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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 

The mathematical formulation of most problems in science involving 

rates of change with respect to two or more variables leads either to 

a partial differential equation, or to a set of such equations. Special 

cases of the two-dimensional second order equation 

~ i!!_ ~ E!l_ 91.) a 2 + b oxoy + c 2 + f (x ' y' ¢' ox ' oy = 0 
ox oy 

(1.1) 

where a, b, and c may be functions of the independent variables x and 

y or of the dependent variable ¢ occur frequently. Equation 1.1 is 

classified as elliptic over a region if b2 - 4ac < 0 at all points in 

the region. Two of the best known of the two-dimensional elliptic 

equations are Laplace's equation 

0 (1.2) 

and Poisson's equation 

2 2 
~ + 0 ~ + f(x, y) = 0 
ox oy 

(1.3) 

which are generally associated with equilibrium or steady-state 

problems. 

The analytical solution of a two-dimensional elliptic equation is 

a function ¢(x, y), which satisfies the partial differential equation 

at every point in a region R, and satisfies certain boundary conditions 

on the closed curve surrounding R. The boundary conditions for an 

elliptic equation are made up of either the funct.ion ¢, its normal 

derivative, or a linear combination of ¢ and the normal derivative. 
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However, only a limited number of special types of elliptic equations 

have been solved analytically, and their usefulness is limited even 

further to problems involving shapes for which the boundary conditions 

can be met. This not only eliminates all problems with boundaries 

that are undefined in terms of equations, but also many for which the 

boundary conditions are too difficult to satisfy even though the 

botmdaries are defined in terms of equations. In such cases approxima-

tion methods, usually numerical in character, are the only means of 

solution. Of the numerical approximation methods available for solving 

differential equations, those employing finite differences are more 

frequently used than any other. 

In the finite difference approach, the technique is to super-

impose a rectangular grid over the region in question, see Fig. 1. 

The linear partial differential equation is then replaced by an 

algebraic system of simultaneous linear difference equations, one dif-

ference equation for each internal nodal point of the grid. This 

system can then, in turn, be solved by either direct or iterative 

techniques for the value of¢ .. at each of the nodal points. As the 
1,J 

grid spacing is reduced and therefore the number of nodal points in-

creased, and if the solution converges, the values of ¢ .. should ap-
1,J 

proach the analytical solution of the partial differential equation 

over the region. 

The finite difference equations can be obtained using a Taylor's 

expansion method. The most widely applied finite difference equation 

is the five-point equation, such as that developed in Appendix A for 



Region R 

\ 
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¢i-l,j+l ¢i,j+l ¢i+l,j+l 

¢ . j 
1' 

• 1-+ 

¢.+l . 
l. '] 

Fig. 1 . General region R with rectangular grid for finite difference 
application. 
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Poisson's equation in two dimensions. Applied to Laplace's equation 

(f(x, y) = O) the five-point difference equation from Appendix A is 

¢ . . 1,J 
r 1 ] 

2 [- (¢.+l · + ¢._l .) + r(¢i ·+1 + ¢. · 1) 2(1 + r ) r 1 ,J 1 ,J ,J 1,J-

(1.4) 

where 

Accuracy of the finite difference technique can be improved by 

representing the partial differential equation by a higher order finite 

difference approximation developed to reduce the truncation error. 

This is accomplished by using Taylor's expansions about the four corner 

points as well as the five previously expanded points. The resulting 

equation is a nine-point finite difference equation . A number of such 

formulae for the Laplacian operator and equal grid spacing have been 

developed [l, 2, 3, 4, 5, 6). In general they take the form 

where 

and 

2 
V' ¢ .. = 

1, J 
1 1 2 4 4 
2 [ 4s1 + s2 - 20 ¢. . J - 12 h -v ¢. . + o (h ) 

6h 1, J 1, J 

81 = ¢.+1 · + ¢ . 1 · + ¢. · 1 + ¢. ·+1 1 ,J 1- ,J 1 ,J- 1,J 

82 = ¢·+1 ·+1 + ¢. 1 ·+1 + ¢·+1 · 1 + ¢. 1 · 1 1 ,J 1-,J 1 ,J- 1- ,J-

2 v ¢ .. 1,J 
2 

= V' ¢ (x ' y) I x=x i 
y=y. 

J 

(1. 5) 
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Equation 1.5 can be applied to Laplace's equation by substitution of 

2 4 zero for 9 !/J.i . and 'V ¢. . , and to Poisson's equation by substitution 
,J 1, J 

2 2 of f (x . , y.) for 'V ¢. . and 'V f (x, 
1 J 1,J 

4 
y) \ for 'V ¢i .• x=xi ,J 

y=yi 
6 errors resulting from these substitutions are O(h ) for 

equation and O(h4 ) for Poisson's equation. 

The truncation 

Laplace's 

Greenspan [7] developed a nine-point approximation to Laplace's 

equation for unequa l spacing, that is, where the constant grid size h1 

in the x-direction is not the same as the constant grid size h2 in the 

y-direction. The formula is 

S r 2 sr2 - 1 
-ZO ¢ .. + 2 ( - 2)(¢i+l,J" +¢. 1 .) + 2 ( 2)(¢. ·+1+¢. · ·1) 1,J 1 + r 1- ,J 1 + r 1,J 1,J-

One may note that for r = 1, i.e. h1 = h 2 , Eq. 1.6 reduces to Eq. 1.5 

when applied to Laplace's equation. 

The present work is a result of a computational study which was 

made on a nine-point approximation to the two-dimensional Poisson 

equation. This nine-point approximation, and the five-point approxima-

tion developed in Appendix A, were applied to several sample problems 

using the successive over-relaxation (SOR) iterative technique [5, 8, 9). 

The error and speed of convergence of the approximations were then 

compared. 

The nine-point approximation used is an adaptation of a general 

nine-point formula for the Laplacian operator developed by Rohach [10). 

The approximation was given for unequal spacing. A parameter was de-

fined which can be varied for reduced truncation error. 
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A similar computational study has been done by Holmes and Ettles 

(11] for the Reynolds' equation. The Reynolds' equation is a less 

commonly known elliptic partial differential equation which has applica-

tions for incompressible fluid flow, especially in the study of 

lubrication . 
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CHAPTER 2. THEORETICAL DEVELOPMENTS 

A general nine-point relation for unequal spacing in two directions 

is given by Rohach (10). In this work the relation will be expanded 

to a nine-point numerical approximation of the two-dimensional Poisson 

equation . Consider the relation (Fig. 2) 

(! - p)¢ + (r - )¢ + E ¢ii - 2(! + r - p)¢ r 13 p 24 2 r 0 (2 .1) 

where 

p = a parameter 

¢13 = ¢i + ¢3 

¢24 = ¢2 + ¢4 

¢ii = ¢1 + ¢2 + ¢3 + ¢4 

To relate the derivatives to the respective finite differences, use 

the Taylor series expansion 

h2 3 
¢(x ± h ) = ¢(x) ± h¢ ' (x) + 2! ¢"(x) ± ~! ¢"' (x) + .... (2.2) 

Expanding each of the four axial points about the center point results 

in 
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• 
hl -

"1 
-

I 
h2 

0o 

h2 

Fig. 2 . Grid used for fini t e dif f erence equation development . 



9 

By addition ¢13 and ¢24 b ecome 

where 

02 04 06 
2 Cl + E + 4 ! + 6T + · · · )¢0 

K_ t t 
= 2c1 + 2! + 4! + 6! + .. . )¢0 

0 i1 = h -2 oy 

Expanding ¢1 about the center point result s in 

¢ 1 = ¢ + 0 

1 
+ 3f 

1 2 1 3 
= r 1 + (6 + il) + E Co + il) + 3f (6 + il) + . . . 1¢0 

Similarly an expansion of the other corner points results i n 

¢ 2 ( 1 + (i) - 6) 1 (i) - 6)2 1 (i) 3 = +E + 3T - 6) + ... . ) ¢0 

¢3 (1 - (o + 'Tl) 1 (o + 11)2 1 3 
+E - 3T ( 6 + i)) + ... . ] ¢ 0 

¢4 = [l + ( 6 - i)) 1 
+E (6 - 11)2 1 

+ 3T (o - 3 
i1) + .. . )¢0 

By addition ¢ii becomes 

(2 . 3) 

(2 .4) 
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Substitution of Eqs . 2.3, 2.4 and 2.5 into Eq. 2.1 results in 

1 .E. ii 1 )¢ <r - p)¢13 + (r - p)¢24 + 2 ¢ - 2 <; + r - p 0 

1 2 2 2 1 4 2 2 2 4 = [r (o + r n ) + 12r (6 + 6rpn 0 + r n ) 

+ 3!or (0
6 + 15rpn4o2 + 15rpn2o4 + r

2
n6 ) + ... ]¢0 

2 
2 h2 2 4 2 4 

= h1h2 (V'_ + 12 [r Dx + 6rpDxy + Dy ) 

4 

(2.5) 

h2 4 6 2 3 2 6 + 
360 

(r Dx + 15p (rDxyy + r Dxxy ) + Dy ) + .... ] ¢0 

where 
0 

Dx = ox ' 
0 Dy= -oy 

(2 .6) 

02 
Dxy = oxoy ' etc . 

2 3olv ing Eq. 2.6 forV' ¢0 , one has a general nine-point approximation 

to the Laplacian operator 

Tile truncation error for this relation is determined by the proper 

choice of p . It can be seen that the normal fi~e-point relation (Eq. 

1.4) occur s for p = 0 . In order to get a truncation error of o(h4 ) 

it is necessar y for 
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Rearranging Eq. 2.8 i nto 

2 4 4 2 2 (r OX + Dy + 6rpDxy )¢0 = (6rp - r 

and solving for p r e s ults in 

p = 
1 r+ -r 

6 

(r2nx2 + Dy2)v2¢o 

2 6rDxy ¢0 
1 I • 2¢ For Lap ace s equat ion ~ 0 = 

p = 

1 r +-r 
6 

0, resulting in 

Substitution of Eq . 2 .10 into Eq. 2 . 7 results in 

2 
1) Dxy ¢0 

(2 . 8 ) 

(2. 9) 

(2.10) 

2 2 1 2 ii 2 (5 - r )¢13 + (5r - 1)¢24 + 2 (r + 1)¢ - 10(1 + r )¢0 = 0 

Multiplication o f 

Eq . 1.6. For the 

1 
p = 3 

(2 . 11) 

2 Eq. 2. 11 by 2 gives Greenspan's r elation [7], 
r + 1 

case of equal spacing (r = 1) Eq. 2.10 becomes 

(2 . 12) 

Substitution of Eq . 2. 12 for pin Eq. 2 . 7 results in the n ine-point 

relation developed by Bickley [l] and others [2 , 3, 4, 5, 6] . 

However in equations where v 2¢0 does not vanish, Dxy2¢0 cannot 

be found explicitly . For these cases consider the numeri cal appr oxima-

ti on 



wher e 

2 
Dxy ¢0 

12 

2 2¢ .. + 4¢0) + O(h ) 
l. l. 

(2.12) 

t I , d1 t I 

The resulting truncation error goes into the next error term in Eq. 2.7. 

With the use of this approximation Eq. 2.9 becomes 

p = 
1 r+-r 

6 
(2. 13) 

Now p can be readily evaluated for Poi sson's equation by the 
2 substitution of the known function f(x, y) 0 for~ ¢0 . The resulting 

re lation, which was used for this study, is 

where 

f ( ) 1 [ (-1 )¢ ( ) rl. n ¢ ii x, Y O = ~ r - P 13 + r - p ~24 + 2 

p = 

1 2 
1 4 - 2 (r + r - p)¢0J + O(h ) 

1 r+-
r 

6 

2 2 2 2 (h1h 2) (r Dx + Dy )f(x, y)0 
ii 6r(¢ - 2¢ ii + 4¢0 ) ---... 

(2 . 14) 

(2 .15) 

For problems where the derivatives in the numerator of Eq. 2 . 15 

ar e di f cult t~al~~~e a further numerical approximation can be 

used. The der ivat ives can be approximated as 

2 
(r2DK2 + Dy2)fo = r2 (f.+l . - 2f . . + f. 1 . ) 

h l. . ,J l.,J l.- ,J 
1 

+L (f 2f f ) +o(h2) h2 i,j+l - i,j + i,j-1 
2 

(2 .16) 

r ,,.~v>' 
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where 

Again the truncation error goes into the next error term. In this 

study p was calculated using Eq. 2.15 with either exac t or numerical 
2 2 2 values for (r DK + Dy )f0 , giving results which will be discussed 

later. 
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CHAPI'ER 3. CCMPUTATIONAL PROCEDURES 

3.1 Analytical Solutions 

To compare the accuracy of the nine-point relation developed in 

Chapter 3 with the five-point relation from Appendix A it is necessary 

to use a configuration of Poisson's equation with an exact analytical 

solution. However there are very few configurations of Poisson's 

equation with solutions that could be easily applied to this study. 

For this reason simple analytical solutions ¢(x, y) were assl.lliled 

initially. The configurations of Poisson's equation for those solu-

tions were then found by substitution of ¢(x, y) into the general form 

of Poisson's equation followed by differentiation for the function 

f (x, y) . 

There were many possible solutions which could have been initially 

assumed. However in this study attempts were made to handle at least 
2> one of each of the three general forms that a solution to a differential 

equation can take, that is, trigonometric, exponential or hyperbolic, 
.~ 

and polynomial. The solutions were applied to, and approximated over 

simple two dimensional rectangular regions. The regions had constant 

grid spacing, although not always equal spacing in each direction. 

The function ¢(x, y) = sin(xy) was chosen to represent the 

trigonometric functions. The values of x and y ranged from 0.5 to 1.5 

for most cases and from 0.1 to 1.1 for others. These values of x and 

y for the rectangular region gave a function which gradually increased 

from the lower left corner to a maximum near the upper right corner, 

as can be seen in Fig. 3. Poisson's equation for this assumed solution is 
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I 
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I 
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I 
I 

I 
I 

I 
I 

I 
I 

Fig. 3. Plot of sin(xy) for x and y values ranging from o.O to 1.7. 
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2 
'V ¢ (x, y) (3 .1) 

To represent exponential solutions a hyperbolic function was 

chosen, ¢(x, y) = 1 + sinh(xy). For this function two ranges of x 

and y values were again used, one from -0.25 to 0.75 and the other 

from 0.0 to 1 . 0. Unity was added to sinh(xy) to avoid zero values for 

¢ (x, y), which would have led to division by zero in the relative 

error calculations. These will be discussed in the next section. The 

three dimensional view of this function over the rectangular region 

used can be seen in Fig. 4 . Poisson's equation for this assumed 

hyperbolic solution is 

(3. 2) 

Several polynomial solutions were considered, the three actually 

d . h d rl.( ) 4 3 ri.( ) 2 2 2 2 2 use in t e stu y were ~ x , y = x + y ~ x, y = x + y x y 

and ¢(x, y) x4 + y2 2x3y2 They were applied using values of x 

and y ranging from 0.0 to 1.0 over the region. The majority of work 
4 2 3 2 was done with the third function x + y - 2x y Lt is shown in Fig . 5 

for the x and y values used. Poisson' s equation for this same equation 

is 

-v2¢(x, y) = 12x2 - j2xy2 - 4x3 + 2 (3.3) 

The function x4 + y3 was the first polynomial applied. It il-

lustrated a limitation of the nine-point technique used. A function 

that is to be approximated must be of a form such that the cross 

derivative in the denominator of Eq. 2.9 is not zero. If this 
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Fig. 4. Plot of 1 + sinh(xy) for x and y values ranging from -0.25 
to 0.75. 
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---------
F 'g 5 Plot of x4 + y2 - 2x3y2 f d 1 i f 0 0 1 • . or x an y va ues rang ng rom • 

to 1. 0. 
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derivative is zero the finite difference relation approximating the 

derivative approaches zero, causing the second term of Eq. 2.9 to ap-

proach infinity, which in turn leads to nonconvergence of the solution. 

However the importance of this limitation is questionable, very few 

solutions to Poisson's equation take the form of simple polynomials. 

Most polynomial solutions are infinite series, for which the 

tive in question would not be zero . 

3.2 Definitions of Error 

The assumed analytical s olutions to Poisson's equation just dis-

cussed can be used to evaluate the absolute and relative error in 

numerical solutions to the same Poisson's equation. If ¢ . . is the 
l. 'J 

value of the analytical solution at a point (i, j ) , and ¢~ . is the 
l.' J 

value of the numerical solution at the same point, then the absolute 

error at point (i, j) is defined as 

e = I¢. . - ¢~ JI 
ai . l. 'J l. ' ,J 

(3.4) 

and the relative error at point (i, j) is defined as 

e = r .. 
l. 'J 

l¢i . - ¢"'! . I 
,] l.,J 
¢ . . 

l. 'J 
(3. 5) 

To arrive at a single overall error value for the numerical solu-

tion the 12 or Euclidean norms (12] for the absolute and relative 

error matrices can be calculated. The Euc lidean error norm used in 

this study is defined as 
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(3 .6) 

In this study the analytical solution was calculated at each of 

the grid points using the assumed solutions. Because all calculations 

in the study were made using Fortran double precision variables the 

analytical solution was accurate to approximately sixteen places. Thus 

for all practical purposes the analytical solution calculated by the 

computer could be taken as exact. This exact solution was used to 

evaluate the 12 error norms, both absolute and relative for the nine-

and five - point numerical. solutions. 

3.3. Speed of Convergence and SOR Optimization 

When solving finite difference equations with an iterative technique, 

the principal interest is that the iterated function converges to the 

solution as fast as possible. Therefore in a comparison of two different 

finite difference techniques one must have an accurate method for 

determining the speed of convergence of the techniques . The first 

inclination would be to use the number of iterations to convergence 

as a measure of speed of convergence. However this does not always 

give accurate results. 

A more accurate method involves the calculation of the convergence 

rate defined as [9) 

\) = - .tn A. 
1 (3. 7) 

where 

\) = the convergence rate 
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Al = the largest eigenvalue of the iteration matrix. 

The eigenvalue Al can be calculated using the ratio of two successive 

12 residual norms, that is 

The L2 residual norms are defined as 

II r ll 

Where the residual r .. is defined as 
l..,J 

where 

r(p ) 
i,j 

¢ ~p:-1 ) 
l.., J 

¢ .. = numerical solution at point (i, j ) 
l..,J 

p = iterate number, (p = 0, 1, 2, 3 , ----) 

(3. 8) . 

(3 . 9) 

(3 .10) 

However, the application of Eq. 3.8 t o iterative schemes solved 

using the successive over-relaxation technique may lead t o some dif-

ficulty in calculations of v using Eq . 3.7. As a , the over-relaxation 

parameter for the SOR technique, approaches its optimum value the 

successive values of A1 , calculated using Eq. 3.8k...behave_erratically. 

This makes it difficult to find a constant value of Al for use in 

Eq. 3. 7. 

The erratic behavior of Al can be solved by using a graphical 

method for calculating the convergence rate. For this graphical 

method the successive log 12 ~ual ~orm~ are plotted versus the 

number of the respective iterate. This results in a straight or 

nearly straight line with a negative slope (Fig. 6). Each value of a 



22 

Log 11 r ll 

a = a0 t = 1.25 
Iteration 

Fig. 6. Plot of log 12 residual norm vs iteration for several a 
values . 

= 1.15 
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produces its own individual curve, and as a approaches its optimum 

value the lines become successively steeper, up to a> aopt where the 

trend reverses (Fig. 6). 

It can be shown that the absolute value of the slope qf one of Ho-0 

the2_~ l.ine.s is the convergence rate of .. !!>-~ solution for the a cor---
responding to that line_:. However this method while accurate can be 

quite tedious if applied to studies requiring optimization of a. 

In this study a least squares fit to the log ll r ll vs iteration curves 

was used. Tile convergence rate could then be directly calculated from 

the slope of this fitted curve. 

The curve fitting was accomplished as the 12 residual norms were 

calculated at the end of~ Thus the slope of the fitted 

curve and therefore the convergence rate for that value of a could be 

calculated directly by the same program that solved the difference 

equations. Because trial and error is the only method available for 

optimization of a the direct calculation of the convergence rate made 

the optimization process much simpler. 

Another aid to the time consuming optimization process was the 

use of a plot of Al vs a. An example of such a plot is shown in 

Fig. 7. It can be seen in this plot that up t o a Al decreases as opt 
a increases, and beyond a A increases rapidly with a. Because opt 1 
such plots make the general trend of Al with a more easily seen 

better choices of a can be made during the trial and error search 

for a , thus reducing the number of calculations required. opt 
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1 ct opt 
Fig. 7 . Plot of A1 vs the over-relaxation parameter. 

3.4 Description of Boundary Conditions 

2 ct 

As discussed in Chapter 1 the boundary conditions for an elliptic 

partial differential e quation are made up of either the function¢, 

its normal derivative, or a linear combination of both. Because the 

analytical solution ¢(x, y) was assumed initially, any of these boundary 

conditions could have been used for this study. However since ¢ (x, y) 

was already being calculated for the error evaluation it seemed easiest 

to just use the function ¢(x, y) for the boundary conditions. 

The conditions were set up by first calculating the analytical 

solution ¢(x, y) for the entire region being used. Then all the mesh 

points of the region were set equal to zero except for the boundary 

points, which were left equal to the appropriate values of ¢ (x, y). 
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Thus the initial conditions for the problems solved in thi s study were 

boundary points equal to ¢(x, y) and all interior points equal to 

zero. 

3.5 Description of Computer Program Used for Study 

The computer program used was specifically designed and written 

for the purposes of this study . The program was used for comparison 

of the error and speed of convergence of two finite difference 

techniques. It was ~ritten in Fortr~n IV language for a Watfiv 

compiler, and consisted of a main program along with several sub-

r outines . A short description will be given here along with a 

simplified flowchart in Appendix B. 

The purpose of the main program is to act as a source deck for 

supplying information required in common by both finite difference 

calculations . The main program, through the use of input informa -

tion, sets up and dimensions the region to be used for the calcula-

tions. It is designed to set up rectangular regions of either regular 

or irregular shape, an example of the later is shown in Fig. 8. 

The values of h1 and h2 , along with the x and y values for each grid 

point, are also calculated for the region. 

These x and y values are then used to calculate the analytical 

solutions described in Sec. 3.1, the function f(x, y) from Poisson's 

equation, and the numerator of Eq. 2.15. Finally the main program, 

through the use of a short subroutine, establishes the boundary condi-

tions described in Sec . 3.4. These boundary conditions along with the 
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Fig. 8. Irregular rectangular region. 

values for the analytical solution, f(x, y) and the numerator of Eq. 

2.15 are passed, using two dimensional arrays, to the subroutines 

containing the finite difference calculations. 

Upon completion of all the necessary calculations, the main 

program calls the subroutine with the five-point calculation. Tilis 

subroutine, with the boundary conditions passed t o it from the main 

program, solves the system of five-point difference equations using 

the iterative SOR technique. As this solution proceeds the 12 

residual norms and values of Al are calculated for each itera tion. 

At an iteration designated by an input parameter the curve fit 

of Al described in Sec. 3 .3 begins. 1 After the solution has converged 

the value of the convergence rate ~ is calculat ed from the curve fit 

data. Tile analytical solution calculated in the main program is then 

used t o calculate the absolute and r elative error in the approximate 

solution, as described in Sec. 3 .2. 

1 Convergence is measured by the difference between two successive 
12 residual norms . Tile solution is said to have converged when thi s 
difference is less than a predetermined value. 
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The subroutine containing the nine-point calculation is called by 

the main program after the five-point calculation is completed. The 

solution of the nine-point difference equations proceeds in essentially 

the same manner as that of the five-point equations. The error and 

convergence rate calculations are also handled in the same manner as the 

five-point values. The only real difference in the two subroutines is 

the additional calculation of the parameter p (Eq. 2.15 ) required for 

the nine-point relation. This calculation for p at each interior 

mesh point also requires the solution of a system of difference equations. 

This system like the nine- and five-point systems is solved using the 

iterative SOR technique. The nine-point subroutine is set up such that 

the value of p could be calculated for each iteration, or at regular 

intervals during the solution. 
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CHAPTER 4. RESULTS AND DISCUSSION 

4.1 Introduction 

As stated previously, the objective of this study was the comparison 

of two finite difference relations, the nine-point relation developed 

in Chapter 2 and the usual five-point relation. The comparison was 

made to show the higher accuracy of the nine-point relation and to 

determine which relation converged more rapidly. In addition, through 

the comparison of the error and speed of convergence, an attempt was 

made to show a computational advantage for the use of the nine-point 

relation. 

In the study it was attempted to show that the accuracy of a five-

point solution to a problem could be achieved using the nine-point 

relation with many fewer points. Further it was attempted to show 

that when applied in this manner, the nine-point relation would con-

verge more rapidly than the five-point relation. Therefore the nine-

point relation applied in this manner would give the advantages of 

needing less computer storage area and less computation time. Further 

these advantages would be gained while still providing the accuracy 

of a five-point solution which is more than adequate for most practical 

applications. 

4.2 Error Analysis Results 

In order to make the analysis just discussed, it was necessary 

to relate the accuracy of the numerical solution to the number of 

grid points used. This was done through the use of a logarithmic plot 
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of the 12 error norm as a function of the grid spacing, which is 

directly related to the number of grid points. For regions with equal 

spacing the absolute error norms were plotted as a ft.mction of h, 

where h = h 1 = h2 . For regions with unequal spacing the absolute 

1 d f i Of R, Where R = ... /h21 + h22 error norms were p otte as a unct on ~ as 

suggested by Holmes and Ettles [11]. 

To generate the data necessary for such plots numerical solutions 

of a problem applied to several different regions were calculated. 

The regions were of constant shape and size, and had the same range of 

x and y values. llley differed only in the number of grid points used 

for each calculation. Thus from these numerical solutions, specific 

error values could be calculated for each of a series of h or R values . 

As discussed in Section 3.1, three assumed solutions were to be 

analyzed in this study. An attempt was made to apply the above analysis 

to all three types of functions. They were applied using square regions 

with sides of length unity to allow consistent and easy calculation of 

h from the number of grid points . The functions were applied using 

both equal and unequal spacing for the regions. 

For reasons to be discussed later, the error analysis was completed 

only for the sine and hyperbolic functions. They were applied using 

two ranges of x and y values for each function, 0.1 to 1.1 and 0.5 to 

1.5 for the sine function, and - 0.25 t o 0.75 and 0.0 to 1 . 0 for the 

hyperbolic function. For the application of the functions to equally 

spaced regions, eight values of the absolute error norm were calculated, 

one for each of the grids ranging from 5 x 5 to 12 x 12. Six values 

were calculated for the unequally spaced regions, which had grids ranging 
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from 5 x 7 to 10 x 11. To ensure that the residual error was 

negligible compared to the absolute error, the iterative procedure 

was continued until the 12 residual norm had fallen to below lo- 10 . 

The problems evaluated in this study were chosen to avoid a 

large range of values of the function; most values of ¢ (x, y) ranged 

between 0 and 1 with a few ranging as high as 2. Because of the 

small ranges of values, it was felt that the increased weighting would 

not be large if the absolute error was used. Further it was found 

that the relative error did not vary significantly from the absolute 

error as can be seen in Fig. 9. This small difference in the actual 

values of absolute and relative error, together with the feeling that 

the uneven weighting would not be important, led to the use of the 

absolute error. 

The majority of the error calculations were made without an attempt 

at optimization of the SOR over-relaxation parameter a. This was due 

to the length of time required for optimization, and because the error 

is not a function of a. Instead a constant value of a= 1.15 was 

used for both the five- and nine-point calculations. For the convergence 

of the solution, some cases also required either under- or over-

relaxation of the SOR calculation of Eq. 2.15. Optimization was at-

tempted only for the sine function with x and y values of 0.5 to 1.5, 

the results of this optimization will be discussed in Section 4.4. 

The logarithmic plots of absolute error vs h for the calculations 

made with various configurations of the sine and hyperbolic functions 

are shown in Figs. 10 through 16. In each of these figures are illustrated 
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the curve.s resulting from the five- and nine-point calculations for a 

single case. In Figs. 10 and 11 the nine-point solutions are represented 

by two parallel lines. As indicated by the key in each figur~, one 

line represents the case where the numerator of Eq. 2.15 was calculated 
2 analytically (~ f calc.). The other represents the case where the 

numerator is calculated using the numerical approximation given by 
2 Eq. 2.16 ('Cl f approx.). For the figures with only one line representing 

the nine-point solution, it is also indicated in the key which technique 

was used for evaluation of Eq. 2.15. 

As can be seen in Figs. 10 and 11, the use of the numerical ap-

proximation of Eq. 2.16 for Eq. 2.15 led to some surprising results. 

1he cases calculated using the approximation had consistently less 

error than the same problem calculated using the analytical value 

for the numerator of Eq. 2.15. It would seem that the error in the 

approximation for the numerator interacts in some manner with the error 

in the approximation of the denominator, Eq. 2.12 , to produce a more 

accurate value for the parameter p. Thus the use of the approxima-
--------------·~~~~~~~~--

tion for the numerator not only simplified the application of the 
._. __ .. __ ·-- - - ....._ ___ _.... 

•technique as described in Chapter 2, but it also produced a more ac---- -- --· ·-- _..___.,._.,.-- --- -----....... ___ _ 
All but one of the cases considered gave similar results when 

plotted in the above described manner. The exception was the sine 

function applied to equally spaced regions with x and y values of 0.5 

to 1.5. As can be seen in Fig. 13, the case produced two curves 

representing the nine-point solutions. Unlike the plots just dis-

cussed, these two curves represent calculations made using odd and even 
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numbers of grid points. For this particular case, the nine-point 

relation applied to a region with an even number of interior grid 

points gave an error value larger than the value achieved using an 

odd number of points. That is, the use of an odd number of interior 

grid points gave more accurate solutions than the use of an even number 

of points. 

This discontinuity was not found for any other configuration of 

the sine function . Applying the same x and y values to unequal 

spacing did not give similar results, see Fig. 16. When x and y values 

of 0.1 to 1.1 were used with equal spacing, again there was no dif-

ferential between odd and even numbers of points. The numerical ap-

proximation to the numerator of Eq. 2.15 was also applied to the 

problem. It had no effect on the odd-even dis continuity other than 

lowering both curves a slight amount. The discontinuity in the error 

calculations was not the only problem encountered with this configura-

tion of the sine function. A related phenomena was found in attempts 

at a optimization. This will be discussed in Section 4.4. 
___..., 

No adequate explanation for either phenomena has been determined. 

1he discontinuities may stem simply from a peculiarity in the numerical 

values of the error derivative terms caused by tho se combinations of 

points. An explanation may come from the fact that when Eq. 2 . 15 

is substituted for p in the nine-point relation, the resulting rela-

tion is nonlinear. Further work is needed to fully explain the 

discontinuities . _______.:::!-

As mentioned previously the error analysis was comple~ed only for 

the sine and hyperbolic functions. Attempts were also made t o 
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2 2 analyze the error for two polynomials x + y 2 3 2 x y 

The highest power in either equation was of order 4. As is seen in 

Eq. 2.6 the lowest derivative in the truncation error terms is of 

order 6. Thus when the polynomials were applied using the nine-point 

relation the truncation error derivative terms went to zero and there-

fore so did the truncation error. This meant that the nine-point rela-

tion applied to these polynomials had in essence no error. 

The error in the final nLmlerical solution was thus limited only 

by the accuracy of the computing system used. This meant that accurate 

error analysis could not be made for these polynomials. For accurate 

analysis to be made, polynomials of powers of order six or higher would 

have to be used. However because of time limitations, and the feeling 

that the sine and hyperbolic functions represented more coilllilon solu-

tions, no further work with polynomials was attempted. 

For all the error calculations that were completed, the relation-

ships resulting between the logarithms of the absolute error and grid 

spacing were linear, as can be seen in Figs. 10 through 16. Because 

of this linear relationship it would be expected that the truncation 

error could be expressed as a function of grid spacing h by a relation 

of the form 

log e = n log (h) + log (c) 

Such a relation would then result in the truncation error being 

represented by 

n e = c(h ) 

(4 .1) 

(4 .2) 
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where n is the order of the truncation error, either 2 or 4 for the 

finite difference relations handled in this s tudy, and where the coef-

ficient c would contain the derivative terms of the truncation error . 

Til.us it could be expected that the straight lines in the absolute 

err or vs h plots would have a slope of either 2 for the five-point 

results or 4 for the nine-point results. 

However the results of this s t udy and the results of the s tudy 

done by Holmes and Ettles [11] indicate that such is not the case. 

Both studies have found the slope of the lines to be noninteger values 

slightly larger than the expected values of 2 or 4 . Holmes and Ettles 

have attempted to explain these results through the use of a relation 

of the form 

log e n = m log (h ) + log c (4. 3) 

which results in the error being represented by 

(4.4) 

Til.e exponent n is once again either 2 or 4, and c still represents 

the truncation error derivative t erms . Tile exponent m is used t o 

account for the unexpected slope of the error vs h lines . Holmes 

and Ettles got values form which r ange from 0.95 t o 1 . 09 . Til.ese 

values for m multiplied by the appropriate value of n then gave the 

slopes of the lines. Tile value s form found in this study were slightly 

larger. Tiley are shown in Table 1 along with the appropriate values 

of the coefficient c, which seems to be significant in quanti fying 
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Table 1. The parameters c and m for the absolute error vs grid spacing 
curves shown in Figs. 10 through 16 

Function Five 2oint Method for Nine point 
(x-y range) c m calc. ~2£ c m 

1 + sinh (xy) 6.55(10-4) 1.552 Analytical 6.98(10-3) 1.329 
(O.O to 1.0) 

Approximate 3.81(10-3) 1.338 

1 + sinh (xy) 4 .59(10-5) 1.528 Analytical 8. 78(10-4 ) 1.316 
(- 0.25 to 0.75) 

5 .14 (10-4) Approximate 1.331 

1 + sinh (xy) 1.30(10-5) 1.475 Approximate 4.57(10-5) 1.29 
(- 0.25 to 0.75) 
(unequal spacing) 

sin (xy) 1.52(10-3) 1.585 Approximate 5. 84 (10-3 ) 1.341 
(O.l to 1.1) 

sin (xy) 1. 87 (10-2) 1.64 Analytical 2.39(10- 2) 1. 238 
(0.5 to 1.5) (odd) 

Analytical 1. 001 (10- 1) 1.183 
(even) 

sin (xy) 4.83 (10-4 ) 1.574 Approximate 5 .11 (10-4 ) 1.27 
(0 .1 to 1.1) 
(unequal spacing) 

sin (xy) 4 . 64 (l0-3) 1.552 Approximate 4.34(10-2) 1.52 
(0.5 to 1.5) 
(unequal spacing) 

the error. The results for calculations with unequal spacing are 

given in Table 1 as a function of R. 

Holmes and Ettles offered no explanation as to the source of the 

exponent m. One possible explanation is to assume that m takes the 

form 

m = 1 + t. (4. 5) 
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where 6 is some fractional value less than unity. With this assumption 

for m, Eq. 4.3 can be rewritten as 

log e = log c' + (1 + 6) log (hn) (4 .6) 

or 

log e n n 
= log c' + 6 log (h ) + log (h ) (4. 7) 

By comparison of Eq. 4.7 with Eq. 4.1, it can be seen that the log of 

c from Eq. 4.1 can be described by 

n log c = log c ' + 6 log (h ) 

11iis result would indicate that the coefficient c should have the 

form 

(4. 8) 

(4. 9) 

If this analysis is accurate then one could expect . the coefficient c 

and therefore the truncation error derivative terms to be functions 

of the grid spacing h. 11ie exponent m thus may stem from some varia-

tion of the truncation error derivative terms with h. 

A possible explanation for this variation may lie in the fact that 

as the grid spacing h is varied, the derivative terms are calculated 

at slightly different grid points giving slightly different values, 

and thus varying with h. A proof of this explanation has not been 

determined, however it can be shown to be true at leas t empirica lly. 

Suppose a point could be found where the x and y values did not vary 

with the grid spacing. 11ie truncation error derivative terms at such 

a point would be constant for a ll values of h. 11ien if the above 



45 

explanation for m is to be true the error at that point calculated for 

several values of h should produce curves with slopes of 2 or 4. 

It was found that for an equally spaced region with an odd number 

of points on each side the x and y values at the center point do 

not vary with the grid spacing. Several calculations were made using 

regions with such grids. The absolute error at the center point was 

calculated for each region. The resulting error values were then 

plotted versus h as before, see Fig. 17. The slope of the resulting 

nine-point curve was 4.0037 overall. The five-point curve was not 

linear at least for the grid spacing values used. Instead the slope 

of the curve successively increased for increased numbers of points. 

The slope increased from 1.61, between regions of 5 x 5 and 7 x 7, to 

1.93, between regions of 11 x 11 and 13 x 13. Thus it would seem that 

the slope would approach 2 if larger regions were applied. 

These results show that the curves, resulting from the error 

calculations at points where the derivatives do not vary, have the 

expected slopes of 2 and 4. This would seem to prove the above pro-

posed explanation for the source of m, that is , the exponent m arises 

from the dependence of the truncation error derivative tenns on the 

grid spacing h. 

The values of the slope and coefficient c for the five- and nine-

point curves are the key to showing the computational advantage of the 

nine-point relation. As stated in Section 4.1 this advantage was to 

be demonstrated by showing that the accuracy of the five-point solution 

to a problem could be achieved using the nine- point relation applied 

with many fewer points. This can now be done u s ing Figs. 10 through 16 
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and the values of the slopes and coefficients c resulting from the 

curves in those figures. 

If Figs. 10 through 16 are used, the analysis can be made easily. 

The value of error desired is located on the ordinate. Then by drawing 

a horizontal line from this point through both the five- and nine-point 

curves the corresponding values of h can be read from the abscissa 

directly below the respective intersection of the line and curve. 

These values for h can then be directly transformed into estimates for 

the number of points required for the desired error. 

This direct use of the plots while simple can sometimes be in-

accurate due to the difficulty in reading the values from the plots. 

The linearity of the curves allows for a more accurate method of 

analysis which involves the use of Eq. 4.4 and the slopes and coeffi-

cients c calculated from the original data. If Eq. 4.4 is rewritten 

as 

h = mn~ 

then the proper values of m, n and c from Table 1 can be used to 

calculate h for any error value chosen. 

(4.10) 

The later technique was used to calculate the results shown in 

Tables 2 and 3, in which the spacing and number of points required for 

equivalent error in the five- and nine-point solutions are shown. 

In Table 2 the results of two calculations are shown for each problem 

handled. In the first calculation the value of error calculated 

for the nine-point solution of the 12 x 12 region is used to calculate 

the equivalent spacing and number of points required by the five-point 



Table 2. The spacing and number of points required for equival ent error in the five- and nine-point 
solutions to given configurations 

Error Five-Eoint grid Curve Nine-Eoint grid 
Fb Configuration desired h Dimensions Pointsa used h Dimensions Pointsa 

1 + sinh (xy) 1. 015 ( 10 - 8) o. 0282 35 x 35 1089 Approx. 0.091 12 x 12 100 10. 89 
( 0. 0 to 1.0) 

4.148(10- 10) 0.01 100 x 100 9604 Approx. 0.05 20 x 20 324 29.64 

1 + sinh (xy) 1.4673( 10-9) 0.0319 31 x 31 841 Approx. 0.091 12 x 12 100 8.41 
( - 0.25 to 0 .75) 

6.085(10-11) 0 . 0106 94 x 94 8464 Approx. 0.05 20 x 20 324 26.1 

sin (xy) 1.5124(10-8) o. 0264 38 x 38 1296 Approx. 0.091 12 x 12 100 12 . 96 
( 0 . 1 to 1.1) ~ 

6 .133(10-10) o. 00961 104 x 104 10404 Approx. 0. 05 20 x 20 324 32.11 ()) 

sin (xy) 1. 7597(10-7 ) 0.0293 34 x 34 1024 Odd 0.1 11 x 11 81 12.64 
(0.5 to 1.5) 

1.112(10-8) o. 0126 79 x 79 5929 Odd 0.0526 19 x 19 289 20.52 

8Number of points which are calculated, that is, the number of interior points. 

bF Number of points required by 5 pt. = Number of points required by 9 pt. 



Table 3. The spacing and number of points required for equivalent error in the five- and nine-point 
solutions to give unequally spaced configurations 

Error Five-:eoi nt grid Nine-:eoint grid 
Configuration desired R Dimensionsa Points0 R Dimensions Points0 Fe 

1 + sinh (xy) 3.156(10-9) 0.0595 22 x 22 484 0.1495 10 x 11 72 6. 72 
(-0.25 to 0.75) 

sin (xy) 3 . 2754(10-8) 0.0474 28 x 28 784 0.1495 10 x 11 72 10.89 
(0.1 to 1.1) 

sin (xy) 4.0223(10-7) 0.0491 27 x 27 729 0.1495 10 x 11 72 10.125 
(0.5 to 1.5) 

aD, . imensions of equally spaced region required for given R value. 
b Number of points which are calculated, that is, the number of interior points. 

cF = Number of :eoints required by 5 :et. 
Number of points required by 9 pt. · 

~ 
\0 
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relation for the same error. In the second calculation, the error in 

the nine-point solution for a 20 x 20 region was calculated using 

Eq. 4.4 and data from Table 1. Then this value for the error was used 

to estimate the spacing and number of points required for the five-

point relation for the same error. For all cases handled with unequal 

spacing only one calculation was made, see Table 3. In this calculation 

the value of error calculated for the nine-point solution for the 10 x 11 

region was used to calculate the equivalent value of R required by the 

five-point relation. 

The dimensions and therefore the number of points are listed in 

Table 2. For cases where they were not originally known, estimates 

were made by rounding the exact values for the dimensions calculated 

from h to integer values. The number of points listed in Table 3 

were estimated by assuming that the calculated values of R represent 

equally spaced grids. Then R could be represented by~ from 

which h and values for the number of points could be estimated . The 

number of points listed in both tables is the number of points that 

would be calculated in the region. 

From the calculations shown in Table 2, it can be seen that the 

computational advantage expected was obtained by using the nine-point 

relation . The values of the ratio F emphasizes the magnitude of this 

advantage. In order to achieve the error realized by a nine-point 

calculation using an equally spaced 12 x 12 region, a five-point calcula-

tion would require anywhere from 8 to 13 times as many points. Even 

llX)re important, as the regions become larger the savings become even 

more pronounced. To achieve the error in an equally spaced 20 x 20 
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nine-point calculation, from 26 to 32 times more points would need to 

be used by the five-point relation. The results shown in Table 3 

indicate that similar savings can also be expected for problems using 

unequal spacing. 

4.3 Convergence Analysis 

The savings in the number of grid points previously shown for the 11 

nine-point relation clearly indicates a reduction in the computer w 
storage required. This advantage however may be of little value if 

the nine-point solution converges at a slower rate than the five-

point solution for equivalent error. The savings in storage cost could 

easily be outweighed by increased cost for computation time. Thus in 

order to show the computational advantage of using the nine-point 

relation an analysis of the relative speeds of convergence for the 

five- and nine-point relations was required. 

It would seem that the speed of convergence could be compared 

easily through the use of the number of iterations or convergence 

rate v. However it must .be remembered that each technique will \ 

require a different number of calculations and therefore a different \ 

amount of time for each iteration. Thus to make any comparison of ---- ---~--·-

speed of convergence both the tim~ required per iteration and the 

total number of iterations necessary for convergence must be con-

sidered. That is, the actual computing time for convergence of each 

technique must be compared. 
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A method for estimating the total computational time was developed 

for this study. It involved the estimation of the time required per 

grid point for the calculation of one iteration. The computation time 

expressed in such a manner was used because it was independent of the 

number of grid points used for the region. This time estimate was 

made by breaking the computer program into three separate sections, 

the main program, the five-point subroutine and the nine-point sub-

routine. A sample problem was then applied to each section and from 

these calculations the central processor (CPU) times for the respective 

five- and nine-point calculations were found. Then using the number 

of iterations to convergence and the number of grid points calculated 

for the sample problem a value for the time per point per iteration 

was calculated for both the five- and nine-point calculations. Now 

the total computation time for the sample problem applied with any 

other number of grid points could be calculated. The computation 

time could be found by multiplying the product of P (number of grid 

points) times I (number of iterations to convergence) for the new 

problem by the constant value of time per point per iteration. 

The above method was well adapted for estimating the computation 

time for configurations applied in this study. Just by calculating 

the P·I value for the solution of any problem an estimate could be 

made for the computation time required to achieve that solution. How-

ever the comparison of the five- and nine-point solutions for equal 

err or values resulted in regions being discussed which had larger 

grids than any which were applied in this study. This led to the 

problem of how to estimate the computation time for regions with grids 
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which had not been applied, and for which P·I values could not be 

directly calculated. Further development of the above method was 

required for such cases. 

For a particular configuration applied, the values of P·I 

could be calculated for each set of grid points used with the 

configuration. The resulting values of P·I could be plotted 

logarithmically as a function of the respective grid spacing h. The 

plots resulting from such calculations were nearly linear. These curves 

could therefore be extrapolated, at least approximately, to give 

estimates for P·I values corresponding to any grid spacing. Thus from 

such plots, estimates for P•I values and therefore computation times 

could be made for the original configuration with any number of grid 

points. 

Because estimates for the computation time could now be made for 

any number of grid points used, the results from Section 4.2 could now 

be evaluated with respect to the computation time. That is, the 

computation time required by the five- and nine-point solutions for 

equal error could now be estimated. 

At this point the accuracy of using the actual number of itera-

tions to convergence as a measure of speed of convergence should be 

discussed. As mentioned in Section 3.3 the actual number of itera-

tions to convergence can be an inaccurate measure of the speed of ---- -
convergence. The inaccuracy can be caused by the initial conditions 

for the iteration vectors. Initially the iterated vector depends 

upon all of the eigenvalues and eigenvectors of the iteration matrix 

[9]. However the smaller eigenvalues eventually decay and the 
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largest eigenvalue Al is asymptotically approached. Once Al is 

reached the solution converges at a constant rate, this constant rate 

of convergence has been previously defined as the convergence rate v. 

As defined in Section 3.3 the convergence rate v is equal to 

the negative log of A1• This means that v is in effect a measurement 

of the speed of conver gence independent of the effect of the smaller 

eigenvalues and therefore also the initial conditions of the itera-

tion matrix. The use of the convergence rate v would thus be a more 

objective measure of s peed of convergence for comparison purposes . 

If the actual number of iterations were used in a comparison, the 

initia l conditions could affect the objectivity of the study. The 

relative speeds of convergence could be varied simply through the 

use of the proper initial conditions. 

As just s tated, the convergence rate v would be excellent for 

comparison purposes, but the time comparison analysis just described 

was developed t o use a value for the number of itera tions. An estimate 

for the number of iterations corresponding to v and therefore independent 

of the initial conditions was necessary for an objective time analysis 

to be made . 

In Section 3 . 3 the convergence rate v was defined also as being 

equal to the slope of the residual error norm versus iteration curve. 

However in actual practice the slope of these curves only approaches 

v after the smaller eigenvalues have decayed. Thus in the definition 

of v it is assumed that the slope of the entire curve is constant 

and equal to v and i s therefore assumed independent of the initial 

conditions. 



55 

This assumption meant that the convergence rate could be described 

by the relation 

\I = 
.tn jl r 2 11 - .tn ll r 1 11 

iter2 - iter1 
(4.11) 

This relation can be rearranged to give 

.tn ll r 2 11 - .tn ll r 1 11 
iter2 - iter1 = 

\I 
(4.12) 

Equation 4.12 could be used to estimate a value for the total number 

of iterations which is independent of the starting conditions. For 

the cases analyzed in this s tudy the number of i terations was 

calculated from Eq. 4.12 in the form 

total number of iterations (4.13) 

TI-le computation time analysis was only completely applied to 

one configuration, ¢ = 1 + sinh (xy) with x and y values ranging from 

- 0.25 to 0.75 and with the nurnerator of Eq. 2.15 approximated. This 

configuration was applied with a 12 x 12 equally spaced region for 

the initial time per point per i teration calcula tions. The results 

of these calculations are shown in Table 4 . Fr om the results in Table 4 

it can be seen that the nine-point relation talces over twice as long 

for computation per point per iteration, as would be expected. 

The application of the above configuration to the error analysis 

of Section 4.2 resulted in the five- and nine-point relations being 

applied to eight error calculations. The convergence rate \I from 

each of the five- and nine-point solutions was used with Eq. 4.13 
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Table 4. Results of time per point per iteration calculations 

Section of Time/calc. Points 
t/P·Ib program (sec.) calculated Iterationsa (sec . ) 

Five-point 
1.125(10-4 ) subroutine 2.07 100 l~ 

Nine-point 
subroutine 4.62 100 175 

aThe actual number of iterations to convergence. 

bt/P·I = time per point per iteration. 

2.64(10-4) 

to calculate the number of iterations for each solution. These itera-

tion values were then used with the number of grid points to calculate 

P•I values corresponding to the respective five- and nine-point solu-

tions. These calculations resulted in eight P·I values for each 

technique, corresponding to each of the eight h values. The results 

are shown in Table 5. The results of the five-point P·I calculations 

were used to formulate a P•I versus h plot as previously described, it 

is shown in Fig. 18. 

As can be seen in Fig. 18, the curve resulting from the P•I 

versus h plot for the five-point calculations is nearly linear. 

Because of this linearity the line could be extrapolated and values 

of P•I could be estimated for values of h not applied in this study. 

'lllis capability was used to make an error versus time analysis for 

the results of Section 4.2. Shown in the first column of Table 6 are 

the error values resulting from the eight nine-point solutions calculated 

for the 1 + sinh (xy) configuration. 
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Table 5. Results of P•I calculations for five- and nine-point solutions 
to 1 + sinh (xy) 

Points Five-~oint results Nine-~oint results 
Region h calc. \) Iter. 3 P·I \) Iter.a p.r 

5 x 5 0.25 9 1.2685 18 162 1.2264 19 171 

6 x 6 0.2 16 o. 64908 36 576 0.62836 37 592 

7 x 7 0.167 25 0.41906 55 1375 0.40954 56 1400 

8 x 8 0.143 36 0.29671 78 2808 0.29169 79 2844 

9 x 9 0.125 49 0.22224 104 5096 0.23076 100 4900 

10 x 10 0.111 64 0.17311 133 8512 0.1713 135 8640 

11 x 11 0.1 81 0.13885 166 13446 0.13766 167 13527 

12 x 12 0.091 100 0.11394 202 20200 0.11312 204 20400 

a I . terations calculated fron - tn(10-lO) and rounded to nearest 
integer value. \) 

For each of these error values the corresponding five-point grid 

spacings required to give each specified error was calculated using 

Eq. 4.4 with data from Table 1. These h values were then used with 

the plot in Fig. 18 to estimate P•I values corresponding to each 

value. The P•I estimates were then multiplied by the time per point 

per iteration to give the approximate time required by a five-point 

solution for the specified error. The computation times for the 

corresponding nine-point solutions were calculated directly from the 

already known P·I values. The results of these computation time calcula-

tions are shown in Table 6. The resulting five- and nine-point 
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Fig. 18. Plot of the product of P (number of points) ti.mes I (number 
of iterations to convergence) as a function of the grid 
spacing h for five-point calculations using 1 + sinh (xy). 
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Table 6. Results of error versus time analysis for 1 + sinh (xy) with 
x and y values ranging from - 0.25 to 0.75 

Nine-point 
error 

Five-point results 
h P·l Time (sec.) 

3.203(10- 7) 0.206 540 0.064 

9.4967(10-8) 0.135 3400 0.38 

3.5607(10-8) 0.0963 16000 1.8 

1.5654(10-8) 0.0724 55000 6.2 

18.8 

48.4 

7.726(10-9) 0.0567 167000 

4.1688(10-9) 0.0458 430000 

2.4055(10-9) 0.0379 990000 

1.4673(10-9) 0.0319 2190000 

111.4 

246.4 

aG = Computation time - 5 pt. 
Computation time - 9 pt. 

Nine-poi nt results 
h P·I Time (sec.) 

0.25 171 0.045 

0.2 592 0.16 

0.167 1400 0.37 

0.143 2844 0.75 

0.125 4900 1.29 

0.111 8640 2.28 

0.1 13527 3.57 

0.091 20400 5.38 

computation times were also plotted logarithmically as a function of 

the corresponding error. This plot is shown in Fig. 19. 

From the results shown in Table 6 and Fig. 19 it can be seen that 

a definite savings in computation time is gained by the use of the 

nine-point relation. The values of the ratio G in Table 6 indicate 

that a five-point solution with the error of a 5 x 5 nine-point solu-

tion would require almost 1.5 times more computation time than the 

nine-point solution. To achieve the error in a 12 x 12 nine-point 

solution the five-point solution would require nearly 46 times more 

computation time. It can now be seen from Tables 2 and 6, that for 

the five-point relation to give the same error as the 12 x 12 

1.4 

2.4 

4.9 

8.3 

14.5 

21.2 

31.2 

45 . 8 
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Fig. 19. Plot of the computation time in seconds as a function of 
the absolute error for five - and nine-point calculations 
using 1 + sinh (xy). 
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nine-point solution 8 times more points and CNer 45 times more 

computation time would be required. 11\ese results show a large 

computational advantage for the use of the nine-point relation, an 

advantage which increases with the accuracy required. 

At this point it must be remembered that the five-point computa-

tion time figures just used are only approximate. 11\e extrapolation 

of the P·I versus h plot was only approximate and the P•I values re-

sulting from the extrapolation are therefore subject to some inaccuracy. 

11\e figures were presented for comparison purposes only and are ac-

curate enough to show at least qualitatively that for equivalent error 

the nine-point relation will take much less computation time. 

4.4 Optimization of the SOR Technique 

As mentioned earlier the majority of the calculations in this study 

were made without attempting to optimize the SOR technique . 11\e calcula-

tions used for the computation time analysis just discussed were made 

using a constant value of a= 1.15 for both the five- and nine-point 

solutions. As can be seen in Table 5 this resulted in values for the 

convergence rate v which were nearly equivalent for the five- and nine-

point solutions. 11\e question which arises at this point is what 

happens when a is used for the five- and nine-point solutions. opt 
Will the use of a greatly affect the relative computation times opt 
of the five- and nine-point relations? 

As discussed in Section 4.2 optimization was attempted only for 

the function sin (xy) applied with x and y v~lues ranging from 0 . 5 to 
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1.5. Attempts were made t o optimize the sin (xy) configuration applied 

to four equally spaced grids ranging from 5 x 5 to 8 x 8. A largely trial 

and error process was used for the optimization attempt. Only Al versus 

a plots, as described in Section 3.3, were used to aid the process . 

As was shown in Section 4.2 this configuration of the sine function 

has very pronounced discontinuities in the error analysis results. 

These discontinuities were carried into the optimization process. As 

with the error calculations for this configuration, a discontinuity 

between regions with odd and even numbers of grid points was found when 

attempts were made to optimize the nine-point relation. These dis-

continuities made it impossible to use this configuration to answer 

any question with respect to the effect of a t• op 
When the nine-point relation was applied to regions with an odd 

number of grid points, the Al versus a curves which resulted were 

very similar to the expected curves from five-point calculations. 

An example of the plots resulting from the nine-point relation optimiza-

tion is shown in Fig. 20 for the 5 x 5 region. The nine-point rela-

tion applied to regions with an even number of grid points resulted 

in plots that were very much different from the expected curves. As 

can be seen in Fig . 21, for the 8 x 8 region the slope of the Al versus a 

curve increased very gradually up to what appeared to be ~ where it opt 
reversed and gradually decreased . 

The expected steep drop in the curve to the a t value for Al op 
was not present for either of the even grids used. nte absence of 

this rapid drop resulted in a very slow convergence, even at a t' op 
for both even grid regions. This slow convergence and the large 
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difference between the odd and even regions can be also seen from the 

values of v shown in Table 7. 

Table 7. Results of SOR optimization proces s for sin (xy) 

Five-2oint solutions Nine-2oint solutions 
Region Ci opt v Ci opt 

5 x 5 1.1748 3.01 1.169 

6 x 6 1.2619 1.53 1.0943 

7 x 7 1.3454 1.40 1.2840 

8 x 8 1.4060 1.13 1.30 

As stated previously no conclusive explanation has been found 

for these discontinuities. Also because of the discontinuities no 

conclusions on the effect of a t on the computation time analysis op 
could be made. 

v 

1. 82 

0.597 

1.25 

0.485 
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CHAPTER 5. CONCLUSIONS 

In this investigation it has been shown that the nine-point finite 

difference approximation to the two-dimensional Poisson's equation has 

higher accuracy than the usual five-point approximation. This higher 

accuracy was~h-~n for several configurations . Included in these 

configurations were functions representing the three general types of 

differential equation solutions, that is, trigonometric, exponential 

or hyperbolic and polynomial. It was also found that the relative 

acc~cy of the nine-point formulation increased with the nlnllber of 

points used. That is, the accuracy of the nine-point solutions in--
creased more rapidly than the accuracy of the five-point solutions 

for decreasing grid spacing. 

The use of the parameter p was shown to be an appropriate means 

for reducing the truncation error of the nine-point relation. The 

approximation used for the denominator of the equation describing p 

did not seem to adversely affect the overall error of the nine-point 

formulation. It was also found that the further approximation of 

the numerator of the same equation acted to reduce the overall trunca-

tion error as well as simplifying the application of the technique. -
Relatively few difficulties were found in applying the parameter p. 

Due to oscillations some configurations required either under- or over-

relaxation of the SOR calculation of p to achieve convergence. Also 

it was found that care was necessary to avoid configurations where the 

cross derivative in the equation describing p went to zero. 
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It was discovered that the truncation error derivative terms were 

functions of the grid spacing h. Because of this dependence the overall 

truncation error norms were found to be a function of h to some non-

integer power greater than the expected value of 4. The truncation 

error was of order 4 only at the points where the truncation error 

derivative terms were independent of h. Similar results were also 

found for the five-point solutions. Further it was shown that the 

truncation error for unequally spaced grids could be described using 

R, where R = ...Jhi + h~ • 

The Al versus a curves resulting from the SOR optimization process 

for the nine-point relation were found to have the same shape as those 

resulting from the five-point relation. This indicates that because a 

value for a could be found, the SOR technique should be useful in opt 
applying the nine-point relation. However not enough work was done to 

make any definite conclusions on the relative speed of the five- and 

nine-point relations at a opt 
It was shown that the use of the nine-point relation provides very 

significant computational advantages. It was found that the accuracy 

of a five-point solution could be achieved using a nine-point relation 

with many fewer points. Further when applied in this manner the nine-

point relation was found to require substantially less computation time. 

The combination of these findings indicate that large savings in both 

storage cost and computation time cost could be achieved by using the 

nine-point relation, while still providing more than adequate accuracy . 

Even more important, as more accuracy is required the relative savings 

from the nine-point relation increases . .--
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CHAPTER 6. SUGGESTIONS FOR FURTHER STUDY 

The following are suggestions for further investigation related 

to this work: 

1) Further work is needed in the area of optimization of the 

SOR technique applied to the nine-point relation. The affect of 

using a t on the relative five- and nine-point convergence rates op 
should be analyzed. An expression to predict the value of a t for op 

the nine- point relation should be investigated. Also the affect on 

the conv~rgence rate of the under- and over-relaxation of the SOR 

cal~ulation of p should be examined. 

2) An attempt should be made to explain the discontinuities in 

the sine function results. It should be determined whe t her the dis-

continuities were just a peculiarity for that configuration or whether 

similar discontinuities could occur for other configurations . Possible 

explanations may lie in the nonlinearity of the formulation resulting 

from the substitution of the equation for p into the nine-point rela-

tion or in some affect of the smaller eigenvalues of the iteration 

matrix . 

3) The effects of applying the nine-point relation to configura-

tions with largetj and more rapidly varying functions could be in-

vestigated . Analysis of the nine-point relation with h values 

greater than unity may also be beneficial. 

4) Configurations using irregularly shaped regions, such as in 

Fig. 8, could be analyzed with particular interest in the affect of 

the nine-point relation on calculations in corners and contractions. 
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5) Further studies could als o be made us ing higher order 

polynomials, although the results of this study indicate that the nine-

point relation applied to them would give results similar t o those 

found already . 
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APPENDIX A. DERIVATION OF FIVE-POINT FINITE DIFFERENCE 

APPROXIMATION TO THE TWO-DIMENSIONAL POISSON EQUATION 

The two-dimensional Poisson's equation in rectangular coordinates 

can be written as 

(A. l) 

This relation can be approximated by a five-point finite difference 

equation. To relate the derivatives to the respective finite differences, 

use the Taylor ' s series expansion 

¢(x .± h) 
2 h3 

= ¢ (x) .± h¢' (x) + ~ ! ¢" (x) .± 3T ¢'" (x) + (A.2) 

Using a finite difference grid as shown in Fig. 2, and expanding each 

of the four axial points about the center points results in 
2 2 3 3 

0¢0 hl d ¢0 hl 0 ¢ 0 
¢ 1 :: ¢ 0 + h 1 dX + ~ dX 2 + 3T OX 3 + 

2 2 3 3 
o¢o h2 o ¢0 h2 a ¢ 0 

¢ 2 = ¢ 0 + h 2 ox + ~ ox 2 + 3! ox 3 + 

The summations of ¢1 and ¢ 3 , and of ¢2 and ¢4 result in 

02¢ 
¢1 + ¢3 ¢13 = 2¢0 +hi ox2 0 + O(h4) 

and 

(A. 3) 
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2 
2 ° ¢0 4 

¢2 + ¢4 = ¢24 = 2¢0 + h2 -2- + O(h ) 
oy 

Equations A.3 and A.4 can now be solved for o2¢0/ox2 and o2¢0/oy2 

respectively to give 

2 
0 ¢0 1 2 
-- = - [ ¢13 - 2¢0 - O(h ) ] 
ox2 

h2 
1 

and 

The addition of Eqs. A.5 and A.6 results in 

2 2 0 ¢0 ° ¢0 1 1 2 -- + -- = - [¢13 - 2¢o] + h2 [¢24 - 2¢0) - O(h ) 
ox2 oy2 hi 2 

or 

Using r = h1/h2 Eq. A.7 can be rewritten as 

From Eq. 

2 1 1 1 2 
~ ¢0 = ~ [r ¢13 + r¢24 - 2 (r + r)¢0] - O(h ) 

1 2 
2 A. l ~ ¢ = f (x, y) which means Eq. A. 8 can be given as 

Then solving Eq. A.9 for ¢0 results in 

(A.4) 

(A.5) 

(A.6) 

(A. 7) 

(A.8) 

(A. 9) 

(A. 10) 
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Or using standard notation the five-point finite difference approxima-

tion for Poisson's equation can be written as 

¢ .. = 1,J 

(A.11) 
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APPENDIX B. FLOW CH.ART OF COMPUTER PROGRAM USED BY THIS STUDY 

START 

Main program input 
arameters read 

Values for h 1, h2 , x and y calculated 

Analytical solution and function f(x , y) calculated 

Numerical value for (r2o2 + D2)f(x, y) calculated x y 

Boundar conditions established for region 

Input parameters 
for five-point 
calculation read 

I nitialization of the matrix ¢(I, j) to 
nditions 

Iteration on five-point approximation 
using SOR technique 

12 residual norms and Al calculated and 
outputed for each iteration 

Curve fit made to s uccessive Al values 

NO 
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Calculation and output of convergence rate v 

Calculation and output of a so ute an 
relative error for five-point solution 

YES 

nput parameters 
for nine-point 

calculation read 

Matrix ¢(I, j) initialized to 
boundary conditions 

Parameter p calculated using 
SOR techni ue 

Iteration on nine-point approximation 
usin SOR technique 

lz residual norms and Al calculated 
and outputed for each iteration 

Curve fit to successive Al values made 

NO 

NO 
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Calculation and output of convergence rate ~ 

NO 

YES 


