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INTRODUCTION 

Myoelectric Prostheses 

Mechanical cable driven arms are the most common and affordable 

upper limb prostheses, however, technology has progressed tc the point 

where myoelectric prostheses (prostheses driven by electric motors and 

controlled by the EMG signals generated from an amputee's existing 

muscles) can better replicate the function of the lost limb with good 

patient acceptability. The two major design problems tc be overcome with 

the myoelectric prostheses are an accurate and patient-acceptable control 

scheme and an effective feedback mechanism. 

Myoelectric prostheses have many advantages and few disadvantages as 

compared to mechanical cable arms. Myoelectric prostheses can have more 

degrees of freedom than cable arms. Cable arms have only two, elbow 

flexion and pincer grasp. Up to eight degrees of freedom are possible in 

myoelectric prostheses. These are: hand grasp open/close, wrist 

adduction/abduction, wrist flexion/extension, wrist pronation/supination, 

humeral adduction/abduction, humeral flexion/extension, and humeral 

pronation/supination. An artificial arm of this complexity would, 

however, require an inertial platform, using accelerometers in three 

dimensions, in order to maintain constant hand orientation (Swain and 

Nightingale, 1980). Swain and Nightingale (1980) have developed a 

complete hand/arm control scheme involving sensory feedback, subconscious 

finger pressure, slip and torque feedback, trajectory mapping, and EMG 

pattern identification necesary for such a complicated prosthesis. 
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Jerard and Jacobsen (1980) developed a three degree of freedom arm 

with hand grasp activated by toe movement and elbow flexion with wrist 

rotation activated by myoelectric signals. Graupe, Salahi, and Kohn 

(1982) and Lyman, Freedy, and Solmonow (1977) experimented with similar· 

three degree of freedom hand/arm prostheses, however, the toe was not 

used to control the hand function. EMG signals controlled elbow flexion 

and wrist rotation functions. Saridis and Newman (1979) built a hand/arm 

prosthesis with four degrees of freedom. Hand grasp, wrist rotation, 

elbow flexion, and humeral rotation· were controlled by EMG signals in the 

shoulder or upper arm. 

The myoelectrically operated arm provides excellent cosmesis 

(Shannon, 1979a, 1979c) and unencumbered fitting, important for patient 

acceptability (Domholdt, 1984). However, the lack of sufficient sensory 

feedback decreases patient acceptability. In an open loop system the 

operator is not aware of what the prosthetic arm is doing. Mental 

taxation due to the constant visual feedback required may result in its 

rejection by the wearer (Shannon, 1979c). Tactile sensory feedback in 

the form of electrocutaneous or mechanovibratory stimulation could be 

incorporated into the prosthesis design, eliminating the need for visual 

sensory feedback by the operator, thus improving acceptability. 

Currently, myoelectric arms are considerably more expensive than 

conventional prostheses, but the costs will decline as technology and 

supply increase. 
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Goals 

This paper involves pattern classification and identification of 

myoelectric signals in the proximal part of the forearm during specific 

movement of the hand and forearm. An unprocessed EMG signal has many 

components which can be incorporated for control of a myoelectric 

prosthesis. If these components can be classified and identified with 

reasonable success, a compact computer within a prosthetic arm can 

analyze the signals from the existing muscles on the stump of the amputee 

to control the prosthesis. This research attempts to utilize three of 

these EMG parameters, variance, zero crossings, and autoregressive (AR) 

correlation. 

The goal is to find out which of the three parameters yields the 

most functional discrimination of six lower arm movements in a three 

degree of freedom system, and what maximal degree of functional 

discrimination can be achieved using a combination of all three. The 

motions involved are hand grasp and splay, wrist flexion and extension, 

and wrist pronation and supination. 

Method 

Major considerations in the data acquisition phase include 

minimizing artifact signals and noise in the input signal, designing the 

hardware for reduced size and power requirements (which would be necesary 

for EMG prosthesis circuitry), and microcomputer chip controllability. 

With these considerations in mind, high input impedance FET Op-Amps 

were used for the high gain differential input amplifier, along with a 
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single chip analog to digital converter. Including TTL control chips, 

all essential hardware fit on a 3"x4" prototype board. This includes two 

differential EMG amplifiers, a voltage comparator, a 4066 quad-analog 

switch, a 7404 quad-AND gate, and a 0804 A/D converter. This does not 

include the 6502 microprocessor and peripheral chips used in the PET 

Commodore computer chosen for this research. The PET was used because it 

utilizes integrated circuitry which could be redesigned as a dedicated 

computer contained inside the prosthesis. 

EMG signals were taken from two electrode pairs, one pair on the 

skin over the digital flexors and one pair on the skin over the digital 

extensors. Two unimpaired, subjects, a 21 year old female and a 24 year 

old male provided the EMG signals as a result of six different static 

contractions of the lower arm. Software was written in 6502 machine 

language to acquire, in real time, the digitized EMG signal and in PET 

BASIC to store it on a magnetic disk and analyze it. Variances, zero 

crossings, and AR coefficients were calculated off line. Then, decision 

planes were established in the feature space of variances, zero 

crossings, and AR coefficients. Accuracy in motion discrimination based 

on the three parameters was determined by acquiring a new set of test EMG 

signals and comparing them to the AR models and applying the variance and 

zero crossing decision planes. It was shown that variance and zero 

crossings yielded· the best features with respect to functional 

separation. 
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LITERATURE REVIEW 

Introduction 

Myoelectric prostheses have been used by upper limb amputees for 

about 20 years. These prostheses were first controlled by EMG signal 

strength from one or more external electrodes located on existing limb 

muscles or adjacent shoulder muscles (Graupe et al.,1982). With 

improvements in technology, statistical features were realized as a 

practical approach to prosthesis control. Finally, with advanced 

technology, such as 16 bit microprocessors, previously time consuming 

temporal pattern identification and higher order statistics can be 

combined with a hierarchically intelligent control method to produce 

prostheses which will function smoothly with minimal mental taxation on 

the amputee (Saridis and Newman, 1979). A hierarchically intelligent 

control method is one where control signal determination is broken up 

into several levels. The output of each level in the command signal 

determination process is based on the output from the preceding levels, 

with EMG signals having the highest priority in the determination of the 

final prosthesis control. 

Experimental Procedure 

Soderberg and Cook (1984) list four components in the design of EMG 

instrumentation. These are: 1) the signal source, 2) the transducer, 

used to convert ionic bioelectric current to electron current, 3) the 

amplifier, and 4) the signal processing circuit. 
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Gross EMG signals result from the sum of many depolarizations of 

muscle fibers. Depolarization of these fibers results in their 

contraction. Muscle fibers contracting in groups cause specific limb 

motions to occur, with the application of force to a load as a result. 

Net force, therefore, is a function of many specific myofibril 

contractions and its magnitude is directly proportional to the number of 

myofibrils contracting. EMG signals must be reproducible over long 

periods of time for any particular motion. Almstrom and Herberts (1977) 

state this is in fact true. Gandy et al. (1980) show that for four 

muscles in the upper arm and shoulder, the shape and phase relationships 

of EMG signals collected periodically, with surface electrodes replaced 

each time, are clearly consistent over a period of six weeks. 

Medeiros (1984), Soderberg and Cook (1984), and Graupe et al. (1978) 

state that a particular resultant limb movement is achieved through a 

complex combination of specific muscle group contractions. The limb 

movements are the result of synergistic EMG signals. This means 

individual muscle fibers cooperate to achieve an outcome (a limb 

movement) that would not be possible from the contraction of just one 

fiber. Although fine wire electrodes may be used to measure the 

potential of a specific muscle fiber or small group of muscle fibers, the 

measurement of just one or even a few myofibril potentials may not be 

representative of the function that is occurring. Reliability 

coefficients for fine wire electrodes, as reported by Soderberg and Cook 

(1984), are lower than for surface elctrodes. Within-day reliability 

coefficients averaged .62 for contractions ranging from 20 to 100 percent 

of maximum. Between-day coefficients averaged only .22 for the same 
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range of contractions. This is due to the difficulty in placing the wire 

electrode in the same place each time. Since the electrode is so close 

to the signal source the small displacement of 5 mm or less which 

occurred with their use resulted in large differences in the readings. 

Movement artifacts are also introduced with the use of fine wire 

electrodes. 

Surface electrodes have minor disadvantages but they effectively 

measure a gross EMG signa'l which is representative of the function taking 

place. Soderberg and Cook (1984) report for contractions of 30 to 50 

percent of maximum, between-day correlation coefficients ranged from .78 

to .95. Maximal contractions produced coefficients that ranged from .52 

to .81. They also discovered that the largest signal for a bipolar· 

electrode configuration was obtained near the center of the muscle with 

the electrodes oriented longitudinally with the muscle fibers. Medeiros 

(1984) found the optimized location to be oriented longitudinally but 

just off center of the "bulge" or the thickest part of the muscle. This 

may be true because the large movements at the "bulge" result in 

electrode movement. For electrodes placed with no more than 5 mm 

difference on the skin for between-day tests EMG signal parameters are 

not significantly different (Graupe, Salahi, and Kohn, 1982). A primary 

advantage of using surface electrodes is th9.t they can easily be applied 

in a standardized manner with little discomfort (Soderberg and Cook, 

1984). A primary disadvantage is that they may malfunction during heavy 

perspiration (Paciga, Richard, and Scott, 1980). 

Electrodes must be nonpolarizable, so that half-cell potentials are 

not introduced. Most researchers cited use silver-silver chloride or 
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gold-plated stainless steel electrodes. Stainless steel differential 

electrodes, 5 mm in diameter and spaced 25 mm apart, were used by van der 

Locht et al. (1980). Similar electrodes were used by Shannon (1979a, 

1979b, 1979c), Soderberg and Cook (1984), and Doerschuk et al. (1983). 

Saridis and Gootee (1982) used gel-impregnated silver-silver chloride 

differential electrodes 1.75 inches apart separated by a center ground 

electrode. Gandy et al. (1980) and Medeiros (1984) used types similar to 

that used by Saridis and Gootee (1982). 

Most authors cited recommend that the input impedance of the 

amplifiers ought to be at least ten times the maximum skin impedance. 

This reduces movement artifact and other distortions of the EMG signal. 

Van der Locht et al. (1980) state that this will decrease the inaccuracy 

of skin-resistance variations to approximately five percent or less. 

Skin resistances can range from 200 fl to about 2 M fl. For 

measurement inaccuracies less than one percent an amplifier with an input 

impedance of 200 Mfl or larger is necessary. With the advent of very high 

input impedance amplifiers, silver-silver chloride electrodes in 

conjunction with electrolytic paste need not be used. Dry electrodes, 

which are much more comfortable, can be used quite effectively. 

Incidental movement of dry electrodes will not cause appreciable motion 

artifacts (van der Locht et al., 1980). 

The maximum peak to peak voltage of raw or unprocessed EMG signals 

is 3 mV (Soderberg and Cook, 1984). This requires an amplifier gain of 

4000 for a :!:6 V output. Typical gains range from 100 to 10,000 

depending on the application. However, Paciga, Richard, and Scott (1980) 

used amplifiers with gains as high as 20,000. 
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It is generally.recognized that most of the imformation in EMG 

signals is located in the range of 10 to 1000 Hz. This is. corroborated 

by Shannon (1979a), Saridis and Gootee (1982), Soderberg and Cook (1984), 

van der Looht et al. (1980), Graupe et al. (1978), Gandy et al. (1980), 

Doerschuk et al. (1983), and Almstrom and Herberts (1977). The response 

of an amplifier should be uniform within this range. Shannon (1979a, 

1979b, 1979c) uses amplifiers with a bandwidth from 10 to 500 Hz. 

Saridis and Gootee (1982) designed an amplifier with a gain of 5000, an 

input impedance of 22 MO, and a bandwidth of 5 to 1500 Hz. Soderberg 

and Cook (1984) and van der Locht .et al. (1980) state that to help 

eliminate cable artifacts, i.e., capacitance, the amplifier should be 

placed as close to the electrodes as possible. In fact, they, along with 

Shannon ( 1979a, 1979b, 1979c) , incorporate a preamplifier into the 

electrode unit. This adds weight. to the electrodes which might increase 

their incidental movement, causing motion artifact. This can be kept to 

negligible levels by minimizing the electrode/amplifier weight, securing 

it firmly to the skin, and using very high input impedance preamplifiers. 

Since only the difference in potential between two electrodes is of 

interest, any signal common to both originates from outside the area of 

interest and should be discarded. Therefore, impedances on both inputs 

of the differential input EMG amplifier should be very nearly identical. 

This reduces the common mode rejection ratio (CMRR), defined as: 

A 
CMRR = 20 x LOG ....:_ dB 

Ad 

where A0 is the common mode gain and Ad is the differential gain. It is 

important to have a high CMRR with bioamplifiers because the body is a 
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good conductor and aots as an "antenna" for many sources of 

electromagnetic noise such as from fluorescent lights, power lines, and 

other electrical equipment. These are the sources of unwanted 60 Hz 

noise. With the small EMG signals being measured such noise can have a 

significant effect. CMRRs should be at least 60 dB. Van der Locht et 

al. (1980) reported a CMRR of 100 dB. 

Signal to noise (S/N) ratio is also an important specification of an 

EMG amplifier. Of the authors ·cited in this paper, only van der Locht et 

al. (1980) reported a S/N ratio. This was 60 dB. 

Signal processing is the fourth important area to consider in 

bioamplifier design. Depending on the application, the raw EMG signal 

may be the desired form or a number of signal processing circuits may be 

employed. Soderberg and Cook (1984) give five possibilities. In 

addition to band pass filtering one may do further low pass (LP) 

filtering (smoothing), full wave rectifying, integrating over time, 

integrating in a time window, and integrating to a preset voltage 

followed by a reset. Most authors who base prosthesis control signals on. 

·EMG signal strength full wave rectify, LP filter, and (sometimes) 

integrate the amplified signal. One or more of these conditioning 

techniques are incorporated in the designs of Shannon (1979a, 1979b, 

1979c), Medeiros (1984), Soderberg and Cook (1984), Paciga, Richard, and 

Scott (1980), and Almstrom and Herberts (1977). 

Those authors who used digital signal processing and analysis did 

not use any of the above mentioned analog techniques. They were 

interested in recording only the unprocessed EMG signals. Various 

digital techniques were then employed to shape and modify the data. For 
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example, Doerschuk, Gustafson, and Willsky (1983) digitally LP filtered 

the EMG signals with a half power frequency of 2.21 Hz. Other authors 

used moving average and absolute integral algorithms in their work 

(Sukhan and Saridis, 1982). 

Discrimination Methods 

EMG Signal Strength 

Several parameters of EMG signals have been used as a measure of 

force or velocity in limb movements, as stated by Gandy et al. (1980). 

The mean level of the rectified and integrated signal, the averaged peak 

voltage, and the spike frequency are all approximately linearly related 

to muscle tension •. Control of a myoelectric prosthesis using EMG signal 

strength was first suggested by Norbert Weiner in the late 1940s 

(Shannon, 1979a), but it was not until the 1960s that clinical prototypes 

were built and the 1970s that commercial hand/arm prostheses were made 

available. 

One such device is the myoelectric hand created by Shannon (1979a, 

1979b). It operated in an OPEN-CLOSE mode controlled by a threshold 

detector. It included a third mode, OFF (or HOLD), to make it a 3-state 

system. Figure 1 shows the rectified, LP filtered, EMG signal and the 

corresponding motor control signal. This system requires two discernible 

signal levels, V0 and V0 , be produced. Included is a noise threshold, 

Vth' which eliminates undesired prosthesis activation and built in 

hysteresis to smooth motor response. 
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·Figure 1 OPEN-CLOSE control system. Typical values of V0 , Ve, and Vth 
are 500 uV, 200 uV, and 50 uV respectively. The hysteresis 
creates. an OFF range between the CLOSE and OPEN thresholds· 
preventing erratic open and close activation. 

A proportional control signal could be realized by taking the 

difference of two smoothed EMG signals from antagonistic muscles, 

i.e. the biceps and triceps. The sign of the result would indicate an 

OPEN or CLOSE mode while its value would indicate the speed of the motor 

(Shannon, 1979a, 1979b). Almstrom and Herberts (1977) mention that 

prosthetic hands of this type were commercially available in 1977. 

Paciga, Richard, and Scott (1980) employed a five-state system which 

would allow an amputee to control a two degree of freedom arm from one 

EMG site. Using their eyes for visual feedback, subjects tracked a 

computer controlled vertically moving horizontal line on a TV screen with 

a small ·circle projected on the screen. The small circle moved 

vertically in proportion to the angle of the elbow of a prosthetic arm 

attached to the stump of the amputee. Using the biceps brachii as the 
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signal source, tests.showed that a 1.1 % error rate· resulted in tracking 

from one level to another with a totsl of five discrete levels. When the 

response of the circle was delayed by .2 s error rate was 6.6 %. It 

should be noted that in this study, which incorporated visual feedback, 

training for the tssk played a major role in the outcome. Training 

sessions, one hour long, were carried out twice a day, five days a week 

for three months. It is uncertsin how much training would be required by 

an amputee using a prosthesis with a control scheme like this, but it 

might be prohibitive. It is apparent that some other control scheme is 

needed for easy, effective control of multi-degree of freedom prostheses. 

Spatial Analysis 

With the information obtsined from more than one myoelectric site, 

control signals could be used to operate a multi-degree of freedom arm. 

Proportional control of an arm with more than three or four degrees of 

freedom would not be feasible with only two electrode pairs for each 

hand/arm motion as in Shannon's (1979a, 1979b) three stste hand (Almstrom 

and Herberts, 1977). Thus, a spatial pattern identification method was 

implemented by Almstrom and Herberts (1977) using six electrode sites 

over existing muscles on the stump of a below-the-elbow amputee. An 

amputee can imagine a movement with his phantom hand, and in doing so he 

will contract his stump muscles in a way that is specific for that 

particular hand motion. Consequently, by applying pattern recognition 

techniques to the resulting EMG signals, the prosthesis control signals 

can be generated. The six rec·tified, LP filtered, EMG signals were 

recorded during six types of phantom hand movements and a computer 
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calculated weighting.factors for each electrode for each motion. The 

amputee then supplied test EMG signals which were multiplied by the 

respective weighing factors. If any values were greater than zero, the 

associated limb function or functions would be activated. They achieved 

good results both before and after training. Correct function 

discrimination for untrained patients averaged 88.6% while erroneous 

identification occurred 8.1% of the time. Trained patients had 98.3% 

correct function discrimination and 1.2% incorrect function 

discrimination. 

There was no apparent attempt to optimize the weighting factors in 

their research. In fact, not much information was given stating the 

conditions under which the weighting factors were calculated. 

Identification could be optimized by not only training the subject to 

contract his muscle to agree with a group of weighting factors but to 

optimize the weighting factors during calibration (Jerard and Jacobsen, 

1980). 

Lyman et al. (1977) attempted to implement a proportional control 

scheme in a three degree of freedom arm. Nine electrode sites provided 

the EMG signals from both unamputated and amputated subjects. The 

signals were rectified, filtered, and sent through a threshold circuit to 

eliminate erroneous activation by noise. Goniometers were placed on the 

arm not used for EMG signals. The subjects then moved both arms 

simultaneously for each motion of interest. EMG signal patterns were 

correlated to goniometer movement by a digital computer during the 

calibration sessions. Movement trajectories were broken up into discrete 

segments, each characterized by its direction. Rather than determining 



15 

the motion by application of weighting factors, Lyman et al. (1977) 

derived a set of probabilities from the EMG signal patterns and placed 

them in six matrices corresponding to the six motions possible. The 

decision criteria were based on Bayesian probabilistic measures. 

Function discrimination was achieved by parallel application of these 

probability matrices to the input signal, a method similar to that used 

by Almstrom and Herberts (1977) with weighting factors. Proportional 

control was achieved by converting the processed signal's ,spike frequency 

into pulse widths which were used to drive the motors directly. Just how 

electrode channel combinations were chosen for each specific motion was 

not described. 

To facilitate more natural motion and less conscious effort by the 

operator, an adaptive "aiding" procedure was implemented to help 

determine the control function. The range of movement of each of the 

three joints was divided into 16 discrete segments. A computer "learned" 

those movements which frequently occurred. The computer then chose a set 

of possible directions and moved each joint in that direction which had a 

maximum probability of occurring, given the current position of the arm 

and the past directions from which the arm approached the current 

position (Lyman et al., 1977). These adaptive aided probabilities were 

constantly updated or "learned" when the arm was activated. After the 

initial learning period the prosthesis control was shared between the 

adaptive aided system and the amputee. Adaptive aiding acted as an 

independent automatic reflex. Since the research discussed by Lyman et 

al. (1977) was not completed when it was published no relevant results 

were reported. 
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Jerard and Jacobsen (1980) took a novel approach to prosthesis 

control by incorporating Newton's dynamic equations of motion. The 

relationship of the rectified, LP filtered EMG signals during static 

contractions to torque at the joints of interest was experimentally 

determined and placed in a matrix. Up to nine electrodes on the shoulder 

and upper torso were used to identify up to eight motions. An actual 

artificial arm was built with three degrees of freedom, humeral rotation, 

elbow flexion/extension, and wrist rotation. A matrix of control 

vectors, vector-myograms (VMGs), obtained from the EMG signal controlled 

motor activation. A technique called 1 multivariable linear ridge 

regression' gave fairly reliable VMGs by discarding ill-conditioned data. 

This produced coefficients with a slight bias, but greatly reduced 

variance. To minimize the number of electrodes without reducing 

estimation accuracy, t values, a measure of the statistical significance 

of the regression coefficients, and cross correlations between EMG 

signals were found. If a t value with a probability of 95% or greater 

from a particular electrode was larger than 2 and the cross correlation 

to the signal from another electrode was greater than .8, then the 

associated vector coefficient contributed little to the function 

discrimination and the associated electrode could be removed. The number 

of electrodes was reduced to five. 

The final limb movement occurred as follows. The processed EMG 

signals were multiplied by the experimentally determined vector 

coefficients establishing a set of VMGs which directed the prosthesis 

motion. The VMGs combined with current accelerations, velocities, and 

positions of the joints yielded the estimated torques that needed to be 
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applied to each joint. The control signals were proportional to these 

estimated torques. Quantitative results were not presented. Jerard and 

Jacobsen (1980) did conclude, however, that the results were 

'respectable' and further optimization of the procedure was merite~. 

Temporal Analysis 

Time series analysis is another approach to EMG signal pattern 

identification. It is especially useful for amputees with severe muscle 

and nerve damage where few good myoelectric sites exist (Graupe et al., 

1982). With spatial identification techniques a prohibitively large 

number of electrodes may be needed. This could be undesirable for the 

amputee since tedious daily fitting is necessary. Time series analysis 

requires only one electrode pair. Instead of comparing EMG output from 

one electrode to output from another, time series analysis compares the 

output from just one electrode at a point in time to the output from the 

same electrode at another point in time. Fourier transformation or 

autoregressive (AR) correlation can then be applied to identify the EMG 

signals. 

Fourier transformation involves N x N computations where N is the 

number of samples. For a statistically significant number of samples 

this is too time consuming where on-line pattern identification should 

take no more than .2 s (Graupe et al., 1978). Because of its complexity 

none of the authors cited implemented fourier transformation into their 

EMG pattern identificaiton schemes. Soderberg and Cook (1984) did, 

however, discuss the potential of fourier transformation of EMG signals 

in therapeutics, The median or center frequency in the power spectrum 
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remained relatively constant during brief contractions and decreased 

almost linearly with increased fatigue. Sherif et al. (1984) state that 

the power spectrum became more concentrated at lower frequencies when a 

muscle was dynamically contracted than when its contraction velocity was 

zero (static contraction). Doerschuk et al. (1983) state that the 

frequency spectrum changed with a change in the load. This may be useful 

in proportional control of myoelectric prostheses controlled by time 

series discrimination methods. 

AR modeling is more applicable to EMG signal identification than 

other time series methods. AR modeling uses the EMG signal's statistical 

dynamics rather than its signal strength. Its advantage is that it 

requires only one electrode site. The disadvantage of AR modeling is 

that it requires more complex computation than other methods such as 

variance and zero crossing decision planes. The recorded EMG signal is 

essentially stochastic (composed of random error) which permits the use 

of AR modeling. The AR model is given by 

Y (t) =t A .Y (t-i) + e (t) 
m 1 =1 m,1 m m 

( 1) 

where Y (t) denotes the EMG signal from the m-th limb function at time t, 

A is the i-th AR coefficient for the m-th limb function, p is the 

order of the AR model, m is one of M limb functions, and e (t) is white 

noise. AR correlation finds the relationships of a sample at time t to 

another sample at time t-1, and at time t-2, up to time t-p. A linear 

model is used and for it to be a good representation of the EMG signal 

the data are assumed to be a Guassian distribution (Graupe et al., 1978). 

That is, it is assumed that data at time t-i (i=1,2, ••• ,p) are linearly 
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related to data at time t with error in the form of white noise. Figure 

2 shows a plot of arbitrary data at time t versus data at time t-1 (a 

first order AR model). Given y(t-i), y(t) can be estimated using the 

linear equation that best fits the data. 

Time Data(yt) 

b 4 10 .* 
1 7 
2 8 8 * 
3 9 
4 10 DATA 6 
5 8 (Yt) * 
6 5 4 * 
7 3 Yt = .73Yt-1 + 0.8 
8 1 2 .79 r = 
9 2 

2 4 6 8 10 

LAG 1 
(Yt-1) 

Figure 2 Sample AR modeling (sing~e order, p=l). One statistical 
degree of freedom is lost for each order of the model, there-
fore N=9. r is the correlation coefficient of the best 
linear fit to the data. 

The best linear fit is calculated by a least-squares algorithm. 

Least-squares is. relatively insensitive to round off error and it 

requires the least number of samples for convergence (Graupe et al., 

1978). This means that it greatly minimizes the AR coefficients for the 

higher order terms which in turn minimizes the white noise or cost 

functions E = ~e2(i), where N is the number of samples (Doerschuk et 
m ~ m 

i=l 
1979). al I' 
After ~he AR coefficients for each limb function are estimated (done 

off-line), testing of the model can begin. Since these coefficients are 
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found off-line, calculation time is not an important factor. However, 

testing of these coefficients is done on-line and speed in function 

discrimination is essential. The N-p test data points are successively 

substituted into the M AR models which result in M predicted EMG values 

(9m(t)) at each time t, where p+1<t<N. The difference between ~m(t) and 

the actual EMG signal, Ym(t), is em(t). The sum of the squares of all 

the em(t) terms gives an indication of the goodness of fit of the M AR 

models to the actual test EMG signal. This is represented by Equations 

2, 3, and 4 below. 

(2) 

(3) 

where 

(4) 

Assuming one of the M motions is occurring Em should be smallest and have 

a zero mean for that model which corresponds to the actual motion taking 

place. 

Sherif et al. (1982) questioned the applicability of AR modeling to 

EMG signals because linear AR modeling requires the signal source to be 

statistically stationary and an EMG signal is not stationary. They also 

claimed an autoregressive moving average (ARMA) model was not a valid 

representation of a non-stationary stochastic signal. They suggested the 

use of an autoregressive integrated moving average (ARIMA) model. An 

ARIMA model was used by Sherif et al. (1982) because they were interested 
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in modeling not just.static contractions but initiation and build up of 

contractions to a maximum. They state that for some phases of 

contraction (static) an AR or AR~A model may validly represent the EMG 

signal. ARIMA modeling could differentiate between the different phases 

of contraction and reduce the number of coefficients needed to accurately 

model the EMG signal. Sherif et al. (1984) sampled data at 2000 

samples/s during continuous humeral abduction/adduction. The resulting 

sample record was segmented into a series of subrecords, each .05 s long 

and considered stationary. After application of the ARIMA algorithm, AR 

and moving average coefficients resulted. The work of Sherif 

et al. (1982) was to demonstrate the applicability of ARIMA modeling of 

EMG signals. Quantitative results of motion discrimination accuracy were 

not presented. 

Graupe et al. (1978) was the first to develop an AR algorithm for 

EMG discrimination. For :emall increments of time, i.e •• 05 s, the EMG 

signal was be considered stationary and an AR model was applicable 

(Graupe et al., 1978). Graupe et al. (1978), somewhat arbitrarily, 

decided on .2 s as the maximum time allowed for function discriminaton by 

the computer. At a sampling rate of 5000 samples/s and increments of 200 

points a .04 s sampling window resulted. 

Graupe et al. (1978) used a third order AR method similar to the one 

described above, Off-line they calculated the error, Sm, between the AR 

model and the calibration data used to find the AR coefficients. During 

on-line testing if Em<PmSm the m-th limb function was chosen. The term 

Pm was an arbitrary value intended far optimizing the discrimination 

accuracy. It had no physical/intuitive meaning (Doerschuk et al., 1983). 
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If the signal energy .E = t y2(t)"~ Eth, where Eth is the minimum energy 
t=l 

threshold, the m-th limb function was activated. Four limb functions 

could be discriminated with an 85% success rate using a single electrode 

pair in the work of Graupe et al. (1978). 

Graupe and Salahi (1979) used four AR parameters and signal variance 

for function discrimination. Instead of using the parallel filtering 

identification method of previous work by Graupe et al. (1978) a new 

classification method replaced it. AR coefficients were found on-line 

and compared to reference parameters estimated during a calibration 

procedure. If the first AR coefficient's absolute value was within a 

predetermined distance of the first reference AR coefficient for each of 

M motions, then the second coefficient was tested. If all coefficients 

were within the pre-specified range of the reference coefficients for the 

m-th function, that function was activated. Graupe and Salahi (1979) 

incorporated a second electrode pair to increase discrimination accuracy. 

Discrimination of the signal from the second electrode pair was used to 

verify discrimination from the first. Graupe and Salahi (1979) obtained 

a 99% success rate in identification of four limb functions. 

The calibration training procedure was found to be of major 

importance for the system's performance. The subject learned to contract 

his muscles so that he could reproduce consistent AR parameters from 

which the reference set was derived. This biofeedback method preserved 

the integrity of AR modeling only if the subject learned to contract his 

muscles subconsciously as in the contraction of a normal arm. 

Graupe et al. (1982) used the same function discrimination method as 

Graupe and Salahi (1979) plus an additional method. Vector space of 
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several parameter combinations yielded further discrimination accuracy 

albeit at the expense of computation time. For example, feature space of 

the second AR coefficient (A z) versus the first AR coefficient (Ai), with 

decision planes determined off-line, could assist in the discrimination 

of two or more limb functions. Graupe et al. (1982) reported that with 

training (up to 12 hours) the subjects could consistently reproduce 

A within 10% of the same value. They achieved a 99% accuracy rate with 

six limb functions. 

In the work of Graupe et al. (1978), Graupe and Salahi (1979), and 

Graupe et al. (1982) no results were given on discrimination accuracy if 

the reference criteria from more than one limb function were satisfied 

simultaneously. 

In the work of Doerschuk et al. (1979) data were not acquired in 

lump sums as with Graupe et al. (1978), A 2000 Hz sampling rate was used 

and motion discrimination occurred every .05 s after each new data point 

was taken. Pattern identification was based on a moving 401 point 

sampling window. This seems to have ignored the non-stationary nature of 

EMG signals since the sampling window was .2 s wide. 

Doerschuk et al. (1979, 1983) employed an AR model similar to Graupe 

et al. (1978), however, instead of determining discrimination based on a 

threshold they developed a set of probabilities based on the AR model 

error Sm and AR coefficients Am,i• Then the prediction error em(t) was 

computed, given by Equation 4, If limb function m was, in fact, taking 

place, then em(t) was (ideally) a white noise process and that limb 

function should have had the greatest probability of occurring. 
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Four electrode pairs placed 90° apart around the forearm provided 

the EMG input. Varying load was not dealt with and the shape of the EMG 

spectrum was assumed independent of the load. This also assumed the AR 

coefficients did not change with load. Six limb functions were divided 

into four different phases. These were rest, initiation of function, 

hold, and return to rest. It took eight seconds to complete each cycle. 

Probabilities for one motion, during the hold phase, were as high as 

.96 with the other five motions making up the difference. Since it was 

assumed that one of the six motions was always occurring the sum of the 

probabilities equaled 1.0 and one function always had the largest 

probalility even if no signal was present. Therefore, a fifth electrode 

was used to determine signal strength. If the signal was greater than a 

predetermined threshold then the limb was actuated. It appears that 

Doerschuk et al. (1979, 1983) defeated the purpose of having few 

electrode sites in AR modeling by using five electrodes. Medeiros (1984) 

stated that the optimum myoelectric site was directly above the muscles 

associated with the limb movements of interest. Optimization of muscle 

sites might have been achieved by Doerschuk et al. (1979, 1983) by 

placing the electrodes directly over the muscles that were most closely 

associated with the motions of interest. 

Saridis and Gootee (1982) combined variance and zero crossings with 

AR correlation. They found more class discrimination information was 

contained in variance and zero crossing than in AR correlation. 

Twenty-six motions and one rest state were discriminated in a three 

degree of freedom system (humeral rotation, elbow bend, and wrist 

rotation). The 26 motions included the six single or primitive motions, 
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all 12 possible double motions, and all 8 possible triple motions. The 

EMG signal parameters were evaluated for their ability to separate the 27 

classes from each other. Only 65% of the classes were separable from 

each other. After incorporating a "learning" function into the 

discrimination scheme and using only variance and zero crossings, 85% of 

the classes could be separated from each other with less than 10% error. 

Some of the motions with misclassification error greater than 10% were 

incompatible with each other. 'This means it was improbable for some 

motions in an arm to occur depending on the previous motion. The 

incompatible combinations could have been identified by the on-board 

computer ~nd not activated. 

Sukhan and Saridis (1982) developed a proportiona'i' control scheme 

using variance and zero crossings as the best features for motion and 

speed separation. The integral absolute value (IAV), defined as the time 

integral of the absolute value of the signal, was the only feature 

directly extracted from the EMG signal for pattern identification. 

Sukhan and Saridis (1982) found the relationships between IAV, variance 

and zero crossings which provided translation from one feature space to 

another. 

Saridis and Gootee (1982) observed certain superposition properties 

of combined motions allowing decomposition into the six primitive motions 

making class separability an easier task. Sukhan and Saridis (1982) also 

developed a decomposition scheme in their work. Rather than create a set 

of decision planes they established a set of reference probabilities for 

each of 27 motions and three speeds. Ten samples of each of the 27 

motions and three speeds were used to calculate the reference 



26 

probabilities. The test EMG signal was converted to the feature space of 

variance and zero crossing. One of 27 motions, including·rest, was 

determined then the EMG signal was decomposed into the primitive motions 

with an associated speed. This could then be used to actuate the motors 

of an artificial arm. A learning procedure was provided which updated 

the reference probabitites as the arm was activated, similar to Lyman et 

al. ( 1977). Computer simulation resulted in a 90 to 97 percent accuracy 

rate. Results of an actual clinical model were not presented. 

Command Languages 

Although most of the EMG signal identification methods are 

reasonably accurate they may not generate control signals that result in 

natural or cosmetically acceptable movement of the prosthesis. Control 

languages can assist in motion discrimination and relieve the wearer of 

constant mental attention by becoming an autonomous control system 

requiring only supervisory intervention (Swain and Nightingale, 1980). 

In the scheme proposed by Swain and Nightingale (1980), commands 

were supplemented by signals from an array of sensors in the hand 

relating to static and dynamic relationships between the hand and the 

object being gripped, The overall system was a hierarchy in which 

functions were initiated at a conscious level, but were performed without 

conscious effort. 

Four inputs were needed to control a nine degree of freedom system 

(six degrees of freedom in the arm and three degrees of freedom in the 

hand), The hand was controlled by signal strength from a single EMG 

electrode. Six discrete EMG signal levels were required to control wrist 
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flexion/extension, wrist rotation, and grasp. Location of the EMG 

electrode site was not mentioned. A set of commands such as HOLD, 

SQUEEZE, and RELEASE were generated and were manipulated by the feedback 

mechanisms and the current position of the arm. The arm was controlled 

by three sensors detecting body movements, presumably from the shoulder, 

and control algorithms generated the required joint angles. Swain and 

Nightingale (1980) claimed that flexibility could be achieved with "very 

little prior training." Clinical testing of a complete prototype had not 

yet begun as of the writing of the paper by Swain and Nightingale (1980). 

A syntactic approach to prosthesis control was proposed by Saridis 

and Newman (1979) and Saridis et al. (1979). This system was designed 

for a four degree of freedom arm (humeral rotation, elbow flexion, ·wrist 

rotation, and hand grip) where the entire range of each of the four 

joints was divided into discrete increments. Command signals ·directed 

each joint to hold the current position or move one increment in either 

direction. 

Command strings would be generated from statistical features of EMG 

signals during specific phantom hand/arm motions via a three level 

hierarchical control scheme. The first level would extract the pertinent 

features, identify the limb function, and decompose the EMG signal into 

its primitive motions and speeds (Sukhan and Saridis, 1982). The second 

level would include a learning procedure and determine the desired 

trajectories based on the output from the first control level, automatic 

sensory feedback, and previous movement and position of the arm. The 

third level would generate the necessary control signals to activate each 

motor based on the desired trajectories and the information obtained from 
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the first level. Research on level one of this prosthesis control scheme 

was discussed by Saridis and Gootee (1982) and Sukhan and Saridis (1982). 

A possible hierarchical intelligent control scheme for level two 

utilizing "high-level decision languages" was discussed by Saridis et 

al. (1979). Results of a final system's performance were not reported. 
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EQUIPMENT AND PROCEDURE 

Description of Hardware 

All aspects of the hardware were designed with the capability of 

being contained in an actual prosthetic arm. The hardware circuitry was 

composed of three main sections, analog processing, digital processing, 

and data feedback. Only the first two were required for control of a 

prosthesis. The latter aided in laboratory evaluations of the system. 

The information processing block diagram is shown in Figure 3. 

FET Op-Amps were choosen for the EMG amplifier because of their low 

power requirements and very high input impedance. Appendix A shows 

details of the EMG amplifier design. Using two single chip quad op-amps, 

two differential amplifiers were built with gains of 4700 and -3d.B 

bandwidths of 5 Hz to 960 Hz. This coincided with the requirements 

specified by van der Locht et al. (1980) and Soderberg and Cook (1984)• 

CMRR was approximately 90 dB for both amplifiers and S/N ratio using a 

400 Hz test signal was 45 dB. Signal to noise ratio is defined as 

.§.. = 20LOG .YB 
N Vn 

where Vs= peak to peak voltage of the signal output and Vn =peak to 

peak voltage of the noise output when all three leads of the amplifier 

are grounded. 

The op-amps were powered by +9 V and -9 V sources, using 9 V 

batteries to improve safety. The circuit had an inherent DC error in the 

last amplification stage. This was eliminated by including a DC offset. 
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Silver-silver chloride gel impregnated electrodes with adhesive 

perimeters were separated 1.25 inches by a center ground electrode, 

similar to the method used by Saridis and Gootee (1982). The geometry of 

the electrodes is shown in Figure 3A. 

Gnd 

Pas e Neg. 
(Proximal) G) 8 

I- i.25 II~ 
(Distal) 

Figure 3A Schematic of the differential electrodes. The negative 
terminal was placed distally on the forearm for all samples 
for both the flexor electrod.e and the extensor electrode. 
The silver-silver chloride electrodes were held together by 
adhesive backing.· 

One of these electrodes was placed over the flexor muscles and one 

over the extensor muscles on the proximal part of the forearm. The 

amplifier system was designed for use with dry electrodes, however, gel 

electrodes were considered sufficient for experimental purposes. The 

adhesive surface firmly secured the electrodes to the skin and helped 

reduce artifact noise. Two conductor stranded coaxial cables, 24 inches 

long, connected the electrodes to the inputs of the amplifiers. Their 

shields were grounded to reduce noise. 

Amplifier outputs were connected to a threshold detection circuit 

via 47 KQresistors. Originally, the purpose of the threshold detector 

was to inform the computer that the EMG signal strength was above a 

certain level so that computer sampling could begin. The threshold level 
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was arbitrarily chosen so that a iogic low (active) pulse occurred when 

the muscles began to contract. The result of this would have been 

computer medaling of a transient EMG signal. It was decided that static 

contractions could be more accurately modeled· than dynamic contractions 

even though dynamic contractions are more realistic. Although not used 

in these experiments the trigger circuitry was retained since it could be 

used with no modification as a noise threshold preventing accidental 

actuation of a prosthetic system. 

A Commodore PET 2001 Graphics Series computer, manufactured by 

Commodore Business Machines, Inc., Santa Clara, CA., along with a 

Commodore Model 8030 dual floppy disk drive was used for analysis and 

storage of the EMG signals. A Commodore 4022 dot matrix printer was also 

connected to the PET. Communication and transmission of data to and from 

the PET was done on the IEEE-488 general purpose interface bus (GPIB) 

located on the back of the computer. 

Amp 1 and amp 2 were alternately sampled by the PET computer at a 

sampling frequency of 5000 Hz. This was accomplish by routing the 

amplifier outputs to two of the inputs, A and B, on a quad-analog IC 

switch, shown in Figure 3. The outputs of both switches were connected 

together, however only one switch was asserted at a given time since the 

control signal for switch B was the complement of the control signal for 

switch A. The PET IEEE data valid (DAV) line was switched from logic low 

to high to low by machine language software 5000 times per second during 

data acquisition. When the line was low switch B was on and output from 

amp 2 was sampled, and vice 'versa for amp 1 when the DAV line was high. 

Settling time for the switches was 60 nS so the switching rate of 1 O KHz 
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presented no problems. The output connected to channel 2 0£ a digital 

storage oscilloscope Model 081420, Gould, Inc., Hainaut, Essex, England. 

The storage oscilloscope permitted visual analysis 0£ the un-digitized 

EMG signal £rom either amplifier. 

The signal then went to the 0804 ADC v!n input, A detailed 

schematic 0£ the 0804 ADC circuitry is shown in Appendix A, The 0804 was 

chosen £or its low power requirements, sel£ containment, and TTL 

compa tiblili ty, Input voltage was adjusted to a :!: 5 V range• The A/D 

conversion rate was chosen high enough so there would be no aliasing 

problems when the digital signal was sampled by the computer, The 

digitized 8-bit signal was latched on the tri-state output bu££er when 

the RD pin was driven low (asserted) by the PET IEEE NRFD line. When RD 

was high the 8-bit output 0£ the A/D converter floated permitting use 0£ 

the IEEE-488 data lines £or other operations. Power supply £or the 0804 

ADC was provided by a £ive volt IC regulator connected to the +9 V 

source. The £ive volt source also powered the inverter chip connected to 

the control signal £or the analog IC switch. 

A 1408 D/A converter chip was connected to the IEEE BUS permitting 

visual analysis 0£ the digitized signal. It operated in a £ree running 

mode. Its analog output was amplified and sent to channel 1 0£ the 

digital oscilloscope to permit comparison to the un-digitized signal. 

Either channel could be plotted on a model 7004B X-Y recorder, 

Hewlett~Paokard, Inc., Fort Collins, CO., to obtain a hard copy record 0£ 

the oscilloscope display. 
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Description of Software 

Data acquistion was performed in real time. Therefore, a machine 

language subroutine was required for sampling the data. Appendix C1 

includes a printout of the data acquistion programs called "MAIN" and 

"MACH. II 

MAIN was written in PET BASIC and is the main program. It calls the 

6502 machine language program "MACH". MAIN was written in a structured 

modular form. A main menu with submenus gave the operator several 

options. One could enter the ID of the participating subject, take a 

sample, review a stored sample on the oscilloscope, or get a directory of 

the data disk. If the operator chose to take a sample he could pick any 

of the six motions or return to the main menu. After the sample was 

taken he could review the signal from either electrode, store the sample 

on disk, retake the sample, or return to the motion menu. Once a sample 

was stored on disk one need not enter the name for a new sample each 

time. The sample number was automatically incremented for the last 

motion chosen. Names of the data files were of the .form IIIAMMM.E.SN, 

where III was the initials of the subject, A was C or T for calibration 

data or test data respectively, MMM was a three letter abbreviation of 

the associated motion, E was a 1 or 2 denoting electrode 1 or electrode 2 

respectively, and SN was the sample number. These descriptive names made 

it easy to search and retrieve the files for later analysis. 

Before MACH was called, the IEEE NRFD line was asserted low turning 

on the 0804 ADC. The machine language subroutine MACH waited for a low 

pulse on the IEEE NDAC line signifying the start of a contraction, but 
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that section of the program was not used when only static contractions 

were considered. It was initially intended that the two electrodes would 

be sampled as close in time as possible, however, this resulted in 

erroneous readings because the IEEE DAV line could not change signs fast 

enough to permit sampling of the second electrode. This problem was 

alleviated by placing exactly half of the timing loop after sampling 

electrode 1 and the other half after sampling electrode 2. Fisher and 

Jensen (1980) provided example ·real-time machine language sampling 

programs which aided in the design of MACH. Five hundred twelve data 

points per electrode were stored in memory, but only the first 200 or 300 

were stored on disk. Program execution returned to the main program and 

the ADC was shut off after data sampling was complete. 

Experimental Methods 

A brace was built that firmly held the subject's arm in place so 

that only static contractions occurred. The forearm was placed on a 

padded arm rest and the hand was secured to a dowel by an elastic band. 

In all cases the right arm provided the EMG signals. The subject was 

comfortably seated at a laboratory bench with the right elbow bent at 

approximately 90°. The different motions could have been sampled in any 

order but were chosen to reduce fatigue. The order was hand grasp, wrist 

flexion, supination, and extension, hand splay, and wrist pronation. 

There was no previous training by the subjects to help them reproduce the 

limb motions more consistantly. This may have caused a larger in-class 

variance for the calibration data set. 



Subjects repeated the six motions 14 times for the calibration set. 

They were asked to contract their muscles with "medium" intensity. This 

was a subjective measure but could be improved with training. 

A problem with the system was the time period required for data 

storage. It took about 40 seconds to store 1024 data points on disk. 

This made calibration sessions excessively long. The length of the test 

sessions was considerably reduced because only 400 points, 200 per 

electrode, were stored on disk. 
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DATA ANALYSIS SOFTWARE 

Variance and Zero Crossings 

Printouts of the variance and zero crossing algorithms are in 

Appendix C2. Variance is defined as 

N(N-1) 

Zero crossings are the number of times the signal changes sign per 

sampling period. Variance and zero crossings were determined off-line 

with files retrieved much the same way they were stored. Two hundred 

data points were used in the calculation of variance while zero crossings 

were determined using 300 data points. Since only 200 points were 

sampled in the test data sets one would expect 1/3 fewer zero crossings. 

This was confirmed by experimentation so the decision planes in the 

feature space of variance and zero crossings were adjusted to accommodate 

the test samples. As long as 200 data points were used in the test data 

files the variance and zero crossing decision planes are valid. Appendix 

B lists values of zero crossings and variances for the calibration data 

sets. Figures 4 and 5 show the plots of these values for electrode 1 and 

electrode 2 respectively. 

Decision planes were drawn separating groups of motions by visual 

inspection of the feature space. These decision planes can be found in 

Figures 4 and 5. Not all possible decision planes apparent to the eye 

are included. Only decision planes that made up the final discrimination 

criteria are included in Figures 4 and 5. They were optimized based on 

the first set of test data. 
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and zero crossings. Zero crossings are based on 300 data points 
per sample. Decision planes are adjusted to 200 data points per 
sample. Variance is in arbitrary digitizer units. 
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Autoregressive Modeling 

A linear AR modei of the two EMG signals was developed for motion 

discrimination. As in the work of Graupe et al. (1978), Graupe and 

Sala!rl (1979), Graupe et al. (1982), and Doerschuk et al. (1979,1983) an 

AR model can be considered valid because signal stationarity is assumed 

when the sampling window is .05 seconds or less. At a sampling rate of 

5000 Hz AR coefficients were determined from 250 data points. This 

resulted in a .05 second time window •. 

AR coefficients were estimated by employing a least-squares 

algorithm, called "ARM", which is shown in Appendix C2. It was decided 

that creating a a least-squares program for the PET computer would be 

easier .than developing the software necesary to transfer the thousands of 

pieces of data to another computer that already had the appropriate 

least-squares algorithm. 

The prediction error from Equation 3 can be represented by 

where E is a function of the AR coefficients, and x1t is the same as 

y(t-i). Reduced and put in matrix form this is (Singh and Titli, 1978) 

E(A) = (Y-XA)'(Y-XA) (5) 

where Y is a n x 1 matrix, A is a p+1 x 1 matrix, and X is a n x p+1 

matrix. The single apostrophe means the first matrix in parentheses is 

transposed. For least squares error the derivative of E(A) with respect 

to A must be zero. Taking the derivative of Equation 5 and setting it 

equal to zero yields 0 = X'Y - X'XA. Solving for A gives A = (X'X)-lX'Y. 
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The program "ARM" retrieves from disk one calibration data set at a time 

and calculates X'X, a p+1 x p+1 matrix and X'Y a p+1 x 1 matrix. Any 

order model could be specified, however, computation time for orders 

greater than four was very long because the program was written in BASIC, 

thus the final models were fourth order. After X'X was determined it had 

to be inverted. This was possible by applying a FORTRAN matrix inversion 

program given by Hornbeck (1975). It was converted to PET BASIC and 

modified for this particular application. This was the most time 

consuming section of the program. Finally (x•x)-lxry was computed. 

This program was tested and verified using data wi tb known AR 

coefficients determined by a statistical software package on the WILBUR 

program at the Iowa State University Computation Center. The data 

consisted of 100 points and was represented by a fourth order model. The 

PET BASIC program produced AR coefficients nearly identical to those of 

the WILBUR program. Differences were probably due to round-off error. 

Averaged models of the fourteen samples per motion per electrode 

were used in the final motion discrimination models. Since there was no 

previous training by the subjects some of the calibration samples had 

variances and zero crossings that were much larger or smaller than the 

average for any particular motion. If a sample had a variance more than 

three times or less than 1 /3 the average variance of the 14 samples for a 

particular motion, then it was considered ill-fitting data and its 

corresponding AR coefficients were not included in the averaged AR model. 
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RESULTS and DISCUSSION 

To test the identification accuracy of the decision planes and the 

AR models 10 new samples per mo.tion were taken. Each sample contained 

two hundred data points. Again subjects contracted their arms at medium 

intensity. Testing was accomplished off-line, necessary so that the same 

data used to test the variance and zero crossing decision planes could be 

used to test the AR models and a combination of both. 

During discrimination it was assumed that one of the six posible 

motions was occurring. In an actual artificial arm application a 

threshold detector could prevent constant prosthesis movement since the 

on-board computer assumes one of the six motions is occurring, or the 

state of 'rest' or 'hold' could be a seventh function. This seventh 

function would have parameters in the feature space of variance and zero 

crossings and its own AR coefficients. Since one of six motions is 

assumed to exist, the motions with the best inter-class separability were 

identified first. If a sample did not fit the criteria for the first 

motion, it was assumed to be one of the remaining five motions. For 

example, if the motion was not identified as one of the first five 

motions it was identified as the sixth motion by default. It should be 

noted that there is a 16.7% chance of randomly choosing the correct 

answer. 

Based on the results from the first test data set, the decision 

planes were modified to improve dicrimination accuracy. Then another new 

set of test data was obtained and it was from these samples that final 

discrimination results were obtained. There were 10 samples per motion 
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at medium intensity contraction. "These results are not biased and can be 

considered worst case accuracy of the system. Doerschuk et al. (1983) 

are the only authors cited who state that a completely new set of data 

was used to test their models. 

The decision criteria used in discrimination, based on only variance 

and zero crossings, are as follows. 

If V2<60 then Flexion 

If (V1<12)AND(Z1<14) then Extension 

If (V1<9.45*Z1+10)AND(V1<-10*Z1+140) then Supination 

If (V2>411)AND(V1>-12.5*Z1+235) then Splay 

If V1<-12.5*Z1+235 then Grasp 

The remainder is Pronation 

V1, V2, Z1, and Z2 are variances and zero crossings from electrode 1 and 

electrode 2 respectively. These criteria resulted in a 63.3% correct 

identification of the second test data set. 

A digitized EMG signal consisting of 200 points is shown in Figtlre 

6. The signal is from electrode 1 during wrist flexion. The middle plot 

is the residual error, described by Equation 4, resulting from the 

flexion AR model. The computer correctly identified the motion of this 

sample as flexion. The bottom plot shows the residual error using the 

input signal and the AR model for wrist extension. Clearly, it is not a 

good fit and was not chosen by the computer. 

The AR models were tested with the first test data set with the same 

assumption that one of the six motions is occurring. Models based on 

averages of all 14 samples per motion and models based on averages 

excluding the samples with ill-fitting data were tested. 
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The top plot shows. the EMG signal from electrode ill during 
flexion. The other two plots are the residual error, Equation 4, 
from two different models. The middle plot is the error of the 
flexion model and the lower plot is the error of the extension 
model as compared to the first plot. 

Accuracy (correct motion identification) of the models with outlier data 

removed was 6.4% higher than with the data intact. The best accuracy 

obtained by basing discrimination solely on the AR coefficients was only 

37-5%. This includes tests of models from both electrodes (which were 

independent of each other). Electrode 1 (digital flexor) models 

correctly identified motions 45-4% of the time and electrode 2 (digital 

extensor) models identified correctly 29.8% of the time. Some motions 

were more identifiable than others. Flexion and supination models showed 

the best accuracy, however, correct identificaton of these two motions 

based on variance and zero crossing was greater than when based on AR 
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modeling. 

Although the wrong motion was chosen many times for a particular 
' input signal it was consistently wrong. For example, when the actual 

.motion was grasp the computer often chose pronation based on the models 

from electrode 1. This fact was used to advantage. In the final 

decision criteria logical combinations of motion choices from one 

electrode or from both were incorporated with decision planes from 

variance and zero crossings. 

The best results were obtained with a combination of decision planes 

in the variance/zero crossing space and AR modeling. Since feature space 

of variance and zero crossings contain more discrimination information 

than AR coefficients it was the primary discrimination criterion. Sukhan 

and Sa_ridis (1982) also found variance and zero crossings to contain more 

discrimination information. 

The final decision criteria are, 

If V2<60 then Flexion 

If (V1 <12)AND(Z1 <14) then Extension 

If (V1<9.45*Z1+10)AND(V1<-10*Z1+140) then Supination 

If ((V2>411)AND(E1=PRONATION)AND(V1<-12.5*Z1+235))0R(E1=FLEXION) then 

Splay 

If ((E1=PRONATION)AND(E2=PRONATION))OR(E1=GRASP)OR(E1=SPLAY) then 

Pronation 

If (E1=EXTENSION)OR((E1=PRONATION)AND(V1<214)) then Grasp 

Remainder is Pronation 

V1 ,V2, Z1, and Z2 are as before. E1 and E2 are the best fitting AR 

models based on electrode 1 and electrode 2 respectively. It was seen 
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from the results ·using the first test data set that the most difficult 

motion to discriminate is pronation, for both the decision planes and the 

AR models. Consequently, any samples not fitting one of the first six 

decision criterion are assumed to be pronation. Graupe et al. (1982) 

also experienced difficulty in discriminating pronation. They employed 

cross correlation relationships between two electrodes in their design. 

Coincidently, pronation was the only motion that could be consistently 

identified based on cross correlation, 

The second test data set resulted in a worst case accuracy of 71.7%. 

When the first test data set was used discrimination accuracy was 91%, 

however, this is biased since it was used to modify the decision 

criteria. 

It should be noted that no formal training was involved in either 

the calibration data or the test data. After supplying the calibration 

and test data the primary subject was able to more consistently reproduce 

the six motions with medium contraction. It is not certain what effect, 

if any, this had on the final results, but if new data were recorded for 

calibration purposes it is possible that more representative decision 

planes and AR coefficients would result. 

The final decision criterion was also tested with maximal contracton 

motions to test its flexibility under varying conditions. An accuracy of 

53.8% was obtained. This is most likely due to the good discriminability 

of flexion and extension, 



47 

SUMMARY 

Variance, zero crossings, and auto regressive modeling of EMG 

signals in the lower arm were used for discrimination of six motions in 

the lower arm. These motions were hand grasp and splay, wrist flexion 

and extenison, and wrist pronation and supination. EMG signals were 

obtained via two .high input impedance differential amplifiers and stored 

on a magnetic disk for off-line analysis. Variance/zero crossing 

decision planes, and AR coefficients were determined and tested with a 

separate set of test data. 

Variance, zero crossings, and AR modeling of EMG signals provide 

information which permits discrimination of lower arm motion at rates 

significantly greater than random chance. Variance and zero crossings 

provide more discrimination information than AR modeling. 

Although the results at this time are inadequate for prosthesis 

control, there is much promise and room for improvement. Through 

standardization of motions during the calibration phase, decision 

criteria that relate EMG signals to known forces might be obtained. This 

would reduce some of the subjectiveness of contracting the muscles with 

"medium" intensity, as perceived by the subject. 

Training could be facilitated if a dedicated computer determined 

(on-line and with little delay) the motion based on the subject's EMG 

signals. This would provide the subject with instant feedback, aiding in 

more consistant contractions. 

Proportional control algorithms may be implemented for prosthesis 

control, however, computation time would increase due to more motion 

I 



48 

conditions that would have to be discriminated, Combined with learning 

algorithms AR correlation may cause motion discrimination to be too slow. 

Since variance and zero crossings provide more discrimination information 

and require less computation time than AR modeling, they, seem to be the 

most promising EMG parameters for future upper limb prosthesis control. 

Prosthesis control systems should be designed to require as little 

training by the amputee as possible, however, similar to someone 

relearning to use an injured limb, some degree of training by the amputee 

will likely be necessary. Just as human training would improve 

prosthesis performance so would prosthesis training. That is, a 

prosthesis that "learns" to respond to the EMG signals that are most 

naturally produced by the amputee might become more acceptable to the 

amputee. 

No matter how technical and objective the testing of a prosthesis 

control system is, the final measure is a su~jective evaluation by the 

amputee. Many amputees who own a myoelectric prosthesis rarely wear 

them. When they do wear them it is usually not for functional reasons 

but cosmetic reasons (Shannon, 1979b). Cosmetically adequate prostheses 

should be designed with natural and effective control systems mated to 

natural and effective feedback systems if patient acceptability is to be 

achieved. 
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APPENDIX A 
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Figure A. Both differential EMG amplifiers were of the design in (a). 
All four sub-amplifiers are FET Op Amps with 10l2n input 
impedance. Numbers inside the triangles represent pin numbers 
on a single quad Bi-FET Op Amp. Figure A(b) is the EMG 
threshold circuit. Vthresh can be varied by adjusting the 
potentiometer. 
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Figure A(c). The 0804 National Semiconductor A/D convert.er is shown. 
With Ct =50 pF and Rt =10 kn the A/D conversion rate is 
approximately lM Hz. INTR is connected directly to WR 
making the ADC free running. The two 1200n resisters 
allow for a ±5 V input which corresponds to the maximum 
voltage output expected from the differential EMG 
amplifier·s. 
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APPENDIX B 

Variances of the fourteen samples for each of the six samples a~d 

two electrodes are shown below. These are the data points represented 

in figures four and five. Values with a. "*" in front of them were not 

close to the average far that.motion and .those corre!!\ponding data points 

were not included in the estimation of the AR models. 
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Shown are the zero crossings 'for the calibration data. They are based 

on 300 hundred data points.and are the abscissa values in figures four and 

. five. 
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APPENDIX Cl 

The main prog_ram ~'MAIN" is· shown below. Successive .'REM' statements 

separate the modular units for easy identification. The program· includes. 

error checking and is 'menu' oriented. 

10 SN=0 
·15 N=299 
20 Il=PEEK<S9425) 1 I2=PEEl«59427') 1 I3=PEEK<59456) 1REM STORE UJITIAL VALUES 
30 POKE 52,255:POKE 53,79 •REM REDEFINE TOP OF MEMORY 
40 POKE59456,PEEK<59456)AND2Sl: REM ATN ON 
50 POKE59426,85:POKE59426,63 : REM UNL & LINT 
60 POKE59456,PEEK<59456)0R4 1 REM Anl OFF 
65 POKE59426,255:REM CLEAR DATA LINES 
70 REM 
80 PRINT":::l" :PRINT 1PRINT :PRINT" ll<ll<>I< MAIN MENU ll<ll<ll<" :PRINT :PRINT :PR!tff 

· 90 PRINT" 1. ENTER ID" 1PRINT 1PRINT"2, TAKE A SAMPLE" 
100 PRINT 1PRINT"3. CATALOG DATA DISK" :PRINT 1PRINT"4. REVIEW A SAMPLE ON OI::>K" 
105 .PRINT1PRINT"5, QUIT;' :PRINT1PRINT. 
110 GET Q$.: IF Q$="" THEN 110 . 
115 Q~=VAL(Q$):0N Q~ GOTO 130,200,1000,1300,1100. 
"120 GOTO 80 
130 PRINT:INPUT" ENTER INITIALS, ANQ SAMPLE II OF SUSJECT";ID$,SN$ 
135 PRINT1INPUT"EHTER NUMBER OF SAMPLE l"TS.";N:N=H-1 
1·40· SN=VAL<SN$) 1 REM INITIALIZE REAL VARIABLE SN 
150 GOTO 80 
160 REM 
170 REM SAMPLE MENU 
180 REM 
200 PRINT":::l" :PRINT :PRINT"WHICH MOTIOtl DO YOU WANT TO SAMPLE?'' 
210 PRINT:PRINT 11 1. HANO GR~SP 1! :PRI~4T"2. HAND SPLA~''.' :PRINT 11 :3. ~ii<;I:3T FLE~:'." 
220 f'RINT 11 4. WRIST EXTEND" :PRINT 11 5. 'WRIST PROMATE" :PRIMT"6o Wf~IS:T sur::·,;:~;r:..,r,::_·• 

230 PRINT"7. RETURN TO MAifl MEtlll" :PRINT :PRINT 
235 GET MO$:IF M0$= 1111 THEM 285 
240 t10~=VAL<M0$) :ON MO): GOTO 250,260,270,280,290 .• 300,•3•2• 
250 M0$= 11 QRA.'' :GOTO 4~30 
260 MO$="SPL":GOTO 400 
27C• MO$=" FLX" : GOTO 400 
280 M0$= 11 EXT":GOTO 400 
290 MO$="PRO":GOTO 400 
300 MOZ="supu 
31~ REM 
~•20 REM 
:330 REM 
400 PRINT" TURN AMPLIFIER OH At·lD RESTART IT, THEN" :PR!t,ff 
402 PRlNT 11 PRE88 ANY ~<EY TO TAKE A 8AMPLE 11 

405 POKE59426,255:REM CLEAR DATA Llt'ES 
410 GET Q$: IF Q$="" THE'.N GOTO 410 
415 IF Q$="Z" THEN GOTO 80 :REM PAtlIC SUTTON 
420 POKE594516,PEEK<59456)AND253: REM NRFO Cl~l (0804 !JN) 
430 SYS 204:30: REM MACHINE SUSROUTI NE 
440 POKE59456,PEEK<59456)0R2: REM HRFD OFF (<~$04 OFF) 
450 POKE59425,.I1 :POKE59427,.I2:POKE59456,.I:3:REM RESTORE INITIAL VALUES 
460 Nl$=l0$+MO$+". 1. 11 +SN$ :t..f2$=IO$+M0$+". 2. "+SN$ 

· 470 REM 
490 REM 
50!.-) PRINT 11 ;J";PRINT:PRINT 11 1. RE'...'IEW 11 N1$:PRINT"2.. RE\IIE~.J "t..J2:.t 
5_10 PRINT 11 3. SAVE "N1$" A~~D 11 N2:t :PRINT"4. F.:ETAKE LA:5T 8At·1PLE" 
520 PRINT"5. R:ETURN TO MOTION MEt·lU" :PRINT :PRHIT 
525 !JET Q$: IF Q$=" "THEN- 525 
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530 Q~~=VAL(Q$) :ON Q~ GOTO 540,.580,.620,400,.200 
540 FOR I=0 TO N 
550 POKE 59426,.PEEK<20736+I) 
560 NEXT 
570 GOTO 500 
580 FOR I =0 T1) N 
590 POKE 59426 .. PEEK<21248+I·) 
600 NEXT 
61'0 GOTO 50~!:1 
620 PRINT:PRINT:PRINT:PR!HT"IS AMPLIFIER TURflED OFF?" 
630 GET Q$: IF Q$= 1111 THEN 630 
640 SCRATCH D1,<N1$) :SCRATCH Dl,<N2$) :REM SCRATCH IF FILE ALREADY E)~I:3TS 
650 DOPEN#2,<NLS),D1,W 
660 Gosue· 1200 :REM CHECK TO MAKE SURE FILE OPEflED OK 
670 FOR ·I=0 TO N 
690 :PRINT#2,PEEK<20736+I) 
690 :NEXT 
700 DCLOSE :GOSUB . 1200':REM MAKE SURE FILE CLOSED OK 
710 DOPEN#2,<N2$),D1,W 
720 GOSUB 1200:REM MAKE SURE FILE OPENED OK 
730 FOR I=0 TO N 
740 :PRINT#2,PEEK<2124S+I) 
750 :NEXT 
760 DCLOSE: GOSUB 1200 :REM MAKE SLIRE FILE CLOSED OK 
780·SN=SN+1:REM INCREMENT SAMPLE NUMBER 
790 SN$=RIGHTS<STR$<sm ,LEN<STR$(8N)")-1) :GOTO 200 
300 REM 
S10 REM 
820 REM 
1000 PRINT:PRINT"IS AMPLIFIER TURNED OFF" 
1002 GET Q$1!F Q$="" THEN 1002 
1005 PRINT:PRINT:CATALOG D1:PRINT:PRINT 
1007.PRINT"PRESS <.'.RTN> TO RETURN TO MAIN MENU" 
1010 GET Q$:IF Q$="" THEN GOTO 1010 
1020 GOTO 80 
1030 REM 
1040 REM 
1045 POKESSl425,!1:POKE59427,I2:POKE59456,I3:REM RESTORE INITIAL l/ALUES 
1100 PRINT"THANK YOU!":END 
1110 REM 
1120 REM 
1200 IF DS>l THEN·PRINT OS$:END 
1210 RETURN 
1220 REM 
1230 REM 
1240. REM 
1300 PRINT :PRUIT :PRINT" IS AMPLIFIER TURNED rJFF?" 
13>0 PRINT :PRINT" ENTER FILE NAME< I I IMMM. X.SN)" :PRHff' 
1'315 INPUT NN$ 
1320 DOPEN#2,<NN$),D1:REM OPEN FILE 
1330 Gosus 120e:REM MAKE SURE FILE OPENED Of( 
1:340 FOR I=0 TO fl 
1350 : INPUT#'2,.NN :POKE <20736+!) ,.l'H-~ 
1360 NE~<T 
1362 DCLOSE ;rJ08UB 1200 
1365 PF: INT: PRHIT"TURM IJt·l AMPLFIER." 
1367 GET Q$: IF Q$= 11 ~· THEt·4 1:367 
1370 FOR I=0 TO t·I 
1380 :PO~(E 59426 ... PEEKC:20736+I) 
1390 NE>'T 
1410 C~OTO 8(1 
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This is .the machine language program "MACH". Five hundred twelve 

bytes of data are stored starting in location $5100. The 'NOP' statements 

are stricktly for timing purposes. MAIN branches to 5000 HEX and execution 

begins. 

S000 78 SEI 
S001 A2 00 LOX #$00 
S008 AD 40 ES LOA $ES40 
S'.l06 29 01 AND #$01 
S008 00 F9 BNE $5003 
S00A A9 08 LOA #$0S 
S00C 00 28 ES ORA SE823 
S00F so 23 ES ·STA $E823 
S012 A9 08 LOA #$08 
S014 80 00 SS STA $SS00 
S017 CE '00 SS DEC $SS00 
S01A 00 FB BNE $5017 
501C AD 20 EB LOA $E820 
S0lF 90 00 S1 STA $S100,X 
S022 A9 F7 LOA #$F7 
S024 20 23 EB AND $E823 
S027 80 23 ES STA $E823 
502A EA NOP 
5028 EA NOP 
S02C EA NOP 
5020 A9 08 LOA #$08 
S02F so 00 SS STA $SS00 
S032 CE 00 5S DEC $5S00 
503S 00 FB BNE $5032 
S037 AC.20 'ES LOA $E820 
S03A 90 00 s3· STA $S_300,X 
5030 ES INX 
503E 00 CA BNE $S00A 
S040 A9 0S LOA #$08 
S042 00 23 ES ORA $E823 
504S 80 23 ES STA $E823 
S048 A9 08' LOA #$0S 
504A 80 00 .ss STA $5500 
S04D CE 00 55 DEC $SS00 
5050 00 FB BNE $S04D 
5052 AD 20 ES LOA $E820 
5055 9D 00 S2 STA $5200,X 
S0S8 A9 F7 LOA #:SF7 
S0SA 20 23 ES AND $E828 
5050 80 23 EB STA $E823 
5060 EA NOp 
5061 EA NOP 
S062 EA t·!OP 
5063 A9 08 LOA #$08 
S065 80 00 55 STA $550(1. 
5068 CE 00 SS DEC $SS00 
5(t6B 00 FB BME $5068 
5060 AD· 20 EB LOA $E820 
5070 90 0~3 S4 STA $54~30,~·~ 
5073 ES rr~x 

5074 0..:1 CA 8ME $504fJ 
5076 58 CL! 
5077 60 RTS 
5078 00 BRK 
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APPEND~ C2 

Variance was calculated off-line using the program below. 

10 DIM VARC5,1,13) 
20 HlPUT"::i::NTER INITIALS ANO NUMBER OF SAMPLE PTS. "·' !0$ .• N 
30 FOR M0=1 TO 6: ON MO GOT1J 40,50 .• 6~t,. 70,80,90 
40 1t10$="GRA" :GOTO me 
50 :MO$="SPL":GOTO 100 
60 :M0$= 11 Flr.~..: 11 :GOTO 1":11;, 
70 :M0$= 11 EXT 11 1GOTO 100 
80 :MO$="PR0 11 :GOTO 100 
90 :MO:S="SUP 11 

100 :FOR SN=1 TO 14. . 
110 :.:SN$=RIGHT$CSTR$CSN> ,LENCSTR$CSN> >-1 > 
120 I :N1$=l0$+t10$+ 11 

• l i. 11 +SN$ 1N2$=10:$+M0$+" • 2. ~1 +8~~$ 
130 ·: :X1::::0 :X2=0 ' 
140 : :OOPEN#2,CN1$),01 :IF OS:>1 THEN PRUIT OS$' :V=V+1 :PRINT \/:GOTO 190 
150 ::FOR I=0 TO N-1 
160 : : : INPUTll2,Y: IF OS:>1 THEN PRINT ·OS$; :l/=V+1,PRINT I/ 
170 1:1X1=X1+Y:X2=X2+Y$Y 
180 · : :NEXT I 
190 I :OCLOSE 
200 I 1VARCM0-1,0,SN-1 >=CN$X2-X1$X1 ),/(N$(N-D) 
210 : :X1=0 1X2=0 
220 .. ooPEN#2, <N2$) ,01: IF OS:>1 THEN PRINT OS$; :V=V+1 :PRINT ,,. :GOTO 270 
230 :1FOR I=0 TO N-1 
240 :::INPUTll2,Y:IF OS:>1 THEN PRINT OS$;:V=l/+1:PRINT V 
250 1::X1=X1+Y1X2=X2+Y$Y 
260 1 :NEXT I 
270 I I OCLOSE 
2s0 1 1VAR010-1, 1.sf.1-1 >=<N•x2-x1•x1 >?<tl•<N-1 > > 
290 : NEl<T SN 
300 NEXT MO 
310 OPEN 4,4:CMD4 
320 PRINT:PRINTTABC32>"ELECTROOE 1!1":PRINT 
330 PRUIT"SAMPLE GRASP SPLAY FLEX ION E~~TEN8ION PR0~4RTIO~f 1 ; 

340 PRINT" SUPINATION" 
350 PRINT" 
360 PRINT" -----.. 
370 FOR I=0 TO 13 
330 :PRINT 11 "1+1;:LL=5-LEN<STR$(l+1)) 
390 :FOR J=0 TO 5 
400 : :PRINTSPCCLL)VARCJ ,0, I); 
410 ::LL=11-LEN<STR$CVARCJ,0,I))) 
420 :NEXT 
430 :PRINT 
440 NEXT 
450 PRINT :PRINT 1PRINTTABC32> "ELECTRODE 112" :PRIHT 
460 PR INT" SAMPLE GRASP SPLAY FLEX !Ot~ 
470 PRINT" SUPINAT!Otl" 
4$0 PRINT 11 

490 PRINT" 
500 F•)R I=0 TO 13 
510 :PRINT" "!+1 ;:LL=5-L.Et·lCSTR$< !+1) l 
520 :FOR J="J TO 5 
530 : :PRINTS:PC<LL)VAR<.J,1,.I); 
540 ::L.L=11-LEN<BTRSCl/ARCJ,1,I))) 
550 :NEXT 
560 :PRINT 
570 NEXT 
580 PRINT#4:CLOSE 4 

-----... 
' 

E~~TEMSIOM 

-----·-": 
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zero crossings were calculated by this program. 

10 Dir1 ZC(S,,.1,13> 
20 IHPUT"::;J::NTER INHIALS ANO NLIMBER OF PTS. ";IO$ ,N 
30 FOR MO=l TO 6•0N MO OOTO 40,50,60,70,80,90 
40 :MOS="ORA":OOTO 100 
50 :MO$="SPL":OOTO 100 
00 :M0$~ 11 FLX 11 :GOTO 100 
70 :M0$= 11 EXT":GOTO 100 
80 :t10$="PRO":GOTO 100 
90 IMQ$="8UP 11 

10.0 :FOR SN=l TO 14 
110 : :SN$=RI~'f$<.$l"R$<SNl ,LEN<STR$<SN) l-1 l 
120 : :Hl.$=10$'-t<MOS+i•. 1. "+SN$ :N2$=IO:fi:+M0$+ 11

• 2. 11 +SN$ 
1 :30 : : zx=a :Q0=1c} 
140 : :OOPENil2,<M1$l,01 •IF OS>l THEN PRINT OSS; :IX=IX+l :PRINTI>~:GOT:J' 2:30 
145 1:INPUT#Z,Y1IF Y::>128 THEN Q0=1 
150 ::FOR I=l TO N-1 
160 : : : INPUT#2_,.Y 
170 :::IF Y<127 THEN Q1=01GOTO 200 
180 •••IF Y::>128 THEN Q1=1•00.TO 200 
190 : : :Q1=Q0 
200 :::IF Q1<>Q0 THEN ZX=ZX+t 
210 •••Q0=Q1 
220 : : NEX1 I 
230 • :OCLOSE 
240 ::ZC<M0-1,0,SN-ll=ZX 
250 : :ZX=0 
260 ::OOPENll2,<N2$) ,01: IF OS::>1 THl:.N PRINT OS$;: IX=IX+1 :PRINTIX :GOTO 350 
265 INPUTll2,'~: IF 'D·128 THEN Q0=1 
270 : :F•JR I=1 TO N-1 
2S0 :::INPUT#2,Y 
290 : : : IF Y<: 127 THEN in =0 : GOTO 320 
300 : •:IF Y>128 THEN m=l :GOTO 320 
310 : : 1Q1=Q0 
320 : : : IF Q 1 ()·Q0 THEN Z>~=i~<+ 1 
830 : -= : Qt1=Q 1 
:340 : :NE~~T I 
:350 : :DCLCS:E :ZC<M0-1, 1,SN-1 )=Z>~ 
:370 : NE~·~T St4 
380 t1E>~T MO 
390 OPEl~ 4,4:CM04 
331 PRINT :PRINT8PC(:30) "ZERO CROSSIMGS" :PRit~T 
:392 PRit4T:PRINTSPC(:~;2) "ELECTRODE #1" :F'RIMT 
39·~: F'RI:-~T"SAMPLE GRASP SPLA't' FLE~·~IIJt~ 
:394 PRit·iT" 
·395 PR!tfi" 
:396 PR I ~-~:r" 

SUP I :··~AT I ON" 

-----.. 
415 :PRit-:T" ,, I+1.~ :LL=5-i..EN<STR$< I+1)) 
4:2~1 : FOR .J=~J; 70 5 
422 ~ aPRrNT8PCC.:LL)ZC(.J ... o .• I); :LL=l 1-LEMr.'.STR:?<ZC(.J .(:,•I>)> 
424 :NE>~T . 
426 tPR:::t-~T ~;~EXT 
4:35 ?F.:INT :!=>F~It·r;·::;pcr.:32) "ELE.:CTRC<C1E .#2" :FR:::~~T 
440 PR:::NT"SP!MPLE: OR8SP 
4.:!.:! PRI~~T" SUP!NAT!Of·~" 

.:i.:.!5 PRINT" 
446 PRI:-~T" II 

450 FOR I =Q TO t:3 
455' :PRINT" "I+1;:LL=S-LEHC.:STR$(I+1)) 
460 :FOR .J=0 TO 5 
462 ::PRINTSPC<LL)ZC<J,1,IJ;:L.L=11-LEN<STR:t<~C(J 1 T)>) 
464 :NEXT - .• '. . 
4'?6 :PRit~T : NE~~T 
4S0 PRINT#4:CLOSE ALL 
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AR coefficients were estimated using this program called "ARM". 

10 DIM 8ETA<14,5),YD<300),TM<5,5) 
20 H=300 
30 INPUT" ~HTER IHI TI ALS" ' I 0$ : PR IHT : IHPUT "EHTER ORDER OF AR t10DEL" .1 P 
40·0PEH4,4:CMD4 
50 PRIHTSPC<20>"AUTO REGRESSIOH COEFFICIEHTS" 
60 PRIHT#4:CLOSE 4 
70 FOR M0.;1 TO 6:0H MO GOTO 80,90,100,110,120,130 
80 1MO$="GRA"1GOTO 140 
90 :M0$= 11 SPL 11 :GOTO 140 
100 :M0$=011 FLX 11 :GOTO 140 
110 :M0$=;'EXT" :GOTO 140 
120 :MO$='.'PR0 11 :GOTO 140 
180 :M0$= 11 SUP 11 

140 :FOR· EL=1 TO 2: 
150 ::EL$=".n+RIGHT$<STR$(EL),LEH<STR$<EL))-!)+"." 
160 ':FOR SH=1 TO 14 . 
170 : : :SH$=RI•3HT$(STR$(SH) ,LEH(STR$(SH>>-1) 
180 :::HH$=ID$+MO$+EL$+SN$ 
190 1: :DOPEN#2, <HN$) ,01: IF DS>1 THEN PRIHT OS$.; :V=V+1 :F·RINTV :OCLOSE :GOTIJ 1'3?0 
200 : : :FOR J=0 TO N-1 , 
210 1::1IHPUT#2,YD<J>:IF DS>1 THEN PRINT OS$:V=V+1:PRIHT V 
220 : : 1NEXT J 
230 : : : DCLOSE 
250 REM 
260 REM CALCULATE AR COEF 
270 REM FIRST FIND X'X, A (P+1)~2 MATRIX 
280 REM 
290 :::TM(0,0>=N-P 
300 :::FOR J=1 TOP 
310 ·,: 1 iFOR I=J TO P 
320 :::::FOR K=P TO H-1 
330 : : : : : :TM<J, D=TM<J, I)+';D<K-I>*YD<K-.J) 
340 :::::NE}<T K ' 
350 :::::TM(I,J)=TM<J,I) 
360 : : : :NEXT I 
:370 : : : :FOR K=P TO N-1 
380 : : : : :TR<J.>=TR<JHYD(K)*YD<K-.J) 
390 :::::TM<0,J>=TM<0,J)+YD<K-J) 

. 400 : : : :NEXT K 
410 ::::TM<J,0>=TM<0,J) 
420 : : :NEXT J 
430 ::1FOR K=P TO H-1 
440 'I' 1TR(0)=TR(0)+~'0(K) 
450· :: :HEXT K 
470 REM 
480 REM FHlO (X')~) ~-1 

490 REM 
500 REM 
510 : : :FOR .J=0 TO P 
520 : : : :'T'O(.J)=J 
530 : : :NE~~T .J 
540 : : :FOR ,T=0 TO P 
550 : : : :CC=1.-) 
560 : : : :M::.J 
57~1 : : : :FOR I=.J TtJ P 
580 ::::·:IF (A88(CC)-A88(TM<J,I)))>0 THEN 610 
590 : : : : :M=I 
.S0€1 : : : : :CC=TM<.J .•I) 
610 : ~: :NE;-<T I 
620 : : : : :t F .J=M THEM 1S70 
i:-::~:(1 : : : :.l='r10(,"'1) :'-r'O<M>='r'O(.J) :'·r'O(.JJ=I 
640 1 : : :FOR I=0 T•J P 
650 1::: :S=TM< I ,J) :TM( I ,.D=TM< I .• Ml :TM( I .M)=S 
660 : : : :NE)·~i" I 
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680 1111FOR M=e TOP 
690 11111TM<J,M)aT~<J,M)~CC 
700 I I' •NEXT M 
710 1111FOR M=0 TOP 
720 11111IF J=M THEN 790 
730 ••••• cc=TM<M,J) 
740 11111IF CC=0 THEN 790 
750 :1:11TM<M,J)=0· 
760 111:1FOR !=0 TOP 
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770 I.''' 1TM<"M, D=TM(M, I)-CCl!ITM(J, I) 
760 : 1111NEXT I 
790 1 1 1 : NEXT M 
600 1 1 1NEXT J 
610 :1:FOR J=0 TOP 
820 1111IF YO(J)=J THEN 920 

'830' "'1M=J 
840 1 • :M=M+1 
650 :1iIF. ·yo(M)=J THEN 870 
·860 1 11 IF P>M THEN 840 
670 : 1 1YO(M)=~'Q(J) 
880 1 1 1FOR I=0 TO P 
890 1:; :CC=TM(J, I) :TM<J, D=TM<M,l) 1TM<M, D=CC 
900 1 I 1NEXT I 
910 I I 1YO(J)=J 
920 11NEXT J 
940 REM 
950 REM FINn <X'X)1'-1 'wy WHICH IS BETA 
970 REM . 
980 1 11FOR J=0 TO. P 
990 1111FOR I=0 TOP 
1000 : : ; : :BETA<SN-1,.D=BETA<SN-1,J)+TM(J, I )>llTR( I) 
1010 : : : : 1TM<J,D=0JREM CLEAR ARRA~' 
1020 11:1NEXT I 
1030 1:::BETA(14,J)=BETA<14,J)+BETA<SN-1,J) 
1040 : : :tlEXT J 
1045 : uFOR J=0 TO P 
1046 : : : :TR<J)=0 
1049 : : :NEXT J 
1050 REM 
1060 REM 
1070 :,:NEXT SN 
10S•J ntJPEN4,4 :CM04 
1090 : :PRINTSPC< 12)MO$" ELECTRODE #"EL :PRUff 
1100 ;:PRINT"SN# "1 
1110 ::FOR J=0 TOP 
1120 1: :BETA<14,J)=BETA(14,.J>.'14:REM .FINISH CRLCULATIHG THE BETA A'·IS:RAGES 
1180 :::PRINT 11 B 11 JJJSPC<ll); 
1150 : :tlE;·ff .. J 
1160 : :PRINT 
1170 ::FRit·~Tu-- 11 ; 

1180 ::FOR J=0 TOP 
1190 :::PRINT"--"SPC<12); 
1200 : :l'lE~-~T J 
1210 : :PRHff 
1220 ; :FOR SN=0 TO 14 
1230 : : :PRINT SN+l.~ :LL=4-LEM<STR$(St-1+1)) 
1240 :::FOR J=0 TOP 
1250 : : : :PRit..fT:;pr:;(LL>BETA<SN ... J) .: 
1·260 : : : :LL=14-LEH<STR$<8ETA(8}-~,J))) 
1270 : :.: :8ETA(:;H p.J)=0 
1280 : : : t-~E}<T J 
125'0 : : :PRHff 
1300 : 1HEXT :;>t' 
1310 PRrnT#4:CL08E 4 
1320 :NEXT EL 
1330 NEXT 110 



63 

APPENDIX CJ 

Medium contraction signals were identified with this algorithm. A · 

worst case accuracy of 71.7% was achieved. It utilizes variance and zero 

crossing feature space and autoregressive modeling. 

10 DIM B<11,4),Y1(199);Y2<199) 
20 DATA 5.32148702,1.60921968,-.401343642,-.392139702,.1459230€~ 
30 DATA 3.64704741,1.79681069,-.613716866,-.428523092,.216939391 
40 DATA 2.673988~8,1.82686176,-.625129529,-.443988386,.221364564 
50 DATA l1.8959459,.98964.2729,. lS7889349,-.1042597113,-. l64565243 
60 DATA 2.S359S256,1.73S61925,-.490649.121,-.453790162,.18377113 
70 DATA 7.29340983,l.34426129,-.0372945320,-.307912267 .• -.0552968730 
80 DATA 2.5707?127,1.87297085,-.720t72125r"-.365288417,.19226578G 
90 DATA 2. 65959554, 1. 85725526,-. 638524152,-. 483946246 .•• 244337499 
100 DATA 10.32198299,1.107780027,.1566344573,-.1547962768,-.1921587075 
110 DATA 2.19473556,1.77799732,-.486651833,-.516679739,.2081093042 
120 DATA 3.79522857,1.66513608,-.377711981,-.495869325,.178146854 
180 DATA 3. 99656061, 1. 74395565,-. 489238354 .• -. 485633971, .198642304 
140 FOR J=0 TO 11 
150 :FOR I=O TO 4 
160 ::READ B<J,I) 
170 :NEXT I 
180 NEXT J 
1Sl0 INPUT":J::NTER N11 ,N 
200 FOR M0=1 TO 6:0N MO GOTO 210,220,230,240,250,260 
210 MO$="GRA"1GOTO 270 
220 M0$= 11 SPL 11 :GOTO 270 
230 M0$= 11 FLX 11 1GOTO 270 
240 M0$= 11 EXT 11 :GOTO 2?0 
250 M0$="PRO":GOTO 270 
260 MO$= 11 sup'~ 
270 FOR SN=l TO 15 
280 :SN$=RIGHTS<STR$(3N),LEN<STR$<SN))-l) 
2~0 N1$= 11 TEST 11 +M0$+ 11 .1. "+SN$ :N2$= 11 TEST 11 +MO$+". 2. ''+SI-~$ 
300 Q0=0 :X1=0 :>~2=0·:W1=0 :W2=0 :Z1=0 :22=0 :P0=0 
31'3 DOPEN#2, <fllS) ,01 'IF DS>1 THEN. PRINT OS$ :DCLOSE :GOTO 7:?0 
320 INPUT#2,Y1(0) 
330 OOPEN#3..,<N2$)_..01;INPUT#3..,Y2<0> 
340 X1=X1+Y1(0).:X2=X2+'T'1<0>*'T'1<0> :IF 'T'l(0))12S THEM Q0=1 
350 W1=~11+T'2<0) :W2=W2+Y2(0)ll<Y2(0) :IF T'2(0))128 THEN P0=l 
360 FOR K=l TO M-1 
'370 INPUT#2..,T'1 <K> :X1=X1+Y1 <K) :X2=>~2+Y1 <•()*-'T'1 (K): IF 'T'1 <~~)<:127 THEN Q1=~1 :GCTO 48( 
880 IF T'.1(K))128 THEN Ql=1 :•30TO 400 
390 Q1=Q0 
400 IF Ql<:>Q0 THEN Zl=Zl+l 
410 Q0=Q1 
420 INPUT#3..,Y2(~() :W1=W1+'T'2<K> :W2=W2+Y2(K)*Y2(K): IF 'T'2<f~)<127 THE~·~ F·1=8 ~COTO 4.Sl 
430 IF ','2(K))128 THEN Pl=l :GOTO 450 
440 P1=P0 
450 IF P 1 ·C:>P0 THEN Z2=Z2+ 1 
460 P0=Pl 
470 NEXT K 
480 OCLOSE 
490 V1=(N*~2-X1;+;~·~1 >~"<N*•~N-1)) :V2=<N:+iW2-M 1 *t..-Jl) /(N:?:.<N-1)) 
500 REM 
510 REM 
520 IF ( 1/2<60) THEN t1t1=3 : GOTO 740 
580 IF<V1<12)AND(Z1<9>THEN MM=4~GOTO 740 
540 IF<V1<9. 45*Zl+li3>AN0('···'1<-1•:ii4:Z1+14Ei> THEM MM=G :GOTO 74~1 
550 REM 



:57.:! REM 
.590 M1=1E10•M2r1E10· 
590 FOR J=0 TO 5 
600 I=J+6:E1=0•E2=0 
610 FOR K=4 TO N-1 
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620 X=Y1 <K)-B(,.T ,0)-B(J, Dll!Y1 <K-1 )-B<J .• 2)ll!Y1 <K-2)-B(J ,3)ll!Y1 (1(-3).:B<.J ,4 HY1 <f(-4) 
630 E1=E1+ABS<X> 
640 X=Y2<K7-B< I ,0)-B< I, 1) ;t1Y2<K-1 )-B< I ,2)ll!Y2<K-2)-6( I ~3)ll!Y2<K-3)-6( I .• 4>*Y2<K-4) 
650 E2=E2+ABS<X) 
660 NEXT K 
670 IF E1<M1 THEN M1=E1•C1=J+1. 
660 IF E2<M2 T~EN·M2=E2:C2=J+1 
690 NEXT j 
700 .IF <<V2:>41DAND<C1=5))0R<C1=3) THEN MM=2:00TO 740 
710 IF <<C1=5)AND<C2=5))0R<C1=1)0R<C1=2) THEN MM=5:00TO 740 
720 IF <V1<214)AND<'ID50ll!Z1-420) THEN MM=1:GOTO 740 

.?30 MM=5 
740 OPEN4,4:CMD4 
750 PRINT 11 THE MOTION WAS "MO.$" # 11 M0 11 THE COMPUTERS GUESS IS ... ";MM 
760 ·PRINTC1 ;C2;Zl ;Z2;V1 ;V2; 
770 IF MM=MO THEN CC=CC+1 
780 PRINT#4•CLOSE 4 
790 NEXT SN 
800 NEXT MO 
610 OPEN4,4:CMD4 
820 PRINT"THE OVERALL ACCURACY IS";CCi4'10,'6;")!" 
630 PRINT#41CLOSE 4 


