noise, with rms
levels of 0.50, 0.14, 0.34 and 0.025, was added to the pulse-echo
produced by each of #P10, #P13, #P17 and #P20 transducers; respec-
tively.

A test that one can perform to determine how large the signal
is, with respect to background noise, in the image is via what is
called the ‘DYNAMIC RANGE’ (D.R.). The D.R. is given by the

following formula

Maximum intensity of the signal

D.R. RMS noise level (in background)

Table 5.1 shows the D.R. for each of the four pulse-echo signals

after the noise signal was added with its respective rms level.

Table 5.1. Dynamic Range of the noisy signals shown in Figures
5.6(A) - 5.13(A)

Transducer D.R.
#P10 3.841388
#P13 5711462
#P17 3.952838

#P20 4.900750
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Following the pattern given by the procedure at the beginning of
the chapter, the Wiener filter was created using equation (4.13) and
then convolved with the noisy pulse-echoes in order to produce an es-
timate of the true ones. Table 5.2 shows the results of each test
performed on the noisy pulse-echo waveforms in addition to the mini-
mum M.S.E.s achieved in each situation as a function of filter
length (LFIL). Note that all M.S.E.s were computed after the res-
tored signals were amplified and normalized to their corresponding
true pulse-echoes.

Figures 5.6-5.13 show the noisy pulse-echo waveforms used in
each test with their respective restored waveforms. Figures 5.6, 5.8,
5.10, and 5.12 show the filtered signals resulting form the convolu-
tion process of the noisy signal with the optimal length Wiener fil-
ter as indicated by Table 5.2. Figures 5.7, 5.9, 5.11 and 5.13
show the results of a non-optimal situation for the Wiener filter
(LFIL = 7) which led to a non-minimal M.S.E.

The following section will elaborate on these results by presenting
a thorough explanation on what the Wiener filter method has

achieved vis-a-vis improving the distorted pulse-echo reflections.

C. Analysis and Conclusions

A few things have to be discussed in order to evaluate the per-

formance of the Wiener Filter just applied to ultrasonic pulse-echo



Table 5.2. Mean-square error vs. Wiener filter length after a
normalized amplification of the restored signal for #P10,

#P13, #P17 and #P20 transducers

Transducer

Filter Length

MS.E.

#P10

#P13

#P17

#P20

00O ~NONWL AN

11.28404
8.69661
7.96607
7.89403
8.80743

22.56284

22.68874

9.03072
6.67758
5.78372
5.46910
5.83497
33.54119
26.61132

5.07252
4.87135
6.35663
8.08125
10.26430
13.34327
15.75842

5.04773
4.37144
4.68149
4.90305
5.47612
8.39851
10.00594

E-02
E-02
E-02
E-02
E-02
E-02
E-02

E-03
E-03
E-03
E-03
E-03
E-03
E-03

E-02
E-02
E-02
E-02
E-02
E-02
E-02

E-04
E-04
E-04
E-04
E-04
E-04
E-04

* Optimal filter length
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reflections as shown in the previous section.

By examining Table 5.2, it is well noticed that the M.S.E. in
each of the four tests has reached a minimum (as expected) but
then started to increase as a function of filter length. It has been
determined (Koopmans, 1974) that this is a normal behavior of the
Wiener filter. The reason for that behavior is not very clear;
however, one interpretation can be proposed; rounding-off errors when
more filter coefficients are computed by the long division process dis-
cussed earlier, is probably the cause of this discrepancy. At any
rate, one and only one optimal filter length exists that leads to a
minimum M.S.E. When larger filter lengths (>8) were tested, it was
noticed that fluctuations in the M.S.E. occurred all along, but never
reached again the minimum value provided by the optimal length.

One other observation worth mentioning is the rms noise level
and its effect on the M.S.E. As an increasing amount of noise
(higher rms) is added to the true pulse-echo, the M.S.E. appears to
increase; and as one might expect, the overall restored signal gets
very noisy. In fact, as the dynamic range of the noisy pulse-echo
decreases, the ‘reconstructed’ signal becomes essentially useless since
the noise components, after amplification, are also amplified by this
operation causing a monotonic deterioration of the filter’s output.

For the given situation, though, it is seen form Figures 5.6-5.13
that the Wiener filter has definitely improved the signals of the

noisy pulse-echo reflections. Table 5.3 summarizes the content of
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those figures by showing the dynamic range of the restored signals

for the optimal and the non-optimal filter lengths. These values can
be compared to their corresponding counterpart D.R. values given by
Table 5.1 before the filtering took place.

One other note about the filter’s length and its relation to the
M.S.E. By looking at the overall results in Table 5.2, one can
notice that, in the narrow-band response (i.e., #P10 and #P13) situa-
tions, a longer filter length was required to achieve the minimum
M.S.E. as opposed to a shorter one in the broad-band response case.
More work and consequently more computation time were necessary
to smooth the first two noisy pulse-echoes than to perform the same
operation on the ones belonging to #P17 and #P20 transducers. On
the other hand, it has been observed that as the rms noise level
changed (increasingly or decreasingly), the length of the Wiener filter
required for best performance (i.e., minimum M.S.E.) also changed ac-
cordingly. For example, in testing the pulse-echo for #P20
transducer, the noise rms level was slightly decreased to 0.01. A fil-
ter length of only 2 was required to reach an even lower M.S.E.
of 8.089 E-05 as compared to 4.371 E-04 for the larger rms level
of 0.025. This criterion leads us to believe that low M.S.E. is in-
deed a function of low rms noise level as well, or in a more
familiar term, high signal-to-noise' ratio.

As a conclusive remark about the application of the Wiener filter

to ultrasonic pulse-echo reflections, it is a well established fact that,
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Table 5.3. Dynamic range of the restored signals for the optimal and
the non-optimal filter lengths shown in Figures 5.6-5.13

Transducer Filter Length D.R.

#P10 5 11.31512
5.65473

#P13 5 15.45008
4.95239

#P17 3 7.95490

7 5.79924

#P20 3 7.04860

5.23619
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with the presence of noise, this method could still perform properly
as far as true signal feature enhancement is concerned, as long as
the overall shape of the true image is not completely unrecognized.
If the signal-to-noise ratio is low, the ‘reconstruction’ capability will
be degraded because the noise components can be amplified during
that operation.

In this thesis, the Wiener filter technique was considered for im-
provement of noisy ultrasonic pulse-echo reflections produced by nar-
row-band and broad-band transducers. Although more testing of the
technique is required to determine the full extent of the technique’s
ability to improve ultrasonic images under a variety of conditions,
the results obtained in this research work indicate that Wiener (filter-
ing is a useful technique for increasing the recognition of wanted
details contained in ultrasonic images and, thus, may facilitate any
kind of ultrasonic image understanding in mostly all fields utilizing
this tool.

It is worthwhile to continue developing this approach, perhaps in
the future on real-life experiments using real-time digital image process-
ing. One application that might be a good laboratory experiment
would involve a subjective evaluation of beef grading, since develop-
ments in that field were accomplished with the use of ultrasound to

determine texture- differentiation of marbling in beef.
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VIII. APPENDIX A: THE MAIN PROGRAM



PROGRAM PULSE

(2333322302222 8222333323022 02233032022 00233 8032222203220 0323322223029 274

Cx
Cx
Cx

ANOOAOMAOOAOOOOOOOOOONOOONO
36 ¢ I 36 D6 36 3 36 I 3¢ Y 3¢ I 36 W 3¢ M 36 He 3¢ M 3¢ M

999

887

*!#t!*t!!!##!t*t!*!*X!!t!!t!*t*t!!!*!*t!t!!!tt!!t!!!!Xt*!!!***t!!#t*t

This is the main rrodram that creates or reads in s gsimu~
lated pulse-acihn waveforw, The main feature of this rrogram
is to arely the UWiener filter techniaue to the nuisy pulse-
echo} that is» after the actual »ulse-echo has been corrurted
by an additive Gaussian white noise., The rroucedure followed
in order to create the oetimal Wienwr filter and to_ restore
the true ruylse-echo sidnal can be summarized a3s follows!?

(1) Take the autocorrelation of the noisy rulse-echo
with itself.

(2) Take the cross-correlation of the nuisy pulse-echo
with the actual one,

(3) Use the resylts from sters (1) 3 (2) to determine
the ortimal Wiener filter via 3 long division mani-
rylation 3s diven by eauation (4.13) in charter IV,

(4) Convolve the computed optimal filter with the noisy
ruylse-echo to det the restored signal.

(9) Finallys comprute the normalized Mean-Square-Error
for the comsuted filter of the true and the restored
riylse-echns,

M 3 T I W PP I 34 I I I I % D I 3¢ H 6 T2 I

VIRTUAL XMEAS(1024),TRUE(1024),AUT0(1024),CROIX(1024)
UVIRTUAL XNONISE(1024)sTIMAG(1024
VIRTUAL ERR(1024),FLTR(1024),ESTIN(2%1024~-1),T(1024)

TYPE X»’
¥§;% ivi tHE MENU OF THIS PROGRAM IS:°
TYPE i:' 1. CREATE A RECTANGULAR PULSE, ADRD NOISE TO IT»’
;Y;E :y' THEN WIENER FILTER 1T.~
Y ’ ’
TYPE l:’ 2, READ A PULSE-ECHO RESPONSE FRODUCED BY ONE OF FOUR’
JYPE %y’ TRANSDICERSs ADD NOISE TN THE RESFPANSE, THEN WIENER’
TYPE X' I7.’
TYPE !v ’
TYPE WHICH MENU WOULD YOU LIKE? (1 OR 2)°

READ(S;X) MENU

IF (MENU,EQ.1) GOTO 887
IF (MENU.EQ.2) GOTO 888

TYPE %»’ '

¥¥;E §' IHIS THE RECTANGULAR PULSE GENERATING MENU...-’
’

TYPE 2+’ WHAT IB THE MAGNITUDE OF THE PULSE? (RFAL %)’

READ(S» %) XMA

TYPE Xy’ HOW HANY SAMFLE POINTS ARE THERE? (FOWER OF 2)°

$EAD(51¥) NPTS

R

-
m

Y Xy’ WHAT IS THE DUTY CYCLE? (0.0»+s4431.,0)°
EAB(Ssx) XDUTY
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6OTO 889
888 TYPE %5 *

TYPE 3,7 THIS IS THE PULSE-ECHO SIHULATION MEWU...’

TYPE %, THE PULSE-ECHD THAT WILL BE READ WAS GENERATED BY OME’

IYPE X:7 UF 4 TRANSDUCERS (NARROU-BAND OR BROAD-BAND)’

TYRE ::; PLEASE SELECT ONE OF THE FOLLOWING XDCRS!: (10,13s17 OR 20)°

TYPE %»° #P10 (narrow-band)’

TYPE %Xy’ 3#P13 (narrow~band)’

IYPE %° $P17 (broad-band)’

TYPE %7’ $P20 (broad-band)’

READ(3, %) IXDCR

TYPE ¥s’ PLEASE ENTER THE TOTAL NUMBER OF FDINTS: (PUMER OF 2)°

READ(S»%) NPTS

889 TYPE %0° ¢

A e T Ty
4

TYRE 4,7 THIS 1S THE GAUSSIAN NOISE GEMERATING PROGRAM’

Trpe 2r  AXTXERRXLXXERXTXRERRTXTARRRLRRKRARRLREERARRKKXKKERXXKRARRRRA /
'l r

TYPE %, PLEASE ENTER A REAL NUMBER FOR THE SEED:‘

READ(Ss%) SEED

TYFE X+’ PLEASE ENTER THE DESIRED STANDARD NEVIATION:’

READ(S5s%) STDEV

TYPE X+’ PLEASE ENTER THE FACTOR YOU WOULD LIKE TO DIVIDE’

TYPE X+¢ THE NOISE HAGNITUDE BY: "

READ(3,%) FACTOR
’

L R e L T

TYPE ;:5 _ THE OUTPUT WILL CONTAIN ZERD-HEAN GAUSSIAN NOISE’
1]

TYPE X9 " XXXKERRERRX R RN R R KRR R R R R R RN R R AR KRR KRR LR R R kXX’
Coevessrsssssenssssecsssegennrate the noise and re3d tteseessssrssoncronses

TYPE Xy’ ‘
TYPE %+’ 1 AM IN GNOISE~’
CALL GNDISE(SEEDsNPTS,STDEV)
TYPE %’ 1 AM OUT OF GNOISE’
OPEN(UNIT=1,TYPE='0LD’yNAIIE=’UNIGNOISE. THP*)
DO 41 =1 » NPTS
READ(1,%) XNOISE(I)
XNOISE(I) = XNOISE(I) / FAQTDR
4 CONTINUE
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CLOSE(UNIT=1)
Covsssssoversssssssssscseand of noise generationissesssocssessssscsscsse
LNX = INT ((ALOG (FLOAT(NPTS))) / (ALOG (2,0)))

IF (MENU.EQ.1) GOTO 110
IF (MENU.EQG.2) GOTO 111

Crssossssssssesssssssecdenerate the rectandular PuUlS@isiesssorsssssscses

110 TYPE %y’
¥;;E zv: I AM CREATING THE RECTANGULAR FULSE AND ADDING NOISE TO IT’
TYPE ‘:' “......'...C....OOOODQPATIE}lCE !!!.....'..."0'.'..0.00.”
TYPE %Xy’ *

XRISE = (NPTS - NPTS x XDUTY) / 2
XFALL = XRISE + NPTS x XDUTY

DO 61 =1 » NPTS
T(T) = 1. x I
IF ((1.GE.XRISE).AND.(I.LE.XFALL)) GOTOD 100

GaTo 200
100 TRUE(I) = XMAG
XMEAS(I) =- TRUE(I) + XNOISE(I)
GOTO 300
200 TRUE(I) = 0.0
XMEAS(I) = XNOISE(I)
300 TIMAG(I) = 0.0
é CONTINUE
GOTO 117

Cissesscernssssesssceend of rectandular msulse generationNssessresssecsones
Coovensnsssresesssssssebedgin reading pulse~echo datassisesssrssssssorsnns

111 TYPE %+’ I AM READING THE FULSE-ECHD AND ADDIMG MOQISE TO IT...’
TYPE %X’ '/
TYPE ‘:, 0.'000.0'...'0..0.'OPATIENCE_'!!...OO'..OO..'Q..'.’O"
TYPE %y’ ’

IF (IXDCR.EQ.10) GOTO 11
IF (IXDCR.EQ.13) GOTO 11
IF (IXDCR.EQ.17) GOTO li

N

[LIZ P 8]

IF (IXDCR.E0.20) GOTO 1

112 OFEN(UNIT=1,TYPE="0LD’>»
GOTO 116

113 OPENCUNIT=1,TYPE="0OLD’ yNAME="P13.TIN')
GOTO 1146

114 OPEN(UNIT=1,»TYPE="OLD’»NANE="P15.,TIN)

AHE='F10.TIN')
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GOTO 116
115 OPEN(UNIT=1,TYPE=‘OLD’ s NAME=’BP20.TIN’)
116 DD 71 =1 » NPTS

T(I) = 1. x I

READ(1s%x) TRUE(I)

XMEAS(I) = TRUE(I) + XNOISE(I)
TIMAG(I) = 0.0

7 CONTINUE
CLOSE(UNIT=1)
C.........................ond of data readindescsssostvossscesssssvenraes
117 TYFE %o’ '
;‘FP‘E :v (2333333222223 3023322002228 2220352202223 223032332220¢ 04
9y’
}gg% :v: , ONE LAST SET OF QUESTIONS..."
¥¥;E ;::!?*t*l!!*t‘i‘ixtti*!!*’i***li!!!*!*ﬂ****!*!*****1*#**f*l’
’
TYPE %9’ PLEASE ENTER THE LENGTH OF THE AUTOCORRELATIOM:’
$$g£(gr¥) LAUTO
’
TYPE %¢’ NOW ENTER THE LEMNMGTH OF THF CROSS-CORRELATION!’
?sg?(;l})'LCROSS
TYPE i:’ AND FINALLY... PLEASE ENTER THE LENGTH OF THE WIENFR FILTER?’
TYPE 2»’ NOTE THAT LENGTH (OF FILTER <= LEIGTH OF CORREILATINNS’
$$2%(29§)[LFIL
’{';F"E‘_ ‘: 1*?‘!!1**!**!31‘!!!!!!'li**i*X!X!!*ll‘!*‘X**x*****!**‘kll****'
- ’
%x;g ;,2 , THANK YOU FOR YOUR COOFERATION 1110117/
};FP’E ;1’"i!’*t!l**!’*i!:’i*t!!****!t*!!*X**!*t‘l***l*x*ﬂ*****l**!"’
L

Covossssseenssesessfind auto- and cross-correlation®eeiisssesssrecsssenee

TYPE %9’ 1 AM COMPUTING THE AUTOCORRELATION'
CALL CROSS(NPTSsXMEAS»NPTS»XMEAS»LAUTO,AUTD)
TYPE %+’ 1 AM COMPUTING THE CROSS~CORRELATION’
CALL CROSS(NPTS,XMEAS'NPTSy TRUE,LCROSS,CROIX)

C.......-...............find the WIENFR filterievesserncosssorssossnnsos
TYPE %+’ 1 AM COMPUTING THE WIEMER FILTER’
CALL WIENER(LFIL,AUTO,CROIX,FLTR,ERR)
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Civsessesseconvolution of WIENER filter with measured sidnaleicececoocons

TYPE
TIYPE
TYPE

. T4
X’
T4

I Alf CONVOLVING THE FILTER WITH THE NOISY PULSE-ECHO’

’
.0’000000.00..OOOOOQPATIENCE !!!0'000000000'00000000’

CALL CONV(NPTS»XMEAS,LFIL,FLTR,ESTIM)

c DO 898 I = 1 » NPTS+LFIL-1
€898 ESTIM(I) = AMP % ESTIM(T)

Cisssessseslind the mean-sauare—-error between estimated sidnaliivecssoens

c

TYPE
caLL
TYPE

Cevsecomrute
TYPE
TYPE
TYPE
CALL
calL
TYPE
TYPE
DR =
TYPE
TYPE
TYPE
TYPE
TYPE
CALL
CALL
TYPE
TYPE

b PR

and the true sidnal

I AM COMPUTING THE MEAN-SQUARE-ERROR’

MSE(NPTS» TRUE)ESTIM» XMSE)

X
Xy

’
Xy

’
’
’
’

’

;........o...o....SUCCESSFUL TEST 11l essesnerossssnns’
MEAN-SQUARE-ERROR = ’,XMSE

the duynamic randge of the noiswy and the restored sidnals....

Xy’
} T
X’

’

I AM COMPUTING THE DYNAMIC RANGE OF THE NOISY SIGNAL’

’

PEAK(NPTS» TRUE+XPEAK)
RMS(NPTS»XNOISE»XRNMS)

X4
Xy’

THE LARGEST VALUE IN THE HOISY SIGNAL IS =‘/,XPEAK
THE RMS OF THE BACKGROUND NOISE 1S =',XRMS

XPEAK / XRMS

t £
L
L T
b T
£

2

DYNAMIC RANGE OF THE NOISY SIGNAL = ‘,DR

’

I AM COMPFUTING THE DYNAMIC RANGE OF THE RESTORED SIGNAL‘

’

PEAK(NPTS,ESTIN» XXPEAK)
RHS(NPTS,ESTIMN,XXRMS)

S
} T4

THE LARGEST VALUE IM THE RESTORED SIGNAL IS =’,XXFEAK
THE RMS OF THE BACKGROUNU NOISE IS =‘,XXRMS



69

DR = XXPEAK / XXRMS

TYPE %x»’ /

TYPE %y’ DYNAMIC RANGE OF THE RESTORED SIGNAL = ‘»DR
Ciesossssssecheck if restored sidnal needs 3ny amrlificatiocneisssssiissss

AMP = XPEAK / XXPEAK

IF (AMP.GT.1.0) GOTO 210

TYPE Xy’ *

TYFE Xs‘ THE RESTORED SIGNAL DOES NOT HAVE TQ BE AMPLIFIED 111~

GOTO 340
210 TYPE %y’

TYPE %+’ THE RESTORED SIGNAL MUST BE AMFLIFIED BY ‘,AMP

TYPE %»’ 7

TYPE %y’ WOULD YOU LIKE TO DO SO ? (1 -- YES)’

READ(S,»x) TAMP

IF (IAMP,.EQ.1) GOTO 118

GOTO 340 ,
118 DO 898 I = 1 » HPTSHLFIL-1
898 ESTIM(I) = AMP X ESTIN(D)

Ciovssssssersesssefind the new mean~sSauU3IrE=—erTOlr s sosversossstrsrens
TYFE %+’ I AM COMPUTING THE NEUW MEAN-SUARE-FRROR’
CALL MSE(NPTS,»TRUE:ESTIM,»XXMSE)
TYPE X9’
TYPE %»’ NEW M.S.E. AFTER AMFLIFICATION = ‘XXMSE
Ciroesvevssconprute the neuw dynamic rande of the restored signal.ieeeesess
CALL PEAK(NPTSsESTIMs»XXXFEAK)
CALL RMS(NPTSsESTIM»XXXRMS)
TYFE %+7 “
TYFE %y THE FEAK VALUE OF THE AMPLIFIED SIGNAL IS ='yXXXPEAK
TYPE X%y’ THE RMS OF THE BACKGROUND NOISE IS =‘,XXXRMS
DR XXXPEAK / XXXRMS
TYPE %,’ '
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TYPE %»’ DYNAMIC RANGE OF THE AMPLIFIED SIGMNAL =’»DR
Coosssesssorlot the NOISY and the RESTORED sidnaleiscecssovssssnossenssnse
340 TYPE %Xy’ ¢

TYPE %y’ WOULD YOU LIKE TO PLOT THE NOISY AND RESTORED SIGNALS 77
TYPE %’ (1 -~ YES)'

READ(Sy»x) IPLOT
IF (IPLOT.EQ.1) GOTO 350

GOTO 400
350 IF (MENU,EQ.1) GOTO 400
IF (MENU.EQ.2) GOTO 500
400 CALL PLOT2(NPTS,»Ts»XMEAS,ESTIN)
GOTO 600
500 CALL PLOT1(IXDCR»T»XMEAS,ESTIM)
600 TYFPE %o’ /

TYPE X»’ WOULD YOU LIKE TO FPFRFORM AMOTHER TEST? (1--Y)~
READ(5,%) IANS

IF (IANS.EQ.1) GOTO 999

sSTOP
END
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IX. APPENDIX B: FFT SUBROUTINE
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SUBROUTINE FFT1(X»Y»TABLEYMsLL»TSN)

FFT is IN-FLACE DFT computation using SANDNE ALGORITHNM
and MARKEL PRUNING modification.

X is an array of lendth 2%XXM4 used to hold REAL part of
COMPLEX input.

Y is an array of lendth 2%XM used tu hold IMAGINARY part of
COMPLEX input.

TABLE is an array of lendgth (N/4)+1y where MN=2%X%M. TARLE
contains OQUARTER-LENGTH cosine table, ]

M= iatgger. Size of FFT to be rerformed is diven bu

=2%x%M.

e that the bit reverse table is set foar a masimum of
%X12=24094)

(
N
%% = inteder. There are 2%¥XLL actual dats points.

SN is either -1 or 1, Skt ISN to -1 for FORWARD DFT and
set ISN to 1 for INVERSE DFT.

LLL=2%%XLL

BC 8 LO=1/+M
LHX=2%X%X(M-LO)

ISCL=H/LIX
Test for PRUNING
IF(LO-M+LL) 1,252

BO 8 LM=1,LMM

W Zr il =g ) | ) ~20
FR-ZD>OURN—AZHD

Do

L OOWXO QUIRCI Kt
= OENIODHNWHFRTD
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(3323233222232 3332333 022530222233 F232323 2270220322 0232222322332¢303033233¢%

SUBROUTINE COSQT(M»TABLE)
c This subroutine denerates QUARTER-LENGTH cosine table.
DIMENSION TABLE(2)
N=2XXHM
ND4P1=N/4 + 1
SCL=6,283185307/FLOAT(N)
D0 10 I=1,NDAP1

ARG=FLOAT(I-1)%xSCL
10 TABLE(I)=COS(ARG)

RETURN
END
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X. APPENDIX C: WIENER FILTER SUBROUTINES
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SUBROUTINE GNOISE(SEEDI»IK»STDEV)
GAUSSIAN WHITE NOISE PROGRAM
UAL 61(1024),62(1024)

T
L SEEDT»STUEV
EGER

Z [t
—DD
WaHuu o mMn

NVCIWVZT =aC
N0 e

mp =t

4
8
EVXSTDEV
DI

ma @
o

OPEN(UNIT=1,TYPE='NEW' s NAME=S'UNIGHOISE.THF ')
DO 10 I=t1,M

no
+m

10 99
EFI) GOTO 99

(

wd>OND -
DoQoOUDD O. O

4]
m
m
(-]
munsuiu
9ADDNDD MXMMEMe

e el 4]
c

ﬂ-qQ

[T N ol
om

ETQQNZW

DAONZ

MM~

ww2ZZO® mOMmOomMmomm

CONTINUE
CLOSE(UNIT=1)

RETURN
END

(222223223332 0232 3320332233 0200 0303022020820 3330322503330 R332 5283332223584
(222233332383 2273233392382 2 722223322 220230322322230323333383232333238833¢¢

SUBROUTINE CROSS(LX+sXsLYs¥sLGsG)
VIRTUAL X(LX)»Y(LY)»G(LG)

DO 1 J =1 LG

LOW = MINO(LY,LX-J+1)

G(J) = DOT(LOWsJs»XsY)

RETURN
END

(0333322220 2333223333333 223320202022 28 33 222020328325 3222 023338733830
(3232223323582 3333223233 2233333532223 3223222333223332333238433333330%2838%831
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FUNCTION DOT(LsJeX»Y)

c
c THE PURFOSE OF THIS SUBROUTINE IS TO COMFUTE THE DOT FRODUCT
Cc OF TWn VECTORS.
c THE SUBROUTINE INPUTS ARE!?
c L = LENGTH OF X = LENBTH OF Y = N
C X = VECTOR OF LENGT
g Y = VECTOR OF LENGTH N
¢ THE SUBROUTINE OUTFUT IS¢
g P = THE DOT PRODUCT
VIRTUAL X(1024),Y(1024)
poT = 0.0
IF(L.LE.O0) RETURN
DO 1 IJ = J s LtJ-1
1 pOT = DOT + X(IJ) X Y(IJ)
RETURN
END

(232233232220 3223 32233232333 333 3323222230223 0223 233230233320 332 532853 %
(1222233233222 322 Y22V 2202222222222 32 23 F et 2202082002323 32352028 338252832

SUBROUTINE WIENER(LRsRsGrFrA)
(0323333332223 32330233233823023232332333282232232332222223222203232033223280222:

Cx *
cx This prodram creates the Wiener filter via 2 lond division b 3
b 4 rrocedure usind the coefficients of the Z-transform of hboth X
cx the cross-correlation (numeratnr) and the autocorrelation X
cx (dengminator) of the noisy pulse-echo with the actuyal one b 3
g: and the noisw pulse-echo with itselfi resrectively. :
(2333232333222 0323333533233 223332333033 02333303333238232348333333323%32528232¢93¢%4

VIRTUAL R(LR)»G{(LR)sF(LR)rA(LR)

v = R(1)

D = R(2)

A(l1) = 1,

F(1) = G(1) /7 V

a = F(1) X R(2)

IF (LR.EG.1) RETURN
Cenotaossssnsasseosonsossonsonsentossessntoecnnssensorssoosssessvsssssrstnse

DO 4L =2, LR

A(L) = -D /7 V

IF (L.EQ.2) GOTO 2

Lt = (L - 2) 7 2
L2 = L1 + 1
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IF (L2.LT.2) GOTO S5

£ o 000000000 06006000600606008 6600000006868 060060080 0606000000500 0000086000000 00000

DO 1 J=2, L2

HOLD = A(D)

K =L =-J+1

A(J) = A4(J) + A(L) X A(K)
1 A(K) = A(K) 4+ A(L) X HOLD
S IF (2%L1.EQ.L-2) GOTO 2

o 0 6000006000000 0060606060568 060000600060 0600680 8800600600600 060880686000 0080088000600

A(L241) = A(L2+1) + A(L) X A(L2+1)

2 v =V + A(L) 2D
F(L) = (G(L) - Q) 7 V
L3 =L -1

oo 0 0 00666 0060080600600 6608665660668 0¢8 8060060806850 000006006860080 0000800008 000H8

D0 3 J =1, L3
K=L~-J+1

3 F(J) = F(J) + F(L) x A(K)

oo 00000000000t 00otosssensssstsossensstessotosssnsenssossonssnsssssnasssss
IF (L.EQ.LR) RETURN

b =20.0
Q= 0,0

£ o 0 0000000060000 6008060068000 00000688¢0680060060 0600808806000 00600606000880000s0e0000

DO 4 I =1 » L

K=L-1I%2
D =D # ACT) % R(K)

4 @ =0+ F(I) £ R(K)

c..'........................l‘.....C.....'Q...........'.l.......QCl..'.l’
RETURN
END

(2222222222 2332322222 0232022020223 2323 0002803230023 002302223338 3223233232330 59 3
(0223332233 02293 32352232322 302230 2222233230232 52238322322023232233 023392233824

SUBROUTINE COMV(LA»AsLB¢B»C)
VIRTUAL A(1024),B(1024),C(2%1024-1)
LC =LA + LB - 1

CALL ZERO(LC,OC)
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D01 1I=1, LA
pot J=1, LR
K=1+J-1

C(K) = C(K) + A(I) x B(J)

RETURN
END

(3323222333323 3323233233033 082 s et 2330223322203 2F 2023202208529
(1032333323023 2233233303232 2023 0222282300 2202 8322203223323 2302323823288/

aoaon

SUBROUTINE ZERO(LX»X)

THIS SUBRQUTINE STORES THE FLOATING-FOINT HUMRER ZERO» 0.0
IN EACH STDRAGE LOCATINON OF AN ARRAY.

VIRTUAL X(LX?
IF(LX.LE.O0) RETURN

DO 1 I =1, LX
X(I) = 0.0

RETURN
END

(3323322235255 233 528332232333 b2232 2223332002330 032023328323 22332 30300 8%:
(223333333 22323383F222332333333323323 3032332323333 303322230233238283023338 24

[slzlyirieisivizivizivinipinie]

SUBROUTINE MSE(N»A»B»XMS)

THIS SUBROUTINE COMPUTES THE MEAN SQUARE ERROR RETWEEN
THE_TRUE (W/0 NOISE) SIGHAL _AND THE RESTNRED SIGHAL CREATED
BY THE °‘OPTIMAL® WIENER FILTER.

THE SUBROUTINE INPUTS ARE?
A = TRUE SIGNAL UITHUUT NOISE = (Als..srAn)
8 = RESTORED SIGNAL = (Blys...rBn)
N = TOTAL NUMBER OF POINTS
THE SUBROUTINE OUTPUT 1IS:
MS = MEAN SQUARE ERROR

VIRTUAL A(1024),B(2%1024-1)
SUM = 0.0

D01 I =1, N

SUM = SUM + (ACI) - B(I)) % (A(I) - B(1))
CONTINUE

XMS = SUM / N

RETURN
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END

10223333522 533333028228333233033 02333333 3232023 332332222232 3202832222322 2
(3233333333333 333333333333033223823332333323922232222233282323932223352833¢2

SUBROUTINE PLOT1(IPLOT»T»XMEAS,ESTIM)

(93333333383 3333 5333335332323 333323332383353333323333¢02253223323323825322%+
Cx X
Cx This routine is used to rlot the pulse~ercho noisuy dats *
Cx and the restored actual Ppulse-echo refleclion using the X
g; HGRAPH saftuare on the PODP-11, :
Cx b J

133338833 33333333 7323332322329+ 322 2002238302222 32202323923533353232522 %9

VIRTUAL XMEAS(1024),ESTIM(2%1024-1),T(1024)
INTEGER TPLOT

CALL INIPLT(99+96.5,9:)
CALL FRAME(.596.514:5,9,)
CALL WINDOW(1.95.5:2,:4.)

CovessssvveosevssssssPlot the noisy sidNaleesesssecosssrrorens

IF (1PLOT.ER.,10) GOTO 10
IF (IPLOT.EQ.13) GOTO 13
IF (1PLOT.EQ.17) GOTO 17
IF (IPLOT.EQ.20) GOTO 20
10 . CALL SCALE(0.2512.9-3¢13.)
CALL AXIS(128.91.,9‘TIME (uSec)’»11s1,1» AMPLITUDE (V) +13+1,1)
GOTO 100
13 CALL SCALE(0.r512,9-2.22,)
CALL AXIS(128.»1.»'TIHE (uSec)’»11rs1»1» ' ANFLITUDE (V) »13+1+1)
GOTO 100
17 CALL SCALE(O0.9512.9-2.92.)
CALL AXIS(128.s1.y’TIME (uSec)’s11+1,1,'ANFLITUDE (V) ’»13+1,1)
GOTO 100
20 CALL SCALE(0.9512.9=:2y.2)
CALL AXIS(12B8.s41s’TIME (uSec)’s11,1,1, AMFLITUDE (V)’,y13+1,1)

100 CALL VDASHLN(TsXMEAS+»512+0s0+190,0)
CovesssnssssssrssssssPlot the restored sidnaleisscevvecrvcssovees
CALL FRAME(.596.59.993.)

IF (IPLOT.EQG.10) GOTO 1

IF (IPLOT.EQ.13) GOTO 2
iIF (IFLOT.EQ.17) GOTO 3
IF (IPLOT.EQ.20) GOTO 4

1 CALL SCALE(O.v51~--—‘-vs.)
CALL AXIS(128B.r1,»'TIME (uSec)’s1lr1s1y’ANFLITUDE (V) ' »13,1y1)
G0T0 200

2 CALL SCALE(0.9512.9=1+91,)

CALL AXIS(128.7.5¢ 'TIME (uSec)’r11s21,1,’ANFLITUDE (V) ’»13+1s1)
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GOTO 200

3 CALL SCALE(0.9512.9-1,5,1.5)
CALL AXIS(128.9+5¢y'TIME (uSec)’s11+1s1»ANPLITUNE (V) ’51391,1)
GOTO 200

4 CALL SCALE(0.9512,9~:29.2)
CALL AXIS(128.9.1»'TIME (uSec)’»11,1+1,’AMPLITUDE (V) ‘51391,1)

200 CALL VDASHLN(T»ESTIM»S512205091+0+0)

CALL ENDPLT

RETURN
END

(2320222238232 203328 38333223222 2232322332333322203230302222223283222222282223 1
(0232233302323 2323235322232 3222233338 2032433332223 03222322223232¢3323283824¢

SUBROUTINE PLOT2(NFTS»Ts»XMEAS»ESTIM)
(102232230233 333 32323323333 2228342322203383223 732233223323 79233332223223 83243

Ccx x
Cx This routine {s used to rlot the data of the mezsured X
Cx noisy rectansular pylse and the restored true rulse X
E: using the HGRAPH software an the POP-11., :
(193333332333 233323337222333322332 3222233432323 22223339322343322233¢2233233¢8235¢%1

VIRTUAL XMEAS(1024),ESTIM(2%1024-1),T(1024)
INTEGER HPTS

XN = 1, X NPTS
XTIC = XN 7 4,

CALL INIPLT(9996.5+9.)

CALL FRAME(.5+6.574.5,9.)
CALL WINDOUW(1.+5.5+2.024,)

CoveossssssnsssssssesssPlot the noisy sidnalecessessosssrerssees

CALL SCALE(O0.sXNy~3.,3.)
CALL AXIS(XTICs1.¢s 'TIME (uSec)‘r»1l,1,1,» AMFLITURE (V) ’',»13s1,s1)

CALL VDASHLN(Ts»XMEASs»NPTS20+091,0,90)
CisasserssssssersssrssPlot the restored sidnzlesevoveossossrsnees
CALL FRAME(.576:57.9»5.)

CALL SCALE(O.»XN»=2.,2,)
CALL AXIS(XTIC»1.,»'TIME (uSec)’»11,1»1, ANPLITUNE (V)‘+1351,1)

CALLL VYDASHLN(TSESTIM»NPTS»0»0+1,0,0)
CALL ENDPLT

RETURN
END
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(3232335333333 3320823322322820233 2233333233333 2223222332232323233323222822¢
SUBROUTINE PEAK(NPTSsXFUNCsFK)

(P22 3322332332223 3 23222223 v 27832730233 33222232333322322220232 0002238234

Cx b 4
Cx This subroutine finds the absolute madnitude of the largest X
Cx peak stored in the array XFUNC. The result will then be stio- X
cCx red in the variable FK (abbreviation for FEAK). :

Cx
3232222325232 2322 2333302333 7322332223 323432232203 0233222222922223¢3352%24

VIRTUAL XFUNC(1024)
REAL PK

PK = ABRS(XFUNC(1))

D01 I =2 » NPTS
IF (ABS(XFUNC(I)) .GT. ABRS(FK)) GOTO 2
6070 1
PK = ABS(XFUNC(I))

1 CONTINUE

RETURN
END

(2322382223 33033228202 22223023303 3233 0023235833032 0222003333230 023%33032323%213
(B2 2222222222222 0223203020022 002 230232022283 ¢222 0222228252 3020380 022282822

SUBROUTINE RMS(NPTS»XFUNC,»ROOT)

(9322322233222 ¥ 22352023232 P22 3722233333323 32202300323822330302333% %434
Cx
C¥

L8]

*
This subroutine finds the RUS noise level in the array XFUNC., X

Cx X
(232232322323 533 2332222532933 2025333330333 3 2932202223 3222320223202282022 %1
VIRTUAL XFUNC(1024)

REAL ROOT
TOT = 0.0
XHS = 0.0

BO 1 I = 384 » NPTS
T0T TOT + XFUNC(I)
1 CONTINUE
XMEAN = TOT / FLOAT(NFTS/4)
DO 2 1 = 384 ,» NPTS
XHS = XMS 4+ (XFUNC(I) - XMEAN) X (XFUNC(I) - XMEAN)
CONTINUE

8]

ROOT = SQRT(XMS / FLOAT(NPTS/4))

RETURN
END



