
PERTT, an interactive microcomputer

program t~ perform fault tree analysis

by

Kar~n Deborah Daniels Ford

A Thesis Submitted t o the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Major: Nuclear Engineering

Signatures have been redacted for privacy

Iowa State University
Ames, Iowa

1982

ii

TABLE OF CONTENTS

Page

CHAPTER I . INTRODUCTION 1

Statement of Purpose 1

Equipment Needed 3

CHAPTER II. EXPLANATION OF TERMS 4

Fault Tree Analysis 4

Progrannning Terms 5

CHAPTER III. REVIEW OF PREVIOUS WORK 10

Fault Tree Analysis Codes 10

Superconducting Magnets for Fusion Reactors 12

CHAPTER IV. ALGORITHMS 16

Fault Tree Editor (EDITOR code) 16

Fault Tree Traversal (FAULTREE code) 24

Deviations from Standard PASCAL 27

CHAPTER V. USER'S MANUAL 28

Editor 28

Fault Tree Traversal 33

CHAPTER VI . APPLICATION TO THE MAGNET SYSTEMS OF A FUSION
REACTOR 34

Safety Problems in Superconducting Magnet Systems 34

Application to a Conductor Break 35

CHAPTER VII . RESULTS AND CONCLUSIONS 40

CHAPTER VIII. SUGGESTIONS FOR FURTHER STUDY 43

BIBLIOGRAPHY

ACKNOWLEDGMENTS

iii

APPENDIX A. SOURCE LISTING OF "EDITOR" PROGRAM

APPENDIX B. SOURCE LISTING OF "FAULTREE" PROGRAM

APPENDIX C. SAMPLE OUTPUT

Page

46

48

49

66

72

iv

TABLE OF FIGURES

Page

Figure 1. Representation of a simple linked list 8

Figure 2 . Adding a r ecord to a linked list 9

Figure 3. Fusion reactor magnet system 14

Figure 4 . Sample fault tree 17

Figure 5. Representation of sample fault tree after passing
through READTREE 18

Figure 6. Representation of adding a gate to the sample
fault tree 21

Figure 7. Representation of deleting a gate from the sample
fault tree 22

Figure 8. Representation of sample fault tree after passing
through FINDCUTSETS 25

Figure 9 . Conductor break fault tree 37

1

CHAPTER I. INTRODUCTION

Statement of Purpose

The reliability analysis of systems characteristic of many

modern technologically complex facilities such as nuclear power

plants, high performance aircraft and satellites requires special

procedures coupled with the reliability and memory of high-speed

computers . One of the bette~known procedures is called "fault

tree analysis", so named because the graphic representation of the

system in terms of operating components and subservient inputs such

as fluids, powers and signals, resembles a tree, with branches and

twigs. The analogy continues as small branches join to form larger

branches just as the successful functioning of small components

permits the successful operation of larger or dependent components .

As the numbers of components and inputs increase, and as the

description of how the components function and as probabilities

associated with various functional modes are assigned, computer

capabilities become essential .

Many programs have been developed t o per form qual itative and

quantitative fault tree analysis, but problems exist in using them.

Data entry for these programs is clumsy, for the programs are not

interactive. If one wishes to change a part of a fault tree, one must

fumble through a stack of cards to find the corresponding card, retype

the card or cards, and insert them, being careful to keep them in

t he proper place in the deck. The programs are slow, both in terms

2

of real time and computer time. Since existing fault tree analysis

programs use an array format, the numbe r of inputs to A gate is

limited, often inconveniently, by prior programming decisions. Since

the programs use a good deal of computer time and require considerable

memory space, they are expensive to run and, as a result, are usually

run at night, or during other low-demand times. There are occasions

when such a delay is not acceptable, such as when the user ·must

iterate to determine optimal values.

For these reasons, existing codes are inconvenient for design

studies, although they are useful for evaluating the reliability and

performance of already existing and fixed systems. The PERTT (PASCAL

Editor and Recursive Tree Traversal) code has been developed for a

design environment. It is written for an APPLE II microcomputer, but

can easily be transferred to any other interactive system in which

PASCAL is implemented. It consis ts of two programs: one to construct

a fault tree and save it ondisk(henceforth called the editor) and a

second program to use this fault tree to find the cut sets and their

failure probabilities as well as the total system failure prob-

abilities. The editor is a "menu-driven" program which makes adding,

deleting, or changing an event a simple, understandable procedure.

Thus, the impact of a change in a subsystem upon the performance of

the system may be easily computed and evaluated during the design

process.

The versatility of this code is demonstrated by the fact that

it was originally intended to apply this program to compute the

3

failure probability of the cryogenic system of a conceptual tokamak

fusion reaclor. A search o(the LiLcrllture revealed Lhat esaentlal

component reliability data were unavailable, since many of the

components have not been built or tested. Thus, the analysis could

not be completed. Instead , the equivalent or related probabilities

were taken from the fission reactor industry and the PERTT programs

used to establish component reliability goals for designers in

order that a fusion reactor might meet safety standards comparable

to those of the fission industry.

1 2 Equipment Needed '

The following equipment is required to use PERTT:

TM TM APPLE II computer with UCSD PASCAL language system

One or more 5 1/4" flexible disk drives

APPLE 3: disk containing the file SYSTEM.APPLE

FAULTREE: disk containing the APPLE system files:

SYSTEM. MISCINFO
SYSTEM . PASCAL
SYSTEM. LIBRARY

and the PERTT code files:

FAULTTREE.CODE
EDITOR.CODE

1APPLE II
c Apple Computer, Inc., 1978

2UCSD PASCAL
c Regents of the University of California, 1979

4

CHAPTER II. EXPLANATION OF TERMS

Fault Tree Analysis

A fault tree is a model of a system, which facilitates the

qualitative exploration of the origin of a specified undesirable

event and the quantitative determination of the probability that

the event will occur. The fault tree consists of "gates" which

show the relationships of initiating events which cause or con-

tribute to a subsequent event. The faults, or events, can be

associated with mechanical failure, human error, or natural

phenomena. A fault tree is a convenient tool for qualitative and

quantitative analysis of safety systems and the probabilities for

their failure .

A bottom> or primary event is an event whose antecedent events

have not been further explored, either because more information is

not necessary or because more information is not available. If

the fault tree is to be analyzed quantitatively, probabilities must

be furnished for all of the bottom events. An intermediate event

occurs because of the action of other events acting through logic

gates . Therefore, probabilities for these events are determined by

the bottom event probabilities and the logic which connects them

with the intermediate event .

A fault tree contains a combination of one or more types of

gates. An AND gate shows that the output event occurs if and only

s

if all of the input events occur . An OR gate shows that the output

event occurs if and only if one or more of the input events occur .

A k- out-of-n gate is similar to an n-input AND gat e , but only k out

of the n input faults must occur in order to trigger the out put

fault. A k-out-of- n gate can be represented by a system of AND

and OR gates . A NOT ~ or complemented event has only one

input. The output event of a NOT gate occurs if the input event

has not occurred .

A cut set of a fault tree is a group of events which lead to

system failure . A minimal cut set is a subset of a cut set which

consists of a "smallest group" of these events . System failure

(the t op event) occurs if and only if each event in a t least one

minimal cut set occurs.

Components share a common location if no barrier exists to

insulate one of t hem from an event that can affect both of them.

A common link is a dependency , such as a common energy source or a

connnon water supply, between components. A common mode , or conunon

cause failure , is a failure that occurs due to the failure of a

common link.

Programming Terms

PASCAL is a computer language that was developed in 1971 by

Professor Nicklaus Wirth for scientific and commercial progranuning

[6]. Many implementations of standard PASCAL exist, each with

6

minor differences from the others . The implementation used for the

PERTT code developed in this thesis is UCSD PASCAL, developed at the

University of California, San Diego (UCSD), for use with micro-

computers.

A file, or disk file, is a collection of information stored

on disk. It may be accessed by the use of a file name . A file

may contain a program, data for a program, or any other information.

An editor is a computer program that allows the user to create or

change a disk file . One can create an editor which can create a

general file or a specific type of file. The editor referred to

in this thesis is the fault tree editor which comprises one of two

programs in the PERTT package. An editor often contains "menus",

which are simply lists of options from which the user may choose.

The computer is said to "prompt" the user when it prints a question

on the screen for which the user must supply an answer via the

keyboard. An interactive program is a program for which the user

must supply input data during the execution.

Reading a variable consists of transferring its value f rom the

disk file or the console to the memory of the computer. A .Boolean

variable is a variable that may assume one of only two values:

TRUE or FALSE. A stri ng variable, or string , is a variable

identified by a sequence of alphabetic characters and/or numbers.

The characters of a string have no individual significance.

7

Recurs i ve programming

A recurs i ve program is a program t hat calls itself , and thus

nests an operation within another iteration of the same operation .

Recursive programs can provide elegant solutions to certain classes

of progr annning problems . For example, the factorial function can be

implement ed by t he following PASCAL program:

FUNCTION FACT (N : INTEGER):INTEGER;
BEGIN

If N=l then FACT :=l ;
ELSE FACT :=N*FACT(N- 1);

END;

This pr ogram loops around , multiplying by (N- 1) during each

l oop until 1 is r eached. Of course , this particular function can

also be implemented using looping, but recursion in applications

such as tree traversal becomes very convenient.

Poi n t ers and linked lists

In many computer languages such as FORTRAN, arrays are used

to handle ordered lists of data. However, arrays are not always

the most efficient means of handling this type of problem. For

example, in order to insert a number between the firsb · two numbers

of the array:

3. 687
7. 292
4.189

8

one must first check to see that the dimension of the array is at

least 4. Then, the third number must be moved to the fourth position,

the second number must be moved to the third position, and the new

number must be inserted into the second position . When long lists

are involved, this can be a very time-consuming process. If the

data set is occasionally small, an array is an inefficient use

of space, because the progrannner must initially establish and reserve

the space required for the largest data set to be handled . This

is accomplished by means of a dimension statement and insures that

in many cases, much of the reserved space wil l not be used and will

not be available for any other program.

PASCAL has implement ed a device which helps to alleviate these

problems . It represents each entry in the list as a record of one

or more values, plus a pointer referring explicitly t o the item

which follows it in the list, as shown in Figure 1.

l._3_e_a_1._! _-_-~----- ... I -7 _29_2 I_:.-:,+-----· 14 189 I l
Figure 1. Representation of a s imple linked l ist

Thus, considering the previous example , to i nse rt a number,

for example 2.395, into the second posit ion of this list, a new

9

record is created, with a pointer to the record 7.292. Then, the

pointer from 3. 687 is redirected to the new entry, as shown in

Figure 2.

~ 1'7.2921
L~

Figure 2. Adding a record to a linked list

This type of structure is known as a linked list. The linked

list is exactly as l ong as required, but the size of an array must

be fixed in advance. When PASCAL pointers are used to implement t he

linked list, the records are stored at any location in memory not

taken up by progr am. The records are accessed by means of a pointer ,

called the top pointer, which points to the linked list . Thus , no

program changes are required to t ake advantage of the larger amount

of memor y in a larger , faster system.

10

CHAPTER III. REVIEW OF PREVIOUS WORK

Fault Tree Analysis Codes

Fault : tree analysis requires the preparation or existence of a

fault tree . A fault tree is a symbolic representat ion of actual

hardware which is involved in originating, transmitting, processing

and using fluid flow, information flow, heat flow or the flow of

instructions to accomplish some purpose. Fault tree analysis is

the study of the chain of events which may prevent the accomplishment

of the desired purpose and of the relative probabilities that

individual faults and chains of faults may occur .

The PREP and KITT codes [25] were released in 1970, and were the

first computer codes developed for the evaluation of fault trees . The

codes are written in FORTRAN for the IBM 360 computer . The minimal

cut sets of the fault tree are found by the PREP code and the event

probabilities are determined by the KITT code . The cut sets are

determined by one of two means. A deterministic method of fault

tree analysis in which all possible combinations of failure events

are successively tried to determine which combinations cause the

sys tem to fail, is provided by the COMBO option. For large fault

trees , this requires a great deal of computer time. FATE, the second

option, uses Monte Carlo simulation to find the most probable minimal

cu t sets . Unfortunately , FATE is not guaranteed to find all of the

minimal sets . The cut sets required by the KITT code to find time-

dependent reliability information are provided by the PREP code.

11

As might be expected, modifications to the original codes have

been developed in recent years. The _'MOCUS code [24] was designed in

1972 to provide input to the KITT code, because deterministic testing

(COMBO) was found to be too slow and Monte Carlo simulation (FATE) was

not guaranteed t o find all of the cut sets. It uses a "top down"

logic to successively replace each gate in the tree by its inputs until

each gate has been replaced by bottom events. It is written in

FORTRAN for the IBM 360 computer. TREEL and MICSUP, [14] developed

in 1975, serve the same purpose as MOCUS. They ·use essentially the

same logic, but work from the bottom up .

The ALLCUTS code [23) was written in 1975, and uses a top-down

algorithm similar to MOCUS . It was written in FORTRAN for a CDC 6600

computer, and uses 34700 words of memory. It is more memory-efficient

than many other codes. In addition to providing the minimal cut sets ,

ALLCUTS provides probability calculation as an option .

The WAM code is used to compute minimal cut sets, and the BAM

code calculates the associated system unavailability. It performs

these calculations by setting up a truth table with all possible

combinations of events. The WAM-BAM codes [23] were written in

FORTRAM for the CDC 7600 computer, and use 61440 words of memory .

The PL- MOD code . [13) performs quantitative and qualitative

analysis of a fault tree by "modularizing" it. The modularization

process divi des the tree into independent subtrees and works not from

the cut sets but from a description of the fault tree. It uses the

12

list processing features of PL-1 to perform the modularization .

PL- MOD is unique in that it can handle k-out-of-n gates and

complemented events.

The COMCAN code [16] performs common cause failure analysis on

the fault tree cut sets . It identifies various possible common cause

failures, and finds the connnon locations in the fault tree. It sets

up a susceptibility fault tree for each common location and finds the

cut sets for each of these trees. It is written in FORTRAN for the

IBM-360 computer .

Superconducting Magnets for Fusion Reactors

These codes or the PERTT code developed in this thesis can be

used to analyze fault trees corresponding to any sys t em. The system

chosen as a relevant example is the one involved with the reliability

of superconducting magnets for fusion reactors. Fusion reactors are

considered to be strong contenders for supplying energy beginning in

the 21st eentury. The interacting particles must be given enough

energy for the reaction to occur and must be kept in close proximity

long enough for the r eaction to occur. One method for keeping

the particles together is called magnetic confinement and requires

the production and maintenance of a number of different but related

magnetic fields .

A tokamak, [20) or magnetic confinement fus ion reactor involves

two systems of magnets: the steady-state t oroidal magnet system and

13

the pulsed poloidal magnet system. The magnet system is shown in

Figure 3. The toroidal coils are D-shaped for mechanical reasons.

The poloidal coil system consists of the ohmic heating coils, the

equilibrium field coils, and the divertor coils . The ohmic heating

coils and the plasma loop act as the primary and secondary sides of a

transformer. During the pulsed changes in magnetic flux, currents

are induced in t he plasma to produce the poloidal magnetic field and

t o heat the plasma. Because of the toroidal geometry, the poloidal

field is stronger near the center of the reactor and the plasma loop

tends to expand. Therefore, "equilibrium coils" are needed to

counterac t this effect. They subtract from the field near the center

of the reactor and add to it on the outside. The divertor coils are

used t o prevent particles that have escaped the plasma from reaching

the firs t wall, the innermost physical boundary surrounding the plasma .

If escaping particles were to strike the first wall, impurities would

be liberated by spallation and become an unwanted part of the plasma.

In addition, the loss of energetic particles would result in plasma

cooling.

The r equired magnetic fields are produced by electric currents

passing through coils. For conventional conductors like copper, the

I 2R heatin g loss is very great and provides a limit to the magnetic

field tha t can be achieved. Certain materials, called superconductors,

have the property that when they are cooled below a certain critical

temperature (around 2-20 K) the resistance becomes zero . Thus, the

OH COILS

--•~)(I ! r.r,,~

Figure 3 .
O' REACTOR

f'UIMA
artUfLINe

IYSTIW

TRITIUM
llfCOV[RY
IYSTUU

PLASMA
HUTIHG
IYITOll

COOLANT

MAGNET
CONTROL
IYITfMS

Fusion react or magnet s ys tem [15] .

fN l!:RGY IU,.,LY
IYSTE.M TO OH

COILI

f'OWfR
CONVEIUION

IYSTfMI

•

.......
.£:--

15

magnetic field that can be obtained using superconducting magnets is

significantly higher than that of con ventional magnets .

Three superconducting materials are presently used in magnets:

NbTi, Nb3Sn, and v3Ga . NbTi is cheaper and more ductile than either

Nb3Sn or v3Ga. Ductility is an important property for wire which is

to be bent into a coil. ' NbTi has the disadvantage of a lower critical

temperature and critical magnetic field. It is, however, currently

favored for magnets producing fields up to 9 Tesla .

Reliability, discussed more fully in Chapter VI, will be a

major problem with fusion reactors. The magnets will be exposed t o

fast neutron and gannna irradiation originating in the plasma,

mechanical stress, asymmetric forces, torques, and the consequences of

pulsed operation. The problems associated with radiation damage,

cooling, large mechanical forces , and the discharge of stored energy

must be solved by the designers of the magnet systems if the

successful operation of tokamak reactors is to be assured.

16

CHAPTER IV. ALGORITHMS

Fault Tree Editor (EDITOR code)

The fault tree editor reads data provided by the user by means

of a console and arranges them in an order such that they can be

processed in the FAULTTREE program. The editor consists of a

number of procedures, each of which performs a specified operation

on the data.

The MENU procedure

The MENU procedure clears the screen and displays a "menu" t o

the user. The menu consists of a list of seven options f r om which

the user may choose: (1) add a node; (2) remove a node; (3) append

files; (4) change a node, (5) display a node, (6) write the tree

to a file name, or (7) exit the program. For each opt ion , a sub-

routine is called.

The READTREE procedure

The READTREE procedure recursively reads the elements of a

fault tree from disk into memory and stores it as a linked list. The

linked list shown in Figure 5 corresponds to the fault tree in

Figure 4 . Each gate in the tree corresponds to two kinds of records

in the linked list. One type of record is the NODE , which contains

the actual information describing the gates : name, function,

pr obability, and number of inputs. A bottom event is represented

VALVE ii 1

CLOSED

PROBABILITY: 0 .1

17

NO FLOW

VALVE #2
CLOSED

PROBABILITY: 0 1

Figure 4.

NO FLOW
TO VALVES

PUMP
BROKEN

PROBABILITY: 0 .1

Sample fault tree

PREVIOUS
VALVE CLOSED

PROBABILITY: 0 1

TOPPOINTER

NO FLOW

H UM&~1' Of I HPVTS

Figure S.

VALVE 11 1
CLOSED

XlClC 0 .I

---Z.Nooc

VALVE 11 2
CLOSED

JtXX 0 .I

NO FLOW
TO VALVES

OR 2 0

PUMP
BROKEN

XlCX 0 .I

PREVIOUS
VALVE CLOSED

XXX O . I

Represen t ation of sample fault tree after passing t hrough READTREE

19

in Figure 5 with a gate function of XXX. The second type of record,

the INPUTTYPE, contains the pointers which connect each NODE to

its inputs and outputs .

The SRCHTREE procedure

The SRCHTREE (SeaRCH TREE) procedure recursively searches the

fault tree for a gate specified by the user. This procedure is

called by many of the other procedures to find a gate which is to

be changed or displayed. It inputs a gate name and the pointer to

the top event of the tree (henceforth called the top pointer),

and outputs the proper gate and a Boolean variable that is set t o

TRUE if the gate is found and FALSE if it is not found .

The FINDPARENT procedure

The FINDPARENT procedure is used to find the gate preceding a

given gate in the tree (its parent, or output gate). FINDPARENT

is called by the DELGATE procedure (described below) to reduce by

one t he number of inputs to the deleted gate ' s parent. It is also

used t o check for errors in the DELGATE procedure to i nsure that

the user does not leave an AND or an OR gate with a single input .

Inputs to this procedure are the top pointer of the tree and the

name of the gate that is to be deleted. Output variables are the

gate to be deleted and its output gat e , and a Boolean variable set

t o TRUE if the output gate is found and to FALSE if it is not found.

20

The ADDGATE procedure

The ADDGATE procedure is called when the user wishes to add a

gate to the tree . It prompts the user for the name of the gate

to which an input is to be added. It checks to see if this gate

is a bottom event, a nd if so, it will force the user to add at least

two gates. This has been implemented to prevent the use of single-

input AND or OR gates . It also checks to make sure that the tentative

name of the new gate has not previously been used .

When error-checking is complete, the ADDGATE procedure will

set up a NODE and an INPUTTYPE for the new gate. The results of

the ADDGATE procedure are shown in Figure 6. The procedure

increments the number of inputs to the output gate by 1.

The DELGATE procedure

The DELGATE "(DELete GATE) procedure is called when the user

wishes to remove a gate from the fault tree. The operation of the

procedure is shown in Figure 7. Note that the gate remains in

memory after its deletion but cannot be retrieved. This is because

the standard DISPOSE command is not implemented in UCSD PASCAL .

Error checking is done to insure that one of two inputs is not

deleted and that the gate to be deleted is a bottom event. After

error checking is complete, if the gate to be deleted is the first

input t o its output gate, then the pointer f r om the output gate is

directed to the second input. If the gate is the ith input (i <

number of inputs), then the pointer from the (i-l)th gate is

TOPPOINTER

VALVE h 1
C LO'>E: D

lCXX 0 .\

VALVE # 2
CLOSED

XXX 0 .I

VALVE 4 3
CLOSED

)(XX 0 .I

PUMP
BROKEN

)(XX O . I

Figure 6. Representation of adding a gat e to the sample fault tree

PREVIOUS
VALVE CLOSED

XXX 0 .I

TOPPOINTER

NO FLOW

. I

ANO 2. 0

VALVE It 1
CLOSED

lCXX 0 .I

r
r - - - - - - '--'--'--'-.J

~------cp=p

VALVE #2
CLOSED

XlCX 0 .I

VALVE It 3
CLOSED

xxx 0 .1

·rt
NO FLOW

TO VALVES

OR 2 0

PUMP
BROKEN

xxx 0 .I

PREVIOUS
VALVE CLOSED

Xl'.X. O .I

Figure 7 . Representation of deleting a ga te from the sample fault tree

N
N

23

redirected to the (i+l)th gate. If the gate is the last input,

then the pointer leading from the next-to-last input is redirected

from the deleted event to NIL.

The APPEND procedure

This procedure reads the components of an already existing

fault tree from a file, making its top event an input to a gate

specified by the user in the tree being edited. The number of

inputs to the output gate is incremented by 1, and the READTREE

procedure is called, using the output gate specified by the user as

the top pointer .

The CHANGE procedure

When the user wishes to change the name, function, or probability

associated with a gate, the CHANGE procedure simply sets the value

of the variable equal to the new value. When the user wishes t o

change the output of a gate, the OUTPUTCHANGE procedure is called.

First, the gate is added to the end of the input list of the new

output gate. Then, the gate is deleted from the old output ga te.

No t e that, in contrast t o the DELGATE procedure, no memory is lost

during this delete operation.

The WRITETREE procedure

The WRITETREE procedure recursively writes the gate names,

functions, numbers of inputs, and fai lure probabilities contained in

the fault tree to the console, to the pr inter, or to a disk fi le. It

24

is not automatically called when the user wishes to exit the pr ogram.

Thus, all newly enter ed data are lo~t if the user does not use the

"write" option before exiting the program.

Faul t Tree Traversal (FAULTTREE Code)

The FAULTTREE code uses a fault tree produced by the editor to

f ind all of the minimal cut sets and their probabilities . The

READTREE pr ocedure f ound in the edit or is used to read the contents

of the fault tree f rom disk and store it into memory .

The FINDCUTSETS procedure

The procedure FINDCUTSETS takes the output from READTREE and

processes it into a list of cut sets as shown in Figure 8 , To add

a new r ecord to the current cut set it first calls the procedure ADD.

The ADD procedure is used to check for a bottom event, and to set

a Boolean variable, ISBOTTOM, equal to TRUE or FALSE . A new record

is added to the list and the appropriate values are put into that

record . This new record is then returned to the procedure FINDCUTSETS .

If an AND gate is being processed, then each of the inputs of

the AND gate is added to the current cut set. If it is processing an

OR gate, the process is somewhat more complex . For an N-input OR

gate , N-1 copies of the current cut set are made, using the procedure

COPY. A different input of the OR gate is added to the end of each

copy . Then, the MERGECUTSETLISTS procedure is used to link all of the

copies together into a new cut set list .

Figure 8 .

CUTSETLIST

l

VALVE II 2
CLOSED

J .1 J TRVE

VALVE 111
CLOS~O

J.ljlRUE

NO FLOW

0 F'AL~E

PUMP
BROKEN

NO FLOW
TO VALVE

I 0 I FALU:

NO FLOW

0 FlllLU

PREVIOUS
VALVE CLOSED

NO FLOW
TO VALVE

I ol Hl~E

NO FLOW

0 FALSE

Representation of sample fault tree after passing through FINDCUTSETS

N
\.n

26

The FINDPROB procedure

The FINDPROB pr ocedure computes the occurrence probability

associated with each cut set and the occurrence probability

associated with the top event . It uses the cut sets produced by

the FINDCUTSETS procedure and event probabilities supplied by the

user . The probabilit y associated with a given cut set is defined

to be the product of the probabilities of the bottom events belonging

to the specified cu t set .

n.
pj i~i pij

where P. is the probability of the jth cut set;
J

P .. is the probability of the ith bottom event of the jth
1]

cut set;

n. is the number of bottom events in the jth cut set.
J

The probability P of occurrence of the top event is determined by

the relation:

p n 1- .rr
j=l

where n is the number of cut sets.

The WRITECUTSETS procedure

(1-P .)
J

This procedure produces a list of cut sets for user considera-

tion . It traverses the linked list produced by FINDCUTSETS,

stopping to write out the name of each gate (1) to a data file,

27

(2) to the console, or (3) to the printer. An asterisk is printed

beside each bottom event. At the end of each cut set, the associated

probability of occurrence is printed, and at the end of the cut set

list, the probability of the top event is printed.

Deviations from Standard Pascal

Strings are used instead of packed arrays to facilitate user

entry . This is because UCSD PASCAL requires that user-provided

input fill a packed array and that the user must include enough

spaces to accomodate the dimension of the array . Thus , for each

event name, the user would need to type 40 characters if packed

arrays (i . e . standard PASCAL) were used. The MEMAVAIL cormnand ,

which determines the size of the available memory is nonstandard,

but most implementations of PASCAL have an equivalent function .

File manipulation is different for each PASCAL machine, but in

the PERTT programs standard PASCAL I/0 has been used wherever

possible.

28

CHAPTER V. USER'S MANUAL

Editor

Beginning !£_ edit ~ fault tree

Put the APPLE 3: in disk drive #1 and turn on the computer and

monitor. Wait until the light on the disk drive turns off, then

remove the APPLE 3: disk and insert the FAULTTREE : disk. Press

<RESET> and then press the <X> key. The computer will prompt,

"Execute what file?" . Type EDITOR and press the <RETURN> key.

This executes the editor program.

The computer will then give the prompt:

DO YOU WANT TO :

EDIT A CURRENTLY EXISTING FAULT TREE (E)

START A NEW FAULT TREE (N)

PLEASE TYPE E OR N

If a fault tree already stored on disk is to be altered, type

<E> and then <RETURN>. The computer will prompt, "TYPE FILE TO BE

EDITED". Type the name of the data file containing the desired

faul t tree and press <RETURN>. The file will be read into the memory

of the computer.

If a new data fi l e (a new fault t ree) is to be created , type

<N> and then <RETURN>. The computer will prompt "TYPE THE NAME OF

THE TOP EVENT". Type a name of up to 40 characters and press <RETURN >.

29

Building the fault tree

In order to build a fault tree, the user may select options from

the following menu on the screen:

MEMORY AVAILABLE = xx.xxx . DO YOU WANT TO:

ADD A NODE (A)

REMOVE A NODE (R)

APPEND A FILE TO THIS FILE (P)

CHANGE A GATE (C)

DISPLAY A GATE (D)

WRITE TO A FILE NAME (W)

EXIT THE PROGRAM (E)

PLEASE TYPE A, R, P , C, D, 1.J, OR E.

Type desired operation and press <RETURN>. The memory available

statement indicates the number of bytes of memory available for fault

tree data. Adding a gate to a fault tree requires approximately 30-40

by t es . When the available memory becomes small, the user should try to

write the file to a name, exit the file, and read the file back in .

This is because the deleting procedure causes memory to be temporarily

lost, as explained in Chapter IV.

Adding ~ node After the user types <A>, the computer will

prompt, "TO WHICH GATE WOULD YOU LIKE TO ADD AN OUTPUT". Type the

ga te name and press <RETURN>. The computer will prompt , "TYPE

PROBABILITY OF OCCURRENCE FOR NEW NODE" . Type a probability between

0 and 1 and press <RETURN>. If this gate is , or will be a bottom

30

event , this probability is significant. For all other cases, enter

O. If the output gate was a bottom event, the following prompt will

appear on the screen:

SINCE (event name) IS A BOTTOM EVENT, IT MUST HAVE AT LEAST 2 INPUTS.
WOULD YOU LIKE IT TO BE AN AND (A) OR AN OR (0) GATE? (TYPE L TO
LEAVE THE ADD PROCEDURE AND DELETE THE GATE JUST ADDED)

PLEASE TYPE A, L, OR 0

If the user types L, the gate that has just been added is

deleted . If the user types A or O, the output gate is changed to

an AND gate or an OR gate, and another gate may be added by the user.

This is to assure that the final fault tree contains no single-

input AND or OR gates. The computer will prompt , "DO YOU WISH TO

ADD ANOTHER GATE TO (event name)" . Type YES or NO and press ·<RETURN>.

Removing ~ gate After the user types A the computer

will prompt, "WHAT GATE DO YOU WISH TO DELETE". Type the gate name

and press <RETURN>. If the gate has inputs, the user will be asked

if he wishes to delete everything below the gate. If the answer is

YES, then all of the inputs will be deleted . If the answer is NO ,

then no gates will be deleted. If the gate above the gate to be

deleted (the "OUTPUT" gate) has only two inputs, the output gate will

be displayed and the computer will prompt, "DO YOU WISH TO DELETE BOTH

INPUTS TO (event name)? TYPE Y OR N." If <Y> is typed, both inputs

will be deleted and the output gate will be a bottom event. The

computer will prompt for a probability for the gate. If <N> is

31

typed , the gate will not be deleted. If <N> is typed and gates

below one input have already been deleted, these gates have been

deleted permanently . They will not be returned to the fault tree.

If the user wishes to delete a gate without deleting its inputs ,

he must redirect the outputs of the input gates he wishes to retain.

This may be accomplished by means of the "change" option , described

below.

Appending ~ file This command will read a fault tree f r om

a file, making its top event an input to a specific gate of the

fault tree being edited . After the user types <P> the computer

will prompt , "INPUT TO WHICH GATE" . Type the name of the output

gate and pr ess RETURN The computer will ask for the name of the

fi le to be appended to the tree being constructed. Type it and

press RETURN •

Changing~ gate When the user types <C> , the computer will

prompt, "WHAT GATE WOULD YOU LIKE TO CHANGE". Type the gate name

and press RETURN . A menu will appear on the screen as follows:

DO YOU WANT TO:

CHANGE THE NAME OF THE GATE (N)

CHANGE THE FUNCTION OF THE GATE (F)

CHANGE THE OUTPUT OF THE GATE (O)

CHANGE THE PROBABILITY OF THE GATE (P)

TO EXIT THE CHANGE PROCEDURE TYPE E

PLEASE TYPE N,F,O , P, OR E

32

When the user types <N> or <P> , the computer prompts for the new name

or probability. When the user types <F> , the gate function is

changed from AND to OR or vice versa. The <O> command is used to

change the position of a gate within the tree; in other words, the

gate is deleted from one position and added to another. When a

gate is moved, all of its inputs are also moved.

After the change is made in the tree, the computer prompts,

"DO YOU WANT TO MAKE ANY OTHER CHANGES TO (event name)? TYPE Y

ORN". Type YES or NO.

Displaying ~ gate When <D> is typed , the computer will

prompt for a gate name. Type it and press RETURN . The computer

will print the name of the gate at the t op of the screen. If the

gate is a bottom event, its probability will be displayed.

Otherwise, the function (AND or OR) will be displayed, along with the

name and probability of each of the inputs.

Writing to~ file name When <W> is pressed, the computer

will prompt for the name of an output file. Type a file name to

have the tree stored on disk, or type CONSOLE: or PRINTER: to

display the tree on the screen or the printer. Be sure to t ype

a 11
:

11 after the words "console" and "printer"; otherwise , the tree

will be stor ed on disk as a file named "console" or "printer".

If output is sent to the screen or to the printer, it will not

be sent as a tree, but as a long string of data.

33

Exiting the program Before you t ype <E> , be sure to write

the tree to a disk file. Otherwise, all newly entered data will be

lost .

Fault Tree Traversal

After a data file has been created using the editor, the

minimal cut sets and failure probabilities may be found using the

FAULTTREE pr ogram. Type <X>. The computer will prompt, "Execute

what file?". Type FAULTTREE and press <RETURN> . The computer will

ask for an input file name. Type the name of the data file and

press RETURN The computer will then prompt f or an output file

name . Type a file name to write the cut sets and probabilities to a

disk file, or type CONSOLE: or PRINTER:. For each cut set, the

events will be listed and a cut set probability will be given .

A total failure probability will be given at the end of the listing.

34

CHAPTER VI. APPLI CAT ION TO THE MAGNET SYSTEMS
OF A FUSION REACTOR

Safety Problems in Superconducting Magnet Systems

Reliability is a major problem of existing superconducting

magnets. In one study [21] out of t wenty exper imental magnets

observed, fourteen had failed due to inadequate cooling, electrical

insulation breakdown, inadequate mechanical support, and failures

in powering and safety systems.

Radiation effects on superconducting magnets are significant.

Over a 30 year lifetime, neutron fluences (the total number of

neutrons falling on a unit area) are estimated t o be approximately

l018 /cm2 , which would lead to a displacement rate of l.8xl0-3

dpa. This would give approximately a 10% reduction in J , the c
critical current, at 4.2 K, for NbTi [20). It appears that this

degradation could be fairly easily t olerated in UWMAK-I, the

University of Wisconsin Tokamak Study Design . [15).

Cooling of superconducting magnets can also be a problem, Two

possibilities for cooling are being explored : ba th cooling in liquid

helium and forced cooling with two-phase helium. The main disadvantage

of bath cooling is that the heat trans f er rate depends upon the surface

orientation. If the conductor orientation deviates from vertical,

the heat transfer rate will be dec reased by approximately one order

or magnitude [21). Much less experimental evidence exists for forced

cooling with two-phase helium. Cooling instabilities seem to appear

because of helium phase transition behavior.

35

Stored energy will also be a problem, since the magnets of a

fusion reactor will be expected t o carry more than 100 times the

current carried in presen t - day superconducting magnets . If a super-

conducting magnet were to "go normal" (lose its superconducting

properties because i t exceeds its critical temperature or critical

curr ent), the superconducting material will suddenly be subject to

2 I R heat losses, which would be enormous in the case of a fusion

reactor. Such sudden stored energy deposition into a small area of

the magnet could lead to temperature excursions above the melting

point of the magnet . The most serious case of released energy is

the case of a coil break , studied in detail below. Other mechanisms

include dewar leakage, loss of conductor cooling, loss of super-

conductivity, and power supply fail ure.

Application to a Conductor Break

The case selected for detailed study consists of a conductor break

because this seems to be the most significant accident for a super-

conducting magnet system. Large amounts of energy would be released

in a short time. This would produce large amounts of heat and large

releases of helium gas , and would lead to significant structural

failure. This structural fa i lure could lead to internal and external

missiles, and release of radioactive materials in the form of debris

from the destroyed structur e .

36

A fair amount of qualitative infonnation is available concerning

accident pathways to a conductor break. A fault tree for a con-

ductor break is shown in Figure 9 [15]. Quantitative information on

rel i ability is lacking however. The failure rate reported for

existing superconducting magnets [15] is clearly unacceptable and

one can only speculate on the failure rates for those to be used

in the futur e. It is difficult to quantify failure probabilities

without direct experience, and thus, one must rely on qualitative

judgments as to which accident pathways are most likely .

For these reasons, the PERTT code and fission industry data

were used to set goals for operation of the fusion reactor magnet .

Powell [15] in an analysis of fusion reactor design , sets an

-2 upper limit, for economic r easons, of 10 per reactor- year for

events which release no radiation, but cause enough damage to the

magnet that replacement is necessary. -2 The number 10 was used for

calculation, and it is assumed that the probabilities for more severe

accidents would be much lower . If one assumes the appropriateness

of the fault tree in Figure 9, and if all of the 29 event probabilities

are equal, then to generate an overall failure probability of 10- 2

per reactor year, the probability for each event would be 3 x 10- 4

per reactor year . Of cour se , it is unlikely that all of the probabil-

ities will be equal . Qualitatively, failure caused by electrical

CO.UUCIUfO
MIA•

Figure 9.

11.C:llltSIOWS
...0/0ta IAIVl:lllll

1• SIAlll llU
l lH»t lllCOt

~MOf(JlAO
IAOM~l

$l•tSS C"rCtl.C

CIWMIM Of ca-.C•
lllOMAll~

sucss °""'*" t«CVIOUS QIH llCMf.t

Conductor break fault t ree [15]

38

shorts, by previous damage from temperature inhomogeneities , by coolant

channel blockage, by inadequate quality control during fabrication,

and by mechanical fracture seem to be more significant than

others (15] .

Since the probability of accidental death due to falling
-6 meteors, planes, etc. is reported to be 6 x 10 per person per

-5 year, a probability of 1 x 10 per year was utilized for the

probability of external missiles. The probability of internal
-5 missiles was set at 10 per year, also. Powell gives a probability

-5 of 10 per year for an accident that involves containment breach and

radioactivity release to the public, and this type of accident is

implied if internal missiles are present (15].

The probability of coolant channel blockage was set at -6 10 per

year. WASH-1400 (22] sets the probability of pipe blockage at 10-lO

-7 per hour or 9 x 10 per year, for a pipe diameter greater than 3

inches . As seen in Figure 9, each potential contributor mechanism

to coolant channel blockage, spacer breaks, impurities from refrigera-

tion coolant channels, and impurities from the magnet coolant channels
-7 wi ll have a probability of 3 x 10 per year . The pr obability for a

crack in the electrical insulation is also taken to be approximately
-6 10 per year, because WASH-1400 gives this number as a mean value

for cracks in pipes and other components. Insulation is subject to

different environmental stresses than pipes, but this number should

be correct within an order of magnitude.

39

Probability for the loss in electric power is higher. WASH-1400
7 -3 gives a probability of 2 x 10- per hour or 2 x 10 per year for the

fission industry. -3 The figure 2 x 10 per year was used in this thesis

for calculations. -4 This implies a probability of 3 x 10 per year

for each of the bottom events to the "electrical short" subtree.

Of course , these numbers could be improved by the use of parallel

power sources.

The probability of yielding or fracture of adjacent support

structure is a qualitative judgment. Its probabili ty was set at
-6 10 per year . The probability of an undetected flaw during

- 5 fabrication was taken to be 10 per year.

40

CHAPTER VII. RESULTS AND CONCLUSIONS

A package, PERTT, has been written which permits the analysis

of fault trees involving up to approximately 100 events using a

desk top computer. The package consists of two programs. A lis ting

of the EDITOR program, used to construct and change the program,

is found in Appendix A. A listing of the FAULTTREE program, used

to find the minimal cut sets and failure probability for the system,

is found in Appendix B.

The application of the program t o a t ypical problem revealed

certain advantages and shortcomings t o the use of a desk top computer .

- The program is easy to use, because the user is prompted for

all necessary information.

- A study of the relative advantages of different reactor

system arrangements is facilitated.

- The running time is fairly long - 1 1/2 minutes for a 49-

event fault tree . However, the turnover t ime is equal t o the

running t ime , and is thus very short .

The use of the PERTT package to analyze the reliability of a

superconducting magnet used in a fusion r eac t or demonstrated an

inverse application in which the reliabilities of various components

were established based on the stated overall system reliabilit y .
Cut sets found by the PERTT program for the conductor break fault

tree in Figure 9 are given in Appendix C. No probabili t y calculations

41

were performed in this run. For the fault tree involved, an

execution time of 1 1/2 minutes was required . This could be signifi-

cantly decreased if a faster computer, such as a VAX, were used .

Each cut set consists of only one bottom event, in addition to

intermediate events , because the fault tree consists of only OR

gates. This means t hat the reliability importances of all of the

components are equal .

If all of the failure probabilities not enumerated in Chapter

VI are taken to be equal, then they would be equal to 6 x 10- 4 per

reactor-year . Since the probability for electrical shorts and for

accidents due to previous damage seems to be higher than the average

-3 [15], this probability was set equal to 1 x 10 per reactor-year.
- 4 This results in probabilities for the other events of 5 x 10 per

reactor year. This cannot be achieved with existing magnets, which

ar e still in the experiment al stage.

The PERTT code helped a good deal in performing these calcula-

t ions, even though for this case it was used to "work backwards"

from a system failure probability to component failure probabilities .

Seeing the cut sets helped in visualizing the failure paths more

clearly, and iteration could be performed to find estimates for the

probabilities of the events for which probabilities could not other-

wise be quantified. The code was easy to use in this calculation,

and was far more convenient than using cards on a mainframe computer.

42

A desk top computer can aid in fault tree analysis by:

(a) providing illllllediate and direct access t o the comput er,

(b) providing results almost immediately, thus f urnishing feedback

which pennitstheidentification of poor design or events

which require more study,

(c) providing inexpensive computer time,

(d) providing a convenient, fast, simple means of changing an already

constructed fault tree.

The desk top computer has certain limitations, such as a

relatively small memory . This means that only small (<100 event)

fault trees can be analyzed . Since many complete system fault

trees cont ain more than 500 events, it is clear that a large computer

must be involved in the full analysis .

PERTT will be useful in a design situation, where the user

must try many different combinations of components t o find the

op timum safety combination. It will also be useful as a teaching

aid in a university classroom situation. If more memory and more

speed is needed, it could easily be adapted for a VAX or other system,

for s t andard PASCAL has been used wherever possible. Because of

its convenience, PERTT will be extremely valuable in all situations

where large memory is not required.

43-4 5

CHAPTER VIII . SUGGESTIONS FOR FURTHER STUDY

It seems likely that the useful ness of the PERTT programs can

be increased by adding three options to the procedure. The first

option is time dependence for reliability information . The computer

could be programmed t o find component fa ilure probabilities from

failure and t es t data supplied by the user, and to calculate associated

unavailability . These calculations can be performed ~y hand by the

user, but they become tedious when many different events are involved .

Reliability importance calcula tions , as described in Chapter III,

are not feasible on a microcomputer because they are too time-

consuming.

To provide a more legible and compact fault tree, the program

could be written using NOT and k- out-of-n gates . These structures

must be represented by gr oups of AND and OR gat es when the PERTT code

is being used .

Some form of modularization fo r the fault tree would also be

useful . If the tree could be broken down into subtrees to be stor ed

on di sk , larger fault trees could be handled by the system memory .

46

BIBLIOGRAPHY

1. H. A. Amherd and J . H. Vanston, editors, ~Feasibility Stud_y for
the Development of Fusion Energy, Technical Report No. ER-778-
SR, 1979.

2. R. E. Barlow and F. Proschan, Statistical Theory of Reliability
and Life Testing: Probability Models (Holt, Rinehart, and
Winston, New York, 1975).

3. Roy J . DeBellis and Zeinab A. Sabri, Fusion Power: Status and
Options, Technical Report No. EPRI ER-510-SR, 1977.

4 . R. C. Erdmann, Probabilistic Safety Analysis. Final Report,
Technical Repor t No. EPRI-NP-424, 1977.

5. R. C. Erdmann, WAMCUT, ~Computer Code for Fault Tree Evaluation.
Final Report. Technical Report No. EPRI-NP-803, 1978.

6. W. Findlay and D. A. Watt, PASCAL, an Introduction to Methodical
Programming, (Computer Science Press-,- Potomac, MD, 1978) .

7. J. B. Fussell and W. E. Vesely, Transactions Ef the American
Nuclear Society, 15, 262 (1972).

8. R. Karimi, N. Rasmussen, and L. Wolf, Qualitative and Quantitative
Reliability Analysis of Safety Systems, Technical Report No.
PB81-118325, 1980 .

9. William E. Kastenberg and David Okrent, Some Safety Considerations
for Conceptual Tokamak Fusion Power Reactors, Technical Report
No . EPRI- ER-546, 1978.

10. G. L. Kulcinski, et al., Nuclear Technology, 22, 20 (1974).

11. F. L. Leverenz and H. Kirch, User's Guide for the WAM-BAM
Computer Code, Technical Report No. PB-249----s2°4/8SL, 1976.

12 . E. E. Lewis, Nuclear Power Reactor Safety (John Wiley and Sons,
New York, 1977).

13. Jaime Olmes and Lothar Wolf, ! Modular Approach to Fault Tree
Analysis, Technical Report No. NUREG/CR-0670, 1979).

14. P. K. Pande, Computerized Fault Tree Analysis: TREEL and MICSUP,
Technical Report No . ORC 75-3, 1975 .

47

15. J . Powell, editor, Aspects of Safety and Reliability for Fusion
Magnet Systems, Technical Report No . BNL 50542, 1976.

16. D. M. Rasmuson, N. H. Marshall, J . R. Wilson, and G. R. Burdick ,
COMCAN II-A: A Computer Program for Automated Conunon Cause
Failure~lysis, Technical Report No. TREE-1361 , 1979.

17 . E. T. Rumble, F. L. Leverenz, Jr., and R. C. Erdmann , Generalized
Fault Tree Analysis for Reactor Safety, Technical Report No .
EPRI 217-2-2, 1975.

18. P. Shaw and R. F. White, Appraisal of the PREP, KITT, and
SAMPLE Computer Codes for the Evaluation of the Reliability
Characteristics of Engineered Systems, Technical Report No.
WRO-R-57, 1978 .

19 . Keith Shillington, et al., APPLE PASCAL Reference Manual (Apple
Computer, Inc., Cupertino, CA-;-r979) .

20 . M. Soll, Journal .£i. Nuclear Materials, 72, 168 (1978).

21. M. Soll, Kerntechnik, 19, 272 (1977).

22 . United States Nuclear Regulatory Commission, Reactor Safety
Study: An Assessment of Accident Risks in U.S . Conunercial
Nuclear Power Plants, Appendix 3, Technical Report No . WASH-
1400, 1975.

23 . H. J . Van Slyke and D. E. Griffing, ALLCUTS, ~Fast, Compre-
hensive Fault Tree Analys is Code, Technical Report No. ARH- ST-
112 , 1975 .

24. H. E.Vesely, F. F. Goldburg , N. H. Rober ts, and D. F. Haasl,
Fault Tree Handbook, Technical Report No. NUREG 0492, 1981.

25. H. E. Vesel y and R. E. Narum, PREP and KITT: Computer Codes for
Automatic ~valuation of ~ F8:_ult !ree, Technical Report No .
IN-1348, 1970.

48

ACKNOWLEDGMENTS

The author would like t o thank Dr . D.M. Roberts for constant

moral and technical support, as well as help in correcting t he final

manuscript . Thanks also go t o Steven Ford, who has suffer ed through

the trials and tribulations of the past two years. The excellence

of the artwork is due to the insatiable desire of draftsman Lyle

Ruppert for oatmeal chocolate-chip cookies. Thanks also go to

Jo Sedore for typing the thesis manuscript. Finally , the author

expresses appreciation for the technical support provided by Dr .

Z. A. Sabri, Dr. Richard Horton, and Dr . Richard Danofsky.

49- 50

APPENDIX A. SOURCE LISTING OF '" EDITOR" PROGRAM

The EDITOR program, described in full in Chapters IV and V, is

an interactive program used to construct a fault tree . It stores the

fault tree in a data file to be processed by the FAULTTREE program,

listed in Appendix B.

VAR

51

TYPE 5TRING•O = 5TRINGC•OJ;
STRING3 • STRINGC3J;

NODE• RECORD (*THESE ARE THE NODES WITH HiE ~CTUAL INFORMATION* I
<* IN FIGURE +*I

NAHE:STRING+O; <* NAME OF THE EVENT . *I
FUNCT : STRING3; (* "ANO", ·on·. •xxx· *'
NMR : INTEGER ; I* NUMBER OF INPUTS *I
PROD: REAL; (* f'ftOBAllI L ITY OF OCCURflENCE IF BOTTOM EVENT * I
INPUTLIST : "INPUTTYPE

C::ND;
NODEP-"NODE ;

INPUTTYPE~RECORD <*THESE ARE THE "CONNECTOR" NODES IN FIGURE •*l
INPOINTER : • NODE;
NEXTIN:"INPUTTYPE

END;
INPUTP= "INPUTTYPE;

TOPPOINTER : NODEP ;
PARENTNODE : NODEP;
! : INTEGER;
ANS : STRING40;

<* HAIN FAULT TREE AFTER READING *I

INPUTFILE, OUTFILE :TEXT ;

FILENAME,OUTFILENAHE:STRING40;
SRCHNAME : STRING40;
SRCHNODE:NODEP;
I5NAHE:BOOLEAN;

PROCEDURE READONELNIVAR STR:STRING•OI;
<*GIVES AN ERROR MESSAGE WITH ZERO LENGTH RESPONSES 50 THAT THE *I
<*PROGRAM WILL NOT ABORT*I
BEGIN

REPEAT
READLN < STR I ;
IF<LENGTH<STRl•OI THEN

WRITELN ('INVALID ENTRY -- TRY AGAIN ' I;
UNTIL <LENGTtHSTRll)O;

END;

PROCEDURE SRCHTREE<CURRENTNODE : NODEP;
VAR SRCHNODE : NODEP;
SRCHNAME :STRING40;
VAR ISNAHE : BOOLEAN I;

<*SEARCHES THE TREE FOR THE NODE TO BE CHANGED*)
UAR CURRENTINPUT : INPUTP;

I, NMROFINPUTS : INTEGER;

BEGIN
I5NAHE:• FALSE;
NHROFINPUTS : • CURRENTNODE" . NHR;
IF <SRCHNAME•CURRENTNODE".NAMEI THEN BEGIN

<*FOUND THE NODE TO DE CHANGED*>
ISNAME : - TRUE;
SRCHNODE : - CURRENTNOOE;

END
ELSE IF <CURRENTNODE" . FUNCT<>'XXX' l THEN BEGIN

CURRENTINPUT : • CURRENTNODE".INPUTLIST; <*FOR 1ST INPUT OF GATE*I
SRCHTREE<CURRENTINPUT" .INPOINTER, SRCHNODE,SRCHNAME,ISNAMEI ;

52

I : - Z ;
WHILE <<I<•NMROFINPUTSl AND <NOT ISNAHEll DO BEGIN

CURRENTINPUT : • CURRENTINPUT 0 . NEXTIN ; l*GO TO NEXT INPUT OF GATE*l
SRCHTREEICURRENTINPUT 0 . INPOINTER , SRCHNODE,SRCHNAME , ISNAMEI ;
I : •I+1 ;

END;
END ;

END;

PROCEDURE READTREE <CURRENTNODE : NODEPl ;
<* READS TREE UNDER CURRENTNODE FROM INPUT FILE . *l

VAR
INNAME : STRING•O ;
GATE : STRING3 ;
NMROFINPUTS : INTEGER;
CURRENTINPUT : INPUTP ;
I : INTEGER;
PROB : REAL ;

DEGIN
IF EOF<INPUTFILEl THEN BEGIN

WRITELN ;
WRITELN< '***ERROR , EXPECTED MORE INPUT . ' l ;
HALT ;

END;
READLN <INPUTFILE,INNAHEI ;
READLN !INPUTFILE,NHROFINPUTSI ;
READLN <INPUTFILE,GATEI ;
READLN <INPUTFILE,PROBI ;
WRITELN<INNAMEI;
CURRENTNODE• . NAME · • INNAME ;
CURRENTNODE • . NMR · • NHROFINPUTS;
CURRENTNODE · . PROB ·• PROB ;
CURRENTNODE· . FUNCT : • GATE ;

<* READ DATA FROM INPUT FILE *l

I* LOAD NODE WITH INPUT DATA *I

WRITELN <'MEMORY AVAILABLE• ', HEMAVAILI ;

IF GATE <> ·xxx· THEN BEGIN
NEW <CURRENTINPUTl ; <•GET FIRST INPUT OF GATE *l
CURRENTNODE 0 . INPUTLIST : • CURRENTINPUT;
NEW <CURRENTINPUT • . INPOINTERl ; <*GET GATE FOR FI RST INPUT * l
READTREE <CURRENTINPUT 0 . INPOINTERl; <*READ TREE FOR FIRST INPUT *l

FOR I : • Z TO NMROFINPUTS DO BEGIN I* FOR EACH OF THE OTHER GATES *I
NEW <CURRENTINPUT 0 . NEXTINl ; <*GET NEXT INPUT *l
CURRENTINPUT : • CURRENT lNPUT 0 . NEXTlN ;
NE W <CURRENTINPUT 0 . INPOl NTERI ; <*GET GATE FOR THAT INPUT * l
READTREE !CURRENTINPUT 0 . INPOlNTEHI ; <*REA D f REE FOR THAT INPUf *I

END ;
CURRENTINPUT 0 . NEXTlN · • NIL

END
<* NO MORE I NPUTS *l

E LSE <* THE GATE IS OF TYPE XXX * '
CURRENTNODE 0 . INPUTLIST ·-NIL ; <•NO INPUTS AT ALL *I

END ;

PROCEDURE WRITETREE <CURRENTNODE : NODEPl;
<* WRITES THE TREE TO A TEXT FILE *>

VAR CURRENTINPUT : INPUTP ;
I, NHROFINPUTS: INTEGER ;
OUTFILENAME : ~TRING•O ;

BEGIN

53

C* WRITE THE DATA TO THE OUTPUT FILE *>
NMROFINPUTS :a CURRENTNODE" .NMR;
WRITELN IOUTFILE, CURRENTNODE" . NAME>;
WRITELN IOUTFILE, CURRENTNODE" . NMR> ;
WRITELN COUTFILE, CURRENTNODE" . FUNCT>;
WRITELN IOUTFILE, CURRENTNODE" . PROD>;
IF CCURRENTNODE" . FUNCT <> 'XXX'l THEN BEGIN

CURRENTINPUT : • CURRENTNODE" . I NPU fLIST;
WRITETREE <CURRENTINPUT" . INPOINTERI;

<*GET FIRST INPUT OF GATE*>
<*WRITE DATA FOR THAT INPUT*>

<*FOH EACH OF THE OTHER GATES*> FOR I : • Z TO NMROFINPUfS 00 BEGIN;
CURRENTINPUT : • CURRENTINPUT • . NEXTIN ; <*GET THE NEXT INPUT*>
WRITETREE <CURRENTINPUT" . INPOINTER>; <*WRITE TREE FOR THAT INPUT*>

END ;
END;

END;

54

I*'• IOVERFLOWllC >
(llCCAUSE OVERFLOW . TEXT TO BE REAU*>
PROCEDURE DSP <CURRENTNODE : NOOEP>;
VAR I : INTEGER ;

CURRENTINPUT : INPUTP ;

BEGIN
PAGE< OUTPUT> ;
WRITELN ; WRITELN;
WRITE<CURRENTNODE" . NAME> ;
IF CURRENTNOOE" . FUNCT•'XXX' THEN BEGIN

WRITELN <' PROBABILITY• ',CURRENTNODE" . PROD>;
ENO
ELSE DEGIN

WRITELN;
WRITELN ICURRENTNOOE " . FUNCT> ;
CURRENTINPUT : • CURRENTNOOE" . INPUTLIST;
WRITELN ; WRITELN;
WRITELN ('INPUTS ARE : '> ;
WRITE <' ', CURRENTINPUT" . INPOINTER" . NAME> ;
IF <CURRENTINPUT" . INPOINTER" . FUNCT•'XXX') THEN

WRITE<• PRODADILITY • ',CURRENTINPUT • . INPOINTER" . PROB> ;
WRITELN ;
FOR I : • Z TO CURRENTNOOE • . NMR DO BEGIN

CURRENTINPUT : • CURRENTINPUT" . NEXTIN ;
WRITE<' ', CURRENTINPUT • . INPOINTER" . NAMEI ;
IF CURRENTINPUT" . INPOINTER" . FUNCT•'XXX' THEN

WRITE <' PROBABILITY• ',CURRENTINPUT • . INPOINTER • . PROBI;
WRITELN;

ENO;
END;

ENO;

PROCEDURE OISPLAY<CURRENTNODE : NOOEP;
TOPNOOE : NODEP > ;

Ill< DISPLAYS A NODE ANO ALL OF ITS INPUTS *>

VAR ! : INTEGER ;
CURRENTINPUT : INPUTP;
CURRNAME : STRING40;
ISNAME : BOOLEAN;
ANS : STRING40;

DEG IN
REPEAT

WRITELN <'WHAT GATE WOULD YOU LIKE TO DISPLAY'> ;
REAOONELN ICURRNAME>;
SRCHTREEITOPNOOE,CURRENTNOOE,CURRNAME,ISNAME> ;
IF ISNAME THEN BEGIN

OSPICURRENTNODEI;
ENO
ELSE DEGIN

WRITELN <'CANT FINO ' ,CURRNAMEI ;
C::ND ;
WRITELN <'WOULD YOU LIKE TO DISPLAY ANOTHER GATE?' I ;
REAOONELN IANSI ;

UNTIL ANSC1J <> 'Y' ;
END ;

PROCEDURE CHECKDOTTOM ICURRENTNODE : NOOEPI ;
I* CHECKS TO SEE IF THERE ARE ANY NODES BELOW CURRENTNOOE ANO DELETES THEM*>
Ill< IF THE USER WISHES *>

55

VAR ANS : 5TRING40;
IPROB:REAL;
PROBOK:BOOLEAN;

DEG IN
IF CURRENTNODE •. FUNCT< > ·xxx· THEN BEGIN

DSP<CURRENTNOOE> ;
WRITELN < ' DO YOU WANT TO DELETE EVERYTHING BEi-OW ' CURRENTNODE • . NAME>;
WRITELN <'TYPE Y OR N ' >;
READONELN <ANS> ;
IF <ANSC1J<>'Y' l THEN BEGIN

WRITELN <'PLEASE GIVE THESE GATES A DIFFERENT OUTPUT BEFORE' l;
WRITELN <'DELETING ', CURRENTNODE· . NAME>;

END
ELSE DEGIN <*MAKE CURRENTNODE A BOTTOM EVENT*>

REPEAT
PROBOK : =TRUE;
WRITELN <'TYPE PROBABILITY OF OCCURRENCE FOR ',CURRENTNODE• . NAME> ;
REAOLN CIPROBl;
IF IIPROB<O>THEN BEGIN

WRITELN ('CANT HAVE NEGATIVE PROBABILITY' >;
PROBOK :=FALSE;

END; .
IF CIPROB>1lTHEN BEGIN

WRITELN C 'PROBABILITY CANT BE> 1' >;
PROBOK : .. FALSE;

END;
UNTIL IPROBOK-TRUE>;
CURRENTNOOE· . PROB : •IPROB;
CURRENTNOOE• . INPUTLIST : -NIL ;
CURRENTNODE • . FUNCT : •'XXX' ;
CURRENTNODE• . NMR :•O;

END;
END;

ENO;

PROCEDURE FINDPARENT ICURRENTNODE : NODEP;
VAR INNODE : NODEP ;
INNAME : STRING40;
VAR PARENTNODE : NODEP;
VAR FOUND : BOOLEAN! ;

VAR CURRENTINPUT : INPUTP;
I,NMROFINPUTS : INTEGER;

DEG IN
FOUND : • FALSE;
NMROFINPUTS : • CURRENTNODE- . NMR;
IF INNAHE-CURRENTNODE· . NAME THEN BEGIN

WRITELN ('TOP EVENT - CANT FIND PARENT'>;
END
EL SE IF CURFIENTNODE • . FUNCT < > 'XXX' THEN BEGIN

CURRENTINPUT : - CURRENTNODE· . INPUTLIST ;
IF ICURRENTINPUT • . INPOINTER •. NAME•INNAME> THEN BEGIN

PARENTNODE : - CURRENTNODE ;
INNODE : • CURRENTINPUT· . INPOINTER;
FOUND : • TRUC ;

END
ELSE FINDPARENT CCURRENTINPUT •. INPOINTER,INNODE,INNAME,PARENTNODE,FOUNDl;
I :=- 2;
WHILE <<NOT FOUND> AND <I<• NMROFINPUTSl l DO BEGIN

CURRENTINPUT : • CURRENTINPUT· . NEXTIN ;
IF <CURRENTINPUT • . INPOINTER· .NAME• INNAME> THEN BEGIN

INNODE : • CURRENTINPUT· . INPOINTER ;

56

PARENTNODE : - CUHFIENTNODE;
FOUND : a TRUE;

END
ELSE FINDPARENT<CURRENTINPUT • . INPOINTER,INNODE,INNAME,PARENTNODE,FOUNDI;
I : - I+L;

END <*Wl-IILE*I
END <*IF*>

END;

PROCEDURE DELGATE <TOPPOINTER:NODEPI;
<*DELETES CURRENTNODE FROM THE TREE*I

VAR LASTNODE,OTHERNODE,CURRNODE : NODEP;
ANS : STRING-4-0 ;
LASTINPUT, CURRENTINPUT : INPUTP;
PRODOK,DELETED,FOUND : BOOLEAN;
I : INTEGER;
IPROD : REAL;
CURRENTNAME:STRING-4-0;

BEGIN
ANS : -'
REPEAT

<*INITIALIZE*>

WRITELN ('WHAT GATE WOULD YOU LIKE TO DELETE' I ;
READONELN <CURRENTNAMEI ;
SRCHTREE<TOPPOINTER,CURRNODE,CURRENTNAME,FOUNDI;
IF NOT FOUND THEN

WRITELN<'CANT FIND ',CURRENTNAMEI
ELSE BEGIN

FINDPARENTtTOPPOINTER, CURRNODE ,CURRENTNAME, LASTNODE, FOUNDI;
END;
IF NOT FOUND THEN BEGIN

WRITELN t'TRY ANOTHER NAME?' I;
READONELN <ANSI;

END;
UNTIL <<FOUNDI OR <ANSClJ<>'Y' II;
IF FOUND THEN BEGIN

CHECKBOTTOMtCURRNODEI; <*MAKE IT A BOTTOM EVENT*I
IF tCURRNODE •. FUNCT - ·xxx· I THEN BEGIN

IF LASTNODE •. NMR•Z THEN BEGIN
DSP t LASTNODE>;
WR ITELN < 'DO YOU WANT TO DELETE !:IOTH INPUTS TO ' , LASTNODE • . NAME I ;
WRITELN <'TYPE YORN' I;
READONELN <ANSI;
IF ANSC1J•'Y' THEN BEGIN
<* MAKE SURE THE OTHER INPUT IS A BOTTOM EVENT*I

CURRENTINPUT : • LASTNODE · .INPUTL!ST ,
IF CURRENTINPUT· . INPOINTER • CURRNODE THEN BEGIN

OTHERNODE ·• CURRENTINPUT· . NEXTIN• . INPOINTER;
END
ELSE BEGIN

OTHERNODE : • CURRENTINPUT· . INPOINTER;
END;
CHECKDOTTOMCOTHERNODEI; <*MAKE IT A BOTTOM EVENT*>
IF <OTHERNODE .. FUNCT•'XXX' I THEN BEGIN

LASTNODE· . INPUTLIST : • NIL;
LASTNODE• . FUNCT : •'XXX';
LASTNODE • . NMR : - O;
REPEAT

PROBOK : •TRUE;
WRITELN ('TYPE THE PROBABILlTY OF OCCURRENCE FOR ',LASTNODE • . NAMEI
READLN <I PROB I ;
IF <IPROB<OITHEN BEGIN

WRITELN <"PROBABILITY CANT BE LESS THAN 0' >;

PROBOll : = FAL S.E:.;
ENO;

57

IF <IPROB>l>THEN BEGIN
WRITELN ('PROBABILITY CANT BE GREATER THAN l' >;
PROBOK : •FALSE;

ENO;
UNTIL <PRODOK•TRUEl ;
LASTNOOE' .PROB : •IPROB;

ENO;
ENO;

ENO
ELSE BEGIN <*IF NUMBER OF INPUTS IS GREATER THAN Z*>

CURRENTINPUT : - LASTNOOE • . INPUTLIST ;
IF ICURRENTINPUT• . INPOINTER•CURRNODEl THEN BEGIN

LASTNOOE •. INPUTLIST : • CURRENTINPUT . . NEXTIN ;
ENO
ELSE BEGIN

DELETED : • FALSE;
I : • Z ;
WHILE I <I<LASTNODE . . NMR> AND CNOT DELETED> l DO BEGIN

LASTINPUT : • CURRENTINPUT ;
CURRENTINPUT : • CURRENTINPUT • . NEXTIN,
IF CURRENTINPUT· . INPOINTER•CURRNOOE THEN BEGIN

LASTINPUT . . NEXTIN · • CURRENTINPUT" . NEXTIN;
DELETED ·• TRUE;

END;
I : • I+l ;

END;
IF NOT DELETED THEN <*IT MUST BE THE LAST INPUT•>

CURRENTINPUT· . NEXTIN : • NIL;
ENO;

LASTNODE •. NMR · • LASTNODE • . NMR -1;
ENO;

END;
END;

END ;

PROCEDURE ASSIGN ICURRENTINPUT : INPUTP ;
CURRENTNODE : NODEP ;
INAME : STRING40;
IPROB : REAL> ;

<*ASSIGNS DATA TO THE GATE THAT HAS BEEN ADDED*>
BEGIN

NEW ICURRENTINPUT • . INPOINTER> ;
<•ASSIGN DATA TO THE GATE*>
WITH CURRENTINPUT" . INPOINTER· DO BEGIN

FUNCT : • ·xxx· ;
NMR : • O;
INPUTLIST : • NIL;
NAME : • !NAME;
PROB : • !PROB ;

END;
CURRENTNOOE· . NMR : • CURRENTNODE " . NMR+l ;
WRITELN !'MEMORY AVAILABLE• ',HEMAVAILl ;

END;

PROCEDURE ADDGATEICURRENTNODE, TOPPOINTER : NODEP> ;
<*ADDS A GATE TO THE TREE WITH OUTPUT TO CURRENTNODE*I

VAR I : INT.EGER;
ANS , ANSl, ANSZ:STRING40;
INAHE : STRING40 ;

58

IPROB : REAL ;
CURRENTINPUT : INPUTP ;
SRCHNODE : NODEP ;
PROBOK,ISNAME,ADD : DOOLEAN;

PROCEDURE CHANGEDOTTOM
BEGIN

ADD : a TRUE ;
REPEAT

WRITELNI 'TYPE NAME OF NODE TO DE ADDED' I;
READONELNIINAMEI;
SRCHTREEITOPPOINTER , SRCHNODE, INAME , ISNAMEI ;
IF ISNAME THEN BEGIN

WRITELN I 'NAME ALREADY EXISTS ON THE TREE . DO YOU WISH TO' I ;
WRITELN I 'TRY ANOTHER NAME? ' I ;
I* DO NOT ALLOW THE SAME GATE NAME TO BE USED TWICE ON 'THE TREE*I
READONELN IANSI ;
IF ANSC1J <> ' Y' THEN ADD : •FALSE ;

END ;
UNTIL IISNAME -FALSEI OR !NOT ADDI ;
IF ADD THEN BEGIN

REPEAT
PROBOK : • TRUE;
WRITELN l 'TYPE PROBABILITY OF OCCURRENCE FOR NEW NODE' I;
READLNI I PROB I ;
IF IPROD>1 THEN BEGIN

WRITELNI 'PROBABILITY CANT BE GREATER THAN 1 ' I ;
PROBOK :•FALSE ;

END ;
IF IPROD<O THEN BEGIN

WRITEL N l'PRODABILITY CANT BE LESS THAN 0' I ;
PROBOK : •FALSE ;

END ;
UNTIL IPROBOK•TRUEl ;
REPEAT

WRITELNI 'SINCE ',CURRENTNODE" . NAME , ' IS A BOTTOM EVENT, IT MUST 'I;
WRITELNI 'HAVE AT LEAST Z INPUTS . WOULD YOU LIKE IT TO BE AN AND IA)' l;
WRITELNl'OR AN ORIOi GATE? ITYPE L TO LEAVE THE ADD PROCEDURE AND'I ;
WRITELNl'DELETE THE GATE JUST ADDED>' I ;
WRITELNl'PLEASE TYPE A, L, OR 0 ' I ;
READONELN <ANSll ;

UNTIL I IANS1C1J• ' L'l OR IANSlClJ•'A ' I OR IAN51C1J• ' O ' I I;
IF ANS1C1J•'L' THEN ADD : • FALSE ;

END ;
IF ADD THEN DEGIN

I* GET A SPACE IN MEMORY FOR THE NEW NODE *I
NEW I CURRENTNODE " . INPUT LISTI ;
CURRENT INPUT : • CURRENTNODE" . INPUTLI ST ;
CURRENTINPUT " . NEXTIN : • NIL ;
ASS IGN ICURRENTINPUT ,CURRENTNODE,INAME, IPROBI ;
IF ANS1C1J ,. 'A' THEN CURRENTNODE" . FUNCT : • 'AND ';
I F ANS1C1J ,. ' 0' THEN CURRENTNODE " . FUNCT : • ' OR ' ;
WRITELN I 'CANT HAVE A S INGLE INPUT AND/OR GATE' I;

END ;
END;

BEGIN l*ADDGATE* l
IF ICURRENTNODE" . FUNCT•'XXX' !THEN BEGIN

CHANGEBOTTOM;
END ;
I F I CURRENTNODE" . FUNCT<> ' XXX' I THEN BEGIN

ADD : ~ TRUE ;
REPEAT

REPEAT

59

WRITELN <'TYPE NAME OF GATE TO BE ADDED' l ;
READONELN IINAMEl ;
SRCHTREE ITOPPOINTER, SRCHNODE, !NAME, ISNAMEl;
IF ISNAME THEN BEGIN

WRITELN ('NAME ALREADY EXISTS IN TREE . DO YOU WISH ro ·);
WRITELN <'TRY ANOTHER NAME?' l ;
READONELN <ANSI ;
IF IANSClJ<>'Y' l THEN ADD : •FALSE;

END;
UNTIL I <ISNAME•FALSEl OR IADD•FALSEll;
IF ADD THEN BEGIN

REPEAT
PRODOK : •TRUE ;
WRITELN ('TYPE PROBABILITY OF OCCURRENCE FOR NEW NODE' l;
READLN <I PROB l ;
IF IIPROB>llTHEN BEGIN

WRITELN < 'PROBABILITY CANT BE GREATER THAN 1' l ;
PROBOK : -FALSE;

END;
IF <IPROB<OITHEN BEGIN

WRITELN (' PROBABILITY CANT BE LESS THAN 0' I;
PRODOK : -FALSE;

END;
UNTIL IPROBOK•TRUEI ;
l*ADD fHE NEW GATE IN MEMORY*>
<*GET TO THE END OF THE INPUT LIST*>
CURRENTINPUT : • CURRENTNODE • . INPUTLIST ,
WHILE CURRENTINPUT· . NEXTIN<>NIL DO BEGIN

CURRENTINPUT : • CURRENTINPUT • . NEXTIN ;
END ;
NEW ICURRENTINPUT • . NEXTINI ;
CURRENTINPUT : • CURRENTINPUT • . NEXTIN ;
CURRENTINPUT • . NEXTIN : • NIL ;
ASSIGN ICURRENTINPUT , CURRENTNODE,INAME , IPROBI;
WRITELN ('DO YOU WANT TO ADD ANOTHER INPUT TO ' ,CURRENTNODE· . NAME>;
WRITELN ('TYPE Y OR N ' I;
READONELN CANSZl;
IF ANSZClJ<>'Y' THEN ADD :• FALSE;

END;
UNTIL IADD•FALSEI ;

END;
END ;

PROCEDURE OUTPUTCHANGE ITOPPOINTER,CURRENTNODE : NODEPl;
VAR DELETED,ISAME,FOUND : BOOLEAN ;

INAME : STRING40 ;
NEWNODE,INNODE,PARENTNODE : NODEP;
! : INTEGER;
LASTINPUT,CURRENTINPUT : INPUTP ;
ANS : STRING40;

DEG IN
FINDPARENTITOPPOINTER,INNODE , CURRENTNODE • . NAME ,PARENTNODE,FOUNDl ;
IF FOUND THEN BEGIN

IF PARENTNODE • . NMR•Z THEN BEGIN
WRITELNI ' CANT DELETE ONE OF TWO INPUTS TO ',PARENTNODE• . NAMEI ;

END
ELSE BEGIN

REPEAT
ISNAME : • FALSE ; <*INITIALIZE ISNAME*I
WR ITELN < 'OUTPUT TO WtiICH GATE?' I ;
READONELN (I NAME l ;
IF IINAME•CURRENTNODE• . NAME> THEN BEGIN

WRITELN I 'CANT OUTPUT A GATE TO ITSELF . ' l;

60

END
ELSE BEGIN

SRCHTREEICURRENTNODE, NEWNODE, INAME, ISNAHEl;
IF ISNAME THEN BEGIN

ISNAME : • FALSE ;
WRITELN<'CANT CHANGE OUTPUT OF ' , CURRENTNODE • . NAHE, ' TO AN' l;
WRITELN< 'EVENT THAT CAUSES IT . 'l;

END
ELSE BEGIN

5RCHTREE<TOPPOINTER,NEWNODE,INAME,ISNAHE>;
IF NOT ISNAME THEN BEGIN

WRITELN < 'CANT FIND ' , INAHE , ' . ' l ;
END
ELSE BEGIN

IF NEWNODE•PARENTNODE THEN BEGIN
ISNAME : • FALSE ; <*DO NOT CHANGE*>
WRITELN <'OUTPUT OF ',CURRENTNODE •. NAME,' IS ALREADY AN' l;
WRITELN ('INPUT OF ',NEWNODE• . NAME, '.' l;

END
ELSE BEGIN

IF NEWNODE • . NMR•O THEN BEGIN
ISNAME :• FALSE;
WRITELN <'CANT ADD ONLY ONE GATE TO ', NEWNODE • . NAME>;

END ;
END;

END;
END;

END;
IF NOT ISNAME THEN BEGIN

WRITELN <'DO YOU WISH TO CHANGE THE OUTPUT OF ');
WRITELN !CURRENTNODE •. NAME, ' TO ANOTHER GATE? ' l ;
READONELN<ANS>;

END ;
UNT IL < <ISNAMEI OR <ANSClJ< > 'Y' I>;
IF ISNAHE THEN BEGIN

CURRENTINPUT : •NEWNODE • . INPUTLIST;
<*ADD CURRENTNODE TO END OF NEWNODE*I
FOR I : - Z TO NEWNODE • . NHR DO

CURRENTINPUT :• CURRENTINPUT· . NEXTIN;
NEW <CURRENTINPUT •. NEXTINI ;
CURRENTINPUT : -CURRENTINPUT • . NEXTIN ;
NEW< CUF!RENTINPUT • . INPOINTER I ;
CURRENTINPUT• . INPOINTER : • CURRENTNODE;
CURRENTINPUT· . NEXTIN : • NIL ;
NEWNODE· . NMR : • NEWNODE· . NMR+l ;
<*DELETE CURRENTNOOE FROM PARENTNODE*I
DELETED : • FALSE;
CURRENTINPUT : - PARENTNODE • . INPUTLIST;
IF CURRENTINPUT· . INPOINTER•CURRENTNODE THEN BEGIN

PARENTNODE • . INPUTLIST:•CURRENTINPUT • . NEXTIN ;
DELETED : - TRUE;

END
ELSE BEGIN

I : • Z;
WHILE «I<PARENTNODE • . NHRI ANO ! NOT DELETED ll DO BEGIN

LASTINPUT : • CURRENTINPUT;
CURRENTINPUT : • CURRENTINPUT • . NEXTIN ;
IF CURRENTINPUT· . INPOINTER•CURRENTNODE THEN BEGIN

LASTINPUT • . NEXTIN:• CURRENTINPUT • . NEXTIN;
DELETED : •TRUE ;

END; !*IF*I
END; !*WHILE*>
IF NOT DELETED THEN <*DELETE LAST INPUT*>

CURRENTINPUT· . NEXTIN · • NIL ;
END;

61

PARENTNODE• . NMR · • PARENTNODE •. NMR-1 ;
END ;

END;
END;

END;

PROCEDURE CHANGE tTOPPOINTER,CURRENTNODE : NODEP> ;
<*CHANGES THE NAME, FUNCTION, PROBABILITY, OR OUTPUT OF A GATE OF THE TREE*l

VAR ANS, ANSZ :STRING40 ;
INAME : STRING40 ;
DUMMY : 5TRING3;
NEWNODE,INNODE,PARENTNODE : NODEP ;
IPROB : flEAL;
PROBOK : BOOLEAN;

BEGIN
REPEAT

REPEAT
<*DISPLAY A MENU*>
PAGE I OUTPUT) ; <*CLEAR THE SCREEN*I
WRITELN;WRITELN;WRITELN ; WRITELN ;
WRITELNI ' DO YOU WANT TO :' > ;
WRITELN ;
WRITELN<' CHANGE THE NAME OF THE GATE IN>'>;
WRITELN ;
WRITELN (' CHANGE THE FUNCTION OF THE GATE I F) •);
WRITELN;
WRITELNI' CHANGE THE OUTPUT OF THE GATE (0) ');

WRITELN;
WRITELN<' CHANGE THE PROBABILITY OF THE GATE <Pl'>;
WRITELN ;
WRITELN<' TO EXIT THE CHANGE PROCEDURE TYPE E' I;
WRITELN;WRITELN;
WRITELNl'PLEASE TYPE N,F,O,P , ORE'> ;
READONELNtANS> ;

UNTIL <<ANSClJ•'N'I OR IANSClJ•'F' > OR tANSClJ•'O' I OR IANSClJ•'P' >
OR IANSC1J• ' E' > >;

IF IANSClJ•'N' I THEN BEGIN
WRITELN t 'TYPE NEW NAME FOR ',CURRENTNODE • . NAME);
READONELN IINAMEI;
CURRENTNODE •. NAME :• INAME;

END ;
IF IAN5C1J•'F'l THEN BEGIN

IF CURRENTNODE • . FUNCT•'AND' THEN BEGIN
DUMMY : - ' OR ' ;
WRITELN l' FUNCTON•OR' >; <*DEBUG OUTPUT*>

END ;
IF CURRENTNODE • . FUNCT•'OR' THEN BEGIN

DUMMY : • 'AND' ;
WRITELN l'FUNCTION•AND' I;

END ;
IF CURRENTNODE • . FUNCT•'XXX' THEN BEGIN

WRITELN ('BOTTOM EVENT ·- CANT CHANGE GATE FUNCTION') ;
END
ELSE BEGIN

CURRENTNODE • . FUNCT : • DUMMY ;
END;

END ;
IF IAN5C1J•'O ' > THEN BEGIN

OUTPUTCHANGE ITOPPOINTER,CURRENTNODEI ;
END;
IF <AN5C1J•'P' I THEN BEGIN

REPEAT
PROBOK : •TRUE;

62

WRITELN< 'TYPE NEW PROBABILITY' l ;
READLN <IP ROB l ;
IF <IPROB>1lTHEN BEGIN

LJRITELN< 'PROBABILITY CANT BE GREATER THAN 1' l ;
PROBOK : -FALSE ;

END ;
IF <IPROB<OlTHEN DEGIN

WRITELN <'PROBABILITY CANT BE LESS THAN 0' l ;
PROBOK: ,.FAL SE;

END;
UNTIL <PROBOK•TRUEl ;
CURRENTNODE • . PROB : • !PROB ;

END ;
IF <ANSClJ<>'E' l THEN DEGIN

LJRITELN <'DO YOU WANT TO MAKE ANY OTHER CHANGES TO ',CURRENTNODE " . NAMEl ;
WRITELN (' TYPE YORN' l ;
READONELN IANSZ l ;
IF <ANSZClJ<>'Y' l THEN ANS : •'E ' ;

END ;
UNTIL <ANSClJ~'E' l;

END;

PROCEDURE APPEND<TOPPOINTER : NODEPl ;

VAR CURRENTNODE : NODEP;
APPFILENAHE,CURRNAME : STRING40;
ISNAME : DOOLEAN ;
ANS:STRING-4-0;
CURRENTINPUT : INPUTP;

DEG IN
REPEAT

ANS : •' ' . . <*INITIALIZE*l
WRITELN <'INPUT TO WHICH GATE'l ;
READONELN <CURRNAMEl ;
SRCHTREE <TOPPOINTER ,CURRENTNODE , CURRNAHE,ISNAMEl ;
IF ISNAME THEN BEGIN

IF CURRENTNODE " . NMR•O THEN DECIN
WRITELN ICURRNAHE , ' CANT HAVE A SINGLE INPUT . ' l ;
ISNAHE · • FALSE ;

END ;
END
ELSE BEGIN

WRITELN < 'CANT FIND ' , CURRNAME, ' IN TREE . ' l ;
END ;
IF NOT ISNAME THEN BEGIN

LJRITELN <'DO YOU WISH TO TRY ANOTHER NAME? ' l ;
READONELN <ANSI ;

END ;
UNTIL C<ISNAMEl OR IANSC1J<>' Y ' ll ;
IF <ISNAMEl THEN BEGIN

LJRITELN <'FILE TO ADD TO ',CURRNAMEl ;
READONELN IAPPFILENAMEl ;
<* GET TO END OF INPUT LIST*l
CURRENTINPUT : a CURRENTNODE" . INPUTLIST;
FOR I : • Z TO CURRENTNODE" . NMR DO

CURRENTINPUT : • CURRENTINPUT· . NEXTIN ;
NEW <CURRENTINPUT" . NEXTINl ;
CURRENTINPUT : - CURRENTINPUT• . NEXTIN ;
CURRENTINPUT • . NEXTIN : • NIL ;
NEW <CURRENTINPUT· . INPOINTERl;
RESET <INPUTFILE,APPFILENAMEl ;
READTREE<CURRENTINPUT • . INPOINTERl ;

63

CLOSE <INPUTFILE , LOCKI ;
CURRENTNODE •. NHR : •CURRENTNODE • . NHR+l ;

END ;
END ;

PROCEDURE MENU<TOPNODE : NODEPI ;
VAR ANS,ANSZ : STRING40 ;

BEGIN

ISNAME : BOOLEAN;
CURRENTNODE : NODEP;
APPFILENAME,CURRNAHE,OUTFILENAME : STRING40;

AN5 : = 1 I . ANSZ : •' .. . <*INITIALIZE THE VARIABLES*l
REPEAT

REPEAT
<•DISPLAY THE HENU*I

PAGE <OUTPUTl ; <*CLEAR THE SCREEN*>
WRITELN;WRITELN;WRITELN ;
WRITELNI 'HEMORY AVAILABLE•' , HEMAVAIL,' . DO YOU WANT TO : ' l ;
WRITELN;WRITELN;
WRITELN (' ADD A NODE IAI' I ;
WRITELN ;
WRITELN (. REMOVE A NODE (RI' I;
WRITELN;
WRITELN (. APPEND A FILE TO THIS FILE <Pl ' l;
WRITELN;
WRITELN (. CHANGE A GATE <Cl ' l ;
WRITELN ;
WRITELN (. DISPLAY A GATE <DI' I ;
WRITELN ;
WRITELN (. WRITE TO A FILE NAME IWl • l ;
WRITELN;
WRITELN (. EXIT THE PROGRAM <El' l;
WRITELN;WRITELN ;
WRITELN ('PLEASE TYPE A,R,P,C,D,W, ORE ' l ;
READONELN IANSZl ;

UNTIL ICANSZC1J • 'A' l OR <ANSZC1J•'D' I OR <ANSZClJ•'P ' l OR IANSZClJ•'C'l
OR CANSZC1J•'R' lOR CANSZC1J• ' W' l OR IANSZClJ•'E' ll;

IF AN5ZC1J•'A ' THEN BEGIN l*ADD A NODE TO THE FILE*>
REPEAT

WRITELN I 'TO WHICH GATE WOULD YOU LIKE TO ADD AN OUTPUT?' l;
READONELN <CURRNAMEl ;
SRCHTREE ITOPNODE,CURRENTNODE,CURRNAHE ,ISNAMEl;
IF NOT ISNAHE THEN BEGIN

WRITELN I ' CANT FIND ',CURRNAHE , ' IN TREE . DO YOU WISH TO TRY 'I;
WRITELN <'ANOTHER NAME?' I ;
READONELN <ANS I;

END ;
UNTI L ((ANS C1 J<>'Y' l OR CISNAME l l;
IF I SNAME THEN ADDGATEICURRENTNODE , TOPNODE l;

END ;
IF ANSZC1J= ' R' THEN BEGIN

DELGATE ITOPNODE l ;
END ;
IF ANSZClJ•'P' THEN BEGIN

APPENDITOPNODEI ;
END ;
I F ANSZC1J • 'C ' THEN BEGIN

REPEAT

<•DELETE A GATE FROM THE F ILE*I

<*APPEND A FI LE TO THIS FILE*>

<* CHANGE A GATE OF THE TREE*I

WRITELN I' WHAT GATE WOULD YOU LIKE TO CHANGE' l;
READONELN <CURRNAMEl;
SRCHTREE ITOPNODE,CURRENTNODE,CURRNAME , ISNAHEI;
IF NOT ISNAHE THEN BEGIN

........ l..lu ;. ~

... ;:-r
'L,,':t'l .,

(. r ~

, l
....

l '•l

•'

'L

66

APPENDIX B. SOURCE LISTING OF "FAULTTREE" PROGRAM

The FAULTTREE program, described fully in Chapters IV and V,

uses the output of the EDITOR program to find the minimal cut sets

and failure probabilities of the fault tree. Sample output is given

in Appendix C.

67

'*************** FAULTTREE . TEXT ****************
THIS PROGRAM READS AND PROCESSES A t>ENERAL FAULT rREE HAVING "AND" AND
"OR " GATES. THE TREE IS ENTERED BY THE USER BY EDITING A FILE WITH THE
PROPER FORMAT AND GIVING YHE FILE NAME WHEN ASKED . THE PROCESS ING
CONSISTS OF FINDING ALL OF THE MINIMAL CUT SETS OF THE TREE. A LISTING
OF THESE CUT SETS CAN BE ROUTED TO THE TERMINAL SCREEN, THE PRIN'fER, OR
TO A DISK FILE FOR LATER USE. *>

TYPE STRING40 • STRINGC40J;
STRINC3 a STRINGC3) ;

NODE=RECORD <*THESE ARE THE NODES WITH THE ACTUAL INFORMATION*>
<* IN FIGURE Z*>

NAME : STRING40 ; <* NAME OF THE EVENT . *I
FUNCT :STR ING3 ; '* " AND " . "OR" . ·xxx· *>
PROB : REAL ; <* PROBABILITY OF OCCURRENCE IF BOTTOM EVENT *I
INPUTLIST:.INPUTTYPE

END;
NODEP•. NODE ;

INPUTTYPE•RECORD <*THESE ARE THE "CONNECTOR" NODES IN FIGURE Z*>
INPOINTER : . NODE ,
NEXTIN : ·INPUTTYPE

END;
INPUTPn • INPUTTYPE ;

CUTSETNODE•RECORD <*THESE ARE THE INFORMATION NODES IN FIGURE 3*1
ISBOTTOM : BOOLEAN ;
NAME : STRING40;
PROB : REAL ;
NEXTNODE : ·cuTSETNODE

END;
CUTSETP n·cuTSETNODE ;

< * TflUE IF NOTHING CAUSES EVENT *I
<* EVENT NAME *>
<* PftOBABILITY OF OCCURRENCE *I

CUTLISTNODE•RECORD <•THESE ARE THE "CONNECTOR " NODES IN FIGURE 3*1
SETPOINTER : ·cuTSETNODE;
NEXTLIST :·cuTLISTNODE ;
LISTPROB:REAL; <* PROBABILITY OF CUTSET OCCUR RENCE * I

END ;
CUTLISTr- · cuTLISTNODE ;

VAR
TOPPOINTER : NODEP ;
CUTSETLIST : CUTLISTP ;

<• MAIN FAULT TREE AFTER READING *I
'* LIST OF CUT SETS

FILENAME, OUTFILENAME : STRING40;
INPUTFILE, OUTFILE : TEXT ;
PROB,TOTALPROB : REA L;

' * INPUT AND OUTPUT
'* INPUT AND OUTPUT
' * PROBABILITIES

PROCEDURE READTREE CCURRENTNODE : NODEPI;
<* READS TREE UNDER CURRENTNODE FROM INPUT FI LE . *I

VAR
INNAME: : STRING40 ;
CATE : STRING3 ;
NMROFINPUTS : INTEGER;
CURRENTINPUT : 'INPUTTYPE ;
I : INTEGER;

BEGIN
IF EOF CINPUTFIL EI THEN BEGIN

WRITELN ;
WRITELN< ' ***ERROR , EXPECTED MORE INPUT . ' I;
HALT ;

OF

* I
FILE NAMES *I
FILE IDENTIFIERS
F AILURE *I

*I

68

END;
READLN <INPUTFILE , INNAMEl ;
READLN <INPUTFILE , NMROFINPUTSI ;
READLN <INPUTFILE,GATEI ;

<* READ DATA FROH INPUT FILE *l

READLN <INPUTFILE , PROBI ;
CURRENTNODE • . NAME : • INNAME ;
CURRENTNODE • . PROB : • PROB ;
CURRENTNODE· . FUNCT :• GATE ;

<* LOAD NODE WITH INPUT DATA *I

IF GATE <> ·xxx· THEN BEGIN
NEW <CURRENTINPUTl; <* GET FIRST INPUT OF GATE *l
CURRENTNOOE • . INPUTLIST : • CURRENTINPUT;
NEW <CURRENTINPUT •. INPOINTERI ; <*GET GATE FOR FIRST INPUT *I
READTREE <CURRENTINPUT . . INPOINTERI ; <*READ TREE FOR FIRST INPUT*>

FOR I : = Z TO NHROFINPUTS DO BEGIN <* FOR EACH OF THE OTHER GATES *I
NEW ICURRENTINPUT . . NEXTINI; <*GET NEXT INPUT *l
CURRENTINPUT : • CURRENTINPUT· . NEXTIN;
NEW <CURRENTINPUT · . INPOINTERI ; <*GET GATE FOR THAT INPUT *I
READTREE <CURRENTINPUT· . INPOINTERI ; <*READ TREE FOR THAT INPUT*>

ENO ;
CURRENTINPUT • . NEXTIN ·=NIL <* NO MORE INPUTS *I

END

ELSE <* THE GATE IS OF TYPE XXX *I
CURRENTNODE • . INPUTLIST ·•NIL ; <*NO INPUTS AT ALL *I

END;

PROCEDURE ADDCNAME : STRING40 ;
FUNCT : STRING.3;
PROB : REAL ;
VAR CUTSETLIST : CUTLISTPI ;

<*ADDS EVENT NAME TO EACH CUT SET IN CUT SET LIST . IF FUNCTION IS
XXX, THEN FLAGS SET ELEMENT AS BOTTOM . *l

VAR CURRENTSET : ·cuTLISTNODE;
NEWSETNODE : ·cuTSETNODE;

DEG IN
IF CUTSETLIST = NIL THEN BEGIN I* NO SETS IN CUTSET *I

NEWICUTSETLISTI ; <*CREATE ONE CUTSET *I
CUTSETLIST • . SETPOINTER : •NIL;<* WITH NOTHING IN IT *l
CUTSETLIST • . NEXTLIST · - NIL

END ;

CURRENTSET := CUTSETLIST ;
WHILE CURRENTSET <> NIL DO BEGIN

NEW INEWSETNODEl ; <* GET NEW SET ELEMENT *>
NEWSETNODE • . NAME · • NAME ; <* AND INITIALIZE IT *I
NEWSETNODE· . PROB :• PROB ;
IF F UNCT = ' XXX'

THEN NEWSETNODE • . ISDOTTOM :•TRUE
ELSE NEWSETNODE • . I SBOTTOM : • FALSE ;

<* LINK NEW ELEMENT INTO SET *I
NEIJSETNODE .. NEXTNODE : • CUl1RENTSET • . SETf'OINTER ;
CURRENTSET· . SETPOINTER : • NEWSETNODE ;
CURRENTSET : aCURRENTSET" . NEXTLIST ; <* DO NEXT CUT SET *I

END ;
END;

PROCEDURE COPY <CUTSETLIST : CUTLI STP ;
VAR CUTSETCOPY : CUTLISTPI ;

<* MAKES A COPY OF THE CUT SET LIST AND POINTS CUTSETCOPYN AT IT *I
VAR CURRENTSET , SETCOPY : · cuTLISTNODE ;

69

CURRENTELEHENT,ELEHENTCOPY :·cuTSETNODE;

DEG IN
CURRENTSET : • CUTSETLIST;
NEW <CUTSETCOPYI; <* INIT COPY WITH FIRST CUT SET * I
SETCOPY : • CUTSETCOPY ;

WHILE CURRENTSET <> NIL DO BEGIN <* COPY EACH SET *I
CURRENTCLEHENT : • CURRENTSET . . SETPOINTER;
NEW <ELEHENTCOPY I; <* INIT SET WITH F IRST ELEMENT *I
SETCOPY · . sETPOINTER : •ELEMENTCOPY ;

WHILE CURRENTELEHENT<>NIL DO BEGIN <* COPY EACH ELEMENT IN SET *I
ELEHENTCOPY • . NAME : - CURRENTELEHENT· . NAME;
ELEHENTCOPY " . ISBOTTOH : • CURRENTELEHENT • . ISBOTTOM ;
ELEHENTCOPY . . PROB : = CURRENTELEMENT . . PROB;
CURRENTELEHENT : a CURRENTELEHENr· . NEXTNODE ;
IF CURRENTELEMENT<> NIL THEN BEGIN

NEW <ELEHENTCOPY· . NEXTNODEI ;
ELEHENTCOPY : • ELEMENTCOPY • . NEXTNODE

END
ELSE <* NO MORE ELEMENTS IN SET *I

ELEMENTcopy- . NEXTNODE : • NIL ;
END ;

<* NEXT ELEMENT *I

CURRENTSET : - CURRENTSET • . NEXTLIST ;
IF CURRENTSET <> NIL THEN BEGIN

NEW< SETCOPY • . NEXTL ISTl ;

<* NEXT SET I N LIST * I

SETCOPY : a SETCOPY • . NEXTLIST ;
END
ELSE <* NO HORE SETS IN LIST *I

SETCOPY " . NEXTLIST : • NIL ;
END;

END ;

PROCEDURE MERGECUTSETLISTS <VAR RESULT : CUTLISTP;
ADDIT!ON : CUTLISTPI ;

<* TACKS CUT SET POINTED AT BY ADDITTION ONTO CUTSET POINTRESULT *>
VAR CURRENTSET : · cuTLISTNODE ;

BEGIN
IF RESULT• NIL THEN

RESULT : • ADDITION <* NOTHING I N RESULT *>
ELSE BEGIN

CURRENTSET : = RESULT;
WHILE CURRENTSET· . NEXTLIST<>NIL DO <*FIND END OF RESULT SET LIST *I

CURRENTSET : - CURRENTSET· NEXTLIST ;

CURRENTSET· . NEXTLIST : • ADD ITION;
END;

<* TACK ADDI TION ONTO RESULT *I

END;

PROCEDURE FINDCUTSETS<CURRENTNODE : NODEP ;
UAR CUTSETLIST : CUTLISTPI ;

<* DETERMINS THE CUT SET LISTS FOR EACH I NPUT CAUSING THE CURRENT EVENT *I
VAR CURRENTINPUT : 'INPUTTYPE ;

RESULTCUTSET : ·cuTLISTNODE ;
CUTSETCOPY : ·curLISTNODE ;

BEGIN
<* FIRST AD D CURRENT E VENT TO CUTSETLISl *I

ADD < CUtlRENTNODE • . NAME , CUtUlENTNODE • . FUNCT, CUR RENTNODE • . PROD , CUTSETL IST I ;

70

IF CURRENTNODE" .FUNCT='AND' THEN
BEGIN

CURRENTINPUT : • CURRENTNODE" . INPUTLIST;
WHILE CURRENTINPUT <> NIL DO BEGIN <* FIND FOR EACH INPUT *I

FINDCUTSETS <CURRENTINPUT" . INPOINTER,CUTSETLI5Tl ;
CURRENTINPUT : - CURRENTINPUT" . NEXTIN

END;
END

ELSE IF <CURRENTNODE" . FUNCT • 'OR ') OR
<CURRENTNOOE".FUNCT = 'OR')

THEN BEGIN
CURRENTINPUT : • CURRENTNOOE".INPUTLIST ;
RESULTCUTSET : •NIL;
WHILE CURRENTINPUT <> NIL DO BEGIN <* FIND FOR EACH INPUT *I

COPY (CUTSETLIST,CUTSETCOPYI; I* BUT KEEP RESULTS SEPERATE *I
FINDCUTSETS (CURRENT INPUT" . INPOINTER ,CUTSETCOPY l;
MERGECUTSETLISTS<RESULTCUTSET,CUTSETCOPYI;

END;

CURRENTINPUT : • CURRENTINPUT" . NEXTIN;
END;

CUTSETLIST : • RESULTCUTSET;
ENO;

PROCEDURE FINDPROB ICUTSETLLIST:CUTLISTPI;
UAR CURRENTSET : "CUTLISTNOOE;

CURRENTELEMENT : "CUTSETNOOE;

I* FINO PROBALITY OF OCCURRENCE FOR EACH CUTSET AND FOR TOP EVENT-*l

DEG IN
CURRENTSET : • CUTSETLIST;
TOTALPROB : • l; <*PROBABILITY OF NO FAILURE PATHS OCCURRING *l
WHILE CURRENTSET <> NIL DO BEGIN
I* REPEAT UNTIL ALL SETS ARE TRAVERSED •l

CURRENTSET" . LISTPROB : • 1; I* PROBABILITY OF PATH NOT OCCURRING *l
CURRENTELEMENT :• CURRENTSET" . SETPOINTER; (*GO TO FIRST NODE *l
WHILE CURRENTELEHENT <> NIL DO BEGIN
I* REPEAT UNTIL ALL ELEMENTS ARE TRAVERSED *l

IF CURRENTELEHENT" .ISBOTTOM THEN
C* GET PROBABILITY OF THE BOTTOM ELEMENT *l

CURRENTSET" . LISTPROB : • CURRENTSET" . LISTPROB•CURRENTELEHENT" . PROB;
<•UPDATE CUTSET PROBABILITY*!

CURRENTELEMENT :• CURRENTELEMENT" . NEXTNODE ; <* GO TO NEXT ELEMENT *l
ENO ;
TOTALPROB : ~ TOTALPROB*l1- CURRENTSET" . LISTPROBI ;
<*UPDATE TOTAL PROBABILITY*!
CURRENTSET : • CURRENTSET" . NEXTLIST;

ENO ;
<•GO TO NEXT CUTSET*l

TOTALPROB ·• 1- TOTALPROB;
END;

<*PROBABILITY OF ONE OR MORE PATHS OCCURRING*!

PROCEDURE WRITECUTSETS (CUTSETLIST : CUTLISTPI ;
UAR CURRENTSET : "CUTLISTNODE;

CURRENTELEMENT : "CUTSETNODE;
<* PRINTS THE CUTSET LIST TO THE OUTPUT FILE . *l

BEGIN
CURRENTSET : ~ CUTSETLIST;
WHILE CURRENTSET<>NIL DO BEGIN C* PRINT EACH SET IN LIST *l

CURRENTELEHENT : • CURRENTSET" . SETPOINTER;

71

<* LEAVE 3 BLANK LINES BETWEEN SETS *I
WRITELNIOUTFILEl;WRITELN<OUTFILEl ; WRITELN<OUTFILEl ;

WHILE CURRENTELEHENTC >NIL DO BEGIN
IF CURRENTELEHENT • NAHEC1J <> '- '

<* PRINT EACH ELEMENT IN SET *l

THEN <* ONLY PRINT IF THERE IS A NAME *l
IF CURRENTELEMENT• . ISBOTTOH

THEN WRITELNIOUTFILE,'*' , CURRENTELEMENT· . NAHEI
ELSE WRITEL N<OUTFILE, ' ',CURRENTELEMENT • . NAHEl;

CURRENTELEHENT : • CURRENTELEHENT· . NEXTNODE ; <*POINT AT NEXT ELEMENT*>
END;

WRITELN <OUTFILE , 'PROBABILITY OF OCCURRENCE FOR THIS PATH IS' , CURRENTSET
· . LISTPROB> ;
CURRENTSET : • CURRENTSET •. NEXTLIST; <* POINT AT NEXT SET IN LIST*> ;

END;
WRITELN <OUTFILE, ' PROBABILITY OF OCCURRENCE FOR TOP EVENT IS' ,TOTALP ROB > ;

END ;

BEGIN
WRITELN ;
WRITELN ('TYPE THE NAME OF THE I NPUT FILE'>;
READLN <FILENAME> ;
RESET <INPUTFILE, FILENAHEI ;

WRITELN ;
WRITELN <'WHERE DO YOU WANT THE OUTPUT TO GO?' >;
WRITELN <'TYPE CONSOLE : OR PRINTER : OR FILE-·NAME' >;
READ LN <OUTFILENAMEI;
REWRITE <OUTFILE, OUTFILENAMEI;

NEW <TOPPOINTER> ;
READTREE <TOPPOINTER> ;
CUTSETLIST : • NIL ;
FINDCUTSETS <TOPPOINTER,CUTSETLISTI;
FINDPROB <CUTSETLISTI ;
WRITECUTSETS <CUTSETLISTI;

CLOSE<INPUTFILE> ;
CLOSECOUTFILE , LOCKl ;

END .

72

APPENDIX C. SAMPLE OUTPUT

This sample ou t put is the minimal cut sets for the conduc t or

break fault tree given in figure 9. It is the output of the FAULTTREE

program , listed in Appendix B.

73

*SELF FRACTURE
MECHANICAL FRACTURE OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*YIELDING OF ADJACENT REINFORCEMENT
MECHANICAL FRACTURE OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*CRYOSTAT RUPTURE
MISSILE IMPACT
MECHANICAL FRACTURE OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*MISSILE FROM ENVIRONMENT
MISSILE IMPACT
MECHANICAL FRACTURE OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*MISSILE FROM REACTOR
MI SS ILE IMPACT
MECHANICAL FRACTURE OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*RADIATION DAMAGE TO INSULATION
INSULATION DEGRADATION
ELECTRICAL SHORT
HIGH TEMP FAILURE OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*STRESS CYCLING FATIGUE
MECHANICAL INSULATION DEGRADAT I ON
INSULATION DEGRADATION
ELECTRICAL SHORT
HIGH TEMP FAILURE OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*STRESS DUE TO PREVIOUS QUENCHES
MECHANICAL INSULATION DEGRADATION
INSULATION DEGRADATION
ELECTRICAL SHORT
HIGH TEMP FAILURE OF CONDUCTOR

74

CONDUCTOR DREAK
PROBABILITY OF OCCURRENCE FOR THIS PATH I~ 0 . 00000

*INSULATION MISSING OR TOO THIN
IMPROPER ASSEMDLY OF INSULATION
ELECTRICAL SHORT
HIGH TEMP FAILURE OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*METAL INCLUSION IN INSULATION
IMPROPER ASSEMBLY OF INSULATION
ELECTRICAL SHORT
HIGH TEMP FAILURE OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0.00000

*CRACK
FLAW IN INSULATION AS FABRICATED
ELECTRICAL SHORT
HIGH TEMP FAILURE OF CONDUCTOR
CONDUCTOR BREAK

PRODABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*METAL INCLUSION
FLAW IN INSULATION AS FADRICATED
ELECTRICAL SHORT
HIGH TEMP FAILURE OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*SPACER DREAKS
COOLANT CHANNEL BLOCKAGE
HIGH TEMP FAILURE OF CONDUCTOR
CONDUCTOR DREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*IMPURITIES FROM REFRIGERATION
FLOW CHANNEL PLUGS
COOLANT CHANNEL BLOCKAGE
HIGH TEMP FAILURE OF CONDUCTOR
CONDUCTOR BREAK

PROBADILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*IMPURITIES FROM MAGNET
FLOW CHANNEL PLUGS
COOLANT CHANNEL BLOCKAGE
HIGH TEMP FAILURE OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*RADIATION DAMAGE TO STABILIZER
STABILIZER RESISTANCE TOO HIGH
CONDUCTOR BREAK

75

PRODADILITY OF OCCURREt~CE FOR THIS PATH IS 0 . 00000

*GROWTH OF CRACK FROM NORMAL STRESS CYCLI
STRESS INDUCED FLOW
MECHANICAL FLAW IN STABILIZER
STABILIZER RESISTANCE TOO HIGH
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*GROWTH OF CRACK FROM PREVIOUS QUENCHES
STRESS INDUCED FLOW
MECHANICAL FL AW IN STABILIZER
STABILIZER RESISTANCE TOO ~UGH
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*CRACK CAUSED DURING MAGNET ASSEMBLY
MECHANICAL FLAW IN STABILIZER
STABILIZER RESISTANCE TOO HIGH
CONDUCTOR DREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*CRACK IN STABIL IZER OF CONDUCTOR
MECHANICAL FLAW IN STABILIZER
STABILIZER RESISTANCE TOO HIGH
CONDUCTOR DREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*IMPURITIES IN STABILIZER
STABILIZER RESISTANCE TOO HIGH
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*RADIATION DAMAGE TO SUPERCONDUCTOR
SUPERCONDUCTOR FILAMENTS DEGRADED
CONDUCTOR DREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*STRESS CYCLING NORMAL OPERATION
FRACTURE DURING OPERATION
STRESS FRACTURES FILAMENTS
SUPERCONDUCTOR FILAMENTS DEGRADED
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

76

*ABNORMAL STRESS FROM PREV QUENCHES
FRACTURE DURING OPERATION
STRESS FRACTURES FILAMENTS
SUPERCONDUCTOR FILAMENTS DEGRADED
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*FRACTURE DURING ASSEMBLY
STRESS FRACTURES FILAMENTS
SUPERCONDUCTOR FILAMENTS DEGRADED
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*FABRICATION FRACTURE UNDETECTED
SUPERCONDUCTOR FILAMENTS DEGRADED
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*EXCESSIVE B
HEATING BEYOND RECOVERY POINT
NON RECOVERY OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*EXCESSIVE CONDUCTOR MOVEMENT
HEATING BEYOND RECOVERY POINT
NON RECOVERY OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000

*VAPOR LOCK
NON RECOVERY OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0 . 00000
PROBABILITY OF OCCURRENCE FOR TOP EVENT I S 0 . 00000

