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INTRODUCTION
Myoelectric Prostheses

Mechanical cable driven arms are the most common and affordable
upper limb prostheses, however, technology has progressed to the point
where myocelectric prostheses (prostheses driven by electric motors and
controlled by the EMG signals generated from an amputee's existing
muscles) can better replicate the function of the lost limb with good
patient acceptability. The two major design problems to be overcome with
the myoeleétric prostheses are an accurate and patient-acceptable control
scheme and an effective feedback mechanism,

Myocelectric prostheses have many advantages and few disadvantages as
compared to mechanical cable arms. Myoelectric prostheses can have more
degrees of freedom than cable arms. Cable arms have only two, elbow
flexion and pincer grasp. Up to eight degrees of freedom are possible in
mycelectric prostheses. These are: hand grasp open/close, wrist
adduction/abduction, wrist flexion/extension, wrist pronation/supination,
humeral adduction/abduction, humeral flexion/extension, and humeral
pronation/supination. An artificial arm of this complexity would,
however, require an inertial platform, using accelerometers in three
dimensions, in order to maintain constant hand orientation (Swain and
Nightingale, 1980). Swain and Nightingale (1980) have developed a
complete hand/arm control scheme involving sensory feedback, subeonscious
finger pressure, slip and torque feedback, trajectory mapping, and EMG

pattern identification necesary for such a complicated prosthesis.



Jerard and Jacobsen (1980) developed a three degree of freedom arm
with hand grasp activated by toe movement and elbow flexion with wrist
rotation activated by myoelectric signals. Graupe, Salahi; and Kohn
(1982) and Lyman, Freedy, and Solmonow (1977) experimented with similar
three degree of freedom hand/arm prostheses, however, the toe was not
used to control the hand function. EMG signals controlled elbow flexion
and wrist rotation functions. Saridis and Newman (1979) built a hand/arm
prosthesis with four degrees of freedom. Hand grasp, wrist rotation,
elbow flexion, and humeral rotafion‘were controlled by EMG signals in the
shoulder or upper arm.

The myoelectrically operated arm provides excellent cosmesis .
(Shannon, 1979, 19750) and unencumbered fitting, important for patient
acceptability (Domholdt, 1984). However, the lack of sufficient sensory
feedback decreases patient acceptability. In an open loop system the |
operator is not aware of what the prosthetic arm is doing. Mental
taxation due to the constant visual feedback required may result in its
rejection by the wearer (Shannon, 1979c). Tactile sensory feedback in
the form of electrocutaneous or mechanovibratory stimulation could be |
incorporated into the prosthesis design, eliminating the need for visual
sensory feedback by the operator, thus improving acceptability.

Currently, myoelectric arms are considerably more expensive'thah
conventional prostheses, but the costs will decline as technology and

supply increase.




"Goals

This paper involves pattern classification and identification of
myoelectric signals in the proximal part of the forearm during specific
movement of the hand and forearm. An unprocessed EMG signal has many
components which can be incorporated for control of a myoelectric
prosthesis. If these components can be classified and identified with
reagsonable success, a compact computer within a prosthetic arm can
analyze the signals from the existing muscles on the stump of the amputee
to control the prosthesis. This research attempts to utilize three of
these EMG parameters, variance, zero crossings, and autoregressive (AR)
correlation.

The goal is to find out which of the three parameters yields the
most functional discrimination of six lower arm movements in a three
degree of freedom system, and what maximal degree of functional
discrimination can be achieved using a combination of all three. The
motions involved are hand grasp and splay, ﬁrist flexion and extension,

and wrist pronation and supination.
Method

Major congiderations in the data acquiéition phase include
minimizing artifact signals and noise in the input signal, designing the
hardware for reduced size and power requirements (which would be necesary
for EMG prosthesis circuitry), and microcomputer chip controllability.

With these considerations in mind, high input impedance FET Op-Amps

were used for the high gain differential input amplifier, along with a




single chip analog te digital converter. Including TTL contreol chips,
all essential hardware fit on a 3"xz4" prototype board. This includes twp
differential EMG amplifiers, a voltage comparator, a 4066 quad-analog
switch, a 7404 quad-AND gate, and a 0804 A/D converter. This does not
include the 6502 microprocessor and peripheral chips used in the PET
Commodore computer chosen for this research. The PET was used because it
utilizes integrated circuitry which could be redesigned as a dedicated
computer contained inside the prosthesis.

EMG signals were taken from two electrode pairs, one pair on the
skin over the digital flexors and one pair on the skin over the digital
extensors., Two unimpaired, subjects, a 21 year old female and a 24 year
old male provided the EMG signals as a result of six different static
contractions of the lower arm. Software was written in 6502 machine
language to acquire, in real time, the digitized EMG signal and in PET
BASIC to store it on & magnetic disk and analyze it. Variances, zero
crossings, and AR coefficients were calculated off line. Then, decision
Planes were established in the feature space of variances, zero
crossings, and AR coefficients. Accuracy in motion discrimination based
on the three parameters was determined by acquiring a new set of test EMG
signals and comparing them to the AR models and applying the variancé and
zero crossing decision planes. It was shown that variance and zero
crossings yielded the best features with respect to functional

Separation.



LITERATURE REVIEW
Introduction

Myoelectric prostheses have been used by upper limb amputees for
about 20 years. These prostheses were first controlled by EMG signal
strength from one or more external electrodes located on existing limb
muscles or adjacent shoulder muscles (Graupe et al.,1982). With
improvements in technology, statistical features were realized as a
practical approach to prosthesis contfol. Finally, with advanced
technology, such as 16 bit microprocessors, previously time consuming
temporal pattern identification and higher order statisties can be
combined with a hierarchically intelligent control method to produce
prostheées which will function smoothly with minimal mental taxation on
the amputee (Saridis and Newman, 1979). A hierarchically intelligent
control method is one where control signal determination is broken up
into several levels. The output of each level in the command signal
determination process is based on the output from the preceding levels,
with EMG signals having the highest priority in the determination of the

final prosthesis control.
Experimental Procedure :

Soderberg and Cook (1984) list four components in the design of EMG
instrumentation. These are: 1) the signal source, 2) the transducer,

used to convert ionic bioelectric current to electron current, 3) the

amplifier, and 4) the signal processing circuit.




Gross EMG signals result from the sum of many depolarizations of
muscle fibers. Depolarization of these fibers results in their
contraction. Muscle fibers contracting in groups cause gpecific limb
motions to occur, with the application of force to a load as a result.
Net force, therefore, is a function of many specific myofibril
contractions and its magnitude is directly proportional to the number of
myofibrils contracting. EMG signals must be reproducible over long
periods of time for any partiéular motion. Almstrom and Herberts (1977)
state this is in fact true. Gandy et al. (1980) show that for four
muscles inﬁthe upper arm and shoulder, the shape and phase relationships
of EMG signals ccllected periodically, with surface electrodes replaced
each time, are clearly consistent over a period of six weeks.

Medeiros (1984), Soderberg and Cook (1984), and Graupe et al. (1978)
state that a particular resultant limb movement is achieved through a
complex combination of gpecific muscle group contractions. The limb
movements are the résult of synergistic EMG signals. This means
individual muscle fibers cooperate to achieve an outcome (a limb
movement) that would not be possible from the contraction of just one
fiber. Although fine wire electrodes may be used to measure the
potential of a sgpecific muscle fiber or small group of muscle fibers, the
measurement of just one or even a few myofibril potentials may not be
representative of the function that is occurring. Reliability
coefficients for fine wire electrodes, as reported by Soderberg and Cook
(1984), are lower than for surface elctrodes. Within-day reliability
coefficiente averaged .62 for contractions ranging from 20 to 100 percent

of maximum. Between-day coefficients averaged only .22 for the same




range of contraetions. This is due to the difficulty in placing the wire
electrode in the same place each time. Since the electrode is so close
to the signal source the small displacement of 5 mm or less which
occurred with their use resulted in large differences in the readings.
Movement artifacts are also introduced with the use of fine wire
electrodes.

Surface electrodes have minor disadvantages but they effectively
measure a gross EMG signal which is representative of the function taking
place. Soderberg and Cook (1984) report'for contractions of 30 to 50
percent of maximum, between-day correlation coefficients ranged from .78
to .05, Maximal contractions produced coefficients that ranged from .52
to .81. They also éiscovered that the largest signal for a bipolar
electrode configuration was obtained near the center of the muscle with
the electrodes oriented longitudinally with the muscle fibers. Medeiros
(1984) found the optimized location to be oriented longitudinally but
just off center of the "bulge" or the thickest part of the muscle. This
may be true because the large movements at the "bulge' result in
electrode movement. For electrodes placed with no more than 5 mm
difference on the skin for between-day tests EMG signal parameters are
not significantly different (Graupe, Salahi, and Kohn, 1982). A primary
advantage of using surface electrodes is that they can easily be appiied
in a standardized manner with little discomfort (Soderberg and Cook,
1984)., A primary disadvantage is that they may malfunction during heavy
perspiration (Paciga, Richard, and Scott, 1980).

Eléctrodes must be nonpolarizable, so that half-cell potentials are

not introduced. Most researchers cited use silver-silver chloride or



gold-plated stainless steel electrodes. Stainless steel differential
electrodes, 5 mm in diameter and spaced 25 mm apart, were used by van der
Locht et al, (1980). Similar electrodes were used by Shannon (1979a,
1979b, 1979¢), Soderberg and Cook (1984), and Doerschuk et al. (1983).
Saridis and Gootee (1982) used gel-impregnated silver-silver chloride
differential electrodes 1.75 inches apart separated by a center ground
electrode. Gandy et al. (1980) and Medeiros (1984) used types similar to
that used by Saridis and Gootee (1982).

Most authors cited recommend that the input impedance of the
amplifiers ought to be at least ten times the maximum skin impedance.
This reduces movement artifact and other distortions of the EMG =signal.
Van der Locht et al. (1980) state that this will decrease the inaccuracy
of skin-resistance variations to approximately five percent or less.

Skin resistances can range from 200 Q to about 2 M Q. For
measurement inaccuracies less than one percent an amplifier with an input
impedance of 200 MQ or larger is necessary. With the advent of very high
input impedance amplifiers, silver-silver chloride electrodes in
conjunction with electrolytic paste need not be used. Dry electrodes,
which are much more comfortable, can be used quite effectively.
Incidental movement of dry electrodes will not cause appreciable motion
artifacts (van der Locht et al.,1980).

The maximum peak to peak voltage of raw or unprocessed EMG signals
is 3 mV (Soderberg and Cook, 1984). This requires an amplifier gain of
4000 for a %6 V output. Typical gains range from 100 to 10,000
depending on the application. However, Paciga, Richard, and Scott (1980)

uged amplifiers with gains as high as 20,000.



It is generally.recognized that most of the imformation in EMG
signals is located in the range of 10 to 1000 Hz. This is corroborated
by Shannon (1979a), Saridis and Gootee (1982), Soderberg and Cook (1984),
van der Locht et al. (1980), Graupe et al. (1978), Gandy et al. (1980),
Doerschuk et al. (1983), and Almstrom and Herberts (1977). The response
of an amplifier should be uniform within this range. Shannon (1979,
1979b, 1979¢) uses amplifiers with a bandwidth from 10 to 500 Hz.

Saridis and Gootee (1982) designed an amplifier with a gain of 5000, an
input impedance of 22 MQ, and a bandwidth of 5 to 1500 Hz. Soderberg
and Cook (1984) and van der Locht et al. (1980) state that to help
eliminate cable artifacts, i.e., capacitance, the amplifier should be
placed as close to the electrodes as possible. In fact, they, along with
Shannon (197%a, 1979b, 1979¢c), incorporate a preamplifier into the
electrode unit. This adds weight to the electrodes which might increase
their incidental movement, causing motion artifact. This can be kept to
negligible levels by minimizing the electrode/amplifier weight, securing
it firmly to the skin, and using very high input impedance preamplifiers.

Since only the difference in potential between two electrodes is of
interest, any signal common to both originates from outside the area of
interest and should be discarded. Therefore, impedances on both inputs
of the differential input EMG amplifier should be very nearly identical.
Thig reduces the common mode rejection ratio (CMRR), defined as:

A
CMRR = 20 x LOG _° dB
Ay
where A, is the common mode gain and Ag is the differential gain. It is

important to have a high CMRR with biocamplifiers because the body is a
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good conductor and acts as an "antenna" for many sources of
electromagnetic noise such as from fluorescent lights, power lines, and
other electrical equipment. These are the sources of unwanted 60 Hz
noise. With the small EMG signals being measured such noise can have a
significant effect. CMRRs should be at least 60 dB. Van der Locht et
al. (1980) reported a CMRR of 100 dB.

Signal to noise (S/N) ratio is also an important specification of an
EMG amplifier. Of the authors cited in this paper, only van der Locht et
al. (1980) reported a S/N ratio. This was 60 dB.

Signal processing is the fourth important area to consider in
bicamplifier design. Depending on the application, the raw EMG signal
may be the desired form or a number of signal processing éircuits may be
employeﬁ. Soderberg and Cook (1984) give five possibilities. 1In
addition to band pass filtering one may do further low pass (LP)
filtering (smoothing), full wave rectifying, integrating over time,
integrating in a time window, and integrating to a preset voltage
followed by a reset. Most authors who base prosthesis control signa;s on,
"EMG signal strength full wave rectify, LP filter, and (sometimes)
integrate the amplified signal. One or more of these conditioning
techniques are incorporated in the designs of Shannon (1979a, 1979b,
1979¢), Medeiros (1984), Soderberg and Cook (1984), Paciga, Richard, and
Scott (1980), and Almstrom and Herberts (1977).

Those authors who used digital signal processing and analysis did
not use any of the above mentioned analog techniques. They were
interested in recording only the unprocessed EMG signals. Various

digital techniques were then employed to shape and modify the data. For
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example, Doerschuk, Gustafson, and Willsky (1983) digitally LP filtered
the EMG signals with a half power frequency of 2.21 Hz. Other authors
used moving average and absolute integral algorithms in their work

(Sukhan and Saridis, 1982).

Discrimination Methods

EMG Signal Strength

Several parameters of EMG signals have been used as a measure of
force or velocity in limb movements, as stated by Gandy et al. (1980).
The mean level of the rectified and integrated signal, the averaged peak
voltage, and the spike frequency are all approximately linearly related
to muscle tension.. Control of a myoelectric prosthesis using EMG signal
gtrength was first suggested by Norbert Weiner in the late 1940s
(Shannon, 197%a), but it was not until the 1960s that clinical prototypes
were built and the 1970s that commercial hand/arm prostheses were made
available.

Cne such device is the myoelectric hand created by Shannon (197%a,
1979b). It operated in an OPEN-CLOSE mode controlled by a threshold
detector. It included a third mode, OFF (or HOLD), to make it a 3-state
system. Figure 1 shows the rectified, LP filtered, EMG signal and the
corresponding motor control signal. This system requires two discernible
signal levels, Vo and V,, be produced. Included is a noise threshold,
vth' which eliminates undesired prosthesis activation and built in

hysteresis to smooth motor response.
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"Figure 1 OPEN-CLOSE control system. Typical values of Vos Veo» and Vip
are 500 uV, 200 uV, and 50 uV respectively. The hysteresis
creates. an QFF range between the CLOSE and OPEN thresholds
preventing erratic open and close activation.

A proportional control signal could be realized by taking the
difference of two smoothed EMG signals from antagonistic muscles,
i.e. the biceps and triceps. The sign of the result would indicate an
OPEN or CLOSE mode while its value would indicate the gpeed of the motor
(Shannon, 1979a, 1975b). Almstrom and Herberts (1977) mention that
prosthetic hands of this type were commercially available in 1977.
Paciga, Richard, and Scott (1980) employed a five-state system which
would allow an amputee to control a two degree of freedom arm from one
EMG site. Using their eyes for visual feedback, subjects tracked a
computer controlled vertically moving horizontal line on a TV screen with
a small circle projected on the screen. The small circle moved
vertically in proportion to the angle of the elbow of a prosthetic arm

attached to the stump of the amputee. Using the biceps brachii as the
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signal source, tests showed that a 1.1 % error rate resulted in tracking
from one level to another with a total of five discrete levels. When the
regsponse of the circle was delayed by .2 s error rate was 6.6 %. It
should be noted that in this study, which incorporated visual feedback,
training for the task played a major role in the outcome. Training
sessions, one hour long, were carried-out twice a day, five days a week
for three months. It is uncertain how much training would be required by
an amputee using a prosthesis with a control scheme like this, but it
might be prohibitive. It is apparent that some other control scheme is

needed for easy, effective control of multi-degree of freedom prostheses.

Spatial Analysis

With the information obtained from more than one myoélectric site,
control signals could be used to operate a multi-degree of freedom arm.
Proportional control of an arm with more than three or four degrees of
freedom would not be feasible with only two electrode pairs for each
hand/arm motion as in Shannon's (1979a, 1979b) three state hand (Almstrom
and Herberts, 1977). Thus, a spatial pattern identification method was
implemented by Almstrom and Herberts (1977) using six electrode sites
over existing muscles on the stump of a below-the-elbow amputee. An
amputee can imagine a movement with his phantom hand, and in doing so he
will contract his stump muscles in a way that is specific for that
particular hand motion. Consequently, by applying pattern recognition
techniques to the resulting EMG signals, the prosthesis control signals
can be generated. The six rectified, LP filtered, EMC signals were

recorded during six types of phantom hand movements and a computer
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calculated weighting.factors for each electrode for each motion. The
amputee then supplied test EMG signals which were multiplied by the
respective weighing factors. If any values were greater than zero, the
associated limb function or functions would be activated. They achieved
good resulis both before and after training. Correct function
discrimination for untrained patients averaged 88.6% while erroneous
identification occurred 8.1% of the time. Trained patients had 98.3%
correct function discrimination and 1.2% incorrect function
discrimination.

There was no apparent attempt to cptimize the weighting factors in
their research. In fact, not much information was given stating the
conditions under which the weighting factors were calculated.
Identification could be optimized by not only training the subject to
contract his muscle to agree with a group of weighting factors but to
optimize the weighting factors during calibration (Jerard and Jacobsen,
1980).

Lyman et al. (1977) attempted to implement a proportional control
scheme in a three degree of freedom arm. Nine electrode sites provided
the EMG signals from both unamputated and amputated subjects. The
signals were rectified, filtered, and sent through a threshold circuit to
eliminate erroneous activafion by noise. Goniometers were placed on the
armlnot used for EMG signals. The subjects then moved both arms
gimul taneously for each potion of interest. EMG signal patterns were
correlated to goniometer movement by a digital computer during the
calibration sessions. Movement trajectories were brokgn up into discrete

segments, each characterized by its direction. Rather than determining
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the motion by application of weighting factors, Lyman et al. {1977)
derived a set of probabilities from the EMG signal patterns and placed
them in six matrices corresponding to the six motions possible. The
decision criteria were based on Bayesian probabilistic measures.

FPunction discrimination was achieved by parallel application of these
probability matrices to the input signal, a method similar to that used
by Almstrom and Herberts (1977) with weighting factors. Proportional
control was achieved by converting the processed signal's spike frequency
into pulse widths which were used to &rive the motors directly. Just how
electrode channel combinations were chosen for each gpecific motion was
not described.

To facilitate more natural motion and less conscious effort by the
operatér, an adaptive "aiding" procedure was implemented to help
determine the control function. The range of movement of each of the
three joints was divided into 16 discrete segments. A computer "lesarned"
those movements which frequently occurred. The computer then chose a set
of possible directions and moved each Jjoint in that direction which had a
maximum probability of occurring, given the current position of the arm
and the past directions from which the arm approached the current
position (Lyman et al., 1977). These adaptive aided probabilities were
constantly updated or "learned" when the arm was activated, After the
inifial learning period the prosthesis control was shared between the
adaptive aided system and the amputee. Adaptive aiding acted as an
independent automatic reflex. Since the research discussed by Lymaﬁ et
al. (1977) was not completed when it was published no relevant resuits

Wwere reported.
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Jerard and Jacobsen (1980) took a novel approach to prosthesis
control by incorporating Newton's dynamic equations of motion. The
relationship of the rectified, LP filtered EMG signals during static
contractions to torque at the joints of interest was experimentally
determined and placed in a matrix. Up to nine electrodes on the shoulder
and upper torso were used to identify up to eight motions. An actual
artificial arm was built with three degrees of freedom, humeral rotation,
elbow fle#ion/extension, and wrist rotation. A matrix of control
vectors, vector-myograms (VMGs), obtained from the EMG signal controlled
motor actifation. A technique called 'multivariable linear ridge
regression' gave fairly reliable VMGs by discarding ill-conditioned data.
This produced coefficients with a slight bias, but greatly reduced 7
variance. To minimize the number of elect;odes without reducing
estimation accuracy, t values, a measure of the statistical significance
of the regression coefficients, and cross correlations between EMG
signals were found. If a t value with a probability of 95% or greater
from a particular electrode was larger than 2 and the cross correlation
to the signal from another electrode was greater than .8, then the
associated vector coefficient contributed little to the function
discrimination and the associated electrode could be removed. The number
of electrodes was reduced to five,

The final limb movement occurred as follows. The processed EMG
signals were multiplied by the experimentally determined vector
coefficients establishing a set of VMéS which directed the prosthesis
motion. The VMGs combined with current accelerations, velocities, and

positions of the joints yielded the estimated torques that needed to be
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applied to each joint. The control signals were proportional to these
estimated torques. Quantitative results were not presented. Jerard and
Jacobsen (1980) did conclude, however, that the results were

‘respectable' and further optimization of the procedure was merited.

Temporal Analysis

Time series analysis is another approach to EMG signal pattern
identification. It is especially useful for amputees with severe muscle
and nerve damage where few good myocelectric sites exist (Graupe et al.,
1982). With spatial identification techniques a prohibitively large
number of electrodes may be needed. This could be undesirable for the
amputee since tedioﬁs daily fitting is necessary. Time series analysis
requires only one electrode pair. Instead of comparing EMG output from
one electrode to output from another, time series analysis compares the
output from just one electrode at a point in time to the output from the
same electrode at another point in time. FOurier‘transformation or
autoregressive (AR) correlation can then be applied to identify the EMG
signals,

Fourier transformation involves N x N computations where N is the
number of samples. For a statistically gignificant number of samples
this is too time consuming where on-line pattern identification should
take no more than .2 s (Graupe.et al., 1978). Because of its complexity
none of the authors cited implemented fourier transformation into their
EMG pattern identificaiton schemes. Soderberg and Cook (1984) did,
however, discuss the potential of fourier transformation of EMG gignals

in therapeutics, The median or center frequency in the power spectrum
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remained relatively constant during brief contractions and decreased
almost linearly with increased fatigue. Sherif et al. (1984) state that
the power spectrum became more concentrated at lower frequencies when a
muscle was dynamically contracted than when its contraction velocity was
zero {static contraction). Doerschuk et al. (1983) state that the
frequency spectrum changed with a change in the load. This may be useful
in proporticnal control of myoelectric prostheses controlled by time
series discrimination methods.

AR modeling is more applicable to EMG signal identification than
other time series methods. AR modeling uses the EMG signal's statistical
dynamics rather than its signal strength. Its advantage is that it
requires only one electrode site. The disadvantage of AR modeling is
that it requires more complex computation than other methods such as
variance and zero crossing decision planes. The recorded EMG signal is
essentially stochastic (composed of random error) which permits the ;se
of AR modeling. The AR model is given by

y (%) =Z1 A % (t-1) + e (F) (1)
where y (t) denotes the EMG signal from the m—th limb function at time t,
A is the i-th AR coefficient for the m-th limb function, p is the
order of the AR model, m is one of M limb functions, and e (t) is white
noise. AR correlation finds the relationships of a sample at time t to
another sample at time t-1, and at time t-2, up to_time t-p. A linear
model is used and for it to be a good representation of the EMG signal
the data are assumed to be a Guassian distribution (Graupe et al., 1978).

That is , it is assumed that data at time t-i (i=1,2,...,p) are linearly
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related to data at time t with error in the form of white noise. Figure
2 shows a plot of arbitrary data at time t versus data at time t-1 (a
first order AR model). Given y(t-i), y(t) can be estimated using the

linear equation that best fits the data.

Time Data(y:)

VoW EEHO
—

N WL 0oOWw o~y I
4
H
b

Figure 2 Sample AR modeling (single order, p=1). One statistical
degree of freedom is lost for each order of the model, there-

fore N=9, 1r is the correlation coefficient of the best
linear fit to the data.

The best linear fit is calculated by a least-squares algorithm.
Least-squares is relatively insensitive to round off error and it
requires the least number of samples for convergence (Graupe et al.,
1978). This means that it greatly minimizes the AR coefficients for the
higher order terms which in turn minimizes the white noise or cost

. 2
functions E, =i§:enﬁi), where N is the number of samples (Doerschuk et

i=]
al., 1979).

After the AR coefficients for each limb function are estimated (done

off-line), testing of the model can begin. Since these coefficients are
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found off-line, calculation time is not an important factor. However,
teséing of these coefficients is done on-line and speed in function
diserimination ig essential. The N-p test data points are successively
substituted into the M AR models which result in M predicted EMG values
(gn&t)) at each time t, where p+1<t<N., The difference between ?“&t) and
the actual EMG signal, ¥n{t), is em(t). The sum of the squares of all
the ep(t) terms gives an indication of the goodness of fit of the M AR
models to the actual test EMG signal. This is represented by Equations

2, 3, and 4 below.

Fult) = i1Am,iym(t-i) (2)
i=
Em=$: e&(t) (3)
=p+1
where
e (t) = y (£)-F,(t) - (4)

Assuming one of the M motions is occurring Ep should be smallest and have
a zero mean for that model which corresponds to the actual motion taking
place.

Sherif et al. (1982) quéstioned the applicability of AR modeling to
EMG signals because linear AR modeling requires the signal source to be
statistically stationary and an EMG signal is not stationary., They also
claimed an autoregressive moving average (ARMA) model was not a valid
representation of a non-stationary stochastic signal. They suggested the
use of an autoregressive integrated moving average (ARIMA) model.' An

ARIMA model was used by Sherif et al. (1982) because they were interested
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in modeling not Jjust.static contréctions but initiation and build up of
contractions to a maximum. They state that for some phases of
contraction (static) an AR or ARMA model may validly represent the EMG
signal. ARIMA modeling could differentiate between the different phases
of contraction and reduce the number of coefficients needed to accurately
model the EMG signal. Sherif et al. (1984) sampled data at 2000
samples/s during continuous humeral abduction/adduction. The resulting
sample record was segmented into a series of subrecords, each .05 s long
and considered stationary. After application of the ARIMA algorithm, AR
and moving-average coefficients resulted. The work of Sherif

et al. (1982) was to demonstrate the applicability of ARIMA modeling of
EMG signals. Quantitative results of motion discrimination accuracy were
not presented.

Graupe et al. (1978) was the first to develop an AR algorithm for
EMG discrimination. For small increments of time, i.e. .05 s, the EMG
signal was be considered stationary and an AR model was applicable
(Graupe et al., 1978). Graupe et al. (1978), somewhat arbitrarily,
decided on .2 s as the maximum time allowed for function discriminaton by
the computer. At a sampling rate of 5000 samples/s and increments of 200
points a .04 s sampling window resulted.

Graupe et al. (1978) used a third order AR method similar to the one
described above. Off-line they calculated the error, ?ﬂn, between the AR
model and the calibration data used to find the AR coefficients. During
on-line testing if Eq<PySm the m-th limb function was chosen. The term
Py was an arbitrary value intended for optimizing thé discrimination

accuracy. It had no physical/intuitive meaning (Doerschuk et al., 1983).
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If the signal energy E = iyz(t)'z Etp » where E., is the minimum energy
threshold, the m-th limb ;E:Etion was activated. Four limb functions
could be discriminated with an 85% success rate using a single electrode
pair in the work of Graupe et al. (1978).

Graupe and Salahi (1979) used four AR parameters and signal variance
for funection discrimination. Instead of using the parallel filtering
identification method of previous work by Graupe et al. (1978) a new
classification method replaced it. AR coefficients were.found on-line
and compared to reference parameters estimated during a calibration
p;ocedure. If the first AR coefficient's absolute value was within a
predetermined distance of the first reference AR coefficient for each of
M motions, then the'second coefficient waé tested. If all coefficients
were within the pre-specified range of the reference coefficients for the
m-th function, that function was activated. Graupe and Salahi (1979)
incorporated a second electrode pair to increase discrimination accuracy.
Discrimination of the signal from the second electrode pair was used to
verify discrimination from the first. Graupe and Salahi (1979) obtained
a 99% success rate in identification of four limb functions.

The calibration training procedure was found to be of major
importance for the system's performance. The subject learned to contract
his muscles so that he could reproduce consistent AR parameters from
which the reference set was derived. This biofeedback method preserved
the integrity of AR modeling only if the subject learned to contract his
musclés subconsciously as in the contraction of a normal arm.

Graupe et al. (1982) used the same function discrimination method as

Graupe and Salahi (1979) plus an additional method. Vector space of
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geveral parameter combinations yielded further discrimination accuracy
albeit at the expense of computation time. For example, feature space of
the second AR coefficient (Az) versus the first AR coefficient (Al), with
decision planes determined off-line, could assist in the discrimination
of two or more limb functions. Graupe et al. (1982) reported that with
training (up to 12 hours) the subjects could consistently reproduce

A within 10% of the same value. They achieved a 99% accuracy rate with
six limb functions.

In the work of Craupe et al. (1978), Graupe and Salahi (1979), and
Graupe et al. (1982) no results were given on discrimination accuracy if
the reference criteria from more than one limb function were satisfied
simultaneously.

In the work of Doerschuk et al. (1979) data were not acquired in
lunp sums as with Graupe et al. (1978). A 2000 Hz sampling rate was used
and motion discrimination occurred every .05 s after each new data point
was taken. Pattern identification was based on a moving 401 point
sampling window. This seems to have ignored the non-stationary nature of
EMG signals since the sampling window was .2 s wide.

Doerschuk et al. (1979, 1983) employed an AR model similar to Graupe
et al. (1978), however; instead of determining discrimination based on a
threshold they developed a set of probabilities based on the AR model
error §;;and AR coefficients Ap j. Then the prediction error e (t) was
computed, given by Equation 4. If limb function m was, in fact, taking
place, then em(t) was (ideally) a white noise process and that limb

function should have had the greatest probability of occurring.
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Four electrode pairs placed 90° apart around the forearm provided
the EMG input. Varying load was not dealt with and the shape of the EMG
Spectrum was assumed independent of the load. This also assumed the AR
coefficients did not change with lecad. Six limb functions were divided
into four different phases. These were rest, initiation of function,
hold, and return to rest. It took eight seconds to complete each cycle.

Probabilitiés for one motion, during the hold phase, were as high as
«96 with the other five motions making up the difference. Since it was
assumed that one of the six motions was always occurring the sum of the
probabilities equaled 1.0 and one function always had the largest
probalility even if no signal was present. Therefore, a fifth electrode
was used to determine signal strength. If the signal was greater than a
predetermined thresheold then the limb was actuated. It appears that
DoérSchuk et al. (1979, 1983) defeated the purpose of having few
electrode sites in AR modeling by using five electrodes. Medeiros (1984)
stated that the optimum myoelectric site was directly above the muscles
associated with the limb movements of interest. Optimization of muscle
sites might have been achieved by Doerschuk et al. (1979, 1983) by
Placing the electrodes directly over the muscles that were most closely
associated with the motions of interest.

Saridis and Gootee (1982) combined variance and zero crossings with
AR correlation. They found more class discrimination information was
¢ontained in variance and zero crossing than in AR correlation.
Twenty-six motions and one rest state were discriminated in a three
degree of freedom system (humeral rotation, elbow bend? and wrist

rotation). The 26 motions included the six single or primitive motions,
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all 12 possible double motions, and all 8 possible triple motions. The
EMG signal parameters were evaluated for their ability to separate the 27
classes from each other. Only 65% of the classes were separable from
each other. After incorporating a "learning" function into the
discrimination scheme and using only variance and zero crossings, 85% of
the classes could be separated from each other with less than 10% error.
Some of the motions with misclassification error greater than 10% were
incompatible with each other. ' This means it was improbable for some
motions in an arm to occur dependinglon the previous motion. The
incompatible combinations could have been identified by the on-board
computer and not activated.

Sukhan and Saridis (1982) developed a proportional control scheme
using #ariance and zero crossings as the best features for motion and
speed separation. The integral absolute value (IAV), defined as the time
integral of the absclute value of the signal, was the only feature
directly extracted from the EMG signal for pattern identification.

Sukhan and Saridis (1982) found the relationships between IAV, varignce
and zero crossings which provided translation from one feature space to
another.

Saridis and Gootee (1982) observed certain superposition properties
of combined motions allowing decomposition into the six primitive motions
making class separability an easier task, Sukhan and Saridis (1982) also
developed a decomposition scheme in their work. Rather than create a set
of decision planes they established a set of reference probabilities for
each of 27 motions and three speeds. Ten samples of each of the 27

motions and three speeds were used to calculate the reference
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probabilities. The test EMG signél was converted to the feature space of
variance and zero crossing. One of 27 motions, including rest, was
determined then the EMG signal was decomposed into the primitive motions
with an associated speed. This could then be used to actuate the motors
of an artificial arm. 4 learning procedure was provided which updated
the reference probabitites as the arm was activated, similar to Lyman et
al, (1977). Computer simulation resulted in a 90 to 97 percent accuracy

rate. Results of an actual clinical model were not presented.

Command Languages

Although most of the EMG signal identification methods are
reasonably accurate they may not generate control signals that result in
natural or cosmetically acceptable movement of the prosthesis. Control
languages can assist in motion discrimination and relieve the wearer of
constant mental attention by becoming an autonomous control system
requiring only supervisory intervention (Swain and Nightingale, 1980).

In the scheme proposed by Swain and Nigﬁtingale (1980), commands
were supplemented by signals from an array of sensors in the hand
relating to static and dynamiec relationships between the hand and the
object being gripped. The overall system was a hierarchy in which
functions were initiated at a conscious level, but were performed without
conscious. effort.

Four inputs were needed to control a nine degree of freedom system
(six degiees of freedom in the arm and three degrees of freedom in the
hand). The hand was controlled by signal strength from a single EMG

electrode. Six discrete EMG signal levels were required to control wrist
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flexion/extension, wrist rotation, and grasp. Location of the EMG
electrode site was not mentioned. A set of commands such as HOLD,
SQUEEZE, and RELEASE were generated and were manipulated by the feedback
mechanisms and the current position of the arm., The arm was controlled
by three sensors detecting body movements, presumably from the shoulder,
and control algorithms generated the required joint angles. Swain and
Nightingale (1980) claimed that flexibility could be achieved with "very
little prior training." Clinical testing of a complete prototype had not
yet begun as of the writing of the paper by Swain and Nightingale (1980).

A syntactic approach to prosthesis control was proposed by Saridis
and Newman (1979) and Saridis et al. (1979). This system was designed ;
for a four degree oé freedom arm (humeral rotation, elbow flexion, wrist
rotation, and hand grip) where the entire range of each of the four
Joints was divided into discrete increments. Command signals directed
each joint to hold the current position or move one increment in either
direction.

Command strings would be generated from statistical features of EMG
signals during specific phantom hand/arm motions via a three level
hierarchical control scheme., The first level would extract the pertinent
featureg, identify the limb function, and decompose the EMG signal into
its primitive motions and speeds (Sukhan and Saridis, 1982). The second
level would include a learning procedure and determine the desired
tra jectories based on the output from the first control level, automatic
sensory feedback, and previous movement and position of the arm. The
third level would generate the necessary control signals to activate each !

motor based on the desired trajectories and the information obtained from
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the first level. Research on level one of this prosthesis control scheme
was discussed by Saridis and Gootee (1982) and Sukhan and Saridis (1982).
A posgible hierarchical intelligent control scheme for level two
utilizing "high-level decision languages" was discussed by Saridis et

al. {1979). Results of a final system's performance were not reported.
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EQUIFMENT AND PROCEDURE
Description of Hardware

Al]l aspects of the hardware were designed with the capability of
being contained in an actual prosthetic arm. The hardware circuitry was
composed of three main secticns, analog processing, digital processiﬁg,
and data feedback. Only the first two were required for control of a
prosthesis. The latter)aided in laboratory evaluations of the system.
The information processing block diagram is shown in Figure 3.

FET Op-Amps were choosén for the EMG amplifier because of their low
power requirements and very high input impedance. Appendix A shows
details of the EMG amplifier design. Using two single chip quad op-amps,
two differential amplifiers were built with gains of 4700 and -3dB
bandwidths of 5 Hz to 960 Hz. This coincided with the requirements
specified by van der Locht et al. (1980) and Soderberg and Cook (1984).
CMRR wa's approximately 90 dB for both amplifiers and S/N ratio using a

400 Hz test signal was 45 dB. Signal to noise ratio is defined as

s
¥ = 20L0G -ﬁ

where V. = peak to peak voltage of the signal output and V, = peak to
peak voltage of the noise output when all three leads of the amplifier
are grounded.

The op-amps were powered by +3 V and -9 V sources, using 9 V
batteries to improve safety. The circuit had an inherent DC error in the

last amplification stage. This was eliminated by including a DC offset.
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Figure 3. Block diagram of the hardware system.

AMP 1, AMP 2, and trigger represent the analog

processing section; ADC is the digital processing section; and DAC, AMP, the digital

storage scope, and the X-Y plotter are the data feedback section.
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Silver-silver chloride gel impregnated electrodes with adhesive
perimeters were separated 1.25 inches by a center ground electrode,
similar to the method used by Saridis and Gootee (1982). The geometry of

the electrodes is shown in Figure 3A.

Gnd

Pos (:) Neg .
(Proximal) @

@
]

Figure 3A Schematic of the differential electrodes. The negative
. terminal was placed distally on the forearm for all samples
for both the flexor electrode and the extensor electrode.
The silver-silver chloride electrodes were held together by
adhesive backing.-

{Distal)

One of these electrodes was placed over the flexor muscles and one
over the extensor muscles on the proximal part of the forearm. The
amiplifier system was designed for use with dry electrodes, however, gel
electrodes were considered sufficient for experimental purposes. The
adhesive surface firmly secured the electrodes to the skin and helped
reduce artifact noise. Two conductor stranded coaxial cables, 24 inches
long, connected the electrodes to the inputs of the amplifiers. Their
shields were grounded to reduce noise.

Amplifier outputs were connected to a threshold detection circuit
via 47 KQ resistors. Originally, the purpose of the threshold detector
was to inform the computer that the EMG signal strength was above a

certain level so that computer sampling could begin. The threshold level
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was arbitrarily chosen so that a logic low (active) pulse occurred when
the muscles began to contract. The result of this would have been
computer modeling of a transient EMG signal. It was decided that static
contractions could be more accurately modeled than dynamic contractions
even though dynamic contractions are more realistic. Although not used
in these experiments the trigger circuitry was retained since it could be
used with no modification as a noise threshold preventing accidental
actuation of a prosthetic system.

A Commodore PET 2001 Graphics Series computer, manufactured by
Commodore Business Machines, Inc., Santa élara, CA., along with a
Commodore Model 8030 dual floppy disk drive was used for analysis and
storage of the EMG Qignals. A Commodore 4022 dot matrix printer was also
connected to the PET. Communication and transmission of data to and from
the PET was done on the IEEE-488 general purpose interface bus (GPIB)
located on the back of the computer.

Amp 1 and amp 2 were alternately sampled by the PET computer at a
sampling frequency of 5000 Hz. This was accomplish by routing the
amplifier cutputs to two of the inputs, A and B, on a quad-analog IC
switch, shown in Figure 3. The outputs of both switches were connected
together, however only one switch was asserted at a given time since the
control signal for switch B was the complement of the control signal.for
switech A. The PET IEEE data valid (DAV) line was switched from logic low
to high to low by machine language software 5000 times per second during
data acquisition. When the line was low switch B was on and output from
amp 2 was sampled, and vice versa for amp 1 when the DAV line was high.

Settling time for the switches was 60 nS so the switching rate of 10 KHz
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presented no problems. The output connected to channel 2 of é digital
storage oscilloscope Model 0381420, Gould, Inc., Hainaut, Essex, England.
The storage oscilloscope permitted visual analysis of the un-digitized
EMG signal from either amplifier.

The signal then went to the 0804 ADC V¥ input. A detailed
schematic of the 0804 ADC circuitry is shown in Appendix A. The 0804 was
chosen for its low power requirements, self containment, and TTL
compatiblility., Input voltage was adjusted to a £5 V range. The A/D
conversion rate was chosen high enough so there would be no aliasing
problems when the digital signal was sampled by the computer. The
digitized 8-bit signal was latched on the tri-state output buffer when
the ﬁﬁ'pin was driven low (asserted) by the PET IEEE NRFD line. When RD
was high the 8-bit output of the A/D converter floated permitting use of
the IEEE-488 data lines for other operations. Power supply for the 0804
ADC was provided by a five volt IC regulator connected to the +9 V
sourcé. The five volt source also powered the inverter chip connected to
the control signal for the analog IC switch.

A 1408 D/A converter chip was connected to the IEEE BUS permitting
visual analysis of the digitized signal. It operated in a free running
mode. Its analog output was amplified and sent to channel 1 of the
digital oscilloscope to permit comparison to the un-digitized signal.
Either channel could be plotted on a model 7004B X-Y recorder,

Hewlett-Packard, Inc., Fort Collins, CO., to obtain a hard copy record of

the oscilloscope display.
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Description of Software

Data acquistion was performed in real time. Therefore, a machine
language subroutine was required for sampling the data. Appendix C1
includes a printout of the data acquistion programs called "MAIN" and
"MACH."

MAIN was written in PET BASIC and is the main program. It calls the
6502 machine language program "MACH". MAIN was written in a structured
modular form. A main menu with submenus gave the operator several
options. One could enter the ID of the participating subject, take a
sample, review a stored sample on the oscilloscope, or get a directory of
the data disk. If the operator chose to take a sample he could pick any
of the six motions or return to the main menu. After the sample was
taken he could review the signal from either electrode, store the sample
on disk, retake the sample, or return to the motion menu. Once a sample
was‘stored'on disk one need not enter the name for a new sample each
time. The sample number was automatically incremented for the last
motion chosen. Names of the data files were of the form IIIAMMM.E.SN,
where. ITI was the initials of the subject, A was C or T for calibration
data or test data respectively, MMM was a three letter abbreviation of
the associated motion, E was a 1 or 2 denoting electrode 1 or electrode 2
respectively, and SN was the sample number. These descriptive names made
it easy to search and retrieve the files for later analysis.

Before MACH was called, the IEEE NRFD line was assgerted low turning
on the 0804 ADC. The machine language subroutine MACH waited for a low

pulse on the IEEE NDAC line signifying the start of a contraction, but
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that section of the program was not used when only static contractions
were considered. It was initially intended that the two electrodes would
be sampled as close in time as possible, however, this resulted in
erroneous readings because the IEEE DAV line could not change signs fast
enough to permit sampling of the second electrode. This problem was
alleviated by placing exactly half of the timing loop after sampling
electrode 1 and the other half after sampling electrode 2. Fisher and
Jensen (1980) provided example real-time machine language sampling
programs which aided in the design of‘MACH. Five hundred twelve data
points per electrode were stored in memory, but only the first 200 or 300
were stored on disk. Program execution returned to the main program and

the ADC was shut off after data sampling was complete.
Experimental Methods

A brace was built that firmly held the subject's arm in place s0
that only static contractions occurred. The forearm was placed on a
padded arm rest and the hand was secured to a dowel by an elastic bgnd.
In all cases the right arm provided the EMG signals. The subject was
comfortably seated at a laboratory bench with the right elbow bent at
approximately 90°. The different motions could have been sampled in any
order but were chosen to reduce fatigue. The order was hand grasp, wrist
flexion, supination, and extension, hand splay, and wrist pronation.
There was no previous training by the subjects to help them reproduce the
limb motions more consistantly. This may have caused a larger in-class

variance for the calibration data set.
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Subjects repeated the six motions 14 times for the calibration set.
They were asked to contract their muscles with "medium" intensity. This
Was a subjective measure but could be improved with training.

A problem with the system was the time period required for data
storage. It took about 40 seconds to store 1024 data points on disk.
This made calibration sessions excessively long. The length of the test
sessions was considerably reduced because only 400 points, 200 per

electrode, were stored on disk.
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DATA ANALYSIS SOFTWARE
Varianée and Zero Crossings

Printouts of the variance and zero crossing algorithms are in

Appendix C2. Variance is defined as

2 _ Coxd 2
o°= Nt Xy (txi) '
1=1 1=1

EETCED)

Zero crossings are the number of times the =ignal changeé sign per
sampling period. Variance and zero crossings were determined off-line
with files retrieved much the same way they were stored. TIwo hundred
data points were used in the calculation of variance while zero crogsings
were determined using 300 data points. Since only 200 points were
sampled in the test data sets one would expect 1/3 fewer zero crossings.
This was confirmed by experimentation so the decision planes in the
feature space of variance and zero crossings were adjusted to accommodate
the test samples. As long as 200 data points were used in the test data
files the variance and zero crossing decision planes are valid. Appéndix
B lists values of zero crossings and variances for the calibration data
sets. Figures 4 and 5 show the plots of these values for electrode 1 and
electrode 2 respectively.

Decision planes were drawn separating groups of motions by visual
inspection of the feature space. These decision planes can be found in
Figures 4 and 5. Not all possible decision planes apparent to the eye
are included, Only decision planes that made up the final discrimination
criteria are included in Figures 4 and 5. They were optimized based on

the first set of test data.
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Autoregréssive Modeling

A linear AR model of the two EMG signals was developed for motien
discrimination. As in the work of Graupe et al. (1978), Graupe and
Salahi (1979), Graupe et al. (1982), and Doerschuk et al. (1979,1983) an
AR model can be considered valid becauselsignal stationarity is assumed
when the sampling window is .05 seconds or less. At a sampling rate of
5000 Hz AR coefficients were determined from 250 data points. This
resulted in a .05 second time window..

AR coefficients were estimated by employing a least-squares
algorithm, called "ARM", which is shown in Appendix C2. It was decided
that creating a a least-squares program for the PET computer would be
easier than developing the software necesary to transfer the thousands of
pieces of data to another computer that already had the appropriatel
least-squares algorithm,

The prediction error from Equation 3 can be represented by

E(A) =z: [ye - (Ag+ AX;p +e00)]
=p+1

where E is a function of the AR coefficients, and X1¢ is the same as
y(t-i). Reduced and put in matrix form this is (Singh and Titli, 1978)

E(A) = (Y-XA)'(Y-XA) (5)

where Y isa n x 1 matrix, 4 is a p+1 x 1 matrix, and X is a n x p+
matrizx. The single apostrophe means the first matrix in parentheses is
transposed. For least squares error the derivative of E(A) with respect
to.A must be zero. Taking the derivative of Equation 5 and setting it

equal to zero yields O = X'Y - X'XA. Solving for A gives A = (X'X)_IX'Y.
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The program "ARM" retrieves from disk one calibration data set at a time
and calculates X'X, a p+1 x p+1 matrix and X'Y a p+1 x 1 matrix. Any
order model could be specified, however, computation time for orders
greater than four was very long because the program was written in BASIC,
thus the final models were fourth order. After X'X was determinéd it had
to be inverted. This was possible by applying a FORTRAN matrix inversion
program given by Hornbeck (1975). It was converted to PET BASIC and
modified for this particular applicatién. This was the most time
consuming section of the program. Finally (X'X)"!X'Y was computed.

Thisg ﬁrogram-was tested and verified using data with known AR
coefficients determined by a statistical software package on the WILBUR
program at the Iowa State University Computation Center, The data
consisted of 100 points and was represented by a fourth order model. The
PET BASIC program produced AR coefficients nearly identical to those of
the WILBUR program. Differences were probably due to round-off error.

Averaged models of the fourteen samples per motion per electréde
were used in the final motion discrimination models. Since there was no
previous training by the subjects some of the calibration samples had
variances and zero crossings that were much larger or smaller than the
average for any particular motiocn. If a sample had a variance more than
three times or less than 1/3 the average variance of the 14 samples for a
particular motion, then it was considered ill-fitting data and its

corresponding AR coefficients were not included in the averaged AR model.
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RESULTS and DISCUSSION

To test the identification accuracy of the decision planes and the
AR models 10 new samples per motion were taken. Each sample contained
two hundred data points. Again subjects contracted their arms at medium
intensity. Testing was accomplished off-line, necessary so that the same
data used to test the variance and zero crossing decision planes could be
used to test the AR models and a combination of both.

During discrimination it was assumed that one of the six posible
motions was occurring. In an actual artificial arm application a
threshold detector could prevent constant prosthesis movement since the
on-board computer assumes one of the six motions is occurring, or tpe
state of 'rest' or 'hold' could be a seventh function., This seventh
function would have parameters in the feature space of variance and zero
crossings and its own AR coefficients. Since one of six motions is
assumed to exist, the motions with the best inter-class separability were
identified first. If a sample did not fit the criteria for the first
motion, it was assumed to be one of the remaining five motions. For
example, if the motion was not identified as one of the first five
motions it was identified as the sixth motion by default. It should be
noted that there is a 16.7% chance of randomly choosing the correct
answer.

Based on the results from the first test data set, the decision '
planes were modified to improve dicrimination accuracy. Then another new
set of test data was obtéined and it was from these samples that final

discrimination results were obtained. There were 10 samples per motion
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at medium intensity contraction. These results are not biased and can be
considered worst case accuracy of the system. Doerschuk et al. (1983)
are the only authors cited who state that a completely new set of data
Was used to test their models.

The decigion criteria used in discrimination, based on only variance
and zero crossings, are as follows.
If V2<60 then Flexion
If (V1<12)AND(Z1<14) then Extension
If (V1<9.45%Z1+10)AND(V1<-10%*Z1+140) then Supination
If (V2>411)AND(V1>-12.5%Z1+235) then Splay
If V1<-12,5%Z14235 then Grasp
The remainder is Pronation
V1, V2, 21, and Z2 are variances and zero crossings from electrode 1 and
electrode 2 respectively. These criteria resulted in a 63.3% correct

identification of the second test data set.

A digitized EMG signal consisting of 200 points is shown in Figure
6. The signal is from electrode 1 during wrist flexion. The middle plot
is the residual error, described by Equation 4, resulting from the
flexion AR model. The computer correctly identified the motion of this
sample as flexion. The bottom plot shows the residual error using the
input signal and the AR model for wrist exténsion. Clearly, it is not a
good fit and was not chosen by the computer.

The AR models were tested with the first test data set with the same
assumption that one of the six motions is occurring. Models based on
averages of all 14 samples per motion and models based on averages

excluding the samples with ill-fitting data were tested.
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Figure 6 The top plot shows the EMG signal from electrode #l1 during
flexion. The other two plots are the residual error, Equation 4,
from two different models. The middle plot is the error of the
flexion model and the lower plot 1s the error of the extension
model as compared to the first plot.

Accuracy (correct motion identification) of the models with outlier data
removed was 6.4% higher than with the data intact. The best accuracy
obtained by basing discrimination solely on the AR coefficients was only
37.5%. This includes tests of models from both electrodes (which were
independent of each other). Electrode 1 (digital flexor) models
correctly identified motions 45.4% of the time and electrode 2 (digital
extensor) models identified correctly 29.8% of the time. Some motions
were more identifiable than others. Flexion and supination models showed
the best accuracy, however, correct identificaton of these two motions

based on variance and zero crossing was greater than when hased aon AR
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modeling.

Although the wrong motion was chosen many times for a particular

input signal it was coﬁsistently wWwrong. For example, when the actual
.motion was grasp the computer often chose pronation based on the models
from electrode 1., This fact was used to advantage. In the firnal
decision criteria logical combinations of motion choices from one
electrode or from both were incorporated with decision planes from
variance and zero crossings.

The best results were obtained with a conbination of decision planes
in the variance/zero crossing space and AR modeling. Since feature space
of variance and zero crossings contain more discrimination information
than AR coefficients it was the primary discrimination criterion. Sukhan
and Safidis (1982) also found variance ahnd zero crossings to contzin more
discrimination information.

The final decision criteria are,

If v2<60 then Flexion

If (V1<12)AND(Z1<14) then Extension

If (V1<9.45%Z1+10)AND(V1<-10%Z1+140) then Supination

If ((V2>411)AND(E1=PRONATION)AND(V1<—12;5*Z1+235))OR(E1=FLEXION) then
Splay

1f ((E1=PRONATION)AND(E2=PRONATION))OR(E1=GRASE)OR(E1=SPLAY) then
Pronation

If (E1=EXTENSION)OR((E1=PRONATION)AND{V1<214)) then Grasp

Remainder is Pronation

V1 ,V2, Z1, and Z2 are as before. E1 and E2 are the best fitting AR

models based on electrode 1 and electrode 2 respectively. It was seen
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from the results using the first test data set that the most difficult
motion to discriminate is pronation, for both the decision planes and the
AR models. Consequently, any samples not fitting one of the first six
decision criterion are assumed %o be pronation. Graupe et al. (1982)
also experienced difficulty in discriminating pronation. Theéy employed
cross correlation relationships between two electrodes in their design.
Coincidently, prdnation was the only motion that could be consistently
identified based on cross correlation,

The second test data set resulted in a worst case accuracy of 71.7%.
When the fifst test data set was used discrimination accuracy was 91%,
however, this is biased since it was used to modify the decision
criteria.

It should be noted that no formal training was involved in either
thé calibration data or the test dat;. After supplying the calibration
and test data the primary subject was able to more consistently reproduce
the six motions with medium contraction. It is not certain what effect,
if any, this had on the final results, but if new data were recorded for
calibration purposes it is ﬁossible that more representative decision
Planes and AR coefficients would result.

The final decision criterion was also tested with maximal contracton
motions to test its flexibility under varying conditions. An accuracy of
53.8% was obtained. This is most likely due to the good discriminability

of flexion and extension.
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SUMMARY

Variance, zero crossings, and auto regressive modeling of ENG
signals in the lower arm were used for discrimination of six motions in
the lower arm. These motions were hand grasp and splay, wrist flexion
and extenison, and wrist pronation and supination. ENG signals were
obtained viavtwo,high input impedance differential amplifiers and stored
on a magnetic disk for off-line analysis. Variance/zero crossing
decision planes, and AR coefficients were determined and tested with a
separate set of test data,

Variance, zero crossings, and AR modeling of EMG signals provide
information which permits discrimination of lower arm motion at ratgs
gignificantly greater than random chance. Variance and zero crossings
provide more discrimination information than AR modeling.

Although the results at this time are inadequate for prosthesis
contrel, there is much promise and room for improvement. Through
standardization of motions during the calibration phase, decision
criteria that relate EMG signals to known forces might be cobtained. This
would reduce some of the subjectiveness of contracting the muscles with
"medium" intensity, as perceived by the subject.

Training could be facilitated if a dedicated computer determined
(on-1line and with little delgy) the motion based on the subject's EMG
signals. This would provide the subject with instant feedback, aiding in
more consistant contractions.

Proportional control algorithms may be implemented for prosthesis

control, however, computation time would increase due to more motion
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conditions that would have to be discriminated. Combined with learning
algorithms AR correlation may cause motion discrimination to be too slow.
Since variance and zero crossings provide more discrimination information
and require less computation time than AR modeling, they seem to be the
most promising EMG parameters for future upper limb prosthesis control.

Progthesis control systems sghould be designed to require as little
training by the amputee as possible, however, similar to someone
relearning to use an injured limb, some degree of training by the amputee
will likely be necessary. Just as human training would improve
prosthesis performance sc would prosthesis training. That is, a
prosthesis that "learns" to respond to the EMG signals that are most
naturally produced by the amputee might become more acceptable to the
amputee.

No matter how technical and objective the testing of a prosthesis
control system is, the final measure is a subjective evaluation by the
amputee. Many amputees who own a myoelectric prosthesis rarely wear
them. When they do wear them it is usually not for functional reasons
but cosmetic reasons (Shannon, 1979b). Cosmetically adequate prostheses
should be designed with natural and effective control systems mated to
natural and effective feedback systems if patient acceptability is to be

achieved.
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APPENDIX A
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Figure A. Both differential EMG amplifiers were of the design in (a).
All four sub-amplifiers are FET Op Amps with 10128 input
impedance. Numbers inside the triangles represent pin numbers
on a single quad Bi-FET Op Amp. Figure A(b) is the EMG
threshold cirecuit. Vipragnp can be varied by adjusting the
potentiometer.
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The 0804 National Semiconductor A/D converter is shown.
With Ct =50 pF and Rt =10 ka the A/D conversion rate is
approximately 1M Hz. INIR
making the ADC free running. The two 1200% resisters
allow for a £5 V input which corresponds to the maximum
voltage output expected from the different1a1 EMG
amplifiers.

is connected directly to WR
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APPENDIX B
Variances of the fourteen samples for each of the six samples and
two electrodes are shown below. These are the data points repreéenteq
in figures four and five. Values with a. "*" ip front of them weére not

élose ta the average far that motion and those corresponding data points

were not included in the estimdtion of the AR models.
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Shown are the zero crossings for the calibration data. They are based
on 300 hundred data points.and are the abscissa values in figures four and

. five.
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APPENDIX Cl
The main program "MAIN" is shown below. Successive 'REM' statements
separate the modular units for edsy identification. The program includes.

error checking and is 'menu' oriented.

18 SM=0

15 M=293 )

28 I1=PEEK(S5425> :I2 =FEEK(S9427) : I3=PEEK¢S2455) tREM STORE IMITIAL VALUES

29 POKE 52,253:POKE 53,79 :REM REOEFINE TOP OF MEMCRY

48 POKESS5456,PEEKCTI456yAMD2S1 ¢ REM ATH OM .

S& PORKES9426,35:FPOKESS426,53 ¢ REM UNL & UNT

58 FORESS456,PEEKC(S9456)0R4 : REM ATH OFF

65 POKES9426,255:REM CLEAR DATA LINES

7@ REM

€8 PRINT"Q" :PRINT:PRINT:PRINT" ool MAIN MENU ###" sPRIMT sPRIMT :PRINT
-9@ PRINT"1. ENTER ID":PRINT:PRINTY2. TAKE A SAMPLE"

186 PRINTIPRINT"2. CATALOG DATA DRISK":PRINT:PRIMT"4. REYIEW A SAMPLE oOH QISK
195 PRINTIPRINT"S. QUIT! :PRINTIPRINT.

119 GET Q$:IF Q$="v THEM 110

115 QE=VYALCREY :0N QX GOTC 139,208, 1999,1388 1193

120 GOTO 2@ .

138 PRINT:INPUT" ENTER INITIALS, AND SAMPLE # OF SUBJECT":ID%,SH$

135 PRINT:INPUT"ENTER MUMEER OF SAMPLE RTS."sM:iN=N-1

148 SH=VAL(SM$>: REM IMITIALIZE REAL YARIABLE SH

158 GOTO S5

158 REM

178 REM SAMFLE MENU

138 REM

2060 PRINT"Q":PRINT:PRINT"WHICH MOTIOH DO YOU WANT TO SAMFLET!
210 PRINT:PRINT"1. HAMO GRASPY:FRIMT“2., HAMND SPLAYS :PRINT"Z.
228 PRINT"4. WRIST EXTEHE":FRINT"S. ‘WRIST FROMATE" iFRIMT“&.
- 229 FRINT"?. RETURH TO Mﬁru MENU" PRINT FRIMT

235 GET MO$:IF MOF="" THEH -

248 MOH=YALCMO$E Y tOM MO GDTO ase,hba,a?a 25E, 290,308,
258 MO$="GRAN (30TO 456

260 MOF="SPL" :50T0 422

278 MOF="FLX":1GUTO <459

238 MOF="EXT (G0TR 490

298 Ma$S=“FRO" :GOTO <498

IHE MOF="SUP

318 REM

20 REM

39 REM

438 PRINTYTURN AMPLIFIER OM AMD RESTART IT,THEMY :PRIKT

482 FRINT"PRESS ANY KEY TO THKE A SAMPLE"

4A5 POKESS426,3255:REM CLERR DATA LIMES

4153 GET A%: IF QF="" THEH GOTO 418

415 IF G%="2" THEM GOTO 2&:REM PANIC BUTTOM

428 POKES®45¢ ,PEEK(S34560RH0ZSS: REM HMRFD QM <9884 GHD

450 SYS 20430: REM MACHINE SUBRDUTINE

443 POKESS45S ,PEERCSIMSEIQRE: REM WRFD OFF (3094 OFF)

45@ FOKES342S,I1 :POKESS427, 12 (POKESS456, I3 :REM RESTORE IMITIAL YALUESD
468 Nig=IDF+MOE+", 1. "+SHE1 HZ$=DE+MOS+" . 2. " +3NS

- 47E REM

434 REM

Sa3 PRIHT"U":FRINT:PRINT"l. FEWIEW "M1%$iFRINT"2. REVIEW "Hot

Sia PRIMT"S. SAYE “"M1$" AMD "MZ3:FRINT"4. RETAKE LAST SAMPLE"

520 FRIMT"S. RETURM TO  MOTIOM MEHU"-FPINT PPIIT

525 GET @F:IF QE=""THEN S35

lu



£33
S
520
6530
€49
650
560
678
&3
538
7ae
via
720
738
748
75a
76a
7ga;
793
g08
g1
sz
1350
1062
1285

1297

1ata
iazg
iaza
1843
1843
1164
1114
1128
1208
1219
1228
1238
12480
1586
131ta
1315
1328

fete]
Pl ]

1349
1359
13€0
1362
13635
1367

1570
1320
1390
1418
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E=VALCQED sON QX GOTO $548,589,628,400,200

FOR I=a TQ H

FOKE S342& , FEERK(ZB7IS+ID
MEST

GOTO Sae

FOR I=& TO H

a2 POKE S3426 . FPEEKLZ1243+1D

NEXT

SOTQ 508 _
PRINT:FRINT:FRINTiPRIMT"IS AMPLIFIER TURMED OFF?"
GET @z:IF Q%="" THEN 28 .
SCRATCH D1,<N13$>:SCRATCH DL, (N2$> (REM SCRATCH IF FILE HtREHDV EXNIZTE
DOFEN#Z2,,{N1%£>,D1,U

GOosUB 1208:REM CHECK TQ MARKE SURE FILE OPEMED O
FOR I=@ TO N

PPRINTHZ ,PEEKLZATIE+]D

SNERT

DCLOSE sGOSUE 1208:REM MAKE SURE FILE CLOSED OK
QOOFPEN#2,<N2$>,0D1. U

GosuB 1268:REM MAKE SURE FILE OFEMED OK

FOR I=0 TO N

iFRINTH2,,PEEK(Z21242+1)

sHEXT o,

DCLOSE: GOSUB 1200:REM MAKE SURE FILE CLOSED O
SN=SM+1 :REM IMCREMENT SAMPLE MUMEER

SNE=RIGHT${STRSCEMY ,LENCSTRECSHN -1 :00TO 209
REM
REM
REM

PRINT :FRINT"IS AMFLIFIER TURMEDR OFF"

GET Q#:IF G+="" THEM 1902

PRINT :FRINT:CATALOG B1:FRIMT:FRINMT
PRINT"PRESS <RTNH> TG RETURN TO MAIM MENU"

GET Q%:IF @%="" THEM GOTO 13108
GOTO S8 :
REM

REM

POKESS425, 11 :POKES2427 ., I2:POKESS45S, I3 :REM RESTORE IMITIAL VYARLUES
FRIMTY“THRNK YOU!" ;EMD

REM

REM

IF DS>1 THEH PRINT DS3: END

RETLRHM

REM

REM

REM

PRIMT :PRIMT :PRINT"IS RMPLIFIER TURNED DFF“"
PRIMTsFRIMT"ENTER FILE NHME(IIIMMM ReSHY " sFRINT
INPUT HM#

DOPEM#Z -2 NH$» .01 :REM OPEN FILE

GOSUE 12689:REM MAKE SURE FILE OPEMED OK
FOR I=& TOQO M

sIMPUTH2 , HMPOKE <(Z28725+1) . HH

MNEXT

DCLOSE 3G0SIE 12858 .

PRIMNT: PRINT"TURM OH AMPLFIER."

GET Gaf:IF G%="" THEH 136?

FOR I=® T3 M - :

iFOKE S242Z& ,FEEK(2AT3IE+12

MEH

S0OTO =8
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This is the machine language program "MACH". Five hundred twelve

bytes of data are stored starting in location $5100. The 'NOP' statements

are stricktly for

begins.

5008
Se81
5003
SO
Sees
SOBR
seac
SagF
5812
S014
5817
S01R

SBLC |

SairF
S22
SRa24
SRzv
SA2R
Saze
Sazc
S320
SR2F

Sa32

G35
Se37
S@3A
S83D
SA3E
S840
=a42
5045
So43
SB4A
524D
5958
S0S52
0S5
5953
S9SA
5050
SR
Sa61
SE62

TAs3

SRES ¢

== IS
SRER

ES
ez
[ ]
i
&
aq

2g
=15
(5ic)
FE

- 28

=)

ES

Eg
S1

ES
ES

S5

g=:]

53

ES
ES

55

o5

E®
52

ES

o5
35

ES
sS4

SEl
LD®
LDa
AMD
EBNE
LeA
ORA

‘8TAH

LDA
STA

BNE
LDA
STA
LOR
AND
STA
NOP
NOP
NOP
LDA
STA
BEC
BNE
L.DA
STA
INR
BHE
LDA
ORA
STA
LDA
STA
DEC
BNE
LDA
STA
LDA
AND
STA
HOP
NOP
HOP
LDA
STH
DEC
EHE
LDA
TR
IM
BME
oLI
RTS
BREK

timing purposes. MAIN branches to 5000 HEX and execution

#2200
$ES40
401
£39E3
#3093
$EE23
SEB23
#3098
£5500
$5559
$5817
$EzZ@
#5198, X
4$F7
$E323
$ES23

#$03
#5500
$5500
35032
$E220
$5300,%

$S80R
#2088
$ES23
SES23
#$a2
£550R
$5508
504D
$ESZD
*0209,%
HEF?
sE223
$ES23

#+03
$5500
£5503
£5363
TES2A
ES4E33,

25043




ia

el
4

&a
78

13

265
2ra
I2a
358
a8

=63
518
S2R
Sa8
S48
s56
se8
578
=599
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APPENDIX C2

Variance was calculated off-line using the program below.

DIN VARCS,1,.132)

IHPUT"UEHTER IMITIALS RAND HUMBER OF SHRMPLE PTS."»Il0F.H

FOR MO=1 T &: ON MO GOTZ 49,5&,88,72,.58,51
tHMIE="GRAY :GATO 195

MOF="3SPL" 1GQTO 128

-MG$—“FL’"-unTn 13

sMOE="EXRT" :50TD 188

tMOF="FROY 2G0T 183

- mns u-sup 1]

.FDR SH=1 TO 14’

SSNSERIGHTELCSTRF(SHY . LEN(bTP$(uNJ> 13

L] N1$—ID$+H0$+".1L“+bH$:N2$—ID$+HG$ﬁ".2.F+SH$
PrRl=2W2=3

(iDOPEN#2,(M1£> ,D1:1IF DS>1 THEM PRINT DS&Fs:VW=V+1:PRINT &

s:sFOR I=8 TO N-1

s INPUTHEZ,Y2IF D3>1 THEN PRINT -DS$; 1¥=V+1 :PRINT ¥

12 IXl=Kl4Y s Z2=R2 ey

cPINEKT 1

3 :DCLOSE
TIVARCHO~1,8 ,,SH—1 )= NkX2=X 1M1 7 /CNRCH—10 2
1 181=031x52=9

3 tDOPEN#Z - (H2%5 ,01 1 IF DS>1 THEN PRINT DS#zW=Y+1PRINT V' :G50TO

1FOR I=@ TO H-i

1 INPUTH#2, Y IF DS>1 THEN PRINT DEFrsW=V+1 tFRINT
$IR1=H1+Y 142=H2+ Y

2 sNERT I

1 :DCLOSE

1 IVARCMO-1, 1, SH-1 D= CHMR2 X L L ) ATHREH-17)
MEKT SH

HTEMSTON

:G0TY 130

NEXRT MO

OPEN 4,4 :CMD4

PRINT:FRINTTAB{32)"ELECTRUODE #1":PRINT
PRINTY"SAMPLE GRRASP SPLAY FLEXIDM
PRINT™ SUPINATIOM"

PRIMT"

FRIMT" - "

FOR I=@ TQ 13

SPRINT® "141p:tL=S-LENCSTR$CI+1D)

IFOR J=0 TD S -

: PRINTSPCCLLIYARCT,B,1 s

13LL=1 1-LENCSTRSCVARCT 3, 139D

tNEXT

sPRINT

HEXT

FPRIMT iPRINT :PRINTTREC32Y "ELECTRODE #2" :PRINT
PRINT"SAMPLE GRRSP SPLAY FLEXION
PRINT"  SUFIMATIOH" -

MTENSTION

FRokn

_—

VoA

SR

FRIMT®
FRIMT
FOR I=8 TO 12

PRIMTY "I+1::lL=S—LEH{STRECI+LD)
(FOR J=3 TO 5

P PRINTSPCCLLYVARCT, 1,10
t:Ll=11=LENCSTRECYARST 1,100
SHENT

tPRINT

MEHT

PRIMTH#4 :CLOSE 4

e
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Zzero crossings were calculated by this program.

10 OI Z0(S,1.13%

2@ IMPUT"ZENTER INETIALS AND HUMBER OF PTS.":I1D# N

30 FOR MO=1 TO &:0N MO GQT3J 493,358,60,70,50.50

43 :MOS="GRA" :G0TC 190

58 :MO$="SPL":00TQ 128

&3 MOS="FLX":GOTO 128

T3 MOE=YEXT" 1G0TO 1@

2@ tMOs="PRO" :30TOD 108

98 sMO$=v3IUP"

{98 =FDR SN=1 TO 14

110 ::SHS=RIGHTFCITRF{SHI LENCSTREC(SHI 2=12

129 = HLS—ID$¥M03+“.1."+SH$ tN2$=10%+MOE+" . 2, "+SHE

139 ::2X=0 g=v

149 ::DOPENS2,CH1%$),D1:IF DS>1 THEM PRINT DS$ pIX=Ix+1 :PRIMTINGOTY
145 3 IMPUTH2,Y3IF Y2128 THEHN aa=

153 2:FCR I=1 TD M-1

160 :1::IMPUTH2Z

179 1:1:IF ?{12? THEN QA1=01:1G0TQ0 293

128 ::1:IF ¥>128 THEN Qi=1:6QT0 282

158 r::Q1=0Q

288 3::IF Q1<3Q0 THEN ZX=ZH+1

53 R0=01

220 :MNEXKT 1

:DCLOSE

248 2 :ZCCMO-1,8,5N-1)=2%

250 112M= )

260 1i1DOPEN#2,{N23$)>,01:1IF D0S>1 THEM PRINT RE$7:1IR=IX+1:PRINTIA:GOTO
255 INPUTH#2.Y:IF Y2123 THEN Qo=1 -

278 1:FOR I=f TO HN-1

284
296
208
310
220
=30

i
(]
=

[V
() B =
[l Y
- T

L]
o
k3

H
s
%
c
—
3+
V]
<

d

IF Y<127 THEN 21=8:00T3 329

IF Y2122 THEM RQi=1:60T7T0 228
Ri=0a

IF QL1400 THEM ZH=Iu+i
Ha=a1
48 1EXT I
=58 DCLOSE e 204MMO=1, 1 ,SH-12=2"

278 tHEXT 2N

228 HEXT MO
220 QPEH 4.4:0MDs
PRINT :PRINTSPCOIRI"ZERD CROSSINGS" iPRINT
S22 PRINT(PRINTSRCUR :)"ELECTRDDE #1" FRINT

2% PRIMTUSANMFLE  GRASP ZPLAY FLEXION EMTEMZSIGH  FROMATIONT
PRINT™ SUFRIHATION® .
PRIMT™
PPIL!TII e ——————— |
SOR [=3 TO L3

SPRIMT" "I+l::Li=S-LEMISTRECI+L0D

iIFOR J=3 TO 3

==PRIHTDFCQLL}ZLE Bl sll=11-lEM(ETRECZCC T 2, [

THEHT

1PRIHT IHEN,
“EI'T'”EIJTBFLiJEﬁ FELECTRIODE #2"iFRINT
BRIMTISAMELE GRRSP SElay FLEAICH ZATEMSICH PROMATION:
FRINTY :UPTNHT o

FRINT"
PRINT"
FCGR I=2 TQ 13

tFRINTY "I+is ILL=S-LEMCSTRECI+12D

HUR J=G TQ 5

SPRIMTEFCILLYE0C T, 1, T s ill=11~ 2
g .HE‘dT ) 2iLL=11-LENCETREC2CCT, 1, 1000
428 sPRIMT tHEXT
420 PRIHMTH#4:CLOSE ALL
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AR coefficients were estimated using this program called "ARM".

DIM EBETAC14,5>,YD<308),TM¢S, 5
N=3120 o 7
INPUTZENTER INITIALS":ID#:PRINT 1INPUT'ENTER ORDER OF AR MOCEL" P

‘OPENS 4 :CHMO4

FRIMNTSPC{2@>"AUTC REGRESSION COEFFICIENTS"
PRINT#4:CLOSE 4
FOR MD=1 TO 6:0M MO SOTC 29,.98,190, 119 129,138
MOS="GRA" 100TQ 143
tMO$="SPL" :GOTC 148
'Mos—"FLx"'uOTD 14@
HMOS="ERT" :50TO 148
0E="PRO" :GOTO 148
sMas="3UP"
tFOR EL=1 TO 2
2 ELF=4 L "+RIGHTSC(STRECEL) ,LENCSTREFCELD J—10+" "
1iFOR SHM=1 TO 14
=£'SN$=RIGHT$<bTR$(UH> LEM(STRECEN D=1

FEM CALCULRATE AR COEF

REM FIRST FIND X ¥, R <P+131t2 MATRIX
REM

TR . QAr=H-—P

sFOR J=1 TQ P

FOR I=J TOQ P

tFOR K=F TQ MN-1

2sTMCT, ID=TH(T, I2+YDCK-T%YDCK—T3
tHEKXT K

ETHMCL, Id=TMCT, 1D

HEXT I

:FOR K=F TO N-1

1 TREII=TRC I3+ YOCKIRYD(K=-TD
I TMCR , Jo=THMOE, I +YO(K=J
sHEXT K

:TMdT,BJ-TMFB J?

IMERT I

F2R kK=F TO M-1

BE % Em ME en mE g
-u-v-u-qnnnnnn.luuu;

v e uE Wy W
v be Ae an ad

1ITRCAI=TR{EI+YOCKD
e fMENT K
REM
REM FIMO (xR 7H)t=-1
REM
REM
iFOR J=g To F
==¥D<JJ“J
MERT T
:FDR J=5 TDO F
3 C=13
::M—g

:1IF tHEqﬁtbﬁ—HES:TMLJ Tra023 THEM &iw
1i=1

Co=THMCI,I5

MERT I

IF J=M THEM =72

POy RO CH =00 T s YD T=1

R I=a TO P

STHCL . I e THCL L. ID=THCI MY s THCT M0 =5

ﬁt‘
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680
=38
7ol

28

7oa

258
866
s7@
880
590
908
519
920
940
950
971
988
9919

1888

13ia
1228
1838
1843
1945
194&
1949
18508
1asa
iara
1830
16r3a
1138
1114
1128
11z
115A
1158
117a
1124
1132
1z@3
1214
ZZR
12349
1249
1254
1260
are
1289
12398
12005
1316
1323
1323
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FeEsTMCT, Io=1

s11tFOR Ma@ TO P

st sTHCT MO=TMCT MO ACE
138 :NEXT M

FOR M=g TO P

tIF J=i THEN 7309
CC=TMCM, I3

:IF CC=8 THEN 798
1THCM , Jo=9"

:FOR I=@ TO P

22 TMEM, TaTMCM, I3 —CORTMET . I

Z
m
X
3
o]

cwa an wa V) E s e
Mz -
x
-
o

OR J=0 TO P
IF Y0E{JI>»=J THEHN 5z@

3
g

N s Es W

M‘M+1

tIF YR<{M>=J THEN 572

:IF P>M THEN 848

YOCMI=YDLT

1FOR, I=@ TQO P

$:CC=THMCT, 10 s THCI, I =T, 15 1 THEM, 13=CC

11 3NERT J

REM .

REM FIND (X783 1t—1 X’Y WHICH IS BETR
REM .

OR J=0 TQ'P

FOR, I=a TO P
IBETRCSN-1,J3=BETRCSHN-1 , JD)+THCT, I RTRCI >
1TMCT . I13=8:REM CLEAR ARRAY

NEAT I

BETAC14, J)=RBETAL14,J)+EETACSN-1,J>
EXT J

OrR J=& TO P

:TRC I =8

HERT J

T aa e wn e wn ws wr en s
Toem e bn aa wene an es e ]
TN E wr ia an o

{T] o= 5s 58 as ws :m2 av 85w @

2 A
« M
=

nTMEKT 3HN

OFEN4 4 :CHMD4

==PRINTSPCC12§ND$" ELECTRODE #“EL:PRIMNT
tIPRINT SHE "4

tiFOR J=23 TQ P

11 tBETAC14, J)=BETAC14,.J3 14 REM FIMIEH CRALCULATING THE BETR AVERAGES

tIIFRIMT"B" » J2EFCCLLY
1 1MEXKT .J

PRII.JTH_' 113 .
FOR J=3 TO P

DIPRINT" T "SPC(12);

SHENT J

IPRINT

FOR SH=2 TO 14

tPRINT SH+1s Ll =4-LEHCETRS CSM+1) 7
IFOR J=83 7o P
$IPRINTEPLCLLIBETACSH, I ¢
tibl=i4-L EMSTRSCBETACSH, T2 07
TIBETRCEH . Jr=a3

SHERT J

tPRINT

1tHEXT SH

PRIMT#4:CLOSE 4

fHEXT EL

NEXT M2
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APPENDIX C3

Medium contraction signals were identified with this algorithm. A~

worst case accuracy of 71.7% was achieved.

crossing feature space and autoregressive modeling.

19 DINM BC11.,40,¥Y14{1593,Y2{139)

28 DATA 5.52148702,1.60921968,-.481345642,-.392139702,. 145923068
20 DATR 2,64704741,1.79681869,-.613716366,—, 428523992, , 216929391
49 DATRA 2.67358998,1.82686176,—.625129523,—. 443928396, . 221 364564
S8 DATA 11.85959459,.989642729,. 137385349 ,—, 1242597113, . 164565243
6@ DATA 2.83598256,1.73861925,-.498649121,~.452790162,. 18377113
70 DATA 7.2393403832,1.24426129, . @A72945520, -, 307912267 . —. O5S296273
- 80 DATA 2.57@77127,1.87297085,—, 72072125 ,—. 365289417, . 192065726
98 DATA 2.65959554,1,85725526,~. 638524152, ~. 4832946246 ., 244357499
120 DATA 18.32198299,1. 1087780027, .1566244572,—, 1547962768, ~. 1921587975
118 DATA 2, 19473556, 1. 77793732, ~. 486651832, -, 516579739, . 2051993042
120 DATA 3.73522857.1.66512608,—, 377711981 ,~, 435269225, . 175146353
128 DATA 3,99656@61,1.74395565 ,~. 483238354 .. —. 485632971, . 195642204
148 FOR J=¢ TO 11

158 :FOR I=0 TO 4

168 1:READ 5¢.J, I

178 INEXT I

189 NEXT J

198 INPUT"ZENTER NY 3N

205 FOR MO=1 TO 6:0N MO GOTO 213,228,233,240,258,260

219 MO$="GRA" :G0TO 270

228 MO$="SPL":G0TO 27d

238 MO$="FLX"160TD 278

248 MOS="EXT" i30TO 273

258 MO$="PRO":50T0O 270

26@ MO$="SUP“

279 FOR SN=t TO 15

280 1SN$=RIGHTSCSTRE(SNY ,LENCSTRE(SNI I ~1)

299 M1$="TEST"+MO$+". 1. "+SNF H2S="TEST " +MOE+", 2. "+SHE

209 QE=0:X1=0:H2=0:1M1=0:12=8:21=0 ;220 :FO=0

319 DOPEM#2,<M1$>,D1:IF DS>1 THEN PRINT DS%:DCLOSE:G0TO rae

329 INPUTHZ,Y1<B)D

3739 DOFEN#3,(NZ2%>,D1: INPUTHZ,¥Y2¢0)

S48 H1=HL1+Y1(D) 1H2=R2AY1CEOR1CO) sIF W1¢BI3123 THEM Do=

356 W1=H1+7ZCO) tHo=M2+Y2CAYHYZ(A) 1 IF Y20Rr> 128 THEH Pa=1

366 FOR K=1 TO M-1

378 INPUTHZ, Y1k sM1=1-+Y 1 CKD sH2=H2+ Y1 OORYLERD 1IF Y10k 0127 THEM G1=8:3070
330 IF Y1<¢KI>122 THEN @i=1:50T0 48@

399 Q1=Q8

438 IF QLI<300 THEN 21=21+1

418 Qa=q1 ,

20 INPUTHE,Y2CKY tM1SUL+Y2CKD sH2=W2+ Y2 OORYICRY 1 IF Y2OKISIET THEM Fi=2:3570 4
430 IF Y2(KIZ128 THEN P1=1:G0TO 452

443 F1=P@

458 IF P143PQ THEM Z2=22+1

460 Pa=F1

4TE NEXT K

4&3 DOLOSE

A0 V1= CHEKZ-RL#HL ) A CHB =15 e 2= (NI LU 0 MR =10 Y

SO0 REM

S12 REM

2e IFCY2<EB> THEM MM=32:30T0 740

S8 IFCYICIZUANDOZLICEI THEN MM=4:G0TO 748

S92 IF(Y1<P. 4SHT1+180ANDCY L~ 1082 1+148Y THEM MM=£ 30T 748

558 REM .

It utilizes variance and zero
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REM
Mi=1E18:M2FLlELD
FOR J= TO S
I=J+6:E1=031E2=1
FOR K=4 TO N-1

R=YL1CRI)-BCJ,80-BCT, 15%Y1<K-1) B(J.a)#?l(K—E)—B(J;S)#?l(K—E);BﬁJ,4)*¥1{K—4}

E1=E1+ABS(K)

R=Y2CKI-B(I ,a2-BcI, 1)#?2(K—1J—B(I 2oAY2K=-20-B(] . 3P#YZK=3)>—B< I 402 K-22

E2=E2+RABS (¥

NEXT K

IF E1<M1 THEM M1=E1:Ci=J+1
IF EZMZ THEN -M2=E2:C2=TJ+1
HEXT J

AF (AW22411 XANDCC1=3550RCC1=3)> THEM MM=2:50TQ 748

IF <(<C1=S>ANDCC2=5>30R<CI=130R(C1=2> THEN MM=5:G0TO 748

IF <W1<2143RANDCY1>S0#Z1-4208> THEN MM=1:50TO 748 :

MM=5 -

OPEN4 , 4 :CMD4 -

PRINT“THE MOTIOM WAS "MO$" #"MO" THE COMPUTERS GUESS IS...":MM

PRIMTC1:C2:21:22;V13V2;

IF MM=MC THEM CC=CC+1

PRINT#4 :CLOSE 4

NEXT SH

MEXT MO

OFEN4 .4 :CMO<

PRINT"“THE OVERALL ACCURACY IS" CCHLIB/ S 2 "
PRINTH#4:CLOSE 4




