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I. INTRODUCTION AND LITERATURE SURVEY 

An optimal control problem presented by Weaver (1) is 

investigated. The power level of a reactor with temperature 

feedback is to be changed a stated amount in a fixed time 

interval in a manner which would minimize the control rod 

motion. The analysis is perfonned utilizing the point re-

actor kinetics model with one delayed precursor . The tem-

perature feedback i s assumed to reduce the reactivity of the 

system by an amount proportional to the neutron density . 

Weaver utilized an analog computer to generate a solution 

for a specific constant of proportionality . This thesis 

studies the effect of varying this constant of proportionality. 

The problem is fonnulated, as given in Weaver (1) and 

outlined in Section II part A, by applying Pontryagin's 

maximum principle to the point kinetics model and results 

in a coupled set of four first-order nonlinear differential 

equations with two initial conditions and two final condi-

tions. One of the techniques employed in this thesis to 

solve this nonl inear boundary value problem is a lineariza-

tion technique utilized by Kenneth and McGill (2) . This 

technique, which will be referred to as quasilinearization, 

reduces the set of nonlinear differential equations to a set 

of linear differential equations which must be solved itera-

tively to obtain the nonlinear solution . Kenneth and 

McGill (2 ) sol ved linearized probl ems using numerical 
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integration techniques. The investigation reported in this 

thesis uses Galerkin weighted residuals to obtain a linear 

set of algebraic equations which can be solved by conven-

tional methods . This technique is one of a broad class of 

methods known as "the method of weighted residuals", which 

is reviewed in depth by Finlayson and Scriven (3). For the 

purposes of this thesis, the treatment given in Crandall (4) 

for the approximate solution of an ordinary linear differ-

ential equation is sufficient and is outlined in the follow-

ing example taken from Crandall . 

The equation is 

dX ( t ) = -X ( t ) 
dt 

X(O) = 1 

A trial solution 

O<t~l 

(1) 

(2) 

is proposed with trial functions t and t 2 . The parameters 

Co, c1 , and c 2 are to be determined. The initial condition 

is satisfied if c0 = 1 and Equation 2 becomes 

(3) 

The next step is to develop a singular criterion for ob-

taining the "best" approximation with the trial solution . 



3 

The substitution of Equation 3 into Equation 2 yields the 

residual, 

R(t) = dX(t) + X(t) = 
dt 

• ( 4) 

For the exact solution, the residual vanishes over the en-

tire interval 0 ~ t ~ 1. For the approximate solution the 

parameters c1 and c2 are adjusted so that the residual stays 

close to zero over the interval 0 ~ t ~ 1. According to 

Galerkin's method the weighted averages of the residuals 

over the desired interval should vanish. The weighting 

functions are the trial functions that were used to con-

struct the trial solution . Defining the constants in this 

manner has the effect of making the residuals orthogonal to 

the weighting functions over the interval of interest . In 

this case the equations obtained by Galerkin's method are 

1 

I t R(t)dt 1 5 11 0 = + 6C1 + 12c2 = 2 
0 

1 

J t 2 R(t)dt = l+.lr, 9C = O 
3 12""'1 + 20 2 ( 5) 

0 

Solving Equation 5 for c1 and c2 yields 

X(t) = 1 - 0.9143t + 0.2857t2 

as the approximate solution. Improved approximations are 



4 

obtained by increasing the number of trial functions and 

repeating the procedure. The extension of t his technique 

to handle coupled sets of linear differential equations with 

mixed boundary conditions is taken up in Section II part B. 

Quasilinearization and weighted residual techniques 

have been applied separately in the field of nuclear en-

gineering. The quasilinearization technique with numerical 

integration has been used by Stacey (5) to solve a Xenon 

oscil l ation problem. Kaplan (6, 7, 8) has applied the 

method of weighted residuals to flux synthesis problems. 

In addition to problem considerations, t he investig a-

tion includes a study of the solution technique itself. 

Techniques to extend the range of convergence of the 

algorithm are considered. Various metrics are compared to 

determine which provides the earli est and most reliable in-

dication of convergence. 
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II. THEORETICAL DEVELOPMENT 

A. Problem Development 

The reactor control problem is formulated so that a 

power change can be made with minimum control rod motion. 

The development presented here follows that described by 

Weaver (1) • 

The equations which describe the point reactor kinetics 

model with one delayed precursor group are given by 

where 

dxl (t ) 
dt 

dx2(t) 
dt 

x 1 (t) 

x 2 (t) 

~ 

/\. 

"-
P(t) 

= 
= 
= 
= 
= 
= 

The reactivity is 

= 
P(t) - ~ 

/\. 

neutron density, 

precursor concentration, 

precursor fraction, 

mean neutron lifetime, 

average precursor decay 

reactivit y. 

expressed as 

P(t) = p{t) - a x 1 (t) 

where 

constant, 

(6 ) 

(7) 

(8) 
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p (t) = externally applied reactivity, 

a x 1 (t) = reactivity feedback due to temperature . 

Combining Equation 8 and Equation 6 yields 

(9) 

The boundary conditions to be satisfied are given by 

(10) 

(11) 

(12) 

(13) 

Equations 10 and 11 arise from the desire to increase the 

power level by a factor of 10 and the assumption that the 

power level i s proportional to the neutron density . Equa-

tion 12 represents the fact that the reactor is a t steady 

state prior to the power change. It is desired that the re-

actor should remain at the final power level following this 

power change. This condition is satisfied by Equation 13 

prov ided some reactivity adjustments are made for t > T in 

order to allow the precursor concentration to attain equi-

librium . This can be accomplished, reference (1), with sub -

sequent external reactiv ity control given by 
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( ) - 1-. (t-T) 
p ( t) = p T - a nT e t ) T (14) 

where 

PT= p(T} from nonlinear solution 

Equation 14 represents the solution to Equation 9 and Equa-

tion 7 which reduce to an algebraic equation and an ordinary 

differential equation for t > T. 

The power change is to be made so that the performance 

index defined by 

T 

J = I p 2 (t)dt 
0 

(15) 

is minimized. The performance index of Equation 15 places 

greater weight on larger values of p (t) and thus penalizes 

large control rod movements. Power level changes with mini-

mum disturbances of the neutron flux distribution can be of 

importance in power reactors where local overheating and 

possible Xenon oscillations are a problem . 

To obtain the control which satisfies Equations 7, 9, 

and 15 and the boundary conditions given by Equations 10-13 , 

Pontryagin's maximum principle is applied. The Pontryagin 

H-function is given by 



H[x (t),p (t),u (t)t ] = 
n 
l: 

j = l 

8 

u . f .[x(t), p (t)t j 
J J 

+ L [x(t), p (t},t ] (16) 

where u(t) is the Lagrange multiplier and n represents the 

number of equations . For this problem n = 2 and 

f 1 [x(t),p(t),t] and f 2 [x(t), p (t),t ] are g iven by the right 

hand side of Equation 9 and Equation 7 respectively . 

L[x(t},p(t),t] is given by the integrand of Equation 15. Sub-

stituting these expressions into Equation 16 yields 

H(x 1 p 1 u,t) 

(17) 

where the explicit time dependence has been dropped for no-

tational simplicity . The next step is to minimize H(x, p ,u,t) 

with respect to all admissible control vectors, 

0H (x 1 p 1 u, t ) 
op 

and form the optimal control 

0 p = 

The optimal H-function is given by 

0 0 H (x,u) = H(x,u,p ) 

(18) 

(19) 
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Hence, 

(20) 

The set of 2n equations 

0 2 
aH (x,u) 1 ulxl 2 

xl = = A ( 2A + ax1 + ~ x 1 ) + A.x2 au1 
(2 1) 

0 
~ . aH (x,u) 

- A.x2 x2 = = /\x1 au 2 
(22) 

• = aH0 
(x, u) = 

ul a xl 
(23) 

(24) 

is obtained by taking the appropriate partial derivatives of 

Equation 20. The final step is the substitution of the solu-

tions of Equations 21-24 into Equation 18 to obtain the 

optimal control. 

The specific problem to be solved in this investigation 

involves a power change from 10 kw to 100 kw in the period 

of one second . The reactor physics constants are 

µ = 0.0064 

A. 0.1 -1 = sec 

A = 10-3 sec 

and a is varied between 10-5 -5 and 9 x 10 . The boundary 
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conditions are given by 

x 1 (O} = 10.0 (25) 

x 1 (1) = 100.0 (26) 

x1<1> = o.o (27) 

x 2 (0} = 640 . 0 (28) 

B. Sol ution Technique Development 

Equat ions 21-24 along with the boundary conditions 

given by Equations 25-28 form a nonlinear t wo point boundary 

value problem . The solution technique is derived for a gen-

eral nonlinear two-point boundary-value probl em and the r e -

sults of the applicat i on of thi s method to the optimal con-

trol problem are given in the next section . The development 

that follows will treat a restricted class of probl ems in 

which the first I / 2 variables , in a set of I e quations, are 

specified at t he ini t ial and final time to simplify notation . 

The procedure for treating more general boundary conditions 

will then be given . 

The general set of I nonlinear ordinary differential 

equations 

i = l, ... ,I (29 ) 
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are so ordered that the first I / 2 vari ab les h a ve k nown 

initial and final boundary conditi ons . 

i = 1, . .. I I / 2 

i = l, ... I I / 2 (30) 

Equation 29 is sol ved by sel ecting a set of functions 

x?(t) whi ch may not satisfy ei ther Equation 29 or Eq uation 
l 

30 , and s uccessivel y improving upon these function s . If , on 

the nth step of this process, the functi ons X~ ( t) have been 
l 

obtained , t h e improved functions x~+l( t ) which sat i s f y 
l 

n+ l n+l f i (Xl I •• • ,XI It) i = l, ... , I ( 31) 

are approximated by l inearizing the right hand side of Equa-

tion 30 about X~(t) to obtain 
l 

f (xn Xn t ) " __ 1 (X n. + _ X n. ) I at. , l 
= i 1' 000

' I' + L. ax j = l j X.=Xn J J 

i = l, ... , I 

This e quation can be rearranged to form 

wh ere 

S .. (Xn , t ) lJ 

I 
2:: 

j = l 
s . . (Xn,t) Xn.+ l( t) v (Xn t ) lJ J + i I 

(32 ) 

(33) 
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The procedure for obtaining the solution to the set of linear 

nonhomogeneous differential equations, g iven in Equation 33, 

subject to the boundary conditions given in Equation 30, is 

now considered. 

A trial solution X(t) is proposed whereby each component, 

Xi(t) i=l, ••. ,I, in the trial solutions is composed of a 

linear combination of trial functions, ¢j (t) j=l, . •. ,M, plus 

a constant term. The trial solution is thus of the form 

(34) 

where the coefficients from the nth approximation are known 

and those of the n + 1st approximation are to be determined . 

The first I equations of the algebraic system used to 

determine the unknown coefficients are obtained by requiring 

the trial solution satisfy the boundary conditions given by 

Equation 30. The remaining M x I equations are obtained by 

requiring the residuals given by 
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n n+l n ) s . (X . I t ) x . ( t ) - v . (X . I t 
l l l l l 

l=l, ... ,I 

(35) 

be orthogonal to each weighting function defined as 

w. = ¢. (t) 
J J 

j = l, ••• ,M 

on the interval 0 S. t S. T. Mathematically this is accomplished 

by requiring 

T 

J 
0 

w. ( t ) R. ( t ) dt = 0 
J l 

j=l, ... ,M 
(36) 

i = l, ... ,I 

The physical interpretation that the average of the weighted 

residual over the entire interval is zero still applies . 

This set of (I + 1) x M equations is solved for the coef-

ficients of the x~+l(t} approximation. 

In the computer program that was written to implement 

this solution technique the integration of the weighted 

residual s is done by a sixteen point Gaussian quadrature. 

The solution of the linear system of (I + 1) x M equations 

is obtained by a Gaussian elimination routine with full 

pivoting. 

The iterative process which evolves from these con-

siderations can be summarized as: 

Step 1. 

Step 2 . 

Guess a set of functions X~(t), i = 1, ... ,I. 
l 

n n Form the s. (X , t) and V. (X , t) terms of 
l l 



14 

Equation 33. 

Step 3 . Form the first I equations of the linear sys -

tern using the boundary conditions . 

Step 4. Form the remaining I x M equations by evaluat-

ing the weighted residuals . 

Step 5 . Solve the (I + 1) x M equations to obtain the 

coefficients for the new approximation x~+l(t) . 
l 

Step 6 . Us i ng the solution obtained in Step 5 repeat 

Steps 2 through 6. Continue until the process 

converges. 

This pummary gives the essential steps of the Galerkin 

weighted residual (GWR) algorithm which is used to solve the 

reactor optimal control problem . 

Regular polynomials, Legendre polynomials, and Chebyshev 

polynomials are used as trial functions in the investigation . 

When regular polynomials are used ¢j (t) = tj, when Legendre 

Pj (t) and when Chebyshev poly-polynomials 

nomials are 

are used¢ . (t) = 
J 

used ¢ . ( t ) = T . ( t ) . 
J J 

The technique for handling general boundary conditions 

is now developed . The general form of the boundary condi-

tion is 

hi (X,X,t) = o (37) 

which is evaluated at the proper time. The left hand side 

of Equation 37 is linearized about Xn to obtain 
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I ah· 1 +l h. (Xn+l,x_n+l,t) = h . (Xn,xn,t) + L --1 (x1: - XI!) 
i -"1. j = 1 axj X=Xn J J 

+ ~ ahil cx.r:+1 - x~) = o 
j=l rotjlx=xn J J 

The rearranged form of Equation 38 

L ahi l x~+l + ~ ahil x1:+1 = 
j=l axjlX=Xn J j =l axj X=Xn J 

n · n -h.(X,X,t) 
l 

+ L i x~ + L i xn 
r ah .

1 

r ah · 1 . 

j=l axj X=Xn J j = l ~ X=Xn j 

represents a linear equation. If h . (X,X,t) is a linear 
i . 

function of X and X, the boundary condition is satisfied 

(38) 

(39) 

exactly . However, if it is a nonlinear function then the 

boundary condition is only approximately satisfied until 

x~+l = X~ and the method has converged . 

A study of the convergence of quasilinearization methods 

is given in Leondes and Paine (9, 10). This study includes 

a technique to increase the range over which the algorithm 

will converge by decreasing the size of the step taken be-

t Xn+l d xn . . ween an approximations . This technique forms the 

new x~+l(t) approximation from the 
l 

"'n+l n Xi (t) and Xi(t ) ap-

proximations which are computed by the usual process . The 

new approximation is 

(40) 
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where epsilon is varied between zero and one . Physically 

the quantity in the brackets represents the direction of 

search and epsilon represents the step size . The reduction 

of epsilon can be viewed as an attempt to insure the validity 

of the linearization process. Leondes and Paine (9 , 10) 

have shown theoretically and practically that this method 

extends the range of convergence. This modification adds 

another s tep to the iterative process. 

Step 5 . 5. Form the modified x~+l(t) approximation 
l 

according to Equation 40 . 

An alternative method of extending the range of con-

vergence is given by Bryson and Ho (11 ). They suggest a 

formulation that replaces Equation 31 with 

· n+ l ( n+l n+l xi ( t) - f i x 1 , ... , xI , t) 

·n = (1 - d [x . 
l 

n n J f i (Xl I ••• I XI I t) (41) 

where Xn+ l(t) comes closer to satisfying Equations 29 and 30 

than did Xn (t) and 0 < c. ~ 1. The reduction of epsilon can 

again be viewed as reducing the step size to insure the 

validity of the linearization process . If c. = 1 Equation 41 

reduces to Equation 31 and a full step is taken . Defining 

n+l n+l n and linearizing fi(x1 , . • . ,XI ,t) about xi (t) yields 
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d 1 I of. , l 
ax [ oxn

1
. + (t)] - L: - 1 ox1:1+ (t) 

j = l axj X=Xn 1 

(42) 

The use of this formulation requires the initial approxima-

tion to satisfy the problem boundary conditions exactly . 

The boundary conditions, corresponding to Equations 25-28, 

used in the iterative process with this method of quasi-

linearization are 

()~ (0) = 0 

()~ (1) = 0 

oxl ( 1) = 0 

ox2 (o) = 0 (43) 

When this formulation i s use d Equation 42 replaces Equat ion 

33 in Step 2 of the iterative process and epsilon is lowered 

from one until the process converges. 
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III . RESULTS AND DISCUSSION 

A. Problem Results 

Solution approximations to the reactor optimal control 

problem given by Equations 21-28 with varying amounts of 

temperature feedback are obtained with the aid of a computer 

program written to implement the GWR algorithm . Solutions 

obtained from a quasilinearization algorithm similar to that 

suggested by Kenneth and McGill (2) but modified to handle 

generalized boundary conditions in the manner suggested by 

Lewallen (12) comprise an independent check of the approxi-

mations obtained. These solutions will be referred to as 

the accepted solutions in the discussion which follows . 

The neutron density and external reactivity approxima-

tions obtained with the GWR algorithm using regular poly-

nomial functions are shown in Figures l and 2 for several 

values of alpha. The accepted solutions are also shown and 

the GWR approximations agree with these solutions to four 

significant figures. The apparent effect of increasing alpha 

is to increase the nonlinearity of the problem. This is 

illustrated by the fact that ten trial function approxima-

tions are needed to obtain the stated agreement with the 

t d 1 . -5 -5 accep e so utions for a = 8 x 10 and a = 9 x 10 ; where-

as eight trial functions or less are sufficient for small er 

values of alpha. 
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Figure 1. Neutron density time histories for specific 
amounts of temperature feedback 
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Figure 2 shows that as alpha is increase d the react ivi ty 

must be increased more rapidly and to a high e r level to com-

pensate for the increased temperature feedback. This in turn 

causes the neutron density to ri s e more rapidly as shown in 

Figure 1. The lack of a pronounced p e ak in the external re-

activity curves for higher values of alpha is explained by 

considering the s olution for t > 1 s econd when the neut ron 

density is maintained at a constant final level and the sys-

0-5 . tern becomes l inear. The a = 9 x 1 ne utron dens1 ty curves 

approach this constant final level much more rapidly than do 

t h e a=l0-5 neutron density curves . Thus the reactivity ap-

proaches its asymptotic behavior, given by Equation 14, more 

rapidl y . The total reactivities, given by Equation 8, cor-

resp onding to these power level changes are shown in Figure 

3. As alpha increases the total react i v ity peaks earlier 

and the slope of the curve approaches zero as t approaches 

1.0. It is interesting to note t h at the total reactiv i ty 

goes through a minimum at approximately a = 5 x 10-5 . 

The solution approximations for a = 10-5 obtained by 

these two algorithms and the plot s of t he analog soluti on 

obtained by Rosztoszy, Sage and Weaver (13) are shown in 

Figures 4 and 5 . The results obtained by the GWR algorithm 

and Kenneth and McGill quasilinearization algorithm are in 

agreement but they differ from Weaver's solution . The reason 

for this discrepancy is not known. 
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The GWR approximations in Figures 1 and 2 are obtaine d 

from a four trial function a = 10-5 approximation, which i s 

started with initial trial solutions 

= 10 + 180t - 90t2 

x2 = 640 

ul = -10-6 

u2 = -10-7 

Neither two nor three trial function approximations for 

a = 10-5 are accurate enough to be used to start higher 

number of trial function approximations . The time histories 

of the four trial function approximation are used, in turn, 

to start a five trial function a = 10-5 approximation and 

this process is continued until the eight trial function ap-

proximation is obtained. The results of each step of this 

process are shown in Figure 6. As expected, the approxima-

tions improve as the number of trial functions increases. 

The four-trial function a = 10-5 approximation can 

also be used to start a four-trial function a = 2 x 10-5 

approximation. This in turn can be used to start a four-

trial function a = 3 x 10-S and four trial function approxi-

t . -5 ma ions up to a = 8 x 10 can be obtained by using this 

process. Larger alpha value approximations cannot be ob-

tained using four trial functions. The four - trial function 
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approximations can be extended to eight trial function s for 
- 5 . values of alpha up to 5 x 10 . The four-trial function 

a = 6 x 10-5 approximation is not close enough to the ac-

cepted solution to start larger trial function approxima-

tions . This problem is circumvented by using the eight-

t rial function a = 5 . 0 x 10-5 approximation to start an 

eight-trial function a = 5 .2 x 10-5 approximation and this 

process of stepping out the previous s olution by . 2 x 10-5 

is continued until the a = 9.0 x 10-5 approximation is ob-
-5 -5 tained . The ten-trial function a = 8 x 10 and a = 9 x 10 

approximations are obtained by stepping out the appropriate 

eight-trial function approximation. 

B. Solution Technique Studies 

1 . Range of convergence 

The discussion in the previous section indicated tha t 

it is des irable to extend the range over which the GWR 

algorithm will converge . Methods suggested by Bryson and 

Ho (11) and by Leondes and Paine (9,10) (Section 2, part 

B) are applied to the problem in this section . These tech-

niques used the parameter E to s low down the rate of con-

vergence and to extend the range of convergence. The 

sol utions obtained in the part A of this section were ob-

tained with an epsilon of one and the algorithm was taking 

whole steps between iterations . Table 1 shows the effect 



Table 1. 

1.0 

1.0 

1 . 0 
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Four-trial function solutions for various alpha 
values using a = lo-5 for a starting solution 

-5 Number of a x 10 Iterations 

2 3 

3 4 

4 4 

1 . 0 5 Diverged 

0 . 9 4 8 

0.9 5 9 

0.9 6 9 

0.9 7 Diverged 

0 . 8 6 10 

0.8 7 12 

0 . 8 8 Diverged 

0 . 7 7 13 

0.7 8a 15 

aA four-trial 
a = 9 x 10-5. 

function solution could not be found for 

of varying epsilon in the Bryson and Ho quasilinearization 

·-5 technique for extending a four trial function a = 10 ap-

proximation to larger values of alpha. These results show 

that this formulation does extend the range of convergence 

by reducing epsilon from one. It should be noted that the 
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largest value of epsilon that will allow convergence usually 

required the fewest iterations. 

Although the results shown in Table 1 are obtained by 

the Bryson and Ho technique , similar results are obtained 

using the standard quasilinearization method and the Leondes 

and Paine method of extending the range of convergence . This 

technique, as programmed, requires less storage space and 

less time per iteration than did the Bryson and Ho technique. 

For this reason the Bryson and Ho technique is not u sed for 

any other work in this investigation. 

Figure 7 shows the approximate convergence bounds of 

the algorithm using the Leondes and Paine formulation for an 

eight-trial function solution. The ordinate is the maximum 

absolute difference in the neutron density time histories 

between the accepted solution for a given alpha value, and 

the accepted solution for a = 10-5 which is used as the 

starting solution for the larger alpha values. The abscissa 

is the maximum absolute ditference in the neutron density 

time histories between xi and xf. This method greatly in-

creases the range of convergence for this problem. An epsi-

lon value of . 25 has a convergence range approximatel y seven 

times greater than the convergence range of an epsil on value 

of 1. 
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Max j x~ - x~' l 
Figure 7 . The convergence bou~ds of the GWR algori~hm for 

eight- trial function approximations. (x1 is the 
a£cepted solut ion for a specific val ue o f alpha and 
X1' is the accepted sol ution for a = l0-5) 
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2 . Convergence metrics 

The development of a convergence metric that will pro-

vide an early indication of ~he convergenc~ of the GWR a l -

gorithm is an important part of this investigation . This 

metric should tell the algori thm user if the algorithm can 

be expected to converge after a few iterations . A metric is 

needed because it is possible to determine very little about 

t h e convergence of the algori t hm by viewing successive time 

histories. 

A comparison of four metrics is made to determine one 

that has the desired characteristics. The first metric is 

t he sum of t he s quares of the differences of the time his-

t ories between successive iterations : 

I 1 6 
E 2: (XnJ.~l 

j= l k = l 

where the subscript j refers to the variable number, the sub-

script k refer s to the sixteen Gaussian quadri ture points and 

the s uperscript n refers to the iteration number . The second 

metric 

p -
2 

I 16 
\~ \' 

j - 1 k 1 

c an onl y be used if X i s not zero at any point in the interval . 

The next metric 
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T 2 I 
i: 

j = l I ·n n [x. - f ex., t) J dt 
J J 

0 

can be viewed as a measure of the degree to which Xn sat-

isfies the differential equation. It should be noted that 

xn is computed directly by this algorithm; whereas other 

quasilinearization algorithms must use numerical techniques 
·n to determine X • The final metric 

I 
i: 

j = l 
I n+l n l max X. - X. 

J J 

is similar to the one used by Leondes and Paine (9) in their 

proof of the convergence of quasilinearization methods . 

Figure 8 shows a comparison of the four metrics for a 

representative run of the GWR algorithm. The plots of all 

these metrics eventually form a straight line when the value 

of the metric is plotted versus iteration number on a semi-

logarithmic plot and this phenomena will be referred to as 

exponential convergence. 

The metrics P1 and P2 both show exponential convergence 

during the later iterations. However, P1 has very large 

values during the initial iterations and rapidly reduces to 

a value s imilar to the other metrics. This reduction may 

occur at any time during t he iterative process and limits 

the usefulness of this metric as a predictive parameter . 
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Figure 8 . The four metrics during the convergence of the 
GWR algorithm 
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The metric P 2 is also limited in its usefulness as a pre-

dictive parameter because it is too erratic during the 

initial iterations. 

The metric P3 also shows exponential convergence dur-

ing the later iterations but changes very little during the 

initial iterations. P3 does show a steady decline, though 

small, during the initial iterations and if P3 is 

monotonically decreasing the algorithm is usually converg-

ing. However, P3 may fluctuate during the initial itera-

tions and it may be difficult to determine if P3 is decreas -

ing. 

P4 shows exponential convergence in the first few 

iterations and continues this pattern until the algorithm 

converges. This indicates that the algorithm is converging 

toward a solution after a few iterations. Other runs indi-

cate that this metric might fluctuate during the initial 

iterations but that it would start converging exponentially 

after a few iterations if the problem is going to converge 

to a solution. 

The results of this study show that the metric P4 shows 

the best predictive qualities for this problem . All of the 

metrics do show the desired predictive characteristics but 

P4 consistently shows these characteristics earlier and ap-

pears to be the most reliable metric for this problem. 



35 

3. Mis cellaneous considera tions 

Two addi t ional modifica tions of the algorithm are 

brief l y considered. A method of scaling the variables so 

they are on the interval (-1, 1) is considered and the use 

of Legendre and Chebys hev p~lynornial trial functions is 

di scussed . 

In orde r to improve the solution of the system of 

linear algebraic equations it is desirable to keep the 

variables on the (-1, 1) interval . This can be done by 

choosing appropriate scal e factor s . If t he approximate 

maximum abs olute value of each variable can be obtained from 

physical c on sideration s the scaling factors are easily de-

fined . However, in thi s problem t h e r e are no physical con-

straints on the Lagrangian multipliers and constant scaling 

factors are more difficult to estimate. A vari a b l e scaling 

technique which uses t he Xn approximation to determine the 

1 f t f Xn+ l · t ' · d · h h' sea e ac ors or approxima ion is use wit t is 

problem. Scaling the problem enabl es the Gauss ian 

e limination routine to obtain a better inversion of the co-

efficient matrix, but t here is no noticeable difference be-

t wee n the time histories obtained by scaled and unscaled 

versions of the algorithm. Williams (l~ has shown that 

keeping the variables on the (-1, 1) interval increases the 

range of conve rgence of numerical integration routines . For 

the GWR algori t hm no d ifferences in the convergence 
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characteristics of scaled and unscaled versions are observed . 

However, this study did not do sufficient research in this 

area to justify any conclusions. 

Regular polynomials were used in the GWR algorithm be-

cause they were simple to program. However , Legendre and 

Chebyshev polynomials have properties that could be useful 

when used with this algorithm. Legendre pol ynomials were 

tried as trial functions in attempt to better condition the 

algebraic system . However, a column of zeros was produced 

in the coefficient matrix and this problem could not be 

overcome without substantially altering the computer program . 

Chebyshev polynomials were tried because they approximate a 

function with fewer terms than any other series of poly-

nomials. The solutions obtained with Chebyshev polynomial 

trial functions were identical to those obtained by the 

algorithm using an equal number of regular polynomial trial 

functions . The algorithm which used Chebyshev polynomials 

required more time per iteration and for this reason Chebyshev 

polynomials were not used. 
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IV. SUMMARY AND CONCLUSIONS 

This investigation shows that the GWR algorithm can 

be a useful tool for the solution of coupled sets of non-

linear differential equations. The solutions to the re-

actor optimal control problem obtained with this algorithm 

agreed to four significant figures with the accepted solu-

tions obtained by a standard quasilinearization technique . 

This algorithm's ability to handle derivative boundary con-

ditions directly may be advantageous in the solution of some 

problems. The algorithm has the disadvantage of requiring 

large amounts of computer space. There is not enough in-

formation in this study to establish the usefulness of the 

GWR algorithm with respect to other quasilinearization 

algorithms. 

The study of various additions to the original algorithm 

show that some of t hese additions improve the algorithm. The 

convergence range study shows that the range of the algorithm 

can be substantialLy improved by slowing the rate of con-

vergence . This increase in t he range of convergence was ob-

served with both the Leondes and Paine technique, and the 

Bryson and Ho quasilinearization method. However, the al -

gorithm, as progranuned, required more computer storage space 

when the Bryson and Ho method was used. The convergence 

metric study showed that while all the metrics had some 
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predictive capabil ities the metric 

I 
E 

j = l 
max j x~+l(t) - X~(t) I 

J J 

most reliably predicted the convergence of the GWR algori thm 

for this problem . It is possible that the other metrics may 

b e more reliable for other problems. Legendre and Chebyshev 

polynomial functions showed no advantage over regular pol y-

nomial trial functions for this particular probl em . 
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V. TOPICS FOR FURTHER STUDY 

Several problems which need further investigation have 

been mentioned in previous sections. A more thorough study 

of the Bryson and Ho method is needed to determine whether 

or not it can handle some problems better than the regular 

formulation. A study could be made on the convergence 

characteristics of the GWR algorithm for smaller epsilon 

values to see if the range of convergence is further ex-

tended. The variable scaling technique should be studied 

to see if it extends the range of convergence. 

A study of the usefulness of the GWR algorithm could 

be made. This algorithm and other quasilinear ization al-

gorithms could be used to solve several problems and the 

results and abilities of the algorithms compared . The pos-

sibility exists of applying the method of weighted residuals 

directly to the nonlinear differential equations and solving 

the resulting set of nonlinear algebraic equations. 

The optimum time interval for a power level change 

could be determined by varying the final time and evaluating 

the performance index given by Equation 15 for each interval. 

The GWR algorithm could be used to solve any problem in 

nuclear engineering which reduces to a coupled set of non-

linear first-order differential equations. 
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