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INTRODUCTION 

An interdependence between the cholinergic and catecholarninergic sys-

terns in the mammalian brain is proposed as a working hypothesis. Numerous 

findings. support this proposition. Indeed, many pharmacological agents 

that affect the cholinergic system in the mammalian central nervous system 

:have been shown to affect brain catecholamines (norepinephrine and dopamine) 

; as well (cf. Literature Review). 

Two parameters (steady-state levels and turnover) of brain catechol-

amines have been extensively studie'd. Cholinolytic and cholinornirnetic drugs 

were found to have minimal effects on the steady-state levels of brain 

catecholamines but marked effects on their turnover. However, these exper-

iments utilized short-acting cholinornirnetics. These drugs elicit their 

effects during a brief time interval, which may be insufficient to ade-

quately influence the catecholamine turnover. Also·, whole brain, rather 

than specific regions, was analyzed for catecholamine turnover. This 

approach could mask effects on catecholamine turnover that would be 

observed in regions rich in catecholaminergic neurons. For these reasons, 

the observed effects of cholinornimetics on.catecholamine turnover in rnarn-

malian brain have been equivocal. A study was needed which would determine 

the effects of a long-acting cholinornirnetic on the turnover of catechol-

amines in specific regions of mammalian brain. 

In the present study, parathion (a so-called "irreversible" or long-

acting cholinomirnetic) was used to enhance the endogenous cholinergic stirn-

ulation in rat brain •. The effects of parathion on the steady-state levels 

and turnover of norepinephrine and dopamine were determined in selected 

I 
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regions of rat brain. Preliminary experiments were needed to determine an 

appropriate experimental design.to assess treatment effects on norepineph-

rine.and dopamine turnover in the brain. 



- .• I 

3 

LITERATURE REVIEW 

Dop~mine (DA) and norepinephrine (NE) are two catecholamines (CA's) 

that are considered to be putative neurotransmitters in the mariimalian cen-

tral nervous system (CNS). Evidence to support the neurotransmitter role 

of NE and DA in the mammalian CNS, as well as extensive information on the 

general subject of CA's, has been published (Himwich and Himwich, 1964; 

Bloom and Giarman, 1968; Anden ~ al., 1969a; Blaschko and Muscholl, 1972; 

Baldessarini and Katobath, 1973). 

Specific areas of CA research have been adequately reviewed as well 

(see Appendix A), therefore, a detailed description of these areas of 

research will not be given in this review. However, some of the findings 

that suggest the neurotransmitter role of NE and DA in the mammalian CNS 

will receive a brief discussion. 

NE 'was first detected in mannnalian brain by von Euler (1946), who 

determined ,;adrenaline equivalents" of an extract of calf brain by measur-

ing the pressor action of the extract on cat blood pressure. Mor~over, 

Vogt (1954) found that the concentration of NE in dog brain was uneven,ly 

distributed and did not parallel brain vascularity. She used biological 

assays (rat blood pressure-pressor response for NE and t.he rat uterus con-

tractions for epinephrine) to measure tissue levels of "sympathin" (NE plus 

epinephrine). Also, the concentration of NE in the hypothalamus of cats 

was found to be unaffected by cervkal sympathectomy. This suggested that 

the role of NE in the mammalian brain was more than as a neurotransmitter 

functioning at vascular smooth muscle nerve junctions. 
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Dopamine, on the other hand, was originally thought to be pr.esent in 

mammalian brain solely as a precursor of NE (Carlsson, 1966). · However, it 

was found that DA was.present in the mammalian whole brain in concentra-

tions higher than NE (Montagu, 1957; Weil-Malherbe and Bone, 1957). Also, 

its distribution was found to differ markedly from that of NE (Cooper 

il al., 1974). These findings suggested that DA had functions other than 

being a precursor of NE. 

Curtis and Crawford (1969) reviewed the findings that CA's applied 

iontophoretically to CNS neurons cause either facilitation or depression of 

neuronal firing. Bloom il &· (1965) found that DA and NE applied ionto-

phoretically. to neurons of the cat caudate nucleus predominantly caused 

depression of spontaneous unit discharge, although some were facilitated. 

Herz and Zieglgansberger (1966) showed that fontophoretic DA was able to 

inhibit not only spontaneous activity of neurons in the rabbit caudate 

nucleus but also amino acid-induced discharges as well as discharges evoked 

by electrical stimulation of the thalamus. 

Further suggestion of.a neurotransmitter role of CA's in the CNS was 

the finding that CA's are continuously released from living brain tissue 

and that this release is increased by various stimuli (Glowinski, 1970). 

The release of DA 'from cat caudate nucleus was found to be increased by 

electrical stimulation of the centromedial nucleus of the thalamus 

(McLennan, 1964), by electrical stimulation of the substantia nigra_ 

(Portig and Vogt, 1969·; von Voigtlander and Moore, 1971), and by applica-

tion of K+ or amphetamine (Besson,il al., 1971). 

Also, drugs that affect CA's in the CNS have been observed to modify 

brain function and behavior, again suggesting a neurotransmitter role of 
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CA' s in the CNS. For example, reserpine has been found to cause sedation 

and tranquilization in human subjects, presumably by depleting the CA 

stores in the CNS (Goodman and Gilman, 1970). Likewise, Rech .!!,t al. (1966) 

observed that multiple intraperitoneal (i.p.) injections of a-methyl-para-

tyrosine (aMPT), an inhibitor of CA synthesis, impaired avoidance response, 

rotarod performance, and spontaneous locomotor activity in rats at doses 

.that did not produce obvious toxic effects. They found-that the behavioral 

depression seen in rats correlated with the concentration of aMPT in the 

brain as well as with the depletion of NE and DA. 

Adrenergic stimulation, direct and indirect, elicited by amphetamine, 

and to a lesser extent by ephedrine, has been found to cause tremor, rest-

lessness, increased motor activity, agitation, and sleeplessness (Goodman 

and Gilman, 1970). Further, the antidepressant action of imipramine has 

been associated with its ability to block the uptake of NE at the synaptic 

membrane (Schildkraut, 1965; Schildkraut .!!,t al., 1971). Since reuptake of 

NE is the primary mechanism of deactivation of NE at the receptor (Iversen, 

1971), blockade of reuptake would increase the concentration of NE at the 

synapse. Schildkraut (1965, 1974) suggested that affective disorders, such 

as manic-depression and depression, per se, are the result of a malfunction 

of the noradrenergic system in the brain. He suggested that mania is asso-

ciated with an excess of NE, while depression is associated with a defi-

ciency of that catecholamine. Imipramine is thought to ameliorate the symp-

toms of depression by increasing the concentration of NE at the synapse via 

a blockade of reuptake at the nerve terminal (Schildkraut .!!,t al., 1971). 

Anatomical pathways of NE- and DA-containing neurons in mammalian CNS 

have been elucidated by Dahlstrom and Fuxe (1964) and Ungerstedt (1971), 



6 

using the fluorescent histochemical method of Carlsson, Falck, and Hillarp 

(1962). For example, a nigro-striatal dopaminergic pathway was found to 

originate in the substantia nigra and extend to the caudate nucleus (Anden 

ll &·, 1966). In addition, Fuxe (1965) found that the dopaminergic fibers 

originating in the substantia nigra also terminated .in the putamen, the 

nucleus accumbens, and the tuberculum olfactorium. 

Connor (1972) found that DA applied iontophoretically to neurons of 

the cat caudate nucleus caused depression of spontaneous neuronal firing. 

An identical response was elicited by electrical stimulation of the sub-

stantia nigra. a-methyldopamine (a pharmacological antagonist of DA), when 

applied continuously to a neuron, was found to block the effect of both 

iontophoretic DA and nigral stimulation on that neuron. This suggests that 

DA acts as a depressant neurotransmitter in the caudate nucleus and that it 

is released from the terminals of neurons originating in the substantia 

nigra. 

In contrast, York (1970? found that iontophoretically applied DA 

caused facilitation of neuronal firing in the cat putamen. Electrical· 

stimulation of the substantia nigra elicited a similar response. There-

fore, an excitatory dopaminergic pathway from the substantia nigra to the 

putamen can be suggested. 

Ungerstedt !!.!;. ll· (1969) found that the unilateral microinjection of 

DA into the caudate nucleus of awake freely moving rats caused asymmetric 

postural responses and turning to the contralateral side of application. 

Likewise, substances having direct or indirect dopaminergic activity, espe-

cially apomorphine, produced the same effect. Moreover, Ernst and Smelik 

(1966) found that implanted crystalline dopa (the immediate precurs·or of 
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DA) or apomorphine in various regions of rat striatum produced a compulsive 

gnawing behavior. The above ·findings indicate that striatal DA may be 

involved in motor function. Hornykiewicz (1966, 1972) stated that there is 

a large body of neuropharmacological evidence showing that the dopaminergic 

nigros.triatal system is directly involved in extrapyramidal control of 

motor function. He. also stated that stereotyped behavior in rats, such as 

'compulsive gnawing, is associated with the levels of DA in the striatum. 

Isotopic and nonisotopic methods have been used to determine CA turn-

over (Cos ta and Ne ff, 19 70) . Brodie et al. (1966) used a nonisotopic --
method that utilized the rate of depletion of NE and DA after blockade of 

the rate•limiting step in CA biosynthesis via administration of aMPT. He 

determined the rate of depletion of CA's by measuring the levels of NE and 

DA at O, 2, 4, 6, and 8 hours after adminis.tration of aMPT. And~n il al. 

(1969b) used the amount of NE and DA remaining 4 and 6 hours after adminis-

tration of aMPT as an index of NE and DA turnover. 

Costa and Neff (1970) found that the rate constant (fractional turn-

over rate) of NE efflux after blockade of NE synthesis with aMPT (noniso-

topic method) was identical to the rate constant of the decline of. NE- 3H 

after administration of tracer doses (isotopic method). They concluded 

that aMPT does not release NE, does not change the co~partmentation .of NE, 

and does not interfere with the enzymes that catabolize NE i!!. ~· The 

rate of depletion of NE and DA after synthesis blockade with aMPT was, 

therefore, concluded to be a valid indication of tqe turnover of NE and DA. 

Moore and Dominic (1971) reviewed the effects of various stimuli on NE 

and DA turnover in mammalian brain. The literature revealed that stressful 

environmental stimuli, such as cold, exercise, immobilization, crowdin$, 
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and conditioned avoidance training cause an increase in NE turnover but had 

no effect on DA turnover. In addition, many drugs have been shown to alter 

the turnover of NE and DA. The turnover of DA is slowed by barbiturates, and 

y-hydroxybutyrate, while haloperidol and chlorpromazine (CPZ) increase NE 

and DA turnover (And~n il .!!.!.·, 1969b). 

And~n il al. (1969b) suggested that turnover of CA 1 s is correlated 

with the impulse activity of the catecholaminergic ,neurons. They found 

that electrical stimulation·of the medulla oblongata causes an increase 

in the turnover of NE in the spinal cord. Also, transection of the spinal 

cord causes a decrease in the turnover of NE caudal to the section. Fur-

ther, other findings indicate that the turnover of brain CA 1 s is correlated 

with the impulse activity of the catecholaminergic neurons in the CNS as 

well. Cooper il .!!.!.· (1974) stated that electrical stimulation of the locus 

coeruleus causes an increase in the turnover of NE as well as an increase 

in the accumulation of 3-methoxy-4-hydroxyphenyleneglycol-sulfate (MHPG-

sulfate), the major metabolite of NE in the mammalian brain. Likewise, 

they stated that an increase in impulse flow in the nigro-neostriatal or 

mesolimbic DA systems leads to an increase in both DA turnover and the, 

accumulation of homovanillic acid (HVA), the major metabolite of DA, in the 

striatum and the tuberculum olfactorium, respectively. (Cell bodies of the 

mesolimbic DA system are located just dorsal to the interpeduncular nucleus 

in the ventral tegmental area, and these cells innervate the nucleus accum-

hens and the tuberculum olfactorium. The function of the mesolimbic system 

is not known (Cooper et al., 1974).) --
Parathion (Q,Q-diethyl.,Q-p-nitrophenyl phosphorothiortate), a sulfur 

containing organophosphate, was first synthesized in 1944 by Gerhard 
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Schrader of I. G •. Farbenindustrie in Germany. Many other organopho.sphates 

were synthesized during World War II by German and English researchers for 

use as nerve gases or as insecticides (O'Brien, 1967). Although "safer" 

insecticides possessing less mammalian toxicity, such as malathion, diazi-

non, and Sumithion, have since been developed, parathion continues to 

receive extensive use as an insecticide (Hybertson, 1971). In fact, para-

! thion (parathion-ethyl, E605, ThiophosQD, Alkror\E>, etc.) has become impor-

tant throughout the world as a broad-spectrum insecticide (Lorenz and 

Sasse, 1968). 

According to O'Brien (1967), acute toxicity to organophosphates in· 

mammals is believed to be due to its anti-cholinesterase (anti-ChE) prop-

erty. Phosphorothionates (such as parathion) are ~eak inhibitors of ChE 

(Aldridge and Barnes, 1952). But phosphorothionates are converted (acti-

vated) in the liver to potent ChE inhibitors; specifically,' parathion is 

oxidized to paraoxon by microsomal enzymes in rat liver (see Nakatsugawa 

and Dahm (1967) for the chemical reaction). It is this metabolite of para-

. thion that is a potent irreversible inhibitor of ChE (Mounter, 1963). 

Paraoxon inhibits acetylcholinesterase (AChE), presumably by binding 

to the serine hydroxyl group of the enzyme. A serine hydroxyl group is 

essential for the normal function of the active site of AChE (Corbett, 

1974). Holmstedt il al. (1967) found that inhibition of AChE activity in 

rat brain causes a marked increase in the endogenous concentration of ACh 

in the brain. It was, therefore, proposed that failure of AChE to hydro-

lyze ACh at the synapse causes an accumulation of ACh at the cholinergic 

"receptor" and, therefore, an enhancement of cholinergic stimulation (Fest 

and Schmidt, 1973). 
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Acetylcholine (ACh) is generally accepted as the neurotransmitter of 

the motor neuron axon collateral that synapses on the Renshaw cell in the 

spinal cord (see Cooper il al. (1974) for the review). The putative neuro-

transmitter role of ACh in mammalian brain has been extensively reviewed by 

Votava (1967), Pepeu (1972), and Baldessarini and Karobath (1973). ACh was 

first detected in mammalian brain by Chang and Gaddum (1933), who used a 

biological assay (ese-rinized frog rectus abdominis muscle) to determine the 

presence of ACh in rabbit brain. Dale (1934) suggested that ACh may act as 

a neurotransmitter in the peripheral nervous system, He .ascribed the clas-. 

sical "muscarinici• and "nicotinic" actions to ACh. In brief, low doses of 

injected ACh elicit a response similar to that of muscarine, and higher 

doses of ACh elicit a response similar to that of nicotine. He also sug-

gested the possible role of ACh as a neurotransmitter. in the CNS. Feldberg 

and Vogt (1948) found that the CNS ACh-synthesis activity varied depending 

on the brain regions. For example, the caudate nucleus, the thalamus, and 

the lateral geniculate nucleus of the dog brain were found to possess the 

highest potential activity for ACh synthesis. 

Amp.le evidence has accumulated to suggest that ACh is a neurotransmit-

ter in mammalian brain. ACh and choline acetylase, the enzyine involved in 

the last step of ACh synthesis, were found to be localized in vesicles 

within synaptosomes from rat brain homogenate (De Robertis il ,& •. , 1962, 

1963)'. They also found AChE present in the synaptosomes, but most of the 

activity was associated with the membranes of the nerve endings. 

Phillis and Chong (1965) found that ACh was continuously released from 

the cerebral and cerebellar cortices. They observed that the amount of ACh 

release was increased by direct electrical stimulation of the co,tex and by 
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stimulation of a variety of peripheral afferent pathways (limb, facial, and 

auditory stimulation). Also, electrical stimulation (30, 60, and 100 Hz) 

of the mesencephalic reticular formation enhanced the liberation of ACh 

from cat parietal cortex (Szerb, 1967). Celesia and Jasper (1966) .found 

that ACh released from the somatosensory cortex of the cat was decreased 

during sleep and during barbiturate anesthesia but increased during elec-
1 

; trical s.timulation of the mesencephalic reticular system and during pen-
1 

tylenetetrazol-induced seizures. Also, Mitchell (1963) observed that 

chloralose blocked the release of ACh from the cortical surface and also 

blocked thalamic after-discharge following sensory stimulation. He further 

observed that the rates of ACh release from the cortex of .the sheep; cat, 

and rabbit were roughly proportional to the spontaneous electrical activity 

of the brain. Based on Mitchell's and their own observations, Celesia and 

Jasper (1966) suggested that ACh may play a role in. cortical activation of 

the type produced by the nonspecific (ascending reticular) activation sys-

tern, a system distinct from the one involved in specific thalamocortical 

projection pathways. 

Likewise, McLennan (1964) found that ACh was continuously released 

from the head of the caudate nucleus in the cat and that .this release was 

increased by electrical stimulation of the ventral anterior thalamic 

nucleus. Further, McLennan and York (1966) found that microiontophoretic 

application of ACh to neurons in the caudate nucleus of the cat caused 

excitation in some neurons and inhibition in others. The two types of neu-

rons were found to be localized in different regions of the caudate 

nucleus. With each type of neuron, a similar response was noted during 

electrical stimulation of the ventral anterior thalamic nucleus. Both 
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responses, either that elicited by ACh application or that elicited by 

electrical stimulation of the thalamic nucleus, were blocked by atropine 

(McLennan and York, 1966). McLennan (1970). suggested a cholinergic pathway 

that originat,es in the anterior thalamus and innervates (either in an exci-

tatory or inhibitory manner) neurons in the caudate nucleus. 

Votava (1967) and Curtis and Crawford (1969) have reviewed the direct 

1effect of microiontophoretically applied cholinomimetics on various regions 
' 
of the mammalian CNS. Cholinoceptive neurons in the cortex were found to 

be primarily "muscarinic, 11 while a "nicotinic" response was elicited from 

the Renshaw cell. Cholinoceptive neurons in the thaiamus responded .in both 

a "nicotinic" and "muscarinic 11 manner. Bradley and Wolstencroft (1965) 

found that the receptors of the cholinoceptive neurons in the brain stem 

were of both an excitatory and inhibitory nature. The inhibitory receptors 

appeared to be exclusively "muscarinic," whereas the excitatory receptors 

had both "muscarinic" and "nicotinic" properties. 

Monnier and Romanowski (1962) found that injection of ACh, physostig-

mine (a reversible ChE· inhibitor), or pilocarpine (a cholinomimetic) into 

the carotid artery of the rabbit caused an EEG arousal syndrome character-

.ized by desynchrc;mized electrical activity in the neocortex with synchroni-

zation in the hippocampus, caudate nucleus, thalamus, and midbrain reticu-

lar system. They also observed a decrease in the recruiting potentials 

evoked by electrical stimulation of the medial thalamus. This suggests 

that cholinoceptive neurons may be involved in multiple functions of the 

CNS, 

Holmstedt and Lundgren (1966) found that administration of oxo.tremorine 

and arecoline (both cholinomimetics) in rats caused a rise in the ACh con-
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centration as well as tremor. The tremor appeared to be dependent upon the 

concentration of ACh in the brain. Also, they found the tremor activity to 

be muscarinic in nature, since administration of atropine (a muscarinic 

blocker) was found to abort the tremor. This suggests the involvement of 

CNS cholinergic (muscarinic) neurons in motor function. 

One of the first indications of an interaction between the catechola-
I 

!minergic and cholinergic system in mammalian brain was the observation that 

anticholinergics (antimuscarinics), such as atropine and scopolamine, could 

ameliorate some of the symptoms of Parkinson's disease (paralysis agitans), 

a disease of the extrapyramidal motor system associated with a malfunction 

of dopaminergic neurons in the CNS (Hornykiewicz, 1966, 1972). 

Ehringer and Hornykiewicz (1960) found the levels of DA in the caudate 

nucleus, putamen, and globus pallidus to be much lower in parkinsonian 

patients than in nonparkinsonian humans. The concentration of HVA in the 

caudate nucleus, putamen, substantia nigra, and globus pallidus (Bernheimer 

and Hornykiewicz, 1964, 1965) and in the cerebrospinal fluid {Johansson and 

Roos, 1967) were also found to be reduced in parkinsonian patients. In 

addition, Bernheimer and Hornykiewicz (1964, 1965) found a reduced turnover 

of DA in the brain of parkinsonian patients, and they suggested that this 

was probably the consequence of an impairment of DA formation. 

Pathological lesions in the substantia nigra and neostriatum have been 

found to be the most typical morphological abnormalities associated with 

parkinsonism (Selby, 1968; Turner, 1968;.Calne and Sandler, 1970). Experi-

mentally-induced lesions of the substantia nigra diminish DA distally to 

the lesions and produced tremor and akinesia (typical symptoms of parkin-

sonism) (Sourkes and Poirier, 1966). 
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"Some phenothiazines, such as chlorprornazine (CPZ), and butyrophenones, 

such as haloperidol, have produced extrapyrarnidal syndromes in man with 

many of the symptoms of Parkinson's disease (Delay and Deniker, 1968). 

York ( 1972) suggested that the mechanism of drug-induced parkinsonisrn 

involved the blockade of DA receptors in the brain. Both CPZ and haloperi-

dol have been shown to block DA receptors in experimental animals 

J (van Rossum, 1966; Yeh£.!:. al., 1969). 

Anticholinergic drugs (primarily the belladonna alkaloids) have been 

the "mainstay" of drug therapy of parkinsonisrn for over 100 years (Selby, 

1968). A crude preparation of belladonna alkaloids, containing hyoscine 

(scopolarnine), was observed to "promptly mitigate" the severity of tremor 

and tended to relax muscular rigidity associated with Parkinson's disease 

(Yahr and Duvoisin, 1968). Also, anticholinergics have been found to be of 

value in the treatment of drug-induced extrapyrarnidal disorders (Delay and 

Deniker, 1968). 

Shute and Lewis (1966) stated that the neostriaturn is a structure in 

which there is a functional overlap of the cholinergic and catecholarniner-

gic systems and that these systems may exert a mutual antagonism. McGeer 

il &· (1961) and Barbeau (1962) suggested that normal extrapyrarnidal motor 

·ftfnction depends upon a sensitive balance between inhibi.tory doparninergic 

neurons and excitatory cholinergic neurons in the striaturn. If the dopa-

rninergic sys.tern in the brain is deficient, as in parkinsonian, the choliner-

gic system will dominate. 

Coyle and Snyder (1969) found that a variety of antiparkinsonian .drugs 

(benztropine, trihexyphenidyl, diphenhydrarnine, orphenadrine, phenindarnine, 

and diethazine) are potent noncompetitive inhibitors. of DA uptake into syn-
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aptosomes isolated from rat corpus striatum. This suggests an alternative 

mechanism of action for drugs previously thought to act by muscarinic 

antagonism. However, cholinomimetics, such as physostigmine and ACh, have 

been shown to ·exacerbate parkinsonian symptoms (Barbeau, 1974), again add-

ing support to the proposed involvement of cholinergic neurons in extra-

pyramidal motor function. 

Other findings indicate an interaction of cholinomimetic drugs with 

catecholaminergic neurons in the CNS. Van Meter and Karczmar (1971) found 

that the physostigmine-induced attenuation of the thalamocortical recruit-

ment response in rabbit brain was dependent on the CA levels. They found 

that depletion of CA's in rabbit brain by pretreatment with reserpine or 

aMPT prevented the physostigmine-induced response. 

Burn and Rand (1965) as well as Ferry (1966) reviewed the interaction 

of cholinergic and adrenergic nervous systems (primarily in peripheral 

nerves), They_ proposed a mechanism for the involvement of ACh in the 

release of NE from the sympathetic postganglionic nerve terminals (the cho-

linergic link hypothesis). These authors suggested that both ACh and NE 

are present in the same neuron and that a nerve impulse reaching the axon 

terminal initiates the release of ACh. After its release, ACh binds to 

"nicotinic" receptors at the presynaptic membrane causing an influx of cal-

cium ions, which in turn triggers the release of NE, However, no unequivo-

cal evidence has been obtained for the simultaneous presence of NE- and 

ACh-containing vesicles in one and the same nerve terminals (Kosterlitz and 

Lees, 1972). 

For a more extensive review of the interactions of catecholaminergic 

and cholinergic neurons in the mammalian brain, see Izquierdo (1972), 
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METHODS AND MATERIALS 

Part A. Comparison of Two Experimental Designs for the 
Determination of NE and DA Turnover 

In the first part of this study, two experimental designs (Design i· 

and Design 2) were used to determine turnover of NE and DA in selected 

regions of rat brain. 

Design .l 
1 Male hooded rats (300-500 g) .were used as the experimental animal. 

The rats were given feed and water .!!£ lib. and were subjected to a lighting 

schedule of 6 A.M.~6 P.M. of light and 6 P.M.-6 A.M. of darkness. Four 

rats were randomly assigned to each of 5 time groups (0, 2, 4, 6, and 8 

hour groups). Rats in the. 2, 4, 6, and 8 hour groups were given a-methyl-
2 para-tyrosine (200 mg/kg, i.p.) in a volume of 2 ml/kg. Rats in the 4, 6, 

and 8 hour groups were administered a second dose of aMPT (WO mg/kg, i.p.) 

in ~ \rol6me of 2 ml/kg 2.5 hours after the first dose. Q'MPT was made up as 

a solution in double-distilled water {d.d. a2o). Control rats (rats in the 

0 hour group) were given saline (2 ml/kg, i.p.). All rats were adminis-

tered atropine methylnitrate (0.3 mg/kg, i.p.) 20 minutes prior to the 

administration of C¥MPT or saline. Atropine methylnitrate (AMN) was made up 

as a solution in saline and was given in a volume of l ml/kg to antagonize 

the peripheral parasympatheti9 nervous system dominance in the Q'MPT-treated 

rats. 

l• 
Long-Evans descent. 

2 . 
a-methyl-para-tyrosine(methyl ester)-HCL from Regis Chemical Co. 
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All injections (in this part and in subsequent parts of the study) 

were made within a 2-hour interval between 9 A.M; and 11 A.M. The varia-

tions ·of NE and DA levels that follow a circadian rhythm in rat brain are 

minimal throughout this time period (Scheving il il·, 1968). 

Control rats were sacrificed within one hour after the injection of 

saline. OIMPT.-treated rats were sacrificed at 2, 4, 6, and 8 hours after 

administration of the first dose of 01MPT. All sacrifices were made by 

decapitation followed by (a) removal of the brain, (b) dissection of the 

brain into the selected regions (cerebral cortex, brain stem, hypothalamus, 

and corpus striatum), and (c) placement of the brain parts into liquid 

nitrogen for storage. The above procedure (from the decapitation to step 

(c)) was completed in less than 5 minutes for each rat. Brain regions were 

pooled from all 4 rats in a given time group. The NE and DA levels of the 

pool.ed samples were determined fluorometrically (see Appendix B). 

A least squares fitting of linear regression of log[CA] versus time 

was made for NE and DA in each brain region. Statistically significant 

differences between rate constants were determined from the slopes of the 

regression lines. For a more detailed description of Design 1, see Appen-

dix C. 

Design Z, 

The total experiment using Design 2 was composed of 3 or 4 individual 

experiments carried out on separate days. In each individual experiment, 

2 to 4 male hooded rats (200-450 g) were used for a control group and .a 

similar number of rats for an 01MPT-treated group. The rats were given 

feed, water, and a lighting schedule the same as in Design 1. 



18 

Rats in the treated group were administered aMPT (200 mg/kg, i.p.) in 

a volume of 2 ml/kg and were sacrificed 4 hours later. Control rats were 

given saline _(2 ml/kg, i.p.) and sacrificed within 1 hour. The brains were 

removed immediately after sacrifice, dissected, and analyzed for NE and DA 

as described in Desi_gn 1. The turnover of NE and DA in each brain region 

was determined from the slope of the line connecting the mean log[CA] ·at 

O hour (the control) and 4 hours (the CIMPT treatment) after administration 

of e1MPT. For a more detailed description of Design 2, see Appendix C. 

Part B. Effects of Parathion on Steady-State Levels 
and Turnover of NE and DA in Selected 

Regions of Rat Brain 

Steady-state levels 

Male hooded rats (200-500 g) were randomly assigned to one of two 

treatment groups (control and parathion treatment). The rats were given 

feed, water, and a lighting schedule the same as in Part A (see above). 

Only male rats ,were used in this study, since the susceptibility o.f rats to. 

parathion treatment had been'shown to be dependent upon sex, i.e. female 

rats are approximately 2 times more susceptible to parathion toxicity than 

male rats (DuBois .il .!!!.·, 1949). 

Parathion-treated rats received parathion1 (1.25-2.50 mg/kg, i.p.) in 

a volume of -2 ml/kg. Triethylerte glycol was used as the vehicle. The dose 

of parathion was varied from 1. 25. to 2. 50 mg/kg in order to find a dose 

that would be sublethal, yet give observable toxic signs. The LD50 of 

parathion.given i.p. to adult male Holtzman rats has been determine to be 

1Parathion (98% pure) was obtained from Chem Service, Inc. 
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3.6 mg/kg (Brodeur and DuBois', 1963). Control rats were given triethylene 

glycol (2 ml/kg, i.p.). All rats were given AMN (0.3 mg/kg, i.p.) · 

20 minutes prior to the administration of parathion or i:riethylene glycol. 

All rats were sacrificed 4 hours after the administration of parathion or 

triethylene glycol. The brain was removed, dissected, and analyzed for NE 

and DA as previously described. In addition, the hippocampus was dissected 

out and stored in liquid nitrogen for later use in the determination of the 

percent inhibition of brain ChE. Brain ChE activity was determined by a 

pH-stat method (see Appendix D). 

Three replications of the experi.ment were carried out on separate 

days. The data were analyzed for significant differences between the lev-

els of NE (or DA) in the control and parathion-treated rats for each brain 

region. The data were blocked according to replicates (days), for the sta-

tistical analysis, since the steady-state levels of NE and DA were observed 

to vary considerably from day to day. The mathematical model for the sta-

tistical analysis of the data was as follows: 

where Yijk is the concentration o.f CA, 

µ, is the population mean of CA concentrations, 

TTi is the treatment effect, 

llj is the block (day) effect, 

v "is the regression coefficient of Y on X, 

Xijk is the covariate (body weight of the rat), 

l 
The mathematical model was adapted from Cochran and Cox (1957) and 

Snedecor and Cochran (1967). 
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X is the overall mean of rat body weight, 

n~ij is the interaction of the n and ~ effects, 

and eijk is.the·error term. 

Since y·and n~ .. were not found to be significant, the. model was reduced 
l.J 

to: 

::: ~ + TT. + j3. + e. 'k l. J l.J . 

Turnover 

The experimental design for the determination of the effects of para-

thion on NE and DA turnover is based on Design 2 (see above). Male hooded 

rats (200-450 g) were· randomly assigned to one of three treatment groups: 

control, C¥MPT treatment, and Q'MPT plus parathion treatment. Rats in the 

Q'MPT plus parathion treatment group were administered C¥MPT (200 mg/kg, 

i.p.) at the same time as parathion (l.25-2.50 mg/kg, i.p.). The volumes 

of administered C¥MPT and parathion were each 2 ml/kg, and the solutions 

were prepared as previously described. Rats in the Q'MPT treatment group 

were administered Q'MPT (200 mg/kg, i.p.) at the same time as triethylene 

glycol. Both were given in volumes· of 2 ml/kg. Rats in the control group 

were given saline and triethylene glycol in volumes of 2 ml/kg. Atropine 

methylnitrate (0.3 mg/kg, i.p.) was given to all rats 20 minutes prior to 

the administration of the treatment drugs or their vehicles.· 

Control rats were sacrificed within l hour after injection of saline. 

Q'MPT- and C¥MPT plus parathion-treated rats were sacrificed 4 hours after 

administration of the treatment drugs. The brains were remove·d after 

decapitation,.dissected, and analyzed for NE and DA as previously 

described. The hippocampus was analyzed for ChE activity using a 
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pH-stat method (see Appendix D). Percent inhibition of brain ChE was 

determined from the ChE activity in the hippocampus of parathion•treated 

rats as compared with control rats. Three or four replications of the 

experiment were carried out on separate days. The data were blocked 

acc'ording to replicates (days) for the statistical analysis. Significant 

differences between the effects of O!MPT and O!MPT plus parathion treatments 

on the depletion of NE and DA were determined using a statistical analysis 

based on the mathematical model described for the steady-state levels study 

(see above). 

. I 
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RESULTS 

Figure 1 shows the graph of log[ NE] versus time for the hypothalamus, 

brain st:m, and cortex of the adult male hooded rat after administration of 

aMPT (200 mg/kg, i.p.). The linear regression of log[NE] versus time was 

found to be significant for all brain regions: hypothalamus (P<0.005), 

brain stem (P<0.001), and cortex (P<0.005). In addition, the slopes of the 

regression lines were found to be significantly different from each other. 

This was used to determine the significant differences between rate con-

s tan ts of NE in. the various brain regions (rate constant =. -b/O. 4343, where 

bis the slope of the regression line). 

Table 1 shows the steady-state levels, rate constants, turnover times, 

and turnover rates of NE in selected regions of rat brain using Design 1. 

Note that significant differences were found between the rate constants of 

NE in: cortex vs. brain stem (P<0.025), cortex vs. hypothalamus (P<0.005), 

and hypothalamus vs. brain stem (P<0.050). 

Similarly, Table 2 shows the steady-state levels, rate constants, 

turnover times, and turnover rates of DA in the cortex and corpus striatum 

of rat brain using Design 1. However, no significant differences were 

found between the rate constants. 

Tables 3 and 4 show the steady-state levels, rate constants, turnover 

times, and turnover rates of NE and DA in selected regions of rat brain 

obtained using Design 1 compared with Design 2. The rate constants 

obtained for the two experimental designs are essentially in agreement. 

However, a larger discrepancy between Design 1 and Design 2 is noted for 

the steady-state levels and turnover rates of NE and DA in the various 
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Figure 1. Graph of log[NE] (NE in ng/g) versus t (hours after administra-
tion of Q'MPT) for three rat brain regions: hypothalamus (HT), 
brain stem (BS), and cortex (CTX) 

The linear regression of log[NE] versus time was found to be 
significant for all brain parts: HT (P<0.005), BS (P<0.001), 
and CTX (P<0.005). The slopes of the regression lines for the 
three brain regions were found to be significantly different 
from each other. 
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Table 1. Steady-state levels, rate constants, turnover times, and turnover 
rates of NE in selected regions of rat brain determined by 

. la Design 

Brain SSLb kc tt K 
regions (ng/g) (hr-1) (hr) (ng/g/hr) 

CTX 314 0.218 + 0.013 (4) 4.59 68.5 

BS 391 0.166 ± 0.0085d(5) 6.03 64.8 

HT 1230 0.123 ± 0.012e (5) 8.13 151 

aAbbreviations: SSL= steady-state level, k =rate constant, tt = 
turnover time, K = turnover rate, CTX = cortex, BS = brain stem, HT= 
hypothalamus. 

bThe SSL was determined from the y-intercept of the graph of log[NE] 
ver·s us time . 

cThe rate constant ± standard error was calculated from the slope of 
the regression of log[NE] versus time. The nwnber in parentheses was the 
nwnber of observations. 

dSignificantly different from k for the cortex (P<0.025) and for the 
hypothalamus (l'<0.050). 

eSignificantly different from k for the cortex (l'<O. 005). 

brain regions. The steady-state levels of NE and DA in rat brain were 

observed to vary noticeably from day to day and between groups of animals. 

Table 5 shows the effects of parathion treatment on the steady-state 

levels of NE and DA in selected regions of rat brain (cortex, brain stem, 

and corpus striatum). All parathion treated rats were included in the 

treatment group. Inhibition of ChE in the brain (hippocampus) of the 

treated rats was observed to vary from 0% to 80%. The effects of parathion 

treatment on steady-state levels of NE and DA in the selected regions of 

rat brain were found to be not significant, except for NE in the cortex, 
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Table 2. Steady-state levels, rate constants, turnover times, and turnover 
rates of DA in selected regions of rat brain determined by 
Design la 

Brain 
regions 

CTX 

cs 

SSLb 
(ng/g) 

575 

13,800 

0.280 + d.034 (3) 

0.210 ± 0.014d(5) 

tt 
(hr) 

3.57 

4.75 

K 
(ng/g/hr) 

161 

2900 

a Abbreviations: SSL = steady-state level, k = rate constarit,. tt = 
turnover time, K = turnover rate, CTX = cortex, CS = corpus striatum •. 

bThe SSL was determined from the y-intercept of the graph of log[NE] 
versus time. 

c The rate constant ± standard error was calculated from the slope of 
the regression of log[DA] versus time. The number in parentheses was the 
number of observations. 

dNo significant difference between the rate constants of DA in the 
cortex and corpus striatum. 

which was significantly decreased (P<0.025) as measured 4 hours after 

administration of parathion. 

Table 6 includes only parathion treated animals in which brain ChE was 

inhibited greater than 507.. The steady-state level of NE in the cortex was 

significantly decreased by parathion treatment (P<0.03). All other steady-

state levels were not significantly affected by parathion treatment. 

Table 7 shows the effects of parathion treatment on the depletign of 

NE in selected regions of the brain of the adult male hooded rat as meas-

ured 4 hours after administration of Q'MPT. The first grouping of parathion 

treatment (parathion, inh. = 0-80%) included all rats given parathion, in 

which 0% to 80% inhibition of brain ChE was observed. The second grouping 



Table 3. Steady-state levels, rate constants, turnover times, and turnover rates of NE in se1ected 
regions of rat brain determined by Design 1 and Design Za 

Brain SSL (ng/g) 
regions Dl b D2c 

CTX 

BS 

314 

391 

Z79 ± lZ (10) 

507 ± 15 (10) 

Dl DZ 

O.Zl8 ± 0.013 (4) O.ZZ4 ± O.OZ6 (ZO) 

0.166 ± 0.0085 (5) 0.195 ± 0.014 (20) 

tt (hr) 
Dl D2 

4.59 4.45 

6.03 5.13 

K (ng/g/hr) 
Dl DZ 

68.5 

64.8 

6Z.6 ± 7.7 

98.9 ± 7.7 

aAbbreviations: SSL= steady-state level, k = rate constant, tt = turnover time, K = turnover 
rate, Dl = Design 1, DZ = Design 2, CTX = cortex, BS = brain stem. 

b cf. Table 1. 

cValues for Design Z are reported as the mean ± standard error of the mean. The number in 
parentheses was the number of observations. 



Table 4 •. Steady-state levels, rate constants, turnover times, and turnover rates of DA in selected 
regions of rat brain determined by Design l and Design Za 

Brain SSL (ng/g) 
regions nib nzc 

. CTX 575 461 ± 4.8 (10) 

cs 13' 790 9360 ± 570 (lZ) 

. Dl DZ 

0.280 ± 0.035 (5) O.Z99 ± 0.044 (20) 

0.210 ± 0.013 (5) 0.211 ± 0.025 (24) 

tt (hr) 
Dl D2 

K (ng/g/hr) 
Dl DZ 

3.57 3.35 161 138 ± 25 

4.76 4.74 2900 1980 ± 280 

aAbbreviations: SSL= steady-state level, k = rate constant, tt = turnover time, K = turnover 
rate, Dl = Design l, D2 = Design 2, CTX = cortex, CS = corpus striatum. 

bcf. Table 2. 

cValues for Design 2 are reported as the mean ± standard error of the mean. The number in 
parentheses was the number of observations. 



Table 5.. Effects of parathion on steady-state levels of NE and DA in selected regions of rat brain 

Cortex Brain stem Coreus stria tum 
Treatment [NE] (ng/g) [DA] (ng/ g) [NE] (ng/g) [DA] (ng/g) [NE]. (ng/g) [DA] (ng/g) 

Control a 
307±7.7 (14)b 527±27 (14) 535±8.5 (15) 198;tl6 (15) 151±10 (14) 8595±506 (14) 

Parathion c 282±6.2 (22) d 442±22 (21) 526±7.4 (20) 217±13 (21) 148;t8. 7 (20) 9391±423 (20) 

a Control rats were given an equivalent volume of triethyleneglycol, the vehicle of parathion. 
b Mean CA concentration ± standard error of the mean. The number in parentheses was the number 

of observations. 

cParathion (l.25-2.50 mg/kg, i.p.) was given as a 0.125% solution in triethyleneglycol. Rats 
were sacrificed 4 hours after admin.istration of parathion. 

dSignificantly different from control [NE] (P<0.025). 

N 
00 



Table 6. Effects of parathion (with brain ChE inhibited greater than 50%) on steady-state lev~ls of 
NE and DA in selected regions of rat brain 

Cortex 
Treatment [NE] (ng/g) [DA] (ng/g) 

Controla 300£9.2 (lO)b 489±32 (10) 

Parathionc _ 277±9.6 (9)d 467±33 (9) 

Brain stem 
[NE] (ng/g) [DA] (ng/g) 

516±9.9 (11) 

506 ±11 (9) 

192±18 (11) 

195±20 (9) 

Corpus striatum 
[NE] (ng/g) [DA] (ng/g) 

159±12 (10) 

132±11 (8) 

9157±599 (10) 

11020±670 (8) 

a Control rats were given an equivalent volume of triethyleneglycol, the vehicle of parathion, 
b Mean CA concentration ± standard error of the mean. The number in parentheses was the number 

of observations. 

cParathion (1.25-2.50 mg/kg, i.p.) was given as a 0.125% solution in triethyleneglycol. Rats 
were sacrificed 4 hours after administration of parathion. 

dSignificantly different from control [NE] (P<O .03). 
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Table 7. Effects of parathiona on the depletion of NE in selected regions 
of rat brain after administration of aMPTb 

Cortex Brain stem 
Treatment [NE] (ng/g) % control [NE] [NE] (ng/g) % control [NE] 

Control c 279 ± 12 (lO)d 100. 507 ± 15 (10) 100. 

aMPT 115 ± 7.4 (10) 41.1 233 ± 7.1 (10) 45.8 

aMPT + parathion . e 
117 ± 8.0 (12) 42.0 217 ± 15 (11) 42.9 (inh. = 0-80%) 

aMPT + parathion 
(inh. > 50%)f 108 ± 13 (6) 38.6 198 ± 24 (6) 39.2 

aMPT + parathion 
(4)h (inh. > 60%)g 91. 7 ± 8.0 (4) 32.9 171 ± 24 33.6 

aParathion (1.25-2.50 mg/kg, i.p.) was given as a 0.125% solution in 
triethyleneglycol. 

b . 
aMPT-treated rats were sacrificed 4 hours after administration of 

aMPT (200 mg/kg, i.p.). 
c Control rats were given an equivalent volume of triethyleneglycol, 

the vehicle of parathion, and saline. 

~ean NE concentration ± standard error of the mean. The number in 
parentheses was the number of observations. 

e Included all rats in which parathion caused 0-80% inhibition of ChE. 
f Included only rats in which parathion caused> 50% inhibition of ChE. 

gincluded only rats in which parathion caused> 60% inhibition of ChE. 

hSignificantly different from [NE] in aMPT treatment (P<().005). 
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of parathion treatment (parathion, inh. > 50%) included only rats in which 

brain ChE was inhibited greater than 50%. The third grouping of parathion 

' treatment (parathion, inh. > 60%) included only rats in which brain ChE was 

inhibited greater than 60%. 

No significant differences were found between [NE] after the Q'MPT + 

parathion (inh. = 0-80%) treatment and [NE] after the Q'MPT treatment for 

both cortex and brain stem. Likewise, no significant differences were 

found between [NE] after the Q'MPT + parathion (inh. > 50%) treatment and 

[NE] after the Q'MPT treatment for both cortex and brain stem. However, a 

significant difference was found between [NE] after the Q'MPT + parathion 

(inh. > 60%) treatment and [NE] after the Q'MPT treatment for the brain 

stem. The level of NE remaining 4 hours after administration of O'MPT in 

the rat brain stem was significantly lowered by parathion, which had caused 

inhibition of brain ChE greater than 60%. No significant difference was· 

found, however, between [NE] following the Q'MPT + parathion (inh. > 60%) 

treatment and [NE] after the Q'MPT treatment for the cortex. Part of the 

above data is graphically represented in Figure 2. Note that the above 

data suggest a dependence of the NE depletion induced by Q'MPT iri the brain 

stem upon the percent inhibition of brain ChE. 

Table 8 shows the effects of parathion treatment on the depletion of 

DA in the cortex and corpus striatum of the adult male hooded rat. Para-

thion (inh. = 0-80%) and (inh. > 50%) significantly altered the levels of 

DA remaining in the cortex and corpus striatum 4 hours after administration 

of aMPT. However, the parathion treatment had opposite effects on the 

depletion of DA in the two brain regions. The level of DA in the cortex 

4 hours. after ·administration of aMPT was significantly increased by para-
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Figure 2 .. Mean concentration of NE in the cortex and brain s.tem of control 
rat's, rats 4 hours after administration of Q'MPT, and rats 4 hours 
after administration of Q'MPT plus parathion . . 
Only rats, in which brain ChE was inhibitedgreater than 60%, 
were included. in the third .treatment group.:· ::The standard errors 
of the means are indicated. 
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Table 8. 
. a Effects of parathion on the depletion of DA in selected regions 
of rat·brain after administration of aMPTb 

Cortex Corpus striatum 
Treatmentc [pA] (ng/g) % control [DA] [DA] (ng/g) % control [DA] 

Control 461 ± 48 (lO)d 100. 

aMPT 137 ± 11 (10) 29.8 

9360 ± 570 (12) 

3980 ± 170 (12) 

100. 

42.5 

aMPT + parathion 
(inh. = 0-80%) 179 ± 15 (ll)e 38.8 3490 ± 130 (18) f 37.3 

aMPT + parathion 
(inh. > 50%) 165 ± 22 (6)g 35.8 3360 ± 150 (12)h 35.9 

aParathion (1.25-2.50 mg/kg, i.p.) was given as a 0.125% solution in 
triethyleneglycol. 

b . 
aMPT-treated rats were sacrificed 4 hours after administration of 

aMPT (200 mg/kg, i.p.). 
c Treatments were the same as described in Table 7. 

~ean DA concentration+ standard error of the mean. The number in 
parentheses was the number of observations. 

eSignificantly different from [DA] in aMPT treatment (P<0.005). 

£Significantly different from [DA] in aMPT treatment (P<0.02). 

gSignificantly different from [DA] in aMPT treatment (P<0.02). 

hs · · f · 1 igm. icant y different from [DA] in aMPT treatment (P<0.03). 

thion treatment. In contrast, the level of DA in the corpus striatum.after 

aMPT was significantly lower subsequent to parathion treatment. Part of 

the above data is graphically represented in Figure 3. 

Figure 4 shows the graph of percent control [NE] in the brain stem 

versus percent inhibition of brain ChE. The depletion of NE in the 

brain stem after aMPT appears to be increased by higher values of percent 
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rats 4 hours after administration of aMPT plus parathion 

All rats .given parathion, in-which brain ChE was inhibited from 
0 to 80%, were in~luded in the third treatment grot1P· . The sti;m~ 
da.rd errors of the .means are indicated. 

- ,·.' 



35 

60 
E 
·~ 
+-• x x x 

x 
c 50 ~ 
D x x ... 
.Q 

c ' x 
x x x 

IL&J I 40 )( .z, 
x 

0 ... 30 )( 
+-c 
0 
0 

fl. x 
20 

0 20 40 60 80 
0/o Inhibition of brain ChE 

Figure 4. Graph of percent control [NE] in rat brain stem 4 hours after 
administration of Q'MPT versus percent inhibition of brain ChE 
caused by parathion treatment. Values at 0% inhibition of brain 
ChE were from rats given only Q'MPT 



36 

inhibition of brain ChE. Tii.is suggests a dependence of NE depletion in the 

brain stem upon the percent inhibition of brain ChE. Likewise, Figure 5 

shows the graph of percent control [NE] in the cortex after aMPT versus 

percent inhibition of brain ChE. The depletion of NE in the cortex after 

aMPT appears to be increased by. higher values of percent inhibition of 

brain;ChE, again suggesting the dependence of NE depletion after aMPT upon 

the percent inhibition of brain ChE. 

Figures 6 and 7 show the graphs of percent control [DA] in the cortex 
' and corpus striatum versus percent inhibition of brain ChE. No definite 

pattern can be distinguished. Tii.e depletion of DA in the cortex and corpus 

striatum does not appear to be dependent upon the percent inhibition of 

brain ChE. 
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Figure 5. Graph of percent control [NE] in rat cortex 4 hours after. admin-
istration of aMPT versus percent inhibition of brain ChE caused 
by parathion treatment. Values at 0% inhibition of brain ChE 
were from rats given only aMPT 
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Figure 6. Graph of percent control [DA] in rat cortex 4 hours after admin-
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by parathion treatment. Values at 0% inhibition of brain ChE 
were from rats given only aMPT 
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DISCUSSION 

The enzymes involved in the synthesis of DA and NE in the manunalian 

CNS are tyrosine hydroxylase, aromatic L-amino acid decarboxylase, and 

dopamine-~-hydroxylase (cf. Figure 8). Tyrosine hydroxylase, which cata-

lyzes the hydroxylation of tyrosine, is considered the rate-limiting step 

in CA synthesis (Nagatsu il .!!!·• 1964; Udenfriend, 1966), Two mechanisms 

of endogenous control of tyrosine hydroxylase activity are: 

(1) end-product inhibition, in which the catechol products compete with the 

pteridine cofactor (Udenfriend il al., 1965; Costa and Meek, 1974) and 

(2) induction of tyrosine hydroxylase synthesis (Musacchio il al., 1969). 

The endogenous control of synthesis maintains relatively constant levels of 

NE and DA in the face of varying rates of NE and DA utilization. There-

fore, steady-state levels of NE and DA are maintained. The steady-state 

levels of a neurotransmitter can be defined as that which exists when the 

rate of synthesis of the neurotransmitter is balanced by its rate of catab-

olism (or efflux) (Costa, 1970). 

Ideally, turnover rate of a neurotransmitter measures the utilization 

rate of transmitter and reflects the rate of synaptic transaction (Costa 

and Meek, 1974). The steady-state level of a neurotransmitter, on the 

other hand, measures the amount of transmitter in the tissue, most of'which 

is stored within the neurons. The amount. of transmitter that actually 

reaches the receptor is presently impossible to measure (Costa and Meek, 

1974) and probably is extremely small. 

Turnover rates of NE and DA have been determined in various regions of 

the mammalian brain (Brodie il al., 1966; Iversen and Gl.owinski, 1966; 

' 
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aromatic L-amino acid 
Enzymes: tyrosine hydroxylase decarboxylase DA-~-hydroxylase 

L-TYROSINE • L-DOPAa DA • NE 

Cofactors: 02' pteridine, Fe+t B6 02, ascorbate, Cu+t 

Figure 8. Biosynthesis of DA and NE in the CNS. Tyrosine, which is perme-
able to the blood-brain barrier, is supplied to the brain from 
the blood (adapted from Costa and Neff, 1970) 

aL-DOPA = L-3,4- dihydroxyphenylalanine. 
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Costa and Neff, 1970). In the present study, two experimental designs were 

used to determine turnover of DA and NE in rat brain. Both designs uti-

lized the depletion of NE and DA after the administration of aMPT. The 

first experimental design (Design 1) was essentially that of Brodie il al. 

(1966}, in which CA levels were measured at 0, 2, 4, 6, and 8 hours after 

the administration of aMPT (see Appendix C). The rate constant of CA 

efflux was determined from a least squares linear regression of log [CA] 

versus time. The linear regression of log [CA] versus time was found to be 

significant (cf. Figure 1) for NE in the hypothalamus (P<0.005), NE in the 

brain stem (P<0.001), NE in the cortex (P<0.005), and DA in the corpus 

striatum (P<0.001). (The amount of DA data for the cortex was insufficient 

to test for significance of linear regression.) 

The values found in this study for the rate constants and turnover 

rates of NE in the brain of the adult male hooded rat (cf. Table 1) were 

essentially in agreement with the values reported by Brodie il .!!!.· (1966) .· 

They calculated the rate constant and turnover rate of NE in the whole 
-1 brain of the NIH Sprague-Dawley rat to be 0.17 hr and 71 ng/g/hr. In 

addition, they calculated the rate constant and turnover rate of NE in the 
-1 whole brain of the Marland Farms Sprague-Dawley rat to be 0.12 hr and 

36 ng/g/hr. 

Brodie et al. (1966) found almost identical turnover times of NE in 

the rabbit hypothalamus and midbrain (5.3 and 5.1 hours, respectively). 

They interpreted their data to indicate that each neuron forms NE at a sim-

ilar rate and that the rate of synthesis in each part of the brain mi:ght be 

a function of the density of the catecholaminergic neurons. 
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The data presented in the present study, however, showed a significant 

difference between the rate constants (and, therefore, between turnover 

times) of NE .in different regions of the brain of the adult male hooded rat 

(cf. Table 1 and Figure 1). This suggests' that individual neuronal synthe-

sis rates of NE are not the same for different regions of the rat brain. 

The calculated rate constants of DA efflux in the cortex and corpus 

striatum of the adult male hooded rat (cf. Table 2} were also in agreement 

with those calculated by Brodie ~al. (1966) for the rate constant of DA 

in the whole brain of the NIH and Marland Farms Sprague-Dawley rats 
-1 -1 (0.37 hr and 0.28 hr , respectively}. It is of interest to note that 

the turnover rate of DA in the corpus striatum of the hooded rat using 

Design 1 (cf. Table 2) was almost identical to the turnover rate of DA cal-

culated by Brodie ~al. (1966) for the rabbit caudate nucleus (2800 ng/g/ 

hr). Since the caudate nucleus is a major part of the corpus striatum, the 

data suggest that the turnover rate of DA in this brain region is not 

unique to one species • 

. The second experimental design (Design 2) was similar to that used by 

Auden~ al. (1969b}, in which CA levels were measured at 0 and 4 hours 

after administration of CYMPT (see Appendix C). Turnover rate was estimated 

from the slope of a line connecting the mean log [CA] for the two treat-

ments (0 and.4 hour groups). The linear regression of log [CA] versus time 

was found to be significant using Design 1 (see above). 

The values calculated for the rate constants and turnover times of NE 

and DA using Design 2 were in agreement with the values obtained .using 

Design 1 (cf. Tables 3 and 4). This would be expected, since the method of 

determination of CA turnover is essentially the same in each experimental 
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design. (Both designs utilize the rate of CA depletion after synthesis 

inhibition with aMPT.) 

A larger deviation was noted, however, in comparing turnover rates 

calculated from the two experimental designs (especially of DA in the cor-

pus striatum). This deviation was due to the differences in the measured 

steady-state levels of NE and DA. Variations in NE and DA levels were 

noted from day to day and between groups of animals. 

The data indicated that the measurement of rate constant (k) of CA was 

a more consistent measurement than turnover rate (K). Also, the rate con-

stant was independent of CA steady-state levels and of the density of 

CA-containing neurons within the tissue analyzed. For these reasons, the 

rate constant was selected for use as the index of turnover of NE and DA in 

brain tissue. 

The data showed that both experimental designs gave essentially the 

same values for the rate constants of NE and DA. Since the primary purpose 

of this study was to test for the effects of parathion treatment on CA 

turnover, Design 2 was chosen in preference to Design 1 for the second part 

of this study. Additional considerations were that Design 2 required fewer 

experimental units to give the same number of degrees of freedom in the 

statistical testing of significant differences of the treatment effects. 
v 

In Design 2, no degrees of freedom are used to test linearity of log [CA] 

depletion versus time. As stated above, the significance of linearity of 

log [CA] versus time after aMPT was determined using Design 1. In addi-

tion, the amount of time required to carry out an experiment using Design 2 

was considerably less than that for Design 1. This made it easier to com-

plete an experiment in one day. Also, all parathion-treated animals were 
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sacrificed 4 hours after parathion treatment. Therefore, less error was 

introduced in Design 2 with regard to the drug contact time as compared 

with Design 1. 

Many findings have indicated an interaction of cholinomimetic and cho-

linolytic drugs with catecholaminergic neurons in the CNS. Cholinomimetic 

and cholinolytic drugs, for the most part, have had a minimal effect on the 

steady-state levels of NE and DA in the CNS but a marked effect on turn-

over. For example, Anden and B~dard (1971) as well as Bowers and Roth 

(1972) found that antimuscarinic (atropine-like) drugs did not significantly 

change endogenous (steady-state) levels of DA and NE in rat brain. 

Pscheidt .!!.!:. al. (1966) found that physostigmine in convulsive and nearly 

lethal doses had only minimal effects on brain concentration of NE in rab-

bi ts and rats. However, a small but significant decrease in the level of 

NE in the rat brain stem was found at 30 minutes and 4 hours after adminis-

tration of physostigmine (3 mg/kg, i.p.). They suggested that the deple-

tion of.NE in rat brain stem found after treatment with.physostigmine may 

be ascribed to the effects of the convulsive or nonspecific stress-induced 

release of NE. 

However, Glisson.!!.!:. al. (1972, 1974) observed that DFP, an irreversible 

anti-ChE, caused a decrease in NE levels and a marked elevation of DA lev-

els in rabbit brain as measured l hour after administration of DFP. Both 

responses were blocked by atropine, but only the DA increase was blocked by 

atropine methylnitrate. Atropine methylnitrate is a muscarinic blocking 

drug, which does not easily pass the blood-brain barrier unless unusually 

high doses are employed over a long period of time. They suggested that 
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the decrease in the NE levels was central in origin, while the elevation of 

DA levels was peripheral. 

In the present study, parathion (1.25 - 2.50 mg/kg) was given i.p. to 

adult male hooded rats. The dose of parathion was adjusted between 1.25 

and 2.50 mg/kg from day to day to obtain a dose that would be sublethal, 

yet give some classical observable toxic signs. From this experiment and 

from preliminary experiments, observable toxic signs did not become appar-

ent: unt.il brain ChE was inhibited greater than approximately 50%. The 

symptomatology in order of appearance is: muscular weakness, ataxia, mus-

cular twitching, fasciculations, tremor, compulsive gnawing, and convul-

sions. The first ·signs correspond to approximately 50% inhibition of brain 

ChE and the convulsions with approximately 80% inhibition of brain ChE. In 

other words, the degree of severity appeared to follow the degree of brain 

ChE inhibition. Since atropine methylnitrate was given to all treated rats 

prior to administration of parathion, usual peripheral toxic signs of mus-

carini9 origin, such as salivation, lacrimation, urination, and defecation, 

were antagonized. 

Parathion was found to have no significant effects on steady-state 

levels of NE and DA in the selected brain regions (cortex, brain stem, and 

corpus striatum), except for NE in the cortex, where a small but signifi-

cant decrease in the level of NE was observed (cf. Table 5). Also, para-

thion treatment, which caused greater than 50% inhibition of brain ChE, 

gave the same result·s as above (cf. Table 6). 

Since atropine methylnitrate was given to all treated rats, peripheral 

muscarinic effec_ts of parathion were antagonized. This may explain the 

discrepancy between the marked elevation of DA levels noted by Glisson 
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~ !!.!.· (1972, 1974) after DFP treatment and its absence in the present 

study in which parathion was used as the anti-ChE. Also, the decrease in 

NE levels in the cortex (apparently via a central mechanism) observed in 

this experiment is similar to the results observed by Glisson ~ !!!.· 
(1974), in which tile NE levels in the thalamus, hypothalamus, midbrain, and 

hippocampus of the rabbit were lowered by DFP. 

Antimuscarinic drugs have been found to decrease the turnover of DA in 

1 , , ) the adu t hooded rat (Anden and Bedard, 1971 , in the male Sprague-Dawley 

rat (Bowers and Roth, 1972), and in the female Wistar rat (Bhatnagar, 1973, 

1974). However, Bartholini and Pletscher (1971) suggested that ·the effect 

of atropine on DA turnover in the CNS may depend on the route of adminis-

tration and demonstrated that atropine administered i.p. to male Wistar 

rats causes a decrease in the HVA level in the brain, while intraventricu-

lar· administration of atropine causes an increase in brain HVA. In the 

above study, the level of HVA was used as an index of brain DA turnover, 

i.e. an increase in brain HVA levels corresponded to an increase in DA 

turnover. They suggested two cholinergic systems in rat brain, one which 

causes an increase in DA turnover and another which causes a decrease. The 

response of a particular cholinergic system depends on the route of admin-

istration, i.e. atropine given i.p. causes a decrease in DA turnover, while 

atropine given intraventricularly causes an increase. 

Bhatnagar (1973, 1974) found that atropine and hemicholinium-3 (HC-3), 

an inhibitor of choline uptake (and consequently an inhibitor of ACh syn-

thesis), causes a decreas~ in DA turnover in rat brain, while physostig-

mine, which prolongs the action of ACh, causes an increase in DA turnover. 

He observed opposite effects of these drugs on NE turnover, i.e. atropine 
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and HC-3 caused an increase in NE turnover in rat brain, while physostig-

mine caused a decrease in NE turnover. The above drugs were given in_tra-

peritoneally. It is of interest that HC-3 had an effect on CA's in the 

CNS. HC-3 is a quaternary amine and should not pass the blood-brain bar-

rier (Bowman~ al., 1968). It is possible that HC-3 was acting via a per-

ipheral mechanism, which indirectly affected the CNS as with atropine 

methylnitra:te (see above). Another possibility is that the blood-brain 

barrier may have been altered, thus allowing some HC-3 to enter the brain. 

Atropine and HC-3 were also found to inhibit the CPZ-induced increase 

in DA turnover in rat brain but enhance the CPZ-induced increase in NE 

turnover. Physostigmine produced the opposite effects in each case 

(Bhatnagar, 1974). Likewise, Anden and Bldard (1971), Anden (1972), and 

Bowers and Roth (1972) found that antimuscarinic drugs block both the 

CPZ- and haloperidol-induced increase in DA turnover. Further, antimus-

carinic drugs were found to cause an enhancement of the haloperidol-induced 

increase in NE turnover {Anden and Be°dard, 1971). This suggests. the 

involvement of a cholinergic (muscarinic) mechanism in the CPZ- or haloper-

idol-induced increase in NE and DA turnover in the CNS. 

In the present study, a significant increase in the amount of deple-

tion of DA 4 hours after administration of ~MPT was observed in the corpus 

striatum of the adult male hooded rat as a result of parathion treatment 

(cf. Table 8 and Figure 3). This parathion-induced increase in the deple-

tion of DA in the rat corpus striatum is an indication of an increase in 

the turnover of DA in that brain region, The effect of parathion on DA 

depletion after ~MPT did not appear to be dependent upon the percent inhi-

bition of brain ChE (cf. Figure 7). This suggests that parathion may be 



49 

acting on the dopaminergic system in the corpus striatum via a mechanism 

independent of its anti-ChE property. 

In contrast, a decrease in the amount of depletion of DA after aMPT 

administration was observed in the rat cor.tex as a result of parathion 

treatment (cL Table 8 and Figure 3). A parathion-.induced decrease in DA 

turnover in the rat cortex is indicated. The effect of parathion on DA 

depletion after aMPT did not appear to be dependent upon the percent inhi-

bition of brain ChE (cf. Figure 6). This suggests· that parathion may be 

acting on the dopaminergic system in the cortex via a mechanism independent 

of its anti-ChE property. 

The amount of depletion of NE in the rat brain stem after aMPT admin-

istration was significantly increased by parathion treatment which had 

caused greater than 60% inhibition of brain ChE (cf. Table 7 and Figure 2). 

A parathion-induced increase in the turnover of NE in the rat brain stem is 

indicated. The effect of parathion on NE .depletion in the brain stem after 

aMPT appeared to be dependent upon the percent inhibition of brain ChE (cf. 

Figure 4). This suggests that parathion may be acting on the noradrenergic 

system in the brain stem via a mechanism of ChE inhibition. 

Parathion did not significantly alter the amount of depletion of NE in 

the cortex of the adult male hooded rat after aMPT administration (cf. 

Table 7 and Figure 2). However, the effect of parathion on the depletion 

of NE in the rat cortex appeared to be dependent upon the percent inhibi-

tion of brain ChE (cf. Figure 5). This suggests that parathion may be act-

ing on the noradrenergic system in the cortex via a mechanism of ChE inhi-

bition. Based on the data presented in Figure 5, a significant increase in 

the amount of NE depletion in the rat cortex after aMPT may have been 
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obtained if more data at the higher percent inhibition (60 to 80%) of brain 

ChE had been accumulated. 

The interpretation of the data for the effect of parathion on the 

depletion of NE in the rat cortex is further complicated by the fact that 

parathion caused a significant decrease in the steady-state level of NE in 

the cortex (cf. Tables 5 and 6). When Design 2 is used to determine the 

effects of a drug on the turnover of NE or DA, the drug should not affect 

the steady-state levels of NE or DA. Otherwise, the levels of NE and DA 

measured 4 hours after administration of aMPT may also be affected, .pos-

sibly by a mechanism unrelated to the turnover. 

Many factors are involved in the turnover of NE and DA, such as the 

rate of release of NE and DA from the nerve terminal, the rate of reuptake 

at the presynaptic membrane, the rate of metabolism, etc. Drugs affecting 

one or many of these factors may influence the turnover of DA and NE. 

Parathion may be acting directly on any.of these factors or may be acting 

via its anti-ChE property. 

The mechanism of parathion's action as an inhibitor of monoamine oxi-

dase (MAO) or catecholamine-0-methyltransferase (COMT) could explain some 

of its effects on CA turnover. However, inhibition of MAO or COMT should 

have affected the steady-state levels of NE and DA, i.e. caused an eleva-

tion of CA levels, especially DA (Kopin, 1972). This was not observed in 

the present study {cf. Tables 5 and 6). However, the possibility remains 

that parathion may be affecting other enzymes in the CNS. This in turn may 

alter the turnover of CA's in the CNS • 

. Another possibility is that parathion may be altering the reuptake of 

CA's at the synapse. As previously stated, many anticholinergics have been 
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shown to inhibit the reuptake of CA's at the synaptic membrane (Coyle and 

Snyder, 1969). Parathion may be acting via a mechanism similar to that of 

the anticholinergics. 

Also, it is possible that parathion may cause an increased cholinergic' 

stimulation, either directly or indirectly, at the catecholaminergic synap-

tic membrane. If the cholinergic link hypothesis (Burn and Rand, 1965) is 

correct, an enhancement of the chemical stimulation of excitatory choliner-

gic (nicotinic) receptors at the synaptic membrane may increase the release 

and, therefore, the turnover of CA·'s· in the CNS. 

In addition, Loffelholz and Muscholl (1969) have suggested the pres-

ence of inhibitory cholinergic (muscarinic) receptors at the sympathetic 

nerve terminals in the heart. They found that muscarinic stimulants caused 

a decrease in the release of NE from electrically stimulated sympathetic 

nerves, while atropine caused an increase. If such inhibitory muscarinic 

receptors are present at the synaptic membrane of catecholaminergic neurons 

in the CNS, enhancement of cholinergic stimulation by parathion may cause a 

decrease in the release and,.therefore, the turnover of CA's in the CNS. 

The relative population of muscarinic-inhibitory and nicotinic-excita-

tory receptors at the synaptic membrane of catecholaminergic neurons in 

various regions of the CNS may determine whether the turnover of CA's is 

decreased or increased during enhancement of endogenous cholinergic stimu-

lation. It is possible that the muscarinic-inhibitory receptors predomi-

nate at the synaptic membrane of dopaminergic neurons in the cortex, 

causing-a decrease in the DA turnover during enhancement of cholinergic 

stimulation. Further, the nicotinic-excitatory receptors may predominate 

at the synaptic membrane of dopaminergic neurons in the corpus striatum, 
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causing an increase in DA turnover in that brain region during enhancement 

of cholinergic stimulation. 

Another, possible explanation of parathion's effects on CA turnover is 

the presence of cholinergic receptors' in the CNS that affect the impulse 

activity of catecholaminergic neurons. Two models can be hypothesized: 

(1) a direct synapse of cholinergic neurons on catecholaminergic neurons in 

the CNS and (2) cholinergic neurons which synapse with a chain of "inter-

neurons" ultimately affecting the impulse activity of the catecholaminergic 

neurons in the CNS. Again, this may explain the difference ~n the effects 

of parathion on the turnover of DA in the two brain reg{ons studied. Cho-

linergic input to dopaminergic neurons may be predominantly inhibitory in 

the cortex but predominantly excitatory in the corpus striatum. 

Findings that suggest the presence of both catecholaminergic and cho-

linergic neurons in the mammalian CNS give support to the above hypothe-

sized models. Indeed, Shute and Lewis (1966) have described the presence 

of a high density of cholinergic and dopaminergic neurons in the corpus 

striatum. They defined cholinergic neurons as those whose cell bodies 

stained heavily for AChE and gave rise to axons containing AChE. The 

presence of catecholaminergic neurons in various regions of the CNS was 

based on the data presented by Dahlstrom and Fuxe (1964). An anatomical 

interrelationship of cholinergic and catecholaminergic neurons in the cor-

pus striatum, as well as in other regions of the CNS, seems to be a valid 

possibility. 

In summary, parathion was found to have minimal effects on the steady-

state levels of NE and DA in rat brain. However, a small but significant 

decrease in the level of NE in the cortex was elicited by parathion treat-
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ment. Also, parathion was found to cause an increase in DA turnover in the 

rat corpus striatum but a decrease in DA turnover in the rat cortex. The 

effects of parathion on DA turnover did not appear to be dependent upon the 

percent inhibi,tion of brain ChE. Further, parathion caused an increase in 

NE turnover in the rat brain stem, an increase that appeared to be depen- ., 

dent upon the percent inhibition of brain ChE. 
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SUMMARY 

The primary objective of the present study was to determine the 

effects of parathion on the steady-state levels and turnover of NE and DA 

in selected regions of rat brain. An interdependence of the catechola-

miner~ic and cholinergic systems in the mammalian brain was proposed as a 

working hypothesis. Parathion was employed as a pharmacological agent to 

enhance the endogenous cholinergic stimulation in the CNS. Two parameters 

(steady-state levels and turnover) of brain NE and DA were measured ·to 

determine effects of parathion treatment on the catecholaminergic system in 

the mammalian brain. 

Prior to the study, preliminary experiments were undertaken to deter-

mine an appropriate experimental design to test treatment effects on CA 

turnover. The values obtained using two experimental designs were com-

pared. In t.he first experimental design (Design 1), levels of NE and DA 

were measured at O, 2, 4, 6, and 8 hours after synthesis inhibition with 

aMPT. The linearity of the plot of log[CA] versus time was found to be 

significant. Steady-state levels, rate constants, turnover times, and 

turnover rates of CA' s were determined in the selected· rat brain regions 

(cerebral cortex, brain stem, hypothalamus, and corpus striatum). Signifi-

cant differences were found between the rate constant of NE in the cortex 

and the rate constants of NE in the brain stem and hypothalamus. Likewise, 

a significant difference was found between the rate constant of NE in the 

brain stem and the rate constant of NE in the hypothalamus. However, no 

significant difference was found between the rate constants of DA in the 

cortex and the corpus striatum. 
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In the second experimental design (Design 2), levels of NE and DA were 

dete r mined at 0 and 4 hours after synthesis inhibition with a MPT. No 

degrees of freedom were used to statistically determine the linearity of 

log[CA] depletion versus time. Therefore, more degrees of f reedom were 

available as compared to Design 1 for t esting significant differences of 

treatment effects on CA depletion after aMPT (assuming the same number of 

experimental units in the two experimental designs) . 

Both experimental designs gave essentially the same values for the 

rate cons t ants (fractional turnover rates) o f NE and DA in the sel ected rat 

brain regions. However, a dis c repancy was observed between the values of 

turnover rates determined from the two experimental designs. This discrep-

ancy was attributed to the marked variation i n the values of steady- s tate 

levels of NE and DA measured on different days. The rate constant was 

chosen a s the index of CA turnover, since it is independent of CA steady-

state levels. For the above reasons , Design 2 was chosen in pref erence to 

Design 1 for the determination of significant effec ts of drug treatment on 

the turnover of NE and DA in brain tissue . More efficient use of the bio-

logical material c ould be made with Design 2 as compared to Design 1. 

Parathion was f ound to have minimal effects on the steady-state levels 

of NE and DA in rat brain. The effects of parathion on steady - state levels 

of NE and DA in the selected brain regions were found to be not significant, 

except for NE in the cortex, where a small but significant decrease in the 

leve l of NE was observed after parathion treatment. 

Using Design 2 as the expe rimental de sign, parathion was found to 

increase the turnover of DA in the corpus striatum but decreased the turn-

over of DA in the cortex. The effec t s of parathion on DA turnover in these 
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two brain regions appeared to be independent of the percent inhibition of 

brain ChE. Further, parathion was found to increase the turnover of NE in 

the brain stem. Also, parathion appeared to increase the turnover of NE in 

the cortex as well, but the increase was not statistically significant. 

The effects of parathion on NE turnover in the brain stem and cortex 

appeared to be dependent upon the percent inhibition of brain ChE. 
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APPENDIX A. 
REVIEWS OF SPECIFIC AREAS OF CA RESEARCH 

1. Biochemistry - Molinoff and Axelrod, 1971. 

2. Synthe,sis - Kopin, 1968; Axelrod, 1971; Costa and Meek, 1974. 

3. Uptake - Iversen,. 1970, 1971. 

4. Transport and storage - Glowinski; 1970; Shore, 1972. 

5. Release - von Euler~ al., 1966; Glowinski, 1970; Smith' and Winkler, 

1972. 

6. Receptor - Curtis and Crawford, 1969; Triggle, 1972. 

7. Metabolism - Axelrod, 1966, 1971; Glowinski and Baldessarini, 1966; 

Kopin, 1972. 

8. Function - Hornykiewicz, 1966; Marley and Stephenson, 1972. 

9. Turnover - Costa, 1970; Costa and Neff, 1970. 

10. Pharmacology - Salmoiraghi ~ ~., 1965; Sulser and Sanders-Bush, 1971. 
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APPENDIX B. 
FLUOROMETRIC DETERMINATION OF NE AND DA LEVELS IN BRAIN 

(cf. Shellenberger and Gordon, 1971) 

1. 0.4N Perchloric acid, 0.1% sodium metabisulfate (Na2s2o3), O.OS% 

disodium EDTA. 

2. Tricine buffer, O. lM tricine (N-tris(hydroxymethyl)methylglycine), 

O.OS2SN NaOH, 2.S% disodium EDTA. 

3. O.OSN Perchloric acid. 

4. Phosphate buffer, O.lM, pH 7.0, 0.9% disodium EDTA. (Dissolve 

4.27 g Na2HP04 , 9.S2 g KH2Po4 , and 9.0 g disodium EDTA in approxi-

mately 800 ml d.d. H2o. Adjust pH to 7.0 with SN NaOH and bring 

final volume to 1 liter with d. d. H2o.) 

S. Iodine reagent. (Dissolve 2.S g KI and l.2S g I 2 in d.d. H20 and 

bring to final volume of SO ml.) 

6. Alkaline sodium sulfite solution. (Dissolve 0.500 g Naso3 in 

2.00 ml d.d. H2o. Add 18.0 ml SN NaOH. (Note: This solution 

should always be made up just prior to use.) 

, 7. Alumina. Preparation procedure: Wash a 2SO g portion of alumina 

(Woelm, activity grade 1, Al2o3) for 6 to 8 hours with free flow-

ing tap water to remove the lighter particles. Acid-wash the 

alumina i~ 1000 ml 2N HCl for 1 hour at 100° C. Keep the alumina 

suspended with constant stirring. After the first wash, allow the 

alumina to settle for 1 or 2 minutes before pouring off the acid 

and lighter particles. Wash the alumina twice in SOO ml 2N HCl at 

70° C for 1 hour (again with constant stirring). Pour off the 
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acid and lighter particles as before. Wash with 1000 ml 2N HCl at 
0 50 C for 1 hour and pour off acid and lighter particles. Bring 

the pH of the alumina to 3.4 with 25 to 35 washes of 400 ml d.d. 

H2o. Transfer the alumina to a porcelain evaporating dish covered 

with a watch glass and heat in a muffle furnace for 1 hour at 

120° C and then for 2 hours at 300° C. Store the final activated 

alumina in a vacuum desiccator at room temperature. 

1. Stock solutions. 

. 1 d Add 5.00 ml O.lN HCl to a NE reference standard. Also ad 

approximately I mg of ascorbic acid as an antioxidant. 

Resulting NE solution = 1.00 mg/ml. 

Store this· NE stock solution at 4° C. (The NE stock solution will 

remain good for at least 1 month under these conditions.} 

Dissolve 1.00 mg DA 2 in 1.00 ml O.lN HCl. 

Resulting DA solution = 1.00 mg/ml. 

(Make up DA stock solution fresh for each assay.) 

2. Daily stock solution. 

Bring to volume 0.25 ml of the stock solution of NE and DA with 

O.OSN HC104 in a 25 ml actinic glass volume_tric flask. 

This gives the following daily stock solutions: 

NE = 0.0100 mg/~l and DA = 0.0100 mg/ml 

1Regis Chemical Co. (Code #190012). 
23-Hydroxytyramine (Calbiochem), 
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3. Recovery standard. 

Add 0.1 ml NE daily stock solution and 0.1 ml DA daily stock solu-

tion to 5.8 ml 0.4N HC104 • Prepare recovery blanks by adding 
\ 

0.2 ml of the same 0.05N HC104 solution used to prepare the daily 

stock solutions to 5.8 ml 0.4N HC104 . Treat the recovery stan-

dards a~d recovery blanks in the same manner as the brain samples 

starting at the first step of the isolation of CA procedure. 

4. Standards. 

Add 0.1 ml NE daily stock solution and 0.1 ml DA daily stock solu-

tion to 0.8 ml 0 .• 05N HC104• Prepare standard blanks by adding 

0.2 ml of the same 0.05N HC104 solution used to prepare the daily 

stock solutions to 0.8 ml 0.05N HC104 • Treat the standards and 

standard blanks in ·the same manner as brain samples starting at 

the first step of the oxidation procedure. 

Apparatus: 

1. Sonifier Cell Disrupter, Heat Systems Co., with micro tip.· 

2. Aminco-Bowman Spectrophotofluorometer, American Instrument Co., 

Inc. 

3. SORVALL RC2-B, Refrigerated Centrifuge, Ivan Sorvall Inc. 

Procedure: 

A. Extraction 

1. Remove brain samples as rapidly as possible and store in liquid 

nitrogen until assayed. Begin extraction as soon as practical 

(usually within 1 or 2 days). 
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2. Weigh samples (50 mg to 1 g) of rat brain to the nearest mg and 

homogenize by ultrasonic cell disruption in 0.4N HC104 in a 5Q·ml 

polypropylene cfg. tube. 

3. ·Allow the tissue homogenate to stand in ice for 10 minutes. 

4. Centrifuge at 27,000 g for 15 minutes at o° C. 

5. Transfer the supernatant to a 15 ml polycarbonate, graduated cfg. 

tube. 

6. Add 2.5 ml 0.4N HC104 to the pellet and rehomogenize. 

7. Again let the homogenate stand for 10 minutes. 

8. Centrifuge the homogenate as in step 3 above, 

9. Pool the two supernatants in the 15 ml polycarbonate cfg. tube and 

bring to a final volume of 6 ml with 0.4N HC104 • 

10. Store samples at -20° C in a freezer until analysis for NE and DA. 

(Samples may be stored at this step of the extraction procedure 
0 for up to 3 weeks at -20 C without apparent loss of NE and DA 

(Shellenberger and Gordon, 1971).) 

B. Isolation of Catecholamines 

1. Thaw the 0.4N HC10 1 tissue extracts and transfer to 50 ml polycar-
" 

bonate cfg. tube (Oak Ridge type). Add recovery standards and 

recovery blanks at this step and treat as brain samples throughout 

the rest of the procedure. 

2. Buffer the extract to pH 7.5 to 8.0 with Tricine buffer. (Check 

with a pH meter.) 

3. Immediately add 300 mg± 25 mg of alumina. (CA's are unstable at 

neutral and alkaline pH.) 
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4. Tightly cap the cfg. tubes co!ltaining the samples and shake at low 

speed (180/min) for 20 minutes. 

5. Centrifuge at 3000 g for 5 minutes. 

6. Discard the supernatant and wash the alumina 4 times with approxi-

mately 30 ml d.d. H2o. Centrifuge the last wash at 3000 g for 

5 minutes and remove the water by aspiration. 

7. Add 3.0 ml 0.05N HC104 to each alumina sample, cap the cfg. tube, 

and shake for 20 minutes at low speed. 

8. Centrifuge at 3000 g for 5 minutes. 

9. Transfer a 1.00 ml aliquot of the supernatant to a 13xl00 mm cul-

ture tube for oxidation. 

C. Oxidation to Fluorescent Product and Estimation of NE and DA Levels 

1. Buffer each 1 ml aliquot of the 0.05N HC104 eluate with 1.5 ml 

O.lM phosphate buffer. (The pH of each sample should be 6.5 ± 
0.2.) Add the standards and standard blanks at this step and 

treat as brain samples throughout the rest of the procedure. 

2. Add 0.2 ml of iodine reagent to each of the samples followed· 

exactly .2.00 minutes later by 0.5 ml of alkaline sodium sulfite 

solution. Exactly l.:..QQ minutes later add 0.4 ml of glacial acetic 

acid. Mix thoroughly after each addition •. (See Notes for the 

chemical reactions involved at this step.) 

3. 0 Heat the samples in a temperature block at 100 C for 3 to 4 min-

utes. 

4. Cool in ice for 3 to 5 minutes. 

5. Allow samples to stand at room temperature for 15 minutes. 
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1 Transfer samples to glass SPF cuvettes (10x75 o.d. round cell ) 

for measurement of NE fluorescence. 

7. Place a standard in the SPF for fluorescence measurement and manu-

ally adjust the SPF wavelength disc to peak excitation and emis-

sion wavelengths of NE fluorescence. (The usual peak excitation 

and emission wavelengths of NE fluorescence are approximately 

380 nm and 480 nm, respectively-.) Use these wavelengths in the 

measurement of NE fluorescence of the samples. 

8. Make all fluorescence measurements in duplicate with the second 

reading in the reverse order of the first. Take the average of 

the two readings. (This reading procedure minimizes time-depen-

dent effects on fluorescence.) 

9. Return' the samples to their respective 13xl00 mm culture tube and 

place them in the temperature block for an additional 35 to 40 

minutes. 

10. Place the culture tubes in ice for 3 to 5 minutes. followed by 

standing at room temperature for 30 minutes before reading DA 

fluorescence. (This is a departure from the Shellenberger and 

Gordon method. See Notes.) 

11. Transfer the samples to the SPF glass cuvettes. 

12. Adjust the SPF to peak excitation and emission wavelengths for DA 

fluorescence using the DA standard. (Usual peak wavelengths are 

320 nm and 373 nm.) 

13. Make duplicate measurements of DA fluorescence as with NE. 

lA . m1nco-Bowman. 
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14. The calculation of CA (NE and DA) levels in brain samples are as 

follows: 

')'.Rec = RF(rec) - RF(recblk) x 3 x 100 RF(std) - RF(stdblk) 

[CA] = . [RF( sample) - RF(recblk)] (1000 ng/ml) (3 ml) 
(RF_(s td) - RF(stdblk)) ('i'.Rec/100) (sample weight in grams) 

[CA] is calculated as ng/g of brain tissue (wet weight). 

')'.Rec - percent recovery 

RF(rec) - relative fluorescence of the recovery 

RF(recblk) ·- relative fluorescence of the recovery blank 

RF(std) - relative fluorescence of the standard-

RF(stdblk) - relative fluorescence of the standard blank 

RF(sample) - relative fluorescence of the sample 

Notes: 

1. The chemical reaction involved in the oxidation procedure is as 

follows: 
OH ?H 

HO~~H oxida1Jon _o=~yH filk.;J/ 
HO-z./ .CH 0-~ /CH .. 

+N/ 2 N/ 2 

HOCcCOH II 
HO ~H (Cooper 

N 
et al., 
-1974) I ,+ 

H 
H~ 

norepinephrine 

H0~9H2 
HO~ .CH 

- . N/ 2 
I 
H2 

dopamine 

~ 
3,5,6-trihydroxyindole 

5,6-dihydroxyindole 

(Udenfriend, 
1962) 
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3,5,6-trihydroxyindole and 5,6-dihydroxyindole are the highly fluores-

cence products formed in the oxidation procedure. Each product has a char-

acteristic wavelength of excitation and emission. 

2. In the procedure for the estimation of DA levels, the samples were 

allowed to stand at room temperature for 30 minutes before reading DA fluo-

rescence. This is a departure from the Shellenberger and Gordon method, 

0 since their method calls for the reading of DA fluorescence at 4 C. How-

eve~, problems were encountered while using their method in this laboratory 

.during previous experiments. Because of the laboratory humidity, the 

cuvettes would fog up during the reading of DA fluorescence and would give 

erroneously high readings, especially for blanks and samples of low DA con-

centration. 

Shellenberger· and Gordon (1971) stated that a stable fluorescence is 

obtained if the samples are allowed to sit at room temperature for over 

30 minutes. However, this stable fluorescence at room temperature is 15.to 

20% lower in intensity than that obtained at 4° C. It was found that the 

increase in reproducibility of readings and the lowering of the blank 

fluorescence more than compensated for the loss of sensitivity due to the 

reduction in fluorescence intensity. 
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APPENDIX C, 
DETERMINATION OF BRAIN NE AND DA TURNOVER 

The turnover rates of NE and DA in rat brain are determined from the 

rate of depletion of NE and DA after administration of aMPT (Brodie~.!!!.·• 

1966). aMPT competitively inhibits tyrosine hydroxylase, the enzyme that 

catalyses the rate-limiting•step in the synthesis of CA's (Moore and 

Dominic, 1971). The NE and DA levels in rat brain are observed to decrease 

exponentially after injection of aMPT (200 mg/kg, i.p.). · 

According to Brodie~.!!!.· (1966): 

-d[NE]/dt = k[NE] (1) 

where [NE] is the concentration of NE at time t and k is the rate constant 

of NE efflux. The value k can be thought of as the fraction of the total 

NE that is lost per unit time (i.e. fractional turnover rate). 

The turnover rate, K, is described as: 

K = k[NE] 0 (2) 

where [NE] 0 is the initial concentration of NE (i.e. the steady-state level 

of NE). The NE in brain tissue is assumed to be at steady-state prior to 

the administration of aMPT. A steady-state condition exists when the rate 

of NE efflux from the tissue equals the rate of NE biosynthesis. 

Integration of equation (1) gives: 

[NE] = [NE] .e -kt 
0 

which converted to log10 gives: 

log[NE] = log[NE] 0 - 0.4343kt 

(3) 

(4) 

From equation (4), a straight line with slope = -0.4343k and y-inter-

cept = log[NE] 0 occurs when log[NE] is plotted on the y-axis and time (t) 
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on the x-axis. Therefore, the rate constant (k) can be calculated from the 

slope (b): 

k = -b/0.4343 (5) 

where b can be determined from a least squares fitting of the linear 
' 

regression of log[NE] versus t. 

The turnover rate (K) can be calculated from equation (2). The turn-

over time (tt) is the reciprocal of k. 

tt = l/k (6) 

Broaie ~ ~· (1966) defines turnover time of NE as the time interval 

required for the biosynthesis of an amount of NE equal to that stored in 

the tissue at steady state. 

Rate constants, turnover times, and turnover rates of DA in brain tis-

sue are calculated in a similar manner. 

Two ~xperimental designs for the determination of brain NE and DA 

turnover are used in this study. 

DESIGN 1. 

Rat brain DA and NE levels are determined at O, 2, 4, 6, and 8 hours 

after administration of Cl'MPT (200 mg/kg, i.p.). A second dose o.f Cl'MPT 

(100 mg/kg, i.p.) is given 2.5 hours after the first dose to rats in the 

4, 6, and 8 hour groups. The second dose of Cl'}jPT is given to assure main-

tenance of effective levels of Cl'MPT in the brain throughout the experiment. 

An example of the d'etermination ·of NE turnover using this experimental 

design is given. The raw data used for these calculations are reported in 

Table c-1. 
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Table C-1. Raw data of [NE] in rat brain stem after administration of rxMPT 
(200 mg/kg, i.p.) using Design 1 

t a [NE]b 
(hr) (ng/g) log[ NE] 

0 409.7 2.612 

2 275.5 2.440 

4 190.5 2.280 

6 141.3 2.150 

8 109.l 2.038 

a Hours after administration of rxMPT. 
b Concentration of NE in rat brain stem at selected time intervals 

after administration of rxMPT. Brain stems were pooled from the 4 rats in 
each time group. 

The graph of log[NE] versus t (cf. Figure C-1) shows log[NE] to 

decrease linearly with time. A least squares analysis of log[NE] versus t 

shows the linear regression to be significant at the 0.5% probability 

level. 

CALCULATIONS: 

log[NE] 0 = y-intercept = 2.592 

[NEJ 0 = 390.8 ng/g 

b = -0.07196 

k = -b/0.4343 = 0.1657 hr-l 

tt = l/k = 6.03 

K = k[NE] 0 = 64.8 ng/g/hr 
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0 1 2 3 4 5 6 7 8 
t <time in hours after aMPT > 

Graph of log[NE] ([NE] in ng/g) in rat brain stem after admin-
istration of Q'MPT ( 200 mg/kg, i. p.) 

Rats in the 4, 6, and 8 hour groups were given a second dose 
of Q'MPT (100 mg/kg, i.p.) 2.5 hours after the first dose. The 
least squares linear regression of log[NE] versus t was sig-
nificant (P<O. 005). Each dot on the graph represents the 
log[NE] of a pooled sample of 4 rat brain stems. 
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The rate constants, turnover times, and turnover rates of NE and DA in 

other brain regions are calculated in a similar manner. 

DESIGN 2. 

In this experimental design, all treated rats are sacrificed 4 hours 

after administration of aMPT (200 mg/kg, i.p.). Less biological material 

is needed with this design as compared to Design l for testing significant 

differences of treatments that affect CA depletion after aMPT. In Design 2, 

no degrees of freedom are used to determine significance of linearity of 

log[NE] versus time. 

The fixed time interval, 4 hours, is chosen because it is approxi-

mately the ~-life of DA and NE depletion in rat brain after aMPT (cf. 

Table C-2). A second dose of aMPT is not given, because it has been 

reported that effective levels of aMPT in rat brain are maintained for 

4 hours after administration of aMPT (200 mg/kg, i.p.) (Spector~ al., 

1965; Brodie~!!!·• 1966). 

An example of the determination of CA turnover in rat brain using this 

experimental design is given: 

Three or four individual experiments were carried out on different 

days. In each individual experiment, 2 to 4 adult male hooded rats (200-

400 g) were used for the control group and a similar number for the aMPT 

treated group. Data obtained for the determination of turnover of DA in 

the rat corpus striatum using Design 2 is given in Table C-3. The graph of 

log[DA] versus time is .given in Figure C-2. The rate constants were cal-

culated from the slope of the line connecting the pooled data means of 

log[n.~] at 0 and 4 hours. 
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Table C-2. Half-lifea of DA and NE depletion in rat brain after adminis-
tration of aMPT (200 mg/kg, i.p.) 

Half-life (hr) 
DA NE 

Cortex 2.48 3.18 

Brain stem b 4.18 

Hypothalamus b 5. 63 

Corpus striatum 3.30 b 

at~= -(log 2)/b; where b = slope of the linear regression of log[CA] 
vs. time after administration of aMPT. The values calculated for half-life 
of DA and NE were based on the data obtained using Design 1. 

b Not determined. 

Calculations: 

1 

log[DA] 4 - log[DA] 0 b = ---~.,..-----'<-
4 

b = -0.09175 ± 0.0115 

log[DA] 0 = 3.962 ± 0.0274 

log[DA] 4 = 3.595 ± 0.0185 

k = -b/0.4343 = 0.2113 ± 0.0264 

[DA] 0 = 9360 ± 567 

K = k[DA] 0 

K = (X1 ± a 1) (X2 ± a 2) = x1 x2 ± 

x1 = 9360 

x2 = 0.2113 

K = 1978 ± 275 

s 1 = 567 

s 2 = 0.0264 

An approximation of the standard error. Adapted from Stout (1950). 
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Table C-3. Raw data of DA in rat corpus striatum after administration of 
aMPT (200 mg/kg, i.p.) using Design 2 

a Day 

1 
1 

2 
2 
2 

3 
3 
3 
3 

4 
4 
4 

Mean 

S/A{il 

12120d 
8951 

6601 
6670 
7520' 

11020 
8933 
7331 

10900 

11560 
10600 
10110 

9360 

567 

5209 
4758 

3764 
3392 
3898 

3958 
4037 
2995 
3738 

3624 
3903 
4450 

3977 

172 

Control 

4.083 
3.952 

3.820 
3.824 
3.876 

4.042 
3.951 
3. 865 
4.037 

4.063 
4.025 
4.005 

3.962 

0.0274 

log[ DA] 
aMPT 

3. 717 
3.677 

3.576 
3.530 
3.591 

3.597 
3.606 
3.476 
3 • .573 

3.559 
3.591 
3.648 

3.595' 

0.0185 

aThe total data were pooled from 4 individual experiments carried out 
on different days. 

b Control ·rats were given an equivalent volume of saline and sacrificed 
within 1 hour. 

c aMPT treated rats were sacrificed 4 hours after administration of 
aMPT (200 mg/kg, i.p.). 

~ach [DA] value represents the calculated DA concentration of the 
pooled corpu~ striatum of one rat. 
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4.0 
(3.96:!:0.027) 

3.9 

3.8 

3.7 

3.6 (3.59:!:0.019) 

3.5 ..... - ..... - .... ---.--..--
0 1 2 3 4 

t (hours after aMPT > 

Figure C-2. Graph of mean log[DA] ±the standard error of the mean in rat 
corpus striatum at O and 4 hours after administration of ~MPT 
(200 mg/kg, i.p.). The slope of the line was used to calcu-
late k, the rate constant of DA efflux 
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APPENDIX D. 
DETERMINATION OF ChE ACTIVITY BY pH-STAT METHOD 

(cf. Glick, 1971) 

1. Medium (O.lM NaCl, 0.02M CaC1 2• Add 5.845 g NaCl and 2.220 g 

CaC1 2 to d.d. H20 and bring to 1 liter volume with d.d. H20.) 

2. Titrant (0.0200M NaOH, co2-free. Dilute a co2-free stock solution 

of lM NaOH with boiled d.d. H2o. The exact concentration of the 

stock solution is checked periodically against potassium hydrogen-

phthalate standard. Prepare titrant for each assay.) 

3. Substrate (0.250M ACh-Cl. Add 3.3 ml d.d. H2o to a vial of 150 mg 
1 ACh-Cl. Prepare for each assay.) 

4. Tissue homogenate (Homogenize tissue in 10 volumes of O.lM NaCl.) 

Apparatus: 

Titrator, Radiometer type TTT2b 

Titrigraph Pen Drive, Radiometer type REA 300 

Servograph, Radiometer type REC 51 

Autoburette, Radiometer type ABUll (0.25 ml burette) 

pH Electrodes 

Micro-glass electrode, Radiometer ifG2222c 

Micro-calomel electrode, Radiometer ifK4112 

Micro-reaction chamber (0.5-4.0 ml functional capacity) with magnetic 

stirrer 

Water bath 

1Sigma Chemical Co. (ACh is stored under N2 gas because of its hygro-
scopic nature.) 
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Block Diagram.(pH-Stat Apparatus) 

SUBSTRATE 
TISSUE ChE ~ REACTION CHAMBER ~·. PH METER 
MEDIUM ' - . 

·• 

... 

~ 

RECORDER AUTOMATIC TITRATOR ... ~ 

Procedure: 

1. Remove brain samples as rapidly as possible and store in liquid N2 
until as.sayed. Begin ChE determination as soon as practical (usu-

ally within 1 or 2 days). 

2. 0 Set water bath at 30 c. Begin continuous stream of N2 gas over 

contents of reaction chamber. Set end point of titration at pH of 

7 .6 and paper speed at 2 min/cm. 

3. Calibrate the· pH electrodes with two buffers (pH 7.00 and 4.01). 

4. Weigh brain samples to the nearest mg and place in 10 volumes of 

O.lM NaCL 

5. Homogenize by ultrasonic cell disruption and keep on ice until 

assayed. 

6. Place 2.5 ml of the medium (at 30° C) and 0.1 ml of the tissue 

homogenate into the reaction chamber. (The temperature of the 

reaction chamber contents should be in equilibrium with the water 

bath within 1 minute.) 
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7. With constant stirring, bring the pH of the reaction chamber con-

tents to 7.6 by manual addition of the titrant. Avoid overshoot-

ing the end point by adding the titrant very slowly as the pH 

approaches 7.6. 

8. Set the apparatus on automatic titrate. (Titrant will then be 

added in small increments (0.1 to 0.3 ul) in response to a rise in 

pH above 7.6. Each addition of the titrant is recorded on the 

graph from which the ~mount of NaOH added per unit time is deter-

mined. Homogenized brain tissue typically has spontaneous· acid 

liberation (SAL), and this activity will be indicated by the rate 

of titration prior to the addition of substrate (ACh·Cl).) Record 

the .SAL rate until 4 or 5 minutes of linearity are obtained. 

9. Add 0.1 ml of substrate (0.250M ACh·Cl) to the reaction chamber. 

(This results in a final substrate concentration of 9.3mM ACh·Cl 

in the reaction chamber. ChE in the tissue homogenate will hydro-

lyze the added ACh. For each mole of ACh hydrolyzed, 1 mole of 

titrant (NaOH) is needed to maintain a constant pH. Therefore, 

titration rate will be increased by ChE activity (see Notes).) 

10. From the slope of the recorded line, determine the rate of NaOH 

titration before and after the addition of substrate. (The dif-

ference between the two titration rates is the rate due to ChE 

activity,) 

11. Calculations. ChE activity is calculated by the following equa-

tion: 

____ ..,fo._l~N"'a""O.,,H.,./.,,m"'i""n,.)_..(,.µ,..,m"'o.:.le"-'N"'a"'O"'H~/"'IJ."'l"")----- = µ,mo le NaOH/min/ g 
(ml tissue homog.) (g tissue/ml tissue homog.) (tissue wet weight) 
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Example of calculation: 

ChE activity of control rat hippocampus = 

...,.,,.~( 4~. 3"-'µ,::01.,,/_,m"'i""n:..· ---:-=:0~·.:.9-:'µ"""'l'"'/m=i=:· n~)""(._,0._,.'-"0;.;:2~0"'9.L""='m"'o=.le:.l'-'1"'' l~N.:::a"'O""H"')-· ......,.. _ 7. 5 µ.mole /min/ g 
(0.100 ml homog.)(1.00 g tissue/11 ml tissue homog.) - (NaOH) 

Since 1 mole of NaOH is needed to neutralize the acid.formed in 

the hydrolysis of 1 mole of ACh, the ChE activity is calculated to 

be: 

ChE activity= 7.5 µ.mole/min/g (with ACh as substrate) 

Notes: 

1. The activity of brain ChE determined by this method is the total 

activity of all cholinesterases (i.e. acetylcholines.terase (AChE), 

butyrocholinesterase (BuChE), propionocholinesterase (PrChE), 

and nonspecific esterases) in the brain using ACh as a substrate. 

BuChE, PrChE, and nonspecific esterases, 'however, contribute only 

a small fraction of the total ACh-hydrolyzing activity found in 

rat brain (Koelle, 1954). Therefore, the ChE activity determined 

by this method is a valid indication of brain AChE activity. 

2. The chemical reaction involved in the ChE-catalyzed hydrolysis of 

ACh is as follows·: 

A Ch acetic acid + choline 

One mole of Na9H is needed to neutralize the acid formed from each 

mole of ACh hydrolyzed in order to maintain a constant pH. The 

rate of NaOH titration due to ChE activity is the difference 

qetween the rate of NaOH titration before and after the addition 

of ACh. (ChE activity does not appear to significantly contribute 
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to SAL (spontaneous acid liberation), since the SAL rate is not 

affected by inhibition of ChE.) 

3. Spontaneous (nonenzymatic) hydrolysis of substrate is assumed to 

be negligible. The ChE activity observed for brain tissue from an 

animal given high doses of DFP (3.0 mg/Kg, i.v. in rabbit), an 

irreversible ChE inhibitor, is calculated to be 0.0 µmole/min/g. 

This indicates that the measurement of spontaneous hydrolysis of 

ACh (unaided by ChE) is not detected using this procedure. 

4. Maximum accuracy in the measurement of titration rate from a 

recorded slope is obtained when the recorded line ('!fter sub.strate 

addition) is at a 45° angle to the vertical. An approximate 45° 

angle was obtained for the recording of titration rate of ChE 

activity in rat brain hippocampus (about 8 11mole/min/g) following 

the above pH-stat procedure. If measurements of ChE activity con-

siderably greater than or less than 8 µmole/min/g are to be made, 

the paper speed and/or concentration of the titrant can be varied 

to bring the recorded titration rate line (after substrate addi-

tion) to the approximated 45° angle. 




