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I. INTRODUCTION

One of the important parameters which is required in fuel
management analysis is the calculation of power distributions within
a reactor. Although power calculations are important, the power
distributions may not need to be as detailed as other parameters in
the design calculations. Therefore, diffusion theory is adapted as
the basis for calculating the flux and the power distributions.

Several techniques have been developed to solve the diffusion
equation [1]. Of these, fine mesh diffusion theory is usually used
for detailed power calculations. Several coarse mesh calculations
have also been developed which are better adapted to the requirements
of fuel management power distribution analysis [1]. The finite element
method is based upon expansion of the flux by polynomials. Nodal
methods are based upon dividing the reactor into a number of large
nodes and assuming the average flux and the outgoing currents at
each surface of the nodal volume are functions of the properties
within the volume and the current entering each node [1].

The purpose of this research is to develop and test a finite
element nodal model that can be used to determine power distributions
in an operating reactor. The technique is based upon polynomial
expansion of the neutron flux within the node. Second, third, and
fourth order polynomials have proven to be adequate depending on the

geometry and the region of the reactor. The model is first



developed using two group diffusion theory, and then an extension
is made to a multigroup analysis.

The interface fluxes and average node neutronic properties are
used to evaluate the polynomial coefficients. Using these coefficients,
one can calculate new fluxes. Since the fluxes are calculated from
the coefficients and the coefficients in turn from the fluxes, the
technique requires an iterative process. As a result, convergence
and stability of the solutions become a problem. However, basic
developmental work on the one dimensional model has shown that these

problems can be handled by appropriate numerical techniques [2].



II. LITERATURE REVIEW

The representation of the flux within a subregion of a core
have been considered extensively as an alternative to the finite
difference solutions of the diffusion equation. The primary
attraction of this method is the accuracy by which the flux is
determined using few mesh points. One of the advantages of using
an alternative to finite difference method was explained by Henry [3].
Spatial mesh points 15 or 20 centimeters apart are too large to be
used as the intervals in the conventional finite difference method
for solving group diffusion equations. Henry explains the problem
further and suggests a way to solve it.

"Thus the numerical problem here is how to take advantage

of the fact that very few (rather than very many) mesh

points are needed to describe the geometry.

A class of approximation procedures called finite-element

methods are particularly well suited for problems of this

type. An essential characteristic of finite-element

methods is the representation of the function to be deter-

mined by a sum of polynomials in its arguments, each poly-~

nomial in the sum being defined over only limited ranges

of the arguments."

The importance of using nodal models in reactor analysis was
well stated by Askew in the summary of a recent international meeting
on nodal methods [4].

"Coarse mesh methods have demonstrated to be a reliable

and useful tool for both reactor designers and operators

in predicting the assembly to assembly variations of
rating for operating reactors. The most advanced models



appear to be capable of doing this with a RMS error of the
order of +2%. There is scope for further refinement in

the modeling of reflectors and shrouds, and in the represen-
tation of variations of burnup within an assembly, especially
at the core edge or following shuffling of edge assemblies.
With improvements of this kind, the models will be capable,
given good nuclear data and lattice calculations, of a pre-
dictive accuracy of the same order as that of the measure-
ments."

Askew. also commented upon the need for pin power models. "It is
important, however, that further data on pin power is obtained, and
that there is still scope for improving the ways in which this is
deduced from the coarse mesh reactor solution."

Similar comments were made by Wagner in the summary of an earlier
conference on static reactor calculations [5].

"With the reactors becoming even larger and requirements

for safety and economy getting more stringent, it is

generally felt that improved and more consistent mathemat-

ical models are needed, that rely less on empirical
fitting.... The primary quantities obtained from coarse
mesh nodal solutions are node average fluxes and power.
Though average reaction rates are also the primary
quantities needed for reactivity balances and depletion
calculations, the fact that spatial detail within nodes
is lost, is certainly a serious drawback of the conven-
tional nodal method."

To date, most of the emphasis have been on the development of
the nodal method or finite element method seperately. The finite
element nodal model which is the subject of this research, resembles

both methods.



III. THEORETICAL DEVELOPMENT OF THE
ONE DIMENSIONAL FINITE ELEMENT NODAL MODEL
FOR THE TWO GROUP NEUTRON DIFFUSION EQUATIONS
In this chapter the development of the one dimensional model is

considered. The technique used in this model is based upon poly-
nomial expansion of the neutron flux within the node. The model is
developed using two group theory as an example and the extension to
a multigroup analysis is then considered.

The multigroup diffusion equation for a given node has the

following form [1]:

Y. 8
= i o B
v.[ng¢g(r)] + zTg¢g(r) x I vzfg,¢g,(r)
g

I=l
G
F E__ .8 (¥ 3-1
L Tt (3-1)
g =1
g 78
where:
@g(r) = Scaler neutron flux per unit volume at position r
for group g.
Dg = Neutron diffusion coefficient for group g.
Erg = Total macroscopic cross section including capture,

fission, and removal by scattering in group g.



Vg = Neutrons per fission times macroscopic fission cross
section in group g-.
z = Macroscopic scattering cross section of neutrons
from group g© to group g.
x. = Fraction of fission neutrons produced in group
8.
A = Eigenvalue of equation (3-1). Physically ) is the
neutron multiplication constant of the reactor.
For one dimensional steady state conditions with only two

neutron groups, the diffusion equation for a given node becomes

d¢
1 1 = "
P12 = FartPpap) ¢y 3 Oy +3E550)) = 0 =3
a%,
P2 07 T Fazb2 T Pppf 70 e

It is assumed that there is no upscattering. The diffusion equations

(3-2) and (3-3) are rewritten for a homogeneous region as the

following:
d2¢l
5 + al¢1 + a2¢2 =0 (3=4)
dx
d2¢2
7 + Byé, + B¢, =0 (3-5)



where:
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The assumed flux profile for the finite element nodal model is
shown in Figure 3-1. A coordinate system is located at the center
of each node. The flux is expanded in this coordinate system for

each node.

A. Second-Order Polynomial
The assumption is that the flux in each node can be expressed
in the form of a second order polynomial. Since only two group
neutrons are used in this chapter, the fluxes in these two groups

are approximated by

¢l(x) = a, + a x + azx2 Group I (3-6)

¢2(x) b0 + blx + bzx2 Group II (3-7)
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Figure 3-1 Assumed flux profile in one dimensional model




Each one of the polynomials in equations (3-6) and (3-7) has three

unknowns namely a a bl’ and b Therefore, six conditions

0’ %1’ 0’ 2"
are needed to find these six unknowns.

The first assumption is that the fluxes at the right and left
of a given node for the two groups are known. Therefore, as it is

shown in Figure 3-1, the following four equations would result from

this assumption

¢21'=¢1(-n)=a0—aln+a2 n2 (3~8)
¢§ =¢,(n) =a;+a nta, n2 (3-9)
Yo g ) s b~ b, BB, (3-10)
b3 = #3() =By = by n+ Dy m -
T 2

65 = 6,(n) = by + b n+b,n (3-11)

Equations (3-8) and (3-9) as well as (3-10) and (3-11) are then

added and subtracted as follows:

= g + a nz (3"'12)

(3=13)
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2%
¢; + ¢2 2 4
5 = by +b,n (3-14)
2
by = ¢,
5 = b1 n (3-15)
The coefficients a5, a5, bO’ and b1 are found using equations (3-12)

through (3-15), respectively.

T §')
b, + ¢
ay = —-]—'--2——-1 - a, n2 (3-16)
j &
. ! (3-17)
1 2n
r 2
b. = w = b 2 (3-18)
0 2 g 1l
o 2
b $2 =% (3-19)
1 27

But a, and b2 are still unknown to completely define the polynomials,
therefore, another condition is needed.

The second derivatives of equations (3-6) and (3-7) are:

d2¢1
5 = 2a2 (3-20)

dx

d2¢2
5 = 2b2 (3-21)



1.

Equations (3-6) and (3-7) as well as (3-20) and (3-21) are then
inserted into equations (3-4) and (3-5). Since the polynomial
solutions are only approximations, the equations are not equal to

zero. Therefore, let

~

+ al (a0 + a

1]

- 2 - iy > 2
2a 1% + a,x ) + o, (b0 + b.x + bzx ) gl(x) (3-22)

2 1

-~

N > 2 ~ “ x
2b, + B + ax+ ax ) + BZ (bo + blx + bzx ) = gz(x) (3-23)

2 1 (&g 1 2

where gl(x) and gz(x) are assumed to be functions of x and are
defined by the left hand side of equations (3-22) and (3-23). Now,

rewrite equations (3-22) and (3-23) as

g, (x) (3-24)

2a2 + fl(x) =

2b2 + fz(x) = gz(x) (3-25)
where

£.00) = a, (a +ax+ o) + . (b + b & bxt)

1 Ty hp T BN Ay Ty T PR T g

f,(x) =8 (; + ; x + ; xz) + B (; + B x + ; xz)

2 1 0 1 2 2 0 1 2

and are known from a previous iterate.

One requires a minimization of the following integrals
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M g
f gl(x)dx (3-26)
=T

N g
f g5 (x)dx (3-27)
=N

The idea behind this condition would be more clear if one looks at
Figure 3-2, which shows a second order fit to the flux (comstant fit
on a second derivative). It is desired to minimize the differences
shown by the dashed area in Figure 3-2 by the integrals in equations
(3-26) and (3-27). The functions gl(x) and gz(x) are squared so that
the area differences are all positive. It is also assumed that

fl(x) and fz(x) are independent of a, and b2’ respectively, for the

2

purpose of the minimization process.
To minimize equations (3-26) and (3-27), one differentiates

them with respect to a, and b2, respectively, and then sets the

results equal to zero. By the use of Leibnitz rule, one has

3 & ) i Bgl(x)
?a_z' gl(x)dx = 2] gl(x) —-0:2—— dx = 0 (3-28)
=1} -n
P n 2 n agz(x)
_ag'z_ gz(x)dx = Zf gz(x) T dx = 0 (3-29)
_n _n 2
28,0 95, ()

o~ and —5p_ are found from equations (3-24) and (3-25)
2 2

Bgl(X)

3&2 2



g(x)

82(x)

Figure 3-2 Spatial neutron balance approximation for a constant fit

€T
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BSZ(X)

=2
3b,

Therefore, equations (3-28) and (3-29) become

n
4 fgl(x)dx =0
-1
n
4f gz(x)dx =0
=M
n
f g, ()dx = 0 (3-30)
-n
n
/ g, (x)dx = 0 (3-31)
=T}

Substituting for gl(x) and gz(x) from equations (3-22) and (3-23)

into equations (3-30) and (3-31), one has the following results

n - 5 = - -
2
./_; [232 + &y (ao + a;x + a,x ) + %, (b0 + blx

+ bx)]dx = 0 (3-32)
n ~ ~ ~ 2) e -
f [21'.:2 + Bl (a0 + a,x + a X + 82 (bg + blx
=T
> 2
+ b2x )]dx = 0 (3-33)

If equations (3-32) and (3-33) are integrated and evaluated between

(n) and (-n), the expressions for a, and b2 can be found
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2
A, AR b o
=3 (ala0 B azbo) 6 (a1a2 + azbz) (3-34)

o
]

2
L e % AL y ¥
2 2 (Bjap + 8,bg) -5~ (8,2, + B,b)) (3=33)

o
0

where the terms on the right hand side are evaluated from a previous
iterate.
In summary, for the two group neutrons using a second order poly-

nomial, the following equations were used

¢l(x) a, : 5 a x + azx2 (3-6)

2
bo + blx + b2x (3-7)

¢2(x)

where the coefficients are found using the following equations

T 2
, + ¢
2
ao = —]-‘_2_—1. - azn (3"16)
2
$] - ¢,
e (3-17)
1 e " n2 N b
3y = =g (9185 + azby) = g (2,3, + ayby) Gl
r L
. Nl T (3-18)
0 2 -
%
¢; -4,
. e (3-19)
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2

T AR | I 3 ”
by 5 (Bjag + B,bg) = (B,a) + B,by) (3-35)

The whole process requires an iterative technique in which al, az,

B., and B, are nuclear data and are known, At the beginning of the

LI b
1° T92 To» aO’ al’ 32, 0’ bl, and b2 are assumed to

be known. New polynomial coefficients are calculated using equations

1’

process, ¢I, [

(3-16) through (3-19), and equations (3-34) through (3-35). New

¢I, ¢i, ¢§, and ¢§ are found using the boundary conditions (see
Figure 3-1). Using the new ¢I, ¢§, ¢;, and ¢; values, a set of new
polynomial coefficients are calculated and the process, is continued

until convergence occurs.

B. Third-Order Polynomial
The extension of the polynomial analysis to third order poly-
nomial is the assumption that the flux in each node can be expressed
in the form of a third order polynomial. Since only two group
neutrons are used in this chapter, the fluxes in these two groups

are approximated by

2 3
¢1(x) a, + a;x + a,x + a,x Group I (3-36)

[

b.+b.x+b x2 + b x3 Group II (3-37)

6, (x) 0" "1 2 3

Each one of the polynomials in equations (3-36) and (3-37) has four

unknowns, namely a b., b., b,, and b,. Therefore,

0* By* Bg» By Dgs Dys Do 3
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eight conditions are needed to find these eight unknowns. As it was
observed in the second-order polynomial, the form of the coefficients
for the two polynomials are similar., Therefore, the coefficients
for the first group would be found here and the coefficients for
the second group could be developed in a similar manner.

The first assumption is that again the fluxes at the right and
left of a given node for the group are known. Therefore, as it is

shown in Figure 3-1, the following equations would result from this

assumption
£ _ _ _ _ 2 3 ¥
¢1 - ¢1( n) ag = a;n + a;n agn (3-38)
. N 2 3
¢, = ¢l(n) =ay+amn+an + a,n (3-39)

Equations (3-38) and (3-39) are added and subtracted and the

coefficients ans and a, are found.

n
2
0+ 9y 2
a0 = - a,n (3-40)
L
"I - 2
a, = o 33n (3-41)

But a, and a, are still unknown, therefore, two other conditions

are needed.

The second derivative of equation (3-36) is
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d2¢

1|
5 2a2 + 633x (3-42)
dx

Equation (3-42) as well as (3-36) and (3-37) are then inserted into
equation (3-4). Again, since the polynomial solution is only an

approximation, the equation is not equal to zero. Therefore, let

~ ~ ~ -~

2 3
2a2 + 6a3x + oy (a0 + a;x + a,x + a3x )

> p . 2 =
+ @, (bo + blx -+ b2x + b3x Y = gl(x) (3-43)

where gl(x) is assumed to be a function of x and is defined by the

left hand side of equation (3-43). Now rewrite equation (3-43) as

2a2 + Ga3x + fl(x) = gl(x) (3-44)

where

~ ~ ~ ~

* 2
1 (ao + a,x + a,x + a,

& 8 v 2
(b0+b1x+bx

x3) + a 2

fl(x) = q 9

s .3
+ b3x )

and again is assumed known from a previous iterate.
One requires a minimization of the following integral with

respect to a, and ag to determine these respective coefficients:

2
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Ly
“/P &1 (x)dx (3-45)

-n

Again, the idea behind this condition would be more clear if omne
looks at Figure 3-3, which shows a third order fit to the flux
(first order fit on a second derivative). It is desired to minimize
the differences shown by the dashed area in Figure 3-3, by the
integral in equation (3-45). The function gl(x) is squared so that
the area differences are all positive. It is also assumed that

fl(x) is independent of both a, and a, for the purpose of the

2 3
minimization process.
To minimize equation (3-45), one differentiates it with respect

to a, and ays respectively, and then sets the results equal to zero.

By the use of Leibnitz rule one has

3 no, n Bgl(x)
raz gl(x)dx = 2f gl(x) aa dx = 0 (3-46)
-n -n 2
5 no, n agl(X)
= gl(x)dx = Zf gl(x) e dx = 0 (3-47)
3~ =n - 3
381(X) 9g, (x)
—— and ——— are found from equation (3-44)
8a2 Ba3
3g; (x)
“9a, 2
%2
98, (x)
— = 6x
oa

3



g(x)

gz(x)

Figure 3-3 Spatial neutron balance approximation for a first order fit

0¢
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Therefore, equations (3-46) and (3-47) become

fngl(x)dx =0 (3-48)
1|
n

f xgl(x)dx =0 (3-49)
=1

Substituting for gl(x) from equation (3-43) into equations (3-48)

and (3-49), one has the following results

n ” w " = " 2
2 3
fn [2:;12 + 6a3x + ay (.-a0 + a,x - a % + a,x ) + a, (bo + blx
-~ 2 -~ 3
+ b2x + b3x )]dx = 0 (3-50)

n P~ &
. ~ = 2 A 3
[n x[2a2 + 633}: - oy (r:l0 -+ alx + azx + a3x ) + oy (b0 + blx

2

|
o

+ bzx - b3x3)]dx = (3-51)
If equations (3-50) and (3-51) are integrated and evaluated between

(n) and (-n), the expressions for a, and a, can be found

2 3
1 - 2y n2 - y

a, = 7 (al aO + a,) bo) ™~ (al a2 + o, b2) (3-52)
1 = "' n2 ™ ™

ag = -3 (@) 3 +a, b)) - 75 (@) a3 +a, by) (3-53)

where the terms on the right hand side are evaluated from a previous

iterate.
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Similar expressions could be found for the coefficients of the
second group by applying the same procedure. If this is done, one

has the following results

r p !
by = 22y 2 (3-54)
r 2
b, = 32—;%3 - byn (3-55)
1 - - ﬂ2 - N
by = = 3 (Bjag *+ Bybg) - o= (B3, + B,yb)) AR
g . @ - W, = -
by = - (Bya; *+ Byb)) - 75 (B35 + Byby) Sl

The iterative process is carried out the same as the one mentioned
for the second order polynomial with the exception that initial

values for ag and b3 should also be specified.

C. Fourth-Order Polynomial
The extension of the polynomial analysis to fourth order poly-
nomial 1s the assumption that the flux in each node can be expressed
in the form of a fourth order polynomial. Since only two group
neutrons are used in this chapter, the fluxes in these two groups

are approximated by

2 3 4
¢1(x) a, + a;x + ax” + a,x + a,x Group I (3-58)

X + b2x2 + b x3 + b xa Group II (3-59)

,(x) = by + b 3 4

1;
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Each one of the polynomials in equations (3-58) and (3-59) has five

b b,. b,, and b

0* "1 2" 3 4°

Therefore, ten conditions are needed to find these ten unknowns.

unknowns, namely aO, al, a5, a3, aA, b

As it was observed in the second-order polynomial, the form of the
coefficients for the two polynomials is similar. Therefore, the
coefficients for the first group would be found here and the
coefficients for the second group could be developed in a similar
manner.

The first assumption is that again the fluxes at the right and
left of a given node for the group are known. Therefore, as it is

shown in Figure 3-1, the following equations would result from this

assumption
) - 2 3 4
®1 ¢1(-n) = ag - amn+an - am +an (3-60)
r _ 2 3 4
N ¢l(n) =ag+tan+an +anm +an (3-61)

Equations (3-60) and (3-61) are added and subtracted and the

coefficients a. and a, are found.

0 1
2
6] + ¢, 2 4
a8y = 5 - a,n -apn (3-62)
)
4’;""1 2
a, = ———= - an (3-63)
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But a,, a and a, are still unknown, Therefore, three other

3’
conditions are needed.

The second derivative of equation (3-58) is

2
dx2 = 232 + 6a3x + lZaax (3-64)

Equation (3-64) as well as (3-58) and (3-59) are then inserted into
equation (3-4). Again, since the polynomial solution is only an

approximation, the equation is not equal to zero. Therefore, let

s > B2 2. F 35 E 4
232 + Ga3x + 1234x + al (a0 + a,x + a,x + a3x + an )

& = s 2 il JNE ity
+ a, (b0 + blx + bzx + b3x + bax ) = gl(x) (3-65)

where gl(x) is assumed to be a function of x and is defined by the

left hand side of equation (3-65). Now rewrite equation (3-65) as

2
Za2 + 633x + 12a4x + fl(x) = gl(x) (3-66)

where

-~ -~ -~ - ~

2 3 4 = = = D
1 (ao + a,x 4 a,X + a4% + a,x ) +a, (b, +b.x+ b.x

fl) = a 2 (bg +byx+b,

e
+ b3x + b4x )
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and again is assumed known from a previous iterate.
One requires a minimization of the following integral with

respect to az, 33, and a, to determine these respective coefficients:

4

n.2
f g, (x)dx (3~67)

b

Again, the idea behind this condition would be more clear if one
looks at Figure 3-4, which shows a fourth order fit to the flux
(second order fit on a second derivative). It is desired to minimize
the differences shown by the dashed area in Figure 3-4, by the
integral in equation (3-67). The function gl(x) is squared so that
the area differences are all positive. It is also assumed that fl(x)
is independent of ay> aq, and a, for the purpose of the minimization
process.

To minimize equation (3-67), one differentiates it with respect
to a

9> A3 and a,, respectively, and then sets the results equal to

4’

zero. By the use of Leibnitz rule one has

5 n o, n agl(x)

) g a=2f g ——ax=o0 (3-68)
2%-n -n 2
s £ 2 agl(x)

e g, (x)dx = 2_[ g (x) —5-——dx =0 (3-69)
37-n
3 f B g, (x)

3ag)., &1 (o - zj:n 8 () —jg—dx = 0 (3-70)
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gz(X)

Figure 3-4 Spatial neutron balance approximation for a second order fit
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g, (x) 9g, (x) 3g, (x)

Baz > 333 , and 334 are found from equation (3-66)

agl(x)

332

381(x)

333

agl(X) = 12x2
da

4

Therefore, equations (3-68) through (3-70) become

n
f gy (0)dx = 0 (3-71)
=N
n
f xg, (x)dx = 0 (3-72)
=N
g
f x’g, (x)dx = 0 (3-73)

-n
Substituting for gl(x) from equation (3-65) into equations (3-71)

through (3-73), one has the following results

" 2 #ooom % 9 & 5 % g
+
U/ﬂ [232 6a3x 4 12a4x + al(a0 + a;x + a,x + a,x + a,x )
-n

5 > & 2 S | T4
- az(bo + blx ER bzx + b3x + b4x Y]dx = 0 (3-74)
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n . -

2 w w2 3 4
-’in x[2a2 + 633x + 1234x + cr.l(a0 + a,;x + a,x + a3x + a3x )
+a (; + B x + g x2 + L x3 + B xa)]dx =0 (3-75)
20 1 2 3 4
3 2 . = 9 ® g = g
-’Cn X [Za2 + 633x +- lZaax + ocl(a0 + a;x + a,x + a,x + a,x )
o (b, + B3+ b5 + 5% + b Ydx = 0 (3-76)
%280 T P1* T By 3 4 S

If equations (3-74) through (3-76) are integrated and evaluated

between (n) and (-n), the expressions for a5y g, and a, can be

3
found.

; g w . . nt - b
By = = E{alao + azbo) g (ala2 + uzbz) - Ta{al 4 + azba)

2
- 2a,n (3-77)

4

1 [ y n2 E y
ay = - E{alal + azbl) - iﬁ(al 3 E % a2b3) (3-78)

1 - 5 n2 - 'y
al. = - -1—2(0.182 + azbz) - ‘1_4(3134 + a2b4) (3-79)

where the terms on the right hand side are evaluated from a previous
iterate.

Similar expressions could be found for the coefficients of the
second group by applying the same procedure. If this is done, one

has the following results
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T L
N T DR N
A 5 o = b, (3-80)
r L
%, = ¢
2 2 2
_ 2 2 _ -81
b, - bn (3-81)
1, " 3 n? - : g b
b, = =3 (Byag + By0y) - g(Bja, + Byby) - 75 (Bja, + Byb,)
o o (3-82)
4
- N .. .
fog = = F (Byay + B8R = T By + Bobod (3-83)
i } N e 5

The iterative process is carried out the same as the one mentioned
for the second order polynomial with the exception that initial

values for ass b 4 and b4 should also be specified.

3* 9
One can show that the coefficients of the fourth order polynomial

can reduce to the coefficients of the second, and third order poly-

4 b3, and b4

set equal to zero and the following equations would result

nomials. For the second order polynomial, a_, a are

3

r ')
. T S
%0 2 9
T L
_ %
al 2n
1, * - W - ~
a, = = 3(0;3; + a,by) - g=(a;a, +a,b))
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¢r & ¢1
. k. T
0 2 a"
. w2 b
1 2n
T
by, = - 3(Bjag + Byby) - g~ (Ba, + B,b,)

which are exactly the same coefficients that were found for the
second order polynomial.

For the third order polynomial, a, and b, are set equal to

4 4
Zero.
r L
htey 2
9 2 Rl
r [}
v w8
1 2n 3N
1 = - n2 - 5
= - = -0 +
a, 2(a1a0 + azbo) z (cutla2 a?_bz)
1 = B n2 5 kg
a, = - g{alal + azbl) =g (ala3 + a2b3)
T L
¢, + ¢
b = .__.-2_-.-.-_-_-_2 — b 2
0 2 AL
r
4y = ¢ 2
bl = 2n - b3n

2
o Xl = e N 2 "
b, 2(B1ag + Bybg) - 5(Bya, + B8,b,)

2
& e BT R AT [N y
b, 6(P13; * Byby) - 75(8 a3 + Byby)
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which are exactly the same coefficients that were found for the third

order polynomial.

D. Interface Condition
The interface condition between two nodes is shown in Figure
3-5. It is required by the continuity of flux at the interface that

T L "
¢i be equal to ¢i+l at any interface.
¢i - ¢i+l (3-83)

L
i+1’

satisfy the following finite difference equations at any interface

Two new parameters, namely w; and ¢ are defined such that they

r
o, - ¥: do
i : N i (3-86)
ei dx
interface
2 2
Yier ~ %41 05
- (3-87)
0. dx
i+l z
interface

where 8 is a distance parameter that is chosen arbitrarily. Also,

%% depends on the order of the polynomial that is being used. The

fourth order polynomial for the first neutron group is written here.
Similar expressions could be written for lower order polynomials by

setting the appropriate higher order coefficients equal to zero.
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Figure 3-5 Assumed flux profiles at the interface
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e = a, + Zazx + 333x + &a4x3 (3-88)
Xx=n, X="

where the coefficients a, through a, in equation (3-88) are the

1 4

coefficients which were evaluated for node 1i.

d¢i+l ! 3
— =a; + ZaZX + 3a3x + Aaqx (3-89)

X= "Nin T4

and the coefficients a, through a

1 in equation (3-89) are the

4
coefficients which were evaluated for node it+l. To find a new
¢; for the next iteration, the continuity of the current for the

finite difference equation is applied at the interface. It is

required that Ji be equal to Jz

i+1 at any iteration.

=J (3-90)

where reference [l] gives an expression for the current
d
J=_D_i i
Tk (3-91)

Substituting equation (3-91) into (3-90), one has

d¢i
i dx

d¢i+l

i i+l dx

=D (3-92)

i+l

and substituting equations (3-86) and (3-87) into (3-92) would

result in the following expression
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e r L L
¢, =¥ V.,. ¢
D, E 8 )= Dy (_EigLE__itl) -84
i i+1

solving for ¢; from equation (3-93) one has
L4

L]

r
T _ Diwi + Di+l
. B Py

¢

where wi and wi+l are found from the previous iteration by using
equations (3-86) and (3-87). Because of the continuity of flux

at the interface (equation 3-85), equation (3-94) is also used to

L
calculate ¢i+1'
¥ 2
oF = ob = l10i T PanVin 053
i i+l Di + Di+l

E. Boundary Conditions
The boundary condition is shown in Figure 3-6. For the boundary

node i, the homogenous boundary condition

r
d¢i ”
D; = -9, NoriR2
boundary X boundary
can be used to find ¢;
r
I B (3-97)
i T dx
x=T1;
i
do*

The value of HE%-for the fourth order polynomial is



¢i(X)

Boundary

Figure 3-6 Assumed flux profile at the boundary
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dé
i 2 4
A = al + 2a2x -+ 3a3x + 434x
x=n, x=n

(3-88)

where the coefficients a, through a, are the coefficients which were
evaluated for node 1i.

If the outer boundary is a free surface, then the vacuum
boundary condition can be used. For this case, T would be expressed
in terms of the transport mean free path, Atr'

=2 D (3-98)
=

where

A= -
tr 3D (3-99)

Therefore, equation (3-98) becomes

T o %_ (3-100)

If the transport correction is taken into account, the vacuum

boundary condition would be

1
T . I s
3(0.7104) (3-101)
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If the outer boundary is not a free surface, then T can be varied
for a given albedo boundary condition (T=0 is a symmetric boundary).
The albedo boundary condition is given by reference [6] as the ratio
between the current out of the reflecting region to the current into
the reflecting region.

J

_ out _ J
a = 2 - (3-102)
in J

The partial currents J , and g are also given in [6]

b "
¢ A dé
+
I = Z.i _ %Ti (3-103)
F r
_ b e’
J 4_1 4 .___.;r .___._d}]{- (3-104)

where xtr is given by equation (3-99). If equations (3-103) and (3-104)
are inserted into equation (3-102), an expression for the albedo

would result

r r
e Wy
4 6 dx

a = (3-105)
i e
fi__ Atr do ;
4 6 dx

Equation (3-105) is rewritten as follows



142 "t 4
3 q)1'.‘ x

i
a4 = T
2 7\r.r d¢i
AR, L A |
3 r dx

L

) is inserted into equation (3-106)

T
d¢
f o g ot e
¢r dx
i
o = g
D d¢i
1-2— —
¢r dx
i

The expression
(3-96) is used

D

e
R

(3-106)

(3-107)

for the homogenous boundary condition, equation

to find an expression for Tt

r

de;

- 4
dx

(3-108)

If equation (3-108) is inserted into equation (3-107), one has

1 -2
o =

The expression

1l 1-a

T= 2T

T 1+ 2

T
T

for T is

)

(3-109)

(3-110)



39

If the transport correction is taken into account, the expression

for 1 18

. 1 (l—a)
T = 300.7104) ‘I+a

F. Convergence

(3-111)

Criterias

The solution technique used for developing a code suited for

the finite element nodal model is

relaxation method is described by

(K) _ =(K) (K-1)
X; X; 7w+ (1-w) X;
where XiK-l) is the present value

value calculated by the numerical

the relaxation method for XiK) is

in the expression given for XiK),

the relaxation method. The
reference [7]
(3-112)
= (K)
of a given node, and Xi is the

method. The value predicted by

the value actually used. Also

"i" denotes the position of the

node, "K'" denotes the iteration number in the iteration process,

and "W" is called the "relaxation

parameter." The parameter '"w

determines the speed of convergence and is chosen to speed convergence.

The relaxation method was applied to the following parameters

i=0,1, 2,3, 4 (3-113)

1. The coefficients of a chosen polynomial.
(K) _ = (K) (K-1)
ai ai w+ (1-w) ai
2. The flux and the interface conditions
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(K) _ =(K) (K=1) n
6.7 =8 W (1-W)e, (3-114)
K
d¢§K) ¢§K) % 3-115)
dx ) k=

where © and Yy were discussed in part D of this chapter,

3, The neutron source

(K-1)

i (3-116)

siK) = §§K) w+ (1-w) S

For one dimensional steady state conditions with only two

neutron groups, the neutron source becomes

I
L (b + Vigp®)y 0V
g =11 s (3-117)
I v,
fd

where the summation is taken over all the nodes.

G. Computer Code and Results

A computer program called ONODE was developed by Rohach [8]
which is a one dimensional two group neutron code. The code has
the capability to be used for second, third, and fourth order poly-
nomials.r A flow chart of the code is given in Figure 3-7. The
ONODE code has been applied to a one dimensional version of the
Benchmark problem [9] using second, third, and fourth order poly-

v

nomials. In the one dimensional model with symmetric boundary

conditions, the fuel loading pattern is shown in Figure 3-8. The
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Figure 3-7 Flow chart of the ONODE code
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cross section data used for the fuel types in Figure 3-8 are given

in Table 3-1, and are taken from the Benchmark problem.

Table 3-1 Benchmark Fuel Parameters

Material Region D1 D2 El+2 zal 232 vzfz
Fuel 1 1 1.5 0.4 0.02 0.01 0.08 0.135
Fuel 2 2 1.5 0.4 0.02 0,01 0.085 0.135
Fuel 2 & 3 1.5 0.4 0.02 0.01 0.13 0.135
Control

Reflector 4 2,0 0.3 0.04 0.0 0.01 0.0

A fine mesh finite difference diffusion theory calculation
(1 cm per mesh point) is used as the reference calculation. Figure
3-9 illustrates the fast and thermal flux distributions calculated
using fine mesh diffusion theory. One can note the large flux dips
in the two control assemblies and the thermal flux peaking in the
reflector. Several results of the ONODE code will be discussed.

The second order polynomial was first used to approximate the
flux distributions. The fast and thermal flux distributions of the
second order polynomial along with the flux distributions of the fine
mesh diffusion theory are shown in Figure 3-10. Two significant

points can be noted in the thermal flux comparison of the code and
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the fine mesh diffusion theory. First, the technique cannot
accurately predict the thermal flux peaking in the reflector. 1In
addition, the second order polynomial is not adequate to predict the
flux in the core node next to the reflector. This former problem
is blamed on the shape of the flux in the reflector. The latter
problem is due to inaccurate prediction of neutron leakage at core-
reflector interface. An attempt was made to resolve these discrep-
ancies by using two nodes per fuel assembly in the outer fuel assembly
and the reflector assembly. Figure 3-11 shows the fast and thermal
flux distributions of the fine mesh diffusion theory and the second
order polynomial using two nodes in the outer two nodes. A thermal
flux comparison in Figure 3-11 shows that the thermal flux shape has
improved only at the outer nodes and not in the core. An attempt
was made at replacing the reflector with a vacuum boundary condition
at the core-reflector interface. Figure 3-12 is a comparison of the
fast and thermal fluxes of the fine mesh diffusion theory and the
second order polynomial without the reflector. It is noted that the
thermal flux shape has improved but not to a degree of satisfaction.
The third order polynomial was then used to approximate the
flux distribution and hopefully resolve some of the problems
encountered with the second order polynomial. The fast and thermal

flux distributions of the third order polynomial along with the
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flux distributions of the fine mesh diffusion theory are shown in
Figure 3-13. By comparing the thermal flux of the code and the fine
mesh diffusion theory, one can observe that the thermal flux peak in
the reflector was better predicted using a third order polynomial.
It should also be noted that although the thermal flux comparison is
quite good at some nodes, the third order polynomial is not adequate
to predict the flux in the core. Since the shape of the thermal flux
at the node next to the reflector is not satisfactory, two nodes per
fuel assembly in the outer fuel assembly and the reflector assembly
was used. Figure 3-14 shows the fast and thermal flux distributions
of the fine mesh diffusion theory and the third order polynomial using
two nodes in the outer two nodes. A thermal flux comparison in
Figure 3-14 shows that not only the thermal flux shape has improved
in the reflector and the node next to it, but also a better flux
agreement is observed. Figure 3-15 is a comparison of the fast and
thermal fluxes of the fine mesh diffusion theory and the third order
polynomial with no reflector. It is observed that very good agreement
between the fluxes exists in Figure 3-15. Therefore, the third order
polynomial may be adequate in the core when there is no reflector.
The fourth order polynomial was then used to approximate the
flux distributions. The fast and thermal flux distributions of the

fourth order polynomial along with the flux distributions of the
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fine mesh theory are shown in Figure 3-16, Excellent agreement is
attained with this order of polynomial. Figure 3-17 shows the fast
and thermal flux distributions of the fine mesh diffusion theory and
the fourth order polynomial using two nodes in the outer two nodes.
A thermal flux comparison in Figure 3-17 shows that the flux shape
in the reflector and the node next to it is better than the one in
Figure 3-16. But it should be noted that extra nodes are not needed
since the flux agreement in Figure 3-16 is very good. Figure 3-18
is a comparison of the fast and thermal fluxes of the fine mesh
diffusion theory and the fourth order polynomial with no reflector.
Again excellent agreement is observed between the fluxes,

Figure 3-19 shows the eigenvalue convergence of the fourth
order polynomial versus the number of iterations. The eigenvalue
oscillates at low iteration numbers but converges as the number of
iterations increases. Benghanam [2] indicates that the interface
relaxation parameter governs the oscillation shown in the eigenvalue
curve (Figure 3-19). Benghanam also indicates that the interface
relaxation parameter should be under-relaxed to prevent the
oscillation at low iteration numbers. Benghanam also found out that
the source relaxation parameter should be over-relaxed in order to
increase the convergence of the system.

One can note the fast and thermal flux comparisons to be quite

good in some nodes and not so accurate in others for the polynomials
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mentioned above. This is due to the normalization process that

was used. Since both the fast and thermal flux distributions are
normalized to the highest point on the fast flux distribution

curve, this flux agreement is seen in some nodes. If other normal-
ization processes are used, flux disagreement would decrease in some
nodes and increase in other's.

Figure 3-20 shows the neutron current is indeed continous
along the core for the fourth order polynomial. The continuity of
the current was used in the interface condition for every iteration
and is an important criteria in calculating the flux at the inter-
faces along the core.

Figures 3-21 and 3-22 show the spatial neutron balance for
the fourth order polynomial using a second order fit. Since the
polynomial is not an exact solution and is only an approximation,
the minimization process which is described by equation (3-67) is
used. The areas between the two curves in both Figure 3-21 and 3-22
are minimized to insure the best fit to the flux using this order

of polynomial.
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Figure 3-20 Current-continuity across the core for a fourth order polynomial
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Figure 3-21 Spatial neutron balance for the thermal group using a fourth order polynomial
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IV. THEORETICAL DEVELOPMENT OF THE ONE DIMENSIONAL
FINITE ELEMENT NODAL MODEL FOR THE MULTI-GROUP
NEUTRON DIFFUSION EQUATIONS

The multigroup diffusion equation has the following form [1]

G
o g*e”_

v.[ngv¢g(r)] - zag¢g(r) s ¢g(r)§£ Es

g =g+l
g~1 ~ . G
g 78 _ = 0 4-1

25 zs ¢g,(r) g vzfg,¢g,(r) (4-1)
g:=l g =1

g #g

where the terms in equation (4-1) were discussed in Chapter 3.

If one assumes that the diffusion coefficient in equation (4-1)

would stay constant for each group over a homogenous region, the

following equation would result
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