PERTT, an interactive microcomputer

program te perform fault tree analysis

by

Karen Deborah Daniels Ford

A Thesis Submitted to the
Graduate Faculty in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

Major: Nuclear Engineering

Signatures have been redacted for privacy

Iowa State University
Ames, Iowa

1982

5 |

TABLE OF CONTENTS

Page
CHAPTER I. INTRODUCTION 1
Statement of Purpose i
Equipment Needed 3
CHAPTER II. EXPLANATION OF TERMS 4
Fault Tree Analysis 4
Programming Terms 5
CHAPTER III. REVIEW OF PREVIOUS WORK 10
Fault Tree Analysis Codes 10
Superconducting Magnets for Fusion Reactors 12
CHAPTER IV. ALGORITHMS 16
Fault Tree Editor (EDITOR code) 16
Fault Tree Traversal (FAULTREE code) 24
Deviations from Standard PASCAL 27
CHAPTER V. USER'S MANUAL 28
Editor 28
Fault Tree Traversal 33
CHAPTER VI. APPLICATION TO THE MAGNET SYSTEMS OF A FUSION
REACTOR 34
Safety Problems in Superconducting Magnet Systems 34
Application to a Conductor Break 35
CHAPTER VII. RESULTS AND CONCLUSIONS 40

CHAPTER VIII. SUGGESTIONS FOR FURTHER STUDY 43

LI

Page

BIBLIOGRAPHY 46
ACKNOWLEDGMENTS 48
APPENDIX A. SOURCE LISTING OF "EDITOR" PROGRAM 49
APPENDIX B. SOURCE LISTING OF "FAULTREE" PROGRAM 66

APPENDIX C. SAMPLE OUTPUT 72

Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

Figure

iv

TABLE OF FIGURES

Representation of a simple linked list
Adding a record to a linked list
Fusion reactor magnet system

Sample fault tree

Representation of sample fault tree after passing
through READTREE

Representation of adding a gate to the sample
fault tree

Representation of deleting a gate from the sample
fault tree

Representation of sample fault tree after passing
through FINDCUTSETS

Conductor break fault tree

Page

14

17

18

21

22

25

37

CHAPTER I. INTRODUCTION

Statement of Purpose

The reliability analysis of systems characteristic of many
modern technologically complex facilities such as nuclear power
plants, high performance aircraft and satellites requires special
procedures coupled with the reliability and memory of high-speed
computers. One of the better-known procedures is called "fault
tree analysis", so named because the graphic representation of the
system in terms of operating components and subservient inputs such
as fluids, powers and signals, resembles a tree, with branches and
twigs. The analogy continues as small branches join to form larger
branches just as the successful functioning of small components
permits the successful operation of larger or dependent components.

As the numbers of components and inputs increase, and as the
description of how the components function and as probabilities
associated with various functional modes are assigned, computer

capabilities become essential.

Many programs have been developed to perform qualitative and
quantitative fault tree analysis, but problems exist in using them.
Data entry for these programs is clumsy, for the programs are not
interactive. If one wishes to change a part of a fault tree, one must
fumble through a stack of cards to find the corresponding card, retype
the card or cards, and insert them, being careful to keep them in

the proper place in the deck. The programs are slow, both in terms

of real time and computer time. Since existing fault tree analysis
programs use an array format, the number of inputs to a gate is
limited, often inconveniently, by prior programming decisions. Since
the programs use a good deal of computer time and require considerable
memory space, they are expensive to run and, as a result, are usually
run at night, or during other low-demand times. There are occasions
when such a delay is not acceptable, such as when the user must
iterate to determine optimal values.

For these reasons, existing codes are inconvenient for design
studies, although they are useful for evaluating the reliability and
performance of already existing and fixed systems. The PERTT (PASCAL
Editor and Recursive Tree Traversal) code has been developed for a
design environment. It is written for an APPLE II microcomputer, but
can easily be transferred to any other interactive system in which
PASCAL is implemented. It consists of two programs: one to construct
a fault tree and save it on disk (henceforth called the editor) and a
second program to use this fault tree to find the cut sets and their
failure probabilities as well as the total system failure prob-
abilities. The editor is a "menu-driven" program which makes adding,
deleting, or changing an event a simple, understandable procedure.
Thus, the impact of a change in a subsystem upon the performance of
the system may be easily computed and evaluated during the design
process,

The versatility of this code is demonstrated by the fact that

it was originally intended to apply this program to compute the

failure probability of the cryogenic system of a conceptual tokamak
fuslon reactor. A search of the literature revealed that essential
component reliability data were unavailable, since many of the

components have not been built or tested. Thus, the analysis could
not be completed. Instead, the equivalent or related probabilities
were taken from the fission reactor industry and the PERTT programs
used to establish component reliability goals for designers in

order that a fusion reactor might meet safety standards comparable

to those of the fission industry.

Equipment Neededl’2

The following equipment is required to use PERTT:

APPLE IITM computer with UCSD PASCALTM language system
One or more 5 1/4" flexible disk drives
APPLE 3: disk containing the file SYSTEM.APPLE
FAULTREE: disk containing the APPLE system files:
SYSTEM. MISCINFO
SYSTEM. PASCAL
SYSTEM.LIBRARY
and the PERTT code files:

FAULTTREE. CODE
EDITOR.CODE

lAPPLE II

¢ Apple Computer, Inc., 1978

2UCSD PASCAL
c Regents of the University of California, 1979

CHAPTER II. EXPLANATION OF TERMS

Fault Tree Analysis
A fault tree is a model of a system, which facilitates the
qualitative exploration of the origin of a specified undesirable
event and the quantitative determination of the probability that

the event will occur. The fault tree consists of "

gates' which
show the relationships of initiating events which cause or con-
tribute to a subsequent event. The faults, or events, can be
associated with mechanical failure, human error, or natural
phenomena. A fault tree is a convenient tool for qualitative and
quantitative analysis of safety systems and the probabilities for

their failure.

A bottom, or primary event is an event whose antecedent events

have not been further explored, either because more information is
not necessary or because more information is not available. If
the fault tree is to be analyzed quantitatively, probabilities must
be furnished for all of the bottom events. An intermediate event
occurs because of the action of other events acting through logic
gates. Therefore, probabilities for these events are determined by
the bottom event probabilities and the logic which connects them
with the intermediate event.

A fault tree contains a combination of one or more types of

gates. An AND gate shows that the output event occurs if and only

if all of the input events occur. An OR gate shows that the output
event occurs if and only if one or more of the input events occur.
A k-out-of-n gate is similar to an n-input AND gate, but only k out
of the n input faults must occur in order to trigger the output
fault. A k-out-of-n gate can be represented by a system of AND
and OR gates. A NOT gate, or complemented event has only one
input. The output event of a NOT gate occurs if the input event
has not occurred.

A cut set of a fault tree is a group of events which lead to

system failure. A minimal cut set is a subset of a cut set which

consists of a ''smallest group'" of these events. System failure
(the top event) occurs if and only if each event in at least one
minimal cut set occurs.

Components share a common location if no barrier exists to

insulate one of them from an event that can affect both of them.
A common link is a dependency, such as a common energy source oOr a
common water supply, between components. A common mode, or common

cause failure, is a failure that occurs due to the failure of a

common link.

Programming Terms
PASCAL is a computer language that was developed in 1971 by
Professor Nicklaus Wirth for scientific and commercial programming

[6]. Many implementations of standard PASCAL exist, each with

minor differences from the others. The implementation used for the
PERTT code developed in this thesis is. UCSD PASCAL, developed at the
University of California, San Diego (UCSD), for use with micro-
computers.

A file, or disk file, is a collection of information stored

on disk. It may be accessed by the use of a file name. A file

may contain a program, data for a program, or any other information.
An editor is a computer program that allows the user to create or
change a disk file. One can create an editor which can create a
general file or a specific type of file. The editor referred to

in this thesis is the fault tree editor which comprises one of two
programs in the PERTT package. An editor often contains "menus",
which are simply lists of options from which the user may choose.
The computer is said to "prompt'" the user when it prints a question
on the screen for which the user must supply an answer via the

keyboard. An interactive program is a program for which the user

must supply input data during the execution.

Reading a variable consists of transferring its value from the
disk file or the console to the memory of the computer. A Boolean
variable is a variable that may assume one of only two values:

TRUE or FALSE. A string variable, or string, is a variable

identified by a sequence of alphabetic characters and/or numbers.

The characters of a string have no individual significance.

Recursive programming

A recursive program is a program that calls itself, and thus

nests an operation within another iteration of the same operation.
Recursive programs can provide elegant solutions to certain classes
of programming problems. For example, the factorial function can be
implemented by the following PASCAL program:
FUNCTION FACT (N:INTEGER) :INTEGER;
BEGIN
If N=1 then FACT :=1;
ELSE FACT :=N*FACT(N-1);
END;
This program loops around, multiplying by (N-1) during each
loop until 1 is reached. Of course, this particular function can

also be implemented using looping, but recursion in applications

such as tree traversal becomes very convenient.

Pointers and linked lists

In many computer languages such as FORTRAN, arrays are used
to handle ordered lists of data. However, arrays are not always
the most efficient means of handling this type of problem. For
example, in order to insert a number between the first two numbers
of the array:

3.687

74292
4.189

one must first check to see that the dimension of the array is at
least 4. Then, the third number must be moved to the fourth position,
the second number must be moved to the third position, and the new
number must be inserted into the second position. When long lists
are involved, this can be a very time~consuming process. If the
data set is occasionally small, an array is an inefficient use
of space, because the programmer must initially establish and reserve
the space required for the largest data set to be handled. This
is accomplished by means of a dimension statement and insures that
in many cases, much of the reserved space will not be used and will
not be available for any other program.

PASCAL has implemented a device which helps to alleviate these
problems. It represents each entry in the list as a record of omne
or more values, plus a pointer referring explicitly to the item

which follows it in the list, as shown in Figure 1.

S ==

Figure 1. Representation of a simple linked list

Thus, considering the previous example, to insert a number,

for example 2.395, into the second position of this list, a new

record is created, with a pointer to the record 7.292. Then, the

pointer from 3.687 is redirected to the new entry, as shown in

Figure 2.

R] M R T
] -

Figure 2. Adding a record to a linked list

This type of structure is known as a linked list. The linked
list is exactly as long as required, but the size of an array must
be fixed in advance. When PASCAL pointers are used to implement the
linked list, the records are stored at any location in memory not
taken up by program. The records are accessed by means of a pointer,
called the top pointer, which points to the linked list. Thus, no
program changes are required to take advantage of the larger amount

of memory in a larger, faster system.

10

CHAPTER III. REVIEW OF PREVIOUS WORK

Fault Tree Analysis Codes

Fault ‘tree analysis requires the preparation or existence of a
fault tree. A fault tree is a symbolic representation of actual
hardware which is involved in originating, transmitting, processing
and using fluid flow, information flow, heat flow or the flow of
instructions to accomplish some purpose. Fault tree analysis is
the study of the chain of events which may prevent the accomplishment
of the desired purpose and of the relative probabilities that
individual faults and chains of faults may occur.

The PREP and KITT codes [25] were released in 1970, and were the
first computer codes developed for the evaluation of fault trees. The
codes are written in FORTRAN for the IBM 360 computer. The minimal
cut sets of the fault tree are found by the PREP code and the event
probabilities are determined by the KITT code. The cut sets are
determined by one of two means. A deterministic method of fault
tree analysis in which all possible combinations of failure events
are successively tried to determine which combinations cause the
system to fail, is provided by the COMBO option. For large fault
trees, this requires a great deal of computer time. FATE, the second
option, uses Monte Carlo simulation to find the most probable minimal
cut sets. Unfortunately, FATE is not guaranteed to find all of the
minimal sets. The cut sets required by the KITT code to find time-

dependent reliability information are provided by the PREP code.

11

As might be expected, modifications to the original codes have
been developed in recent years. The MOCUS code [24] was designed in
1972 to provide input to the KITT code, because deterministic testing
(COMBO) was found to be too slow and Monte Carlo simulation (FATE) was
not guaranteed to find all of the cut sets. It uses a "top down'
logic to successively replace each gate in the tree by its inputs until
each gate has been replaced by bottom events. It is written in
FORTRAN for the IBM 360 computer. TREEL and MICSUP, [1l4] developed
in 1975, serve the same purpose as MOCUS. They ‘use essentially the
same logic, but work from the bottom up.

The ALLCUTS code [23] was written in 1975, and uses a top-down
algorithm similar to MOCUS. It was written in FORTRAN for a CDC 6600
computer, and uses 34700 words of memory. It is more memory-efficient
than many other codes. In addition to providing the minimal cut sets,
ALLCUTS provides probability calculation as an option.

The WAM code is used to compute minimal cut sets, and the BAM
code calculates the associated system unavailability. It performs
these calculations by setting up a truth table with all possible
combinations of events. The WAM-BAM codes [23] were written in
FORTRAM for the CDC 7600 computer, and use 61440 words of memory.

The PL-MOD code .[13] performs quantitative and qualitative
analysis of a fault tree by "modularizing'" it. The modularization
process divides the tree into independent subtrees and works not from

the cut sets but from a description of the fault tree. 1t uses the

12

list processing features of PL-1 to perform the modularization.
PL-MOD is unique in that it can handle k-out-of-n gates and
complemented events.

The COMCAN code [16] performs common cause failure analysis on
the fault tree cut sets. It identifies various possible common cause
failures, and finds the common locations in the fault tree. It sets
up a susceptibility fault tree for each common location and finds the
cut sets for each of these trees. It is written in FORTRAN for the

IBM-360 computer.

Superconducting Magnets for Fusion Reactors

These codes or the PERTT code developed in this thesis can be
used to analyze fault trees corresponding to any system. The system
chosen as a relevant example is the one involved with the reliability
of superconducting magnets for fusion reactors. Fusion reactors are
considered to be strong contenders for supplying energy beginning in
the 21st century. The interacting particles must be given enough
energy for the reaction to occur and must be kept in close proximity
long enough for the reaction to occur. One method for keeping
the particles together is called magnetic confinement and requires
the production and maintenance of a number of different but related
magnetic fields.

A tokamak, [20] or magnetic confinement fusion reactor involves

two systems of magnets: the steady-state toroidal magnet system and

13

the pulsed poloidal magnet system. The magnet system is shown in
Figure 3. The toroidal coils are D-shaped for mechanical reasons.
The poloidal coil system consists of the ohmic heating coils, the
equilibrium field coils, and the divertor coils. The ohmic heating
coils and the plasma loop act as the primary and secondary sides of a
transformer. During the pulsed changes in magnetic flux, currents
are induced in the plasma to produce the poloidal magnetic field and
to heat the plasma. Because of the toroidal geometry, the poloidal
field is stronger near the center of the reactor and the plasma loop
tends to expand. Therefore, "equilibrium coils" are needed to
counteract this effect. They subtract from the field near the center
of the reactor and add to it on the outside. The divertor coils are
used to prevent particles that have escaped the plasma from reaching

the first wall, the innermost physical boundary surrounding the plasma.

If escaping particles were to strike the first wall, impurities would
be liberated by spallation and become an unwanted part of the plasma.
In addition, the loss of energetic particles would result in plasma
cooling.

The required magnetic fields are produced by electric currents
passing through coils. For conventional conductors like copper, the
IZR heating loss is very great and provides a limit to the magnetic
field that can be achieved. Certain materials, called superconductors,
have the property that when they are cooled below a certain critical

temperature (around 2-20 K) the resistance becomes zero. Thus, the

WA Rl

m\\\\\\\\\\\\\\\\

Figur ctor magnet system [15].
OF REACTOR

w1

15

magnetic field that can be obtained using superconducting magnets is

significantly higher than that of conventiounal magnets.

Three superconducting materials are presently used in magnets:
NbTi, Nb3Sn, and V3Ga. NbTi is cheaper and more ductile than either
NbBSn or V3Ga. Ductility is an important property for wire which is
to be bent into a coil. NbTi has the disadvantage of a lower critical
temperature and critical magnetic field. It is, however, currently

favored for magnets producing fields up to 9 Tesla.

Reliability, discussed more fully in Chapter VI, will be a
major problem with fusion reactors. The magnets will be exposed to
fast neutron and gamma irradiation originating in the plasma,
mechanical stress, asymmetric forces, torques, and the consequences of
pulsed operation. The problems associated with radiation damage,
cooling, large mechanical forces, and the discharge of stored energy
must be solved by the designers of the magnet systems if the

successful operation of tokamak reactors is to be assured.

16

CHAPTER IV. ALGORITHMS

Fault Tree Editor (EDITOR code)

The fault tree editor reads data provided by the user by means
of a console and arranges them in an order such that they can be
processed in the FAULTTREE program. The editor consists of a
number of procedures, each of which performs a specified operation

on the data.

The MENU procedure

The MENU procedure clears the screen and displays a "menu" to
the user. The menu consists of a list of seven options from which
the user may choose: (1) add a node; (2) remove a node; (3) append
files; (4) change a node, (5) display a node, (6) write the tree
to a file name, or (7) exit the program. For each option, a sub-

routine is called.

The READTREE procedure

The READTREE procedure recursively reads the elements of a
fault tree from disk into memory and stores it as a linked list. The
linked list shown in Figure 5 corresponds to the fault tree in
Figure 4. Each gate in the tree corresponds to two kinds of records
in the linked list. One type of record is the NODE, which contains
the actual information describing the gates: name, function,

probability, and number of inputs. A bottom event is represented

1.7

NO FLOW

NO FLOW
TO VALVES

VALVE #1
CLOSED

VALVE &2
CLOSED

PUMP
BROKEN

PREVIOUS
VALVE CLOSED

PROBABILITY = 0.1

PROBABILITY =0 1

PROBABILITY =01

PROBABILITY = 0.1

Figure 4.

Sample fault tree

TOPPOINTER

L i |
NO FLOW
onlzlq] |

NumMmBeER OF INPUTS

Event PROBABILITY —

|

/ZNQDE

ano [2] of

-

Sluputrvvt

L]
I

NO FLOW
TO VALVES

o T2[ol

| |
VALVE #1 VALVE #2
CLOSED CLOSED

xxxlcﬂ.il I

o[|

L= r 1

PUMP PREVIOUS
BROKEN VALVE CLOSED
xxx]olJ] I xxxlo|J| 1

Figure 5.

Representation of sample fault tree after passing through READTREE

8T

19

in Figure 5 with a gate function of XXX. The second type of record,
the INPUTTYPE, contains the pointers which connect each NODE to

its inputs and outputs.

The SRCHTREE procedure

The SRCHTREE (SeaRCH TREE) procedure recursively searches the
fault tree for a gate specified by the user. This procedure is
called by many of the other procedures to find a gate which is to
be changed or displayed. It inputs a gate name and the-pointer to
the top event of the tree (henceforth called the top pointer),
and outputs the proper gate and a Boolean variable that is set to

TRUE if the gate is found and FALSE if it is not found.

The FINDPARENT procedure

The FINDPARENT procedure is used to find the gate preceding a
given gate in the tree (its parent, or output gate). FINDPARENT
is called by the DELGATE procedure (described below) to reduce by
one the number of inputs to the deleted gate's parent. It is also
used to check for errors in the DELGATE procedure to insure that
the user does not leave an AND or an OR gate with a single input.
Inputs to this procedure are the top pointer of the tree and the
name of the gate that is to be deleted. Output variables are the
gate to be deleted and its output gate, and a Boolean variable set

to TRUE if the output gate is found and to FALSE if it is not found.

20

The ADDGATE procedure

The ADDGATE procedure is called when the user wishes to add a
gate to the tree. It prompts the user for the name of the gate
to which an input is to be added. It checks to see if this gate
is a bottom event, and if so, it will force the user to add at least
two gates. This has been implemented to prevent the use of single-
input AND or OR gates. It also checks to make sure that the tentative
name of the new gate has not previously been used.

When error-checking is complete, the ADDGATE procedure will
set up a NODE and an INPUTTYPE for the new gate. The results of
the ADDGATE procedure are shown in Figure 6. The procedure

increments the number of inputs to the output gate by 1.

The DELGATE procedure

The DELGATE (DELete GATE) procedure is called when the user
wishes to remove a gate from the fault tree. The operatiom of the
procedure is shown in Figure 7. Note that the gate remains in
memory after its deletion but cannot be retrieved. This is because
the standard DISPOSE command is not implemented in UCSD PASCAL.
Error checking is done to insure that one of two inputs is not
deleted and that the gate to be deleted is a bottom event. After
error checking is complete, if the gate to be deleted is the first
input to its output gate, then the pointer from the output gate is
directed to the second input. If the gate is the ith input (i <

number of inputs), then the pointer from the (i-1)th gate is

TOPPOINTER
9| 1]

I

NO FLOW

on [e[o] —}

1l
| |

NO FLOW
TO VALVES

o Je]o] |

]
A==

VALVE 1 VALVE #2 UAINE #3 PUMP PREVIOUS
CLOSED CLOSED CLOSED BROKEN VALVE CLOSED
xxxlo] .ll : xxxlol.tl 1 xxxlol.t] 1 XXX lo].ll 1 XXX [ol.ll 1

Figure 6. Representation of adding a gate to the sample fault tree

1e

TOPPOINTER

=)

|

NO FLOW

OR lzlol g

L]
1

o NO FLOW
7O VALVES
AND1ZIOI OR lz] ﬂ
{ ——
I 1 Ty W g = l] il 1
|
""" . | | |
VALVE #1 VALVE #2 VALVE #3 PUMP PREVIOUS
CLOSED CLOSED CLOSED BROKEN VALVE CLOSED
xxxlO[JI 1 xxx]olJI 1 xxxlo[J] 1 xxonIJl 1 xxxlolJl 1

Figure 7.

Representation of deleting a gate from the sample fault tree

ez

23

redirected to the (i+l)th gate. If the gate is the last input,
then the pointer leading from the next-to-last input is redirected

from the deleted event to NIL.

The APPEND procedure

This procedure reads the components of an already existing
fault tree from a file, making its top event an input to a gate
specified by the user in the tree being edited. The number of
inputs to the output gate is incremented by 1, and the READTREE
procedure is called, using the output gate specified by the user as

the top pointer.

The CHANGE procedure

When the user wishes to change the name, function, or probability
associated with a gate, the CHANGE procedure simply sets the value
of the variable equal to the new value. When the user wishes to
change the output of a gate, the QUTPUTCHANGE procedure is called.
First, the gate is added to the end of the input list of the new
output gate. Then, the gate is deleted from the old output gate.
Note that, in contrast to the DELGATE procedure, no memory is lost

during this delete operation.

The WRITETREE procedure

The WRITETREE procedure recursively writes the gate names,
functions, numbers of inputs, and failure probabilities contained in

the fault tree to the console, to the printer, or to a disk file. It

24

is not automatically called when the user wishes to exit the program.

Thus, all newly entered dataarelost if the user does not use the

"write" option before exiting the program.

Fault Tree Traversal (FAULTTREE Code)
The FAULTTREE code uses a fault tree produced by the editor to
find all of the minimal cut sets and their probabilities. The
READTREE procedure found in the editor is used to read the contents

of the fault tree from disk and store it into memory.

The FINDCUTSETS procedure

The procedure FINDCUTSETS takes the output from READTREE and
processes it into a list of cut sets as shown in Figure 8, To add
a new record to the current cut set it first calls the procedure ADD.
The ADD procedure is used to check for a bottom event, and to set
a Boolean variable, ISBOTTOM, equal to TRUE or FALSE. A new record
is added to the list and the appropriate values are put into that
record. This new record is then returned to the procedure FINDCUTSETS.
If an AND gate is being processed, then each of the inputs of
the AND gate is added to the current cut set. If it is processing an
OR gate, the process is somewhat more complex. For an N-input OR
gate, N-1 copies of the current cut set are made, using the procedure
COPY. A different input of the OR gate is added to the end of each
copy. Then, the MERGECUTSETLISTS procedure is used to link all of the

copies together into a new cut set list.

CUTSETLIST

VALVE #2
CLOSED

1 I.l ITRUE

PUMP
BROKEN

PREVIOUS
VALVE CLOSED

1 I.EITRUI

1 l.l]TI\UE

VALVE #1
CLOSED

EVENT

J.[]mu:

NO FLOW
TO VALVE

NO FLOW
TO VALVE

I oI FALSE

NO FLOW

To]Fauee

l (o] [FALSE

NO FLOW

NO FLOW

B I FALSE

Jolm.st

-ll——

ProsAmiuiTY

Figure 8.

Representation of sample fault tree after passing through FINDCUTSETS

r

wn

26

The FINDPROB procedure

The FINDPROB procedure computes the occurrence probability
associated with each cut set and the occurrence probability
associated with the top event. It uses the cut sets produced by
the FINDCUTSETS procedure and event probabilities supplied by the
user. The probability associated with a given cut set is defined
to be the product of the probabilities of the bottom events belonging
to the specified cut set.

1
- B
Py =131 Py

where Pj is the probability of the jth cut set;

Pij is the probability of the ith bottom event of the jth
cut set;
nj is the number of bottom events in the jth cut set.

The probability P of occurrence of the top event is determined by

the relation:

-P
(1 j)

where n is the number of cut sets.

The WRITECUTSETS procedure

This procedure produces a list of cut sets for user considera-
tion. It traverses the linked list produced by FINDCUTSETS,

stopping to write out the name of each gate (1) to a data file,

27

(2) to the console, or (3) to the printer. An asterisk is printed
beside each bottom event. At the end of each cut set, the associated
probability of occurrence is printed, and at the end of the cut set

list, the probability of the top event is printed.

Deviations from Standard Pascal

Strings are used instead of packed arrays to facilitate user
entry. This is because UCSD PASCAL requires that user-provided
input fill a packed array and that the user must include enough
spaces to accomodate the dimension of the array. Thus, for each
event name, the user would need to type 40 characters if packed
arrays (i.e. standard PASCAL) were used. The MEMAVAIL command,
which determines the size of the available memory is nonstandard,
but most implementations of PASCAL have an equivalent function.

File manipulation is different for each PASCAL machine, but in
the PERTT programs standard PASCAL I/0 has been used wherever

possible.

28

CHAPTER V. USER'S MANUAL

Editor

Beginning to edit a fault tree

Put the APPLE 3: in disk drive #1 and turn on the computer and
monitor. Wait until the light on the disk drive turns off, then
remove the APPLE 3: disk and insert the FAULTTREE: disk. Press
<RESET> and then press the <X> key. The computer will prompt,
"Execute what file?". Type EDITOR and press the <RETURN> key.

This executes the editor program.

The computer will then give the prompt:
DO YOU WANT TO:

EDIT A CURRENTLY EXISTING FAULT TREE (E)

START A NEW FAULT TREE (N)

PLEASE TYPE E OR N

If a fault tree already stored on disk is to be altered, type
<E> and then <RETURN>. The computer will prompt, "TYPE FILE TO BE
EDITED". Type the name of the data file containing the desired
fault tree and press <RETURN>. The file will be read into the memory
of the computer.

If a new data file (a new fault tree) is to be created, type
<N> and then<RETURN>. The computer will prompt "TYPE THE NAME OF

THE TOP EVENT". Type a name of up to 40 characters and press <RETURN>.

29

Building the fault tree

In order to build a fault tree, the user may select options from
the following menu on the screen:
MEMORY AVAILABLE = xxxxx. DO YOU WANT TO:

ADD A NODE (A)

REMOVE A NODE (R)

APPEND A FILE TO THIS FILE (P)

CHANGE A GATE (C)

DISPLAY A GATE (D)

WRITE TO A FILE NAME (W)

EXIT THE PROGRAM (E)

PLEASE TYPE A,R,P,C,D,#, OR E.

Type desired operation and press <RETURN>. The memory available
statement indicates the number of bytes of memory available for fault
tree data. Adding a gate to a fault tree requires approximately 30-40
bytes. When the available memory becomes small, the user should try to
write the file to a name, exit the file, and read the file back in.
This is because the deleting procedure causes memory to be temporarily

lost, as explained in Chapter IV.

Adding a node After the user types <A>, the computer will

prompt, "TO WHICH GATE WOULD YOU LIKE TO ADD AN OUTPUT". Type the
gate name and press <RETURN>. The computer will prompt, "TYPE
PROBABILITY OF OCCURRENCE FOR NEW NODE", Type a probability between

0 and 1 and press <RETURN>. If this gate is, or will be a bottom

30

event, this probability is significant. For all other cases, enter
0. If the output gate was a bottom event, the following prompt will
appear on the screen:
SINCE (event name) IS A BOTTOM EVENT, IT MUST HAVE AT LEAST 2 INPUTS.
WOULD YOU LIKE IT TO BE AN AND (A) OR AN OR (0) GATE? (TYPE L TO
LEAVE THE ADD PROCEDURE AND DELETE THE GATE JUST ADDED)
PLEASE TYPE A, L, OR O

If the user types L, the gate that has just been added is
deleted. If the user types A or 0, the output gate is changed to
an AND gate or an OR gate, and another gate may be added by the user.
This is to assure that the final fault tree contains no single-
input AND or OR gates. The computer will prompt, "DO YOU WISH TO

ADD ANOTHER GATE TO (event name)'". Type YES or NO and press <RETURN>.

Removing a gate After the user types A , the computer

will prompt, "WHAT GATE DO YOU WISH TO DELETE". Type the gate name
and press <RETURN>. If the gate has inputs, the user will be asked

if he wishes to delete everything below the gate. If the answer is
YES, then all of the inputs will be deleted. If the answer is NO,
then no gates will be deleted. If the gate above the gate to be
deleted (the "OUTPUT" gate) has only two inputs, the output gate will
be displayed and the computer will prompt, "DO YOU WISH TO DELETE BOTH
INPUTS TO (event name)? TYPE Y OR N." 1If <Y> is typed, both inputs
will be deleted and the output gate will be a bottom event. The

computer will prompt for a probability for the gate. If <N> is

31

typed, the gate will not be deleted. If <N> is typed and gates
below one input have already been deleted, these gates have been
deleted permanently. They will not be returned to the fault tree.
If the user wishes to delete a gate without deleting its inputs,

he must redirect the outputs of the input gates he wishes to retain.
This may be accomplished by means of the '"change' option, described
below.

Appending a file This command will read a fault tree from

a file, making its top event an input to a specific gate of the
fault tree being edited. After the user types <P> the computer
will prompt, "INPUT TO WHICH GATE". Type the name of the output
gate and press RETURN . The computer will ask for the name of the
file to be appended to the tree being constructed. Type it and
press RETURN .

Changing a gate When the user types <C>, the computer will
prompt, "WHAT GATE WOULD YOU LIKE TO CHANGE". Type the gate name
and press RETURN . A menu will appear on the screen as follows:
DO YOU WANT TO:

CHANGE THE NAME OF THE GATE (N)

CHANGE THE FUNCTION OF THE GATE (F)

CHANGE THE OUTPUT OF THE GATE (0)

CHANGE THE PROBABILITY OF THE GATE (P)

TO EXIT THE CHANGE PROCEDURE TYPE E

PLEASE TYPE N,F,0,P, OR E

32

When the user types <N> or <P>, the computer prompts for the new name
or probability. When the user types <F>, the gate function is
changed from AND to OR or vice versa. The <0> command is used to
change the position of a gate within the tree; in other words, the
gate is deleted from one position and added to another. When a
gate is moved, all of its inputs are also moved,

After the change is made in the tree, the computer prompts,
"DO YOU WANT TO MAKE ANY OTHER CHANGES TO (event name)? TYPE Y
OR N". Type YES or NO.

Displaying a gate When <D> is typed, the computer will

prompt for a gate name. Type it and press RETURN . The computer
will print the name of the gate at the top of the screen. If the
gate is a bottom event, its probability will be displayed.

Otherwise, the function (AND or OR) will be displayed, along with the
name and probability of each of the inputs.

Writing to a file name When <W> is pressed, the computer

will prompt for the name of an output file. Type a file name to
have the tree stored on disk, or type CONSOLE: or PRINTER: to
display the tree on the screen or the printer. Be sure to type

":" after the words '"console" and "printer"; otherwise, the tree

a
will be stored on disk as a file named "console" or "printer".

If output is sent to the screen or to the printer, it will not

be sent as a tree, but as a long string of data.

33

Exiting the program Before you type <E>, be sure to write

the tree to a disk file. Otherwise, all newly entered data will be

lost.

Fault Tree Traversal

After a data file has been created using the editor, the
minimal cut sets and failure probabilities may be found using the
FAULTTREE program. Type <X>. The computer will prompt, 'Execute
what file?", Type FAULTTREE and press <RETURN>. The computer will
ask for an input file name. Type the name of the data file and
press RETURN . The computer will then prompt for an output file
name. Type a file name to write the cut sets and probabilities to a
disk file, or type CONSOLE: or PRINTER:. For each cut set, the
events will be listed and a cut set probability will be given.

A total failure probability will be given at the end of the listing.

34

CHAPTER VI. APPLICATION TO THE MAGNET SYSTEMS
OF A FUSION REACTOR
Safety Problems in Superconducting Magnet Systems
Reliability is a major problem of existing superconducting
magnets. In one study [21] out of twenty experimental magnets
observed, fourteen had failed due to inadequate cooling, electrical
insulation breakdown, inadequate mechanical support, and failures
in powering and safety systems.
Radiation effects on superconducting magnets are significant.
Over a 30 year lifetime, neutron fluences (the total number of
neutrons falling on a unit area) are estimated to be approximately
1018/cm2, which would lead to a displacement rate of 1.81%{10—3
dpa. This would give approximately a 10% reduction in Jc’ the
critical current, at 4.2 K, for NbTi [20]. It appears that this

degradation could be fairly easily tolerated in UWMAK-I, the

University of Wisconsin Tokamak Study Design. [15].

Cooling of superconducting magnets can also be a problem. Two
possibilities for cooling are being explored: bath cooling in liquid
helium and forced cooling with two-phase helium. The main disadvantage
of bath cooling is that the heat transfer rate depends upon the surface
orientation. If the conductor orientation deviates from vertical,
the heat transfer rate will be decreased by approximately one order
or magnitude [21]. Much less experimental evidence exists for forced
cooling with two-phase helium. Cooling instabilities seem to appear

because of helium phase transition behavior.

35

Stored energy will also be a problem, since the magnets of a
fusion reactor will be expected to carry more than 100 times the
current carried in present-day superconducting magnets. If a super-
conducting magnet were to ''go normal" (lose its superconducting
properties because it exceeds its critical temperature or critical
current), the superconducting material will suddenly be subject to
12R heat losses, which would be enormous in the case of a fusion
reactor. Such sudden stored energy deposition into a small area of
the magnet could lead to temperature excursions above the melting
point of the magnet. The most serious case of released energy is
the case of a coil break, studied in detail below. Other mechanisms
include dewar leakage, loss of conductor cooling, loss of super-

conductivity, and power supply failure.

Application to a Conductor Break
The case selected for detailed study consists of a conductor break

because this seems to be the most significant accident for a super-
conducting magnet system. Large amounts of energy would be released

in a short time. This would produce large amounts of heat and large
releases of helium gas, and would lead to significant structural
failure. This structural failure could lead to internal and external
missiles, and release of radioactive materials in the form of debris

from the destroyed structure.

36

A fair amount of qualitative information is available concerning
accident pathways to a conductor break. A fault tree for a con-
ductor break is shown in Figure 9 [15]. Quantitative information on
reliability is lacking however. The failure rate reported for
existing superconducting magnets [15] is clearly unacceptable and
one can only speculate on the failure rates for those to be used
in the future. It is difficult to quantify failure probabilities
without direct experience, and thus, one must rely on qualitative
judgments as to which accident pathways are most likely.

For these reasons, the PERTT code and fission industry data

were used to set goals for operation of the fusion reactor magnet,
Powell [15] in an analysis of fusion reactor design, sets an

upper limit, for economic reasons, of 10_2 per reactor-year for

events which release no radiation, but cause enough damage to the

magnet that replacement is necessary. The number lO'—2 was used for

calculation, and it is assumed that the probabilities for more severe

accidents would be much lower. If one assumes the appropriateness

of the fault tree in Figure 9, and if all of the 29 event probabilities

are equal, then to generate an overall failure probability of 10-2

per reactor year, the probability for each event would be 3 x 10_6
per reactor year. Of course, it is unlikely that all of the probabil-

ities will be equal. Qualitatively, failure caused by electrical

COMUUC 10K
Bl ax

|

SIABILIZER SUPERCONOUCTOR FILANINTS

O CRADED OR Iﬂﬂ L] O - R v
RESISTANCT
CONOUC 1 OR WO of Combuc
100 WiCH CRYOCENICALLY Il-llll :'

WL TING - HIGH-
TEWPERATURE

YEILDIRG 0N

TABRICATION
w0V DETECTED

FRACTUSE DUR NG
HEATING B[YOND
[uownh null [yison “’“]

LE

CRACE i
cavosiat ek missIL T P (aCissive
MUPTUAL NV I RORMEN T AEacTon . TABRICATLD et
I CONDUC ToR
'
HECHARICAL INSULAT 108 ummnu GROWIN Of CRACK CROUTE DE. CRACK SIALSS CTCLING ABRORHAL
DF GRADA L 1 0% RISSING OR ,,n uuu CRACK ,.:“"“ FROM NORMAL FROM ABROAMAL MORRAL SIRCSS DURING
OF 1MSULATION 00 THIN alnm:nm ron SIRESS CYCLING "::'.'g: ::"ﬁ OPLAA PREVIOUS QUENCHLS 0

STALSS Cvilinc Excessive
SIRLSS DU 10
[TATINE] lnl‘vrws Qui Wi §

Figure 9. Conductor break fault tree [15]

38

shorts, by previous damage from temperature inhomogeneities, by coolant
channel blockage, by inadequate quality control during fabricationm,

and by mechanical fracture seem to be more significant than

others [15].

Since the probability of accidental death due to falling
meteors, planes, etc. is reported to be 6 x 10_'6 per person per
year, a probability of 1 x 1072 per year was utilized for the
probability of external missiles. The probability of internal
missiles was set at 10-5 per year, also. Powell gives a probability
of 10—5 per year for an accident that involves containment breach and
radioactivity release to the public, and this type of accident is
implied if internal missiles are present [15].

The probability of coolant channel blockage was set at 10--6 per
year. WASH-1400 [22] sets the probability of pipe blockage at 10_10
per hour or 9 x 10-7 per year, for a pipe diameter greater than 3
inches. As seen in Figure 9, each potential contributor mechanism
to coolant channel blockage, spacer breaks, impurities from refrigera-
tion coolant channels, and impurities from the magnet coolant channels
will have a probability of 3 x 10“7 per year. The probability for a
crack in the electrical insulation is also taken to be approximately
10" per year, because WASH-1400 gives this number as a mean value
for cracks in pipes and other components. Insulation is subject to

different environmental stresses than pipes, but this number should

be correct within an order of magnitude.

39

Probability for the loss in electric power is higher. WASH-1400
gives a probability of 2 x 10-7 per hour or 2 x lO_3 per year for the
fission industry. The figure 2 x 10_3 per year was used in this thesis
for calculations. This implies a probability of 3 x 10-4 per year
for each of the bottom events to the "electrical short" subtree.

Of course, these numbers could be improved by the use of parallel
power sources.

The probability of yielding or fracture of adjacent support
structure is a qualitative judgment. Its probability was set at

10 = per year. The probability of an undetected flaw during

fabrication was taken to be 10-5 per year.

40

CHAPTER VII. RESULTS AND CONCLUSIONS

A package, PERTT, has been written which permits the analysis
of fault trees involving up to approximately 100 events using a
desk top computer. The package consists of two programs. A listing
of the EDITOR program, used to construct and change the program,
is found in Appendix A. A listing of the FAULTTREE program, used
to find the minimal cut sets and failure probability for the system,
is found in Appendix B.

The application of the program to a typical problem revealed

certain advantages and shortcomings to the use of a desk top computer.

— The program is easy to use, because the user is prompted for
all necessary information.

- A study of the relative advantages of different reactor
system arrangements is facilitated.

- The running time is fairly long - 1 1/2 minutes for a 49-
event fault tree. However, the turnover time is equal to the
running time, and is thus very short.

The use of the PERTT package to analyze the reliability of a

superconducting magnet used in a fusion reactor demonstrated an
inverse application in which the reliabilities of various components

were established based on the stated overall system reliability.

Cut sets found by the PERTT program for the conductor break fault

tree in Figure 9 are given in Appendix C. No probability calculations

were performed in this run. For the fault tree involved, an
execution time of 1 1/2 minutes was required. This could be signifi-
cantly decreased if a faster computer, such as a VAX, were used.

Each cut set consists of only one bottom event, in addition to
intermediate events, because the fault tree consists of only OR
gates. This means that the reliability importances of all of the
components are equal.

If all of the failure probabilities not enumerated in Chapter
VI are taken to be equal, then they would be equal to 6 x 10_4 per
reactor-year. Since the probability for electrical shorts and for
accidents due to previous damage seems to be higher than the average
[15], this probability was set equal to 1 x 10—3 per reactor-year.
This results in probabilities for the other events of 5 x 10'_4 per
reactor year. This cannot be achieved with existing magnets, which
are still in the experimental stage.

The PERTT code helped a good deal in performing these calcula-
tions, even though for this case it was used to "work backwards'
from a system failure probability to component failure probabilities.
Seeing the cut sets helped in visualizing the failure paths more
clearly, and iteration could be performed to find estimates for the
probabilities of the events for which probabilities could not other-

wise be quantified. The code was easy to use in this calculation,

and was far more convenient than using cards on a mainframe computer.

A desk top computer can aid in fault tree analysis by:

(a) providing immediate and direct access to the computer,

(b) providing results almost immediately, thus furnishing feedback
which permits the identification of poor design or events

which require more study,

(¢) providing inexpensive computer time,
(d) providing a convenient, fast, simple means of changing an already
constructed fault tree.

The desk top computer has certain limitations, such as a
relatively small memory. This means that only small (<100 event)
fault trees can be analyzed. Since many complete system fault
trees contain more than 500 events, it is clear that a large computer
must be involved in the full analysis.

PERTT will be useful in a design situation, where the user
must try many different combinations of components to find the
optimum safety combination. It will also be useful as a teaching
aid in a university classroom situation. If more memory and more
speed is needed, it could easily be adapted for a VAX or other system,
for standard PASCAL has been used wherever possible. Because of
its convenience, PERTT will be extremely valuable in all situations

where large memory is not required.

CHAPTER VITII. SUGGESTIONS FOR FURTHER STUDY

It seems likely that the usefulness of the PERTT programs can
be increased by adding three options to the procedure. The first
option is time dependence for reliability information. The computer
could be programmed to find component failure probabilities from
failure and test data supplied by the user, and to calculate associated
unavailability. These calculations can be performed by hand by the
user, but they become tedious when many different events are involved.
Reliability importance calculations, as described in Chapter III,
are not feasible on a microcomputer because they are too time-
consuming.

To provide a more legible and compact fault tree, the program
could be written using NOT and k-out-of-n gates. These structures
must be represented by groups of AND and OR gates when the PERTT code
is being used.

Some form of modularization for the fault tree would also be
useful. If the tree could be broken down into subtrees to be stored

on disk, larger fault trees could be handled by the system memory.

10

11.

12+

13.

14.

46

BIBLIOGRAPHY

H. A. Amherd and J. H. Vanston, editors, A Feasibility Study for
the Development of Fusion Energy, Technical Report No. ER-778-
SR 1979.

R. E. Barlow and F. Proschan, Statistical Theory of Reliability
and Life Testing: Probability Models (Holt, Rinehart, and
Winston, New York, 1975).

Roy J. DeBellis and Zeinab A. Sabri, Fusion Power: Status and
Options, Technical Report No. EPRI ER-510-SR, 1977.

R. C. Erdmann, Probabilistic Safety Analysis. Final Report,
Technical Report No. EPRI-NP-424, 1977.

R. C. Erdmann, WAMCUT, a Computer Code for Fault Tree Evaluation.
Final Report. Technical Report No. EPRI-NP-803, 1978.

W. Findlay and D. A. Watt, PASCAL, an Introduction to Methodical
Programming, (Computer Science Press, Potomac, MD, 1978).

J. B. Fussell and W. E. Vesely, Transactions of the American
Nuclear Society, 15, 262 (1972).

R. Karimi, N. Rasmussen, and L. Wolf, Qualitative and Quantitative

Reliability Analysis of Safety Systems, Technical Report No.
PB81-118325, 1980.

William E. Kastenberg and David Okrent, Some Safety Considerations
for Conceptual Tokamak Fusion Power Reactors, Technical Report
No. EPRI-ER-546, 1978.

G. L. Kulcinski, et al., Nuclear Technology, 22, 20 (1974).

F. L. Leverenz and H. Kirch, User's Guide for the WAM-BAM
Computer Code, Technical Report No. PB-249 824/8SL, 1976.

E. E. Lewis, Nuclear Power Reactor Safety (John Wiley and Sons,
New York, 1977).

Jaime Olmes and Lothar Wolf, A Modular Approach to Fault Tree
Analysis, Technical Report No. NUREG/CR-0670, 1979).

P. K. Pande, Computerized Fault Tree Analysis: TREEL and MICSUP,
Technical Report No. ORC 75-3, 1975.

47

15. J. Powell, editor, Aspects of Safety and Reliability for Fusion
Magnet Systems, Technical Report No. BNL 50542, 1976.

16. D. M. Rasmuson, N. H. Marshall, J. R. Wilson, and G. R. Burdick,
COMCAN TI-A: A Computer Program for Automated Common Cause
Failure Analysis, Technical Report No. TREE-1361, 1979.

17. E. T. Rumble, F. L. Leverenz, Jr., and R. C. Erdmann, Generalized
Fault Tree Analysis for Reactor Safety, Technical Report No.
EPRI 217-2-2, 1975.

18. P. Shaw and R. F. White, Appraisal of the PREP, KITT, and
SAMPLE Computer Codes for the Evaluation of the Reliability
Characteristics of Engineered Systems, Technical Report No.
WRO-R-57, 1978.

19. Keith Shillington, et al., APPLE PASCAL Reference Manual (Apple
Computer, Inc., Cupertino, CA, 1979).

20. M. Soll, Journal of Nuclear Materials, 72, 168 (1978).

21. M. Soll, Kerntechmnik, 19, 272 (1977).

22, United States Nuclear Regulatory Commission, Reactor Safety
Study: An Assessment of Accident Risks in U.S. Commercial
Nuclear Power Plants, Appendix 3, Technical Report No. WASH-
1400, 1975.

23. H. J. Van Slyke and D. E.Griffing, ALLCUTS, a Fast, Compre-
hensive Fault Tree Analysis Code, Technical Report No. ARH-ST-
112, 1975

24, H. E.Vesely, F. F. Goldburg, N. H. Roberts, and D. F. Haasl,
Fault Tree Handbook, Technical Report No. NUREG 0492, 1981.

25. H. E. Vesely and R. E. Narum, PREP and KITT: Computer Codes for
Automatic Evaluation of a Fault Tree, Technical Report No.
IN-1348, 1970.

48

ACKNOWLEDGMENTS

The author would like to thank Dr. D.M. Roberts for comnstant
moral and technical support, as well as help in correcting the final
manuscript. Thanks also go to Steven Ford, who has suffered through
the trials and tribulations of the past two years. The excellence
of the artwork is due to the insatiable desire of draftsman Lyle
Ruppert for oatmeal chocolate-chip cookies. Thanks also go to
Jo Sedore for typing the thesis manuscript. Finally, the author
expresses appreciation for the technical support provided by Dr.

Z. A. Sabri, Dr. Richard Horton, and Dr. Richard Danofsky.

49-50

APPENDIX A. SOURCE LISTING OF "EDITOR" PROGRAM

The EDITOR program, described in full in Chapters IV and V, is
an interactive program used to construct a fault tree. It stores the
fault tree in a data file to be processed by the FAULTTREE program,

listed in Appendix B.

|

TYPE STRING40 = STRINGL401;
STRING3 = STRINGCA31;

NODE=RECORD (XTHESE ARE THE NODES WITH THE ACTUAL INFORMATIONX)
(% IN FIGURE 4X)

NAME : STRING40; (¥ NAME OF THE EVENT. %)

FUNCT :STRINGS ; (% "AND*, “OR", “XXX* %)

NMR . INTEGER ; (% NUMBER OF INPUTS x*)

PROB : REAL ; (% PROBABILITY OF ODCCURRENCE IF BOTTOM EVENT X}
INPUTLIST: " INPUTTYPE

END;

NODEP="NODE ;

INPUTTYPE=RECORD (XTHESE ARE THE ®“CONNECTOR* NODES IN FIGURE 4%)
INPOINTER: "NODE;
NEXTIN: " INPUTTYPE
END;
INPUTP="INPUTTYPE;

VAR
TOPPOINTER : NODEP ; (% MAIN FAULT TREE AFTER READING X)
PARENTNODE : NODEP;
I:INTEGER;

ANS : STRING40;
INPUTFILE, OUTFILE:TEXT;

FILENAME OUTFILENAME: STRING40;
SRCHNAME : STRING40;
SRCHNODE : NODEP ;
ISNAME : BOOLEAN ;

PROCEDURE READONELN(VAR STR:STRING40);
(XGIVES AN ERROR MESSAGE WITH ZERO LENGTH RESPONSES SO THAT THE X)
(XPROGRAM WILL NOT ABORTX})
BEGIN
REPEAT
READLN(STR) ;
IF(LENGTH(STR)I=0) THEN
WRITELN ('INVALID ENTRY —— TRY AGAIN');
UNTIL (LENGTH(STR))>0;
END;

PROCEDURE SRCHTREE (CURRENTNODE : NODEP ;

VAR SRCHNODE :NODEP ;
SRCHNAME :STRINGAO ;
VAR ISNAME : BOOLEAN) ;

(XSEARCHES THE TREE FOR THE NODE TO BE CHANGEDX)
VAR CURRENTINPUT : INPUTP;
I, NMROFINPUTS:INTEGER;

BEGIN

ISNAME : = FALSE;

NMROF INPUTS = CURRENTNODE® .NMR;

IF (SRCHNAME=CURRENTNODE" .NAME) THEN BEGIN
(XFOUND THE NODE TO BE CHANGEDX)
ISNAME : = TRUE;
SRCHNODE = CURRENTNODE;

END

ELSE IF (CURRENTNODE® .FUNCT(>'XXX') THEN BEGIN
CURRENTINPUT := CURRENTNODE" K INPUTLIST; (XFOR 15T INPUT OF GATEX)
SRCHTREE (CURRENTINPUT " | INPUINTER , SRCHNODE , SRCHNAME , ISNAME) ;

I:= 2,

WHILE ((I{=NMROFINPUTS) AND (NOT ISNAME)) DO BEGIN
CURRENTINPUT := CURRENTINPUT® . NEXTIN; (%GO TO NEXT INPUT OF GATEX)
SACHTREE (CURRENTINPUT* | INPOINTER , SRCHNODE , SRCHNAME , ISNAME) ;
IL:=I+1;

EEND;

END;
END;

PROCEDURE READTREE (CURRENTNODE :NODEP);
(% READS TREE UNDER CURRENTNODE FROM INPUT FILE. X)

VAR
INNAME : STRING40 ;
GATE :STRING3;
NMROF INPUTS : INTEGER ;
CURRENTINPUT : INPUTP;
I:INTEGER;
PROB: REAL ;

BEGIN
IF EOF (INPUTFILE) THEN BEGIN
WRITELN;
WRITELN('X%XERROR, EXPECTED MORE INPUT.'};
HALT;
END;
READLN (INPUTFILE, INNAME) ; (% READ DATA FROM INPUT FILE %)
READLN (INPUTFILE , NMROFINPUTS) ;
READLN (INPUTFILE ,GATE) ;
READLN (INPUTFILE ,PROB);
WRITELN(INNAME) ; (XDEBUGH)
CURRENTNODE" . NAME := INNAME; (% LOAD NODE WITH INPUT DATA X)
CURRENTNODE * . NMR (= NMROFINPUTS
CURRENTNODE® .PROB := PROB;
CURRENTNODE * .FUNCT := GATE;
WRITELN (‘'MEMORY AVAILABLE = ' MEMAVAIL]);

IF GATE <> 'XXX' THEN BEGIN
NEW (CURRENTINPUT) ; (% GET FIRST INPUT OF GATE X)
CURRENTNODE * . INPUTLIST := CURRENTINPUT;
NEW (CURRENTINPUT® . INPOINTER); (% GET GATE FOR FIRST INPUT X)

READTREE (CURRENTINPUT"® . INPOINTER) ; (X READ TREE FOR FIRST INPUT x)
FOR I = 2 TO NMROFINPUTS DO BEGIN (% FOR EACH OF THE OTHER GATES X)
NEW (CURRENTINPUT® .NEXTIN); (% GET NEXT INPUT X)
CURRENTINPUT := CURRENTINPUT® . NEXTIN;
NEW (CURRENTINPUT® .INPOLINTER) ; (% GET GATE FOR THAT INPUT Xx)
READTREE (CURRENTINPUT® . INPOINTER); (X READ TREE FOR THAT INPUT x)
END;
CURRENTINPUT * NEXTIN := NIL (% NO MORE INPUTS X)
END
ELSE (¥ THE GATE IS OF TYPE XXX %)

CURRENTNODE® . INPUTLIST := NIL; (X% NO INPUTS AT ALL X)
END;

PROCEDURE WRITETREE (CURRENTNODE :NODEP);
(% WRITES THE TREE TO A TEXT FILE x)

VAR CURRENTINPUT : INPUTP;
I, NMROFINPUTS:INTEGER;
OUTFILENAME : S TRING40; ~

BEGIN

(¥ WRITE THE DATA TO THE OUTPUT FILE X}
NMROF INPUTS = CURRENTNODE" .NMR;
WRITELN (OUTFILE, CURRENTNODE® . NAME);
(OUTFILE, CURRENTNODE® . NMR) ;

WRITELN
WRITELN (OUTFILE, CURRENTNODE® . FUNCT);
WRITELN (OUTFILE, CURRENTNODE" .PROB) ;
IF (CURRENTNODE® .FUNCT <> 'XXX') THEN BEGIN
CURRENTINPUT .= CURRENTNODE" .INPUTLIST; (®GET FIRST INPUT OF GATEX)
(XWRITE DATA FOR THAT INPUTX)

WRITETREE (CURRENTINPUT®.INPOINTER);
(XFOR EACH OF THE OTHER GATESX)

FOR I := 2 TO NMROFINPUTS DO BEGIN;
CURRENTINPUT := CURRENTINPUT® NEXTIN; (XGET THE NEXT INPUTX)
WRITETREE (CURRENTINPUT® . INPOINTER); (XWRITE TREE FOR THAT INPUTX)

END;

END;

END;

(KB IDVERFLOWX)

(XCAUSE OVERFLOW.TEXT TO BE READX)

PROCEDURE DSP (CURRENTNODE : NODEP) ;

VAR I:INTEGER;
CURRENTINPUT : INPUTP;

BEGIN

PAGE (OUTPUT) ;

WRITELN; WRITELN;

WRITE(CURRENTNODE * . NAME) ;

IF CURRENTNODE" .FUNCT='XXX' THEN BEGIN
WRITELN (' PROBABILITY = ' CURRENTNODE® .PROB};

END

ELSE BEGIN
WRITELN;
WRITELN (CURRENTNODE" .FUNCT);
CURRENTINPUT := CURRENTNODE" . INPUTLIST;
WRITELN; WRITELN;
WRITELN ('INPUTS ARE:');

WRITE (' ', CURRENTINPUT® . INPOINTER" .NAME) ;
IF (CURRENTINPUT" INPOINTER® .FUNCT='XXX"') THEN

WRITE("® PROBABILITY = ' CURRENTINPUT®.INPOINTER".PROB};
WRITELN;

FOR I:= 2 TO CURRENTNODE® .NMR DO BEGIN
CURRENTINPUT = CURRENTINPUT" .NEXTIN;
WRITE(' ', CURRENTINPUT" . INPOINTER" .NAME) ;
IF CURRENTINPUT® . INPOINTER® .FUNCT="'XXX"' THEN

WRITE (° PROBABILITY = ' CURRENTINPUT" INPOINTER".PROB);

WRITELN;
END;
END;
END;

PROCEDURE DISPLAY (CURRENTNODE : NODEP ;
TOPNODE : NODEP) ;
(% DISPLAYS A NODE AND ALL OF ITS INPUTS X)

VAR I:INTEGER;
CURRENTINPUT : INPUTP;
CURRNAME : STRING40 ;
ISNAME : BOOLEAN;

ANS : STRING40;

BEGIN
REPEAT
WRITELN ('WHAT GATE WOULD YOU LIKE TO DISPLAY');
READONELN (CURRNAME) ;
SRCHTREE (TOPNODE , CURRENTNODE , CURRNAME , ISNAME) ;
IF ISNAME THEN BEGIN
DSP (CURRENTNODE) ;
END
ELSE BEGIN
WRITELN ('CANT FIND ' 6K CURRNAME) ;
END;
WRITELN ('WOULD YOU LIKE TO DISPLAY ANOTHER GATE?');
READONELN (ANS);
UNTIL ANSC11 <> '¥Y*;
END;

PROCEDURE CHECKBOTTOM (CURRENTNODE :NODEP) ;

(% CHECKS TO SEE IF THERE ARE ANY NODES BELOW CURRENTNODE AND DELETES

(% IF THE USER WISHES X)

THEMX)

UAaR ANS :STRING40;
IPRODB : REAL ;
PROBOK : BOOLEAN ;

BEGIN
IF CURRENTNODE " .FUNCT<(> 'XXX' THEN BEGIN
DSP (CURRENTNODE) ;
WRITELN ('DD YOU WANT TO DELETE EVERYTHING BELOW ', CURRENTNODE" .NAME) ;
WRITELN ('TYPE Y OR N'});
READONELN (ANS) ;
IF (ANSC13<>'Y') THEN BEGIN
WRITELN ('PLEASE GIVE THESE GATES A DIFFERENT QUTPUT BEFORE');

WRITELN ('DELETING ', CURRENTNODE" .NAME) ;
END
ELBE DEGIN (XMAKE CURRENTNODE A BOTTOM EVENTX}
REPEAT

PROBOK : =TRUE ;
WRITELN ('TYPE PROBABILITY OF DCCURRENCE FOR
READLN (IPROB) ;
IF (IPROB<O)THEN BEGIN
WRITELN ('CANT HAVE NEGATIVE PROBABILITY');
PROBOK : =FALSE;
END ; '
IF (IPROB>1)THEN BEGIN
WRITELN ('PROBABILITY CANT BE > 1');
PROBOK ; =FALSE;
END;
UNTIL (PROBOK=TRUE) ;
CURRENTNODE® . PROB: =IPROB;
CURRENTNODE * . INPUTLIST :=NIL ;
CURRENTNODE® . FUNCT :="'XXX" ;
CURRENTNODE * . NMR : =0 ;
END;
END;
END ;

' ,CURRENTNODE " . NAME) ;

PROCEDURE FINDPARENT (CURRENTNODE : NODEP;
VAR INNODE : NODEP;
INNAME :STRING40 ;
VAR PARENTNODE: NODEP;
VAR FOUND: BOOLEAN) ;

UaR CURRENTINPUT : INPUTP;
I, NMROFINPUTS: INTEGER;

BEGIN
FOUND := FALSE; v
NMROFINPUTS := CURRENTNODE" . NMR;
IF INNAME=CURRENTNODE* . NAME THEN BEGIN
WRITELN ('TOP EVENT ~ CANT FIND PARENT');
END
ELSE IF CURRENTNODE * . FUNCT <> 'XXX' THEN BEGIN
CURRENTINPUT = CURRENTNODE* . INPUTLIST;
IF (CURRENTINPUT® INPOINTER® . NAME=INNAME) THEN BEGIN
PARENTNODE := CURRENTNODE;
INNODE := CURRENTINPUT® INPOINTER;
FOUND := TRUE;
END
ELSE FINDPARENT (CURRENTINPUT®.INPOINTER, INNODE , INNAME , PARENTNODE ,FOUND) ;
I:= 2;
WHILE ((NOT FOUND) AND (I<{= NMROFINPUTS)) DO BEGIN
CURRENTINPUT = CURRENTINPUT® .NEXTIN;
IF (CURRENTIMNPUT® . INPOINTER" .NAME = INNAME) THEN BEGIN
INNODE = CURRENTINPUT® INPOINTER;

56

PARENTNODE := CURRENTNODE;
FOUND := TRUE;
END

ELSE FINDPARENT(CURRENTINPUT® . INPOINTER 6 INNODE , INNAME , PARENTNODE ,FOUND) ;

I = I+1;
END (XWHILEX)
END (%IFx)
END;

PROCEDURE DELGATE (TOPPOINTER :NODEP) ;
(XDELETES CURRENTNODE FROM THE TREEX)

VAR LASTNODE ,OTHERNODE ,CURRNODE : NODEP;
ANS . STRING40;
LASTINPUT, CURRENTINPUT:INPUTP;
PROBOK , DELETED , FOUND : BOOLEAN ;
I:INTEGER;
IPROB : REAL ;
CURRENTNAME : STRING40;

BEGIN
ANG (=" *; (XKINITIALIZEX)
REPEAT
WRITELN ('WHAT GATE WOULD YOU LIKE TO DELETE');
READONELN (CURRENTNAME) ;
SRCHTREE (TOPPOINTER , CURRNODE , CURRENTNAME , FOUND) ;
IF NOT FOUND THEN
WRITELN('CANT FIND ' 6 CURRENTNAME)
ELSE BEGIN
FINDPARENT (TOPPOINTER, CURRNODE ,CURRENTNAME , LASTNODE, FOUND);
END;
IF NOT FOUND THEN BEGIN
WRITELN ('TRY ANOTHER NAMET');
READONELN (ANS) ;
END;
UNTIL ((FOUND) OR (ANSC13J<>'Y'));
IF FOUND THEN BEGIN
CHECKBOTTOM(CURRNODE) ; (RMAKE IT A BOTTOM EVENTX)
IF (CURRNODE® .FUNCT = ‘'XXX') THEN BEGIN
IF LASTNODE* .NMR=Z THEN BEGIN
DSP (LASTNODE) ;
WRITELN ('DO YOU WANT TO DELETE BOTH INPUTS TO ' ,LASTNODE® . NAME) ;
WRITELN ('TYPE Y OR N');
READONELN (ANS) ;
IF ANSC11='Y' THEN BEGIN
(% MAKE SURE THE OTHER INPUT IS A BOTTOM EVENTX)
CURRENTINPUT := LASTNODE " .INPUTLIST;
IF CURRENTINPUT® . INPUINTER = CURRNODE THEN BEGIN
OTHERNODE = CURRENTINPUT® NEXTIN®.INPOINTER;
END
ELSE BEGIN
OTHERNODE := CURRENTINPUT® . INPOINTER;
END;
CHECKBOTTOM(OTHERNODE) ; (XMAKE IT A BOTTOM EVENTX)
IF (OTHERNODE" .FUNCT='XXX') THEN BEGIN
LASTNODE" . INPUTLIST := NIL;
LASTNODE* .FUNCT = * XXX"* ;
LASTNODE* .NMR:= 0;
REPEAT
PROBOK ; =TRUE ;
WRITELN ('TYPE THE PROBABIL1ITY OF OCCURRENCE FOR ' 6 LASTNODE"
READLN(IPROB) ;
IF (IPROB<0)THEN BEGIN
WRITELN ('PROBABILITY CANT BE LESS THAN 0');

. NAME)

PROBOK : =F AL S& ;
END;
IF (IPROB>1)THEN BEGIN
WRITELN ('PROBABILITY CANT BE GREATER THAN
PROBOK : =FALSE ;
END;
UNTIL (PROBOK=TRUE) ;
LASTNODE"® . PROB: =IPROB;
END;
END;
END
ELSE BEGIN (¥%IF NUMBER OF INPUTS IS GREATER THAN ZX)
CURRENTINPUT := LASTNODE" K INPUTLIST;
IF (CURRENTINPUT" . INPOINTER=CURRNODE) THEN BEGIMN
LASTNODE* . INPUTLIST := CURRENTINPUT® .NEXTIN;
END
ELSE BEGIN
DELETED:= FALSE;
I:= Z;

» LR I

WHILE ((I{LASTNODE-.NMR) AND (NOT DELETED)) DO BEGIN

LASTINPUT := CURRENTINPUT;
CURRENTINPUT = CURRENTINPUT® NEXTIN;
IF CURRENTINPUT® . INPOINTER=CURRNODE THEN BEGIN
LASTINPUT® .NEXTIN := CURRENTINPUT® .NEXTIN;
DELETED := TRUE;
END;
I:= T+1;
END;
IF NOT DELETED THEN (XIT MUST BE THE LAST INPUTX)
CURRENTINPUT* NEXTIN:= NIL;
END;
LASTNODE® .NMR := LASTNODE® .NMR -1;
END;
END;
END;
END;

PROCEDURE ASSIGN (CURRENTINPUT : INPUTP;
CURRENTNODE : NODEP ;
INAME : STRING40;
IPROB: REAL) ;

(XASSIGNS DATA TO THE GATE THAT HAS BEEN ADDEDX)
BEGIN
NEW (CURRENTINPUT® .INPOINTER) ;
(XASSICN DATA TO THE GATEX)
WITH CURRENTINPUT " .INPOINTER" DO BEGIN
FUNCT = *XXX';
NMR:= 0O;
INPUTLIST := NIL;
NAME := INAME;
PROB := IPROB;
END;
CURRENTNODE " . NMR := CURRENTNODE ° . NMR+1;
WRITELN ('MEMORY AVAILABLE = ' MEMAVAIL);
END;

PROCEDURE ADDGATE (CURRENTNODE, TOPPOINTER:NODEP);
(XADDS A GATE TO THE TREE WITH OUTPUT TO CURRENTNODEX)

VAR I:INTEGER;
ANS, ANSL, ANSZ:STRING40;
INAME : STRING40;

58

IPROB: REAL ;
CURRENTINPUT : INPUTP ;
SRCHNODE : NODEP ;

PROBOK , ISNAME , ADD : BOOLEAN;

PROCEDURE CHANGEBOTTOM ;

BEGIN
ADD := TRUE;
REPEAT

WRITELN('TYPE NAME OF NODE TO BE ADDED');
READONELN(INAME) ;
SRCHTREE (TOPPOINTER , SRCHNODE , INAME , ISNAME) ;
IF ISNAME THEN BEGIN
WRITELN ('NAME ALREADY EXISTS ON THE TREE. DO YOU WISH TO');
WRITELN ('TRY ANOTHER NAMET');
(¥ DO NOT ALLOW THE SAME GATE NAME TO BE USED TWICE ON THE TREEX)
READONELN (ANS) ;
IF ANSC13 <> 'Y' THEN ADD:=FALSE;
END ;
UNTIL (ISNAME =FALSE) OR (NOT ADD);
IF ADD THEN BEGIN
REPEAT
PROBOK : =TRUE ;
WRITELN ('TYPE PROBABILITY OF OCCURRENCE FOR NEW NODE®);
READLN(IPROB) ;
IF IPROB>1 THEN BEGIN
WRITELN('PROBABILITY CANT BE GREATER THAN 1°');
PROBOK : =FALSE ;
END;
IF IPROP<O THEN BEGIN
WRITELN ('PROBABILITY CANT BE LESS THAN 0°');
PROBOK : =FALSE ;
END;
UNTIL (PROBOK=TRUE) ;
REPEAT

WRITELN('SINCE ' CURRENTNODE® .NAME,' IS A& BOTTOM EVENT, IT MUST ');
WRITELN(‘HAVE AT LEAST Z INPUTS. WOULD YOU LIKE IT TO BE AN AND (A)');
WRITELN('OR AN OR(D) GATE? (TYPE L TO LEAVE THE ADD PROCEDURE AND');
WRITELN('DELETE THE GATE JUST ADDED)');
WRITELN('PLEASE TYPE &4, L, OR 0');
READONELN (ANS1) ;
UNTIL{(ANSLIC1d='L"') OR (ANSLC1I='A') OR (ANS1C1I='0')});
IF ANS1CL1J=‘'L' THEN ADD:= FALSE;
END;
IF ADD THEN BEGIN
(% GET A& SPACE IN MEMORY FOR THE NEW NODE %)
NEW (CURRENTNODE® . INPUTLIST);
CURRENTINPUT := CURRENTNODE® .INPUTLIST;
CURRENTINPUT ® NEXTIN:= NIL;
AGSIGN (CURRENTINPUT ,CURRENTNODE , INAME , IPROD) ;
IF ANSLC1] = 'A' THEN CURRENTNODE® .FUNCT := ‘AND';
IF ANSL1C1] = 'O' THEN CURRENTNODE® .FUNCT :='0OR °';

WRITELN ('CANT HAVE A SINGLE INPUT AND/OR GATE');
END;
END ;

BEGIN (®XADDGATEX)

IF (CURRENTNODE® .FUNCT="'XXX"')THEN BEGIN
CHANGEBOTTOM;

END;

IF (CURRENTNODE® .FUNCT{> 'XXX') THEN BEGIN
ADD := TRUE;
REPEAT

REPEAT

59

WRITELN ('TYPE NAME OF GATE TO BE ADDED');
READONELN (INAME) ;
SRCHTREE (TOPPOINTER, SRCHNODE, INAME, ISNAME) ;
IF ISNAME THEN BEGIN
WRITELN ('NAME ALREADY EXIS5TS IN TREE. DO YOU WISH TO0');
WRITELN ('TRY ANOTHER NAME?T');
READONELN (ANS) ;
IF (ANSCLI<>'Y') THEN ADD:=FALSE;
END;
UNTIL ((ISNAME=FALSE) OR (ADD=FALSE)),;
IF ADD THEN BEGIN
REPEAT
PROBOK : =TRUE ;
WRITELN ('TYPE PROBABILITY OF OCCURRENCE FOR NEW NODE');
READLN (IPROB) ;
IF (IPROB>1)THEN BEGIN
WRITELN('PROBABILITY CANT BE GREATER THAN 1');
PROBOK : =FALSE;
EEND ;
IF (IPROB<O)THEN BEGIMN
WRITELN ('PROBAPILITY CANT BE LESS THAMN 0');
PROPOK : =FALSE ;
END;
UNTIL (PROBOK=TRUE) ;
(XADD THE NEW GATE IN MEMORYX)
(XGET TO THE END OF THE INPUT LISTX)
CURRENTINPUT := CURRENTNODE* .INPUTLIST;
WHILE CURRENTINPUT® .NEXTIN<C>NIL DO BEGIN
CURRENTINPUT := CURRENTINPUT"® NEXTIN;
END;
NEW (CURRENTINPUT® NEXTIN);
CURRENTINPUT := CURRENTINPUT" NEXTIN;
CURRENTINPUT * .NEXTIN:= NIL;
ASSIGN (CURRENTINPUT ,CURRENTNODE , INAME , IPROB) ;
WRITELN ('DO YOU WANT TO ADD ANOTHER INPUT TO ' ,CURRENTNODE® .NAME);
WRITELN ('TYPE Y OR N');
READONELN (ANSZ) ;
IF ANSZCL1I1<>'Y"' THEN ADD:= FALSE;
END;
UNTIL (ADD=FALSE);
END;
END;

PROCEDURE OUTPUTCHANGE (TOPPOINTER,6 CURRENTNODE : NODEP) ;
VAR DELETED, ISAME ,FOUND: BOOLEAN;

INAME : STRING40;

NEWNODE , INNODE , PARENTNODE : NODEP ;

I:INTEGER;

LASTINPUT ,CURRENTINPUT : INPUTP;

ANS . STRING40;

BEGIN
FINDPARENT (TOPPOINTER , INNODE , CURRENTNODE * . NAME , PARENTNODE , FOUND) ;
IF FOUND THEN BEGIN
IF PARENTNODE “ .NMR=2 THEN BEGIN
WRITELN('CANT DELETE ONE OF TWD INPUTS TO ' ,PARENTNODE" .NAME);
END
ELSE BEGIN
REPEAT
ISNAME : = FALSE; (XINITIALIZE ISNAMEX)
WRITELN ('OUTPUT TO WHICH GATE?7');
READONELN (INAME) ;
IF (INAME=CURRENTNODE"® . NAME) THEN BEGIN
WRITELN ('CANT OUTPUT A GATE TO ITSELF. '),

60

END
ELSE BEGIN

SRCHTREE (CURRENTNODE , NEWNODE, INAME, ISNAME) ;
IF ISNAME THEN BEGIN
ISNAME := FALSE;
WRITELN('CANT CHANGE OUTPUT OF ', CURRENTNODE® .NAME, ' TO AN');

WRITELN(''EVENT THAT CAUSES IT. ') ;
END
ELSE BEGIN

SRCHTREE (TOPPOINTER NEWNODE , INAME , ISNAME) ;

IF NOT ISNAME THEN BEGIN

WRITELN ("CANT FIND ' INAME,'. ');

END
ELSE BEGIN
IF NEWNODE=PARENTNODE THEN BEGIN

ISNAME := FALSE; (XDO NOT CHANGEX)
WRITELN ('OUTPUT OF ' CURRENTNODE®.NAME,' IS5 ALREADY AN');

WRITELN ('INPUT OF ' NEWNODE" .NAME, '.

END
ELSE BEGIN
IF NEWNODE® .NMR=0 THEN BEGIN
ISNAME = FALSE;

WRITELN ('CANT ADD ONLY ONE GATE TO

END;
END;
EMD;
END;
END;
IF NOT ISNAME THEN BEGIN

R

' NEWNODE" . NAME) ;

WRITELN ('DO YOU WISH TO CHANGE THE OUTPUT OF ');

WRITELN (CURRENTNODE" .NAME, ' TO ANOTHER GATET');
READONELN(ANS) ;
END;

UNTIL ((ISNAME) OR (ANSC1I<>'Y'));
IF ISNAME THEN BEGIN

CURRENTINPUT : =sNEWNODE* . INPUTLIST;
(%ADD CURRENTNODE TO END OF NEWNODEX)
FOR I:= 2 TO NEWNODE®.NMR DO
CURRENTINPUT : = CURRENTINPUT" NEXTIN;
NEW (CURRENTINPUT® NEXTIN);
CURRENTINPUT : =CURRENTINPUT " .NEXTIN;
NEW(CURRENTINPUT® . INPOINTER) ;
CURRENTINPUT® . INPOINTER: = CURRENTNODE;
CURRENTINPUT® .NEXTIN:= NIL;
NEWNODE® . NMR := NEWNODE" .NMR+1;
(XDELETE CURRENTNODE FROM PARENTNODEX)
DELETED := FALSE;
CURRENTINPUT : = PARENTNODE" . INPUTLIST;
IF CURRENTINPUT® . INPOINTER=CURRENTNODE
PARENTNODE * . INPUTLIST i =CURRENTINPUT*
DELETED:= TRUE;

END
ELSE BEGIN
I:= 2,

THEN BEGIN

C.NEXTIN;

WHILE ((I{PARENTNODE" .NMR) AND (NOT DELETED)) DO BEGIN

LASTINPUT := CURRENTINPUT;

CURRENTINPUT = CURRENTINPUT® .NEXTIN;
IF CURRENTINPUT® . INPOINTER=CURRENTNODE THEN BEGIN
LASTINPUT " . NEXTIN:= CURRENTINPUT® NEXTIN;

DELETED: =TRUE;
END; (XxXIFxX)
END; (XWHILEX)

IF NOT DELETED THEN (XDELETE LAST INPUTX)

CURRENTINPUT * .NEXTIN := NIL;
END;

61

PARENTNODE* .NMR := PARENTNODE" . NMR—1;
END;
END;
END;
END;

PROCEDURE CHANGE (TOPPOINTER ,CURRENTNODE :NODEP) ;

(% CHANGES THE NAME, FUNCTION, PROBABILITY, OR OUTPUT OF A GATE OF THE TREEX)

VAR ANS, ANSZ:STRING40;
INAME : STRING40;
DUMMY : STRINGI ;
NEWNODE , INNODE , PARENTNODE : NODEP ;
IPROB: REAL;
PROBOK : BOOLEAN ;

BEGIN
REPEAT
REPEAT
(XDISPLAY A MENLUX)
PAGE(QUTPUT) ; (XCLEAR THE SCREENX)

WRITELN;WRITELN;WRITELN; WRITELN;
WRITELN('DO YOU WANT TO:*');

WRITELN;

WRITELNC® CHANGE THE NAME OF THE GATE (N)');
WRITELN;

WRITELMN(® CHANGE THE FUNCTION OF THE GATE (F)');
WRITELN;

WRITELN(" CHANGE THE OUTPUT OF THE GATE (0)');
WRITELN;

WRITELN(" CHANGE THE PROBABILITY OF THE GATE (P)');
WRITELN;

WRITELNC® TO EXIT THE CHANGE PROCEDURE TYPE E');

WRITELN;WRITELN;
WRITELN('PLEASE TYPE N,F,0,P, OR E');
READONELN(ANS) ;

UNTIL ((ANSCLI=‘N') OR (ANSC1I='F') OR (ANSC1I='0Q"') OR

OR (ANSCLI='E'));
IF (ANSCL1J='N') THEN BEGIN

WRITELN ('TYPE NEW NAME FOR ' CURRENTNODE " .NAME);

READONELN (INAME) ;
CURRENTNODE® . NAME : = INAME;
END;
IF (ANGC1J='F') THEN BEGIN
IF CURRENTNODE® .FUNCT='AND' THEN BEGIN
DUMMY . ='0R" ;
WRITELN ('FUNCTON=0OR'}; (XDEBUG OQUTPUTX)
END;
IF CURRENTNODE® .FUNCT='OR' THEN BEGIN
DUMMY :="'AND "' ;
WRITELN ('FUNCTION=AND®) ;
END;
IF CURRENTNODE® .FUNCT='XXX' THEN BEGIN

(ANSCLJ="'P")

WRITELN (*'BOTTOM EVENT ~ CANT CHANGE GATE FUNCTION');

END
ELSE BEGIN
CURRENTNODE* .FUNCT : = DUMMY ;
END;
END;
IF (ANSC11='0') THEN BEGIN
OUTPUTCHANGE (TOPPOINTER , CURRENTNODE) ;
END;
IF (ANSC1]d='P*) THEN BEGIN
REPEAT
PROBOK : =TRUE ;

WRITELN('TYPE NEW PROBABILITY');
READLN (IPROB);
IF (IPROB>L)ITHEN BEGIN
WRITELN('PROBABILITY CANT BE GREATER THAN 1°');
PROBOK : =FALSE ;
END;
IF (IPROB<O)THEN DEGIN
WRITELN ('PROBABILITY CANT BE LESS THAN 0');
PROBOK : =FALSE ;
END;
UNTIL (PROBOK=TRUE) ;
CURRENTNODE" .PROB := IPROB;
END;
IF (ANSLC13<>'E') THEN BEGIN
WRITELN (‘DD YOU WANT TO MAKE ANY OTHER CHANGES TO ' ,CURRENTNODE® .NAME) ;
WRITELN (' TYPE Y OR N');
READONELN (ANSZ);
IF (ANSZ2C11<>'Y') THEN ANS:='E"‘;
END;
UNTIL (ANSC1I='E');
END;

PROCEDURE APPEND(TOPPOINTER :NODEP) ;

VAR CURRENTNODE : NODEP;
APPFILENAME ,CURRNAME : STRING40 ;
ISNAME : BOOLEAN;
ANS : STRING4O ;
CURRENTINPUT : INPUTP;

BEGIN
REPEAT
ANG:=* (XINITIALIZEX)
WRITELN ('INPUT TO WHICH GATE');
READONELN (CURRNAME) ;
SRCHTREE (TOPPOINTER,CURRENTNODE, CURRNAME , ISNAME) ;
IF ISNAME THEN BEGIN
IF CURRENTNODE® .NMR=0 THEN BEGIN

WRITELN (CURRNAME, ' CANT HAVE A SINGLE INPUT.');
ISNAME := FALSE;
END;

END
ELSE BEGIN
WRITELN ('CANT FIND ' ,CURRNAME,' IN TREE.');
END;
IF NOT ISNAME THEMN BEGIN
WRITELN ('DO YOU WISH TO TRY ANOTHER NAMET');
READONELN (ANS) ;
END;
UNTIL ((ISNAME) OR (ANSCLI>'Y'));
IF (ISNAME) THEN BEGIN
WRITELN ('FILE 7O ADD TO ' 6CURRNAME);
READONELN (APPFILENAME) ;
(% GET TO END OF INPUT LISTX)
CURRENTINPUT = CURRENTNODE" .INPUTLIST;
FOR I:= 2 TO CURRENTNODE®.NMR DO
CURRENTINPUT := CURRENTINPUT® .NEXTIN;
NEW (CURRENTINPUT*® NEXTIN} ;
CURRENTINPUT := CURRENTINPUT" .NEXTIN;
CURRENTINPUT * .NEXTIN:= NIL;
NEW (CURRENTINPUT® . INPOINTER) ;
RESET (INPUTFILE,APPFILENAME) ;
READTREE (CURRENTINPUT * . INPOINTER) ;

63

CLOSE (INPUTFILE, LOCK);
CURRENTNODE* . NMR : =CURRENTNODE * . NMR+1 ;
END;
END;

PROCEDURE MENU(TOPNODE : NODEP) ;
VAR ANG , ANSZ STRING40;
ISNAME : BOOLEAN;
CURRENTNODE : NODEP ;
APPFILENAME , CURRNAME , OUTFILENAME : STRING40;

BEGIN
ANG ;="' ' ANSZ (="' (XINITIALIZE THE VARIABLESX)
REPEAT
REPEAT
(XDISPLAY THE MENUX)
PAGE (OUTPUT) ; (XOLEAR THE SCREENX)
WRITELN;WRITELN,WRITELN;
WRITELN('MEMORY AVAILABLE=' MEMAVAILL, "' . DO YOU WANT TO: ") ;
WRITELN;WRITELN;
WRITELN (' ADD A NODE (@A) °);
WRITELN;
WRITELN (' REMOVE A NODE (R} ");
WRITELN;
WRITELN (' APPEND A FILE TO THIS FILE (P)'});
WRITELN;
WRITELN (' CHANGE A GATE (C) ‘') ;
WRITELN;
WRITELN (' DISPLAY A GATE (D) ');
WRITELN;
WRITELN (' WRITE TO A FILE NAME (W)');
WRITELN;
WRITELN (' EXIT THE PROGRAM (E)');
WRITELN; WRITELN;

WRITELN ('PLEASE TYPE A,R,P,C,D,W, OR E');
READONELN (ANSZ) ;
UNTIL ((ANSZ2CLI='A‘') OR (ANSZC1J='D') OR (ANSZ2C11='P‘') OR (ANSZLC1J='C')
OR (ANSZLC1I='R*JI0OR (ANSZC1I='W') OR (ANSZCLI='E')});
IF ANGZC1J='A' THEN BEGIN (XADD A NODE TO THE FILEX)
REPEAT
WRITELN ('TD WHICH GATE WOULD YOU LIKE TO ADD AN OQUTPUT?');
READONELN (CURRNAME) ;
SRCHTREE (TOPNODE ,CURRENTNODE ,CURRNAME , IGNAME) ;
IF NOT ISNAME THEN BEGIN
WRITELN ('CANT FIND ' CURRNAME,' IN TREE. DO YOU WISH TO TRY *);
WRITELN ('ANOTHER NAMET');
READONELN (ANS) ;
END;
UNTIL ((ANSLCL13I<>'Y"') OR (ISNAME)) ;
IF ISNAME THEN ADDCATE(CURRENTNODE , TOPNODE!} ;

END;

IF ANSZ2C11='R' THEN BEGIMN (¥DELETE A GATE FROM THE FILEX)
DELGATE (TOPNODE) ;

END;

IF ANSZC11='P' THEMN BEGIN (XAPPEND A FILE TO THIS FILEX)
APPEND(TOPNODE) ;

END;

IF ANGSZCLlI='C' THEN BEGIN (XCHANGE A GATE OF THE TREEX)
REPEAT

WRITELN ('WHAT GATE WOULD YOU LIKE TO CHANGE');
READONELN (CURRNAME) ;

SRCHTREE (TOPNODE ,CURRENTNODE ,CURRNAME , ISNAME) ;
IF NOT ISNAME THEN BEGIN

[T W T VI

sy

P LN N PR S TN R Sk

WM LB i T WL Sl

WEL L LrRRE T e B) O A WEBLL YL, o
YEMIEOWRE T By’
MU ZIFETM 1 LTRwES LARd B UGN W)
M T=ENW PEL LSOWR MBI LS

153 Ul RN PaAnEL W WEM RUNCL LBTE e

mus 1 IET W SMY ST
YT LECH 0
LIPS LTS ST R TEFT- SRR 0 Tt
METLETa N0 AT A D)
L e
‘7‘:-,55'9&
9T

(Al ™ LMIET UL

T

WEH e T Y
E g

EnE

(T TOEI G T § 4l
lasdly =20

(SR i - AR
wdld =vu

RSNE T I 8 o7

B LOLWOTE. T RESSY

GEWIRSHET 4 ¢ CMulE

FHELEMW 1 LABE THE Wem ik LE 000 RS
Er 2L SO

CWCHTMLE W MER

iy)

LL
fom

EraerC Ik‘HF‘LL!fE L

WEVIAMERE | L0bERES

BEOEL (MMl oLE L7 E Tl 7 B

oLEB Al A CERR S £

MEYEE M T AARE RITE G RO KO0 LED,

b

BT W COMEEVLN b U2 werir o

MUY 2 oa G E, LHEW BEC T {AERTY w0 e iSLYAT

COTGREA L MRE " hRL "
B I
A EDEIFC T taesa EANIVESG

o TR St S

UL il e L E TIN5 3w, TIE AT IS o | 41

GTEE

LT Ed

Lr

I

66

APPENDIX B. SOURCE LISTING OF "FAULTTREE" PROGRAM

The FAULTTREE program, described fully in Chapters IV and V,
uses the output of the EDITOR program to find the minimal cut sets
and failure probabilities of the fault tree. Sample output is given

in Appendix C.

67

200 00 KK KOO K FAULTTREE . TEXT R 6 06 6 OROK KON K KOK 308
THIS PROGRAM READS AND PRNOCESSES A GENERAL FAULT TREE HAVING “AND* AND
"DR" GATES. THE TREE I% ENTERED BY THE USER BY EDITING A FILE WITH THE
PROPER FORMAT AND GIVING THE FILE NAME WHEN ASKED. THE PROCESSING
CONSISTS OF FINDING ALL OF THE MINIMAL CUT SETS OF THE TREE. A LISTING
OF THESE CUT SETS CAN BE ROUTED TO THE TERMINAL SCREEN, THE PRINTER, OR
TO A DISK FILE FOR LATER USE. %)

TYPE STRING40 = STRINGC401;
STRING3 = STRINGC33;

NODE=RECORD (XTHESE ARE THE NODES WITH THE ACTUAL INFORMATIONX)
(% IN FIGURE 2x)
NAME: STRING40; (% NAME OF THE EVENT. X%}

FUNCT ::STRINGJ; (% "AND", "O0OR", "XXX* X)
PROD: REAL ; (% PROPABILITY OF OCCURRENCE IF BOTTOM EVENT x)
INPUTLIST: "INPUTTYPE
END;
NODEP="NODE ;

INPUTTYPE=RECORD (%THESE ARE THE "CONNECTOR" NODES IN FIGURE 2ZX)
INPOINTER: “NODE;
NEXTIN: “INPUTTYPE
END;
INPUTP= " INPUTTYPE;

CUTSETNODE=RECORD (XTHESE ARE THE INFORMATION NODES IN FIGURE 3x)
ISBOTTOM: BOOLEAN; (% TRUE IF NOTHING CAUSES EVENT X)
NAME : STRING40; (% EVENT NAME X)
PROB : REAL ; (%X PROBABILITY OF OCCURRENCE X)
NEXTNODE : "CUTSETNODE
END;

CUTSETP="CUTSETNODE;

CUTLISTNODE=RECORD (XTHESE ARE THE “CONNECTOR® NODES IN FIGURE J3x)
SETPOINTER: “CUTSETNODE ;
NEXTLIST: "CUTLISTNODE ;
LISTPROB:REAL ; (% PROBABILITY OF CUTSET OCCURRENCE %)
END ;
CUTLISTP="CUTLISTNODE;

VAR
TOPPOINTER : NODEP ; (% MAIN FAULT TREE AFTER READING X)
CUTSETLIST :CUTLISTP; (% LIST OF CUT SETS %)
FILENAME, OUTFILENAME:STRING40; (% INPUT AND OUTPUT FILE NAMES X)
INPUTFILE, OUTFILE:TEXT; (% INPUT AND OUTPUT FILE IDENTIFIERS X)
PROB, TOTALPROB : REAL ; (% PROBABILITIES OF FAILURE X}

PROCEDURE READTREE (CURRENTNODE :NODEP) ;
(% READS TREE UNDER CURRENTNODE FROM INPUT FILE. X)

var
INNAME :STRING4O ;
CATE :STRING3;
NMROF INPUTS : INTEGER ;
CURRENTINPUT : “ INPUTTYPE;
I:INTEGER;

BEGIN
IF EOF (INPUTFILE) THEN BEGIN
WRITELN;
WRITELN('%%XERROR, EXPECTED MORE INPUT.');
HALT ;

68

END;

READLN (INPUTFILE , INNAME) ; (% READ DATA FROM INPUT FILE %)
READLN (INPUTFILE NMROFINPUTS);

READLN (INPUTFILE 6GATE);

READLN (INPUTFILE , PROB);

CURRENTNODE * . NAME = INNAME; (% LOAD NODE WITH INPUT DATA X)
CURRENTNODE" . PROB := PROB;

CURRENTNODE * .FUNCT := GATE;

IF GATE <> 'XXX' THEN BEGIN
NEW (CURRENTINPUT) ; (% GET FIRST INPUT OF GATE X)
CURRENTNODE " . INPUTLIST := CURRENTINPUT;
NEW (CURRENTINPUT® .INPOINTER); (X% GET GATE FOR FIRST INPUT %)

READTREE (CURRENTINPUT® . INPOINTER}; (% READ TREE FOR FIRST INPUT X}
FOR I := 2 TO NMROFINPUTS DO BEGIN (% FOR EACH OF THE OTHER GATES X)
NEW (CURRENTINPUT® NEXTIN) ; (% GET NEXT INPUT x)
CURRENTINPUT := CURRENTINPUT® . NEXTIN;
NEW (CURRENTINPUT" . INPOINTER) ; (% GET GATE FOR THAT INPUT X)
READTREE (CURRENTINPUT® . INPOINTER); (% READ TREE FOR THAT INPUT X)
END;
CURRENTINPUT* .NEXTIN := NIL (% NO MORE INPUTS X)
END
ELSE (% THE GATE IS OF TYPE XXX %!}
CURRENTNODE " . INPUTLIST := NIL; (X NO INPUTS AT ALL X}

END;

PROCEDURE ADD(NAME : 5TRING40;
FUNCT: STRING3; '
PROB: REAL ;
VAR CUTSETLIST:CUTLISTP);
(% ADDS EVENT NAME TO EACH CUT SET IN CUT SET LIST. IF FUNCTION IS
XXX, THEN FLAGS SET ELEMENT AS BOTTOM. X)
VAR CURRENTSET: *CUTLISTNODE ;
NEWSETNODE : “CUTSETNODE ;

BEGIN
IF CUTSETLIST = NIL THEN BEGIN (X% NO SETS IN CUTSET X1}
NEW(CUTSETLIST) ; (% CREATE ONE CUTSET X)
CUTSETLIST® . SETPOINTER := NIL; (X WITH NOTHING IN IT Xx)
CUTSETLIST" .NEXTLIST := NIL
END;

CURRENTSET := CUTSETLIST;

WHILE CURRENTSET <> NIL DO BEGIN
NEW (NEWSETNODE) ; (% GET NEW SET ELEMENT %)
NEWSETNODE " . NAME = NAME; (% AND INITIALLIZE IT x)
NEWSETNODE® . PROB := PROB;
IF FUNCT = 'XXX'

THEN NEWSETNODE® . ISBOTTOM := TRUE

ELSE NEWSETNODE® . ISBOTTOM :@= FALSE;

(% LINK NEW ELEMENT INTO SET X)
NEWSETNODE * . NEXTNODE := CURRENTSET® .SETPOINTER;
CURRENTSET* . SETPOINTER := NEWSETNODE;

CURRENTSET : =CURRENTSET* . NEXTLLIST; (% DO NEXT CUT SET %)
END;
END;

PROCEDURE COPY (CUTSETLIST:CUTLISTP;
VAR CUTSETCOPY :CUTLISTP);

(X MAKES A& COPY OF THE CUT SET LIST AND POINTS CUTSETCOPYN AT IT %)
VAR CURRENTSET ,SETCOPY: “CUTLISTNODE;

69

CURRENTELEMENT ,ELEMENTCOPY : “CUTSETNODE ;

BEGIN
CURRENTSET := CUTSETLIST,;
NEW (CUTSETCOPY) ; (% INIT COPY WITH FIRST CUT SET %)

SETCOPY := CUTSETCOPY;

WHILE CURRENTSET <> NIL DO BEGIN (% COPY EACH SET)
CURRENTELEMENT : = CURRENTSET" . SETPOINTER;
NEW (ELEMENTCOPY) ; (X INIT SET WITH FIRST ELEMENT X)

SETCOPY " . SETPOINTER:=ELEMENTCOPY;

WHILE CURRENTELEMENTC(>NIL DO BEGIN (% COPY EACH ELEMENT IN SET %)
ELEMENTCOPY ° .NAME : = CURRENTELEMENT * . NAME ;
ELEMENTCOPY " . ISBOTTOM = CURRENTELEMENT" .ISBOTTOM,;
ELEMENTCOPY " .PROB := CURRENTELEMENT® . PROB;

CURRENTELEMENT : = CURRENTELEMENT® . NEXTNODE ; (% NEXT ELEMENT X)
IFF CURRENTELEMENT<>NIL THEN BEGIN
NEW (ELEMENTCOPY" NEXTNODE) ;
ELEMENTCOPY : = ELEMENTCOPY " . NEXTNODE
END
ELSE (X NO MORE ELEMENTS IN SET %)
ELEMENTCOPY" .NEXTNODE := NIL;
END;

CURRENTSET := CURRENTSET® .NEXTLIST; (%X NEXT SET IN LIST %)
IF CURRENTSET<>NIL THEN BEGIN

NEW(SETCOPY* .NEXTLIST);

SETCOPY := SETCOPY" .NEXTLIST;

END
ELSE (% NO MORE SETS IN LIST *x)
SETCOPY " .NEXTLIST:= NIL;
END;

END ;

PROCEDURE MERGECUTSETLISTS (VAR RESULT:CUTLISTPR;
ADDITION:CUTLISTP) ;
(¥ TACKS CUT SET POINTED AT BY ADDITTION ONTO CUTSET POINTRESULT X)
VAR CURRENTSET: “CUTLISTNODE;

BEGIN
IF RESULT = NIL THEN
RESULT := ADDITION (X% NOTHING IN RESULT X)
ELSE BEGIN
CURRENTSET := RESULT;
WHILE CURRENTSET® .NEXTLIST(>NIL DO (% FIND END OF RESULT SET LIST X)
CURRENTSET := CURRENTSET " .NEXTLIST;

CURRENTSET ® . NEXTLIST: = ADDITION; (% TACK ADDITION ONTO RESULT X)
END;
END;

PROCEDURE FINDCUTSETS (CURRENTNODE : NODEP ;
VAR CUTSETLIST:CUTLISTP);
(% DETERMING THE CUT SET LISTS FOR EACH INPUT CAUSING THE CURRENT EVENT X)
VAR CURRENTINPUT : " INPUTTYPE;
RESULTCUTSET : "CUTLISTNODE ;
CUTSETCOPY : “CUTLISTNODE ;

BEGIN
(¥ FIRST ADD CURRENT EVENT TO CUTSETLIST x)
ADD (CURRENTNODE® . NAME , CURRENTNODE® . FUNCT ,CURRENTNODE® . PROB ,CUTSETLIST);

70

IF CURRENTNODE " .FUNCT="'AND' THEN
BEGIN

CURRENTINPUT := CURRENTNODE " . INPUTLIST;

WHILE CURRENTINPUT <> NIL DO BEGIMN (% FIND FOR EACH INPUT X}
FINDCUTSETS (CURRENTINPUT® . INPOINTER,CUTSETLIST!;
CURRENTINPUT : = CURRENTINPUT® NEXTIN

END;

END

ELSE IF (CURRENTNODE® .FUNCT = 'OR ') OR
(CURRENTNODE* . FUNCT = 'OR*)
THEN BEGIN

CURRENTINPUT := CURRENTNODE" . INPUTLIST;

RESULTCUTSET = NIL;

WHILE CURRENTINPUT <> NIL DO BEGIN (% FIND FOR EACH INPUT xXx)
COPY (CUTSETLIST ,CUTSETCOPY) ; (% BUT KEEP RESULTS SEPERATE X}
FINDCUTSETS (CURRENTINPUT® INPOINTER ,CUTSETCOPY) ;
MERGECUTSETLISTS (RESULTCUTSET ,CUTSETCOPY) ;

CURRENTINPUT := CURRENTINPUT" NEXTIN;

END;

CUTSETLIGST := RESULTCUTSET;
END;
END;

PROCEDURE FINDPROP (CUTSETLLIST:CUTLISTP);
VAR CURRENTSET: "CUTLISTNODE;
CURRENTELEMENT : “"CUTSETNODE ;

(X FIND PROBALITY OF OCCURRENCE FOR EACH CUTSET AND FOR TOP EVENT.X)

BEGIN
CURRENTSET := CUTSETLIST;
TOTALPROB = 1; (XPROBABILITY OF NO FAILURE PATHS OCCURRING X))
WHILE CURRENTSET <> NIL DO BEGIN
(X REPEAT UNTIL ALL SETS ARE TRAVERSED %)
CURRENTSET* .LISTPROB := 1; (% PROBABILITY OF PATH NOT OCCURRING X}

CURRENTELEMENT := CURRENTSET®.SETPOINTER; (% GO TO FIRST NODE X)
WHILE CURRENTELEMENT <> NIL DO BEGIN

(% REPEAT UNTIL ALL ELEMENTS ARE TRAVERSED X!
IF CURRENTELEMENT® .ISBOTTOM THEN
(%X GET PROBABILITY OF THE BOTTOM ELEMENT X}

CURRENTSET® . LISTPROB = CURRENTSET" . LISTPROBXCURRENTELEMENT® .PROB;
(KUPDATE CUTSET PROBABILITYX)

CURRENTELEMENT := CURRENTELEMENT® . NEXTNODE; (% GO TO NEXT ELEMENT %)
END;

TOTALPROB = TOTALPROBX(L1-CURRENTSET® .LISTPROB) ;

(XUPDATE TOTAL PROBABILITYX)

CURRENTSET := CURRENTSET" .NEXTLIST; (%G0 TO NEXT CUTSETX)
END;

TOTALPROB = L-TOTALPROB; (XPROBABILITY OF ONE OR

MORE PATHS OCCURRINGX)
END;

PROCEDURE WRITECUTSETS (CUTSETLIST:CUTLISTP);
VAR CURRENTSET: "CUTLISTNODE;
CURRENTELEMENT :"CUTSETNODE ;
(% PRINTS THE CUTSET LIST TO THE QUTPUT FILE. X}

BEGIN
CURRENTSET = CUTSETLIST;

WHILE CURRENTSETC(>NIL DO BEGIN (% PRINT EACH SET

IN LIST X}
CURRENTELEMENT : = CURRENTSET® . SETPOINTER;

T

(% LEAVE 3 BLANK LINES BETWEEN SETS %)
WRITELN(OUTFILE) ;WRITELN(OUTFILE) ;WRITELN(OUTFILE);

WHILE CURRENTELEMENT<>NIL DO BEGIN (% PRINT EACH ELEMENT IN S5ET %)
IF CURRENTELEMENT " .NAMELCL11 (> '='
THEN (% ONLY PRINT IF THERE IS A NAME X)

IF CURRENTELEMENT® . ISBOTTOM
THEN WRITELN(OUTFILE, ' '%' , CURRENTELEMENT " . NAME)
ELSE WRITELN(OUTFILE,' ', CURRENTELEMENT® . NAME) ;
CURRENTELEMENT : = CURRENTELEMENT® NEXTNODE ; (XPOINT AT NEXT ELEMENTX)
END;

WRITELN (OUTFILE, 'PROBABILITY OF OCCURRENCE FOR THIS PATH I5', CURRENTSET

* . LISTPROB) ;
CURRENTSET : = CURRENTSET® .NEXTLIST; (% POINT AT NEXT SET IN LIST X);
END;
WRITELN (OUTFILE, 'PROPAPILITY OF OCCURRENCE FOR TOP EVENT IS' TOTALPROB);
END;
BEGIN
WRITELN;

WRITELN ('TYPE THE NAME OF THE INPUT FILE');
READLN (FILENAME) ;
RESET (INPUTFILE, FILENAME);

WRITELN;

WRITELN ('WHERE DO YOU WANT THE OUTPUT TO GO7');
WRITELN ('TYPE CONSOLE: OR PRINTER: OR FILE~NAME');
READLN (OUTFILENAME) ;

REWRITE (OUTFILE, OUTFILENAME);

NEW

(TOPPOINTER) ;

READTREE (TOPPOINTER) ;

CUTSETLIST := NIL;

FINDCUTSETS (TOPPOINTER,CUTSETLIST);
FINDPROB (CUTSETLIST);

WRITECUTSETS (CUTSETLIST);

CLOSE(INPUTFILE) ;
CLOSE(QUTFILE, LOCK);

END.

72

APPENDIX C, SAMPLE OUTPUT

This sample output is the minimal cut sets for the conductor

break fault tree given in figure 9. It is the output of the FAULTTREE

program, listed in Appendix B.

XS5ELF FRACTURE

MECHANICAL FRACTURE OF CONDUCTOR
CONDUCTOR BREAK

PROPABILITY OF OCCURRENCE FOR THIS

XYIELDING OF ADJACENT REINFORCEMENT
MECHANICAL FRACTURE OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS

X*CRYOSTAT RUPTURE

MISSILE IMPACT

MECHANICAL FRACTURE OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS

XMISSILE FROM ENUIRONMENT

MISSILE IMPACT

MECHANICAL FRACTURE OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS

XMISSILE FROM REACTOR

MISSILE IMPACT

MECHANICAL FRACTURE OF CONDUCTOR
CONDUCTOR BREAK

PROPABILITY OF OCCURRENCE FOR THIS

XRADIATION DAMAGE TO INSULATION
INSULATION DEGRADATION

ELECTRICAL SHORT

HIGH TEMP FAILURE OF CONDUCTOR
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS

XSTRESS CYCLING FATIGUE

MECHANICAL INSULATION DEGRADATION
INSULATION DEGRADATION

ELECTRICAL SHORT

HIGH TEMP FAILURE OF CONDUCTOR
CONDUCTOR BREAK
PROBABILITY OF OCCURRENCE FOR THIS

XSTRESS DUE TO PREVIOUS GQUENCHES
MECHANICAL INSULATION DEGRADATION
INSULATION DEGRADATION
ELECTRICAL SHORT
HIGH TEMP FALLURE OF CONDUCTOR

PATH IS

PATH IS

PATH IS

PATH IS

PATH IS

PATH IS

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

PATH IS5 0.00000

74

CONDUCTOR BREAK
PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0.00000

XINSULATION MISSING OR TOO THIN

IMPROPER ASSEMBLY OF INSULATION

ELECTRICAL SHORT

HIGH TEMP FAILURE OF CONDUCTOR

CONDUCTOR BREAK
PROPABILITY OF OCCURRENCE FOR THIS PATH IS 0.00000

XMETAL INCLUSION IN INSULATION

IMPROPER ASSEMBLY OF INSULATION

ELECTRICAL SHORT

HIGH TEMP FAILURE OF CONDUCTOR

CONDUCTOR BREAK

PROBAPILITY OF OCCURRENCE FOR THIS PATH IS 0.00000

*CRACK

FLAW IN INSULATION AS FABRICATED

ELECTRICAL SHORT

HIGH TEMP FAILURE OF CONDUCTOR

CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0.00000

KXMETAL INCLUSION

FLAW IN INSULATION AS FABRICATED

ELECTRICAL SHORT

HIGH TEMP FAILURE OF CONDUCTOR

CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0.00000

XSPACER DREAKS

COOLANT CHANNEL BLOCKAGE

HIGH TEMP FAILURE OF CONDUCTOR

CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0.00000

¥IMPURITIES FROM REFRIGERATION

FLOW CHANNEL PLUGS

COOLANT CHANNEL BLOCKAGE

HIGH TEMP FAILURE OF CONDUCTOR

CONDUCTOR BREAK

PROPABILITY OF OCCURRENCE FOR THIS PATH IS 0.00000

*IMPURITIES FROM MAGNET

FLOW CHANNEL PLUGS

COOLANT CHANNEL BLOCKAGE

HIGH TEMP FAILURE OF CONDUCTOR

CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH I5 0.00000

75

XRADIATION DAMAGE TO STABILIZER
STAPILIZER RESISTANCE TOO HIGH
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS5 0.00000

XGROWTH OF CRACK FROM NORMAL STRESS CYCLI

STRESS INDUCED FLOW

MECHANICAL FLAW IN STABILIZER
STABILIZER RESISTANCE TOO HIGH
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0.00000

XGROWTH OF CRACK FROM PREVIOUS QUENCHES
STRESS INDUCED FLOW
MECHANICAL FLAW IN STABILIZER
STABILIZER RESISTANCE TOO HIGH
CONDUCTOR BREAK
PROBABILITY OF OCCURRENCE FOR THIS PATH

XCRACK CAUSED DURING MAGNET ASSEMBLY
MECHANICAL FLAW IN STABILIZER
STABILIZER RESISTANCE TOO HIGH
CONDUCTOR BREAK

PROBAPILITY OF OCCURRENCE FOR THIS PATH

XCRACK IN STABILIZER OF CONDUCTOR
MECHANICAL FLAW IN STABILIZER
STABILIZER RESISTANCE TOO HIGH
CONDUCTOR BREAK

PROBAPILITY OF OCCURRENCE FOR THIS PATH

XIMPURITIES IN STABILIZER

STABILIZER RESISTANCE TOO HIGH
CONDUCTOR BREAK

PROBABPILITY OF OCCURRENCE FOR THIS PATH

XRADIATION DAMAGE TO SUPERCONDUCTOR
SUPERCONDUCTOR FILAMENTS DEGRADED
CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH

XSTRESS CYCLING NORMAL OPERATION
FRACTURE DURING OPERATION

STRESS FRACTURES FILAMENTS
SUPERCONDUCTOR FILAMENTS DEGRADED
CONDUCTOR BREAK
PROBABILITY OF OCCURRENCE FOR THIS PATH

IS

15

IS

18

1S

. 00000

. 00000

. 00000

.00000

. 00000

IS 0.00000

76

*¥ABDNORMAL STRESS FROM PREV QUENCHES

FRACTURE DURING OPERATION

STRESS FRACTURES FILAMENTS

SUPERCONDUCTOR FILAMENTS DEGRADED

CONDUCTOR BREAK

PROBAPILITY OF OCCURRENCE FOR THIS PATH IS 0.00000

XFRACTURE DURING ASSEMBLY
STRESS5 FRACTURES FILAMENTS
SUPERCONDUCTOR FILAMENTS DEGRADED
CONDUCTOR BREAK
PROBABILITY OF OCCURRENCE FOR THIS PATH 1S 0.00000

XFABRICATION FRACTURE UNDETECTED

SUPERCONDUCTOR FILAMENTS DEGRADED

CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0.00000

XEXCESSIVE B

HEATING BEYOND RECOVERY POINT

NON RECOVERY OF CONDUCTOR

CONDUCTOR BREAK

PROBABPILITY OF OCCURRENCE FOR THIS PATH IS 0.00000

XEXCESSIVE CONDUCTOR MOVEMENT

HEATING BEYOND RECOVERY POINT

NON RECOVERY OF CONDUCTOR

CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0.00000

*XVAPOR LOCK

NON RECOVERY OF CONDUCTOR

CONDUCTOR BREAK

PROBABILITY OF OCCURRENCE FOR THIS PATH IS 0.00000
PROBABILITY OF OCCURRENCE FOR TOP EVENT IS 0.00000

