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I. INTRODUCTION 

One of the important parameters which is required in fuel 

management analysis is the calculation of power distributions within 

a reactor. Although power calculations are important, the power 

distributions may not need to be as detailed as other parameters in 

the design calculations. Therefore, diffusion theory is adapted as 

the basis for calculating the flux and the power distributions. 

Several techniques have been developed to solve the diffusion 

equation (1). Of these, fine mesh diffusion theory is usually used 

for detailed power calculations. Several coarse mesh calculations 

have also been developed which are better adapted to the requirements 

of fuel management power distribution analysis (1). The finite element 

method is based upon expansion of the flux by polynomials . Nodal 

methods are based upon dividing the reactor into a number of large 

nodes and assuming the average flux and the outgoing currents at 

each surface of the nodal volume are functions of the properties 

within the volume and the current entering each node (1). 

The purpose of this research is to develop and test a finite 

element nodal model that can be used to determine power distributions 

in an oper ating reactor. The technique is based upon polynomial 

expansion of the neutron flux within the node. Second , third, and 

fourth or der polynomials have proven to be adequate depending on the 

geome try and the region of the reactor. The model is first 
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developed using two group diffusion theory, and then an extension 

is made to a multigroup analysis. 

The interface f luxes and average node neutronic properties are 

used to evaluate the polynomial coefficients. Using these coefficients, 

one can calculate new fluxes. Since the fluxes are calculated from 

the coefficients and the coefficients in turn from the fluxes, the 

technique requires an iterative process . As a result, conver gence 

and stability of the solutions become a problem. However, basic 

developmental work on the one dimensional model has shown that these 

problems can be handled by appropriate numerical techniques [2] . 
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II. LITERATURE REVIEW 

The representation of the flux within a subregion of a core 

have been considered extensively as an alternative to the finite 

difference solutions of the diffusion equation. The primary 

attraction of this method is the accuracy by which the flux is 

determined using few mesh points. One of the advantages of using 

an alternative to finite difference method was explained by Henry [3] . 

Spatial mesh points 15 or 20 centimeters apart are too large to be 

used as t he intervals in the conventional finite difference method 

for solving group diffusion equations. Henry explains the problem 

further and suggests a way to solve it . 

"Thus the numerical problem here is how to take advantage 
of the fact that very few (rather than very many) mesh 
points are needed to describe the geometry. 

A class of approximation procedures called finite-element 
methods are particularly well suited for problems of this 
type . An essential characteristic of finite-element 
methods is the representation of the function to be deter-
mined by a sum of polynomials in its arguments, each poly-
nomial in the sum being defined over only limited ranges 
of the arguments." 

The importance of using nodal models in reactor analysis was 

well stated by Askew in the sununary of a recent international meeting 

on nodal methods [4]. 

"Coarse mesh methods have demonstrated to be a reliable 
and useful tool for both reactor designers and operators 
in predicting the assembly to assembly variations of 
rating for operating reactors. The most advanced models 
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appear to be capable of doing this with a RMS error of the 
order of +2%. There is scope for further refinement in 
the modeling of reflectors and shrouds, and in the represen-
tation of variations of burnup within an assembly, especially 
at the core edge or following shuffling of edge assemblies. 
With improvements of this kind, the models will be capable, 
given good nuclear data and lattice calculations, of a pre-
dictive accuracy of the same order as that of the measure-
ments." 

Askew. also commented upon the need for pin power models. "It is 

important, however, that further data on pin power is obtained, and 

that there is still scope for improving the ways in which this is 

deduced from the coarse mesh reactor solution." 

Similar comments were made by Wagner in the summary of an earlier 

conference on static reactor calculations (5). 

"With the reactors becoming even larger and requirements 
for safety and economy getting more stringent, it is 
generally felt that improved and more consistent mathemat-
ical models are needed, that rely less on empirical 
fitting • . .. The pr i mar y quantities obta ined f r om coarse 
mesh nodal solutions are node average fluxes and power. 
Though average reaction rates are also the primary 
quantities needed for reactivity balances and depletion 
calculations, the fact that spatial detail within nodes 
is lost, is certainly a serious drawback of the conven-
tional nodal method." 

To date, most of the emphasis have been on the development of 

the nodal method or finite element method seperately . The finite 

element nodal model which is the subject of this research, resembles 

both methods. 
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III. THEORETICAL DEVELOPMENT OF THE 
ONE DrMENSIONAL FINITE ELEMENT NODAL MODEL 

FOR THE TWO GROUP NEUTRON DIFFUSION EQUATIONS 

In this chapter the development of the one dimensional model is 

considered . The technique used in this model is based upon poly-

nomial expansion of the neutron flux within the node. The model is 

developed using two group theory as an example and the extension to 

a multigroup analysis is then considered . 

The multigroup diffusion equation for a given node has the 

following form [l]: 

- V. [D V¢ (r)] + E ¢ (r) g g Tg g 
G 
I vEf A ... (r) g g 
g"'=l 

G 
+ I. 

g"'=l 
g"'fg 

E ,.4> ,.(r) gg g 

where: 

4> (r) = Scaler neutron flux per unit volume at position r g 

for group g. 

D Neutron diffusion coefficient for group g. g 

E = To t al macroscopic cross section including capture, Tg 
~issiony and removal by scattering in group g . 

(3- 1) 
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VEfg' = Neu t rons per fission times macroscopic fission cross 

section in group g' . 

Egg' = Macroscopic scattering cross section of neutrons 

from group g' to group g. 

Xg = Fraction of fission neutrons produced in group 

g. 

A Eigenvalue of equation (3-1). Physically A is the 

neutron multiplication constant of the reactor. 

For one dimensional steady state conditions with only two 

neutron groups, t he diffusion equation f or a given node becomes 

d24> 
1 

Dl 
1 

(Eal + El+2) •1 0 dx2 - + f (v~fl.l + vEf2•2> = (3- 2) 

d2. 
D2 

2 
Ea2•2 + E1+2•1 0 dx2 - (3- 3) 

It is assumed t hat there is no upscattering. The diffusion equations 

(3- 2) and (3- 3) are rewritten for a homogeneous region as the 

following: 

a2. 1 
+ 0 1•1 + 0 2•2 0 

dx2 (3- 4) 

d2. 
2 

+ B2cj>2 + Blcj>l 
dx2 0 (3-5) 
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where: 

The assumed flux profile for the finite element nodal model is 

s hown in Figure 3-1. A coordinate system is located at the center 

of each node. The flux is expanded in this coordinate system for 

each node . 

A. Second-Order Polynomial 

The assumption is that the flux in each node can be expressed 

in the form of a second order polynomial . Since only two group 

neutrons are used in this chapter, the fluxes in these two groups 

are approximated by 

cpl(x) Group I (3-6) 

Group II (3- 7) 



i-1 

Ai 
x= - 2 = -n 

i 

ll i ----~ 
ll i 

.t 
4> i+l 

x= 2 = n 

Figure 3-1 Assumed flux profile in one dimensional model 

:Hl 
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Each one of the polynomials in equations (3-6) and (3-7) has three 

unknowns namely a0 , a 1 , a 2 , b 0 , h1 , and b2 . Therefore, six conditions 

are needed t o find these six unknowns. 

The first assumpt ion is that the fluxes at the right and left 

of a given node for the two groups are known. Therefore , as it is 

shown in Figure 3-1, the following four equations would result from 

this assumption 

<Pt <P 1 (-n) 
2 

1 a0 - a1 n + a2 n (3-8) 

<Pr <P1 (n) ao + al n + a2 
2 = n 1 (3-9) 

<PR, <Pz (-n) b0 - b1 n + b2 
2 

2 n (3-10) 

<Pr <Pz (n) b0 + b1 n + b2 
2 = n 2 (3-11) 

Equations (3-8) and (3-9) as well as (3-10) and (3-11) are then 

added and subtracted as follows : 

<Pr + <PR, 
2 1 1 

ao + a2 = n 2 (3-12) 

<Pr - <Pt 1 1 
2 a1 n (3-13) 
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<Pr +<Pt 
2 2 2 = bo + b2 2 n (3-14) 

<Pr - <Pt 
2 2 b1 n 2 (3-15) 

The coefficients a 0 , a1 , b0 , and b1 are found using equations (3-12) 

through (3-15), respectively. 

<Pr + <Pt 
2 1 1 (3-16) ao 2 - a2 n 

<P r _ <Pt 
1 1 (3-17) al - 2n 

<Pr + <P t 
2 

bo 
2 2 - b (3-18) 2 2 n 

<Pr - <Pt 
bl 

2 2 (3-19) = 2n 

But a2 and b2 are still unknown t o completely define the polynomials, 

therefore, another condition is needed. 

The second der ivatives of equations (3- 6) and (3-7) are: 

d2cp 
1 2a2 dx2 = (3-20) 

d2cp 
2 

2b2 --= 
dx2 (3- 21) 
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Equations (3-6) and (3-7) as well as (3-20) and (3-21) are then 

inserted into equations (3-4) and (3-5), Since the polynomial 

solutions are only approximations, the equations are not equal to 

zero. Therefore, let 

where g1 (x) and g2 (x) are assumed to be functions of x and are 

defined by the left hand side of equations (3-22) and (3-23). Now, 

rewrite equations (3-22) and (3-23) as 

(3-24) 

(3-25) 

where 

and are known from a previous iterate. 

One requires a minimization of the following integrals 
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Jn 2 
g1 (x)dx (3- 26) 

-n 

J ~;(x)dx (3-27) 

-n 
The idea behind this condition would be more clear if one looks at 

Figure 3-2, which shows a second order fit t o the flux (constant fit 

on a second derivative ) . It is desired to minimize the differences 

shown by the dashed area in Figure 3-2 by the integrals in equations 

(3-26) and (3-27). The functions g1 (x) and g2 (x) are squared so that 

the area differences are all positive . It is also assumed that 

f 1 (x) and f 2 (x) are independent of a2 and b2 , respectively, for the 

purpose of the minimization process. 

To minimize equations (3-26) and (3-27), one differentiates 

them with respect to a 2 and b2 , respectively , and then sets the 

results equal to zero. By the use of Leibnitz rule, one has 

a Jn 2 
n ogl(x) 

Cla2 gl (x)dx 2 f gl (x) dx = 0 (3-28) 
aa2 -n -n 

a Jn 2 
n ag2 (x) 

~ g2 (x)dx 2 f g2(x) ah2 
dx 0 (3- 29) 

2 -n -n 

ogl (x) Clg2(x) 
~~~ and are found from equations (3-24) and (3- 25) aa2 ab2 

2 



g(x) 2 g (x) 

Figure 3-2 Spatial neutron balance approximation for a constant fit 
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:::; 2 

Therefore , equations (3-28) and (3-29) become 

n 
4 f g1 (x)dx = 0 

-n 

4 J ng2 (x)dx 0 
-n 

1 ~1(x)dx=0 -n 
(3-30) 

(3-31) 

Substi t ut ing for g1 (x) and g2 (x) from equations (3- 22) and (3- 23) 

in t o equations (3- 30) and (3-31), one has the following results 

0 (3- 32) 

n - 2 I [2b2 + el (ao + alx + a2X ) + e2 (ho + blx 
-n 

0 (3-33) 

If equations (3- 32) and (3-33) are integrated and evaluated between 

(n ) and (- n), the expressions for a 2 and h2 can be found 
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1 - 2 ... n (qla2 + a2b2) a2 = - 2 (qlaO + a2b0) -6 (3-34) 

1 ... 2 I" .. 
b2 (SlaO + 82b0) 

n 
(81 a2 + 82b2) = -6 2 (3-35) 

where the terms on the right hand side are evaluated from a previous 

iterate. 

In summary, for the two group neutrons using a second order poly-

nomial, the following equations were used 

cpl (x) (3-6) 

(3-7) 

where the coefficients are found using the following equations 

cpr JI, 

1 +cpl 2 (3-16) ao 2 - a2n 

cp r - cp JI, 

= 1 1 (3-17) al 2n 

1 - 2 
n 

(ala2 + a2b2) (3-34) a2 = - 2 (alaO + a2b0) -6 

cp r + cp .e, 
2 

ho 
2 2 h2n (3-18) 2 

cp r - cp JI, 

bl 
2 2 (3-19) = 2n 
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(3-35) 

The whole process requires an iterative technique in which a 1 , a 2 , 

81 , and 8?. are nuclear data and are known. At the beginning of the 
r JI, r JI, 

process, ~l' ~l' ~ 2 , ~ 2 • a0 , a1 , a 2 , b0 , b1 , and b2 are assumed t o 

be known . New polynomial coefficients are calculated using equations 

(3-16) through (3-19), and equations (3-34) through (3-35). New 
r JI, r JI, 

~l' ~l' ~ 2 , and ~2 are found using the boundary conditions (see 

Figure 3-1) . r t r JI, Using the new ~l' ~l' ~2 , and ~ 2 values, a set of new 

polynomial coefficients are calculated and the process, is cont inued 

until convergence occurs. 

B. Third-Orde r Polynomial 

The extension of the polynomial analysis t o third order poly-

nomial is the assumption that the flux in each node can be expressed 

in the form of a third order polynomial. Since only two group 

neutrons are used in this chapter, the fluxes in these two groups 

are approximated by 

Group I (3-36) 

Group II (3-37) 

Each one of the polynomials in equations (3-36) and (3-37) has four 
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eight conditions are needed to find these eight unknowns. As it was 

observed in the second-orde~ polynomial, the form of the coefficients 

for the two polynomials are similar. Therefore, the coefficients 

for the first group would be found here and the coefficients for 

the second group could be developed in a similar manner. 

The first assumption is that again the fluxes at the right and 

left of a given node for the group are known. Therefore, as it is 

shown in Figure 3-1, the following equations would result from this 

assumption 

cp 1 (-n) 

<P 1 (n) 

Equations (3-38) 

coefficients ao, 
cp r + cp ~ 

1 1 
ao 2 

and (3-39) 

and a1 are 

2 a 2n 

2 - a n 3 

(3-38) 

(3- 39) 

are added and subtracted and the 

found. 

(3-40) 

(3-41) 

But a2 and a 3 are still unknown, therefore, two other conditions 

are needed. 

The second derivative of equation (3-36) is 



d2~ 
1 

~~2 = 2a2 + 6a
3

x 
dx 

18 

(3-42) 

Equation (3-42) as well as (3-36) and (3-37) are then inserted into 

equation (3-4). Again, since the polynomial solution is only an 

approximation, the e qua tion is not equal t o zero . Ther efor e , l et 

(3-43) 

where g1 (x) is assumed to be a function of x and is defined by the 

left hand side of equation (3-43). Now rewrite equation (3-43) as 

(3-44) 

where 

and again is assumed known from a previous iterate. 

One requires a minimization of the following integral with 

respect to a 2 and a 3 to determine these respective coefficients: 
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/
n 2 
gl (x)dx (3-45) 

-n 

Again, the idea behind this condition would be more clear if one 

looks at Figure 3-3, which shows a third order fit to the flux 

(first order fit on a second derivative). It is desired to minimize 

the differences shown by the dashed area in Figure 3-3, by the 

integral in equation (3-45). The function g1 (x) is squared so that 

the area differences are all positive. It is also assumed that 

f 1 (x) is independent of both a2 and a3 for the purpose of the 

minimization process. 

To minimize equation (3-45), one differentiates it with respect 

to a2 and a3 , respectively, and then sets the results equal to zero. 

By the use of Leibnitz rule one has 

_a_ ( n 2 n agl(x) 

aa2J - n 
g1 (x)dx 2 / n gl (x) aa2 

dx 0 (3-46) 

a f n 2 
n agl(x) 

-a - g1 (x)dx 2/ g1 (x) aa3 
dx 0 (3-47) 

a3 -n -n 

agl(x) agl (x) 
~~~ and are found from equation (3-44) 

aa2 aa3 

2 

6x 



g(x) 2 g (x ) 

Figure 3-3 Spatial neutron balance approximation for a first order fit 

N 
0 
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Therefore, equations (3-46) and (3-47) become 

n f. g1 (x)dx = 0 
-n 

Jn xg1 (x)dx = 0 
-n 

(3-48) 

(3-49) 

Substituting for g1 (x) from equation (3-43) into equations (3-48) 

and (3- 49), one has the following results 

(3-50) 

(3-51) 

If equations (3-50) and (3-51) are integrated and evaluated between 

(n) and (-n), the expressions for a2 and a3 can be found 

1 2 
(al + a2 bo) n (al + a2 b2) (3-52) a2 -2 ao -6 a2 

1 2 
(al + a2 bl) n (al b3) (3-53) a3 6 al - 10 a3 + a2 

where the terms on the right hand side are evaluated from a previous 

iterate. 



n 

Similar expressions could be found for the coefficients of the 

second group by applying the same procedure. If this is done, one 

has the following results 

4>r + 4> i 
2 

bo 
2 2 b2n (3-54) 2 

<l>r - <l>i 
2 

bl 
2 2 

b3n (3-55) 
2 Tl 

1 2 -
b2 - 2 (t\ao + 82b0) - .!L <e1a2 + 82b2) (3-56) 

6 

1 2 
b3 (8lal 82bl) Tl (8la3 + 82b3) (3-57) 6 + - 10 

The iterative process is carried out the same as the one mentioned 

for the second order polynomial with the exception that initial 

values for a 3 and b3 should also be specified. 

C. Fourth-Order Polynomial 

The extension of the polynomial analysis to fourth order poly-

nomial is the assumption that the flux in each node can be expressed 

in the form of a fourth order polynomial. Since only two group 

neutrons are used in this chapter, the fluxes in these two groups 

are approximated by 

4>1(x) Group I (3-58) 

4>2 (x) Group II (3 .... 59) 
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Each one of the pol ynomials in equat ions (3-58) and (3- 59) has five 

unknowns, namely a 0 , a1 , a 2 , a 3 , a4 , b0 , b1 , b2• b3 , and b4 . 

Therefore , ten conditions are needed to find these ten unknowns . 

As it was obser ved in the second- order polynomial , the form of the 

coeffi c ients for the two polynomials i s similar. Therefo r e , the 

coefficients for the first group would be found here and the 

coeffi cients for the second group could be developed in a similar 

manner. 

The first assumption is that again the fluxes at the right and 

left of a given node for the group are known . Therefore, as it is 

shown in Figure 3-1, the following equations would result f r om this 

assumption 

cp 1 cp 1 (-n) 
2 3 4 (3-60) = ao - al n + a 2n a3n + a4n 1 

cp r cpl(n) ao + aln + 
2 3 4 (3- 61) = a2n + a3n + a4n 1 

Equations (3-60) and (3-61) are added and subtracted and the 

coefficient s ao and al are found. 

cp r + cp 1 
2 1 1 4 (3- 62) ao = - a n - a4n 2 2 

cp r - cp 1 
2 l 1 

al 2n a 3n (3-63) 
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But a2 , a 3 , and a4 are still unknown. Therefore, three other 

conditions are needed. 

The second derivative of equation (3-58) is 

(3-64) 

Equation (3-64) as well as (3-58) and (3-59) are then inserted into 

equation (3-4). Again, since the polynomial solution is only an 

approximation, the equation is not equal to zero . Therefore, let 

(3- 65) 

where g1 (x) is assumed to be a function of x and is defined by the 

left hand side of equation (3-65). Now rewrite equation (3- 65) as 

(3- 66) 

where 



25 

and again is assumed known from a previous iterate. 

One requires a minimization of the following integral with 

respect to a2 , a3 , and a 4 to determine these respective coefficients: 

(3~67) 

Again, the idea behind this condition would be more clear if one 

looks at Figure 3-4 , which shows a fourth order fit to the flux 

(second order fit on a second derivative). It is desired t o minimize 

the differences shown by the dashed area in Figure 3-4, by the 

integral in equation (3-67). The function g1 (x) is squared so that 

the area differences are all positive. It is also assumed that f 1 (x) 

is independent of a2 , a3 , and a4 for the purpose of the minimization 

process. 

To minimize equation (3-67), one differentiates it with respect 

to a2 , a 3 , and a4 , respectively, and then sets the results equal to 

zero . By the use of Leibnitz rule one has 

a Jn 2 (x)dx 2/ n gl (x) 
agl(x) 

dx 0 gl = = 
aa2 -n aa2 -n 

(3-68) 

a l n 2 (x)dx 21 : gl(x) 
ogl (x) 

dx = 0 
aa3 -n gl aa3 

(3-69) 

a J n 2 n agl(x) 
gl (x)dx = 

2/n 
gl (x) a dx = 0 

aa4 - n a4 
(3-70) 



2 g (x) 

Figure 3-4 Spatia l neutron balance approximation for a second order fi t 
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ogl(x) 
aa , 

2 

ogl (x) ogl(x) 
and are found from equation (3-66) 

oa3 , aa4 

= 2 

6x 

agl (x) 2 
--- = 12x aa4 

Therefore, equations (3-68) through (3-70) become 

n 

1. g1 (x)dx = 0 
n 

/
n xg1 (x)dx = 0 

-n 

2 x g1 (x)dx 0 

(3-71) 

(3-72) 

(3-73) 

Substituting fo r g1 (x) from equation (3-65) into equations (3-71) 

through (3-73), one has the following r esults 

(3-74) 
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1: 2 "' r- 2 .. 3 - 4 
x[2a2 + 6a3x + 12a4x + al (ao + a1x + a 2x + a3x + a3x ) 

+ a2 (bo b2x 2 - 3 - 4 0 (3-75) + b1x + + b3x + b4x )]dx = 

(3- 76) 

If equations (3- 74) through (3-76) are integrated and evaluated 

bet ween (n) and (- n), the expressions for a2 , a3 , and a4 can be 

found . 

2 - 2a n 4 (3-77) 

(3-78) 

(3-79) 

where the terms on the right hand side are evaluated from a previous 

iterate . 

Similar expressions could be found for the coefficients of the 

second group by applying the same procedure. If this is done, one 

has the following results 
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cp r + cp i 
2 4 

bo 
2 2 .. b 11 b411 2 2 (3-80) 

cp r - <Pi 
2 

bl 
2 2 

b311 (3- 81) 
211 

1 2 ... 4 -11 - 11 
b2 (Bl a O + B2b0) - 6(Bl a2 + B2b2) - 10 (Bla4 + B2b4) 2 

- 2b n 2 (3-82) 
4 

1 2 -
b3 (Bl al B2bl) 

11 
B2b3) (3-83) 6 + - 10 (Bl a3 + 

1 2 
b4 (Bl a2 + B2b2 ) 

11 
(Bl a4 + B2b4) (3-84) - 12 - 14 

The iterative process i s carried out the same as the one mentioned 

for the second order polynomial with the exception that initial 

values for a 3 , b3 , a4 , and b4 should also be speci f ied. 

One can show that the coefficient s of the fourth order polynomial 

can reduce t o the coeffi cients of the second, and third order poly-

nomials . For the second order polynomial, a 3 , a4 , b3 , and b4 are 

set equal t o zero and the fol l owing equations would result 

<f> r + <Pi 
2 1 1 

2 a2n 

<f>r -
1 

<Pi 
1 

2n 

1 - 2 -11 
- 2Ca1 ao + a2b0) - 6(ala2 + a2b2) 
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4>r + 4> R. 
2 

bo 
2 2 - b T) 2 2 

<Pr - 4> .e, 
bl 

2 2 
2n 

which are exactly the same coefficients that were found for the 

second order polynomial. 

For the third order polynomial, a4 and b4 are set equal t o 

zero. 

1 - ... 2 -
a3 = - 6(al al + a2bl) - .!L (al a3 + a2b3) 10 

4>r + cj>'i 
2 

bo 
2 2 - b n = 2 2 

<P r - 4> R. 
2 

bl 
2 2 b 3n 2n 

1 - 2 -n -
b2 = - .:-( e a + Bzbo) - r<e1a2 + f32b2) 2 1 0 

1 - 2 ... 
b3 - 6(f31 al + Bzb1) - ~0< 61;3 + f32b3) 
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which are exactly the same coefficients that were found for the third 

order polynomial. 

D. Interface Condition 

The interface condition between two nodes is shown in Figure 

3- 5 . It is required by the continuity of flux at the interface that 

.i.r. b 1 9., o/
1 

e equa to <l>i+l at any interface . 

.i.r = .i.9., 
o/i o/i+l (3-85) 

r 9., Two new par ameters, namely ~i and ~i+l' are defined such that they 

satisfy the following finite difference equations at any interface 

dx 

9., 9., 
~i+l - <l>i+l 

8i+l 

interface 

d<f>i+l 
dx 

interface 

(3-86) 

(3-87) 

where 8 is a distance parameter that is chosen arbitrarily . Also, 

~: depends on the order of the polynomial that is being used . The 

fourth order polynomial for the first neutron group is written here. 

Similar expressions could be written for lower order polynomials by 

set t ing t he appropriate higher order coefficients equal to zero . 



1Jir 
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0 i 

Figure 3-5 Assumed flux profiles at the interface 

<P i+l 

w 
N 



x=n. 
l. 

33 

x=n i 

(3-88) 

where the coefficients a1 through a4 in equation (3-88) are the 

coefficients which were evaluated for node i. 

(3-89) 
x= -ni+l 

and the coefficients a1 through a4 in equation (3-89) are the 

coefficients which were evaluated for node i+l. To find a new 
r 

~. for the next iteration, the continuity of t he current for the 
l. 

finite difference equation is appl ied a t the inter f a ce. It is 
r .2. required that J i be equal t o J i+l at any iteration. 

J~ = J~+l 

where reference [l] gives an expression for the current 

J =-DE.! 
dx 

Substituting equation (3-91) into (3-90), one has 

d~i 
-D -

i dx 
d~i+l 

= -Di'+l dx 
i i+l 

(3-90) 

(3-91) 

(3-92) 

and substituting equations (3-86) and (3-87) into (3-92) would 

result in the following express i on 
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~ri - $: $i1+1 ~ ~~+l) 
D ( 1 )= D (----...,~ 

1 ei i+l e 1+1 
(3- 93) 

solving r (3-93) one has for ~. from equation 
l. 

r i 
Di$i + Di+l $1+1 

~: (3-94) 
l. D. + Di+l l. 

r g, 
where $1 and ~i+l are found from the previous iteration by using 

equations (3-86) and (3-87) . Because of the continuity of flux 

at the interface (equation 3-85), equation (3-94) is also used to 
g, 

calculate ~i+l 

~r 
i 

g, 
~i+l (3- 95) 

E. Boundary Conditions 

The boundary condition is shown in Figure 3-6. For the boundary 

node i, the homogenous boundary condition 

D. 
l. boundary 

r 
-·~· l. boundary 

can be used to find ~: 
l. 

D. d~r 
~r l. i - ---i T dx x=n . 

l. 

d~r 
The value of i the fourth order polynomial -- for dx 

(3-96) 

(3-97) 

is 



Figure 3- 6 Assumed flux profile at the boundary 
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x=n. 
1. 

(3-88) 

where the coefficients a1 through a4 are the coefficients which were 

evaluated for node i. 

If the outer boundary is a free surface, then the vacuum 

boundary condition can be used. For this case, T would be expressed 

in terms of the transport mean free path, A tr 

T = 3 D ---

where 

2 A tr 

A = 3D tr 

Therefore, equation (3-98) becomes 

1 
2 

If the transport correction is taken into account, the vacuum 

boundary condition would be 

1 
3(0.7104) 

(3-98) 

(3-99) 

(3-100) 

(3-101) 
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If the outer boundary is not a free surface, then T can be varied 

for a given albedo boundary condition (T:::O is a symmetric boundary). 

The albedo boundary condition is given by reference [ 6] as the ratio 

between the current out of the reflecting region to the current into 

the reflecting region. 

J out a= --J in 

The partial currents J-

r 
+ 4> i 

J = - -4 

>. d4> r 
tr i ----6 dx 

(3-102) 

+ and J are also given in [6] 

(3-103) 

where A is given by equation (3-99). If equations (3-103) and (3-104) tr 
are inserted into equation (3-102), an expression for the albedo 

would result 

A. r A dA.: 
't'i tr 't'1 
4 + -6- dx 

a = (3-105) 
r A d,i,: qii tr 'f'1 

4 - -6- dx 

Equation (3-105) is rewritten as follows 



1 + l 3 

a=-------

2 "tr 1---
3 <I>: 

1 
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Equation (3- 99) is inserted into equation (3-106) 

2 __!?__ 
d<f>: 

1 + 1 

<f>r dx 
i 

a = 
D d<j>: 

1 - 2 1 

<f>r dx 
i 

(3-106) 

(3- 107) 

The expr ession for the homogenous boundary condition, equation 

(3- 96) is used to find an expression for t 

t = 
D d ,i,: i "'1 

dx (3-108) 

If equa t ion (3- 108) is inserted into equation (3-107), one has 

1 - 2t 
a = 1 + 2t 

The expression for t is 

1 1-a 
t = -(-) 

2 l+a 

(3- 109) 

(3-110) 
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If the transport correction is taken into account, the expression 

for T is 

1 
T = 3(0. 7104) 

(1-a) 
l+a 

F. Convergence Criterias 

(3-111) 

The solution technique used for developing a code suited for 

the finite element nodal model is the relaxation method. The 

relaxation method is described by reference [7] 

(3-112) 

where X~K-l) is the present value of a given node, and X~K) is the 

value calculated by the numerical method . The value predicted by 

the relaxation method for X~K) is the value actually used. Also 

in the expression given for xiK), "i" denote s the position of the 

node, "K" denotes the iteration number in the iter ation process, 

and "w" is called the "relaxation parameter." The parameter "w" 

determines the speed of conver gence and is chosen t o speed c onver genc e . 

The relaxation method was applied to the following parameters 

1. The coefficients of a chosen polynomial. 

a~K) = ~i (K) w + (1-w) (K-1) a . 
1 

i = o, 1, 2, 3, 4 

2 . The flux and the interface conditions 

(3-113) 



d<ji ~K) 
1 

dx 
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~~K) w + (1-w)<P. (K-1) 
l.. l.. 

<ji~K) _ ~K 
l.. i 

0 

(3-114) 

(3- 115) 

where 0 and ~ were discussed in part D of this chapter, 

3 . The neutron source 

S(K) = S(K) w + (1-w) S(K-l) 
i i i 

(3- 116) 

For one dimensional s teady state conditions with only two 

neutron groups , the neutron sour ce becomes 

s = 
I 

(3 -117) 

I t:iv. 
l.. 

i=l 
where the summation is taken over all the nodes. 

G. Computer Code and Results 

A computer program called ONODE was developed by Rohach [8] 

which is a one dimensional two group neutron code . The code has 

the capability to be used for second, third, and fourth order poly-

nomials. A flow chart of the code is gi ven in Figure 3-7. The 

ONODE code has been applied t o a one dimensional version of the 

Benchmark problem [9] using second, third, and fourth order poly-

nomials. In the one dimensional model with syuonetric boundary 

conditions, the f uel loading pattern is shown in Figure 3-8. The 
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Figure 3-7 Flow char t of the ONODE code 
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cross section data used for the fuel t ypes in Figure 3~8 are given 

in Table 3-1, and are taken from the Benchmark problem. 

Table 3- 1 Benchmark Fuel Parameters 

Material Region Dl Dz I:l-+2 I:al Eaz vE f2 

Fuel 1 1 1. 5 0.4 0.02 0 . 01 0. 08 0.135 

Fuel 2 2 1. 5 0.4 0.02 0.01 0.085 0.135 

Fuel 2 & 3 1. 5 0.4 0 . 02 0.01 0. 13 0.135 
Control 

Reflector 4 2.0 0. 3 0.04 0.0 0.01 0.0 

A fine mesh finite difference diffusion theor y calculation 

(1 cm per mesh point) is used as the r eferenc e cal culation . Fi gure 

3-9 illustrates t he fast and thermal flux distributions calculated 

using fine mesh diffusion theory. One can note the large flux dips 

in the two control assemblies and the thermal flux peaking in the 

reflector. Several results of the ONODE code will be discussed . 

The second order polynomial was first used to approximate the 

flux distributions . The fast and thermal flux distributions of the 

second order polynomial along with the flux distributions of the fine 

mesh diffusion theory are shown in Figure 3-10. Two significant 

points can be noted in the thermal flux comparison of the code and 
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the fine mesh diffusion theory. First, the technique cannot 

accurately predict the thermal flux peaking in the reflector. In 

addition, the second order polynomial is not adequate to predict the 

flux in the core node next to the reflector. This former problem 

is blamed on the shape of the flux in the reflector. The latter 

problem is due to inaccurate prediction of neutron leakage at core-

ref lector interface. An attempt was made to resolve these discrep-

ancies by using two nodes per fuel assembly in the outer fuel assembly 

and the reflector assembly. Figure 3-11 shows the fast and thermal 

flux distributions of the fine mesh diffusion theory and the second 

order polynomial using two nodes in the outer two nodes. A thermal 

flux comparison in Figure 3-11 shows that the thermal flux shape has 

improved only at the outer nodes and not in the core. An attempt 

was made at replacing the reflector with a vacuum boundary condition 

at the core-reflec t o r interface. Figure 3-12 is a comparison of the 

fast and thermal fluxes of the fine mesh diffusion theory and the 

second order polynomial without the reflector. It is noted that the 

thermal flux shape has improved but not to a degree of satisfaction. 

The third order polynomial was then used to appr oximate the 

flux distribution and hopefully resolve some of the problems 

encountered with the second order polynomial. The fast and thermal 

flux distributions of the third order polynomial along with the 
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flux distributions of the fine mesh diffusion theory are shown in 

Figure 3-13. By comparing the thermal flux of the code and the fine 

mesh diffusion theory, one can obser ve that the thermal flux peak in 

the reflector was better predicted using a third order polynomial . 

It should also be noted that although the thermal flux comparison is 

quite good at some nodes, the third order polynomial is not adequate 

to predict the flux in the core. Since the shape of the thermal flux 

at the node next to t he reflector is not satisfactory, two nodes per 

fuel assembly in the outer fuel assembly and the reflector assembly 

was used. Figure 3-14 shows the fast and thermal flux distributions 

of the fine mesh diffusion theory and the third order polynomial using 

two nodes in the outer two nodes. A thermal flux comparison in 

Figur e 3-14 shows that not only the thermal flux shape has improved 

in the reflector and the node next to it, but also a better flux 

agreement is observed. Figure 3-15 is a comparison of the fast and 

thermal fluxes of the fine mesh diffusion theory and the third order 

polynomial with no reflector. It is observed tha t very good agreement 

between the fluxes exists in Figure 3-15. Therefore, the third order 

polynomial may be adequate in the core when there is no reflector . 

The fourth order polynomial was then used to approximate the 

flux distributions . The fast and thermal flux distributions of the 

fourth order polynomial along with the flux distributions of the 
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fine mesh theory are shown in Figure 3-16, Excellent agreement is 

attained with this order of polynomial. Figure 3-17 shows the fast 

and thermal flux distributions of the fine mesh diffusion theory and 

the fourth order polynomial using two nodes in the outer two nodes. 

A thermal flux comparison in Figure 3- 17 shows that the flux shape 

in the reflector and the node next to it is better than the one in 

Figure 3-16. But it should be noted that extra nodes are not needed 

since the flux agreement in Figure 3-16 is very good . Figure 3-18 

is a comparison of the fast and thermal fluxes of the fine mesh 

diffusion theory and the fourth order polynomial with no reflector. 

Again excellent agreement is observed between the fluxes. 

Figure 3- 19 shows the eigenvalue convergence of the fourth 

order polynomial versus the number of iterations. The eigenvalue 

oscillates at low iteration numbers but converges as the number of 

iterations increases . Benghanam [2] indi cates tha t the interface 

relaxation parameter governs the oscillation shown in the eigenvalue 

curve (Figure 3-19). Benghanam also indicates that the interface 

relaxation parameter should be under-relaxed to prevent the 

oscillation at low iteration numbers . Benghanam also found out that 

the source relaxation parameter should be over-relaxed in order to 

i ncr ease t he convergence of the system. 

One can note the fast and thermal flux comparisons to be quite 

good in some nodes and not so accurate in others for the polynomials 
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mentioned above . This is due to the normalization process that 

was used . Since both the fas t and thermal flux distributions are 

normalized t o the highest point on the fast flux dis tribution 

curve , this flux agreement l s seen in some nodes . If other normal-

ization processes are used, f lux disagreement would decrease in some 

nodes and increase in other's. 

Figure 3-20 shows the neutron current is indeed continous 

along the core for the fourth order polynomial. The continuit y of 

the curren t was used in the int erface condition fo r every i teration 

and is an importan t cr iteria in calculating the f lux at the inter-

faces along the core . 

Figures 3-21 and 3-22 show the spatial neutron balance for 

the fourth orde r pol ynomial using a second order fi t . Since the 

polynomial is not an exact solution and is only an approximation, 

the minimization process which is described by equation (3-67) is 

used. The areas between the two curves in both Figure 3-21 and 3-22 

a re minimized t o insure the best fi t to the flux using this order 

of polynomial . 
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IV. THEORETICAL DEVELOPMENT OF THE ONE DIMENSIONAL 
FINITE ELEMENT NODAL MODEL FOR THE MULTI-GROUP 

NEUTRON DIFFUSION EQUATIONS 

The multigroup diffusion equation has the following form [l] 
G 

-V. [D vcp (r)] + E cp (r) + cp (r)°" g g ag g g ~ 

g- 1 

I 
g"'=l 
g"':fg 

Eg"'+g<I> ... (r) 
s g 

g' =g+l 

g+g"' E -s 

0 

where the terms in equation (4-1) were discussed in Chapter 3 . 

(4-1) 

If one assumes that the diffusion coefficient in equation (4-1) 

would stay constant for each group over a homogenous region, the 

following equation would result 

G 

- D V 
2 cp ( r) + E cp ( r) + cp g ( r )"' g g ag g ~ 

g+g"' E -s 

g- 1 

2 
g"'=l 
g"'#g g"'=l 

Equation (4-2) is then divided by 

v 2cp (r) - L E cp (r) 1 
g D ag g ' D 

g-1 

; 2 
g g"'=l 

g"'ig 

g g 

g"'=g+l 

vEf A ... (r) g g 

(-D ) g 
G 

cp g (r)I 
g"'=g+l 

0 

g+g "' E + s 

0 

(4-2) 

(4-3) 
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Equa t ion (4- 3) is much easier to deal with numerically if it is cast 

into matrix form . With this understanding equation (4-3) is written 

as 

where [M] is a GXG lower diagonal matrix defined by 

1 [ G [M] = - - E - '°' D ag L.J 
g g"'=g+l 

and [F] is the GXG fission matrix defined by 

(F ) 1 = -
D g 

T Ix ] [vI:f ] g g 

whe re [Xg] is a G-el emen t column vector, and (vEfg]T is a G-

elemen t row vector, t he transpose of the column vec tor (vEfg] . 

For one dimens i onal steady state conditions, the multigroup 

diffusion equa tion for a given node becomes 

(4-4) 

(4-5) 

(4-6) 

(4- 7) 

Therefore , it is desired to solve equation (4-7) using the fini t e 

element noda l model. 
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A. Fourth-Order Polynomial 

As it was observed in the previous chapter , the second and third 

order polynomials can be obtained from the fourth or der polynomial 

solution. Therefore, only the fourth order polynomial is cons idered 

here. 

The assumption here is that the flux in each node and neut ron 

gr oup can be expressed in the form of a four th order polynomial 

(4-8) 

where [C] is a GXl matrix corresponding t o the respective coeffici ent 

and neutron group. The polynomial in equation (4-8) has five 

unknowns for each neutron group. Therefore, five condition s are 

needed for each neutron gr oup to define the flux in equation (4-8) . 

The first assumption is that the fluxes at the right and left 

of a given node fo r each neutron group are known. Therefore, as it 

is shown in Figure 3-2, the following equations would result from 

this assumption 

Equations (4-9) and (4-10) are added and subt racted and the 

coefficients [C0 ] and [c1 ] are found 
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[ 4> r] + [ 4> & ] 2 [C4)n4 [CO] = g g [C2]n 2 (4-11) 

[4>r] - [ 4> ~] 2 
[Cl] = g g - [C3Jn 2n (4-12) 

But [C2], [C3], and [c4] are still unknown to completely define the 

polynomial. Therefore, three other conditions for each group is 

needed. 

The second derivative of equation (4-8) is 

(4-13) 

Equation (4-13) as well as (4-8) are then inserted into equation 

(4-7). Since the polynomial solutions are only approximations, the 

equations are not equal to zero. Therefore, let 

(4- 14) 

where [g(x)] is a GXG matrix which is assumed to be a function of x 

only and is defined by the left hand side of equation (4-14). 

Now rewrite equation (4-14) as 
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(4-15) 

where 

[f(x)] 

and is assumed t o be known from a previous iterate. 

The minimization process described in Chapter 3 is again applied 

to the integral of [g2 (x )] with respect to [C2], [C3], and [c4J to 

determine these coefficients respectively. 

[ /
n 2 

g (x)dx 
-n l (4-16) 

The minimization process is carried out by differentiating equa tion 

(4-16) with respect to [C2 ] , [C3], and [c4J and the results would then 

be set equal to zero and hence, one can calculate these coefficients. 

By the use of Leibnitz rule, one has 

[ n ag(x) l I g(x) ac2 -n 
(4-17) 

[ l " g(x) ag(x) l ac3 
(4-18) 

( j " 
-n 

g(x) ag (x) 
ac4 l (4-19) 
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where[ a~~:) ] , [ _e~~~) l and [ -~~:> ]are found from equation (4-15) . 

[ 
ag(x)] = [2] 

ac2 

[ og(x) ] = [6x] 
ac3 . 

(4-20) 

(4-21) 

(4- 22) 

Equations (4-20) through (4-22) along with equation (4-14) are then 

inserted into equations (4-17) through (4-19) to give 

f 11 {2[c2] + 6[c3 ]x + 12[c4Jx2 + { [M] + f[F]}{ [c0] 
- T) 

~ nx{2 [c2] + 6[C3]x + 12[c4Jx2 + { [M] + f[F]}{[c0] 
- T) 

(4-23) 

(4-24) 

(4-25) 
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If equations (4-23) through (4-25) are integrated and evaluated 

between (-n) and (n), the coefficients [c2J, [C3], and [c4J are 

found. 

(4- 27) 

(4-28) 

where the terms on the right hand sides are evaluated from a 

previous iterate . 

In summary, for the multigroup neutrons, the following system 

of equations were used 

(4- 8) 

where the coefficients are found using the following system of 

equations 

(4-11) 

(4- 12) 

(4-26) 
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(4-27) 

(4-28) 

The iterative technique resembles the one described for the two 

neutron group. Here, - t he ma trix [M) and [F) are nuc l ear dat a and 

are known. At the beginning of the process [~r), [~t), [C0], 
g g 

[C1], [C2], [C3], and [C4 ] are assumed to be known for every neutron 

group . New coefficients are found using equati ons (4-11) through 

(4- 12), and (4- 26) through (4-28). New interface fluxes are found 

for every neutron group using the interface conditions. Using the 

new fluxes, one can find new coefficients, and the process is con-

tinued until convergence occurs. 

Lower order of polynomials can be obtained by setting the 

appropriate higher order coefficients equal to zero. Therefore, 

for the second order polynomial [a3], and [a4 J are each set equal to 

the zero vector and for the third order polynomial [a4 ] is set 

equal to the zero v ector. 

The interface condition and the boundary conditions are similar 

to the ones described in the previous chapter. The relaxation 

method was applied to the following parameters 

1. The coefficients of a chosen polynomial. 

[ C ] (K) 
i (4-29) 
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2. The flux and the inteTface condit~ons, 

[4> ] (K) 
i 

d [ <j>. ] (K) 
l. ----::; 
dx 

[<j>i](K) - [$i](K) 

e. 
l. 

where e and $ were described in the previous chapter. 

3. The neutron source. 

S (K) 
i 

= ; (K) w + (1-w) S (K-l) 
i i 

where the neutron source is defined by 

I G 
I I (vL f 4> ) 6V. 

= i=l g=l g g l 
S I 

I 6Vi 
i=l 

B. Computer Code and Results 

(4-30) 

(4-31) 

(4-32) 

(4-33) 

The computer code ONODE [9] was expanded to handle multigroup 

neutrons . The modified ONODE code is ca lled ONODEM and has the 

same flow chart as the one in Figure 3-8. The ONODEM code has been 

applied to a one dimensional slab using three neutron group . Two 

different fuel loading patterns are used, where pattern A is shown 

in Figure 4-1, and pattern B in Figure 4-2. The cross section data 

used for the fuel types in the two different fuel patterns are 
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given in Table 4-1 and have been generated at lowa State University. 

A fine mesh finite difference diffusion theory calculation (1 cm 

per mesh point) is used as the reference calculations for the two 

fuel loading patterns. The conver~ence of the fine mesh was set 

equal to lE-09 in all of the calculations . 

Figure 4-3 illustrates the fast, intermediate, and thermal flux 

distributions calculated using fine mesh diffusion theory for 

pattern A. One can note the large thermal flux peaking in the 

reflector. After 111 iterations, a keff of 1.05560 was obtained. 

Figure 4-4 shows the flux distributions of the fine mesh and results 

of the ONODEM code using a second order polynomial. A keff of 

1 .055236 and a convergence of 3.3436E-09 was attained at 500 

iterations for this order of polynomial. As it is observed, the 

second order polynomial is not adequate to predict the flux peak 

in the reflector and the node next to it . Since only fuel is used 

in pattern A, it appears that a second order polynomial is adequate 

to predict the flux inside the slab where no reflector and control 

is used. This is best shown in Figure 4-5 where the reflector was 

replaced with a vacuum bounda ry condition. Excellent agreement 

is observed using this order of polynomial with the fine mesh. 

The convergence of the system in Figure 4-5, was 4.30159E-09 at 

500 iterations, and a keff of 1.05346 was obtained . 



Table 4-1 Nuclear Fuel Data 

Fuel Type Fuel Type Fuel Type Fuel Type Reflector Fuel and Control 
Ill 112 113 114 115 t!6 

Enrichment 2.6% 2. 8% 3.0% 3.2% 3 . 2% 

Dl 0.180E+Ol 0.180E+Ol 0.180E+Ol 0.180E+Ol 0.286E+Ol 0.180E+Ol 

D2 0 . 803E+OO 0.804E+OO 0 . 805E+OO 0.806E+o0 0. 817E+OO 0.789E+OO 

D3 0.259E+OO 0.259E+OO 0.258E+OO 0 . 258E+OO 0 . 237E+OO 0.357E+00 
.......i 
~ 

Eal 0.350E-02 0.347E-02 0.345E-02 0.342E-02 0.191E-03 0 . 632E-02 ---
Ea2 0.297E-01 0.293E-01 0.287E-01 0.283E-01 0.577E-03 0.660E-01 

Ea3 0.970E-01 0.937E-01 0 . 898E-01 0.861E-01 0.870E-02 0.999E-01 
i 

vE fl 0.418E-02 0.413E-02 0 . 407E-02 0 . 401E-02 0.000 0.433E-01 

v E f2 0 .126E-01 0.118E-Ol O.llOE-01 0 .102E-01 o.ooo 0.129E-01 

v E f3 0.142E+OO 0.134E+OO 0.126E+OO 0.118+00 0 . 000 0.143E+OO 
s 0.328E-01 0.328E-01 0.328E-01 0 . 328E-01 0.510E-01 0 . 335E-01 El+2 
s 0.000 0.000 0.000 0.000 0.000 0.000 El+3 
s 

E2+3 0 . 496E-01 0.498E-01 0.507E-01 0.502E-Ol 0 .114E+OO 0 . 496E-01 
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The third order polynomial was then used to approximat e the 

flux distributions for pattern A and hopefully resolve the thermal 

flux discrepancies in the reflector and the node next to it . Fi gure 

4-6 shows the f lux distributions of the fine mesh and results of 

ONODEM using a third order polynomial. A Keff of 1.055317 and a 

convergence of 6.3238E-09 was attained at 500 iterations for this 

order of polynomial . As one can observe the system ' s keff using 

this order of polynomial is closer to the keff of the fine mesh and 

the flux agreement is very good inside the cor e. The flux peak 

in t he reflec tor and the node next t o i t is also better predicted 

using this order of polynomial. But from the standpoint of power 

calculations the flux disagreement is still high in the reflector 

and the node next to it. 

The fourth order polynomial was then used to approximate t he 

flux dis tributions for pattern A. Figure 4-7 shows the fl ux dis-

tributions of the fine mesh calculations and results of the ONODEM 

code using a fourth order polynomial . Excellent agreement is 

observed between the fluxes , but still there seems to be a small 

tilt in the therma l flux at the node next to the reflector. Thi s 

problem is solved if one uses two nodes per fuel assembly in the 

outer fuel assembly and the r ef l ec t or assembly. Fi gure 4-8 shows 

the flux distributions of the fine mesh and the fourth order poly-
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nomial using two nodes in the outer two nodes. The flux agreement 

is excellent . 

A keff of 1.05424 and a convergence of 9.6037E-06 was attained 

at 500 iterations for the fourth order polynomial. Figure 4- 9 

shows the eigenvalue convergence of the system . As it is observed 

from this figure, the eigenvalue oscillates and it appears that 

the number of iterations is not enough. Therefore, the number 

of iterations was increased to 1,000, doing so resulted in a 

keff of 1.055530 and a convergence of 7.8728E-08 . The conver-

gence and keff have improved using a large number of iterations. 

But using 1,000 iterations is not practical and hence, Benghanam 

[2] suggested a set of optimized relaxation parameters . Using 

the suggested relaxation parameters, a keff of 1.055520 and a 

convergence of 9. 70419E-09 was attained at 500 iterations. 

Figure 4-lOshowsthe eigenvalue convergence of the fourth order 

polynomial using the optimized relaxation parameters . A better 

result is observed in Figure ~4-lOthanthe one in Figure 4-9. 

Pattern B in Figure 4-2 was then used to compare the ONODEM 

results and the fine mesh. The reactivity change due to fuel and 

control is 6 .61% ~~. Figure 4-li shows the flux distributions 

of the fine mesh. One can note the large flux dips in the two 

control assemblies, and the thermal flux peaking in the reflector . 
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A k of 1.13533 was obtained after 118 iterations for the eff 
fine mesh calculation. Pattern B is used to investigate if the 

different polynomials used by ONODEM can handle large flux changes. 

Figure 4- 12 illustrates the flux distributions of the fine mesh 

and the ONODEM code using a second order polynomial. A keff of 

1 . 135211 and a convergence of 7.74750E-06 was obtained at 500 

iterations . As it can be observed, the second order polynomial 

is not adequate to predict the flux accurately. Although some 

agr eement is seen in the large flux peak, it should not be mistaken 

that good flux agreement exists . The reason is because of the 

normalization process that was used to normalize every value with 

respect to the highest flux. Therefore, it appears that the 

second order polynomial is not adequate to predict the flux when 

contr ol and r eflector regions are present . One can observe the 

proof of this last statement by looking at Figure 4-13 where a 

second order fit was used for pattern B with the reflector replaced 

by a vacuum boundary condition. 

The third order polynomial was then used for pattern B. 

Figure 4-14 shows the flux distributions of the fine mesh and 

ONODEM code using a third order polynomial. A keff of 1 . 136028 

and a convergence of 2.9928E-06 was obtained for this order of poly-

nomial . Better flux agreement is observed especially in the 

reflector but the flux agreement is still not satisfactory. It 
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appears that the third order polynomial is adequate to approximate 

the flux for regions where fuel and control are used and not for a 

region where a reflector is present . This is exactly the case 

when one looks at Figure 4-15 where a third order fit was used 

for pattern B with the reflector replaced by a vacuum boundary 

condition. Excellent flux agreement is observed in Figure 4-15. 

The fourth order polynomial was then used for pattern B with 

the hope that it resolves some of the problems encountered with 

second and third order polynomials. Figure 4-16 shows the flux 

distributions of the fine mesh and the ONODEM using a fourth order 

polynomial. Excellent agreement is observed between the flux 

distributions of the fine mesh and the ONODEM code. A keff of 

1.124541 and a conver gence of 1.339565£-04 was obtained at 500 

iterations . The convergence is not at all acceptable and this is 

exactly the same problem that occurred for pattern A. Again, the 

suggested relaxation parameters [2] were used and a k f of ef 
1.135388 and convergence of 0.286707E-06 was obtained. Therefore, 

it is concluded that a fourth order polynomial is capable of 

predicting the flux in any region of the slab providing optimum 

relaxation parameters are used. 
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Figure 4-17 shows the neutron current along the core for the 

fourth order polynomial for pattern B. As it is observed, the current 

is indeed continuous along the core for the three neutron groups. 

The continuity of the current was used in the interface condition 

for every itera tion and i s an important criteria in calculating the 

flux at the interfaces along the core . 
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V. SUMMARY AND CONCLUSIONS 

The purpose of this study was to develop a one dimensional finite 

element nodal model suited for calculating the flux inside a reactor . 

The flux calculated from the model could in turn be used for calculating 

the power of the reactor. Since the power calculation precision 

does not need to be as detailed as other parameters of a reactor 

design, diffusion theory is adapted as the basis of calculating the 

flux. 

The model is based upon polynomial expansion of the neutron flux 

within the node. Second , third, and fourth order polynomials were 

used and each have proven to be adequate depending on the region of 

the reactor . The interface fluxes and node neutronic properties 

are used to evaluate the polynomial coefficients. Using these 

coefficients, one can calculate new fluxes and the process is con-

tinued until convergence is attained. 

The second order polynomial was first used to approximate the 

flux. The second order polynomial is not adequate to approximate large 

flux changes. Also, the shape of the flux in the reflector and control 

nodes were not acceptable using this order of polynomial. On the 

other hand, it appears that the second order polynomial is capable of 

approximating the flux when only fuel regions are present . 

The third or der polynomial was then used to approximate the flux . 

The third order polynomial did a better job of approximating the 
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flux in the reflector and the control r egions . When the reflector 

region was replaced by a vacuum boundar y condition, excellent f lux 

agreement was observed in the f uel and control regions . Therefore, 

it is concluded that the third order polynomial i s adequate for 

approximating the flux in the fuel and control r egions. 

The fourth order polynomial was then investi gated in approximating 

the flux. The fourth order polynomial is capable of approximating 

the flux in any region of the reactor provided that optimized relaxa-

tion parameters are used. 

One dimensional finite element nodal model is not significant 

for practical use since the one dimensional fine mesh finite difference 

equation can be easily solved. However, certain properties of the 

model can be studied in the simpl er one dimensional f ramework and 

then extended and t es ted in the more complicated two and t hree 

dimensions. 
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VI. SUGGESTIONS FOR FUTURE RESEARCH 

The following suggestions are made for possible future research : 

1 . A Mathematical technique should be developed to s uccessfully 

predict t he input relaxation parameters. This is an impor tant 

area since the convergence of the sys tem is heavily dependent 

on these paramet ers. 

2 . The model can be expanded into higher order polynomials. The 

main problem is the development of the coefficient formu las . 

However , once t hese formulas have been developed, very lit t le 

addi t ional computational time or computer storage is required. 

3 . Since the f l ux distributions and hence, the power distribut i ons 

are given i n t erms of polynomials, the burnup history of each 

node can also be gi ven in terms of polynomials . Hence , each 

node or assembly will have its individual set of burnup poly-

nomial coeff i cients . I f assemblies are shuffled or even stored 

in a fuel pool , the burnup polynomial coefficients will accompany 

a par t icular assembly . This is the advantage of expanding the 

polynomials over the individual nodes . 

4. Expressions analogous to those of the one dimensional model can 

be developed fo r t wo and three dimensional models. If this i s 

done , a two and t hr ee dimensional calculations should be per-

formed and compared . If adequate agreement is obtained be t ween 
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the two mode l s , the t wo d i mensional mode l shoul d be used since 

it r equire s l e ss computer time and hence , saving of funds could 

result . 
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