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I. I NTRODUCTION 

In the last fourteen years, the use of the pulsed neu-

tron source techniques for the investigation of the kin~tic 

behavior of neutrons in matter has been wide spread (2~, 26, 

27). Diffusion and slowing down parameters can be calculated 

from the measurement of the migration, thermalization, and 

absorbtion of neutrons as a function of time. The pulsed 

assemblies are of one of two general ca t egories. The first 

consist of or include moderator material, whereas the seco~d 

consist mainly of a non-moderating material usually cf a me-

tallic nature. The latter are generally ref erred to in the 

literature as fast assemblie s. It is these fast assemblies 

which will be considered in this work. 

In the study of fast material assemblies subjected to a 

neutron pulse, i t becomes important to know the density of 

neutrons as a function of position, velocity, angle, and time 

in the medium. Solutions for the neutron density can be found 

by analytical methods such as the solution of the equation 

l ~ ~ H~ + S~{t) v dt 

This is the t i me dependent Boltzman equation for a neu-

tron flux from an impulse source. For an exact solution, 

certain simplifying assumptions are re~uired, and these as-

sumptions then apply only to specific cases. Some of the 
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usual assumptions made are those of a constant mean free 

path and isotropic elastic scattering. 

The neutron density in fast systems can also be measured 

experimentally. The experiments require sophisticated, ex-

pensive equipment, and few have been performed. 

One way to tackle the problem of determining the density 

of neutrons in a fast assembly resulting from a pulsed source 

is the use of the Monte Carlo method. The probabilistic na· 

ture of neutron interactions makes the Monte Carlo technique 

useful. 

This method was used in the investigations which are pre-

sented in this thesis. The <.:omputer code .. PULSE" written by 

A. E. Profio {18, 19) was utilized for the computations with 

some modifications and alterations dictated by (a) the ne~d 

to modernize and complete the code and (b) by the specific 

requirements of the IR~ 360 model-50 computer available at 

Iowa State University. 

Small heavy metal assemblies were used in the investi-

gation. The geometrical shape of the assembly can be either 

a rectangular block, a cylinder, or a sphere. The purpose 

was to find the time dependence of the density and to inves· 

tigate the possibility of expressing such a dependence as a 

simple decay constant. The results were also compared, when-

ever possible, with experimental results which are scarce 

but which are Gurrently being investigated. With increasing 
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emphasis on fast reactor systems, the investigation of die-

away times in small uranium assemblies becomes important. 

Hence, uranium was the primary material in the assemblies 

considered. 

Due to the small size of these assemblies, the neutron 

makes only a few collisions during a lifetime. The compu-

tation time using the Monte Carlo technique is then not too 

long, a fact that makes it attractive for application in 

such assemblies. In addition, the transport calculation may 

not be reliable in these cases if drastic simplifying as-

sumptions are made. It seems therefore that the Monte Carlo 

method is well fitted for investigations of time dependent 

neutron density calculations in metallic assemblies of rela-

tively small size. 
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I I. THE MONTE CARLO ~l.ETHOD AND ITS APPLICATION 

I N THE "PULSE" CODE 

A. Historical Background 

The Monte Carlo Method originated during the early l940's 

as a result of suggestions advanced by J. von Neumann and S. 

Ulam at Los Alamos. However, virtually nothing appeared in 

print until about 1949. In that year, the first symposium 

on Monte Carlo was held at Los Angeles under the sponsorship 

of the Rand Corporation and the National Bureau of Standards 

in cooperation with Oak Ridge National Laboratory. The pro-

ceedings of this conference were published by the N.B.S. (17) 

in 1951. 

A second symposium was held at the University of Florida 

in 1954. It was sponsored by Wright Air Development Center 

of the Air Research and Development Command. A. W. Marshall 

in the introduction to the proceedings of this second sym-

posium (16, p. 4) says the following: 

"The most important practical applications 
thus far have had a probabilistic basis; the inf lu-
ence of the original Monte Carlo idea has been to 
suggest treating them directly as probabilistic 
problems rather than attempting a difficult, if 
not impossible, analytic solution. The transla-
tion and later retranslation of problems from 
probabilistic terms to non-probabilistic mathe .. 
matical problems and back again has been by• 
passed.It 

There are many references which describe both theoret-

ical and applied work that has been done in the field (2, 4, 



5, 13, 14, 15, 16, 17) and no further background will be 

given here. 

B. The Monte Carlo Method as 

Applied to the Physical Problem 

Since neutron interactions within a material are des-

cribed by neutron cross sections, which in essence are prob-

abilities of interactions, the Monte Carlo technique can be 

applied to investigate the neutron transport process. 

The problem which is to be solved here is, to find the 

number of neutrons leaking from the surface of an assembly 

as a function of time. The assembly is composed of one or 

more heavy metal isotopes. The neutrons arise from a neu-

tron pulse occurring at time t = O. The pulse of neutrons 

may be considered as incident on one face of the assembly as 

in the case of a cube or as generated inside the assembly as 

in the case of a sphere. 

The Monte Carlo technique, as employed here, follows 

one neutron at a time throu9h the assembly. The neutron's 

path length between interactions, and the type of interactions 

(fission, capture, or scatterin9) which it undergoes is de-

termined by the material~ neutron cross sections and angular 

distributions for various reactions. These data must be 

obtained by experiment or theory for the materials in the 

assembly and must be suppli~d to the code by the user. 
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The individual neutron is followed until it crosses the 

boundary of the assembly, or is absorbed, or is scattered 

over 100 times, or until its energy falls below a certain 

minimum. These latter two restrictions are used to prevent 

a neutron from being followed for too long and are not per-

tinent to the physical problem. 

The above process is repeated over and over for a large 

number of neutrons, each of which produce a history. By 

combining the results of all histories, it is possible to 

approximate the actual physical behavior of the assembly 

under pulsed conditions. This probabilistic treatment does 

not .have the generality of an analytical solution but it 

corresponds closely to the process of neutron interactions 

in matter which is probabilistic in nature . 

The time dependence is incorporated into the Monte Carlo 

code by setting the time t equal to zero at the source. After 

calculating the distance d to the next collision from an ex-

ponential distribution of free paths about a mean free path, 

the time of flight t is calculated using 

t = d/v 

where v is the velocity of the neutron. If the neutron should 

leak out of the assembly, the neutron is placed at the bound-

ary, and the distance D to the boundary from the last col-

lision is found. The time of flight is then 
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t = D/v 

In the event of fission the starting time tor the new 

particle becomes the lifetime to that point of the ori9inal 

neutron. The time to exit, e.g. by leakage, absorption, 

falling below a certain minimum speed, by exceeding a spec-

ified maximum number of collisions, is printed in the output. 

The first time moment can then be calculated by 

where t 1 is the lifetime of the i·th neutron and I is the 

total number of neutrons. 

C. The "PULSF.n Code 

l· General description 

A Monte Carlo Code named .. PULSE" to handle the physical 

processes described above was written by A. E. Profio (18, 

19). This code was used in this work 'ldth certain modifica-

tions added, including the translation from Fortx·an II to 

Fortran IV. The program is listed in Appendix F. 

A. E. Profio sums up the usefulness of the Monte Carlo 

technique when he states (19, p. l) 

"The use of straight analog Monte Carlo is 
feasible because the program is designed for small 
highly absorbing systems excited by fast neutrons, 
where the neutron makes only a few collisions on the 
average. The time of computation is essentially 
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proportional to the mean life time in the medium, 
and computations of long lifetime systems i$ re-
stricted by the computation center." 

Since the laws of scattering, absorbtion, fission, and 

their cross sections are known for a single reaction {micro-

scopic level) the ''PULSE" code follows each indi vi.dual neu-

tron through the fast assembly until it is absorbed or leaks 

out. It does this for a large number of neutrons, giving 

a statistical approximation to what physically can be ex-
pected to happ(l'n when a burst of neutron& from a pulse source 

enters a fast a&sembly. 

An overall description of' the program follows. with 

specific details related in the Appendices. 

A simplified flo~ diagram is included in Figure l for 

reference . The MAIN program first reads each data card and 

prints the information for future refex·ence. These data 

cards include neutron source coordinatest atomic density 

(of either one or two materials er isotopes), the micro-

scopic cross sections , fission velocities, limiting vel-

ocities, anisotropic distributions for elastic scattering, 

and other specific data required by the program. The MAIN 

pro9ram multiplies the microscopic cross sections by the 

atomic density before storing and printing them. The MAIN 

also starts the computation of each neutron history and con-

tinues until all the source histories are run. It then 

checks to see if fission neutrons are present . These are 



ANGLI 
INSPEC 

INSCAT 

LJ;VEL 

ANGLES 
TARGET 

GROUP 
FIND 

TO 
S GMA 

INTAL 

T 
SI A ELSCAT ELTAL 

9 

READ 
INPUT 

!PRINT 
l_:_NPUT 

SOURCE 

SIGMA 

FLITE 

· DTPB 
DTCB 
DTSB 

POST 

COLIDl 
COLID2 

ANGLE CMLAB ISOANG 

Figure 1. "PULSE" flow diagram 

0 
LEKTAL --SOURCE 

FI STAL FIS SN 



10 

a result of fission taking place, and each of them is fol-

lowed as if they were generated by the source. 

Considering only source neutrons now, the MAIN begins 

the computation by calling the subroutine SOURCE. This is 

provided input which includes the type of source (plane, 

point within the target, point outside the target, and an 

option for including a configuration of the user's choice). 

This routine returns the x, y, z coordinates, velocity, time, 

and direction cosines of the neutron. 

The MAIN now calls the subroutine SIGMA. SIGMA calcu-

lates the cross sections for elastic scattering, inelastic 

scattering, fission, and capture for each nuclide present, 

the total mean free path, and the probabilities for elastic, 

inelastic, fission, and capture interactions. The descrip-

tion of the methods used for calculation of these probabil-

ities is given in Appendix C. SIGMA al5o calls an auxilliary 

subroutine GROUP to determine in which of a possible twenty 

groups, the velocity lies. The velocities at the lower limit 

of each of these groups is included in the input in units of 

io9cm/sec. These limits have been chosen arbitrarily in the 

range of 0.3-2.8 MeV. SIGMA also use& the subroutine FIND 

to linearly interpolate between the cross sections. These 

cross sections were input at each velocity group boundary 

mentioned above. Control is returned to the MAIN program 

which calls FLITE. 
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FLITE uses a pseudorandom number generated by the rou-

tine RANDU provided by the I.S.U. Computation Center (12). 

A detailed explanation of this routine is included in Ap-

pendix A. This pseudorandom number is used to select an 

exponential distribution of free paths which a neutron will 

travel before suffering another collision. FLITE checks the 

pseudorandom number to see if it is less than 0.0000454, and 

if it is another pseudorandom number is generated. This cor-

responds to the rejection of any free paths greater than 10 

times the mean free path calculated in SIGMA. In addition 

a time variable {ITIME) is computed by dividing the free 

flight distance (DIST) by the velocity (VEL). Control is 

again returned to the MAIN program. 

The MAIN now calls the subroutines DTPB, DTCB, or DTSB. 

These subroutines compute the distance to the nearest boundary 

of a plane, cylinder, or sphere respectively. Only one of 

these is called depending on the shape of the target speci-

f led in the input. The MAIN now calls POST. 

POST compares the distance to the nearest boundary with 

the mean free flight distance (DIST) to see if the neutron is 

within the boundaries of the assembly. If it is not, the time 

of flight is updated by a quantity equal to the distance to 

the nearest boundary (DISTB) divided by the velocity of the 

neutron (VEL) and control is returned to the MAIN. If the 

neutron is within the boundary the time is updated by the 
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quantity (DIST/VEL) and control is the returned to the MAIN 

program. 

The MAIN now decides, using the information from POST, 

if the neutron leaked out or is still in the assembly. If 

it leaked out the subroutine LEAKTAL is called. This routine 

sets up a two dimensional array which categorizes the neutron 

according to its energy when it leaks out and the time since 

the neutron left the source. The MAIN adds one to tally of 

the number leaking out of the target (NL). If the neutron 

is within the boundaries the main calls COLIDI of COLID2 de-

pending on the number of isotopes or elements present in the 

target. 

COLIDl or COLID2, hereafter referred to as COLIDX, causes 

a pseudorandom number to be generated. Using this number the 

type of interaction (elastic, inelastic, fission, or capture) 

is determined as is the nuclide which took part in the re-

action if more than one nuclide or isotope is present in the 

target assembly. Control is returned to the MAIN which calls 

the appropriate subroutine ELSCAT, INSCAT, FISSIN, or CAPTAL 

depending on the type of interaction detennined by the COLIDX 

subroutine. The method employed for determination of the 

type of interaction is further explained in Appendix C. 

ELSCAT is called if the reaction determined by the COLIDX 

subroutine is elastic scattering. This routine compares the 

velocity with an input parameter to determine if the scatter-
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ing was isotropic or anisotropic. If isotropic, the center 

of mass direction cosine (GAMMAC) is computed by the formula 

CAMMAC=2R-1 where R is a pseudorandom number generated by 

RANDU. Now a check is made of the mass of the scattering 

nuclide to see if a conversion from the center of mass to 

laboratory system is necessary. This is done by comparing 

the atomic mass of the target nuclide to that specified by 

the input constant (ALIMX). If a conversion is to be made 

a subroutine CMLAB is called and the new velocity and direc-

tion cosines are computed as described in Appendix E. If 

no conversion is necessary ISOANG is called. This is a 

subroutine which computes the new direction cosines (alpha, 

beta, and gamma). If the scattering is anisotropic a sub-

routine (ANGLE} is called which computes a new direction 

cosine (GAMMA) from an angular distribution which is pro-

vided as input. Appendix E describes the methods used for 

determining such data from a given distribution. The sub-

routine ELTAL is then call ed which tallies the neutron in a 

two dimensional array. One dimension is time, and the other 

is space. So the neutron is registered in a certain time 

interval and in a certain coordinate interval. Also, one is 

added to the tally (NS} which is a tally of the number 

scattered (elastically or inelastically). 

If inelastic scattering has taken place, the routine 

(INSCAT) is called. Scattering is assumed isotropic for 
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this work. If the velocity is such that discrete level 

scattering takes place, the subroutine LEVEL is used to 

determine the probabilities of scattering from each of the 

levels for each energy group. These are used to determine 

which level does the scattering and the new energy is the 

incident neutron energy minus the level energy. 

For high energy incident neutrons, scattering is as-

sumed to take place in the continuum region. 

The level distribution in the continuum region can be 

described by the evaporation model of the nucleus (8, 23, 

27). Here the value of the nuclear temperature is usually 

assumed to vary as JF., a quantity represented by VEL in the 

"PULSE'' code. The distribution of the fixed energy E' for 

the scattered neutrons is calculated from 

E'ex 0 < E' < E rE'exp 

0 elsewhere 

where 9 = nuclear temperature = constant Jf.. The value of 9 

depends on the nuclide and may be found in the references (8, 

23, 27). 

Profio has reduced the above model for computer use in 

the subroutine INSPEC. The new velocity (Vr) is computed 

using a probable distribution for the quantity V~Vmax·l 

1Profio, A. E., General Atomic, San Diego, California. 
Input constants for "PULSE". Private communication. 1967. 
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Vmax is the square root of Effiax· Emax is an in~ut constant 

(Cl~ ) times the incident velocity (VEL). The new direction 

cosines are compute-d by the subroutin~ {ISOAhG). Again, 

one is added to the tally (NS) and control is returned to 

the MA! N program. 

If fission occurs the subroutine FlSSN is called. The 

average number of fission neutrons ls calculated by use of 

the following formula: 

v = v + ~v2 f 

vf and ~ are input constants corresponding to the particular 

nuclide present in the assembly. A whole number for -v is 

then chosen with the help of a pseudorandom number. A cum-

ulative probability table is used to determine the velocity 

of each of the fission neutrons. Their coordinates, velocity, 

and the times are recorded on tape for running after all the 

source neutrons have been run. Also, the ~hole number closest 

to the value ; is added to the tally (NF) ~hich is the number 

of fission neutrons. Control is returned to the MAIN for 

the continuation of the source histories. 

If capture takes place CAPTAL is called and one is added 

to the array KAPT in the appropriate time interval. 

When all the source histories have been run, the tapes 

containing the fission neutron data, mentioned previously in 

the discussion of FISSN, are rewound. The program runs using 
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the data on the tapes instead of the source data. Any new 

neutrons are again recorded on tapes. These tapes are then 

rewound end above process continues until there are no more 

fission neutrons generated. 

The MAIN now outputs the requested data and the program 

is ended. 

Certain computational "tricks" have been incorporated 

in the program to economize on computer time. For example, 

the entire output is recorded after every ~00 histories in 

addition to the final recording which occurs after all the 

&ource histories h~ve been run. Thus, in case the program 

is dumped prior to the final output some information is 

salvaged. The above tricks may or may not be used and 

elimination of these will in no way interfere with the run-

ning of the program. 

.2,. 

ing 

Qutpyt ge§~ript1on 

The output of the "PULSE" code consists of the follow- · 

tallies: 

NL The number of neutrons leaking out of the target 

assembly 

NC The number of neutrons captured within the as-

sembly 

NS The total number of scattering interactions, 

both elastic and inelastic 
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NF The number of fission neutrons resulting from 

the fission reactions 

NLTD The number of interactions which took place in 

less than the specif led time delay input con-

stant (TD) 

NGTR The number of interactions which took place in 

time greater than 100 time intervals 

f\GZR The number of neutrons which suffer elastic col-

lisions and end up outside the range of the Z 

coordinate interval 

NLME The number of neutrons ending up with an energy 

less than a minimum specified energy 

NGER The number of neutrons ending up with energies 

greater than 10 energy intervals 

NOSL The number of neutrons suffering more than 100 

scattering interactions and therefore dropped 

from the program 

Also included in the output are the following arrays: 

LEAK A two dimensional array (time, energy) specify-

ing the time and energy of each of the neutrons 

which cross the surf ace of the assembly 

NELS A two dimensional array (time, Z-coordinate) 

specifying the time and position of each of the 

neutrons whenever they suffer an elastic col-

lision 
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NIMS A one dimensional array (time) specifying the 

time for each inelastic collision 

NFIS A one dimensional array (time) specifying the 

time for each fission reaction 

KAPT A one dimensional array (time) specifying the 

time for each capture interaction 

In addition to the above tallies and arrays, the vari-

able ITOT is output after every 500 histories. ITOT is a 

running tally of the number of histories which have been run. 

In this way if the program should hang up or if the machine 

should fail the spot in the program can be determined where 

a failure occurred and the program can be resumed from there. 

Also, since all results are recorded on tape as well as 

printed, the variable ITOT will be the total number of his-

tories retained on the output tape. 

All input data are also printed out for reference as is 

the variable number which initiates the random number gener-

ating routine explained in Appendix A. 

~. Input description 

A number of input variables are required for the code 

"PULSE" . The order of appearance in the data deck and a 

short description of each variable are given below . A more 

detailed description of these parameters can be found in 

two reports by A. E. Profio (18, 19) . If the variable is 
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an array, the dimensions of the array are given in paren-

thesis following the variable. 

Card #1 XS, YS, ZS, PARA, PARS, PARC, THETA, KS, NEUT 

Card #2 

Card #3 

Card #4 

XS, YS, and ZS are the source coordinates; 

PARB, and PARC specify the source velocity; 

PARA, 

THETA 

is the source time {usually 0.0); KS is a code 

integer giving the source option as mentioned in 

section II; and NEUT is the number of histories 

being run. 

SP (10) 

SP is an array which specifies an anisotropic 

source distribution. It consists of value of the 

Cosine 9. In this work, the source was considered 

isotropic and values of 1.0 were used for all the 

SP data. 

XMAX, YMAX , 7.J.1AX, RMAX, KAS 

XMAX, YMAX, 7Jl1AX and RMAX give the dimensions of 

the assembly in units of cm. The first three are 

used if the assembly is rectangular, and RW.AX is 

used if it is a cylinder or a sphere. KAS specifies 

the shape of the target (!-block, 2-cylinder, 3-

sphere). 

TD, TCH, EMIN, ECH, KTl, KT2 

TD is the time delay in the source; TCH is the 

time channel with; EMIN is the minimum tallied 



20 

energy (MeV); KTl and KT2 are tape number used 

in the FISSN routine which are supplied by the 

computation center. 

Cards #5-6 P (20) 

This is an array specifying a Maxwell-Boltzmann 

distri bution for inelastic scattered velocities 

from the continuum. The values are normalized 

velocities for an index K. 

Cards #7-8 VBOUND { 20) 

Card #9 

VBCUND is an array of velocities. The units are 

109cm/sec. It is at each of these twenty velo-

cities that the cross sections used in 11 PULSE 11 

are evaluated. 

ADl, Al, ALlMl, SLIMl, CINl, VSTl, FNUl, DELNUl, 

KI,e.1 

In the above the 11 111 following each variable sig-

nifies nuclide #1 in the target. ADl is the atomic 

density (1024/cm3 ); Al is the mass number; ALIMl 

is the mass below which a center of mass to lab-

ratory ref t-rence system conversion must be made; 

SLIMl is the velocity above which anisotropic 

center of mas& elastic scattering can be assumed 

to occur; Clfll is a decimal number used in the 

routine INSPEC to determine the most probable vel-

ocity from the input velocity when inelastic 
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scattering from the continuum is assumed (7, 19, 

22, 23, 26); VSTl is the velocity below which 

individual level inelastic scattering occurs; 

FNUl and DELNUl are decimal numbers used in the 

FISSN routine (see section II); and KIAl is a 

constant used to determine isotropic or aniso-

tropic inelastic scattering (!-isotropic, 2-

anisotropic). 

Cards #10-ll SBEl (20) 

This array consists of elastic cross sections 

(lo-24cm2 ) evaluated at the velocities given in 

VBOUND. Again the "l" signifies that the values 

are for nuclide 1. 

Cards #12-13 SBil ( 20) 

Included in this array are the inelastic cross 

sections (lo-24cm2). Each evaluated at the 

velocities in VBOUND. 

Cards #14-15 SBFl (20) 

The values of these cards are thos of the fis-

sion cross sections (lo-24cm2 ). 

Cards #16-17 SBC! ( 20) 

These are the cross sections for neutron capture 

( lo-24cm2). 

Cards#l8-37 APl (10, 20) 

AP! is a two d.imensional array specifying the 



22 

angular distribution in anisotropic elastic 

scattering. The values are those of the cosine 

9 for each of the twenty velocities given in 

VBOUND. 

Cards#38-39 VL (20) 

VL is an array for up to twenty inelastic scat-

tering level velocities (109cm/5ec). 

Cards #40-79 SBLl {20, 20) 

SBLl(L,J) is a two dimensional array specifying 

the cross s ections (lo-24cm2 ) for inelastic 

level scattering where L is the level number, 

and J is the velocity group number from VBOUND. 

Cards #80-81 FPl (22) 

Card #82 

This array specifies fission neutron velocities 

(109cm/sec) and is used in the FISSN routine. 

This card contains the same variables as card 

#9 except that the values are for nuclide #2. 

If there is only one nuclide in the assembly 

zeroes are punched for the values on this card 

and it is then the third from the last card in 

the data deck. 

Cards #83-1!'.>4 These cards contain the variable data for nu-

clide #2. The arrangement is the same as for 

cards #10-81. If only one nuclide is used these 

cards are not needed in the data deck and are 
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Card #156 
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therefore left out of the pack. 

IX 

IX is a number of one to nine digits and must 

be odd. It is used to initiate the random num-

ber routine RANDU. This is always the second to 

the last card in the data deck and is needed 

regardless to the number of nuclides used. 

JJ 

This variable is used to specify the number of 

different energies of the source neutrons. If 

a monoenergetic source is used, JJ is equal to 

1. If a spectrum is used, there must be a card 

containing the same information as is contained 

on card #1 for each of the energy groups. These 

cards will follow this card in the data pack. 
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III. THE DATA USED IN THE COMPUTATIONS 

Initially in this work, the material used in the assem-

bly was U-238 with a monoenergetic (lMeV) source. 

Uranium has an atomic density of 0.0472 X lo24/cm3 and 

a mass of 238. The l MeV neutrons have a velocity of 1.385 

X io9cm/sec. 

The angular distribution for inelastic scattering was 

assumed to be isotropic and this was confirmed using BNL-400 

(10). The velocity was found to be isotropic below a velo-

city of 0.87~ X 109cm/sec. Above this velocity the differ-

ential distributions in BNL-400 (10) for elastic scattering 

in U-238 at various energies were integrated. From the in-

tegrated curves, values for the array APl (anisotropic dis-

tribution for elastic scattering) were obtained as explained 

in Appendix E. 

The first 16 values of the velocity group array VLl 

range from 0.3 MeV to 1.6 MeV at 0.1 MeV intervals. The 

next 6 values are at 0. 2 MeV intervals giving en energy range 

of 0.3 to 2.8 MeV. 

The cross sections needed for input into the "PULSE" 

code included the elastic scattering, inelastic scattering, 

capture, and fission cross sections. In this work these need 

only be evaluated over the energy range 0.3 MeV to 2.8 MeV 

as 1 MeV monoenergetic source is used. However, the code can 



be run with a source energy spectrum, and in this case the 

energy range must be extended. 

Various sources were used to obtain the best pos5ible 

values for the cross sections. 

For the capture reactions, the values used were from 

BNL-32~ (11). These were compared to those given in ENDF/B1 

which were supplied by Brookhaven Sigma Center and were found 

to be in agreement. 

For the fission values, BNL-32~ was again used and these 

data correlated with those sup~lied by ENDF/B. 

None of the references used listed the elastic scatter-

ing cross sections for the isotope U-238. Therefore, the 

values were t aken from the natural uranium listings. In 

doing this one must assume most of the scattering is due to 

U-238. This is a reasonable assumption due to the fact that 

the concentration of U-235 in natural uranium is small, and 

its scattering cross section is small. The values were ob-

tained by subtracting the non-elastic values from the total 

cross sections. BNL-325 was used again. There were no values 

for these values in ENDF/B. 

The inelastic cross sections were obtained from the non-

elastic values for the uranium cross sections. In doing this 

1May, V. Brookhaven National Lab., Sigma Center, Upton, 
New York. ENDF/B nuclear cross sections. Private communica-
tion. 1967. 
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one assumed three possible non-elastic processes (fission, 

capture, and inelastic scattering}. The fi5sion and captur~ 

values were obtain&d as explained above, and their sum was 

subtracted from the non-elastic cross sections. The dif-

f erence was taken as the value for inelastic scattering cross 

sections. Again, BNL-32~ was used as the reference. Some of 

the values obtained agree with those .in ENDF/B. This latter 

ref erenee was far too incomplete to be of much value in this 

case except as a check for other sources. 

For inelastic scattering from individual levels, there 

is much discrepancy as to the level energies, the number of 

levels, and the cros' sections at each l&vel. In the present 

work experimental data supplied by Dr. D. A. Lind1 was useds 

these data were deemed as the most complete set. Some of 

these values obtained by Lind are in agreement with those in 

BNL-325. Ho~~ver, the latter contains an incomplete set of 

data and was not used as a reference for level scattering. 

The fission spectrum for U-238 was taken to be the same 

as that of U-235. The spectrum used was taken from an arti-

cle by R. L. Henkel (9). This was integrated and values for 

the array FPl were obtained as described in Appendix E. 

FNUl and DELNUl were obtained from ANL-~800 (22). 

The constant CINl was obtained by private communication 

1Lind, D. A., University of Colorado, Boulder, Colorado. 
Inelastic cross section levels for U·238. Private communica-
tion. 1967. 
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from A. E. Profio1 with the aid of the data found in the 

references (8, 23, 24, 27). 

The final run of this work was made with natural uran-

ium. This metal consists of 99.3% U-238 and 0.7% U-235. 

Data were found for U-23~ from the same sources as mentioned 

above for U-238. 

l Profio, A. E., General Atomic, San Diego, California. 
Input constants for "PULSE". Private communication. 1967. 
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IV. RESULTS AND DISCUSSION 

The primary purpose of this work, as stated earlier, 

was to investigate t he leakage of neutrons following the 

injection of a fast pulse from metallic assemblies of var-

ious shapes by the Monte Carlo m~thod. 

Also, an investigation was made as to the possibility 

of expressing the leakage in the form 

N ::: C e -~ t 

In the above expression, N is the number of neutrons 

leaking out of the assembly after time t; C is a constant; 

\ is a time delay constant with units of inverse time; and 

t is the time after the pulse injection. If the expression 

is valid, then log N plotted versus time should be a straight 

line with a slope ~. 

As an attempt to investigate the afore stated postulates, 

three runs were made with a spherical assembly of U·238. A 

l MeV monoenergetic source of neutrons was assumed to be at 

the center of the spheres. The three runs were made with 

spheres 15 cm, 20 cm and 30 cm in diameter. 

The resulting leakage from the sphere surface is shown 

plotted versus time in Figures 2, 4, and 6. The number of 

histories were a,ooo, 1,000, and s,ooo for the 15 cm, 20 cm, 

and 30 cm spheres respectively. 

A plot of the data was also made on 109 paper, and the 
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least squares fit technique was applied assuming an equation 

of the form 

ln N c ln C + ~t 

The values found for~ were 0.305 nsec-1 , 0.179 nsec-1 , 

and 0.147~ nsec-l for the 15 cm, 20 cm, and 30 cm diameter 

spheres respectively. 

The logarithmic plots along with the line having the 

least squares fitted slope are shown in Figures 3, 5, and 7 

for the 15, 20, and 30 cm diameter spheres. 

A second set of three runs was made on a cube of U-238 

with 1 MeV neutrons uniformly incident on one of the faces. 

The leakage is plotted as a function of time in Figures 8, 

10, and 12 for the 15 cm, 20 cm, and 25 cm cubes. The number 

of histories for each ~ere 8,000, 10,000, and 8,000 respec-

tively. 

Again, logarithmic plots were made as shown in Figures 

9, 11, and 13, and a least square& fit was applied. The 

results were the straight lines shown in the above mentioned 

figures. The slopes are 0.1695 nsec-1 , 0.156 nsec-1 , and 

0.101 nsec-l respectively. 

Finally one run was made using natural uranium. The 

assembly was a 15 cm diameter sphere with a 1 MeV source at 

the center. The leakage is plotted versus time in Figure 14 

and the log plot showing a least squares fitted line with a 
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slope of 0.219 nsec·l is shown in Figure 15. This run con-

sisted of 8,000 histories. 

A mean die-away time T can be found by 

Table l is a summary of the results obtained from the 

runs. 

Certain trends are shown in Table 1. The mean die-away 

time increases as the volume of the target assembly increases. 

This follows natural l y where one considers the physical situ-

ation. With increased volume, there is an increase in mate-

rial. This in turn increases the number of reactions that a 
.. 

neutron can have while in the aasembly. The increase in the 

number of reactions increases the mean time it takes to leak 

out of the target assembly. A plot was made of the mean time 

versus the volume of the sphere and cubes. The results are 

shown in Figure 16. from this figure no conclusions as to 

functional behavior of die-away time with respect to volume 

can be drawn. 

Attempts to correlate the die-away time behavior to sur• 

face area were made in Figure 17 and Figure 18 respectively. 

As in the case of the time-volume correlating, no conclusions 

can be drawn about functional behavior of the die-away time 

and the surface area or volume to surface area ratios. 

Other trends observed in Table l and Figure 16 are that 



45 

Table 1. Compiled results 

Dia. of U-238 Sph~res Size of U-238 Cube 00~·s~~e~:t· 
15 cm 20cm 30cm l5cm 20cm 25cm 

~(nsec-1 ) 0.305 0.179 0.1475 0.1695 0.156 0.101 

~(nsec) 3.28 5.~~8 6.78 5.90 6.41 9.90 

15cm 

0.219 

4.57 

for equal volumes of material, the die-away time in the cube 

are considerably lon9~r than in the spheres. In reactor 

theory (6) it is learned that a spherical assembly gives the 

lowest leakage due to the low surf ace to volume ratio. The 

apparent contradiction can be explained by considering the 

manner in which the spherical and cubical assemblies were 

pulsed. The sphere was pulsed at the center, therefore for 

neutrons to leak from the assembly the vector sum of their 

path lengths must be that equivalent to one radius length. 

However in the cubical assembly the neutrons were uniformly 

incident on one face. The angle of scattering at 1 MeV ener-

gies 11 an isotropic with a preference toward the fo:r-v..ard 

direction. Therefore, except for those neutrons which are 

scattered backward and leak out upon arriving, the majority 

must travel a greater distance, of the order of the cube side, 

in order to reach a surf ace. This accounts for the longer 

die-away time in the cubical cases. 
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From the 109 N plots, the data at the larger times ap-

pears widely scattered. This should be expected since the 

number of neutrons is very small making the statistics of the 

problem poor. On the other hand at short times after pulse 

injection, the slope of the 109 N curves is smaller than the 

slope at later times. These neutrons have had no or at most 

a very few collisions before leaking out of the assembly. 

Therefore, it is doubtful they will obey any type Of exponen-

tial behavior. Only those suffering a number of c.ollisions 

can be thought of as likely to obey an exponential decay. 

Besides, since the neutron population in the assembly (and 

hence also the leakage) must build up from a zero level it 

is only natural that some sort of peak must be exhibited in 

the histograms. The question arises, however, ~·hy the slower 

slope continues for quite a time after the peak is reached. 

A physical argument is offered for this phenomenon. 

At times very shortly after t ~ 0 the distribution i& 

flat as in Figure l9(b) whereas at later times it curves as 

shown in Figure 19(c). Since the leakage rate is propor-

tional to the gradient of the flux just inside the boundary 

the leakage rate must be larger in the case of figure 19(e) 

than in Figure 19(b). 

It is also important to note, in Figures 2, 4, and 6 

showing the number of neutrons leaking from the spherical 

assemblies, that no neutrons leak out until 4 sec, 6 sec, 
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(a) ( b) (c) 

Figure 19. Neutron distribution acros~ cube face at times 
very close to t = 0 and at later time 

and 10 sec respectively. These are the times it takes for a 

1 MeV neutron to travel a distance of one radius for each of 

the spheres. This must be true as the neutrons start at the 

center of the spheres, and the fact that this feature appeared 

in the results as expected provides an additional check on the 

reliability of the code. 

At the time of th1$ writing there were no final experi-

mental values for comparison. T. Gozani of General Atomic 

is at the present working on a 51 cm diameter sphere of U-

238, but his final results are not available. In preliminary 

results (7) he was apparently not finding an exponential die· 

away time, which is contrary to earlier reports (20). 

Work has been done on moderating materials, e.g. beryl ... 

lium (2~) for which the leakage did not obey a single ex-

ponential law, but a correlation to a heavy metal is not 

possible in this case. 



V. COI'CLUSIONS AND RECOMNiENDATIONS 

A. Conclusions 

From the results expressed in the preceeding section it 

can be concluded that it is feasible to study neutron leak~ 

age and die-away times by the Monte Carlo te~hnique provided 

the neutron energies are high, and the assembly used as the 

target is small and consists of a heavy metallic isotope. 

These stipulations make computer time for this code reason• 

able. The results indicate the leakage may be grossly ex-

pressed by an exponential decay law of the type 

N = C e·)..t 

where N is the number of neutrons leaking out, C is a con• 

stant, and \ is an exponential decay constant. 

The exponential decay constant ~ is a function of both 

the geometry and size of the assembly. Its functional de-

pendence on &ize cannot be clearly determined from the data 

obtained in this work. lt is, however, observed that the 

time decay constant does decrease with increasing volume for 

both spherical and cubical shapes. It is also smaller for 

cubical shapes than for spherical shapes of e~ual volume. 

At large times, as the number of neutrons leaking out 

of the assembly becomes smaller and smaller, a high degree 

of data scattering and statistical fluctuation is observed 
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just as in the case of low counting rates. Therefore, the 

Monte Carlo technique and the experimental techniquP have 

lar9e statistical deviations at low count rates. 

At very small times, the leakage seems to depart from 

an exponential decay law. The exponential law begins after 

a certain "stabilitytt has been reached in the leakage pro-

cess, and this can be conside.red in terms of simple physical 

considerations. 

B. Recommendations for Future Work 

There are numerous possibilities for investigation by 

use of the Monte Carlo technique. 

The dependence of leakage on ener9y could be found by 

running a number cf cases for the aame material and geo-

metrical conditions with vari1Jble monoener9etic neutron 

sources. Also, since neutrons are seldom monoener9etic, 

the code should be run with an energy spectrum. This would 

make future comparison with experimental data much more 

meaningful. An extra facility was added to the "PULSE" 

code to enable it to handle a spectrum of incident neutron 

energies, but it was not used in actual runs. 

Th& variation of ~ with material is also left to b~ 

explored. Various heavy metals, e.g. iron, bismuth, lead, 

or combinations of metals can be used while keepin9 energy 

and geometrical shape constant. 
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In addition to the leakage output, the "PULSEtt code 

provides capture, fission, and scattering information which 

may be of inter~st. 

Other codes have been developed, e.9. 05R (13). This 

code has been developed and used at Oak Rid9e. It is a very 

gen&ral neutron transport code. It may be run as a check on 

the "PULSE" code, or part of O~R may be used in combination 

with "PULSE1• to wri ta an improved code \i'.hich will hcrndle more 

complicated geometrical shapes, e.9. reactor cores, or shields 

on space vehicles. 

In addition to the running of a Monte Carlo code, an-

other possibility for future ~ork consists of doing further 

theoretical ~ork in the behavior of a neutron pulse in a small 

a&sembly based on transport e~uation solutions. 

Finally, an experiment can be developed usin9 the I.S.U. 

neutron generator. This would presumably be similar to the 

type being performed by T. Go1ani (7) at General Atomic which 

YJas mentioned earlier. The experimental results could be cor• 

related with the results predicted by Monte Carlo. 

In the use of this code and obtaining data for its use 

other theoretical and experimPntal problems arose which should 

be investigated . These include such topics as the inelastic 

scattering in the continuum region, inelastic scattering from 

levels, and neutron cross section data evaluation. 
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VIII. APPENDIX A 

Random Number Generation 

The pseudorandom numbers used in the running of this 

code were generated by a subroutine called RANDU. This 

routine was developed by IBM and was supplied by the Io~a 

State University Computation Center. The routine is called 

by the FORTRAN statement CALL RANDU(IX, IY, YFL). For the 

f 1rst calling, IX is supplied as an input variable. It is 

an interger of nine digits or less. IY is generated by the 

routine and is substituted for IX when ever the routine is 

used again. YFL is the pseudorandom number of nine digits 

uniformly distributed between 0 and 1.0 

Following is a listing of the FORTRAN statements mak-

ing up the RANDU code: 

SUBROUTINE RAN DU( IX, IY, YFI..) 
IY = IX* 65539 
IF (IY) 5,5,6 

5 IY = IY + 2147483647 + l 
6 YFL = IY 

YFL = YFL*(0.4656613E-9) 
RETURN 

The number of pseudorandom, uniformly distributed num-

bers which can be generated before a repetition is encountered 

is stat~d by the I.S.U. Computation Center as two raised to 

the twenty-ninth power or approximately five hundred million 

numbers. 



IX. APPENDIX B 

Directional Cosine ~9meutat!.qn 

The subroutine ISOANG is used to compute the direction 

cosines {a, ~' y) for isotropic elastic scattering. This 

routin 1s supplied with variable GAMMAC (the polar dix·ec-

tiona l cosine) ~hich is computed or chosen from a prob-

ability distribution. The Z-coordinate directional cosine 

y is set equal to GANMAC. Alpha and beta are chosen so 

that 

The subroutine involves the solving of th& following 

equations a 

e1, £2 , and ~ are obtained as shown belo~ where R1 and 

R2 are pseudorandom numbers generated by RANDU. 

t 1 = 2R1 .. 1 

t 2 • 2R2 - l 
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Also, since isotropic center of mass scattering is pre-

sumed, the new velocity (VEL) is set equal to the incident 

velocity in this subroutine. 
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X. APPENDIX C 

Probabilities of Occurrence of Interactions 

The probabilities of occurrence of the various nuclear 

interactions are computed in the following manner. The mac-

roscopic cross sections for each of the interactions (elastic 

scattering, inelastic scattering, fissions and capture) are 

computed using the atomic density and microscopic cross sec-

tions which have been supplied as inputs for each of the 

twenty velocity groups mentioned earlier. The following 

formula is employed in the calculation of these cross sec-

tions. 

~i,j is the macroscopic cross section for the 1-th 

interaction with nuclide j. a1 ,j is the microscopic cross 

section for the 1-th interaction with the nuclide j. Nj 

is the atomic density of the nuclide j. 

These macroscopic cross sections are summed for all 

pos~ible reactions with all the nuclides to get a total 

macroscopic cross section r.T. 

where n is the number of possible interactions and k is the 

number of nuclides. 
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The probability for the i-th reaction with the j-th 

nuclide is then 

The above equations are used in the subroutine SIGMA 

of the "PULSE" code. 

In order to find which reaction has taken place, the 

subroutine COLIDX is called. COLIDX uses a random number R 

generated by RANDU and first compares it to P1 , 1 , if R is 

less than P1 , 1 the first interaction is as$umed to have taken 

place with the first nuclide. If R is greater than P1 , 1 , 

then a comparison is made to the sum F1 , 1 + P1 , 2 . Again 

if R is less than the sum then interaction 1 is assumed to 

take place with nuclide 2. If R is greater than the above 

sum it is compared to the sum P1 , 1 + P1 , 2 + P2 , 1 • This 

procedure continues, adding the probabilities Pi,j one at 

a time che~king after each addition to see if the sum is 

greater than R. If the sum of probabilities is found to be 

greater than Rafter the addition of Pi,j' the i-th reaction 

is taken to have occurred with the j-th nuclide. 

From nuclear reactor theory (6) it is found that the 

probability P of a neutron traveling a distance x without 

being involved in a reaction is given by 
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where Ar is the total mean free path. -1 It is e4ual ~ where 

~ is the total macroscopic cross section calculated above. 

This relationship is used to find the distance traveled be-

tween interactions. Using a pseudorandom number R generated 

by RANDU, the subroutine FLITE computes the distance X be-

tween reactions by solving the folj.owing equation 
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XI. APPENDIX D 

Conversion from Center of Mass to Laboratory System 

The conversion from the center of mass to the laboratory 

coordinate system is accomplished by means of an intermediate 

ccordinate system (21) whose coordinates have the subscript P 

in the following derivation. The center of mass coordinates 

have a subscript C, and the lab system has no subscript. 

First, two pseudorandom numbers R1 and R2 (in the range 

of 0. 0 to 1.0) are geneiated by RANDU. These are converted 

to pseudorandom numbers t 1 and e2 re$pectively by the follow-

ing e14uations. 

El = 2R1 - l 

e2 = 2R2 - l 

i 1 and t 2 now have a range between -1 and +l. 

The routine CMLAB is used to perform the calculations 

necessary for the conversion. The i nput to this routine in-

cludes the direction cosines (a1 , p1 , yi) all ~f ~hich are 

in the lab system prior to the collision, and a variable 

(ye) which is obtained using the expression below. 

Y = 2R - l c 0 

R0 is again a pseudorandom number obtained from RANDU. 

The center of mass direction cosines (a , ~ , y ) are c c c 
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found using the following: 

Jl 2 
- Ye 

ac = El 11 

Jl 2 - y a c - '2 ' C 'l 

v ;:; v : c · c 

2 
11 -· El + 2 

t2 

A conversion is now made from the center of mass system 

to an intermediate system to obtain the directional cosines 

ai Y1 ae - q ~ ·1 c + ct ap ::; Ye 
2 i 

Jl - Yi 

/") 
.J µi Yi ae - <Ii c 

~ ·- + ~ i Ye p 2 ... 11 - Yi 

2 v = -a ../1 - Y1· + y • y p c l c 

The cosines (a, µ, y) in the lab system can now be cal-

culated. 

a 1 + J..... ri 
a ::: -=-----P--

Jl + A2 + 2Ay c 



p -- -~--i_+ _A_~ p __ 

.Jl + A 2 + 2Ay c 

y ::: 
vi + A y 
l p 

Jl + A2 + 2Ay c 
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where A is the mass number of the target nuclide. 

In addition to the directional cosines, the lab system 

velocity after the collision is also calculated by CMLAB. 

v1Jl + A2 + 2Ayc v - -=~~~~~~~ 
A + l 

where Vi is the velocity of the neutron prior to the col-

lision. 
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XII. APPENDIX E 

Method YJ.!g !.2 Select Va!ye1 f.l:.2!!! A 

Given Qensity P!stribution 

The method employed in obtaining values for anisotropic 

scattering directional cosines and fission velocities is 

based on the probability distribution theory and the theory 

of cumulative probabilities. 

If a continuous distribution of values is given as in 

Figure 20, such that the shaded area A can be thought of as 

representing the probability that a random variable x is less 

than or equal to x1 , then the probability that xi& less than 

xmax is the entire area under the curve or a probability of 

l. 0. The probability that x is less than or equal to xmin 

is O. 

If the distribution in Figure 20 is integrated and 

normalized (Figure 21), then for any value xi chosen on the 

abcissa, the probability that X is less than or equal to 

x1 is the value of the ordinate y1 corresponding to the point 

(x1 , y1 ) on the integrated curve. 

The above concept is used to find the directional cosine 

of the angle of exit fer elastic scattering given an aniso-

tropic angular distribution. It is also employed in determin-

ing the velocity of a neutron resulting from a fission re-

action given the fission spectrum. 
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f (x_) 

xmax x 

Figure 20. The distribution function as an area 

F(x) 

1.0 ----- ----- -

0 ""'===:::=:;:,.~~~~~...;.__~~~~~~-~~~~ 
xmin xmax 

Figure 21. The cumulative distribution function 
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The angular distributions for elastic scattering at 

various energies (10) were graphically integrated and the 

ordinate was divided into 10 equal intervals ranging from 

l to 11. The lower limit of l is necessary due to the way 

arrays are indexed in FORTRAN. The value of the cosine 9 

for the point 11 is taken as +l. The values for the cosine 

9 for the other integer point~ 1-10, are read from the inte-

grated curve and stored in an array. 

A pseudorandom number between 0 and 1.0 is generated 

in the code "PULSE" by the routine RANDU. This number is 

multiplied by 10 and added to 1.0 to give an integer between 

l and 11 and a remainder. The cosine is then obtained using 

the integer points from the array and the integers generated 

by RANDU. The wemainder obtained from the random number is 

used to linearly interplate between the integer points in 

the array. 

The fission neutron velocities are obtained in a similar 

manner except that the ordinate of the integrated distribu-

tion (9) is divided into 22 intervals 1-22. The pseudorandom 

number is multiplied by 20 and then l is added; the rest of 

the calculation proceeds as described above. The value of 

the integer point 22 is taken as the most energetic neutron 

of the spectrum. 
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XIII. APPENDIX F 

~ Listing of the "PULSE" ~ 
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C PULSf MONT~ CA~LO CODE 
C P~OGRAMEO BV A4F• PfOFIO AT ~IT lN 1963 
C R~VJSEO ANO UPO~TED RV G. F. FLA~AGAN Al ISU IN 1Qa7 
C USfD FOR THf CALCUL~TION UF SLOkING DOWN PARAMETEHS 
C f~ F ST M~TAL AS~E BLtES 

1HMr:~~SHJl'I SP(lO) t <i ·lt1:0),$ tH U2td,S ru2~ ), S~(.l(;:''"') ,­
l$fJFl ( ;~0) , $8J2(2 >t Sif2UO >r S•C2'2J l,V80UNDUCJ ), .AP lt 1J 
2t20 },A P2 ( 10 , 20 ), SB Ll( 20 , 20 J, SBl2 C 20 , 20 }, - f 22) , Vll ( 2~J 
3r VL2 t 2Q) , $l ( 20 ),PL ( l0) • FPl C22t , FP2 <?2 ltl EAK ( lOQ , !J l, 
't~ t:LS tl 00 , 10 l t Nl NS l l O~ ), ~Fl S (! 00 h KAF f {l(j''.}} 

, AUS . l 
PCWINO 10 
RE - 0 (1, 1 ) xs ,v s ,z s , PA~A t PA~B , PA~C . 1HETG t K , NEUT 

I fORMAl t 7FB . 4 tl 2 , Il4t 
WR lT ~ ( 3,2 ) 15 ,ys , zs , P A t PA~S , PA~C.THETA t KS , NEUT 

2 fU 'M,l ( lHl t 3HXS~F8 . 4 t lX,3HYS=~8 . 4 , 2X , 3HZ~~FS . 4 , 2 , 5HP 
LA'A:F8 . 4 , 2X ~ 5HPAR =Fe.4,2X,5HPARtuf6 .4t 2X , 6HTH~r =F ~ . 4 , 
22 , 3HKSaI2 t ~X , 5HN·UT•Il4 ) 

ru::AD (l 1 3)$P 
3 FORMAf f l ~F 7. 41 

wnTf. ( 3 , 4 ) SP 
'• FOR~A1 ( .1H(; , ~~H$ =lOf-7 . 4 ) 

R~ Ao ( l r 5 l XMAX ,Y~AX , ZMAX . RMAX , A~ 

FORMAT<4FS . 4 tf 2 l 
WR ITf {3 t 6 l XMAX tY MAX , lHAX , RHAX , KAS 

6 FORMAT (l HO , SH HAX=FD . ~ t 2X , 5HYMAX•F8 .4t 2X t 5HlM~X=F8 . 4,2X 
l t 5HRMAX=FB . 4,2X ,4HKAS~tz> 

~ ADll t 7 >TD , TCH , fMI~ , fCH , ~Tl,KT2 
7 FORMAT ( 4f7 . 1 , 21~ J 

WM tTf ( 3 , ~ lT D , TCH , EMfN t ~CH , KtL , KT2 
B fOR~Aft lH0 r ~HTQ F7 . 3 , 2X ,4HTCH~F7 . l t 2 t 5HfMIN~F7 . ~ t 2X ,4H 

l .·CH~F1 . 3 t 2X ,4HKTl=t3 , 2X t4HKrZ~J3 > 
REA[ (1 t 'il i P 

9 FORMAl ll lFb . 2) 
H<. Hr,1,HHP 

lQ FORM4Tt Hr• , 2!-!P=illF6 . 2/3X , l l F6 . 2 l 
t,EAO ( 1, l t l Vi OUNIJ 

11 ·ORMAT ( l~fl . 4) 
WR 1T E ( 3 , l2 l VfiOU~D 

12 FCRHftT ( lH~ .1~veouNuaJQF1 . 4 / 8K tl OF7 . 4J 
~fAO Cl, 11 } AOl ,A l , ALJ~l , SL I ~l , CfNl , VSll , fNUl , OELHUltklA 

13 FORM ATCF7.5t7F7.2,5F8.4,12) 
WR tlf(3,l4)A0 ltAl1ALIMltSLJ MlrCl NltVSTl,fN' l t OELNUl t KIAl 

l4 f: m~M Ttnio ,4 1·4401=f7 . ~ , 2x , :.u-v lcF1 . z , ; · , uHllLIMl.,,.F7 . 2 , 2x , 6 
lHSLIMtare .4, 2X t 5HCI ~l•F8 .4, 7~ , ~H¥ST1~Fe . 4 , 2K , 5HFNU1 -F R . 
24 1 2A t7HOELNUl=F~ . 4 , 2X , 5HKIAl:J2 > 

KEAO (l t l S l $FIE l 
lr, t-OR~AT { lQF7 . 3 l 

00 16 J=l,2 .. 
16 S0El (Jl~AOl•S8EllJ) 
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w~ l T 2 ( 3 , 1 7 t $ ,f: l 
17 f0RMATtlh0 , 4HSB"=lOF7 . 3 / 5X , lGF7 . 3) 

REACJ( if. l 1:1' J s,; Il 
no la J =1 , 20 

i e s 11 t J J ~Ao1~se11 1 J t 
'R IT F ( 3, l Q J S ~I l 

l 9 FOR~!IH ( HIO .. 4HS0 l :l()F7 .. ){5'I. , lOf1 .. :.H 
·.EAU t t , li., ) $1.:Fl 
DO 20 J=t , &:W z· $8Fl( J} ~AOl*~BFl ( J ) 

~RITE ( 3 , 2l ) SBF1 
21 FURMAT t lH0 , 4HSBF~IOF7 ., 3/5X~lDF7 . 3 ) 

I~ E AC ( l ,. l 5 } S fiC 1 
no 22 J i:::l , 2:J 

22 ~fCl CJJ =ADl•S8C\ € J t 

WRITE ( 3 , 23 1Sf'C1 
23 ~OR~Al( lHJ , 4HSSC=lOF7 . l/5X t lCf7 . 3 ) 

PEAO (l ,l S ) A Pl 
tUfH3 , 24 l 4Pl 

24 fORMAT ( lH" t 3~AP=lOF7 . 3 / 4X , l0f7 . 3/4X , 1QF7 . 3 / 4X , lOF7 . 3/~X 
i t lOF 1 . 314~ , 1or-1 . 1 1 .i+x , lOF 7 . 3J'•X , l orr. 3/4x , ior1 . 3/4 x , 1 '" r 1 . 
23/ 4X t l0F7 . 3/4X t 1Df7 . 3/4X t l0Fl . 3/4 t l07 . _/~X , 10F/ ., J/4Xtl 
lOF7 . 3/ 4X 1 10f 7 . 3/4X t lD~7 . 3f4X , 10F7 . 3 / ~X , lOF7 . 3 > 

P.EAO Cl .15 ) 'Ll 
WR I T E C 3 t 2 :>t V L 1 

25 fORMAT t lH0 , 3HVL=lOF7 . l / 4X 1l0r7 . l ) 
~EAO (ld S l SfL l 
WR 1 if t 3 r .? td SF l.. l 

2 FORMAT , lHO t 4HS8l= 10F7 . 1/ l 5X , 10F7 . 3 )} 
i:'.EAO (l, .?7 ) J:.'.Pl 

27 FOR~AT ( llf6 . 3 ) 
WR1Tt. C3 1 20 )FP1 

2 B fORHA T{ lHC t 3HfPallF6 . 3/ 4XtllF6 . l > 
~EAL f l t 13 ) A02 t A2 , Al l M2 t SL{ 2 , c1~2 , vsr2 , FNU2 , 0ELNU2 , KIA2 
~Rll( ( 3 , Z9 ) 1D2 t Z t Al l M2 t SL I ~2 , CIN2 t VS T 2 t FNU2 • 0ELNU2 1 ~IA2 

29 FO MAT t lH~ 1 4HADl=F7 . s , zx , 3HAZ•F7 . 2 , 2X t 6HA L JM2=F7 . 2 . 11 , 6 
1HSLJM2=Ff . 4 , 2X t 5HC t N2•f~ . 4 t 2X , SHVST 2aFB . 4 , 2X , 5HfNU2er • 
74 t 2X7HDELNU2~F& . 4 , 2X t 5HKIA2=12 ) 

1 F ( A 02 l 40 , It f) , :SO 
3 ~ READ t l , 15 ) OE2 

00 31 J ~l , 2<' 
31 reE2 ( J J ~A02~S6E7CJ • 

iR. IT lC 3 t l 7) $} -2 
~EAV ( l. , 15 ) S6 I Z 
Nl 3.? J::.t , 2( 

3 2 ~a12 CJ) ~A02•S8 l ~(J ) 
WR n f, (3 , l 9 ) S, I 2 
r~CA ( l , l: ) S0 F2 
PO 3 ~ J .: l • ?.Q 

1 SDF2l J> ~A02•SBF2 f JJ 



~Rlf~ ( 3 , 2l l ~Sr2 
.f. AO tt, 15)$1'\C.2 

{I\] 34 J~i,20 
seC2( J)= AnZ•SBC? {J) 
~RITt ( ~ r23) S~C2 
J.~ :Z 40 (l , l 5 ) A PZ 

' (T f Lh 24J AP2 
HE AD lltl 5 l Vll 
WH l H: <;; 1 2 5 } \f l 2 
f.E AO <l,1 5 ) S8l2 
IRTTI.. ( 3 , 26 J :'.' l ? 

RE AO ( 1. 27 Jf ?2 
W~ H C t .h 2 S l f P 2 
t~o r o s J 
fO 41 J':;1,2r; 
$flE? fJt= 'J . O 
{ 0 43 J::i1,20 
~i:\ l Z t.Jt= O . O 
no 45 J::;:t, zo 
seF2tJJ:::o . o 
00 47 J :.dl , 20 
Sl~C?( J}:i:: O . O 

~EWINO !\Tl 
REW IND t<.T?. 
l<T=KTl 
MU L T'""'l 
rlL=P 
\ (.. ;::./; 

1i;S =U 
~ i-0 
Hf=(' 
~l l TO :::: t; 
N(; ff.{.$(,i 
'GZR =O 

NLrff: =O 
NGER =O 
f\ OSL=O 

SCAl'=O 
f PU::;C 
t TOT 1110 
HE AO ( 1 t qo , r x 

90 f.OR~A! (l q ) 

Ql kEAD (l, Q5 ' JJ 
95 fORM~Tt fl) ) 
,00 DO go1 N~l , ~tUT 
107 IPU,,,lPll-t-1 

fTOT'-"JTOT+l 
IFtlPU• SOO Jl lO tll0 , 862 
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St~ WR lT f (lOtlTOTrIX , NL, NC , NS , NF i NLTD t NGfR , NUZR t NLHEtNGFR , 
1' OSL 1t&AK , NfLS r NINS t Nf[S , KAPT 



lPU~l 

WAITE ( 3 , 863JITOT 
£63 FORMAT tlH tE H ) 

REWlND 10 
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11 CA LL SOURCE t ALPHA , BETA t GA~MA , VEL t X tV,Z, T[ME , PARA,PAPk t 
lPARt , xs ,vs . zs , ZMAX ,lHETA , SP t KS tlX) 

120 CA LL SIGMA(VfL , SBEl , S0E2 t SBl! , SBI2 , SBFl , S8f2 , S6Cl , ShC2 e 
lAO l. A02 ,VBOU~O , TMFP , Prl ,PE2,Pit ,Pt 2 , PF\ , PF2 , PC1 ,J) 
tF(Jll22tlZ2,127 

122 NT•NT+l 
!FtNT-5)12ltlZ3t124 

1Z3 ca ro (ll 0 , 809 , BZOJ , MULf 
124 WRITE t3,1 25>NT 
125 FORMAT Cl ~O , ~HNT~I2 t 

ca ro 900 
127 NlzO 
130 CALL FLITECOIST,TtMET,TMfPtVFL,JXJ 
140 GO TO ( 145 r l50 tl 5SJ , KAS 
]45 CALL DTPB CAL PHA t OEfA , GAMMA ,x,v. z , xMAX ,V MAX ,Z MAX , 0[$fH l 
146 CALL POSTtALPHA , BETA,CAMMA .x,y, z , ut~T t DIST B , TJ~[ ,TI f T, 

lV~L , KG(G > 
147 GO TO (l b0 , 600J , KGEO 
l '·~ CALL OTC (ALPHA,bETA,GAMMA,X1YtltRMA •lMAX , OlSTal 
l i l ~O TO 146 
1S5 CA LL DTSBCAlPHA , eETA , CAMMA . x ,Y, l , RMAX t DISTb) 
t r & GU TQ 1~6 

lG G IF ( A02 )161 tl 6l ,165 
lbl CA LL COLIDltPEl,PfltPFl,KCOt,tXJ 

CO TO 110 
165 CALL COL1D2CPfl ,Pea , Ptl -Pl 2 , PFl t PF2 t PCl t KCDl t lX} 
170 KTYPE=KCOL/10 

KNUCt~kCOt~t lO•KTYPE l 
ca TO c200,100.400,500l.~1VPf 

200 CALL ElTAL (fl M: tt D,TCH ,l, lMAl ,kCLS , NELS) 
NS=NS•l 
GO ro {20l t 205 t 20l , 207 . 20Q ), KEl S 

203 NL TC=NLTD•l 
GO TO 209 

205 NGTR=NGTR+l 
co ro ooo 

20 7 ~GZR~NGlR+l 
GO TO 800 

2C9 kSC T~KSCAT+t 

iF (KSCAT -l OO J2ll t 2ll t 225 
211 GO TO t215tZ20t,KNUCL 
21 5 CALL ELSCATCALPHA , 8[TA , GAMMA ,VEl , Al , AltMl , ~LIMl,APl t J, 

llX ) 
GO TO 120 

22C CALL El~CAT( LPt1A,8ET4,GA~MAtVCLrA2,AltM2tSllM2,AP2tJ, 
l 1 )( ) 



-.o ro i20 
225 NOSL=NOSL+l 

sc.A r~c 
.:o T fJ 800 
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30· CALL IN AL CTI f ,TO , TCH , KlNS , ~fNS ) 
"15 2 5+1 
CO 10 lJOJ 1305 t 3051305 t 307t,KtNS 

3C4 NLTO=NlTD•l 
iJO ro 301 

3~5 NG TR=~GTR+l 
GO lO 00 

307 KSCAT~KSCAT+l 
tF< SCAt-100)309 , 309,320 

309 (i0 TO 131Cl , 31S} , NtJCl 
31: IF t V~L-V~TU31lt 12 , 31? 
Jll CA LL LEVFL(VFltSBLltV10UNDt PL ,Jl 
] 2 CALL I SCAT(ALPHAt ETA,GAMMA , VEl . Al,CINltP r PL , VLl,v:r1 

l , KIAl ,l Y) 
GO 10 li.'0 

l ~ tF(VFl - VST2) 16,317, ~ 17 

316 CALL LEY L( YfL • S L2 t V80UNO , PltJ) 
3l7 CALL I SCAT t ALPH4 18ETA , GAM AtVELtA2 , C( ? , P , PL,Vl2eV T2 , 

l t<: l A7.. , l X l 
GO TO 120 

37.0 NOS~QNOSL+l 

KSCA. l=O 
r.o lo oo 

40 CALL FISTA~CTIME , TD t TCH , KflS t NF i~, 
KSCA =O 
GO TO (402 , 404 , 404 1 404 , ~06) , KFJS 

4'?. NLTO ~NLTO+ l 
f,Q TO 4 6 

40~ NGTR~NGTR+l 

CO TO BOO 
406 GO TO ( 07 , 409) , KNUt.L 
40 7 r:ALL Fl s SN ( x ' v' l f VE l t n Mf, . F pl • r NU1 f OElN 1 l ' NF ' K 1 t Ix) 

GO TO 800 
4oa CALL FISS~ ( X ,Yt l , VEL t flHE 1 F~2,FNU? t UllNU 2 , Nf r KT , IX) 
41 0 GO TO e~o 
500 CALL CAPTAl ( ilM~ , ro , TCH,KCA~ . KAPT> 

·~C=NC+ i 
I< SCA T=Q 
GO TO ( 5l4 ,506 t50~,506 , 507 >tKCA 

~04 NLTO•NLTO+l 
GO TO 80(1 

-06 NGTR~NGTR+l 

!•07 GO ro eoo 
600 tl'•Ll LEIHAL( TrMt- ,VfltH>ftCH,r:MIN; ECH , •tt:K,L [AIO 

NL - f\i + l. 
K SCA T:c:C 
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GO TO { 6n4 , 6~ , bC8 , 61Q , 6ll ), LCK 
6 t. NLT f> : Lll+l 

t;o To aao 
606 NG TR=NCTR•l 

GO TU aoo 
60' ~lMt=NLME+l 

GO TO 600 
NGEI< ""NGER+ l 
ro ro soo 
GO TO C BOl , 609 , 8~0 ) tMULT 
CGNTlNOF 
KS=l 
GO TO 50 

~03 MUL T ..:::2 
HtWt~O f\Tl 
HCWI NO 'T2 
IF,NF>a50 , e~o . eo1 

fHH N=t-4F 
Wi< ITU 3 t 0 8 J NF 

n FORMAT (lHOt~HNF=18 ) 

NF =1~ 
S q N::oN,.. l 

JFOHtH4,lHl, · 11 
l R AD(KTl)X$ ,YS 11 lS ,P ~R.A,THETA 

!( T11:t< Tl 
c.o ra 10 7 

814 ~~ULT ~3 
RfW lNO Tl 
RE:W INC l<T2 
IF ( ~F lR~0 , 650 r 818 

81:} NlltNF 
t.iJR l T t ( 3 , '08 HIF 
t•F=o 

8 21) N=N- l 
lF( . ) 803 , 822 , 822 

822 lEA0(KT2 l XS,YS tlSt PARA t THETA 
KT.::.KTl 
.• U TO l. 07 

S49 ntAO <l.l) xs,vs,zs,PARA,PAR 5 , PARt ,THFTA , KS , ~eu r 
. Rtrf(3 , 2 ) xs ,v s ,zs,PARl\ , f'A. f\ , PAftC tl HE T A.K S t Nl:UT 
r.o TO l Ot 

O~t> ~R ITl(3,85llNL,NCt~S,NF,NLT~tNGTR,NGZP,Pl Et NGER , NOSL 
85 l rOR,.i l\T t llH, 3HNL :f a , ,zx , 3HNC= i C' , ?. ' r 3HNS=t 8 , 2 .< , HNFe.t S/ HIO , 

l5HNLTL =I O t 2X , 5H~GTR•I8 , 2X t5HNGZR~I8 t 2X , 5HNLMEs1e . ~x , SHNG 
2fR= Ie,2x.SHNUSL~f~) 
W~lTt t3, fi53 )LEAK 

p5· FOR~AT ll H0 1 5HlE K=2016/t6X,2Cl6l) 
Wq lT E < 3 , t55l~flS 

6~~ fOR~ATf li4t5HNELS#2016/(b ·, 2016 )) 
wR li((3,S57)~lNS 



8': I 
eo'} 
866 

tno 
~Tl 

at.1 
966 
900 
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FORMAT { 1H4 , 5HNINS~20I6 /l 6X , 20{6 )) 
WRITE ( 3 , 859 ) ~FIS 
FURMAT ( lH4 , ~HNFlS=20lb/C6X t 20(b )) 
WR11f ( 3 , 0bl l KAPf 
fORrAf t lH4 , SHKAPT~2016/( 6K , 2016 l) 

\-1R tT E ( .:; ' 066 J 1 ;)( 
FOR AT C l 111 , t l fH 
lf ( ~F ) 871 , 71 , 870 
IF {ITO T- NfUT ) 803 , 003 , 671 
J J .rJ J- 1 
I~ < JJ J 8b7 , 867 t 849 
1R { f( ( 3 , 868 ~ 
~ORMA Tt lHJ , 17HPROGRAM COMPLETED! 
END 
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SUBROUTlNf SOURC~tALPHA 1 BETA,GAHMA , VFL t X 1Yt l t TfM€ , PARA , 
lPARB , PARc , xs ,v s , zs ,z MA ,T HETA , SP,KS , fXJ 
0 l MENS I ON SP 0 0) 
GO TO (l Q , 20 , 30 , ~0l , KS 

10 X=XS 
v~vs 

l=ZS 
CA LL RANOU ( IX ,lY,YFL} 
!X=IV 
GAMMAC =l . O•Yfl-l. O 
VEL~PARA 

CALL ISOANG<ALPHAtBETA,GAMMA,CA~MAC,Vfl,IX) 
l I Mt:""' THE 1 A 
f~ ET URN 

2( CALL RANOU<IX ,J Y,VFL J 
tX= y 
X=X$• ( 2 . 0 •YFL-J.O) 
CALL RANDU <t X,I YtYfl l 
I Xi:i f Y 
Y~YS•(2.L•YFL-l.0) 
l'=-l'5 
GAM~,A'l:'l l . (' 
ALPHA=O. O 
SE TA=O . O 
CALL RANDU t TX tlV,vFL} 
i X= t Y 
VEL=PARA- PARB•YFl 
TIMl=O.O 
RETURN 

JO CALL ANGLS CSP . GAMM,C , tXJ 
CA LL RANOU tI X,IY,YFL> 
l X= I Y 
VEl•PARA- PARR•VFL- PARC•tl . O- GAMMAC l 
CALL ISOANGtALPHA,DfTAtGAMMA.GAM -c ,vet , JX ) 
Sm( - lMAX-ZSl/GA~~A 
Y:=S•ALPHI\ 
Y<=S*nETA 
z::= ... zMAX 
1IMC=S/Vf.L 
FEfU!<N 

4 CALL T1tP.(;£:T(ALPHA 1BETA , GAMM/\ , VEl 1XtY, l , rtME , PARA , PA , t , 
t PARC tl X ) 
Rt TlJ'U-4 
t-: Nu 
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SUBROUTI NE ANG LSt SPt GA4HAC , [X l 
DI MENS I ON SP (lOl 
CA LL RANDU CIX ,I V, YFLJ 
l X=I V 
M ~lO . O •Yf L+ l.O 
REM= VFL- O.l •F LOA T( M- 1 1 
JF (l 0- MJ30 tl 0 , 20 

l " GAMMAC =SP llOl+< REH / O.lJ • (l. O- SP l lO }) 
KE TURN 

20 ~AMMAC = SP ( M )•( R~MIO .ll•( SP ( M+l>-SP t M ll 
RE TU~N 

30 GAMMAC= l . Q 
RtTUkN 
END 
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SUBROUTINE TftRGCT(ALPHA,OETA,GAMHA , VEL , X1Y1 Z,TlMt , PARA , 
lPARB . Pu~c .. 1 x) 
x ... )( 
Y=Y 
l=l 
AtPHA»ALPHA 
OETA=f.H: TA 
GAMMA1:11GM .. MA 
TIMl:=O . C 
CALL RANDU(JX tI Y, VFt) 
lX=lY 
VEL~PARA-PARG•YFL-PARC•ABS(GAMMA l 

RETURN 
END 
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SUBROUTINE SIGMA < EN , S~El 1 SBE2 , se 1 1 , s~12 , s1 Fl , SBF2 t S~Cl t 
15BC2 , ADl , A02 , E80UND , T FP , PEl 1 PE2 , Pl1 1 P J 2 , Pfl t PF~ , PCl , J J 

OIMt-NSION SPt=U(~O )., Sf:.f.:-2 c zo >. ~O lH ?tH , SB!2 ( 20 lt S . t- U /t'} 
l\6f2 t 20 lt S8Clf20) , S8C2 ( 2Cl , reoUNO f20 ) 

l ~ CALL GROUP ( fN t EHOUND ,J, KGP ) 
J=J 

l . GO lO ( 12 tl 4 }, t<.GP 
12 J=O 
13 1E lUR.N 
14 lF(2·-Jl~Ot6Dt2 ~ 
2v SEl~FIND t CN ,J. EOOUN0 , ~8(1) 
2J Sll•FlND &EN ,J, EBOUNO , SSil > 
22 Sfl•F INDICN,J,EhOUNO,SRFl) 
23 SCl•FINO ((N ,J, EBOUND , sntlJ 
24 TFCA02}25,l5tl0 
2~· ~f:2..;:0 . 0 
26 ~ 12:-0.0 
27 '.:f2=0.0 
lD SC2=0 . 0 
29 G.0 TO .t,.O 
3 S.!:2=F I NO l ct ,J, EUOUNO , SS ·i> 
31 ,., I 2=F l ~ Ef.N,J,CUOUNO, $tH2l 
32 SF2=FINOf EN ,Jt E80UNO , saF2J 
33 sc2~FINO C EN .J, EBOUND . SBC2 > 
40 TMFPul . O/lSll+S il•SFl+SCl+SE2 +SIZ +Sf2+SC2 ) 
41 PE l=fMFP•SEl 
~, Pll=TMfP•S ll 
4~ PF l•YMFP•SFl 
44 IF ( AD2 > 45 ,45 , ~0 
45 rc1~1 . o-PEl-Pll-PFl 
46 £F(PC1-G. 000l l4 7,48 , 4S 
4 7 f)C ll:;O. O 
4f' Rf. TU"N 
50 PCl=TMFP*SCl 
51 PE7-TMFP•SE2 
&~ PJ7.cJt~P•Sl2 

53 PF2=T~ P•SF2 
54 REHJL< ~ 
60 SEleS0~l{ZOt 
61 Sll•SBl\(20) 
62 ~Fl=SBF1 ( 20t 
6~ SCl=SBCL ( 20t 
64 SE2sSAE2(20 > 
6~ SIZ:SOI2<20> 
66 ~f2.=S8r2(~0) 
67 sc2~sec2t zo > 
6B GO TO 4''. 

ENO 



1r 
ll 
12 
13 
14 
15 
10 
l7 
l P 
19 
20 
l1 
22 
23 
24 
2'i 
26 
21 

29 
'.\O 
31 
32 

,~ · · 7 { . 
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SU8AOUTIN€ GROUP <EN , COOUNO tJt KGP ) 
OlMENSION EBOUNn C20 ) 
ff t tN- EROUNDtl Jlll1 ll . t3 
KGP~l 

i'.f TURN 
Ji:;20 
!f ( EN- EBOUNO (J)Jl 5 , 9l 19l 
J=lO 
£F ( EN- EAOUNO tJ}l l7 , 91 , ?9 
J=S 
tf<EN-ESOlJNDCJi H9t91,25 
J=2 
1F ( EN- EBOUNDtJ J) 90 , q1 , 21 
Je.tJ+ 1 
fF CEN-t80UNO(J )l 90 , ql f 2 
,}=J• l 
lF ( fN- f80UNDtJ )) 90 , 91 , 9l 
J=7 
lf (EN- EAOUND (J)t 27 t 9l , 2l 
J:i;::,J-1 
CO TO 2A 
J!Cll'.' 
iF t tN- EfiOUNO(J )) ~l . 91 , 33 
J:l2 
{F ( lN-E~OUNOt J)) 11 t 9l,2t 
J;: l7 
IF t EN- EBOUNOl Jl) ?J , Ql t 21 
J= J- 1 
t<GP=2 
RC fUl:lN 
t-Nft 
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f"UNCT l ON F I N!'l {f;N ,Jt f.hJONO t SRX l 
D l ~~NS l UN fBOUNO < ~O ), SqX ( 2Q ) 
F I NG =sax ( J) + ' EN-(~OIJNO ( J) ) * l $3)(. ( J * 1. )-S8X ( J , ) I c E f\OlJNO ( J+ i 

l ) ... [ 8 OUN D t J ) } 
Rf.£fU 1N 
ENO 
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SU8RUUT1N( FltTf {OI ST . TlMET , TMFP t VEL t JX) 
l tA LL RA~DU t IX , tV , VFL ) 

I =lV 
12 lF t YFL-. 0001454l10 1 lO . ll 
13 c=~LOG ( Vrl l 

!)l$T-= TMFP• (-C > 
1F t OIS T> lO r l6 r lb 

l t TfM[T=OIST / Vfl 
Ir {TlH€T 110rl8 . lR 

l t R( TURN 
t:NO 



84 

SUBrOUT lNE POS J( A L P~ t 8E T A , GAMMA t ~ .v. l , D I ST, O T S T 8 t Tlf Et 
l TI CT ,V FL,KGEO ) 

IF (LJ I STh- Dt ST} 20 t 20 , ! J 
1(1 ..,,X + ALP HA • Ol ~T 

Y=Y +8t TA•O l S l' 
l~l+ GAMMAn flf Sl 
l 1 M( .;i T H f + T I '1E T 
KGCO= l 
Rt TU"N 

l C X=X • ALPHA • Of STn 
Y=Y+ l:lE TA*O l S TB 
Z=l +GAMMA tt Of 'l.) TB 
rt f ,[; ::i Tl ME + 0 l S. T t3 I V ( L 
KGEO u:. 2 
RE l Uf\.N 
E· 0 
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SUBROUTI NE OTPD(ALPHA,8ETA, GAMMA , x,v. z , xMAX , YMAX , Z AX , 
lt'fST l 

fF( ALPHA) 2,l, 2 
1 ( 1:10000. 0 

l'2 J:l';lOOC'tQ . O 
co r l 

2 0 l•(XHAX-Xl/ALPHA 
i12:.- ( XMAX+X ) /Al PHA 

3 {f-( BfTAJ5,~, ? 
4 U3=I OOO~ . Q 

C/• 'l:lOOOO. O 
GO TO 6 
~Jsf VMAl-Y)/5f TA 
04=-tV ;AX-Vl/ ETA 

6 IF ( ;AMMA) 8 1 7 • '3 
7 iJ5o::lOOOO. n 

06= l OOl"HJ . 0 
C.O TO 9 

a 05z ( ZMA -Z>IGAMMA 
06~-CZMA~+Zl/GAMMA 

9 If <Dl)l 0 ,ll, ll 
10 0 1=1 0000 . D 
11 lf( G2 )1 2 tl 3 , 13 
12 02 =L OOO . Q 
13 1F( D3 ll4115 115 
14 03~10000 . c 
l ' !F(fJ·~ll6,17,17 

16 04=1 0000 . 0 
17 lF( ~5 11 8 tl9t19 
18 !.5=lOOOO. O 
19 IF( D6 J2.0 ,21, 21 
20 D6.:;l(l0~'H) . 0 
21 r rsr e~A~fNtt o1,02 ,03,04 , o~ , Gb l 

lF( Ul s Tr )23,24,24 
23 t> IST H=O. I) 
24 Rl:TU:{N 

f NO 
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SUBROUTINE DTCB iALPHA t 8fTA. GAHMA , x,v, l , R Ax . z -~ , O I STB ) 
OMR~X•ALFHA+Y • BE TA• Z*G4MMA 
~ =S~RT(X*• 2 +Y•• 2+l•*2) 
1F ( ;•AMMA-1. 0 )9, 8 ,9 

a r1::t oooo . o 
GO TO 20 

9 Pl= l l •GAM~A-OMR • SQR T(t Z •GAMMA - OMR ,•• 2 +fl. O -GAMMA••2 J • ( 
ltMAX• • 2 + l• • 2 -a •• 2 ))}/{1. 0-GAN~A• t 2 ) 
IfHlUlQ , 20 , 20 

H' f\ l ::- J)l 
lo IF(G6"MAl20 , lqt20 
19 02 =10000 . 0 

ll3 =l OOOo . o 
GO TO 3'3 

20 e?•< ZMA¥ - Z )/ G~H~A 
[13•- ( lMA.' +l} / GAM, A 
IF ( 0 2 J 30 , :n, 31 

30 P2 =1 00DO . O 
31 IF ( ~3 >3 2 , 3 3, i3 
3Z 01~10000 . 0 
3~ 0 1ST B•AH I N 1C 0 1, 02 , D~ ) 

IF C0 f 5TBJ3S ,40 , 4a 
35 OIST8;-0!STL 
4C Rt TU RN 

CNO 
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SUBROUTINE OTSB(ALPHA , 8ETA , GAMMA , x, v,z , RMAX , O(Sfl) 
OMR•X•ALPHA+V•BETA+Z•GAHMA 
ReSQRT ( X~•2+Y••2+l••2J 
JJSTe~-u~R + SQRl(OMR••2+RMAX*•Z-R•*l t 

S If ( OC$T~ ) 2,0 , l0 , 10 

t: l'f:TURN 
20 OI5Tb~ -ot~T~ 

GO HJ ~ 
!:NO 



10 

ll 
12 
13 
14 
l~ 

16 
l 7 
1 8 
19 
20 
21 
22 
23 
24 
2 
2~ 
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5UBROU11Nf LEKT6L ( TIME , VEl t TD t TCH t fM(N , EtH , K L ~K , LEAKJ 
DIMENSION LFAK ( l~0 , 10) 
fTIMf= ( flME - 10 }/TCH 
ITIMf=ft1 E+l 
IF t ll l ME-l l l2 , 14 f l4 
KL(K~l 

P£fUR 
ff ( 100-ITIME)15 t l7 , \7 
KLt~~2 

nETURN 
IEN=t0 . 5227• C VEL~•Z l -lMIN )/ fCH 
[f ( lEN•l J 19 t 2l t 21 
KLE~=3 
RETURN 
lf ( l0- IEN t ?1 , 24,24 
KLEK=4 
~ETUR 
LEAKf l flME ,l fN l =lFAK ( ITIME t IFNt+l 
rtEK=5 
RETURN 
ENO 
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SU8ROUT1~f COLlOttPEl , Pll , PFltKCOl tl X) 
9 CA LL RANDU t IX 1f ¥,YFLJ 

lX=iY 
10 TF( YFl - PE ll 201lltll 
11 lF <YrL-PE1 - P11> 3011 2t12 
12 IF t YFL-PEl - Pil-PFl )40 ,l l tl 3 
13 KCOL =41 
111 RE TU RN 
2C KCOL 1"1 1 l 
21 (ETURN 
.3t KCOLs:;n 
31 hE f URN 
4t' KCOL= 3 l 
lt l ru: HH~N 

ENO 



90 

SU~ROUflNF COLI OZ IPEl•P~2,P{l,PJ2,PFl,Pf2,PCl,KCOL,I X t 
9 CALL RA,OU (f Vtl YtYFLt 

t x::: r v 
l t 1P (Y rL- P.:t t 20 tl l ,l l 
1\ lF (YFL- PEl - Pt2 J 30 ,1 2 , l2 
12 lF (Y fL - P~ l- PE2-Pll J4Q ,13,l3 
13 1F (Y FL ~ Pfl-Pf2-Pll - 12 ) 50 ,1 4,14 
14 ff (Y fl-P~l-PE2-Pll-Pli-P l)&: ,1 5 tl 5 
l~ JF(Yfl-Ptl-PE2-Pil-Pl?-PFl-PF2)76tl6,l& 
16 1F t Y~L- PEl -PE2-Pll•Pl2- PEl - Pf2-PC 1)8Gt9C,90 
20 KCOL::oll 
21 RfTUt{N 
30 KCQL%1112 
:'.H RE TUt-\N 
4 () KC0t=21 
t. 1 !<EHJ~N 

'>0 KCOL =22 
51 I~!:. TllRN 
c O KCOL-=31 
61 RE TURN 
70 t<COL =32 
·11 Rt TU RN 
•O t<COL '+ l 

fil RE TU RN 
90 KCOL .=42 
91 RE TlJ RN 

ENO 
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~U8k0Ul1 NE ELTAL fTl HF tTDt TCH ,Zt Z AX ,KEl S, NELS> 
OI MENS HJt-J NflS t 100 , HH 

10 lTl t• ( TIME- TD ,/lCH 
lTIM f :::ill JME+l 

11 lF(IllME-l>l2t14,14 
12 fl'.t: L S=l 
13 P.€TURN 
14 IF (l OO~lTt Mf )15 t 11 , 17 
l ' KtlS=2 
l 6 Rt. TURN 
17 IZ•6.0+45.0•ll/lMA~ 
10 IF(IZ-lll9,2lt21 
19 Kt: L S1113 
?. t'i RETlJRN 
21 lFtlO-IZJ22,?4,24 
22 KELS'.1:4 
23 RETURN 
24 KEL:.=5 
25 NE LSfITlME tl l )•Nf LStl TIME ,J Z)+l 
;r~ RE TURN 

CNO 



92 

SU6ROU11Nf E LSCAT(AlPHA,~ETA,CAMMA , Vft , A , AlI M , SLJ ,, AP ,J, 
11X l 

U[MlNSION AP(l0t20 J 
l• i IF f VEl - SL!M)ll1 20 t 2(1 
11 C~ Ll RANDU ( JX ,tY,YfY) 

IX=-IY 
~AMMAC =2. 0•YFL-l. O 

l? tF t A- ALIM l l3 tl 5 ,t 5 
13 CA LL CMLAB C ALPHA , &ETA ~ GAMMA,GAMMAC , VEL 1 1X ) 
lt. t<".t TU Rl\J 
1 ~ CA LL ISOANGfALPHA,BETA t CAMMA t GAMMAC t VEL , lX) 
16 ! ETIJRN 
20 C~ Ll A1 GlE (J, AP , GAM~AC , tX l 

2 t GO TO 12 
END 
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SUBROUTINE ANGLE CJ, AP i GAMMAC tl K) 
DIMtfS t ON APtl0,?0 } 
CALL RANOlH IX.t tYf l) 
IX-=fY 
··tC. O•YFL+l. O 
REM~YFL-O .l *F LOAT ( ~-l l 
IF <l 0- M) 30 ,10 , 20 

lt GAMMAC;AP (J O,J)+( RE / 0 .l)•C l . O- AP tlO,J)) 
PETUflN 

20 CAMt-'·AC=Af>(M,:J)+(R M/O.l)•(AP ( M+ l ,J)-AP(t ,J}) 
r.e Tur,111 

30 GAMHAC~t. a 
P..E TURN 
F.NO 
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SUSPOUTl~~ CMLAB ( ~LPHA , BElA,GAMMA , GAMMAC , VEL,A , lXJ 

10 CALL RANDU <lx . 1v,YFLI 
f ~~Iv. 
kl•YFL 

11 CALL RANOU t 1X , IY i YFLl 
lX=IY 
R2=VFL 

12 ETA•t2 . 0•Rl-1 . 0)•*2+f2 . 0•RZ-1 . 0)*•2 
13 IFtETA - 1 . 0 ) 14 , 14 , lD 
14 ROOT•SQRf (t l . O- GAMMAC••2 )/ETAl 
15 ALPH6C=(2 . 0~Rl - 1 . D l •ROOT 
l6 HETAC= < , . 0•~2- 1 . 0l•ROOT 
17 ~TG=SQRf l l . O-GAM~A••2> 
lR ALPHAP~(tALPHA•GAMMAXaLPHAC -eETA•8ETAC ) /kTGJ + ALPHA• 

lLA MAC 
l'· bEfAP= Ct BETA•GAMMA•ALPHAC+ALPHA~BETAC} / RTG)+dETA•GAH~AC 
2D ~AMHAP~-ALPHAC•RTG+GAMMA•GAMMAC 
21 RTA=SQRT(l . O+A•~~+: . O•A•GAM~ACI 
22 AlPHA~ f ALPHA +A•ALPHAPl/RTA 
2~ 8ETA~ ( 6tTA+A•BETAPl/RTA 
24 CAMMA~ C GAMMA+A•GAMMAP J /RTA 
2~ V~L~<VEL•RTAJ/ t A+l . Ol 
26 RhfUPN 

END 
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SUBROUTINE ISDANG ( ALPHA t BETA,GA~NA , CAMMAC , VEL , J~) 
10 GAMMA~GAMMAC 
11 CALL RANDU f 1X t lY , VFL> 

lX l Y 
Rl=VfL 

12 CALL RANOU l IX , 1¥tVFlJ 
{ X= ! y 
R2<:i:.YFL 

13 fiA~ < 2 • 0*Rl- l . 0 > •*2+(2 . 0 *fi2 - l • O)•~? 
lFl( TA l 20' t 20.I4 

14 IF <ETA- 1. 0 )1 5 , 15 , ll 
l~ POOT~SQhT (( l . O-GAH A••2l l fTAt 
16 ~LPHA= ( ? . Q•Rl- l . O ) •ROOT 
17 fETA =C 2 . 0*R2- l . Ol•RdOT 
1$ VE-L~VEl 
19 f.;fTUHN 
ZO GO TO 1 1 

f:NO 
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SUfH~Ollfl n: 1 TAl(fl~t.rn,rc.H,KlNS,NIN:d 
~IMFNS l UN NINS(lOCt 

l r ITtME~CTI E-TD)/TCH 
lTI . t:=ITtME+l 

11 IFtlTIMl-lll2 , l4tl4 
11. KfNS-=1 
13 RETU~ 

14 !ftl00-1T1Mf )l5 t l7,l7 
l , >'lNS-=2 
16 CTUrt.N 
17 NINS ltTt ME l 0 NtNS(JTt ~ )+l 
l. 11'.lNS=iS 
1 t [lURN 

ENO 
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SUUROUTI ~- LFVEL <VELt S6L,VBOlND ,PLtJl 
DIMtN I ON SBL(ZO , ?OJ ,VBOUND C2l J, PL ( 20 }tSL( 20 ) 
I F ( 2 0- J } 1 0 , l 0 , 2 ,, 

10 PO 13 l•lt 2D 
~L(l)=S f l(L, 20 ) 

l a:; tONTINU 
GO TO 25 

?. · PO 2 5 L = l , 2. 
~L(Lt~sn L<L.J)+t VE L-VHOUNO (J))•( SrL(L,J+ll-S b l(L,J))/( 

lVBOUNO (J+ l l- VDOUND (J)) 
25 CONT l NUt 

su~= o . o 
f 0 30 l ~1,20 
SUf=SUM+Sl{L) 

'3 0 corn INUf 
3l ~uMt ~t. O /SUM 

DO 35 l = \,2 0 
PUL >= SUMI•SU l J 

35 CUNTl NUC 
k£TURN 
HW 



10 
ll 

30 
31 
35 
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SUBROUTINE INStAT C ALPHA , BETA , GA~~A , VE L, A , ClN , P , PL , VL , VST 
1,1<. ri; , oo 

OlMENSJON PL(lOJ , Vl f 2Q l, Pl22) 
GO TO ( 11 114 >, KIA 
CALL RANOU ll Xtf Y, YFL) 
f X;f V 
CAMMAC=2 . 0•Vf-L- l • C 
CALL I SOANG ( ALPHA , BETA t GA. MA , GAMMAC , VE L, IX ) 
GO T fJ lJJ 
CALL ANGL IC VFL , ArGAMMAC ) 
co ro i1 
lf (VEL- VST ) 2l , 3 , 30 
tA LL RA~UU ( fX , JY , VFL) 

JX=lY 
l=l 
.\UM.,,,() . 0 
SlJM;:; 5UM i PL ( l} 
tF f YF L- SUH ) 28 t Z8t26 
L~ L +l 

~O TG 24 
l~ ( VL L •*2- Vl ( L) ••2 ) 3~ , 29 t 2q 

VEL=SQRT <VEl••2- VL( l )*•2) 
RETURN 
CALL INSPEC € V~l t ClN , P , IX ) 
Rf; TURN 
GO TO 1 
c 0 
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SUBROUTINE ANGtltVEL,A,GAMHACl 
GAt-1r11AC=1 . 0 
VEL=VEL 
A=A 
RETU~l\I 

CNO 
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~UBROUT NE IN\PECCVEL,CIN , P,IX, 
f)J Mf: N~ 1 ON P ( 22: ) 
t: MAY. -=C tt4• VC L 
VMAX~SQRT C EMAX/ 0 . 5227 > 

CA LL R llf.HJ flXtIV,YFt.t 
lX=IY 
K=20 . 0•YFL +l. O 
'EM~Yrl-o . o5~F LOAT{ k-l) 
W=P(K )+( R(M I C. 05 )•( P tK+l)-Pt K>) 
V,..Lr::w•Vll1AX 
qf !U'";J-4 
ENO 
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SURROUTINf CAPTAL CTIME , TO t TCh , KCAP , KAPT t 
UlMENSION KAPf f lOr ) 

1' ITH'f·= t TlMf: - Ti1 l /TCH 
ITJ. f=lTIME•l 

11 lF <tTrMr-1 >12 , 14 , 14 
l;' KC.AP=l 
13 Rt:·ru H~ 
14 If t lOO- lTIMGll5 , 17 , l7 
E' l<CAPo::'2 
l ti .ETURN 
11 .APT t ITlM()sK PT(lllM~ ) +l 
l"; ' CAP>::5 
lq R£TUllN 

ENO 
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SUBROUT INE F ISTAltTI MF ,TDtT CH ,KFl S1Nf CSl 
DI MENS ( ON NF I S(l00 ) 

10 f fI ME=<TI ME-TD)/TCH 
ITI ME~ITI ME +l 

lJ I F Clfl M~ -1)1 2 .1 4 ~14 
12 KFI S#l 
13 RE TURN 
14 iF(l GO~rrt Mf )15tl7•17 
1~ K Ft s~z 

16 ~e 1 uqN 

17 N FI S tJT IMfJ~ NflS(ITI ME )+l 
l b K~ 1 s ~ s 

19 kt TURN 
ENO 



103 

·uePOlJT ' NE FISS'HX ,v, z , vFL , TIME t f"P , J:'.l'W , D.l NU,NF , KT , I.' ) 
Uf 4f~S I ON fP (22) 
flSNO=F U+0£LNU• t Vtl•~2l 
tF(I= I ·r-rn- 3 . 0 ) 20 1. 0 ,40 

20 C4ll ~ANDLl tl X tlY,YFL) 
IX.nlY 
RlcYFL + •• • :; 
tf ( Rl-FISN0 l 3~ . ~J , ?5 

2. I ~2 

30 I=3 
GO TO !'>() 

40 JF ( F1SN0-4. ~ t 41 , 4 , 49 
41 CALL NDU tr x.r ¥,Yfl) 

l '::rt y 
R2=Yf L+ i . D 
ff ( ,2-F1 SN0 ) 4 ,4Q,45 

45 I=3 
.:;.a TO 5 

4 9 r =4 
r)o f.'O t t 1\1-"= l , 1 

51 CA LL RANOU CI X,fV,VFL> 
1 X=I V 
l\=?.t . •YFL+l . O 
i< H,:uYF L-0 . 05 •.f l OA T ( K-l) 
PARA~ 'P CKJ+( REM / C. OS l•( FP(K•l )- FPtK )) 

5~ lHETA-=it~E 
XS=' 
VS= 
l$-l 
WR t fl. (10lX5,VS , l.,.. ,P ARA ,THtTA 

6 ~ rff:Nr+l 

ENO 

( 


	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049
	img050
	img051
	img052
	img053
	img054
	img055
	img056
	img057
	img058
	img059
	img060
	img061
	img062
	img063
	img064
	img065
	img066
	img067
	img068
	img069
	img070
	img071
	img072
	img073
	img074
	img075
	img076
	img077
	img078
	img079
	img080
	img081
	img082
	img083
	img084
	img085
	img086
	img087
	img088
	img089
	img090
	img091
	img092
	img093
	img094
	img095
	img096
	img097
	img098
	img099
	img100
	img101
	img102
	img103
	img104
	img105

