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I. INTRODUCTION 

Many developments in the fields of biomedical research and 

modern quantitative medicine involving the use of ultrasonic devices 

have taken place during the last decades. New techniques have 

been introduced based not only on new discoveries in the physical 

sciences, but on previous quantities thought to be inaccessible. 

Modern ultrasound equipment has played a vital role in the detection 

of echo reflections from targets in human and animal subjects; 

however, these signals are corrupted by the effects of the 'noise' 

produced primarily by the body under test and secondarily by other 

physical factors. 

The purpose of any filter is to separate one thing from another. 

In the electric filter case (Le., low-pass, high-pass, etc.), this usually 

refers to passing signals in a specified frequency range and rejecting 

those outside that range. Here, the filter is simply one of circuit 

design involving the appropriate choice of resistors, capacitors, and so 

on. 

The problem we are dealing with is of a more fundamental na­

ture. The purpose of this thesis is to suggest a method that would 

determine the optimal filter's response, in function of its length, that 

best separates the signal from the noise. The theory involved for 

that matter is referred to as the Wiener filter theory. 
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A. Brief Literature Review 

In the early years of 1700s, Adrien Marie Legendre, a French 

mathematician, was the fust to develop the method of least squares 

estimation. After Legendre died in 1783, Karl Friedrich Gauss, a 

German mathematician, carried that method on, and explored its usage 

in the course of calculating planetary and comet orbits from tele-

scopic measurement data (Hostetter, 1987). Through the years, 

various methods using the idea of least squares have become increas­

ingly imponant in many applications. Communication systems, control 

systems, navigation, signal and image processing; all were the center 

of interest in the development of the fundamental ideas of least 

squares estimation. 

The goal of these techniques revolved around providing a solution 

involving a linear transformation of the measurements to obtain the op-

timal estimate. In addition, a recursive formulation was derived 10 

which the measurements are processed sequentially (Pratt, 1978). In 

digital signal processing terms, the method of least squares estimation 

IS a filtering process acting on incoming discrete-time measurement sig­

nals to produce discrete-time outputs that represent a close estimate 

of the measured system parameters. 

Norben Wiener's monumental early work on the extrapolation, inter­

polation and smoothing of stationary time series (Wiener, 1949) has 

led to the fundamental minimum mean square estimation theory; that 
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is, estimating signals from noisy observations. 

In 1960, building on the work of Wiener, Rudolph E. Kalman 

pioneered his first work on linear minimum mean square estimation 

(Brown, 1983). His result, presently known as the Kalman filter, is 

a fundamental departure from that of Gauss (Hostetter, 1987) in that 

it introduces a generalization of recursive least squares. It is especial-

ly convenient for digital computer implementation. Nevertheless 

Kalman's work went hand in hand with the Wiener filter method men­

tioned earlier. 

Both Wiener and Kalman filtering techniques continue to play a 

prominent role in modern time series analysis. The applications in-

volve the creation of an optimal function that best yields the extrac­

tion and the separation of signals buried in noise and sidelobes that 

confuse the maps and images making them hard to interpret. An ex-

ample problem which has received much attention in the literature is 

that of image restoration. Here a blurred image IS recorded, and it 

is desired to remove the blur effect, which ultimately 'restores' the in­

tegrity and fidelity of the object being imaged. Image restoration 

problems of this type occur in a wide variety of fields, including 

radio astronomy and astrophysics and, recently, in biomedical imaging. 

Image restoration by the method of least squares as applied to op-

tical images (Helstrom, 1967) was also an area of research. The 

solution to such a problem, where the data was corrupted by noise 

or experimental error, was treated by finding an optimal impulse 
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response function that minimized the mean squared error between the 

true image and the estimated one. Here the estimated image 

depends on assumptions about the spectral densities of the images 

and the noise. 

In 1982, Michael P. Ekstrom published his work on Wiener's 

mean-square estimation as applied to a two-dimensional imaging sys­

tem. The extension of Wiener's filtering theory was then expanded 

to cover the multidimensional case. The problem was addressed by 

discussing the physical realizability and causality of the Wiener filter 

as they arise in 2-D. The optimal filter was then derived by solv­

ing a 2-D discrete Wiener-Hopf equation, using a 2-D spectral fac­

torization procedure. 

In the area of diagnostic ultrasound, the Kalman filter has been 

employed to accurately determine the locations of tissue structure 

from observed reflected signals (Kuc, 1979). In their publication, 

Kuc and his colleagues described the application of Kalman filtering 

to improve the range resolution of ultrasound signals. The results 

of their study demonstrated that improving the resolution capability, 

by applying the Kalman filter, depends upon the quality of the ob­

served signal in terms of the signal-to-noise ratio, and on the ac­

curacy with which the observed waveforms were modelled. 

The Wiener filter was then applied to that same area but as a 

different tool. In 1982, Neal (Neal and Thompson, 1982) explored 

the use of the Wiener filter as an ultrasonic scattering amplitude es-
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timation technique. Once again, the proposed method was based on 

an estimate of the signal-to-noise ratio, but this time, as a function 

of frequency for the backscattered signal from the target under test. 

In the field of communications, the minimum mean-square error 

theory was applied (Lu and Wise, 1984) in the context of a sym­

metric uniform quantization. In their paper, Lu and Wise believed 

that although digital signals occupy a dominant role in modern com­

munication systems, physical signals are generally analog in nature. 

Therefore, it is of essential importance to perform uniform quantiza-

tion when analog-to-digital conversion is taking place. They also ob-

served that, for several different distributions of the input signals, 

log-log plots of mean-square error versus number of output levels ex­

hibit nearly linear behavior. 

In the same field of communications, but in a different approach 

to test for the minimum mean-square error, graphical communication 

proved to be a growing area for the application of Kalman filtering 

to handwriting signal encoding over the telephone channel (Yasuhara 

and Yasumoto, 1984). The method was used to improve a handwrit-

ing signal transmitted in the presence of quantization noise. The Kal-

man filter improved not only the estimate of the signal, but the 

signal-to-noise ratio of the reconstructed signal as well. 

The Wiener and the Kalman filters also had their share in the 

field of radio astronomy. In 1986, an adaptive regional Kalman filter-

ing technique (Zheng and Basart, 1986) was used to further improve 
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noisy radio astronomy maps. Many simulation tests were done using 

this technique. One test consisted of a noisy radio astronomy map 

having a 'ring' structure with a dynamic range (maximum intensity 

of source divided by RMS noise level in background) of 9.6. The 

details of the ring were blurred. By applying the Kalman filter to 

the noisy map, the dynamic range was increased to 82.0. The 

reconstructed map not only showed an increase in the dynamic range 

but also preserved the edges of the ring. 

In the same year, another study was under way to determine the 

optimal convolving function for creating the least corrupted uniformly 

spaced data from noisy nonuniformly spaced data using the Wiener fil-

ter theory (Ghorayeb, 1986). It was observed that radio astronomy 

data are collected on a nonuniform basis; therefore requiring the data 

to be smoothed and then resampled on a regular rectangular grid. 

The smoothing-resampling process degrades the data even further. In 

this study, it was shown how the Wiener filter theory can be used 

to determine the optimal selection of a smoothing function that yields 

the best estimate of the source's true signal. Two different types 

of sources were simulated in computer experiments: a point source, 

and a Gaussian source. The results from this study were significant-

ly improved for a high dynamic range situation; however, for the 

low dynamic range case, the Wiener filter became unstable and thus 

non-optimal with respect to the standard smoothing function used for 

the same purpose at that time. 
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B. The Goal of the Thesis 

To date, the Wiener filter has not been applied explicitly as a 

mean of 'reconstructing' an ultrasonic noise corrupted image. It is 

the intent of this thesis to explore how well the Wiener filter works 

when used as an optimal filtering operation to reduce the amount of 

noise in the images produced by ultrasonic waves reflected from tar­

gets in the human or animal subjects. 

This introductory chapter is followed by a review chapter showing 

the general concept behind the principles and instrumentation of 

ultrasound. Included in Chapter II also, is a description of the tis-

sue characterization when an ultrasonic wave is applied. 

Chapter III provides a brief introduction of the noise characteris-

tics in images produced by ultrasound. It brings to the reader's at-

tention the various forms of noise that a medical image contains. 

It then progresses to demonstrate the signal processing side of the 

noise and its effect on the signal and the signal-to-noise ratio. 

The body of the thesis revolves around Chapter IV. This chap-

ter contains a description of the smoothing function (i.e., the transfer 

function) that will best separate the true signal from the corrupting 

noise. This is done by presenting the Wiener filtering method and 

by employing the theoretical as well as the practical approaches that 

lead to the 'optimal' choice of the convolving function. 
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Chapter V converges into showing the experimental set-up used in 

this research in addition to various tests and results deduced from 

these experiments as well as conclusions drawn from their respective 

analysis. 
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II. AN OVERVIEW OF ULTRASOUND PRINCIPLES AND INSTRUMENTATION 

The theory behind sound waves has been extensively investigated 

and as a result ultrasound equipment is widely used for clinical imag-

ing. The images produced by those ultrasonic waves are unique 

since they represent the internal interaction with the mechanical proper­

ties of organs and other tissues in the human body, and hence, 

serve as a powerful diagnostic tool of modern medicine. This chap­

ter is intended to cover the basic principles of ultrasound waves and 

a brief overview of some of the devices involved in the application 

of tissue characterization. 

A. Physical Principles of Ultrasound 

Ultrasound waves used in medical diagnostic equipment propagate 

longitudinally into the body; that is, the motion of the particle is in 

the same direction as of the path of transmission. Such a transmis-

sion is initiated by a piezoelectric (pressure/electric) transducer, which 

also plays the role of detecting reflections of the transmitted 

ultrasound pulses back from the target under test. 

imaging configuration is shown in Figure 2.1. 

A basic reflection 
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Figure 2.1. Basic reflection imaging system 

The pulse generator excites the transducer, which transmits a sig-

nal shown in the solid curved lines. As soon as the propagated 

wavefront hits a discontinuity, a reflected wave is produced, as sug-

gested by the arrowed lines in the diagram. The same transducer 

receives this reflected wave and the signal is processed by a Signal 

Processing Unit (SPU) and then displayed on a Digital Storage 

Monitor (DSM). The SPU usually consists of an amplifier, an AID 
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converter, a bandpass filter, and an envelope detector (Macovski, 

1983). 

An important aspect of sound waves is the speed of propagation, 

v. It is assumed that the wave propagates at a constant velocity 

throughout the body. Another important physical concept is the at-

tenuation coefficient, a, which is also uniform through the body. If 

the body under test is modeled as an array of isotropic scatterers 

(Hill, Nicholas, and Bamber, 1976), with reflectivity R(x,y,z), the resul-

tant processed signal s(t) is given by 

where 

s(t) = 1: 1: 1: e-2az R(x,y,z) T(x,y) p'(t-2z) 
x y z z v 

z = distance from the target to the transducer's face 

e -2az = attenuation in the tissue through the round-trip distance of 2z 

T = lateral distribution, on the transducer's face, of the propagating wave 

p'(t - 2z) = received pulse delayed by the round-trip time 2z/v 
v 

The received pulse, p'(t), is then the result of convolving the 

transmitted pulse from the pulse generator, p(t), with the impulse 

(2.1) 

responses of the transducer and the corresponding linear filters in the 

SPU. The loss In amplitude of the reflected wave due to diffrac-

tion spreading from each scatterer, as shown in Figure 2.1, is repre-

sen ted by the liz factor in equation (2.1) above. 
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B. Characterization of Tissue Using Ultrasound 

As sound propagates, its intensity, I, generally diminishes with the 

distance of propagation z (Havlice and Taenzer, 1979) according to 

(2.2) 

where 10 is the intensity at z=O (surface of transducer). The attenua-

tion coefficient, a, depends highly on frequency, unlike the velocity 

of sound, and is directly and linearly proportional to frequency. 

This is true for most biological materials in the frequency range 1 

to 10 MHz. In many common fluids, however, such as water, the 

attenuation is primarily due to viscous absorption, and in these cases 

the attenuation is proportional to the square of the frequency. Table 

2.1 shows few typical values for attenuation at 1 MHz. We see, 

for example, that a 3 MHz sound wave which has traveled a 10-cm 

distance through fat is 17.40 dB below its initial intensity level, 

while a 10-MHz sound wave traveling the same distance is 58 dB 

below its initial intensity level. This explains why low frequency 

ultrasonic waves are used for imaging structure deep in the body of 

an obese patient. However, if the organ to be scanned lies just 

below the skin, such as in a very thin person or in an infant, 

higher frequencies are used. This limitation on frequency has dif-
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Table 2.1. Attenuation coefficient for some materials at 1 MHz 

Material Attenuation Coefficient 

(dB/cm) 

Water 0.0023 

Air 11.000 

Fat 0.58 

Soft Tissue 0.81 

Liver 0.95 

Kidney 1.1 

Muscle 1.70 

Bone 12.0 
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ferent impacts on equipment performance, since the frequency, f, and 

the velocity of sound, v, in a specific medium determine the 

wavelength, A., of the ultrasonic pulse, which is kept as short as pos-

sible to improve axial resolution (Haumschild, 1981). 

is given by 

The equation 

(2.3) 

It is seen then, that the higher the frequency the better the 

resolution, which is the trade-off for having high attenuation and for 

the sound beam not being able to propagate as deeply i.n the body 

as the lower frequency one. 

As mentioned earlier, it is assumed that the propagation velocity 

of sound throughout the body is constant. In order to determine 

the depth of a reflected echo, the round-trip time of the latter is 

used. This time can be converted to distance, Z, from the 

transducer's surface to the target by knowing the speed of ultrasound 

in the tissue. Some representative typical propagation mean velocities 

in various materials are given in Table 2.2. 

The soft tissues of the body do not exhibit major changes in 

their acoustic velocities, but rather, they are limited to a very nar-

row range. This is fortunate, since fluctuations in velocity can 

cause little or large geometric distortions in the produced images 

and, thus, create uncertainties in the final diagnostic. Additional 
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Table 2.2. Ultrasound propagation velocities in some materials 

Material Mean Velocity 

(m/sec) 

Water 1480 

Air 330 

Fat 1450 

Soft Tissue 1540 

Liver 1550 

Kidney 1560 

Muscle 1590 

Bone 4080 

geometric errors are caused by deflections of the propagating beam 

as a result of velocity variations. However, this could be looked 

upon as a useful technique for detecting malignant tumors which are 

sites of an increased propagation velocity with respect to their sur-

rounding normal tissues. One last, but important, aspect of sound 

wave propagation is reflectivity, represented by the term R(x,y,z) 

when the body tissues are modeled as given by equation (2.1). 

Reflectivity plays a very unique role as a contrast agent when body 

Images are being produced. It is used, in a narrow sense, as the 
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simplest behavior occurring at the interface of two adjoining layers. 

Changes in the characteristic impedance of the materials constituting 

these layers determine the reflectivity of the surface. 

The characteristic impedance, Z, of a certain medium, is defined 

as the product of sound velocity, v, and medium density, p, as in 

Z = vp (2.4) 

Listed in Table 2.3 are some values of characteristic impedance 

for a variety of media. 

Table 2.3. Characteristic Impedance for various media 

Medium Characteristic Impedance 
(106 kg .m-2 .s-l) 

Water 1.48 

Air 0.0004 

Fat 1.37 

Soft Tissue 1.62 

Liver 1.66 

Kidney 1.63 

Muscle 1.71 

Bone 7.8 
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The reflection coefficient, R, for a normally incident ultrasound 

beam propagating through two interfacing media with acoustic impedan­

ces, Z 1 and Z2, is given by 

(2.5) 
R = ----

Table 2.4 gives the reflectivity at normal incidence for a variety 

of tissue interfaces. 

It is seen, from Tables 2.3 and 2.4, that the greater the dif­

ference of the impedances of the adjoining media, the greater the 

amount of reflection coefficient at their respective junction. 

The amount of sound reflected from an object depends, not only 

on the difference between the acoustic impedances (Havlice and 

Taenzer, 1979) of that object and its immediate vicinity, but also on 

the size, shape and orientation of the object. 
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Table 2.4. Reflectivity of normally incident ultrasonic waves for various 

media interfaces 

Media Reflectivity 

Interface 

Soft tissue - Water 0.05 

Soft tissue - Air 0.9995 

Muscle - Liver 0.01 

Muscle - Kidney 0.03 

Fat- Liver 0.09 

Fat- Muscle 0.10 

Fat-Kidney 0.08 

Fat- Bone 0.69 

Brain - Skull bone 0.66 



15 

Ill. CHARACTERISTICS OF NOISE IN ULTRASONIC IMAGES 

Unlike various types of imaging techniques, where noise is signal­

dependent (Macovski, 1983), the noise in ultrasonic systems is an addi­

tive random Gaussian process resulting primarily from the transducer 

set-up, and secondarily from the location of the target under test, 

especially in the human body. This chapter tackles the concepts 

necessary to understand the physical characteristics which are of ex­

treme importance in the study of noisy stochastic processes. The dis­

cussion will then proceed to introduce the various kinds of noise 

that can be present during a medical diagnostic situation. The 

problem of introducing these parameters is presented and developed 

for the two-dimensional process. 

A. AReview 

Ultrasonic signals can give numerical information about the struc­

ture and function of biological systems. The time taken by the trans­

mitted ultrasonic pulse to travel a round trip path can be used to 

estimate the distance between the interface of the transducer to the 

target being scanned; and thus, provides an accurate diagnostic 

method which has a wide application in the field of clinical 

medicine. From the earliest use of medical ultrasonics, however, 

some diagnostic procedures have involved a tremendous amount of 
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numerical analyses, of varying degrees of complexity, depending on 

how noisy the produced images were. 

In typical medical ultrasonic imaging systems, the observable sig­

nal, Si(t), may, for instance, be the intensity of the ultrasonic pulse. 

This signal, at anyone point in time, consists generally of two com-

ponents: the information-carrying signal, S(t), and an unwanted noise 

component, N(t), so that 

Si(t) = S(t) + N(t) (3.1) 

The nature of noise present in an image depends on the way in 

which the image is generated. Typical forms of noise in medical 

ultrasonic images are: 

1) Fluctuation noise, which occurs when an image is formed by 

counting the number of reflections arriving from the scatterers 

originating at organ cells. 

2) Fat noise, which is created by adipose tissues which constitute the 

fat layers located either directly on top of the scanned organ or in 

the subepidermis region under the skin surface. 

3) Computation error noise, due to numerical computations of the 

image as a result of a series of observations. 

4) Systematic error noise, due to instrumentation malfunction (i.e., 

defect in transducer). 
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5) Aliasing noise, from other targets which mayor may not lie in 

the field of view and, therefore, are the site of actual emissive 

reflections that can cause prominent defects to the image. 

6) Speckle noise, also known as the earlier stated 'Fluctuation noise' , 

which is seen when the reflectivity function, R(x,y,z), in equation 

(2.1) is modeled as an array of scatterers. These scattered signals 

add coherently; that is, they add constructively and destructively 

depending on the relative phases of each scattered waveform. 

B. Characteristics of Image Noise 

We just saw, in the previous section, that unwanted signals (i.e., 

noise) come from a variety of sources, generally classified as man-

made interference or naturally occurring noise. By careful engineer-

ing, the effects of many undesirable signals can be reduced or even 

eliminated completely. But there always remain certain inescapable 

random signals, which present a fundamental limit to systems perfor­

mance. 

Generally speaking, noise can be characterized by two forms: deter-

ministic and stochastic. Deterministic noise is a process such that 

the noise signal, N(t), at a particular time, is the same at each 

replication of the observation. The noise is then completely self-deter-

mined and self-generated by its own process. On the other hand, 
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stochastic noise is that process which, at a particular time, is a ran-

dom variable determined by various locations in the image and is dif-

ferent at each replication of the observation. Only the probability 

characteristics, and not the actual values of the noise at some 

specific time, are determined by the generating process. 

One type of deterministic noise is designated as 'Gaussian white 

noise' . Such noise is characterized by its power spectrum which is 

constant over a wide frequency range, and contains frequency com-

ponents in equal proportion throughout the spectrum. Now, the 

reason why this type of noise is classified as 'Gaussian' is because 

it is known to have a 'Gaussian' probability distribution and posses-

ses the familiar bell-shaped curve, as given by 

1 
p(x) =--­

~ 21t cr 

where m = mean value 

2 2 
-(x-m) /2cr 

e 

cr = standard deviation 

Figure 3.1 describes the continuous random variable p(x) which 

(3.1) 

may take any values in the [-00, +00] range but is mostly significant 

near the mean value m. 

Because white noise contains all frequencies in equal proportion, 

it is a convenient process for filter measurements and experimental 

design work. Consequently, white noise sources with calibrated 
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m 

Figure 3.1. Statistical characteristic of Gaussian white noise 

p(x): probability distribution 

P(ro): power spectrum 

P(ro) 

x,w 
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power density have become standard laboratory instruments and as 

will be seen later in this thesis, the noise generator is a computer 

program (see Appendix) written in FORTRAN 77. 

C. Signal-to-Noise Ratio 

The signal-to-noise ratio, SIN, resulting from ultrasonic systems 

governed by additive Gaussian noise, is the ratio of the received sig­

nal power at the transducer terminals to the average noise power 

pn2. In estimating the signal, it must be emphasized that the attenua-

tion compensation takes place beyond the transducer and has generally 

no effect on the signal-to-noise ratio. Therefore, reflections emanat-

ing from greater depths, which experience increased attenuation, result 

in a reduced SIN ratio. 

At a particular depth, zo, the SIN ratio is defined as the peak 

signal power received at that depth, divided by the noise power, as 

given by 

Po2 
SIN =----

po2 

where Po is the peak value of so(t), the signal envelope of set), 

derived from depth plane z = zoo This signal so(t), In a single 

transducer system, using steady-state diffraction theory, is given by 

(3.2) 
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-2azo p' (t-2zo) L L R(x,y,zo) 
so(t) e 

= 
Zo2 v x y 

[T(x,y) ** ej (klI2Zo)]2 (3.3) 

The peak value Po is given by 

Po = 
-2azo e 

Zo2 

P" L L R(x,y,zo) [T(x,y) ** e j (kr
2
/2zo12 (3.4) 

x y 

where P" is the peak value of p'(t). 

The summation expression, in equation (3.4) represents the product 

of the diffraction patterns of the source and the reflectivity at plane 

ZOo If the reflectivity function R, representing the object being 

studied at plane Zo, is small compared to the beam size, the summa-

tion is essentially over R itself. Conversely, if the reflectivity func-

tion, such as in a tumor, is large compared to the beam pattern, 

the summation is effectively over the beam pattern and is inde-

pendent of the size of the object. 
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IV. OPTIMAL FILTERING 

The Wiener Filter is an image restoration technique that uses a 

statistical procedure in order to correlate the true image to the noisy 

image and ultimately extract the signal from the noise. Knowing 

the statistical characteristics of the noisy picture and of the added 

noise, one can design an 'optimal' filter which can be used along 

with a digital computer to reconstruct the original source. In prac-

tice, we never have the true signal. One possible approach is to 

calculate the optimum filter for a variety of patients and then use 

these results inversely as a look-up table. That is, given a 'dirty' 

image, one could find a similar image in the look-up table and then 

reconstruct the source using the 'optimal' filter found in the table. 

In this chapter, the mathematics behind the Wiener Filter method 

are presented in preparation of setting up the steps that constitute 

the procedure to be followed in order to create the 'optimal' function. 

A. The Wiener Filter Method 

It is the objective of this chapter to explore how well the 

Wiener Filter technique would lead to the optimal selection of the 

convolution function that best yields the actual signal distribution 

from reflected ultrasonic observations made in the presence of random 

noise. A simulation program is put together to achieve this task. 



23 

The problem is dealt with in the one-dimensional space, rather than 

two dimensions, because the mathematics are simpler. The program­

ming, though, was implemented to meet the task of a multidimen­

sional situation. If the results from the one-dimensional case are 

promising, the multidimensional case will be tested in future develop­

ments. 

Consider the linear system shown in Figure 4.1. Let the input 

to this system be the observed true source noisy signal Si presented 

In equation (3.1) and given by 

Si(t) = S(t) + N(t) (4.1) 

where S(t) is the true signal and N(t) is the added noise. Let the 

output of the system, So(t), be the actual measured signal. G(t) is 

the transfer function of the system or, In more familiar terms, the un­

known 'optimal' function that is to be chosen in such a way to 

make So(t) - S(t). 

The So(t) can be given by 

So(t) = J ~ G(t) Si(t-t) dt (4.2) 

The above equation follows from the standard convolution theorem. 

Our goal, then, is to have So(t) approximate as closely as pos-

sible the time signal S(t). That is, we want to minimize [So(t) -

S(t)]. As a criterion for measuring the difference between So(t) and 
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Figure 4.1. 'Optimal' Wiener Filter linear system 
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Set), In some period 2T, we shall take the limit as given by 

lim 
T~ 

-1 J T [So(t) - S(t)]2 dt 
2T -T 

(4.3) 

The above limit gives the square of the rms value of [So(t) -

Set)]. We now choose a time interval, h, which is small enough 

to create a Si(t) that is well characterized by its values at the 

points t = kh where k refers to the integral values (Le., k = -T, ... , 

T). Letting Si(t) = bk, then, the observed true source noisy signal 

can be regarded as a discrete sequence b-T, ... , bo, ... , bT. Also let-

ting the true signal Set) be the sequence (ak), a-T, ... , ao, ... , aT, the 

added noise N(t) will have the form (bk-ak), that is (b-T-a-T), ... , (bo-

ao), ... , (bT - aT). Therefore, the linear system shown in Figure 4.1 

will be regarded as having an input bn and an output to ap-

proximate the true source sequence, an. Equation (4.2) can be ap-

proximated by the following summation: 

co 

So(t) = 1: G(nh) Si (t-nh) 
n=l 

(4.4) 

Letting Gn = G(nh) for n > 0 and suitably choosing some value 

M, (4.4) could be written as 



M 
So(t) = :E Gn Si(t-nh) 

n=O 
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(4.5) 

Equation (4.5) says that So(t) is approximately given by a weighted 

sum of a number of past values of the input Si(t). In case So(t) 

and Si(t) are determined by their values at t = kh, we find 

M 
So(kh) = :E Gn Si[(k-n)h] 

n=O 

If we let So(kh) = Sok and Si[(k-n)h] = Si(k-n), equation (4.6) 

can be rewritten as 

M 
Sok = :E Gn Si(k-n) 

n=O 

(4.6) 

(4.7) 

Equation (4.7) is now used to determine Gn so that the errors 

M 
Ek = ak - :E Gn bn-k 

n=O 
(4.8) 

are as small as possible. For this to happen, Gn should be chosen 

so that the average of the sum of the squares 

is a minimum. Stated in formula, we choose Gn so that 



I = lim 1 
T 
L 

T~oo 2T+ 1 k=-T 

is a minimum. 
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M 
(ak - L Gn bk_n)2 

n=O (4.9) 

Equation (4.9) could be presented in a much easier form if we 

introduce the auto-correlation functions representation of each of the se-

quences ak and bk; that is, 

T 
Ra(k) = lim 1 L al aI-k 

T~ 2T+l l=-T 

T 
Rb(k) = lim 1 L bi bI-k 

T~ 2T+l l=-T 

and the cross-correlation function 

T 
1 L Rba(k) = lim 

T~ 2T+l l=-T 

Note that if the true signal and the added noise are completely uncor-

related, then, 

Rba(k) = Ra(k) 

The worst situation that can arise is when Rba(k) = O. This 

tells us that bk and ak have no correlation, which means that the 

added noise cancels the true signal completely and only random 
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residue, making it impossible to separate any part of the true signal 

from the true source noisy signal by a linear system. 

Expanding equation (4.9) we get 

T 
I = lim 1 l: ak2 

T~ 2T+l k=-T 

M T 
2 l: Gn lim 1 l: ak bk-n 

n=O T~ 2T+l k=-T 

M M T 
+l: l: Gn Gm lim 1 l: bk-n bk-m 

n=O m=O T~ 2T+l k=-T 

Using the above auto- and cross-correlation functions repre-

sentation, we have 

M M 
I = Ra(O) -2 l: Gn Rba(n) + l: Gn Gm Rb(m-n) 

n=O m,n=O 

If Gn are chosen to make I a minimum, we must have 

thus, 

01 = 0 
oak k = 0, 1, . . ., M 

(4.lO) 
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M 
01 = -2 Rba (k) + 2 1: Gn Rb(k-n) = 0 
OGk n=O 

So a necessary condition that the Gn make I a minimum is 

M 
1: Gn Rb (k-n) = Rba(k) 

n=O 

for k = 0, 1, . . ., M. 

Equations (4.11) are a linear system of (M+l) equations with 

(M + 1) unknowns. We see that determining Gn depends on the 

(4.11) 

autocorrelation function of bk and the cross-correlation function of bk 

It is of absolute necessity for the sequence ak and bk to 

be elements of stationary random processes that are invariant under a 

translation of time. 

In summary, the Wiener Filter method can be characterized by 

the following (Brown, 1983): 

1. Both the true source noisy signal and the added noise should be 

random processes with known auto- and cross-correlation functions. 

2. The goal is to achieve minimum mean-square error for best 

performance. 

3. A solution for the 'optimal' filter weighting function should be 

based on scalar methods. 
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B. The Discrete Case 

The standard formulation of the discrete, single-channel Wiener Fil-

ter problem leads to a system of 'normal linear equations'. In the 

preceding section, the mathematics that led to these equations (4.11) 

were developed. The solution of these equations, that gives the 

'optimum' function G(n), will be discussed in this section. 

Since the system of equations is linear and holds for every n, 

we take Z-transforms of both sides of equation (4.11). 

The definition of Z-transform is 

co 

,,(xx(z) = L Rxx(n) z-n 
n=O 

Applying this to both sides of equation (4.11) gives 

"(mt(Z) = ,,(mm(Z)G(Z) 

This is shown in the following manner. Since, 

Rmm(n) ~ "(mm (z) 

and G(n) ~ G(z) 

then, by the convolution property of the Z-transform 

M 
L G(n) Rmm(k-n) ~ G(z) "(mm(Z) 

n=O 

(4.12) 
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Hence, the system function of the 'optimum' filter is given by 

G(z) 
'Ymt(Z) 

= 
(4.13) 

'Ymm(z) 

where m and t stand for measured and true, respectively; and where 

'Ymt(Z) is the spectral cross-correlation function and 'Ymm(Z) is the 

spectral autocorrelation function. 

This way of solving for the 'optimum' filter could, in fact, have 

the same problem as that of deconvolution. This could be a 

problem that negatively affects the output of an 'optimum' filter after 

noise, with high rms levels, is added to the true signal. On the 

other hand, this process might be a less favorable path to take for 

solving the system of normal equations (4.11) for very noisy proces­

ses, since the spectral auto- and cross-correlation of these processes 

will also be very noisy, which will, as a result, introduce noisy 

'optimum' filters. 
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V. TIIE PROCEDURE, THE TEST AND THE ANALYSIS OF RESULTS 

In order to achieve our goal as far as the 'optimal' function is 

concerned, as presented in Chapter IV, a simulation program was set 

to constitute the procedure that leads to creating that function and ul-

timately restore the true signal. The steps of the procedure are: 

1. Read in or create the true signal set) as it is supposed to be 

before noise is added. 

2. Add some noise with a specific variance and seed, to the true 

signal in order to simulate the measured signal Si(t). 

3. Take the autocorrelation of Si(t) with itself, and the cross­

correlation of Si(t) with Set). 

4. Using the results from step 3, find the 'optimal' filter as per 

equation (4.13). 

5. Convolve the latter with the measured signal Si(t) found in 

step 2. 

6. Lastly, compute the normalized mean-square-error for the computed 

filter of the true and the restored signal. 

As mentioned earlier, In practice, the true signal, due to 

ultrasonic reflections that characterize a target organ or tumor In the 

human body, is never known. As a consequence, a direct method 

to determine the 'optimal' filter cannot be obtained from the only 

known measured (true signal + noise) signal since one of the condi-
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tions of the Wiener filter, as stated earlier, is to assume that both 

the true signal and the added noise are well-identified processes and 

with known auto- and cross-correlations functions. So then, one pos-

sible approach to acquire is to compute the 'optimal' filter for a 

variety of patients and then use these results inversely as a look-up 

table. That is, given a noisy image or signal, one would be able 

to find a similar image in the table, and then, re-construct the sig­

nal by using the corresponding 'optimal' function of the Wiener filter 

as determined by that look-up table. 

A. Experimental Set-up 

Various types of ultrasonic signatures were simulated using a 

program (see APPENDIX) that either creates the reflection via a math­

ematical model or reads in simulated results of pulse-echo waves 

produced by various transducer prototypes (Brown, 1988). 

The mathematical model representing the first simulative pulse-echo 

wave was simply a 'pill-box' or in a more familiar term, a rectan­

gular function whose amplitude and width are two varying parameters. 

Figure 5.1 shows the 'pill-box' in the time domain and its correspond­

ing frequency domain spectral magnitude. 

Four simulated pulse-echo performances corresponding to four 

various piezo film transducer prototypes #P10, #P13, #P17 and #P20 

(Brown, 1988) were also used. It is not the intent of this work 
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to go into a detailed explanation of the physical/chemical design of 

these transducers. The only thing I would like to point out, 

though, is that the transducers were constructed with copolymer 

probes which used gold metallization. The testing and simulation 

work on #PIO and #P13 showed very high sensitivity and a narrow 

band response. On the other hand, #P17 and #P20 were designed 

to show a more broad band pulse-echo response. Figures 5.2-5.5 

show the time domain and the spectral magnitude simulation results 

of pulse-echo performances for these transducers. 

B. Tests and Results 

As a first attempt to test for the effectiveness of the Wiener fil­

ter from an optimal point of view, using the software (see Appen­

dix) developed for that purpose, a simulated waveform representing an 

'ideal' pulse-echo reflection was used. This waveform was created 

by adding a signal of Gaussian white noise, with zero mean and 

unity variance, to the rectangular pulse shown in Figure 5.1. The 

program used to generate the Gaussian noise (see Appendix C) was 

implemented to create a particular noise signal which depends on an 

input variable called the 'seed'. The seed determines how flat the 

spectral density of the noise would be over a given range of frequen­

cies. It has been found, by trial and error, that a seed value of 
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52.0 would provide a noise signal with a very wide-band spectrum, 

which is exactly what is needed in order for the noise to be charac-

terized as 'white'. This value of the seed was used at all times 

during all tests. 

This preliminary test was used to search for the occurrence of 

an optimal finite length (i.e.~ finite number of coefficients) Wiener fil-

ter. Two sets of computations were performed on the rectangular 

pulse. In the first one, the rms level of the noise was arbitrarily 

chosen to be 0.5 and in the second one, the rms was reduced to 

0.4. A filter length of 6, in the first test, proved to be optimal. 

At that length, a minimum mean-square error (M.S.E.) of 0.108 was 

achieved as opposed. to higher M.S.E. values attained after convolving 

the noisy data with the same filter but having a shorter or a longer 

length. In the second test, a minimum M.S.E. of 0.038 was 

reached using a filter length of 3. 

Note that step 6 in the procedure, shown earlier in the chapter, 

that leads to creating the optimal Wiener filter and thus restoring 

the true signal, could be named the 'DECISION MAKER'. This 

'DECISION MAKER' provides the information about whether or not 

an optimal. Wiener filter, with a specific length, was accomplished. 

This step requires the computation of the M.S.E. of the true and 

the restored signals by the following equation 



N 
1 ~ (Sit - Sir)2 

M.S.E. =-N =0 
i-
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where Sit and Sir are the true and the restored pulse-echoes; respec-

tively. As one of the characteristics of the Wiener filter, the 

M.S.E. should be as minimal as possible for optimal performance. 

The assumption made, then, with respect to the presence of an op-

timal Wiener filter length at which a minimum M.S.E. is reached, 

proved to be realizable. 

The testing went on next to cover more realistic situations. The 

four simulated pulse-echo reflections shown in Figures 5.2-5.5 were 

used. As mentioned earlier, the first two pulse-echoes, corresponding 

to transducers #P10 and #P13, showed to have a narrow-band 

response; while the last two reflections, corresponding to transducers 

#P1? and #P20, were designed to provide a more wide-band pulse-

echo response (Brown, 1988). 

Various tests were made on these reflections. All computations 

were performed in the time domain. Once again, the measured sig-

nal (i.e., noisy signal) was simulated by adding Gaussian white noise, 

with zero mean and unity variance, to the desired true pulse-echo. 

Seven Wiener filter lengths (2 to 8) were used, during each of the 

four tests, to check for the optimal situation when the M.S.E. 

reached a relatively minimum value. The rms level value for the 

added noise was again picked randomly for each case, just enough 
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for the true signal to appear pretty corrupted. Noise, with rms 

levels of 0.50, 0.14, 0.34 and 0.025, was added to the pulse-echo 

produced by each of #P10, #P13, #P17 and #P20 transducers; respec-

tively. 

A test that one can perform to determine how large the signal 

is, with respect to background noise, in the image is via what is 

called the 'DYNAMIC RANGE' (D.R.). The D.R. is given by the 

following formula 

n.R. 
= Maximum intensity of the signal 

RMS noise level (in background) 

Table 5.1 shows the n.R. for each of the four pulse-echo signals 

after the noise signal was added with its respective rms level. 

Table 5.1. Dynamic Range of the noisy signals shown in Figures 
5.6(A) - 5. 13(A) 

Transducer 

#PlO 

#P13 

#P17 

#P20 

n.R. 

3.841388 

5.711462 

3.952838 

4.900750 
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Following the pattern given by the procedure at the beginning of 

the chapter, the Wiener filter was created using equation (4.13) and 

then convolved with the noisy pulse-echoes in order to produce an es-

timate of the true ones. Table 5.2 shows the results of each test 

performed on the noisy pulse-echo waveforms in addition to the mini­

mum M.S.E.s achieved in each situation as a function of filter 

length (LFIL). Note that all M.S.E.s were computed after the res-

tored signals were amplified and normalized to their corresponding 

true pulse-echoes. 

Figures 5.6-5.13 show the noisy pulse-echo waveforms used in 

each test with their respective restored waveforms. Figures 5.6, 5.8, 

5.10, and 5.12 show the filtered signals resulting form the convolu­

tion process of the noisy signal with the optimal length Wiener fil­

ter as indicated by Table 5.2. Figures 5.7, 5.9, 5.11 and 5.13 

show the results of a non-optimal situation for the Wiener filter 

(LFIL = 7) which led to a non-minimal M.S.E. 

The following section will elaborate on these results by presenting 

a thorough explanation on what the Wiener filter method has 

achieved vis-a-vis improving the distorted pulse-echo reflections. 

C. Analysis and Conclusions 

A few things have to be discussed in order to evaluate the per­

formance of the Wiener Filter just applied to ultrasonic pulse-echo 
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Table 5.2. Mean-square error vs. Wiener filter length after a 
normalized amplification of the restored signal for #P10, 
#P13, #P17 and #P20 transducers 

Transducer Filter Length M.S.E. 

#P10 2 11.28404 E-02 
3 8.69661 E-02 
4 7.96607 E-02 
5* 7.89403 E-02 
6 8.80743 E-02 
7 22.56284 E-02 
8 22.68874 E-02 

#P13 2 9.03072 E-03 
3 6.67758 E-03 
4 5.78372 E-03 
5* 5.46910 E-03 
6 5.83497 E-03 
7 33.54119 E-03 
8 26.61132 E-03 

#P17 2 5.07252 E-02 
3* 4.87135 E-02 
4 6.35663 E-02 
5 8.08125 E-02 
6 10.26430 E-02 
7 13.34327 E-02 
8 15.75842 E-02 

#P20 2 5.04773 E-04 
3* 4.37144 E-04 
4 4.68149 E-04 
5 4.90305 E-04 
6 5.47612 E-04 
7 8.39851 E-04 
8 10.00594 E-04 

* Optimal filter length 
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reflections as shown in the previous section. 

By examining Table 5.2, it is well noticed that the M.S.E. in 

each of the four tests has reached a minimum (as expected) but 

then started to increase as a function of filter length. It has been 

determined (Koopmans, 1974) that this is a normal behavior of the 

Wiener filter. The reason for that behavior is not very clear; 

however, one interpretation can be proposed; rounding-off errors when 

more filter coefficients are computed by the long division process dis-

cussed earlier, is probably the cause of this discrepancy. At any 

rate, one and only one optimal filter length exists that leads to a 

minimum M.S.E. When larger filter lengths (>8) were tested, it was 

noticed that fluctuations in the M.S.E. occurred all along, but never 

reached again the minimum value provided by the optimal length. 

One other observation worth mentioning is the rms noise level 

and its effect on the M.S.E. As an increasing amount of noise 

(higher rms) is added to the true pulse-echo, the M.S.E. appears to 

increase; and as one might expect, the overall restored signal gets 

very noisy. In fact, as the dynamic range of the noisy pulse-echo 

decreases, the 'reconstructed' signal becomes essentially useless since 

the noise components, after amplification, are also amplified by this 

operation causing a monotonic deterioration of the filter's output. 

For the given situation, though, it is seen form Figures 5.6-5.13 

that the Wiener filter has definitely improved the signals of the 

noisy pulse-echo reflections. Table 5.3 summarizes the content of 
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those figures by showing the dynamic range of the restored signals 

for the optimal and the non-optimal filter lengths. These values can 

be compared to their corresponding counterpart D.R. values given by 

Table 5.1 before the filtering took place. 

One other note about the filter's length and its relation to the 

M.S.E. By looking at the overall results in Table 5.2, one can 

notice that, in the narrow-band response (Le., #PI0 and #PI3) situa­

tions, a longer filter length was required to achieve the minimum 

M.S.E. as opposed to a shorter one in the broad-band response case. 

More work and consequently more computation time were necessary 

to smooth the first two noisy pulse-echoes than to perform the same 

operation on the ones belonging to #P17 and #P20 transducers. On 

the other hand, it has been observed that as the rms noise level 

changed (increasingly or decreasingly), the length of the Wiener filter 

required for best performance (i.e., minimum M.S.E.) also changed ac-

cordingly. For example, in testing the pulse-echo for #P20 

transducer, the noise rms level was slightly decreased to 0.01. A fil-

ter length of only 2 was required to reach an even lower M.S.E. 

of 8.089 E-05 as compared to 4.371 E-04 for the larger rms level 

of 0.025. This criterion leads us to believe that low M.S.E. is In-

deed a function of low rms noise level as well, or in a more 

familiar term, high signal-to-noise ratio. 

As a conclusive remark about the application of the Wiener filter 

to ultrasonic pulse-echo reflections, it is a well established fact that, 
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Table 5.3. Dynamic range of the restored signals for the optimal and 
the non-optimal filter lengths shown in Figures 5.6-5.13 

Transducer Filter Length D.R. 

#P10 5 11.31512 

7 5.65473 

#P13 5 15.45008 

7 4.95239 

#P17 3 7.95490 

7 5.79924 

#P20 3 7.04860 

7 5.23619 
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with the presence of noise, this method could still perform properly 

as far as true signal feature enhancement is concerned, as long as 

the overall shape of the true image is not completely unrecognized. 

If the signal-to-noise ratio is low, the 'reconstruction' capability will 

be degraded because the noise components can be amplified during 

that operation. 

In this thesis, the Wiener filter technique was considered for im­

provement of noisy ultrasonic pulse-echo reflections produced by nar­

row-band and broad-band transducers. Although more testing of the 

technique is required to determine the full extent of the technique's 

ability to improve ultrasonic images under a variety of conditions, 

the results obtained in this research work indicate that Wiener filter­

ing is a useful technique for increasing the recognition of wanted 

details contained in ultrasonic images and, thus, may facilitate any 

kind of ultrasonic image understanding in mostly all fields utilizing 

this tool. 

It is worthwhile to continue developing this approach, perhaps in 

the future on real-life experiments using real-time digital image process-

ing. One application that might be a good laboratory experiment 

would involve a subjective evaluation of beef grading, since develop­

ments in that field were accomplished with the use of ultrasound to 

determine texture differentiation of marbling in beef. 
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VIII. APPENDIX A: THE MAIN PROGRAM 
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PROGRAM PULSE 

C*********************************************************************** 
C* * Ct This is t.he lIi1in pro!lrall t.hat. cr~at.lOs or reads i rl CI SiIlIJ- * 
C* Ilttl?<1 pIJI,;.,-eeho waverorlA. The IIltin fe<ltlJre of t.his prograll * 
Ct is t.o apply t.he Wiener tllt.lOr t,lOchniaue t.o t.he nni~y pulse- t 
C* I!choJ t.hat is, ltft.l?r the ltet~HI ~IJI~I!-I!eho has b.,en corrupted * 
C* by an additive Gaussian whitlO npise. The procedurp follpwed * 
C* in order to ereatl! the optillal Wlen~r ftl~er Hod to restor~ * 
c* the true pulse-echo si9nal cCln be sUllllarized a~ follows: * 
c* t 
C* (1) Take the autocorrelation of the noisy pulse-echo t 
Ct with itself. , 
C* * c* (2) Tl!ke the ero'Ss-eorrellttion nf tile nob~1:I PIJI~I!-I!cho * 
C* wit.h the actual one. * 
Ct * Ct (3) Use the results froll ~tpp~ (1) I (2) to deter.in~ * 
c* tile optimal Wlen~r filtHr yilt a lon~ <1iyt'iion lIaoi- * 
C* pulation as !liyen bv eauation C4.13) in chapter IV. * 
Ct * Ct (4) Convolve the cOIIPuted optillal filter with the nnj~v t 
Ct ,.ul~.-.eho to g~t the re!tor~d !i~nltl. * 
Ct * Ct (5) Finallv, eo.pute the norIl311%l?d Mel!n-Sauare-Error * 
Ct fo r the co .. puted til t.er of ttl. true .rld the rp.!tto red * 
C* ,.~l •• -echos. * 
Ct * C********************************************************************ttt 

999 

VIRTUAL XMEAS(1024),TRUE(1024),AUTO(1024),CROIX(1024) 
VIRTUAL XNOISECt024),TIMAGC1024) 
VIRTUAL ERR(1024),FLTRCI024),ESTIMC2t1024-1),T(1024) 
TYPE *,' , 
TYPE t,' 1HE MENU OF THIS PROGRAM IS:' 
TYPE t,' 
TYPE t,' 1. 
TYP!:: t,' 
TYPE *,' , 
TYPE *,' 2. 
TYPE t,' 
TYPE t,' 
TYPE *,' , 

CREATE A RECTANGULAR PULSE, Ann NOISE TO IT,' 
THEN WIENER FILTER IT.' 

READ A PULSE-ECHO RESPONSE PRODUCED BY ONE OF FOUR' 
TRANSDUCERS, ADD NOISE TO THE RESPONSE, THEN WIENER' 
IT.' 

TYPE t,' WHICH HENU WOULD YOU LIKE? (lOR 2)' 
READ(S,t) MENU 
IF (MENU.ED.l) GOTO S87 
IF (HENU.ED.2) GOTO aa8 

887 TYPE t,' , 
TYPE t,' THIS THE RECTANGULAR PULSE GENERATING MENU ••• ' 
TYPE *,' , 
TYPE t,' WHAT 19 THE MAGNITUDE OF THE PULSE? (RFAL t)' 
READ(~,.) XI1AG 
TYPE *,' HOW MANY SAMPLE POINTS ARE THERE? (POWER OF 2)' 
READ(S,t) NPTS 
TYPE t,' WHAT IS THE DUTY CYCLE? (0.0, •••• 1.0)' 
READ(S,t) XDUTY 
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GO TO 889 

888 TYPE *,' , 
TYPE *,' 1H1S IS THE PULSE-ECHO SIHULATION HENU ••• ' 
TYPE *,' 
TYPE *,' THE PULSE-ECHO THAT WILL BE READ WAS OENERATED BY ONE' 
TYPE .,' 9F 4 TRANSDUCERS (NARROW-BAND OR BROAO-BAHO)' 
TYPE *,' 
TYPE *,' PLEASE SELECT ONE OF THE FOLLOWING XDCRS: ('0,13,17 OR 20)' 
TYPE *,' , 
TYPE *,' tP10 (narrow-band)' 
TYPE *,' tPt3 (narrow-band)' 
TYPE *,' tP17 (broad-band)' 
TYPE *,' tP20 (broad-band)' 
READ(S,*> IXDCR 
TYPE *,' , 
TYPE *,' PLEASE ENTER THE TOTAL NUHBER OF POINTS: (POWER OF :?>' 
READ(S,.) NPTS 

889 TYPE *,' , 
TYPE *,'**********************************t*************************' TYPE *,' , 
TYPE *,' THIS IS THE OAUSSIAN NOISE GENERATING PROGRAM' 
TYPE *,' , 
TYPE *,'************************************************************' TYPE *,' , 
TYPE *,' PLEASE ENTER A REAL NUMBER FOR THE SrED:' 
READ(S,*> SEED 
TYPE *,' PLEASE ENTER THE DESIRED STANDARD DEVIATION:' 
READ(S,.> STDEV 
TYPE *,' PLEASE ENTER THE FACTM YOLI WOULD LIKE TO flIVIDE' 
TYPE *,' THE NOISE MAGNITUDE BY:' 
READ(S,*) FACTOR 
TYPE *,' , 
TYPE t,'**********************************************************tt.' TYPE *,' , 
TYPE t,' THE OUTPUT WILL CONTAIN ZERO-MEAN GAUSSJAN NOISE' 
TYPE *,' , 
TYPE *,'********************************************t************t**' 

C ••••••••••••• e •••••• • ~en .. rat. the ni'li~e anti r'!dri it •••••••.•••.•.••.•.• 

TYPE *.' , 
TYPE *,' I AH IN GNOISE' 
CALL GNOISE(SEED,NPTS,STDEV> 
TYPE *,' I AM OUT OF ONOISE' 
OPEN<UNIT=t,TYPE='OLO' ,NAIIF.='VH:G1mISE.TI1P') 
DO 4 I == 1 , NPTS 

READ(1,*> XNOISE(I> 
XNOISE(Z) = XNOISE(I) / FACTOR 

4 CONTI/WE 
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CLOSECUNIT-l ) 
C ••••••••••••••••••••••••• nd at noise S.ner.tion •••••••••••••••••••••••• 

LNX ~ IHT CCALOG CFLOATC~PTS») / CALOG C2.0») 
IF (HENU.ED.l) GOTO 110 
IF CHENU.ED.2) GO TO 111 

C •••••••••••••••••••••• ~.ner.te the rpctansylar FU)S •••••••••••••••••••• 

110 TYPE t,' , 

100 

200 

300 

6 

l~~~ ~:: ; AH CREATING THE RECTANGULAR PULSE ANn ADnING HOISE TO IT' 
TYPE *,' .... t •••••••••••••••••• PATIEtjCE "' ••••••••••••••••••••••• ' 
TYPE t,' • 
XRISE .. CNPTS - HPTS t XDUTY) / 2 
XFAlL .. XRISE + NPTS t XDUTY 
DO 6 I - 1 , NPTS 

Tet> :II 1. t I 

IF CCI.GE.XRISE).AND.CI.LE.XFALL» GOTO 100 
GOTO 200 
TRUE(I) - XHAG 
XHEASCt) -·TRUECI) + XHOISECI) 
GOTO 300 
TRUE C I ) ,. 0.0 
XHE~SCI) - XNOISECI) 
TIHAGCI) :: 0.0 

CONTINUE 
GOTO 117 

c •.••••••••.•••••••• end at rectansular ~u15e Sener~tion ••••••••••••••••• 

C •••••••••••••••••••••• beSin r~a~in~ ~ul~e-~cho data •••••••••••••••••••• 

111 TYPE t,' I AH READING THE PULSE-ECHO ANn ADnIHG HOISE TO IT ••• • 
TYPE t,' , 
TYPE t,' ~ ..••••••••••••..... PATIE'Nr.E. 'I! ••••••••••••••••••••• ' 
TYPE t,' 
IF CIXDCR.EO.I0) GOTO 112 
IF CIXDCR.EO.13) GOTO 114 
IF CIXDCR.EO.17) GOTO 113 
IF CIXDCR.EO.20) GOTO 115 

112 OPENCUNIT:II1,TYPE=·OLD',NAHEa·PI0.TIH') 
GOTO 116 

113 OPENCUNIT:II1,TYPE='OLD',HAHE=·P13.TIH') 
GOTO 116 

114 OPENCUNIT-l,TYPE-'OLD',HAHE-·P15.TIH') 
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GOTO 116 
115 OPENCUNIT-l,TYPE-'OLD',NAHE-'BP20.TIH') 

116 DO 7 I - 1 , NPTS 
T(I)-l,'I 
READ(l,') TRUECI) 
XHEASCI) • TRUE(I) + XNOISE(I) 
TIHAIl(I) • 0.0 

7 CONTINUE 
CLOSE <UNIT-l) 

C ••••••• I •••• I •••••••••••• end ot data rfladin!l ••••••••••••••••••••••••••• 

117 TYPE .,' , 
TYPE .,'**********'*********************************************' TYPE .,' , 
TYPE *,' ONE LAST S~T OF aUFSTIONS ••• • 
TYPE *,' , 
TYPE *,'********************************************************' TYPE *,' , 
TYPE *,' PLEASE ENTER THE LFNGTH OF THE AUTOCORRELATION:' 
READ (5, * > LAtJTO 
TYPE *,' , 
TYPE *,' NOW ENTER THE LENGTH OF THF CROSS-CORRELATION:' 
READ(S,t> LCROSS 
TYPE *,' , 
TYPE *.' AND FINALLY ••• PLEASE ENTER THE LENGTH OF THE WIENFR FIL.TER:' 
TYPE .,' HOTE THAT LENGTH llF Ftl.TER <- LEiHHH OF CORREI.ATtOllS' 
READ(S,t) LFIL 
TYPE t,' , 
TYPE *,'t***t**************************_************************' TYPF.: t,' , 
TYPE *,' THANK YOU FOR YOUR COOPERATION!!!!' 
TYPE *,' , 
TYPE •• '***tt*************************************~************t' TYPE t,' , 

C ••••••••••••••••• tind luto- and cross-corr~l~tion~ ••••••••••••••••••••• 

TYPE t,' I AH COHPUTIHG THE AUTOCORRELATION' 
CALL CROSS(NPTS,XHEAS.NPTS,XHEAS,LAUTO,AUTO) 
TYPE t,' t AH COHPUTtNG THE CROSS-CORRELATION' 
CALL CROSS(NPTS,XHEAS.NPTS.TRUE.LCROSS.CRnIX) 

c ••••••••••••••••••••••• rind Lhl! WtF.NF.:R ti lter •. , ...•....•...•.•........ 

TYPE •• ' I AM COMPUTING THF WIENER FILTFR' 

CALL WtENER(LFIL.AUTO.CROIX.FlTR,ERR) 
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C •••••••••• canyalutian at WIENER filter with ••• 5urpd si~naJ •••••••••••• 

TYPE *,' I AM CONVOLVING THE FILTER WITH THE NOISY PULSE-ECHO' 
TYPE *,' , 
TYPE *,' .................... PATIENCE t!! •••••••••••••••••••• ' 

CALL CONV(NPTS,XHEAS,LF1L,FLTR,ESTIH) 

C DO 898 I = 1 , NPTS+LFIL-l 
C899 ESTIH(I) = AHP * ESTIH(1) 
C ••••••••• find the ~ean-sQuare-errar between esti.~ted 5i~naJ ••••••••••• 
C and the true si~nal 

TYPE t,' I AH COHPUTING THE HEAN-SQUARE-ERROR' 
CALL HSE(NPTS,TRUE,ESTIH,XHSE) 

TYPE *,' , 
TYPE *,' ....•............. SUCCESSFUL TEST 'I' ................. ' 
TYPE *,' , 
TYPE *,' HEAN-SQUARE-ERROR • ',XHSE 

C •••• co.~utlP til" rlYnaailZ ranlflP of' th_ noi~Y and thlf restorl!d si~nals •••• 

TYPE *,' , 
TYPE .,' I AM COHPUTING THE DYNAMIC RANGE OF THE NOrsy SIGNAL' 

TYPE *,' , 
CALL PEAK(NPTS,TRUE,XPEAK) 
CALL RHS(NPTS,XNOISE,XRHS) 
TYPE t,' THE LARGEST VALUE IN THE NOISY SIGNAL IS =',XPEAK 

TYPE .,' THE RHS OF THE BACKGROUND NOISE 15 =',XRMS 
DR = XPEAK I XRHS 

TYPE *,' , 
TYPE t,' DYNAMIC RANGE OF THE NOISY SIGNAL = ',DR 

TYPE *,' , 
TYPE t,' I AH COHPUTING THE DYNAHIC RANGE OF THf RfSTORED SIGNAL' 

TYPE *,' , 
CALL PEAK(HPTS,ESTIH,XXPEAK) 

CALL RHS(NPTS,ESTIH,XXRHS) 
TYPE *,' THE LARGEST VALUE IN THE RESTORED SIGNAL IS =',XXPfAK 

TYPE *,' THE RHS OF THE BACKGROUNO NOISE IS =',XXRHS 



DR = XXPEAK / XXRMS 
TYPE ., I I 
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TYPE .,' DYNAMIC RANGE OF THE RESTORED SIGNAL = I,PR 

C ••••••••••• chqck ir re~tored ~i~nal n~eds ~nY ~~pli'ic3tion •••••••••••• 

AMP s XPEAK I XXPEAK 

IF (AMP.~T.t.O) GOTO 210 

TYPE ., I I 

TYPE .,' THE RESTORED SIGNAL DOES NOT HAVE TO BE AHPt.IFIED !!!' 

GOTO 340 

210 TYPE .,' I 

118 

898 

TYPE .,' THE RESTORED SIGNAL MUST BE AMPLIFIED BY ',AMP 

TYPE ., I I 

TYPE ., I WOULD YOU LIKE TO DO SO '1 (1 -- YES)' 
READ(S,.> tAMP 
IF (IAMP.ED.l) GOTO 118 
GOTO 340 

DO 898 I = 1 , ~IPTS+LFIL-l 
ESTlI1< I) = AMP * ESTtM(t) 

C ••••••••••••••••• tind the new .ean-sauar@-~rror •••••••••••••••••••• 

TYPE .,' I AM COMPUTtNG THE NEW MEAN-SUARE-ERROR' 
CALL MSE(NPTS,TRUE,ESTIH,XXMSE) 
TYPE .,' , 

TYPE .,' NEW M.S.E. AFTER AMPLIFICATION = ',XXMSE 
C ••••••••• co~pute the n@w dYna~ic ranSe or the re~t~red si~nal ••••••••• 

CALL PEAK<NPTS,ESTIH,XXXPEAK) 
CALL RHS(NPTS,ESTIM,XXXRMS) 

TYPE .,' , 

TYPE .,' THE PEAK VALUE OF THE AMPLIFIED SIGNAL IS =',XXXPEAK 
TYPE l,' THE RHS OF THE BACKGROUND NOISE IS =',XXXRMS 
DR = XXX PEAK I XXXRMS 
TYPE. l,' , 
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TYPE *,' DYNAHIC RANGE OF THE AHPLIFIED SIGNAL ~',nR 

C •••••••••• pIoL th~ NOrSy and the RESTOR~O s1~n31 ••••••••••••••••••••••• 

340 TYPE *,' , 
TYPE *,' WOULD YOU LIKE TO PLOT THE NOISY AND RESTORED SIGNALS 7' 
TYPE t,' (1 -- YES)' 
READ(S,t) IPLOT 

IF (IPLOT.EO.1) GOTO 350 
GOTO 600 

350 IF (HENU.EO.I) GOTO 400 
IF (MENU.EO.2) GOTO 500 

400 CALL PlOT2(NPTS,T,XHEAS,ESTIH) 
GOTO 600 

500 CALL PLOTI(IXDCR,T,XHEAS,ESTIH) 

600 TYPE .,' , 
TYPE t,' WOULD YOU LIKE TO PFRFORH ANOTHER TEST7 (1--Y)' 
READ(5,*) IANS 
IF (IANS.EO.I) GOTO 999 

STOP 
END 



71 

IX. APPENDIX B: FFf SUBROUTINE 
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SUBROUTINE FFTICX,Y,TABLE,H,LL,lSN) 

FFT i~ IN-PLACE OFT co.putation u~ing SAND£ ALGORITHH 
an~ HARKEL PRUNING modificatiun. 

X is an array of len~th 2**H used to hold REAL part of 
COHPLEX input. 

Y is an array of len~th 2**H used tu hold IMAGINARY part of 
COHPLEX input. 

TABLE is an array of length (H/4)+1, whprp N=2**M. TA»LE 
contains QUARTER-LENGTH eo~ine tabl~. 

H = integer. Size of FFT to be pprfor~ed is ~iven by 
N=2**H. 

(Note that the bit rever~e table is set for a m~HjftUft or 
H=2**12=4096) 

LL = inte~er. There ar. 2~*LL actual data point~. 
I~N is either -lor 1. S~t ISH to -1 f~r FORWARD OFT and 

set ISH to 1 tor INVERSE OFT. 

DIMENSION X(1096),YCI096),TABLE(1025),L(12) 
EQUIVALENC~ CL12,L(t»,(Llt,L(2»,(L10,LC3», 

$ (L9,L(4»,(L8,L(S»,(L7,L(6», 
• Cl6,L(7»,(L5,L(S»,(L4,LC9», 
$ (L3,L(lO»,(L2,L(11»,(Ll,L(12» 

N=2**H 
ND"=H/4 
~'D4Pl=H/4 + 1 
HD4P2=tID4Pl + 1 
HD2P2=ND4 + HD4P2 
LLL=2**LL 
DO 9 LO=!,H 

LMX=2**(H-LO) 
UfH=LHX 
LIX=2*U1X 
ISCL=U/LIX 

Test tor PRUNING 

IF(LD-H+L!. ) 1,2,2 
LHH=LLL 

DO 8 LH=I,LHH 
IARO=(LH-l)tISCL+! 
IFCIARG.LE.HD4Pl) OOTO 4 
Kl=ND2P2-IARG 
C=-TADLE(Kl) 
K3=IARG-ND4 
S=ISNtTABLECK3) 
GOTO 6 
C=TABLE(IARO) 
K2=ND4P2-IARG 
S-ISN*TABLE(K2) 
CONTINUE 

DO 8 LI=LIX,thLIX 
Jl=LI-LIX+LH 



8 
C 

31 
40 

51 

54 
S2 

53 
60 

J2-J1+LMX 
T1=Xe Jl )-Xe J2) 
n-yeJ1>-Y(J2) 
X(Jl)=X(Jl)+X(J2) 
Y(Jl)=YeJl)+Y(J2) 
X(J2)=C*T1-SU2 
yeJ2),.C*T2+S*Tl 

CONTINUE 
Pertor. BIT REVERSAL 

DO 40 J~t,12 
L<J)=1 
IF(J-H) 31,31,40 
L< J) =2** e H+1-.J) 

CONTINUE 
JI=1 

DO 60 Jl=I,Ll 
DO 60 J2=Jl,L2,Ll 
DO 60 J3-J2,L3,L2 
DO 60 J4-J3,L4,L3 
DO 60 J5=J4,LS,L4 
DO 60 J6=JS,L6,LS 
DO 60 J7=J6,L7,L6 
DO 60 J8-J7,L8,L7 
DO 60 J9-J8,L9,L8 
DO 60 JI0=J9,LI0,L9 
DO 60 Jl1=JI0,Lll,L10 
DO 60 JR=Jl1,L12,Lll 

IFeJI-JR) 51,51,54 
R=XeJI) 
X(JI)=X(JR) 
X(JR)=R 
FI-Y(JI) 
yeJI)=yeJR) 
Y(JR)=FI 
IFeISN) 53,53,52 
X(JR)=XeJR)/FLOAT(N) 
Y(JR)"Y(JR)/FLOAT(N) 
JI=JI+l 

CONTINUE 
RETURN 
END 
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C**********************************~*****l************t***************** 
C*********************************************************************** 

SUBROUTINE COSOT(M,TABLE) 

C Thi .. subroutine !lenl!ratl!s OUARTER-I.ENGTH cosine t.able. 

DIMENSION TABLE(2) 

N=2**H 
ND4Pl=N/4 + 1 
SCL=6.283185307/FLOAT(N) 
DO 10 I=I,ND4Pl 

ARG=FLOAT(I-l)*SCL 
10 TABLE(I)=COS(ARG) 

RETURN 
END 
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X. APPENDIX C: WIENER FILTER SUBROUTINES 
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SUBROUTINE GNOISE(SEEDI,IK,STDEV) 
C 
C GAUSSIAN WHITE NOISE PROGRAM 
C 

VIRTUAL Gl(1024),G2(1024) 
REAL SEED1,STDEV 
INTEGER IK 
N ,. IK 
PI ,. 3.141592654 
BIG ,. 1.E8 
11 • N/2 
VAR = STDEV*STDEV 
SEED • SEEDI 
OPEHCUHIT=l,TYPE='NEW',NAHE='VI1:GHOISE.TMP') 

DO 10 I-t"1 
IF(I.EO.l)GO TO 99 
IF(SEED."~.SEEDI) GOTO 99 
SEED • SEED + I 

99 DO 20 K-t,tO 
S • SEED SEED" AHOD(61.tSf7.,8IG) 
SCll ,. SEEn I BIG 
S • SEED SEED. AHODC61.tSf7.,BIG) 
SCl2 ,. SEED I BIG 

20 CONTINUE 
SCll ,. A8SCSCL1) 
RN ~ SORT(2.*VAR*ALOG(1./SCL1» 
Gl(l) • RN * COS(2.tPI*SCL2> 
G2(1) = RH * SIN(2.*PI*SCL21 
WRITE(1,*> G1<I) 
WRITEU,*) G2(I) 

10 CONTINUE 
CLOSE(UNIT=1 ) 
RETURN 
END 

C**********t************************************************************ 
C*************~*~*~**********~***********~**************t**tttttt******* 

SUBROUTINE CROSSCLX,X,lY,Y,LG,G> 

VIRTUAL X(lX),YCLY),G(LG) 
DO 1 J ,. 1 , LG 

LOW = HIHO(LY,lX-Jtl) 
G(J) • DOTClOW,J,X,Y) 

RETURN 
END 

C*********************************************************************** 
C*********************************************************************** 
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FUNCTION DOT(L,J,X,Y) 
C 
C THE PURPOSE OF THIS SUBROUTINE IS TO COHPUTE THE DOT PRODUCT 
C OF TWO VECTORS. 
C THE SUBROUTINE INPUTS ARE: 
C L z lENGTH OF X a L£HGTH OF Y = N ex. VECTOR OF LENGTH N 
C Y • VECTOR OF LENGTH N 
C 
C THE SUBROUTINE OUTPUT IS: 
C P • THE DOT PRODUCT 
C 

VIRTUAL X(1024),Y(1024) 
DOT = 0.0 

IF(L.LE.O) RETURN 

DO 1 IJ s J , LtJ-l 

1 DOT • DOT t X(IJ) * Y(IJ) 

RETURN 
END 

c*********************************************************************** 
C***************~**~**~**************~********************************** 

SUBROUTINE WIEHER(LR,R,G,F,A) 

C*********************~************t*****t****************************** C* * C* This pro~r~. creates the Wi~ner filt~r via a lon~ division * C* procedure usin~ the coefficients of the Z-transfor. of both * c* the cross-correlation (nu.@r~t~r) and tIle autocorrelation * c* (deno.inator) of the noisv pulse-echo with th~ actual one, * C* and the nois~ pulse-echo wilh itself; res~~ctivel~. , C* l 
c*************************************************************'**'****** 

VIRTUAL R(LR),G(LR),F(LR),ACLR) 
V • RCt) 
D • R(2) 
A(1) • 1. 
F(l) • G(l) I V 
o • F(t) * R(2) 
IF (LR.EO.l) RETURN 

c ••••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••...•.. 
DO 4 L • 2 , LR 

A(L) • -D I V 

IF (L.EO.2) GOTO 2 
Ll = (L - 2) I 2 
L2 = Ll t 1 
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IF (l2.lT.2) GOTO 5 

c ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
DO 1 J ,. 2 , l2 

HOlO ,. A(J) 
K ,. l - J t 1 
A(J) = A(J) t A(U * ACJ() 

1 A(K) • ACJ() t ACU * HOLD 
:5 IF (2*ll.EQ.l-2) GOTO 2 

c ••••••••••••••••••••••••••••••••••••••••••••••••••••.••••••••••••••••••• 

2 

ACl2tl) = ACl2tl) + A(l) * ACl2tl) 

V ,. V + ACl) * 0 
FCl) ,. (GCl) - Q) / V 
l3 • l - 1 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

3 

DO 3 J • 1 , 1.3 

K • l - J t 1 

FCJ) • F(J) t FCl) * A(J() 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
IF Cl.ED.lR) RETURN 

o ,. 0.0 
Q ,. 0.0 

c •••••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••.•.••• 

4 

DO 4 I ,. 1 , l 

K = l I t 2 

D = D t A(t) * RCK) 
Q = Q t F(I) * RCK) 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
RETURN 
END 

C*********************************************************************** 
C******************~**********~**~**************~*********************** 

SUBROUTINE CONVClA,A,lB,B,C) 

VIRTUAL ACI024),B(1024),CC2*1024-1) 

lC .. lA t LB - 1 

CAll ZEROClC,C) 



DO 1 I • 1 , LA 
DO 1 J .. I , LEI 

K .. I + J - 1 
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1 CCK) • CCK) + ACI) * BCJ) 

RETURN 
END 

c*******************************************************************:_*** 
C************a********************************************************** 

SUBROUTINE ZERO{LX,X) 
C 
C THIS SUBROUTINE STORES THF FLOATING-POINT NUH~fR ZERO, 0.0, 
C IN EACH STORAGE LOCATION OF AN ARRAY. 
C 

VIRTUAL X{LX) 
IFCLX.LE.O) RETURN 

DO 1 I • 1 , LX 
1 XCI) ,. 0.0 

RETURN 
END 

C***************************************************************1*****1* 
c****************************************************************t****** 

SUBROUTINE HSECN,A,B,XHS) 
c 
C 
C 
C 
C 
C 
C 
g 
C 
C 
C 
C 
C 
C 

THIS SUBROUTINE COHPUTES THE HEAN SQUARE ERROR ~ETWFEN 
THE TRUE (W/O NOISE) SIGNAL AND THE RESTORED SIGNAL CREATED 
BY THE 'OPTIMAL' WIEHER FILTER. 
THE SUBROUTINE INPUTS ARE: 

A = TRUE SIGNAL WITHOUT NOISE,. (AI, ••• ,An) 
9 • RESTORED SIGNAL = (91, ••• ,9n) 
N • TOTAL NUMBER OF POINTS 

THE SUBROUTINE OUTPUT IS: 

MS • HEAN SQUARE ERROR 
VIRTUAL A(1024),B(2*1024-1) 
SUH = 0.0 

DO 1 I ,. 1 , N 

SUH ,. SUH + (A(I) - B(I» * (A(I) - B(I» 

1 CONTINUE 
XMS .. SUM I N 

RETURN 
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END 

c********************************************************S************** 
c*********************************************************************** 

SUBROUTINE PLOTICIPLOT,T,XMEAS,ESTIM) 

C*********~******~*****~***************************l**.***************** 
C* * C* This routinp. i~ used to plot thp. pulse-echo noisy ~4ta * 
C* and the restored actual pulse-echo rpflecLion u5i~~ the * 
C* HGRAPH softw"'l re on the PDP-tl. * 
C* * C*********************************************************************** 

VIRTUAL XHEASCI024),EST1MC2*1024-1),TCI0~4) 
INTEGER {PLOT 
CALL IHIPLT(99,b.5,9.) 
CALL FRAHEC.5,b.5,4.S,9.) 
CALL WINDOWC1.,S.S,2.,4.) 

C •••••••••••••••••••• Plot the n"l~y si~nal •••••••••••••••••••• 

IF (IPLOT.EO.I0) GOTO 10 
IF eIPlOT.EO.13) GOTO 13 
IF eIPlOT.EO.17) GOTO 17 
IF CIPLOT.EO.20) GOTO 20 

10. CALL SCAlECO •• 512.,-3 •• 3.) 
CALL AXISC128.,1.,'TIME CuSec)',11,1,1,'AKPLITUDE CV)',13,1,1) 
GOTO 100 

13 CALL SCALECO.,S12.,-2.,2.) 
CALL AXISC128.,1.,'TIHE (uSec)',ll,l,l,'AHPLITUDE (V)',13,1,1) 
GOTO 100 

17 CALL SCAlE(0.,S12.,-2.,2.l 
CALL AXIS(128.,1.,'TIME (uSecl',11,1,1,'AKPLITUDE (Ul',13,1,1) 
GOTO 100 

20 CALL SCAlE(0.,512.,-.2,.2) 
CALL AXIS(128.,.1,'TIHE CuSec)',11,1,1,'AHPlITUDE CU)',13,I,l) 

100 CALL VDASHLNCT,XHEAS,St2,0,0,1,0,0) 

C •••••••••••••••••••• Plot the restored si~n~l ••••••••••••••••••• 

CALL FRAHF.(.5,b.5,.9,5.) 

IF (IPlOT.EO.IO) GO TO 1 
IF (IPLOT.EO.I3) GOTO 2 
IF (IPLOT.EO.17) GOTO 3 
IF (IPLOT.EQ.20) GO TO 4 

1 CALL SCAlECO.,512.,-2.,2.) 
CALL AXISC128.,1.,'TIME (uSec)',ll,l,l,'AMPLITUDE (Ul',13,1,1) 
GOTO 200 

2 CALL SCAlECO.,512.,-1.,1.) 
CALL AXISC128.,.S,'TIME CuSec)',11,1,1,'AHPLITUDE CU)',13,1,1) 
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OOTO 200 

3 CAll SCAlECO.,512.,-1.5,1.5) 
CAll AXIS(129.,.5,'TIHE CuSec)',ll,l,l,'AMPlITUnE (V)',13,1,1) 
OOTO 200 

4 CAll SCAlECO.,512.,-.2,.2) 
CAll AXIS(12B.,.1,'TIHE CuSec)',11,1,1,'AHPlITUDE CV)',13,1,1) 

200 CAll VDASHlNCT,ESTIH,512,0,0,1,O,0) 

CAll ENDPlT 
RETURN 
END 

C******************************************************************~**** C****************************************************************t.****** 
SUBROUTINE PlOT2(NPTS,T,XHEAS,ESTJH) 

C**************************************************************t.******** 
c* * C* Thio; routine is used to ,.lot tilP. dat.a Ilf t.hP. lIIeaslJred * c* noisw rectan~ular ,.ulse and t.he re~t.orpd t.rue pulse * 
C* usin!l the HORAPH softw.are on t.he PDP-H. * 
c* * c***********************************************************t*********** 

VIRTUAL XHEAS(1024),ESTIH(2*1024-1),T(1024) 
INTEGER I~PTS 

xt, • 1. * NPTS 
XTtC :II XN I 4. 
CAll INIPlTC99,6.S,9.) 
CALL FRAHEC.S,6.S,4.5,9.) 
CALL WINDOWC1.,S.S,2.,4.) 

C •••••••••••••••••••• Pl~t lh@ nois~ si~nal •••••••••••••••••••• 

CALL SCALECO.,XH,-3.,3.) 
CALL AXISCXTIC,l.,'TIHE CuSec)',11,1,1,'AHPLITUnE CV)',13,1,1) 
CALL VOASHlN(T,XHEAS,HPTS,O,O,l,O,O) 

C •••••••••••••••••••• Plot t.he restored si~n~l ••••••••••••••••••• 

CALL FRAHEC.5,6.5,.9,S.) 
CALL SCALECO •• XH.-2 •• 2.) 
CALL AXISCXTIC,l.,'TIHE CuSec)',ll,l,l,'AMPLITUnE CV)',13,1,1) 
CALL VDASHlNCT,ESTtH,NPTS,O,O,l,O,O) 

CALL ENDPlT 
RETURN 
END 



81 

C*********************************************************************** 
SUBROUTINE PEAK(NPTS,XFUNC,~K) 

C*********************************************************************** C* * C* This subrout.ine finds the abc;lllute lIIa!!ni tlJr.le (If the lar!!est * 
C* peak stored in the arra~ XFUNC. The result will thpn bp 5\0- * 
C* red in the variable PK (~bbreYiation for PEAK). * 
C* * C*********************************************************************** 

VIRTUAL XFUNC(1024) 
REAL PK 
PK = ABSCXFUNC(1» 

DO 1 I = ~ , NPTS 

IF CABSCXFUNCCI» .GT. ABSCPK» GOTO 2 

GOTO 1 

2 PK • ABSCXFUNCCI» 
1 CONTINUE 

RETURN 
END 

C*********************************************************************** 
C*********************************************************************** 

SUBROUTINE RHSCNPTS,XFUNC,ROOT) 

C*********************************************************************** C* * C* This 5ubrolJtine finds the R/1S noise levp.l in t.lle arra!:l XFUtiC. * 
C* * C*********************************************************************** 

VIRTUAL XFUNC(1024) 
REAL ROOT 
TOT = 0.0 

XHS = 0.0 

DO 1 I = 384 , NPTS 

TOT = TOT + XFUNCCI) 

1 CONTINUE 
XHEAN = TOT I FLOAT(NPTS/4) 

DO 2 I 2 384 , NPTS 
XHS a XHS + (XFUNC(I) - XHEAN) * (XFUNC(I) - XHf.AN) 

2 CONTINUE 

ROOT = SQRT(XHS I FLOAT(NPTS/4» 

RETURN 
END 


