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INTRODUCTION 

During the next decade the existing power reactors will 

be in operation as well as many new power reactors which will 

be brought on line. The fuel needs for these reactors as 

well as the amount of discharged fuel will continue to grow . 

In view of the fact that plutonium isotopes build up during 

power reactor operation as a result of an initial neutron 

capture in uranium- 238, there will be large amounts of 

plutonium available in the near future . With a large supply 

of plutonium available, it is expected that the market price 

will fall until plutonium recycle in thermal reactors be -

comes economically attractive . Later, with the introduction 

of fast breeder reactors utilizing plutonium as fuel , the 

plutonium market price will probably rise, and it may no 

longer be economical to recycle plutonium in thermal reactors 

until the breeder reactors produce an over supply of plutonium . 

There are four important plutonium isotopes that build 

up in a thermal reactor as a result of an initial capture in 

uranium-238. Of these there are two isotopes, plutonium- 239 

and - 241, which are fissile. Hence the performance and eco-

nomics of a uranium- plutonium fuel mixture in the reactor 

will depend upon the isotopic composition of the plutonium , 

the total amount of plutonium in the fuel mixture, and the 

enrichment selected for uranium- 235. 

Since large amounts of money are invested in the nuclear 
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fuel cycle, small differences in the performance character-

istics of fuel mixtures may result in considerable savings . 

A study to determine how different recycle fuel mixtures may 

affect the fuel cycle costs is therefore well justified . In 

this stu dy several different parameters affecting the fuel 

cycle costs are varied . The results are helpful in making 

certain general conclusions about possible management 

deci s ions concerning the recycle of plutonium in thermal 

reactors . 
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REVIEW OF LITERATURE 

There have been several economic studies concerned with 

plutonium recycle in thermal reactors. Examples of such 

studies include estimating fabrication penalties associated 

with particular reactor designs, developing scattering ker-

nels applicable to plutonium-uranium-water lattices, and 

offering specific expressions for determining the value of 

plutonium as a thermal reactor fuel. None of the references 

reviewed, however, gave any appreciable data which might be 

used to evaluate which isotopic mixtures of recycle fuels 

would be the most economically desirable. 

In obtaining general information for this study exten-

sive use was made of the texts by Glasstone and Sesonske [5] 

and Lamarsh [11]. Benedict and Pigford have treated the 

buildup of isotopes with plutonium recycle in a simple man-

ner that can be easily generalized [2]. 

Cross section data were obtained from United States 

Atomic Energy Commission Report BNL-325 [6,8]. References 

[11 ,20,23] were used to consider doppler broadening effects. 

The neutron spectrum was obtained by using data from a paper 

from the proceedings of a symposium on the use of plutonium 

as a reactor fuel [4]. Spectra for a plutonium-uranium-

water lattice core were given for different traces of 

plutonium present in the fuel. An article presenting the 

spectral results of experiments utilizing different isotopic 
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solut i ons of plutonium nitrate was also used [15] . 

A graph giving the isotopic composition of commercial 

plutoniwr. as a function of fuel exposure in a thermal reactor 

was found to be quite useful in estimating what recycle 

f u els may be available in the near future [25]. The United 

States Atomic Energy Commission has published information 

of a typical pressurized water reactor design in WASH- 1082 

[10] . This reference design was used extensively as a model 

reac t or in this study . 

Helpful information for calculating fuel cycle costs 

was found in several sources [9,10,12,13,19,20,22,26] . Re-

cent cost estimates for different components of the nuclear 

f uel c y cle were taken from The Nuclear Industry 1971 [26] . 

In addition to references giving information on basic 

cor e physics and fuel cycle costs, it was basic to this study 

to review literature specifically concerned with the physics 
f 

and e c onomic aspects of using plutonium in thermal reactors . 

Dawson has given an excellent paper concerned with in-core 

physics [22] . Nuclear Technology has devoted an entire 

issue to plutonium recyc le problems of current interest [18]. 

Other important papers and articles were concerned with the 

fabr i c a tion penalty, supply and demand of plutonium , the 

value of plutonium as a thermal reactor fuel, and philoso-

phies of private enterprise toward plutonium recycle [7 , 14 , 

16 , 17 , 21 , 24]. 
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ECONOMIC ANALYSIS O~ TIIE PLUTONIUM RECYCLE FUEL CYCLE 

An economic study of plutonium recycle in a thermal 

reactor involves summing the cost components of the nuclear 

fuel cycle for the reactor, applying a technique to deter-

mine the interest charges for the use of capital during the 

fuel cycle time period, and conducting a physics study to 

determine the buildup of important isotopes in the reactor 

as well as to assure criticality of the reactor for the de-

sired time period . 

The Plutonium Recycle Fuel Cycle for a Thermal Reactor 

The basic components of the nuclear fuel cycle with 

plutonium recycle in a thermal reactor are illustrated in 

the flow diagram in Figure 1 . In the present discussion 

interest charges for the use of capital will be ignored . 

Purchase of U30e and Recycle Fuels 

The starting point of the nuclear fuel cycle is to 

purchase U30e obtained from uranium bearing ores , and/or 

recycle fuels . The mass of U3 0 8 which must be purchased is 

dependent on the feed supply required during the enrichment 

process , the magnitude of material losses in the conversion 

and fabrication processes, and the extent of recycle . The 

market price of U3 0 8 depends on the supply and demand . In 

1971 the supply exceeded the demand, and the market price 

was a little less than $7 per pound [26]. Future projections 

indicate that this price will increase moderately [26] . 
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Figure 1. The nuclear recycle fuel cycle 
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The purchase price of recycle uranium will be dependent 

on the cost of producing uranium of an equal enrichment less 

a penalty for the presence of uranium-236, which is a poison 

in the reactor and complicates the enrichment process . How-

ev e r, its presence in a reactor can lead t o the production 

of plutonium- 238, and the cost penalty will depend on the 

market price of this isotope . 

The market price of plutonium will depend upon its 

supp l y and demand as a research and development material , 

#eapon s material, light water reactor fuel, and perhaps in 

the future as a fast breeder reactor fuel. One projection 

state s that plutonium recycle values will likely range from 

$3 to 7/gram of fissile content until 1976 and then increase 

to a r ange of $7 to 9/gram in the early 1980's [14] . This 

will depend on the length of time before the fast breeder 

r eac t or is commercially accep t ed . 

I n deter mining the v~lue of plutonium as a thermal 

reactor f uel a penalty for the presence o f plutonium- 242 and 

higher costs of fabrication may be applied . The AEC has pub-

lished an expression for the plutonium value as [10]: 

where 

Plutonium Value ($/gm fissile)=gU 93 (1-0.6P 42 )(1- W6F ) (1) 

P 42 = grams of plutonium-242 per gram o f fissile material 

Ug 3 = value o f uranium enriched to 93 per cent 

W6F = the fabrication "discount fact or " 

The value of g for light wa ter reactors is given as 0 . 8 to 1 . 0 . 
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Another study considered the value of plutonium as 

equal to the sum of the value of each individual isotope 

present [24]. For the recycle cases investigated it was 

found that the approximate value of plutonium could be 

represented by this method as: 

Plutonium value ($/Kg) = 10657 •f49 + 2619 •f40 + 

lll60 •f41 - 10486•f42 (2) 

where f 1 is the fraction of the 1th isotope in the mixture. 

It may be observed that agaiP there is a penalty for the 

presence of plutonium-242. A similar penalty does not occur 

for plutonium-240 since neutron capture in this isotope 

produces fissile plutonium-241. 

Conversion of U3 0a to UF& 

The enrichment of uranium-235 by the gaseous diffusion 

process , whereby gases having different molecular weights 

diffuse through a porous barrier at different rates, neces-

sitates that the U3 0 8 be converted to UF 6 • In this study the 

cost of conversion will also inc lude sampling of the ore 

concentrate and transportation costs . During the chemical 

processes of converting the ore to UF 6 there are some losses 

of material. The cost of these losses are included as extra 

mass of U3 0 8 which must be purchased. 

At the present time the United States commercial capa-

bility to convert ore concentrates of UF 6 consists of two 

plants. The base charge for c o nverting ore concentrates to 
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UF 6 runs very close to $1.25 per pound of uranium [26]. 

Enrichment of Uranium- 235 

The enrichment of uranium-235 is presently available 

only from the AEC through toll enrichment in gaseous dif fu-

sion plants. A derivation for the total flow rate in an 

ideal cascade gaseous diffusion plant is given in Reference 

[2]. It is found to be the product of a factor indicating 

the relative ease or difficulty of the separation , and a 

factor which is proportional to the throughput denoted as 

the separative duty, and written as: 

S = W·~(x ) + P·~(x ) - F·~(xf) w p 

where 

F,P,W = mass of feed, product, and waste material, 

respectively 

xf ,xp,xw = atom fraction of uranium-235 in the feed, 

product, and waste material, respectively 

and ~(x) is the separation potential given by : 

~(x) = (2x-l)•ln[x/(l-x)] 

(3) 

In a gaseous diffusion plant built as an ideal cascade 

of stages, the total flow rate, the total pump capacity, the 

total power demand, and the total barrier area are all pro-

portional to the separative duty, and hence the separation. 

The total charge of enriched material is then: 

CE = F•CF + S·Cs (4) 
where 

F = mass of feed material 
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CF = cost of the feed material 

S = separative work (duty) 

c8 = cost of enrichment per separative work unit 

As the tails atom fraction approaches the feed atom 

fraction, the cost of the feed increases. As the tails atom 

fraction approaches zero, the separative cost increases. 

There exists, therefore, a tails composition that will give 

a minimum cost, found by setting: 

Hence, by specifying the tails composition, a utility 

should be able to obtain the minimum enrichment costs. In 

(5) 

practice, however, the AEC specifies the tails composition 

and supplies the customer with an amount of enriched product 

and waste equal to the amount supplied. 

The diffusion plants operate at a tails assay of 0.003, 

but the AEC charges the customer for enriching services as 

if the plants operated at a 0.002 tails assay [16 ,20]. The 

difference in the amount of feed required is drawn from the 

AEC stockpile of 50,000 tons of natural uranium. The pur-

pose is to delay the construction of a new diffusion plant 

and to prevent the flooding of the uranium market with sur-

plus uranium. 

Fabrication of the Fuel Elements 

Fabrication costs include the costs of hardware, pel-

letizing, shaping, and machining of the fuel material, the 
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fuel cladding material, assembly of the fuel elements, and 

quality control costs. Fabrication costs for uranium-plu-

tonium mixed oxide fuels are expected to be greater than 

uranium oxide fuel fabrication costs. This is because 

special precautions must be taken during plutonium fabrica -

tion and handling due to its toxic and radioactive charac-

teristics. Also small diameter fuel rods may be necessary 

since the optimum water-to-fuel ratio of plutonium is higher 

than for uranium. 

It is expected that the fabrication of mixed oxide fuels 

will be 20 to 100 percent higher than uranium oxide fuels. 

The AEC gives an estimate of the fabrication costs of 

uranium oxide fuels for 1971 as $70/KGU [26 ]. 

During the fabrication process there will be some loss 

of material and some excess material. The cost of losses 

is included in the extra mass of fuel that need be purchased 

and enriched. 

Credit for Excess Material 

The excess material from fabrication is credited to the 

customer. The amount of this credit will depend upon the 

isotopic composition of the fuel. 

Operation and Cooling 

During the operation of the reactor, the fuel is 

depreciated as fissile material is used to generate elec-

tric1 ty. There are a number of methods which may be used 

to calculate the depreciation of the fuel. In addition, 



interest charges may accumulate during this time. These are 

discussed later. 

Transport of Spent Fuel 

Transportation of the spent fuel is a significant cost 

since special casks and transportation arrangements are 

necessary to contain, shield, and cool the radioactive 

material. Transport costs are about $5/KGH discharged [26]. 

Reprocessing of the Spent Fuel 

Reprocessing of the nuclear fuel elements includes 

removal of the cladding material, separation of the fission 

products from uranium and plutonium, and reconversion of the 

uranium to UF 6 • The AEC gives an estimate of the reproc-

essing costs in 1971 as $35/KGH discharged [26] . 

Credit for Discharged Uranium and Plutonium 

The credit for discharged uranium is calculated as the 

value of producing uranium of equal enrichment for fabrica-

tion, less a penalty for the presence of uranium-236 . The 

poison cost penalty of uranium-236 has been estimated to be 

$1/gm of uranium-236 in the fuel and the enrichment penalty 

is discussed in Reference [10]. 

The Present Worth Technique and Levelized Fuel Cycle 

Cost Equation 

The entire nuclear fuel cycle requires expenditures 

and receipts over a period of approximately five years. It 

is important to consider, therefore, the alteration of the 
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value of money as it is exchanged between the utility, 

customers, and creditors during the fuel cycle time period. 

The present value of money is always greater than an iden-

tical amount in the future, because the money may earn a 

rate of return while invested elsewhere during the interim. 

A common method used to take into account the changing 

worth of money is the present worth technique, which refers 

the different expenditures and receipts to one point in 

time by adjusting them to reflect the potential effective 

earning power during the interim periods. 

The levelized fuel cycle cost is that constant charge 

during the fuel cycle time period necessary to the consumer 

to meet all expenses associated with the fuel cycle. It is 

obtained by requiring that the indebtedness for fuel cycle 

investments be reduced to zero at the end of the fuel cycle 

time period. The levelized fuel cycle cost equation gener-

alized for continuous discounting as used in this study is[22J 

where 

[ .li!!U_ 
1-T ( 6) 

c -

I(m) =investments during the mth month(mills/month-kg) 

Fd(m) =depreciation during the mth month(mills/month-kg) 

Q(m) s quantity of electricity generated (Kwh(e)/ 
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Kg-month) 

T = income tax rate 

r' • effective rate of return 

n • length of the fuel cycle (months) 

In-core Physics 

In conducting an economic study of a reactor fuel cycle 

it is necessary to calculate the isotopic composition of the 

reactor fuel discharged and to assure that the reactor is 

critical. In this study a zero-dimensional modified one 

group model was used. 

It has been noted by Dawson that the Maxwellian flux 

approximation is inadequate for plutonium-uranium-water 

lattices [3]. This is because there are large resonances 

in the low eV region for plutonium 239, 240, and 241. The 

energy dependent flux depends on the location and width of 

these resonances, and on the concentration of the individual 

isotopes of plutonium. Two models which have been used to 

describe the energy dependent flux are the Wigner-Wilkins 

model and the Nelkin model. The Nelkin model is a water 

kernel model and more accurately approximates the scattering 

properties of water than the Wigner-Wilkins model. 

In this study the buildup of isotopes in the reactor 

were found by obtaining solutions to a set of coupled, 

differential equations similar to those presented in Refer-

ence [2]. The depletion and buildup of various isotopes 
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were calculated as the summation of the products of the 

appropriate spectrum averaged cross sections and the thermal 

flux. Resonance capture in uranium-238 and plutonium-240 

was considered by summing the total number of fast neutrons 

produced in a generation and multiplying by the r espective 

resonance escape probability. In the equations it is 

assumed that resonance capture in uranium-238 occurs at 

higher energies than that in plutonium-240 . The resonance 

escape probability for plutonium-240 was calculated from 

experimental values of the resonance integral for various 

concentrations of this isotope [3]. This is necessary 

since self-shielding occurs as plutonium-240 builds up in 

the reactor. The differential equations used for the 

concentration of the isotopes in this study are the 

following: 

Uranium-235 

~= dt 

Uranium-236 

~ dt = 

Uranium-238 

dN2 e 
~= 

(7) 

( 8) 

(9) 
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Plutonium-239 

Plutonium-240 

Plutonium-241 

Plutonium-242 

Fission Product Pairs 

where 

Ni = atom density of the 1th isotope 

cr = average microscopic absorption cross section of ai 
the ith isotope 

(12) 

(13) 

(14) 

cr = average microscopic capture cross section of the yi 
ith isotope 
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afi • average microscopic fission cross section of 

the 1th isotope 

n a = average product of the microscopic absorption 1 ai 
cross section and the number of neutrons 

produced per neutron absorbed in the fuel 

~ • thermal flux 
T 

€ = fast fission factor 

P 1 • fast nonleakage probability 

p2e = resonance escape probability for uranium-238 

P~o = resonance escape probability for plutonium-240 
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PROCEDURE 

A parametric investigation of the levelized fuel cycle 

costs was conducted using the algorithm shown in Figure 2 

for a model pressurized water reactor whose characteristics 

were tabulated in Reference [10]. 

Input 
Data 

Calculate 
Energy 
Dependent 
Flux 

Calculate 
Reaction 
Rates 

•, 

!Fuel 
Depletion 
Calculation 

Calculate 
Fuel 
Cycle 
Costs 

Figure 2. Algorithm of the basic procedure used in 
calculating the fuel cycle costs 

The parameters which were varied in this study were the 

fabrication penalty for plutonium, the price for fissile plu-

tonium and uranium, the atom percent of uranium-235 in the 

fuel, the atom percent of plutonium in the fuel, and the 
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isotopic composition of the plutonium. 

In determining the reaction rates, it was necessary to 

determine the energy dependent flux. In generating a neu-

tron spectrum a graph giving spectra for zero, one, and two 

percent plutonium in the reactor fuel from the computer code 

PANTHER [4] was used. The PANTHER code uses a Nelkin kernel 

to calculate the energy dependent flux and has been correlated 

with experimental results from the Hanford and Saxton reac-

tors. It is illustrated in Figure 3 that the energy dependent 

flux approximates a hardened Maxwellian distribution when no 

plutonium is present in the reactor fuel. A set of ratios, 

defined as the energy dependent flux when one percent of the 

reactor fuel is plutonium to the energy dependent flux when 

no plutonium is present in the reactor fuel, for 100 energy 

groups was determined from the graph. A second set of 

ratios, defined as the energy dependent flux when two per-

cent of the reactor fuel is plutonium to the energy depen-

dent flux when no plutonium is present in the reactor fuel, 

was also determined from the graph for 100 energy groups. 

Hence to calculate the energy dependent flux, a hardened 

Maxwellian flux distribution was generated such as would be 

expected for the model reactor design if there were no plu-

tonium in the reactor fuel, and each element of this flux 

distribution was multiplied by the appropriate ratio from 

the first or second set as defined above to give the energy 

dependent flux when one or two percent of the reactor fuel 
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was plutonium, respectively. When the concentration was 

other than one or two percent of the reactor fuel, the ratios 

were determined by extrapolating or interpolating from the 

two previously defined sets assuming a linear relationship. 

An example of this procedure is shown in Figure 3. If 

it is desired to know the flux at energy Ei when 1.5 percent 

t 
Ecf>(E) 

Ratiol(Ei)=<t>1(Ei)/cf> 0 (Ei) 
Ratio2 E = 

E~ 

Figure 3. The energy dependent flux for different con-
centrations of plutonium in the reactor fuel 
(illustrative example) 

of the reactor fuel is plutonium, a hardened Maxwellian flux 

distribution typical of when no plutonium is present is cal-

culated at Ei, 4> 0 (Ei)' which in turn is multiplied by an 

appropriate interpolated ratio: 

cf>1(E~) + [i~~~i~ - t!~~;~(l.5-1.0) 
<t>i , s(Ei) • cf>o(Ei) $o(Ei) (2.0-1.0) (l5) 

or 
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+ ~atio2(Ei) - Ratiol(Ei~ 
(1.5-1.0) (16) 

(2.0-1.0) 

In addition to forming a set of ratios to indicate how 

certain concentrations of plutonium might modify the energy 

dependent flux, graphs giving spectra for different compo-

sitions of plutonium were used to consider the effect of 

plutonium-240 on the flux U5]. This isotope is important 

because of its large capture resonance at 1.056 eV. A set 

of ratios, defined as the energy dependent flux when five 

percent of the plutonium was plutonium-240 to the energy 

dependent flux when twenty-three percent of the plutonium 

was plutonium-240, was determined from the graphs for 100 

energy groups. By multiplying each element of the energy 

dependent flux distribution calculated for a given pluto-

nium concentration, with an assumed plutonium-240 concen-

tration of five percent, by the inverse of the appropriate 

ratio, the energy dependent flux distribution for the same 

concentration of plutonium in the reactor fuel, but with a 

plutonium composition of twenty-three percent plutonium-240, 

was obtained. The appropriate ratios f or plutonium with 

compositions differing from twenty-three percent pluto-

nium-240 were obtained by noting that each element of the ratio 
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set should be unity when the plutonium composition is five 

percent plutonium-240, and extrapolating or interpolating 

from these two compositions assuming a linear relationship. 

Since the plutonium compositions used in defining the 

first two sets of ratios had seven and seventeen percent 

plutonium- 240, respectively, it was necessary to apply a 

correction factor to each ratio so that it corresponded to 

a plutonium composition with five percent. plutonium-240. 

This was done by using the set of ratios discussed in the 

above paragraph. 

Figure 4 illustrates the procedure to correct the flux 

for the presence of plutonium-240. Again consider the ex-

Ei4> s(Ei) 
Ei4>2 ~Ei) 

ii 
11 
1~3% Plutonium-240 

II Ratio3 (Ei) = 4> (Ei )/ 4> (Ei) 
11 s 2 3 

E ... 

Figure 4. The energy dependent flux for different com-
positions of plutonium in equal concentra-
tions in the reactor fuel (illustrative example) 
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ample when the concentration of plutonium in the reactor 

fuel is 1.5 percent. Assume also that the composition of 

the plutonium includes 15.0 percent plutonium-240. But 

~ 1 • 5 (Ei) was calculated assuming that the composition of 

the plutonium included 5.0 percent plutonium-240. The flux 

corresponding to a plutonium composition of 15.0 percent 

plutonium-240 is found by multiplying ~ 1 • 5 (Ei) by an appro-

priate interpolated ratio: 
1 

(17) 

or -1 

1 + (Ratio3(Ei) - 1) ) (15.0-5.0 
(23.0-5.0) 

(18) 

Once the energy dependent flux was obtained, the reac-

tion rates needed for equations (7) to (14) were computed by 

numerical integration using Simpson's rule. In this study 

the thermal energy group consisted of the energy range ~ to 

0.5 eV. It was concluded by calculations using 10, 25, 50, 

and 100 energy groups of equal widths in the thermal region 

that 100 groups were necessary to accurately consider the 

depression of the flux in the region where plutonium-239 

and -241 have low energy absorption resonances. Cross sec-

tion data came from References [6] and [8], and doppler 
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broadening effects were consider ed by the use of the expres-

sions given in Lamarsh [ll]and Beckurts and Wirtz [l] . The 

neutron temperature was determined by the use of a graph in 

Lamarsh [11] giving the neutron temperature as a function of 

the moderator temperature and the amount of absorption per 

hydrogen atom. Expressions and data presented in the text 

by Glasstone and Sesonske [5] were used to calculate the 

resonance escape probability for uranium-238, the fast fis-

sion factor, and the fast nonleakage probability. 

To determine the change in reaction rates with time in 

the reac tor, the following expression for constant generation 

of power was used: 

where 

f q(E,t)Ef (E,t )HE, t)dE = 

ET 

[, &y (E,O)Ef (E ,O )~(E ,O)dE 
ET 

y(E,t) ,. recoverable energy 
Q. 

I:f(E,t) = microscopic fission cross section 

4>(E,t) = energy-time dependent flux 

ET = thermal energy group 

e: = fast fission factor 

Since the ener gy dependent flux was determined as: 

4>(E,t) = 4> o(t)f(E) 

(19) 

where f (E) represents the ratios used to modify the hardened 

Maxwellian and 4> 0 is the 2200 m/ s flux, one can write: 

(20) 



where 

Then 

n = 

25 

€ J y ( E, 0) 1: ( E, 0) cp ( E, 0) dE 
E f 

<~ y(E,t)Ef(E,t)~(E,O)dE 
T 

Further, the recoverable energy is not strongly energy or 

time dependent and, 

rf(E,t) = LNi(t)afi(E) 

i 

Hence, 

LN1(t) 
i 

where Ni(t) is the atom concentration of the ith fissile 

isotope present in the fuel at time t. 

(21) 

(22) 

The depletion calculations were performed by solving 

equations (7) through (14) on the analog computer because of 

its speed and economy in solving a problem consisting of 

coupled differential equations. The factor n was computed 

using a division circuit and multiplied into the output of 

those potentiometers representing reaction rates. The reso-

nance escape probability for plutonium-240 was calculated 
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from experimentally determined effective resonance integrals 

given by Dawson [3] for varying concentrations of this iso-

tope, and programmed on the analog computer by using a vari-

able diode function generator. The flux was normalized by 

properly choosing the ratio of the computer time to real prob-

lem time used in scaling the equations. A neutron balance as 

given by a one group approximation was also programmed into 

the circuit to aid in interpreting the relative reactivities 

of the fuel combinations used. The depletion calculations 

were recorded for several combinations of initial fuel load-

ings and burnups of 20,000, 30,000, and 40,000 Mwd/MTU. 

The fuel cycle costs were then calculated using the 

levelized fuel cycle cost equation with straight line depre-

ciation. The fabrication penalty was taken as 30, 60, and 

90 percent for recycling plutonium. The prices of plutonium 

ranged from $3 to 18/gram-fissile, while that of uranium was 

chosen as $8 to 12/pound of U3 0 8 • Other input parameters 

were chosen as shown in Table 1. 
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Table 1. Fuel cycle cost input parameters 

Begin* End 
Payment Payment 

Item Rate (Months) (Months) 

Purchase of Fuels $8-12/lb UsOa 
$3-18/gm Pu fissile 0 0 

Conversiont $1.25/lb UsOa 0 3 

Enrichment $32/ swu 6 6 

Fabricationt $70/KGU 3 13 

Credit for Excess 13 13 

Depreciation of Fuel 14 51.5 

Cooling of Fuel 51.5 57.5 

Transport of Fuel $ 5/KGH 57 . 5 57.5 

Reprocessingt $35/KGH 57.5 59,5 

Credit for Excess 59.5 59.5 

Income Tax Rate . 5 

Effective Rate of Return .07 

* Burnup = 30,000 Mwd/ MTU 

t Assumed linear payments 
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RESULTS 

The results of this study are presented as a series of 

graphs of the levelized fuel cycle cost as a function of the 

market price of plutonium. From these graphs it is easy to 

determine the price of plutonium at which it would be econom-

ical to recycle the given plutonium-uranium fuel combination . 

The notation used on the graphs for the various isotopic 

combinations of plutonium is given in Table 2. The broken 

line represents the levelized fuel cycle costs for uranium as 

the fuel with an enrichment of 3,3 percent uranium-235. 

Other important information is given on the graphs. 

To properly draw conclusions from the graphs concerning 

the value of a given recycle fuel mixture, it is necessary to 

know the relative reactivities at a given burnup of fuel. 

The results of the one-group neutron balance calculations pro-

grammed on the analog are therefore presented in Table 3 for 

burnups of 30,000 Mwd/MTU. It should be mentioned that to 

prevent saturation of amplifiers on the analog, it was neces-

sary to scale down the voltages representing the concentra-

tions of various isotopes in the reactor. Hence the precision 

of this calculation may be less than that of the depletion 

calculations. 

Figures 5 through 10 illustrate the levelized fuel cycle 

costs for fuel mixtures containing different concentrations 

of plutonium replacing the uranium-235, Except for small 



Table 2. Isotopic compositions of the plutonium selected for this study 

Approximate 
fuel burnup 

Atom Atom Atom Atom to produce 
Percent Percent Percent Percent this Pu com-
Pu-239 Pu-24a Pu-241 Pu-242 bination 

Designation in the Pu in the Pu in the Pu in the Pu (Mwd/MTU) 

. .) 

_... 

A 8a.a 15.a 5.a a.a 9aaa 

B 65.a 23.a la.5 1 . 5 23aaa 

c 55.a 27 . a 13.a 5.a 325aa 

D 4a.a 34.a 17.5 8 . 5 >325aa 

E 2a .a 3a . a 35.a 15.a >32500 
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Table 3. Neutron balance of the various fuel mixtures 
studied at 30,000 Mwd/MTU 

Atom Percent Atom Percent Isotopic Neutron 
Plutonium Uranium-235 Composition Balance 
in the Fuel in the Fuel of Plutonium (x constant) 

o.o 3,3 (Reference) 31 

0.5 2.8 A 76 
B 65 
c 62 
D 50 
E 33 

1.0 2.3 A 87 
B 71 
c 65 
D 46 
E 25 

1.0 2.6 A 101 
B 85 
c 79 
D 61 
E 39 

1.5 1.8 A 99 
B 80 
c 66 
D 46 
E 21 

2.0 1.3 A 97 
B 77 c 62 
D 15 
E 40 

2.0 1.6 A 106 
B 86 
c 71 
D 49 
E 24 
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Table 3. (Continued) 

Atom Percent Atom Percent Isotopic Neutron 
Plutonium Uranium-23 5 Composition Balance 
in the Fuel in the Fuel of Plutonium ( x constant) 

2.5 o.8 A 83 
B 65 
c 52 
D 34 
E 11 

3 . 0 0.3 A 61 
B 48 
c 39 
D 24 
E 7 

3.0 o.6 A 66 
B 52 
c 42 
D 28 
E 11 

concentrations of plutonium, recycle fuels from discharged 

fuel that had a long burnup appear more economical for a 

constant concentration of uranium . The major contribution 

to reduced fuel cycle costs for these plutonium mixtures was 

the reduction in the purchase investment, since the pluto-

nium price was determined by the fissile content . However, 

from Table 3 it should be noted that the reactivity at dis-

charge was also less for these fuels. Hence the total 

energy available from these fuels is sometimes less than the 

reference uranium fuel cycle considered. 

The g raphs also show that the slopes of the cost curves 
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change with plutonium concentration. This is better illus-

trated in Figures 11 and 12 where the plutonium composition 

is constant, while the concentration is varied. As the con-

centration of plutonium increases, the reactivity at dis-

charge as given in Table 3 decreases. Hence these figures 

indicate a mixture of 0.8 percent uranium-235 and 2.5 

percent plutonium in the fuel will be the most economical 

as the price of plutonium falls to a value permitting recycle. 

A further decrease in the price, however, may result in a 

mixture of plutonium and depleted uranium as the most econom-

ical. 

Figures 13 through 18 give the levelized fuel cycle 

costs for fabrication penalties of 30 and 90 percent. It 

may be concluded from these figures that fuel costs with 

small amounts of plutonium are more greatly affected by the 

fabrication penalty and may be entirely uneconomical. 

Figures 19 through 21 illustrate the fuel cycle costs 

for a greater replacement of plutonium per uranium atom in 

the fuel, a possibility for actual recycle. The fuel cycle 

costs are greater, but the reactivity at discharge is also 

greater. 

The results for a price of uranium of $12/lb. U3 0 8 are 

illustrated in Figures 22 through 24. Figures 25 through 27 

illustrate how the fuel cycle costs depend on burnup. 

To determine the value of a given plutonium composition, 

it is necessary to set the uranium enrichment in the fuel 
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Figure 12. Levelized fuel cycle cost a s a function of 
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mixture to a value that give~ the same reactivity at dis-

charge for all fuel mixtures. The potentiometer on the 

analog computer representing the uranium enrichment was 

adjusted to give equal reactivities at discharge. In Figure 

28 the reactivity of the fuel at 30,000 Mwd/MTU was equal to 

the reference uranium fuel reactivity at 30,000 Mwd/MTU. It 

should be noted that the uranium enrichment for fuel com-

binations B and C was less than 0.4 atom percent. The 

differences in the levelized fuel cycle costs were greater 

when a higher discharge reactivity was chosen, giving a 

higher initial uranium enrichment. Figure 29 illustrates 

the levelized fuel cycle costs for a higher reactivity at 

discharge. The results indicate that recycle fuels from 

discharged fuel of low burnup have the highest recycle value. 
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Plutonium Concentr ion = 2.0% 
Uranium Price = /lb . U3 0 8 
Burnup = 30,0 Mwd/MTU 
Fabricatio enalty = 60% 
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Figure 29. Levelized fuel cycle cost as a function of 
the plutonium market price and the plutonium 
composition 
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SUMMARY AND CONCLUSIONS 

The levelized fuel cycle costs have been calculated for 

a number of different plutonium recycle fuel combinations , 

burnups, and fabrication penalties . A non-dimensional modi -

fied one group model was used to do the depletion calculations. 

Some conclusions drawn from this study are as follows: 

(1) As the market price of plutonium falls enough to encour-

age plutonium recycle, fuel mixtures of plutonium and 

uranium with a uranium-235 enrichment near that of nat -

urally occurring uranium will be the most attractive fuel 

economically. 

(2) If the market price of plutonium continues to fall , it 

may become more economical to use fuel mixtures con-

sisting of plutonium and depleted uranium from diffu-

sion plant tails. 

(3) The fabrication penalty for plutonium-uranium fuel 

mixtures affects the economics of recycling plutonium 

by the greatest amount when small amounts of plutonium 

are recycled. 

(4) Fabrication penalties in excess of 60 percent will 

prohibit the recycle of plutonium when it makes up 0.5 

percent or less of the total fuel mixture . 

(5) Although one isotopic mixture of plutonium may appear 

more economical than another for a given market price of 

plutonium, as the market price changes, the relative ec -
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onomics of the two isotopic mixtures may also change . 

This may be true for fuel mixtures consisting of 1.5 

percent or less plutonium in the fuel mixture. As the 

amount of plutonium in the fuel mixture approaches 2.0 

percent this no longer appears to occur . 

(6) The reactivities of arbitrarily contrived recycle fuel 

mixtures show large differences at discharge, and need 

to be considered to determine the relative values of 

isotopic mixtures of plutonium . 
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FUTURE STUDIES 

During the course of thi s study possible ideas for 

future studies have developed . Since only a limited number 

of possible fuel mixtures were studied, other fuel mixtures 

which may be of interest could be studied. Another possi-

bility might be to repeat the calculations here using a 

more accurate method for det ermining the f l ux and/or a 

multi-group calculation for de t ermining the depletion and 

buildup of isotopes in the r eactor. 



1. 

2. 

3. 

4 . 

5 . 

6 . 

7 . 
8 . 

10. 

11. 

12 . 

13. 

14 . 

LITERATURE CITED 

K. H. BECKURTS and K. WIRTZ, Neutron Physics , Springer-
Verlag, Berlin (1964). 

M. BENEDICT and T. H. PIGFORD, Nuclear Chemical En,ineer-
i ng , McGraw- Hi ll Book Company, Inc., New York (195 ) . 

F . G. DAWSON , Commercial Plutonium Fuels , CONF- 660308 , 
Nat i onal Bureau of Standards, Springfield, Vir ginia 
(1966). 

J . DEBRUE , A. FABRY, L. LEENDERS , F . MOTTE and H. VAN 
DEN BROECK , in Plutonium as a Thermal Reactor Fue l, pp. 
85- 116, Proceedings · of a Symposium, IAEA , Vienna (Mar ch 
1967) . 

S. GLASSTONE and A. SESONSKE , Nuclear Reactor En~ineer
ing , Van Nostrand Reinhold Company, New York (19 7) . 

M. D. GOLDBERG , S . F. MUCHABGHAB, S. N. PUROHIT , B. A. 
MAGURNO and V. M. MAY, "Neut ron Cross Sections," BNL- 325 , 
Vol. III, 2nd ed. , 2nd supplement, Brookhaven National 
Labor atory (1966) . 

F . HITTMAN and M. RABER, Nuclear News , 11 , 11 , 48 (1968) . 

D. J . HUGHES and R. B. SCHWARTA, "Neutron Cross Sections," 
BNL- 325, 2nd ed . , Brookhaven National Laboratory (1958). 

J. HUGHES and D. HANO, Trans. Am. Nucl . Soc ., 15 , 1 , 48 
(1972) ~ 

JACKSON and MORELAND, "Current Status and Future Techni-
cal and Economic Potential of Light Water Reactors , " 
WASH-1082, Atomic Energy Commission , Washington , D. C. 
(1968). 

J . R. LAMARSH , Introduction to Nuclear Reactor Theor , 
Addison-Wesley Publishing ompany, nc., ew or 66) . 

L. C. MADSEN, Nuclear Fuel Cycle Cost Analysis Using 
Parametric Variation, unpublished M.S . the s is , Iowa 
State University, Ames, Iowa (1966) . 

E . A. MASON, Nuclear News, 14, 2, 35 (1971) . 

R. J. MULLIN, "Plutonium Recycle-Looking Ahead , " paper 
given at the meeting of the Atomic Industr ial Forum , 



15. 

16. 

17. 

18. 

19. 

20. 

21. 

63 

Dallas, Texas. Atomic Industrial Forum, Inc., New York 
(January 1972). 

J. M. NEILL, J. C. YOUNG, C. A. PRESKITT, G. D. TRIMBLE, 
R. C. LLOYD and C. L. BROWN, Nuc. Sci. Eng., i§_, 2, 244 
(1971). 

Nuclear Indus tr~, 19, 2, 18 (1972). 

Nuclear Industr~, 19, 2, 21 (1972). 

Nuclear Technolocs~, 15, 2 , entire issue (1972). 

Nucleonics Week, 12, 48, 3 (1971). 

Nucleonics Week, 13, 10, 1 (1972). 

Nucleonics Week, 13, 15, 8 (1972). 

22. M. W. ROSENTHAL, "A Comparative Evaluation of Advanced 
Converters," ORNL-3686, Oak Ridge National Laboratory 
(1965). 

23. K. K. SETH, and R. H. TABONY, "A Tabulation of the Dop-
pler Integrals ip(x,t) and <t>(x,t)," TID-213044 Division 
of Technical Information Extension, AEC (196 ). 

24. H. SPIERLING, M. BENEDICT, and E. MASON, Trans. Am. Nucl. 
Soc., !,2, 1, 110 (June 1972). 

25. R. E. STANFORD and C. R. MOORE, Commercial Plutonium 
Fuels, CONF-660308, National Bureau of Standards, Spring-
field, Virginia (1966). 

26. U.S. ATOMIC ENERGY COMMISSION, The Nuclear Industry, 
WASH-1174-71, Atomic Energy Commission, Washington, D.C. 
(1971). 



64 

ACKNOWLEDGMENTS 

The author wishes to express his gratitude to Dr. A. F. 

Rohach of the Department of Nuclear Engineering for his 

interest and many helpful suggestions during this study. 

Also, support by the Atomic Energy Commission by the award 

of a special fellowship in nuclear science and engineering 

is gratefully acknowledged. 

The author wishes to express his gratitude to his wife, 

Janis, for her encouragement and help in preparing the 

manuscript. 


