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INTRODUCTION 

Infection of cattle with viruses and other intracellular pathogens causes a great 

deal of harm to the animals and poses a serious economic burden to the cattle 

industry. The most common method to combat infection has been the development 

of vaccines, but in many cases vaccines are ineffective at preventing either 

infection or disease. The goal in most vaccine production is to elicit an immune 

response that mimics protective immune responses which animal develop after 

natural infection. For many viruses, especially those which cause persistent 

infections, a cellular immune response seems to be more important for protection 

from infection than humoral immune responses. In order to artificially produce a 

cellular immune response, it is usually necessary to vaccinate an animal using 

modified live or vectored viruses. A useful tool in development of live vaccines is 

the ability to measure what segments of the viral genome elicit the cellular immune 

responses that are associated with protection in animals infected with wild-type 

virus. This can allow researchers to design modified viruses which possess only 

the parts of the genome necessary for a protective response. Unfortunately, no 

widely applicable, effective system exists for measurement of acquired cellular 

immune responses in cattle. 

The most important form of cellular immunity to viruses is generally mediated by 

class I MHC-restricted cytotoxic T lymphocytes, or CTL (5,7,40,88) . An animal 

gains protective immunity when it possesses CTL which can recognize infected 

cells in the body and kill them, thereby stopping the virus life cycle. In animals such 

as mice or humans, measurements of CTL recognition are routinely performed by 

isolating CTL from the blood of an infected animal and measuring whether those 

CTL will specifically lyse infected target cells in vitro. 



2 

This method has been used to a small degree in cattle, but several technical 

obstacles prevent broad application of the technique. The greatest hurdle involves 

choice of the target cell. CTL are class I MHC-restricted, which is to say that they 

detect virus in a cell through the class I MHC antigen presentation pathway and will 

only lyse infected cells which have the same MHC genotype as they do. Because 

cattle are outbred, virtually no two animals have the same MHC genotype. So in 

order to measure CTL lysis of target cells in cattle, the CTL and the target cells must 

come from the same animal, and isolation of the target cell cannot result in the 

animal's death. Since many of the cells which are easily cultured reside in vital 

tissues, this greatly restricts the choice of a target cell. The target cell must also 

express a relatively high level of its class I MHC genes for viral antigens to be 

efficiently presented to the CTL, further limiting the choice of available cells. In 

addition, many viruses infect a limited range of cells or are difficult to culture in vitro, 

effectively eliminating all potential target cells for those viruses. Finally, many of 

the viruses which do infect cells in vitro lyse the cells they infect, creating a 

background level of lysis above which specific CTL lysis cannot be detected. 

One method that holds promise in broadening the range of potential target cells 

is retroviral gene delivery. Retroviral vectors deliver genes to cells, but once the 

genes are delivered, no new viruses are made and no virus-induced lysis occurs. 

Also, retroviral vectors are available which will infect almost any dividing bovine 

cell. By using retroviral vectors to deliver individual genes from a bovine virus to 

target cells rather than trying to infect target cells with whole virus, the hurdles of 

limited virus host cell range, difficulty in culturing virus, and virus-induced lysis are 

circumvented. An added benefit of this method is that by using a panel of retroviral 

vectors which deliver different genes from the bovine virus, it would be possible to 
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specifically determine which genes elicit a CTL lysis, the information that is so 

potentially useful to vaccine development. 

By using retroviral vectors to broaden the range of target cells available for use 

in a CTL assay, all that is then required of target cell is that they can be isolated 

without killing the animal donor, they must have a relatively high level of class I 

MHC expression, and they must be susceptible to infection with retroviral vectors. 

The first goal of this project was to choose a bovine target cell which meets these 

criteria. We then proposed to use bovine immunodeficiency virus (BIV) as a model 

virus from which to construct retroviral vectors and demonstrate expression of 

genes in target cells. 

It is our hypothesis that retroviral vectors can be used to construct bovine CTL 

target cell lines, a technique which could be used for the study of cellular immunity 

to bovine viruses and other intracellular pathogens. 

Specific Aims 

1. Characterize and develop a bovine CTL target cell 

2. Construct a retroviral vector for delivery of target genes to bovine cells 

3. Use retroviral vectors to deliver genes to target cells and measure expression. 



4 

LITERATURE REVIEW 

Cellular Immunity to Viruses 

Infection by viruses and other intracellular pathogens interferes with the health 

and well-being of many animals. As long as the pathogens remain inside cells, 

they are inaccessible to soluble antibody molecules which do not penetrate host 

cell membranes. If antibodies were the only line of defense, the immune system 

would only be able to neutralize pathogens during the extracellular stages of their 

replication cycles. Therefore animals possess an additional mechanism to deal 

with intracellular infections. Nearly all host cells routinely present fragments of 

endogenously synthesized proteins on the cell surface complexed with class I 

major histocompatibility complex (MHC) molecules. In this way, the immune 

system can test for cells producing foreign proteins. Healthy cells present only 

host-derived antigens and are ignored by the immune system, but when an 

infected cell presents foreign peptide fragments on its surface, immune effector 

cells target the infected cell and lyse it (88). Cytotoxic T lymphocytes (CTL) are the 

effector cells of this immune mechanism. 

Cytotoxic T cell lysis 

CTL maturation. The precursors to CD4- CDS+ T cells, or CTL, differentiate in 

the thymus. Part of the differentiation process involves rearrangement of the gene 

encoding the T cell receptor (TCR) which is used by mature CTL to detect class I 

MHC-foreign antigen complexes. This rearrangement of the TCR provides the 

cellular immune system with its ability to recognize an amazingly diverse range of 

foreign antigens. In the thymus, T cell precursors with newly rearranged TCR 
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undergo either negative or positive selection. Cells that bind MHC complexed with 

self antigens are eliminated, as are cells which do not bind any of the organism's 

class I MHC molecules. Cells that can bind the organism's class I MHC molecules 

but do not bind MHC-self antigen complexes are allowed to mature (70). Thus, 

CTL are produced which do not react to self and specifically react with foreign 

peptides bound to class I MHC. 

Once CTL are released from the thymus, they migrate throughout the body in a 

non-activated state. When a CTL initially comes into contact with a foreign antigen-

MHC complex, the CTL is stimulated to undergo cell division and activation (7). 

Division of CTL which recognize invading pathogens is important. Since the TCR 

differs between CTL, different cells will be able to recognize different antigen-MHC 

complexes. By dividing after recognizing a foreign antigen, the CTL increases the 

number of effector cells specific for infected target cells, and presumably increases 

the animal's capacity to outpace the infection. Activation of CTL is another 

important step. Activated CTL form granules containing serine esterases 

(granzymes) and perforin and upregulate expression of a ligand for the Fas 

receptor (Fasl) on their surface (40). Both of these changes prime the CTL for 

target cell killing. 

Target cell killing. When an activated CTL recognizes a foreign antigen on 

the surface of a target cell , it can kill the target cell by two different mechanisms: 

perforin secretion or Fas receptor binding (40). The major mechanism of target cell 

killing is perforin-induced lysis. Perforin is a glycoprotein which is expressed in T 

cells and natural killer (NK) cells, and when secreted, it can enter target cell 

membranes, multimerize, and form lytic pores. According to the granule exocytosis 

model of target cell killing, upon recognition of a foreign antigen, activated CTL 

release their perforin/granzyme granules onto the target cell membrane, where the 
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perforin forms pores. These pores then allow entry of water, ions, and the 

granzymes, which leads to death of the target cell. A second mechanism of target 

cell killing is Fas-mediated apoptosis. Many cell types express the Fas receptor, 

which upon crosslinking will signal the cell to undergo programmed cell death, or 

apoptosis. Activated CTL have a ligand for Fas (Fasl) on their surface. When the 

TCR binds an MHC-antigen complex, the Fasl molecules will bind and crosslink 

the target cell 's Fas receptors, and thus begin the apoptotic cascade. For target 

cells which express Fas, the perforin-mediated and Fas-mediated killing pathway 

are used in conjunction; for cells which do not express Fas, the perforin pathway is 

used alone (40). 

Antigen processing and presentation. In order for a CTL to lyse an 

infected cell , that target cell must first present pathogen-derived antigens on the 

cell surface. When infection of a cell occurs, a series of events occurs within the 

cell leading up to the presentation of class I MHC-foreign peptide complexes on the 

cell's surface. Animal cells contain a large multicatalytic proteolytic particle called 

the proteasome which cleaves cytosolic proteins into small polypeptide fragments, 

often after ubiquitination of the original protein. A transporter in the endoplasmic 

reticulum (ER) known as TAP (transporter associated with antigen presentation) is 

involved in assembling these polypeptide fragments with the two subunits of the 

class I MHC molecule in the lumen of the ER (88) . The mature class I MHC 

complex is made up of a heavy chain , a light chain, and an 8 to 12 amino acid 

antigen peptide. The antigen peptide binds in a groove in the heavy chain. In mice 

and humans this groove is the site of most of the polymorphism among different 

alleles of class I MHC (60), and it is the site of TCR binding (9). The heavy and light 

chains are cotranslationally transferred to the lumen of the ER, where they form an 

unstable complex which can be stabilized by binding either the antigen peptide 
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(25) or the lumenal side of a TAP heterodimer. When a heavy and light chain are 

bound, TAP transports cytosolic peptides, 8 to 12 amino acids long, across the 

membrane of the ER forming a mature class I MHC complex, from which TAP then 

disassociates. The mature class I MHC-antigen complex is transported from the ER 

through the Golgi apparatus to the cell surface (88) . At the cell surface, the 

complex is accessible for screening by CTL, and thus the immune system. 

In vitro measurement of CTL lysis 

In the standard method used to measure CTL lysis, an animal is challenged 

with virus, and lymphocytes are isolated from the animal and co-cultured in vitro 

with virus-infected target cells which have been intracellularly labeled. Lysis of 

target cells is measured as a function of release of the intracellular label. 

Class I MHC restriction. In order for CTL to recognize target cells, the two 

populations of cells must share at least one class I MHC allele. Cattle have at least 

three class I MHC loci (1 ,2), and in order to measure the net lysis by all the CTL 

which recognize a virus, the CTL and target cells must be genetically identical at all 

class I MHC gene loci (26). The class I MHC restriction of CTL lysis means that in 

species of domestic livestock for which inbred lines do not exist, the most efficient 

method to measure CTL lysis is to isolate the CTL and the target cells from the 

same animal (6, 10, 11,26,30,50,51 ,53,54,78,81 ). In this way, both populations of 

cells are assured of being genetically identical , and thus matched at all class I 

MHC loci. 

Choice of target cells. A critical decision in measurements of CTL lysis is 

the choice of target cells. The most obvious consideration is that the isolation 

procedure cannot kill the animal, and it must leave the animal healthy enough to 

respond normally to challenge with the virus. The cells which are isolated must 
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have a high enough level of MHC expression for efficient antigen presentation to 

take place (6,14) . Though the specific level of class I MHC expression in a target 

cell necessary for CTL lysis has not been defined, higher expressing cells are 

desirable (6). The target cells must also be permissive to infection by virus or to 

delivery of viral genes. 

Expression of viral genes. Another consideration in measurement of CTL 

lysis is how to express viral genes in target cells. CTL recognize peptides 

presented through the endogenous antigen presentation pathway, or the class I 

MHC pathway, so viral genes should be expressed endogenously in target cells. 

Sometimes the simplest way to do this is to infect the target cells with whole virus, 

and when it is possible, most CTL research examines lysis of virus-infected target 

cells (5,6, 10, 14,26,30,49,53,75,76). This method is not always possible, in that 

some viruses replicate at low or nonexistent titers in cultured cells which can 

obtained without killing the donor animal. For such viruses, an alternative method 

is to deliver viral genes to target cells via some vectored delivery system. This 

method is useful even for viruses which will infect cells in vitro, because many 

viruses which infect cultured cells lyse the cells they infect, and the viral lysis 

causes a background above which CTL lysis cannot be detected. Also, delivery of 

individual viral genes to target cells allows definition of the fine specificity of CTL to 

individual viral genes. 

Assessment of Cell-Mediated Immunity 

A variety of determinations of CTL lysis have been made in domestic animals 

using a number of technical variations on the basic measurement protocol outlined 

above. Still , a consistent and reliable method for testing this aspect of cell-
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mediated immunity for a variety of viruses has not been developed. A review of the 

techniques that have succeeded, their strengths, and their limitations is important in 

illustrating what is technically possible and in determining what further steps need 

to be taken to develop a bovine CTL assay. 

Humans and laboratory animals 

The techniques used in the determination of CTL lysis in domestic animals have 

usually been pioneered in laboratory animals and humans. 

Measurement of CTL responses in mice are greatly facilitated by the availability 

of inbred lines of mice. The MHC haplotypes are identical within inbred lines of 

mice and target cells from MHC-matched and MHC-mismatched lines can be used 

to show that the cytotoxicity is class I MHC restricted (11 ). Since target cells do not 

need to be isolated from the same animal as the CTL, cells like splenocytes can be 

used, even though their isolation kills the donor animal. Also, the cells can be 

transformed into cell lines, eliminating the difficulties associated with culture of 

primary cells. Because any cell which can be cultured in vitro can be used as a 

target cell , it is possible to perform a CTL assay with any virus that can be grown in 

cultured cells. 

Other strategies have been used in laboratory animals that are not available in 

inbred lines. Autologous skin fibroblasts from rhesus monkeys have been used as 

target cells (48). The fibroblasts were infected ex vivo with a retroviral vector 

encoding HIV-1 ENV/REV cDNA, and monkeys were then immunized with the 

fibroblasts. CDS+ CTL were found to lyse autologous fibroblasts infected with the 

retrovirus vector or with vaccinia virus vectors carrying the HIV genes. In rhesus 

monkeys, autologous peripheral blood monocytes (PBMC) can be transformed in 

vitro with herpesvirus, and the immortalized cells can then be infected with other 
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viruses and used as target cells (83). Monkeys were vaccinated with a retroviral 

vector carrying a hepatitis B virus (HBV) core-neomycin phosphotransferase (NEO) 

fusion gene. CTL from the monkeys lysed autologous PBMC infected with the 

retroviral vector. The specific epitope recognized by CTL from vaccinated monkeys 

was found by coating panels of PBMC with synthetic HBV peptide subunits 

spanning the length of the core protein , and then using the peptide-coated cells as 

target cells. 

In humans, studies of HIV have primarily used Epstein-Barr virus (EBV)-

transformed B cells as the target cells in CTL studies. Transformed target cells are 

often infected with either whole HIV virus or with vaccinia virus carrying individual 

HIV genes or segments of genes (5, 11 ,51 ). Vaccinia virus constructs have allowed 

the localization of the CTL epitopes within the HIV genome. Though vaccinia virus 

is the most common gene delivery vehicle, a retroviral vector carrying HIV-1 Net 

was successfully used in one study to measure a Net-directed CTL response which 

was confirmed by lysis of cells infected with a vaccinia-Net virus (69). 

Domestic animals 

Virus-specific CTL have been detected to vaccinia virus, maedi-visna virus 

(MVV) , bovine respiratory syncytial virus (BRSV) , Border disease virus, and bovine 

leukemia virus (BLV) in sheep (10,30,49,62,75,76,87), to caprine arthritic 

encephalitis virus (CAEV) in goats (50) , to equine herpes virus type 1 and equine 

infectious anemia virus (EIAV) horses (12,53), to African swine fever virus (ASFV) 

in pigs (52,61 ), to feline immunodeficiency virus (FIV) in cats (26,78) , to canine 

distemper virus in dogs (77), and to bovine herpes virus (BHV)-1, infectious bovine 

rhinotracheitis virus (IBRV), and parainfluenza type 3 (Pl-3) virus in cattle (6, 14,79). 

In addition, extensive work has been done to show class I MHC-restricted CTL 
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activity following infection with Theileria parva, an intracellular parasite (23,24,5S). 

A variety of target cells and gene delivery mechanisms have been used to arrive at 

these results. 

In goats infected with CAEV (50) and in sheep infected with MVV (10), 

autologous skin fibroblast lines were established from each animal. Skin cells 

were infected with virus and used to stimulate lymphocytes for one to two weeks, 

then 51 Cr-labeled skin cells were used as target cells. Autologous macrophage 

cultures were also established from sheep and infected with MVV (49). 

Autologous, infected target cells were lysed, but non-autologous or uninfected cells 

were not. Depletion of cos+ cells from lymphocyte pools resulted in an elimination 

of lysis. 

Autologous skin fibroblasts of sheep infected with vaccinia virus were killed by 

CTL from infected sheep (62) . Ovine testis cells infected with BRSV have also 

been used as target cells, and were lysed by autologous, Ovcos+ CTL from BRSV-

infected lambs. Similar strategies have been used in cattle. Autologous skin 

fibroblasts and testes cells were isolated from calves, infected with IBRV, and used 

as target cells. Autologous skin cells were lysed by in vitro stimulated CTL, but 

testes cells were not. This study indicated that bovine testes cells did not function 

well as target cells (14). In another study using bovine coronavirus, testes cells 

were also ineffective as target cells (41 ). In cattle, fibroblastoid cells isolated from 

gluteal muscle and infected with whole virus were able to show cos+ CTL lysis in 

calves infected with Pl-3 virus between days six and nine post-infection (6). 

Autologous cells infected with whole virus were also used to show genetically-

restricted CTL activity against ASFV in swine {52), BHV-1 in cattle (79), equine 

herpes virus in ponies (12), and Border disease virus in sheep (S7). 
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Methods of viral gene delivery other than infection with whole wild-type viruses 

have also been successfully used in horses, sheep, and cats. Gene delivery has 

not yet been used in CTL measurements of cattle. 

In ponies infected with EIAV, autologous, virus-infected skin fibroblasts were not 

lysed by CTL when used as target cells. One kidney was isolated from each 

animal in the study, and autologous kidney cell cultures were established. 

Autologous EIAV-infected kidney cells were lysed by CTL from the infected ponies, 

indicating that although virus-specific CTL were present, the skin cells were 

ineffective as target cells. Removing CDS+ cells from CTL removed the lytic activity. 

In the study, researchers mapped the specificity of the CTL using kidney cells 

infected with vaccinia viruses containing either an EIAV gag/5' pol gene segment 

or an env gene segment. Kidney cells infected with either recombinant vaccinia 

virus were lysed, indicating that the ponies possessed CTL recognizing epitopes in 

both regions of the EIAV genome. 

In sheep infected with BLV, autologous PBMC were used as target cells without 

addition of exogenous virus. Cells were stimulated by PHA blast and incubated 

overnight with 20-amino-acid-long subunits of the BLV gp51 protein. Cells were 

then labeled with 51 Cr and were found to be lysed by autologous CTL. Using 

different combinations of peptide subunits, a ten-amino acid subunit of the gpS 1 

protein was found to be the target for CD8+ CTL. 

In cats vaccinated with inactivated FIV virus and infected with live FIV, 

autologous skin fibroblasts infected with FIV were lysed by CD8+ CTL. 

Researchers used autologous fibroblasts infected with recombinant vaccinia virus 

carrying either FIV gag or FIV env to determine if epitopes in either of the two genes 

were recognized, and were able to show different levels of CTL activity between 

the two groups of cats (26) . 
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Finally, inbred lines of pigs, known as NIH miniature swine, have been bred 

which are homozygous at class I MHC loci. A nine-amino-acid-long CTL epitope to 

classical swine fever virus (CSFV) was mapped in these pigs, and the target cells 

used were nonautologous transformed kidney cells taken from other MHC-matched 

syngeneic animals. The epitope was found by using target cells infected with 

recombinant vaccinia viruses carrying different portions of the CSFV genome (61 ). 

Skin fibroblasts, macrophages, PBMC, testes cells, gluteal muscle cells have 

been infected with wild-type virus and used as target cells. Many of these cells 

were easy to isolate and culture, but in each case the choice of target cell was only 

applicable to the particular virus being studied because that virus was able to infect 

the target cells and many other viruses would not be able to infect them. 

Autologous PBMC have been coated with synthetic viral peptide subunits and used 

as CTL target cells. This method was able to quickly map CTL specificities to a 

short amino acid segment, but it is prohibitive because of the cost of synthesizing 

the peptides. Skin fibroblasts, transformed B cells, and kidney cells infected with 

recombinant vaccinia viruses carrying individual viral genes were used as CTL 

target cells. Vaccinia virus was able to infect a variety of cell types, and by carrying 

individual genes it can map CTL responses to specific regions of a viral genome. 

The main drawback of vaccinia virus vectors is that they are live replicating viruses 

and can themselves lyse infected target cells. Retroviral gene delivery has also 

been used with skin fibroblasts and transformed B cells to measure CTL 

specificities. The retroviral vectors had the advantages of vectored delivery, but did 

not lyse infected cells. The main drawback to the retroviral vectors was a lower 

level of gene expression than with live virus or vaccinia vectored viral genes. 
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Relationship to disease 

A major reason for the interest in cellular immunity is the role it plays in 

controlling disease. There is evidence that for many intracellular pathogens, CTL 

are sufficient to control disease and, for some, CTL are necessary. 

One of the most striking examples of the ability of CTL to control disease comes 

from research in cattle, not with a virus, but with the intracellular protozoan, 

Theileria parva. During part of its life cycle, this parasite lives inside B cells. It 

transforms the B cells and stimulates them to divide, which makes it relatively easy 

to obtain cultures of infected autologous B cells from cattle. A study was performed 

in which pairs identical twin cattle from split embryos were infected with a lethal 

strain of T. parva after one animal had been immunized against infection and the 

other had not. The immunized animals were protected against the infection and 

their naive twins began to sicken and die. Immunized animals were previously 

shown to possess class I MHC-restricted CDS+ lymphocytes capable of lysing 

autologous infected cells (5S). cos+ lymphocytes from the immunized animals 

were transferred to their dying twins, and within several days, the animals which 

received the transferred lymphocytes were able to control the infection and 

recovered (54) . This study clearly showed that class I MHC-restricted CTL can be 

sufficient in conferring protective immunity against an intracellular pathogen. This 

is supported by a second study in which cattle immunized against one strain of T. 

parva were challenged with another strain. In all cases, animals which developed 

class I MHC-restricted CTL cross-reactive against both strains were protected, and 

animals which possessed CTL against only the immunizing strain were susceptible 

to heterologous challenge (S1 ). 

The importance of CTL in clearance of virus infection has been shown using 

knockout mice and adoptive lymphocyte transfer studies (13,32,36,43,46,64,66,74). 
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It appears that antibodies are the immune system's primary mechanism of 

protection against fast replicating, cytopathic viruses. These viruses enter cells and 

replicate to high enough levels that lysis only serves to release the viruses from 

cells. On the other hand, CTL are necessary in the control of slow replicating and 

noncytopathic viruses. CTL responses are quick enough to mount a response to 

slow replicating viruses before their replication is complete, and noncytopathic 

viruses would continue to produce virus from infected cells indefinitely if the cells 

were not lysed (40,89) . 

In humans, a strong case has been made for the control of HIV infection by 

virus-specific CTL. In primary HIV-1 infection, patients which mount a strong CTL 

response to HIV the gp160 subunit of the env gene show a faster reduction of 

viremia and virus core antigenemia and a slower progression to disease than 

patients with a weak CTL response (11 ). It appears that the first effective antiviral 

immune response following HIV infection is mediated by CDS+ T cells (72) . In the 

blood and lymph nodes of SIV mac -experimentally infected rhesus monkeys, virus-

specific CTL were detected before any virus-specific antibodies, and containment 

of acute viremia and antigenemia occurred about a week before neutralizing 

antibodies reached significant titers (67). High levels of HIV-specific CTL in 

humans are linked to lower viral load and slower progression to AIDS in both 

cross-sectional (68) and longitudinal (15,44,55,86) disease studies. CTL to the HIV 

Gag, Pol, and Env genes appear to be most effective at controlling infection (68). In 

summary, CTL appear to control initial HIV infection, high levels of CTL correlate 

with nonprogression, and the loss of CTL control coincides with progression to 

AIDS. CTL immunity seems to be very important in controlling HIV infection. 

In domestic animals, there is less compelling evidence of viral control by CTL, 

mostly because of the difficulties in measuring CTL lysis. A portion of cats 
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vaccinated with inactivated feline immunodeficiency virus (FIV) were protected 

against subsequent challenge with homologous FIV. The development of 

protective immunity in these cats was strongly correlated with the development of a 

class I MHC-restricted Env-specific CTL response (26). Sheep vaccinated with a 

recombinant vaccinia virus containing the gpS 1 portion of the bovine leukemia 

virus (BL V) env gene were protected from infection of BL V, and infected sheep 

were able to suppress further BLV replication after vaccination . There was no 

correlation between neutralizing antibodies and protection (59) . In fact, protection 

conferred by the recombinant vaccine was correlated with a decrease in anti-gpS 1 

antibodies (31 ,63). In unprotected animals, antibody levels to gp51 increased for 

up to 16 months post-challenge and were ineffective in controlling virus titers (31 ). 

On the other hand, protection did correlate with the development of a cos+ CTL 

response against a conserved region of the BLV gp51 (30). These data provide 

evidence in support of control of viral infection by CTL in domestic animals. 

A necessary role in the control of virus infection has been shown for CTL in 

mice, and evidence supports the same role in humans, sheep, and cats. 

Conclusive evidence has been found to support the controlling role played by 

bovine CTL during T. parva infection. It is reasonable to infer that bovine CTL play 

a necessary part in controlling infection by some viruses, but determining which 

viruses are controlled CTL will require direct measurements of the CTL responses 

each virus elicits. 

Retroviral Gene Delivery 

One of the main components of a CTL assay is the method by which viral 

proteins are presented on the target cell surface. In some cases the simplest 
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method is to infect target cells with wild-type virus, but because of virus-induced 

lysis or an inability to infect cultured cells, a vectored gene delivery system is 

sometimes a more practical method of introducing viral genes into target cells. 

Several gene delivery systems have been successfully used in CTL assays. 

Vaccinia virus delivery is the most commonly used system, but retroviral vectors 

have also been used and they bring several advantages to a CTL assay system. 

Construction 

In retroviral gene delivery, cultured cell lines are used to produce hybrid virions 

which possess all the structural elements necessary for infection, but none of the 

genetic information to produce more viruses. The virions carry RNA transcribed 

from a synthetic plasmid into which any gene seven kilobases or smaller can be 

inserted. Thus, individual genes from any source, including a different virus, can 

be delivered by retroviral vectors. 

In order to achieve retroviral gene delivery, two components are necessary: a 

packaging cell line and a transfer vector. A packaging cell line contains the genes 

of a retrovirus and thus produces the structural proteins which can self-assemble 

into virus particles. Wild-type retroviruses contain a packaging signal which directs 

their incorporation into virions, but the retroviral genes in the packaging cell have 

had their packaging signal deleted. Thus, the virions that the packaging cell 

produces are empty and contain no genetic information. A transfer vector is a DNA 

plasmid which contains a retroviral packaging signal, an antibiotic resistance 

marker, and a site which can carry any inserted gene. When a packaging cell line 

is transfected with a transfer vector, the packaging signal directs the retroviral 

structural proteins to incorporate the transfer vector into virions. A packaging cell 
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line transfected with a transfer vector is called a vector-producer cell line since it 

produces retroviral vectors which will deliver the inserted gene upon infection . 

Advantages 

There are some benefits that are conferred by using retroviral vectors to deliver 

genes to target cells. Three important benefits are stable expression in infected 

cells, a wide range of cell types permissive to infection, and the absence of virus-

induced lysis in infected cells. 

In comparison to other methods of gene delivery, expression of retrovirus-

delivered genes is stable. After delivery by some other methods, genes are 

maintained in the cytoplasm or in endosomes and can be lost during rounds of cell 

division. Retroviruses integrate the genes they carry directly into the host cell 

chromosomes, and thus become a permanent feature of cells' genetic repertoire. 

Because the gene delivery is stable, a stock of retroviral vector-transduced target 

cells can be used for repeated assays of CTL activity without the variability in 

infection rates and expression levels caused by a different round of gene delivery 

for each CTL assay. 

The retroviruses used in gene delivery have a wide host cell range. The 

retroviral env gene expressed by the packaging cell determines which cells are 

permissive to infection by the retroviral vector. Packaging cells are available with 

env genes which infect almost every mammalian cell which has been tested. This 

allows much more freedom in the choice of a target cell. 

Another major advantage to retroviral vectors is that they do not induce lysis in 

infected cells. After a defined period of time, many wild-type viruses cause lysis of 

infected cells, either through a breakdown in the cells' synthetic pathways or by 

expression of lytic viral genes. This virus-induced lysis can be a large source of 



19 

background during an assay meant to measure CTL lysis. In order to minimize the 

background, the assay must be performed after expression of viral genes and 

before cell lysis, a time-consuming optimization process for which a good 

compromise time cannot always be found. Since they do not induce lysis, retroviral 

vectors avoid the whole problem. 

Disadvantages 

Retroviral vector-mediated gene delivery has some drawbacks that can make it 

difficult to use. One common problem that occurs in vector-producer cell lines is 

recombination of the transfer vector. Transfer vectors are maintained in vector-

producer cell lines using a selectable marker on the plasmid. Retroviruses can 

undergo cycles of transcription of viral RNA and reverse transcription back into the 

host genome, and occasionally a recombination occurs with the inserted gene 

deleted and the selectable marker remaining. These recombinants possess an 

advantage over vector-producer cells with unaltered transfer vectors because the 

antibiotic resistance gene allows them to survive selection, but the energy saved by 

loss of the inserted gene may let them divide faster. The advantage is even greater 

if the inserted gene's product is somewhat toxic. Another problem that occurs in 

both packaging cells and infected cells is inactivation of one of the promoters in the 

retroviral vector. In this situation, the gene inserted into the transfer vector is 

partially silenced. A low level of transcription and thus antibiotic resistance may be 

maintained, but levels of the inserted gene's product will fall to undetectable levels. 

A third rather minor problem is a small number of restriction enzyme sites in the 

multiple cloning site of the available transfer vectors. This problem may soon be 

resolved with the availability of better plasmids, but does create difficulties at 

present. 
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Bovine Virus Model 

In order to test a bovine CTL assay system, it is necessary to chose a bovine 

virus which is likely to elicit a CTL response. Viruses which are noncytopathic in 

vivo or replicate slowly are more likely to be controlled by CTL in mice. Members of 

the lentivirus family, HIV, SIVmac• FIV, EIAV, CAEV, and MVV, have all been shown 

to elicit CTL responses during infection. Thus a good candidate for a model bovine 

virus to test a CTL assay is the lentivirus, bovine immunodeficiency virus (BIV). 

Bovine immunodeficiency virus 

BIV is a member of the retrovirus family and lentivirus subfamily of viruses. 

Retroviruses are diploid RNA viruses which undergo reverse transcription and 

integration into the host cell genome after entering a cell. The integrated viral 

genome is known as the provirus. The proviral genome structure of a simple 

retrovirus is shown in Figure 1. Long terminal repeats (L TRs) lie at both ends of the 

genome, with the 5' L TR acting as the promoter for the rest of the viral genome and 

the 3' L TR acting as a polyadenylation site. Three open reading frames between 

the L TRs encode the gag, pol, and env genes. The gag gene product, or the Gag 

polyprotein, is proteolytically cleaved into three proteins: matrix (MA), capsid (CA), 

LTR 

Figure 1. Proviral genome of a simple retrovirus (Moloney murine leukemia virus). 
The large arrows represent genes. The small arrow indicates that the 
L TR acts as the promoter for the provirus. 
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and nucleocapsid (NC) . The BIV CA protein is a 26 kDa molecule which 

assembles into the hydrophobic virion core. It is the most abundant protein in the 

virion. The MA and NC proteins are 16 kDa and 15 kDa in size, respectively, and 

are responsible for association of the virion core with the cell membrane and the 

viral RNA genome, respectively. The Pol protein is cleaved to form viral proteinase 

(PR) , reverse transcriptase (RT) and integrase (IN) enzymes. The PR protein 

cleaves the Gag and Pol polyproteins, the RT enzyme uses viral genomic RNA as a 

template for synthesizing double-stranded DNA, and the IN protein integrates the 

viral DNA into the host cell chromosome. The env gene product is a glycoprotein 

which is cleaved by a host cell protease into a surface glycoprotein (SU) and a 

transmembrane glycoprotein (TM). The SU protein is responsible for binding a 

receptor on the host cell plasma membrane, and the TM protein anchors the Env 

complex in the viral envelope and induces fusion of the viral envelope with the host 

cell membrane (39) . 

Retroviruses are divided into the oncovirus, lentivirus, and spumavirus families. 

Lentiviruses are non-oncogenic viruses characterized by genomic organization, 

virus morphology, and in some cases by a slow, progressive disease that 

eventually leads to wasting and death. In Latin, lenti means slow, thus the name 

lentivirus. The lentiviral genome differs from that of simple retroviruses with an 

additional three to six accessory proteins. Two accessory proteins, Tat and Rev, 

temporally regulate the expression of viral genes. After reverse transcription and 

integration, the lentiviral provirus produces a full length RNA which is multiply 

spliced to form tat and rev RNAs. Tat upregulates transcription, and Rev facilitates 

the nuclear export of singly spliced and unspliced RNAs from which Gag, Pol, and 

Env can be translated. This regulation pattern allows proviruses to lie essentially 

dormant inside cells for long periods of time after infection (39) . 
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Some common aspects of pathology are shared by different lentiviruses. 

During primary infection, the virus undergoes rapid replication and proliferation in 

lymphocytes or macrophages. This initial proliferative stage is usually controlled 

after several days or weeks by the immune system, but the infection is not cleared 

and detectable virus replication persists. In HIV or maedi/visna virus (MVV) of 

sheep for example, initial productive infection is followed by an asymptomatic 

incubation period of months to years. During the incubation period, viruses 

continue to replicate and the continuous onslaught on the cells of the immune 

system may result in a chronic wasting syndrome which can eventually lead to 

cachexia and death. 

The animal from which BIV was originally isolated showed persistent 

lymphocytosis, lymphoid hyperplasia, and perivascular cuffing in the brain (84). 

Experimental infection with BIV was shown to cause follicular hyperplasia of lymph 

nodes and a transient lymphocytosis in infected calves (16) . BIV infection elicits 

detectable antibody responses. Antibodies to subunits of the Gag (CA) and Env 

(Env8 portion of TM) were detected in cattle 4 weeks post-infection. By 40 weeks 

post-infection, serum antibody levels to the CA protein had gradually disappeared 

in 7 out of 8 cattle (37) . In HIV infection, loss of Gag-specific antibodies is 

associated with disease progression to AIDS (3,8, 18,33,47) , but BIV-infected cattle 

remained healthy during and after loss of Gag antibodies. The cattle remained 

infected and circulating virus could be isolated from the peripheral blood of all 

animals, but none developed clinical disease. This suggested that antibodies to 

Gag were not a major factor in controlling BIV in experimentally-infected cattle. It is 

possible that virus neutralizing antibodies are responsible for controlling virus 

replication . However, studies in our laboratory have shown an inverse relationship 

between neutralizing antibody titer and frequency of virus recovery: animals with 



23 

higher neutralizing titers had a higher frequency of virus isolation (17) . Together, 

these data suggest that the humoral immune system plays only a minor, or 

supporting, role in control of BIV replication in vivo. This observation, in 

conjunction with the detection of CTL in every other lentiviral infection that has 

been tested, makes BIV-infected cattle good candidates for models to use in a CTL 

assay. 
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MATERIALS AND METHODS 1 

Development of a Bovine CTL Target Cell 

Culture of cells 

The primary cell cultures used in th is research were derived from bovine fetal 

testes (BOTEST), fetal turbinate (BOTUR), fetal skin (BOSK), fetal tongue 

(BOTONG), embryonic kidney (EBKp), fetal lung (FBL), adult pulmonary artery 

endothelium (CPAE, ATCC #CCL-209) , and adult peripheral blood adherent cells 

(PBAC). Immortal cultured cell lines used were SV40-transformed bovine 

macrophages (BOMAC, kindly provided by Judy Stabel) (20), bovine adrenal 

medullar endothelial cells (EJG, ATCC #CRL-8659), Madin-Darby bovine kidney 

epithelial cells (MDBK, ATCC #CCL-22), mouse fibroblasts (NIH/3T3, ATCC #CRL-

1658), human cervical carcinoma epithelial cells (Hela, ATCC #CCL-2), and 

adenovirus-transformed human kidney cells (293 cells, a subpopulation derived 

from ATCC #CRL-1573 kindly provided by Tom Hope). Packaging cell lines used 

were PA317 (ATCC #CRL-9078) and PG13 (ATCC #CRL-10686) . The vector-

producer cell line PG13/LNc8 (ATCC #CRL-10685) was also used. 

All cells except CPAE were cultured in DMEMt with 10% FBS. CPAE were 

cultured in DMEM with 20% FBS. All cells except 293 cells were passed by 

trypsinizing cells for one to five minutes, then inactivating the trypsin by addition of 

media containing serum and transferring cells to new flasks. The 293 cells were 

passed by removing the old media, vigorously washing cells off of their adherent 

1 The recipes for most of the solutions listed in this chapter are located in Appendix 
A, and all such solutions are marked with a t symbol the first time they are 
mentioned in the text. The expanded forms of many abbreviations can be found in 
Appendix 8 . 
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surface using fresh media, and placing cells in new flasks which had been treated 

for at least three hours at 4°C with 0.1 % gelatin. 

Isolation of primary cells 

Cells were cultured from different tissue by several different techniques by 

Lawrence Elsken's laboratory at NVSL (Ames, Iowa) and Janice Miller's laboratory 

at NADC (Ames, Iowa). Bovine testes, bovine tongue, bovine turbinate, and bovine 

kidney cells were isolated from their respective tissues in fetal calves at NVSL. 

Cells were released from the tissue by trypsinization, grown in MEM with Earle's 

salts, and then frozen in liquid nitrogen as BOTEST, BOTONG, BOTUR, and EBKp 

cultures. The membrane was removed from fetal bovine lung, cells were released 

by trypsinization, grown in culture, and frozen in liquid nitrogen as FBL cultures at 

NADC. Cells from bovine fetal skin explants were grown in culture in Lawrence 

Elsken's laboratory, and frozen in liquid nitrogen as BOSK cultures. 

PBAC were isolated from cultures of adherent peripheral blood mononuclear 

cells (PBMC). Blood was drawn from cattle by jugular venipuncture using either 

EDTA or ACD as an anticoagulant. The blood was centrifuged at 400 x g for 30 

minutes to separate plasma and red blood cells (RSC). The buffy coat at the 

interface was collected. Two volumes of RBC Lysis buffert were added, the mixture 

incubated for about 1 minute, and one volume of Restoring buffert was added. 

Cells were pelleted at 150 x g for 10 minutes, and the cell pellet resuspended in 

PBS. Two volumes of ABC Lysis buffer were added for one minute, then one 

volume of restoring buffer was added. Cells were again pelleted for 10 minutes at 

150 x g and resuspended in PBS. Cells were seeded in tissue culture flasks for 24 

to 48 hours, then non-adherent cells were removed by washing the cultures with 

HBSSt, and media was replaced. The media was changed weekly. After three 
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weeks, a much larger cell type with prominent cytoplasmic striations when viewed 

under phase could be seen to be outgrowing monocytes in some cultures. These 

cells, termed PBAC, were trypsinized and passed. After three passages, PBAC 

were frozen in liquid nitrogen. 

Measurement of class I MHC expression 

Cell cultures were grown to confluency in 75 cm2 flasks. Cells were trypsinized 

with STV and passed into two or three 75 cm2 flasks, so all cells would be dividing. 

The next day, media was removed from the sub-confluent cultures and replaced 

with PBS containing 0.5 mM EDTA and cells were scraped off the flask after five to 

ten minutes. Duplicate flasks were pooled and each cell type was seeded in wells 

of a 96-well plates. The plates were centrifuged briefly to pellet the cells, the 

supernatant was removed and cells were washed once in FAGS buffert. Cells 

were again pelleted and thoroughly resuspended in 50 µI of FAGS buffer or 50 µI 

of VMRD monoclonal antibody H58A (specific for the heavy chain of bovine class I 

MHC) diluted 1 :200 in FAGS buffer. Cells were incubated for 20 minutes on ice. 

After primary antibody incubation, cells were pelleted and washed in FACS buffer 

three times. Cell pellets were resuspended in either 50 µI FAGS buffer or 50 µI 

FITC-conjugated goat antibody to mouse lgG diluted 1 :200 in FACS buffer. Cells 

were incubated 20 minutes on ice in the dark in secondary antibody. After 

incubation, the cells were pelleted and washed in FACS buffer three times. Cells 

were finally resuspended in 500 µI FACS buffer and their level of fluorescence 

measured in a Coulter Epics XL-MCL flow cytometer. Cells left untreated with 

antibodies and cells treated with only the secondary antibody were used as 

controls. Staining and FAGS analysis was performed on two separate occasions 

with all cell types analyzed on both occasions. The non-specific reactivity of the 
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secondary antibody for each cell type was assessed as the difference between the 

mean fluorescence (mean fluorescent channels) of the secondary only-labeled 

cells and the unstained controls. The MHC-specific fluorescence is calculated as 

the difference between the mean fluorescence of class I MHC-labeled cells and the 

mean fluorescence of secondary only-labeled cells. 

Titering of PG13/LNc8 retrovirus 

The PG 13 cell line produces a pseudotyped retrovirus with Moloney murine 

leukemia virus (Mo ML V) core proteins and gibbon ape leukemia virus (Gal V) 

envelope glycoproteins. The PG 13/LNc8 cell line contains the LN transfer vector, 

which has a gene for neomycin resistance between two MoML V L TRs. The 

retroviruses produced by the PG13/LNc8 cell line deliver the neomycin resistance 

gene to cells (56). 

A virus stock was made from PG 13/LNc8 supernatant. Two 75 cm2 flasks of 

PG 13/LNc8 cells were grown to confluency. The old media in each flask was 

discarded and replaced with 10 ml of fresh media. Thirty-two hours later, the 

supernatant from the two flasks was collected and pooled. The pooled media was 

clarified for 1 O minutes at 1800 x g, and aliquots were stored at -80°C. 

To test for susceptibility to infection with PG13 recombinant virus, cells were 

passed into 6-well plates to produce approximately 40% confluency after one day 

of growth (2.5x104 to 1.5x105 cells per well). The day after passage, media was 

replaced with 1 ml of LNc8 virus stock at 10-fold serial dilutions in media with 

8 µg/ml polybrene. Dilutions were made from 10° to 10-4 ml virus stock per ml 

media. After 28 to 36 hours, the virus stock was replaced with normal media 

containing 1.5 mg/ml G418 (active) to select for neomycin-resistant cells. Between 

5 to 10 days of G418 selection were sufficient to kill uninfected control cells and for 
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infected cells to form resistant colonies. At that time, colonies were fixed and 

stained by incubating cells for 5 minutes in 0.1 % methylene blue in methanol/water 

(1 :1 vol./vol.). Blue colonies were counted and the number of neomycin-resistant 

colony-forming units (cfu) per ml of virus stock was calculated. Virus titrations were 

performed for each cell culture at least twice. 

lmmunocytochemistry (ICC) 

Cultured cells were tested for various proteins by ICC. Cells were washed once 

with TNFBSt, then fixed with ice-cold methanol for five minutes. Methanol was 

diluted 1 :1 with TNFBS and removed, and cells were washed twice with TNFBS. 

Cells were incubated for thirty minutes with the primary antibody at room 

temperature with rocking, and washed three times with TNFBS. The HRP-

conjugated secondary antibody was added, and cells were incubated for thirty 

minutes at room temperature with rocking. The secondary antibody was removed 

and cells were washed three times with TN . HRP substrate was added, and cells 

were incubated for nineteen minutes in the dark at room temperature. The HRP 

substrate was removed, and cells were washed with tap water and allowed to dry. 

Cells were examined by brightfield microscopy for reddish-brown staining, 

indicating a positive reaction. 

lmmunofluorescence assay (IFA) 

Cultured cells were tested for various proteins by IFA. Cells were washed once 

with TNFBS, then fixed with either ice-cold methanol for five minutes or with 

formaldehydefTriton X-100 as follows. Cells were fixed with 3.7% formaldehyde in 

PBS for 20 minutes at room temperature. Formaldehyde was removed, and cells 

were washed twice with TNFBS. In some cases, cells were permeabilized with 
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0.5% Triton X-100 for 15 minutes at room temperature. Triton X-100 was removed, 

and cells were washed three times with TNFBS. Cells were incubated in primary 

antibody for thirty minutes at room temperature with rocking. Primary antibody was 

removed, and cells were washed three times with TNFBS. The FITC-conjugated 

secondary antibody was added to cells and incubated in the dark for thirty minutes 

at room temperature with rocking. The secondary antibody was removed and cells 

were washed three times with TN. Cells were examined by fluorescent microscopy 

while in the TN buffer. If necessary, cells were stored in a light-proof box at 4°C for 

later examination. 

Dil-Ac-LDL uptake 

Some cells were tested for the presence of the "scavenger cell pathway" by 

measuring uptake of Dil-Ac-LDL. Ac-LDL is taken into cells via the pathway, and 

the Oil label accumulates in cholesterol deposits in the cytoplasm (85). The media 

from cells was replaced with normal media containing 5 µg/ml Dil-Ac-LDL, and 

cells were incubated at 37°C and 7% C02 for one hour. Dil-Ac-LDL media was 

then removed, and cells washed several times with probe-free media. Cells were 

visualized by fluorescent microscopy using standard rhodamine excitation: 

emission filters. Uptake was indicated by bright reddish-orange deposits of the dye 

in the cytoplasm of cells. Quantitation of the fluorescence was carried out by FACS 

analysis. Cell were trypsinized with STVt, then the trypsin was inactivated by 

adding normal media containing serum. Cells were pelleted by centrifugation, the 

supernatant removed, and cells resuspended in FACS buffer. The fluorescence of 

Oil -labeled cells and unlabeled control cells was analyzed on a Coulter Epics XL-

MCL flow cytometer. The level of fluorescence was analyzed as the mean 
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fluorescence of labeled cells minus the mean fluorescence of unlabeled cells. Dil-

Ac-LDL uptake measurements were performed in triplicate. 

Lymphocyte binding assay 

A characteristic of high endothelial cells is their ability to bind freshly isolated 

lymphocytes. Several cell cultures were tested for lymphocyte binding. Bovine 

peripheral blood mononuclear cells (PBMC) were obtained by a buffy coat isolation 

of blood in the same manner as for PBAC isolations. Approximately 3 x 106 PBMC 

were added per well cultured cells and incubated for 2 hours at 37°C and 7% C02 • 

After incubation, the slides were immersed in PBS, and the chamber dividers 

removed. Cells were washed three to four times to remove unbound lymphocytes 

by rocking the PBS bath and changing the PBS after one to two minutes. Cells 

were fixed by in 3.7% formaldehyde in PBS for 20 minutes, and bound 

lymphocytes were detected by IFA using an anti-CD45 mouse monoclonal 

antibody (VMRD), and a FITC-conjugated goat anti-mouse secondary antibody. 

The number of lymphocytes bound to 100-110 cultured cells was counted, and the 

number of lymphocytes bound per cultured cell was calculated. Only lymphocytes 

which had spread out upon a cultured cell were counted; lymphocytes which 

remained rounded were not counted because many rounded lymphocytes were 

also non-specifically bound to the bottom of the flask. 

Construction of Retroviral Vectors 

Polymerase chain reaction (PCR) 

Briefly, 5 to 25 ng of template DNA were put in 100 µI of solution with final 

concentrations of 1 X PCR Buffer II (Perkin-Elmer), 1.5 mM MgCl2 , 200 µMeach of 
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deoxyadenosine triphosphate, deoxyguanosine triphosphate, deoxycytosine 

triphosphate, and deoxythymidine triphosphate (dNTPs), 1 µM of each primer, and 

2.5 units of Taq polymerase. Each reaction mixture was incubated at 94°C for 2 

minutes, 50°C for 1 minute, and 72°C for 6 minutes, then for 30 cycles of 94°C, 

50°C, and 72°C each for 1 minute, and one final cycle at 94°C and 50°C for 1 

minute and 72°C for 4 minutes, after which reactions were cooled to 5°C. 

The size and number of PCR products were assessed by agarose gel 

electrophoresis. PCR products were electrophoresed through 1 % agarose gels in 

TAE buffert. The gel was stained in 1 .5 µg/ml ethidium bromide for 10 to 15 

minutes and destained in water for 10 to 15 minutes. DNA bands were visualized 

by placing stained gels on an ultraviolet lamp. 

Reverse transcription-polymerase chain reaction (RT-PCR) 

RNA samples were analyzed with RT-PCR similarly to PCR analysis, but with a 

preceding DNase treatment and reverse transcription step. Each 20 µI DNase 

reaction contained 5 mMMgCl2 , 1X PCR Buffer II , 1 mM of each dNTP, 2.5 µM 

random DNA hexamers, 20 U of RNase Inhibitor, 1 U of RNase-free DNase I, and 

up to 1 µg of total cellular RNA. Each reaction mixture was incubated at 37°C for 

30 minutes, 75°C for 5 minutes, and then cooled to 4°C. Keeping the reaction 

tubes on ice, 50 U (1 µI) of MLV reverse transcriptase was added to each reaction 

mixture. Reverse transcription was carried out at 42°C for 45 minutes, 99°C for 5 

minutes, and 5°C for at least 5 minutes. The reaction volume was then brought up 

to 100 µI and final concentration of reagents adjusted to 1 X PCR Buffer II , 2 mM 

MgCl2 , 200 µM of each dNTP, 1 µM of each primer, and 2.5 units of AmpliTaq 

polymerase. PCR amplification temperatures and times were the same as for PCR. 
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RT-PCR products were analyzed by agarose gel electrophoresis and ethidium 

bromide/UV visualization . 

Cloning of PCR products into bacterial plasmids 

Taq PCR products possess an overhanging adenosine at each of their 3' ends. 

These overhangs were used to clone PCR products into three different bacterial 

plasmids, pCRll , pGEM-T, and pCR3. The pCRll vector (lnvitrogen) is a bacterial 

plasmid linearized with a cut in the middle of a betagalactoside (B-gal) gene and 

which possesses 5' thymidine triphosphate overhangs on each terminus. Ligating 

a PCR product into the plasmid will disrupt the B-gal gene and transformed 

bacterial colonies will be yellowish-white; plasmids which self-ligate without a PCR 

product will maintain a functioning B-gal gene and will produce blue colonies. PCR 

products were also ligated into pGEM-T, a B-gal disruption plasmid sold by 

Promega which is similar to pCRll. The pCR3 vector is linearized downstream of a 

cytomegalovirus (CMV) promoter and allows expression of ligated PCR products in 

eukaryotic cells. In a 10 µI reaction , 1 to 2 µI of PCR product were combined with 1 

µI 1 OX ligation buffer (supplied by manufacturer) , 50 µg linearized pCRll , pGEM-T, 

or pCR3 vector, and 4 units of T4 DNA ligase. The ligation reaction was carried out 

overnight at 15°C. 

Transformation of E. coli 

Competent E. coli were transformed with bacterial plasmids using a method by 

Hanahan (34) . A culture of DH5a-strain E. coli cells was grown overnight in NZY 

brotht; 1.5 ml was inoculated into 25 ml of sost and grown for 2 to 2.5 hours. Cells 

were pelleted by centrifugation at 4200xg, resuspended in 8 ml TFBt and 

incubated on ice for 10 to 15 minutes. Bacteria were pelleted again and 
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resuspended in 2 ml TFS. Seventy µI of DMF were added, cells were chilled on ice 

for 5 minutes, 4 µI of B-mercaptoethanol added, cells iced for 10 minutes, 70 µI 

DMF added, and cells iced once more for 5 minutes. In ice-cold Falcon 2059 

tubes, 21 O µI of the bacterial cell suspension were added to 1-2 µI of ligated DNA 

and 8-9 µI of SOB, and the mixture was incubated on ice for 30 min. Cells were 

heat shocked at 42°C for 90 seconds, chilled on ice for 90 seconds, and then 0.8 

ml of SOCt were added. The cells were incubated at 37°C with 225 rpm shaking 

for one hour. Bacteria were spread on YT-carbenicillin platest and grown 

overnight at 37°C. All plasmids used in this study possessed a gene for ampicillin 

resistance, and the carbenicillin antibiotic in the plates selects bacteria transformed 

with plasmid. When plasmids contained the B-gal gene, YT-carb plates were pre-

treated with 25 µI of 40 mg/ml X-Gal and 8 µI of 100 mM IPTG to produce blue and 

white colonies. 

Plasmid isolation preparations 

Quantities of plasmid were obtained from transformed E. coli by growing large 

quantities of the bacteria, separating plasmid DNA from chromosomal DNA, and 

then removing protein. One bacterial colony was used to inoculate 1 O ml of Super 

Brotht containing 100 µg/ml ampicillin, and incubated overnight at 37°C and 225 

rpm shaking. Bacteria were pelleted in 3 ml aliquots by centrifugation and the 

supernatant removed. Bacterial pellets were resuspended in 200 µI IH Buffer 1 t. 

Bacteria were lysed by adding 300 µI of a 0.2 N NaOH/1 % SOS solution and 

incubating on ice for 5 minutes. Lysis was halted and chromosomal DNA 

precipitated by adding 300 µI of 3.0 M potassium acetate (pH 4.8) and icing for 5 

minutes. Cellular debris was pelleted by a 10 minute centrifugation at 15,000xg 

and discarded. The supernatant was added to 2 µI of 1 O mg/ml A Nase A and 
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incubated at 37°C for 20 minutes. Protein was extracted from the supernatant 

solution three times by adding 400 µI chloroform, vortexing 30 seconds, 

centrifuging for 2 minutes, and collecting the top, aqueous phase. Plasmid DNA 

was precipitated by adding an equal volume of isopropanol and centrifuging at 

15,000xg for 15 minutes. The DNA pellet was washed with 500 µI of 70% ethanol 

and centrifuged for 2 minutes. The ethanol supernatant was discarded, the DNA 

pellet dissolved in water, and traces of ethanol removed by 3 minutes of vacuum 

centrifugation . Plasmid DNA was again precipitated by adding 8 µI of 4 M NaCl 

and 40 µI of 13% PEG8000, incubating on ice for 30 minutes, and centrifuging for 20 

minutes at 4°C. The supernatant was removed, the pellet of purified plasmid DNA 

was rinsed with 70% ethanol and resuspended in 23 µI 0.1 X TEt, and ethanol 

traces were evaporated by vacuum centrifugation . 

In some cases, plasmid preparation was performed using an affinity column 

DNA purification kit. Bacteria were lysed under alkaline conditions, then returned 

to normal pH, and the plasmid-bearing supernatant was removed from the 

precipitate of cellular debris and added to an affinity column containing an anion-

exchange resin (manufactured by Qiagen) . RNA, proteins, and other low molecular 

weight contaminants were separated from DNA using different molarity salt solution 

to wash the column. DNA was precipitated from solution by adding 0.7 volumes of 

isopropanol and centrifuging at 15,000xg for 30 minutes. The supernatant was 

discarded and the pellet washed with 70% ethanol and resuspended in 0.1 X TE. 

Subcloning of DNA fragments between plasmids 

DNA fragments were sometimes transferred from a source plasmid into a 

destination plasmid. Fragments were excised from the source plasmid by 

restriction enzyme digestion using at least 5 units of enzyme per microgram of 
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plasmid. Restriction enzyme digestion was carried as per manufacturer 

instructions, usually in a 1 X buffer (supplied by the manufacturer) at 37°C for 2-3 

hours. All subcloning performed in this research made use of two different 

restriction enzyme sites on either side of the excised fragment. The entire digestion 

reaction was then electrophoresed in a 1 % agarose gel at a low voltage overnight. 

The gel was stained in 1.5 µg/ml ethidium bromide and visualized on a UV lamp. 

The band containing the desired fragment was excised from the gel , and a 2.5% 

low-melting-temperature agarose containing 0.2-0.4 µg/ml ethidium bromide was 

cast around the excised piece of 1 % agarose. The DNA was electrophoresed out 

of the 1 % agarose in the low-melting-point agarose, and the new DNA band 

excised from the gel. The DNA was isolated from the agarose using a Wizard DNA 

Purification kit (Promega) . The gel fragment was melted at 70°C, then 1 ml of 

Wizard Prep resin was added and mixed gently for 20 seconds. The slurry was 

pushed through a Wizard Minicolumn with a syringe, washed with 2 ml of 80% 

isopropanol, and the DNA eluted with 50 µI 1 X TE. The restriction enzyme DNA 

fragment was stored at -20°C until ready for ligation. 

The destination plasmid was prepared by digesting with one of the two 

restriction enzymes. Complete linearization was verified by agarose gel 

electrophoresis. The DNA was then separated from the restriction enzyme by 

adding an equal volume of phenol/chloroform/isoamyl alcohol (25:24:1 ), vortexing 

for 30 seconds, and centrifuging at 15,000 x g for 5 minutes. The top, aqueous 

layer was transferred to a clean tube and 0.1 volumes of 3M sodium acetate (pH 

5.2) and 2.5 volumes of 95% ethanol were added. The DNA was precipitated 

overnight at -20°C, then pelleted for 15 minutes at 15,000 x g and 0°C. The pellet 

was washed with 70% ethanol, and redissolved in 0.1 X TE. The DNA was then 

similarly digested with the second restriction enzyme and purified by 
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phenol/chloroform extraction follow by ethanol precipitation. Finally, the 5' terminal 

phosphate groups were removed from the linearized destination plasmid to prevent 

self-ligation. A reaction of the DNA, 1 X dephosphorylation buffer, and 1 U calf 

alkaline phosphatase was incubated at 37°C for 30 minutes. A solution of 0.2 M 

EDTA was added to final concentration of 5 mM and the mixture incubated at 65°C 

for one hour. The reaction was allowed to cool, and the DNA was extracted with an 

equal volume of phenol. The top phase was transferred to a clean tube and the 

DNA again extracted with an equal volume of phenol/chloroform/isoamyl alcohol 

(25:24: 1 ). The top, aqueous phase was transferred to a clean tube, and the DNA 

was precipitated overnight with sodium acetate and ethanol, washed with 70% 

ethanol, and resuspended in 1 X TE. 

The destination plasmid was then ligated with the excised DNA fragment. A 20 

µI solution with 15-30 fmol of the destination plasmid, 45-90 fmol of the DNA 

fragment, 1 X ligase buffer (supplied by manufacturer) , and 1 U of T 4 DNA ligase 

was incubated overnight at 14°C. One microliter of 0.5 M EDTA was added to 

inactivate the ligase, and the DNA was used to transform competent E. coli. A 

ligation reaction without the DNA fragment was used as a control to test for 

excessive self-ligation of the destination plasmid. Transformed bacteria were 

tested for the DNA fragment by colony blot hybridization, or if the amount of self-

ligation was very low, plasmid was immediately isolated from colonies and tested 

by restriction enzyme digestion/agarose gel electrophoresis. 

Southern blot hybridization 

For a more sequence-specific analysis, DNA electrophoresed through an 

agarose gel was often transferred to a nylon membrane. The gel was agitated for 

30 minutes in Southern I Buffert twice . The DNA was then blotted from the gel onto 
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a Hybond-N nylon membrane overnight using Alkaline Transfer Buffert as the 

wicking solution. The membrane was air dried, and its DNA crosslinked for 5 

minutes on a UV lamp. Membranes were hybridized with radioactive DNA probes. 

DNA probes labeled with 32P were made by random primed synthesis. Briefly, a 

20 µI reaction mixture with 20 ng of template DNA, 1 X hexanucleotide reaction 

buffer (Boehringer-Mannheim) , 25 µMeach of dATP, dCTP, and dGTP, 20 µCi a-

32P-dTTP (200-800 Ci/mmol) , and 0.5 U Kienow DNA polymerase was incubated at 

37°C for 30 minutes. Then, 78 µI of 1X TE and 2 µI of 0.2 M EDTA were added, and 

1 µI of the mixture was dotted onto each of two DE81 filters. The probe was 

incubated in boiling water for five to ten minutes and iced for five to ten minutes. 

The percent incorporation of the radioactive dTTP into the probe was determined 

by washing one of the two DE81 filters three times for five minutes in 0.35 M 

Na2HP04 buffer, and dividing the radioactive counts per minute (cpm) of the 

washed filter by the unwashed filter. No probes with percent incorporations below 

60% were used, and thus all probes had a specific activity of at least 5 x 108 

dpm/µg. Before addition of the probe, DNA membranes were prehybridized for at 

least one hour at 65°C in 50 ml of DNA pre-hybridization solution. DNA pre-

hybridization solution consisted of 3X SSPE, 5X Denhardt's reagentt, 0.1 % SOS, 

and 100 µg/ml denatured, sheared salmon sperm DNA. After pre-hybridization, the 

radiolabeled DNA probe was added to 5-10 ml of the pre-hybridization solution, the 

remainder of the pre-hybridization solution was discarded, and the DNA membrane 

was incubated in the radioactive solution overnight at 65°C. After the overnight 

hybridization, the membrane was rinsed three times in 2X SSPE + 0.1 % SOS, and 

incubated for thirty minutes at 65°C in 2X SSPE + 0.1 % SOS. Another set of three 

rinses and thirty minute incubation was performed in 0.1 X SSPE + 0.1 % SOS. 

Finally, the membrane was rinsed two times in 2X SSPE + 0.1 % SOS and exposed 
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Kodak X-Omat X-ray film for various lengths of time to generate autoradiographs of 

the DNA. 

A radioactive probe was sometimes stripped from a membrane so that the 

membrane could be hybridized with a different probe. This involved pouring 

boiling 0.1 % SOS over the membrane, and letting it cool to room temperature. Two 

or three SOS treatments were usually sufficient to remove all radioactivity from 

membranes. 

Bacterial colony blot hybridization 

An agar plate of bacterial colonies was sometimes blotted onto nylon filters in 

order to screen the colonies containing specific DNA sequences. A circular 

Hybond-N nylon membrane was laid on each agar plate, then removed. 

Membranes were laid upon Whatman paper soaked with 0.5 M NaOH for 5 

minutes, air dried for 5 minutes, and again laid on 0.5 M NaOH Whatman paper for 

5 minutes. Membranes were rinsed three times for 5 minutes in 2X SSPEt + 0.2% 

SOS, air dried, and their DNA crosslinked for 5 minutes on a UV lamp. Membranes 

were hybridized with radioactive DNA probes in the same manner as in Southern 

blot hybridization. 

Calcium phosphate transfection of cultured cells with DNA plasmids 

Cells were passed the day before transfection to give 30-80% confluency. The 

media was changed about an hour before DNA was added. A 250 µI reaction 

mixture of DNA (up to 15 µg) and 250 mM CaCl2 was added dropwise to 250 µI 2X 

HBSt with low speed vortexing. The mixture was allowed to incubate for 15-20 

minutes until a fine white precipitate was visible in suspension. The DNA 
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precipitate was added dropwise to the cultured cells, and allowed to incubate tor 

three hours at 37°C and 7% C02 • The media was then removed, the cells washed 

with HBSS + 2% FBS, and 15% glycerol in HBS was added to tor 2 minutes. The 

HBS-glycerol was removed, the cells washed once more in HBSS + 2% FBS, and 

cells were reted with fresh media. 

Analysis of Gene Delivery and Expression 

Isolation of RNA from cultured cells 

RNA was extracted from cells using a kit from Stratagene. Approximately 1 ml 

of a guanidinium thiocyanate/B-mercaptoethanol solution was added per 75 cm2 of 

growth area tor thirty seconds with rocking to dissolve cells and inactivate RNases. 

To 1 O ml of dissolved cells, 1 ml of 2 M sodium acetate (pH 4.0) was added and 

gently mixed, 1 O ml of water-saturated phenol (pH 5.5) was added and gently 

mixed, and 2 ml of chlorotorm:isoamyl alcohol (49:1) was added and vigorously 

mixed. The solution was incubated on ice tor 15 minutes, then centrifuged at 

10,000 x g tor 20 minutes at 4°C. The upper aqueous phase was transferred to a 

clean tube, mixed with an equal volume of isopropanol, the RNA precipitated at -

20°C tor at least one hour, and again centrifuged at 10,000 x g tor 20 minutes at 

4°C. The supernatant was discarded and the RNA pellet dissolved in 3 ml of 

guanidinium thiocyanate/B-mercaptoethanol solution. Three ml of isopropanol 

were added, and the RNA was again precipitated at -20°C tor at least one hour. 

The RNA was pelleted at 10,000 x g tor 10 minutes at 4°C and the pellet washed 

with 70% ethanol. The pellet was dissolved in 60 µI of DEPC H2Q t and stored at -

70°C. 



40 

Northern blot hybridization 

RNA to be analyzed by Northern blotting was mixed with an equal volume of 

Ambion's Gel Loading Buffer 11t and denatured at 80°C for 5 minutes. The 

denatured RNA was electrophoresed in a 1.2% agarose/formaldehyde gelt at 50 V 

(5 V/cm) for about 3 hours. The gel was agitated for 10 minutes in DEPC H20 

twice, and the RNA visualized on a UV lamp. The gel was agitated for 20 minutes 

in 0.05 N NaOH, rinsed briefly in DEPC H20 twice, and agitated for 45 minutes in 

20X ssct . RNA was blotted from the gel to a Hybond-N nylon membrane 

overnight with 20X SSC as the wicking solution. The membrane was air dried, and 

its RNA crosslinked for 5 minutes on a UV lamp. Membranes were hybridized with 

radioactive DNA probes. 

Hybridization of radiolabeled DNA probes to RNA membranes was almost 

identical to Southern blot hybridization. The DNA probe was made with 100 ng of 

template DNA rather than 50 ng, and after addition of 1 X TE and EDTA, 

radiolabeled probes were centrifuged through G-50 Sephadex columns 

(Boehringer-Mannheim) to remove unincorporated nucleotides. After 

centrifugation, the DNA probe was boiled five to ten minutes, iced five to ten 

minutes, then added to 5-10 ml of pre-hybridization solution. RNA pre-

hybridization solution consisted of 6X SSPE, 2X Denhardt's reagent, 0.1 % SOS, 

and 100 µg/ml denatured, sheared salmon sperm DNA. The remainder of the 

hybridization procedure was identical. 

Dot blot hybridization 

RNA was applied directly to nylon membranes using a dot blotting apparatus. 

The holes in the apparatus were 3-4 mm in diameter. An RNA sample (or a DNA 

control) was diluted to 15 µI , and 30 µI formamide, 12 µ137% formaldehyde, and 3 
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µI 20X SSC were added. The RNA was denatured at 68°C for 15 minutes and 

incubated on ice for 5 minutes. Then, 120 µI of 20X SSC were added, and 

samples were kept on ice until added to the dot blot apparatus. A Hybond-N nylon 

membrane pre-wet with 1 OX SSC was placed in the dot blot apparatus and 

samples were added into the wells of the apparatus. Samples were drawn onto 

the membranes by applying a vacuum to the apparatus, and wells were washed 

three times with 1 OX SSC. The vacuum was allowed to dry the membrane for 5 

minutes, then the apparatus was disassembled and the membrane allowed to air 

dry. The nucleic acid on the membrane was crosslinked for 5 minutes on a UV 

lamp. Membranes were hybridized with radioactive DNA probes as with Northern 

blot hybridization. 

Western blot hybridization 

Protein from cultured cells was sometimes analyzed by Western blotting. Media 

was removed from cells, and cells were incubated several minutes in STV or PBS 

containing 5 mM EDTA until cells came loose from the culture flask. The cell 

suspension was centrifuged for 2 minutes at 14,000 rpm, and the supernatant 

removed. The cell pellet was dissolved in 2X Western sample buffert, and the 

solution was pipetted repeatedly to break up the viscous chromosomal DNA. 

Dissolved cell pellets were stored at -20°C until they were used. 

When all samples were ready, a 12% polyacrylamide/SDS running gel was 

made by making a solution of 375 mM Tris-HCI, pH 8.8, 0.1 % SOS, and 12% 

acrylamide/bis. The solution was degassed under vacuum with stirring for 15 

minutes, and 5 x 10-3 parts 10% APS and 5 x 10-4 parts TE MED were added. The 

acrylamide solution was poured between two glass plates, overlaid with a ribbon of 

water, and allowed to polymerize. The running gel was overlaid with a 4% 
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polyacrylamide/SDS stacking gel. A solution of 125 mM Tris-HCI, pH 6.8, 0.1 % 

SOS, and 4% acrylamide/bis was degassed under vacuum with stirring for 15 

minutes, and 5 x 10-3 parts of 10% APS and 1 x 10-3 parts TE MED were added. The 

4% acrylamide solution was overlaid on the 12% gel, a well comb was added, and 

the 4% gel was allowed to polymerize. The gel apparatus was placed in Western 

running buffert. Samples were heated to 95°C for 10 minutes and loaded into the 

wells of the polyacrylamide gel. Gels were electrophoresed at 200 volts for 45 

minutes. 

After electrophoresis, gels were removed from the apparatus and soaked for 15 

minutes in Western transfer buffert with shaking. A PVDF membrane was prepared 

by soaking 30 seconds in 100% methanol, then 10 minutes in Western transfer 

buffer. Proteins were electrophoresed from each polyacrylamide gel onto a PVDF 

membrane at 100 volts for one-and-a-half to two hours with a cooling bar. Gels 

were stained with 0.1 % Coomassie Brilliant Blue R250 in 40% methanol and 10% 

acetic acid overnight to verify that proteins ran normally during the first 

electrophoresis. PVDF membranes were washed three times for 5 minutes in 

TTBSt, and soaked overnight with 5% dehydrated milk in TTBS. 

Membranes were washed three times for five minutes in TTBS, incubated for 

one to two hours in the primary antibody, and again washed three times in TTBS 

for five minutes. The PVDF membranes were then incubated in a TTBS solution 

containing 60 nCi/ml 1251-labeled Protein G (8-12 mCi/mg) for one to two hours, then 

washed three times for five minutes in TTBS, and exposed Kodak X-Omat X-ray 

film for various lengths of time to generate autoradiographs of the protein. 
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RESULTS 

Identification of Potential Target Cells 

Our first step in developing a CTL assay was choice of a target cell. Three basic 

qualities necessary in a target cell for a bovine CTL assay using retroviral gene 

delivery are the ability to isolate the cell without killing the animal, a relatively high 

level of class I MHC expression, and susceptibility to retroviral gene delivery. We 

examined primary cell cultures from a variety of tissues in cattle. The class I MHC 

expression and susceptibility to retroviral gene delivery was compared among 

different cultures. An adherent cell culture derived from peripheral blood (PBAC) 

exhibited the best combination of these two characteristics, and were further 

characterized to give an indication of their origin. 

Characterization of primary cells 

A number of different primary bovine cell cultures were isolated by Lawrence 

Elsken's lab at NVSL, Janice Miller's lab at NADC, and by our lab, and these cell 

cultures were chosen as candidate cells for use in a CTL assay. Initially, cells were 

examined for morphology and growth rate (Table 1 ). Primary cell cultures are 

usually a mixture of different cell types, but the cell morphologies that 

predominated in each culture were compared with the morphologies of known cell 

types. When confluent cell cultures are viewed by phase microscopy, a 

cobblestone pattern is indicative of an epithelial or endothelial origin, whereas 

bipolar arrays of cells which appear to form whorls when viewed with the naked 

eye are typical of fibroblasts (29) . The BOTONG, BOTUR, BOSK, and FBL had a 

clear fibroblastic morphology. They formed tightly packed bipolar arrays when 
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Table 1. Primary cell cultures 
Cell name Tissue source Morphology/ Likely cell type 

Growth Rate 
BOSK Fetal bovine skin Bipolar arrays, fibroblast 

macroscopic whorls 
High growth rate 

BOT ONG Fetal bovine tongue Bipolar arrays, fibroblast 
macroscopic whorls 
High growth rate 

BOTUR Fetal bovine turbinate Bipolar arrays, fibroblast 
macroscopic whorls 
High growth rate 

FBL Fetal bovine lung (outer Bipolar arrays, fibroblast 
membrane) macroscopic whorls 

High growth rate 

BO TEST Fetal bovine testicle Bipolar arrays, some fibroblast, epithelial, 
large and irregular endothelial 
High growth rate 

EBKp Embryonic bovine kidney Cobblestone epithelial, 
Low growth rate endothelial 

PBAC 79A Bovine peripheral blood Large and irregular, epithelial, 
adherent cell some cobblestone endothelial 

Low growth rate 

PBAC 79B Bovine peripheral blood Cobblestone epithelial, 
adherent cell Moderate growth rate endothelial 

PBAC 342 Bovine peripheral blood Bipolar arrays or fibroblast, epithelial, 
adherent cell cobblestone endothelial 

High growth rate 
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viewed under phase microscopy, and the whorls formed by cultured fibroblasts 

were visible to the naked eye. BOTONG, BOTUR, BOSK, and FBL cells all divided 

quickly in culture. EBKp did not often grow into tightly packed cell cultures, but 

usually left space between cells at confluence. Where cell-cell contact occurred, 

EBKp formed cobblestone patterns, indicating an epithelial or endothelial origin . 

EBKp were very regular in size and were round with a centered nucleus, much like 

a fried egg, and grew more slowly in culture. BOTEST cells had a more 

heterologous morphology and formed both bipolar arrays and arrays of a loose 

cobblestone pattern with very large irregularly shaped cells interspersed in the 

culture. Whorls were not visible in BOTEST cultures, and so they somewhat 

resembled fibroblasts and epithelial and endothelial cells. PBAC 798 cells had a 

cobblestone appearance at confluence and divided quickly, thus appearing to be 

epithelial or endothelial. PBAC 79A were much larger cells which did not pack 

tightly at confluence, were rather irregularly shaped, and divided more slowly. 

They occasionally formed cobblestone arrays at confluence, and tentatively 

appeared to be epithelial or endothelial. PBAC 342 divided quickly and formed 

both cobblestone and bipolar arrays at confluence, but no macroscopic whorls 

were visible, so PBAC 342 could also have been fibroblasts, epithelial or 

endothelial cells. 

Morphologies give only a partial indication of cell type, whereas biochemical 

indicators can provide much more certainty in cell type determinations. To better 

determine cell type, the different cell cultures were tested for expression of the 

intermediate filaments, vimentin and cytokeratin. Vimentin has been shown to be 

present in cells of mesenchymal origin such as fibroblasts, macrophages, and 

endothelial cells (22,28,42,65), whereas cytokeratin has been shown to be 

confined to epithelial cells (27,42,80). MDBK are a bovine epithelial cell line, and 
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Hela are a human epithelial line. Both cell lines should contain cytokeratin but not 

vimentin . EJG and CPAE on the other hand are bovine endothelial cells, and 

should contain vimentin but not cytokeratin. ICC was performed for each 

intermediate filament, then the number of stained and unstained cells were 

counted out of at least 500 cells, and the percent positive was calculated. The 

results are summarized in Table 2. 

Table 2. C'!tokeratin and vimentin staining 
Percentage of Cells 

Stained Positive 

Cell name Cell type Cytokeratin Vimentin Deduced cell type 
He la epithelial 40 100 N/Aa 
MDBK epithelial 2 100 N/A 
EJG endothelial 0 100 N/A 
CPAE endothelial 0 100 N/A 
BO MAC macrophage 100 100 N/A 
BOSK primary 0 100 fibroblast 
BO TONG primary 0 100 fibroblast 
BOTUR primary 0 100 fibroblast 
FBL primary 0 100 fibroblast 
BO TEST primary 2 100 epithelial 
EBKp primary 1 100 epithelial 
PBAC 79A primary 0 100 unknown 
PBAC 798 primary 0 100 unknown 
PBAC 342 primary 0 100 unknown 
aN/A =not applicable 

Surprisingly, every cell line stained positive for vimentin, including the non-

mesenchymal MDBK and Hela cells. The studies which found vimentin only in 

mesenchymal cells were performed mostly with in situ staining of tissue samples, 

so it is possible that expression of vimentin was gained by in vitro culture of the 
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epithelial cells. In any case, vimentin's presence in all of the primary cell cultures 

was not highly meaningful. Of the primary cell cultures, only BOTEST and EBKp 

reacted with the cytokeratin antibody. The percent of cells positive for cytokeratin 

was low, but comparable to that found in the bovine epithelial cell line, MDBK. 

Thus, BOTEST and EBKp cultures contained epithelial cells. The lack of 

cytokeratin in the BOTONG, BOTUR, BOSK, and FBL cultures supported the 

morphologic evidence that they contained predominantly fibroblasts. The lack of 

cytokeratin staining ruled out the presence of epithelial cells in the PBAG cultures. 

The PBAG were isolated from blood collected by venipuncture, and since they all 

formed cobblestone arrays to some degree, an endothelial origin seemed likely, 

but not enough information was available to make that conclusion with much 

certainty. 

Class I MHC expression 

The different cell cultures were analyzed by FAGS analysis for their relative 

levels of class I MHG expression. A typical histogram set generated by FAGS 

analysis of class I MHC expression is shown in Figure 2. Expression of class I 

MHG was demonstrated by the shift of the shaded histogram (MHC-labeled cells) 

to the right of the unshaded one (unlabeled cells), and for the histogram set shown 

in Figure 2, both EBKp and PBAC 79A expressed class I MHG. The relative level of 

MHG fluorescence of each group of cells was calculated by subtracting the mean 

fluorescence of the unlabeled cells from the mean fluorescence of the labeled cells 

(Figure 3). Although the two sets of data yielded slightly different absolute numbers 

for most of the cell cultures, the relative relationships between the different cell 

cultures remained largely identical. 
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Figure 2. FACS histograms of class I MHC expression. Cells were labeled with 
an anti-class I MHC antibody and a secondary fluorescent antibody 
(shaded histogram) or the secondary antibody alone (unshaded 
histogram). 
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Figure 3. Level of class I MHC expression. Class I MHC expression was 
calculated as the mean fluorescence of cells analyzed by FAGS 
analysis with an antibody to class I MHC minus the mean fluorescence 
of cells labeled with the secondary antibody only. Two FAGS analyses 
of all cells were performed, and the data for each analysis is shown in a 
different shade of gray. 
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Of the primary cell cultures, 80SK, 80TONG, 80TUR, F8L all had a relatively 

low level of class I MHC expression. These cell all bore a strong morphological 

resemblance to fibroblasts, and this data is consistent with previous work showing 

that bovine fibroblasts have a rather low level of class I MHC and do not function 

well as a CTL target cells (14). The E8Kp also had a relatively low level of class I 

MHC expression, whereas the 80TEST had a high level. Thus the presence of 

epithelial cells in a cell culture did not necessarily correlate with higher or lower 

levels of class I MHC expression. 

The level of class I MHC expression varied widely among the P8AC isolates. 

P8AC 79A expressed class I MHC far higher than any other cell type tested in this 

study; P8AC 798 had the second highest level of expression, though it did not 

exceed the other cell cultures by such a large amount; and P8AC 342 had one of 

the lowest relative levels seen in this study. Therefore, the differences seen in 

morphology and growth rate of the P8AC cultures extended to the biochemical 

level and indicated that they may not have been the same cell type. The higher 

levels of expression seen in 80TEST, P8AC 79A, and P8AC 798 made them the 

promising candidates as CTL target cells, based simply on class I MHC expression. 

Susceptibility to retroviral gene delivery 

For cells to function in a CTL assay using retroviral gene delivery, they need to 

be highly susceptible to infection by the retroviral vectors. So in addition to 

examining class I MHC expression, potential target cells were evaluated for their 

susceptibility to retroviral gene delivery (Figure 4) . All cells were susceptible to 

infection with retroviral vectors produced by PG13 vector-producer cells, in 

accordance with previous results for bovine cells (56), but infection titers varied by 

several orders of magnitude. Cells with titers between 103 and 104 would be 



51 

5.5 

-
- 5 ~ - - -u 
0 --en -. -en ' ::J 
"-"- "> 4.5 Q) 

F<B 
~3 Q) ....._ >Ct) 

4 :.= T'"" 

Q) <!J 
Oa... 

I>' 
ll - -- I • 

. 
' - -

a>-cO 
Q) _J 

<!JE 3.5 ....._ 
::J -

' . 
' - I 

" ' 
( 

I i -(.) ~ 

0 ,..... -C) 
0 3 - ; 

- " ; 

' ' -
' .. 

2.5 I I I I I I I I I I I I 

Figure 4. Susceptibility to retroviral gene delivery. Gene delivery was measured 
in duplicate as the number of neomycin-resistant colonies after infection 
with 10-fold serial dilutions of PG13/LNc8 retroviral vector. Numbers 
shown are the average of duplicate experiments. Individual titers varied 
by less than 0.5 logs from the mean in all cells. 
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minimally suitable as target cells with a 1 to 10% infection rate, and cells with titers 

higher than 1 a4 would be much more suitable with infection rates above 1 a%. 

Titers below 1 a3 indicated that cells would be very unsuitable for a CTL assay 

using retroviral gene delivery. 

All the fibroblastic cells, BOSK, BOTONG, BOTUR, and FBL, had titers well 

above 1a4 , with BOSK and BOTUR showing titers of approximately 1as, indicating 

that nearly 1 aa% of the cells were being infected. The titer of slightly above 1 as in 

BOTUR is probably because these cells divide very quickly and grew to more than 

1 as cells per well in the first few hours of the infection. The EBKp had a titer below 

103
, whereas the BOTEST showed a titer of above 104.s, again demonstrating that 

although both cultures contained epithelial cells, their suitability as target cells was 

very different. 

The susceptibility of the PBAC isolates also varied immensely. With a titer of 

about 1 a3
·
2

, only about 15% of PBAC 79A cells were infected by the retroviral 

vector. The PBAC 798 and PBAC 342 both were highly susceptible to infection 

with titers above 1 a4·s. Interestingly, the susceptibility to retroviral gene delivery 

correlated with the speed at which the cell cultures grew (Table 1 ), which is 

reasonable since simple retroviruses only infect dividing cells. The correlation is 

useful because it implies that growth rate can provide a method for approximating 

the titer which can be expected from different cell isolates. 

PBAC are most suitable 

To be useful as target cells, isolates need to have both high class I MHC and 

high susceptibility to retroviral gene delivery. Examining both criteria 

simultaneously (Figure 5) gave an indication of the target cell potential of each of 

the primary cell cultures. EBKp cells had a low level of class I MHC expression and 
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Figure 5. Target cell potential. This figure contains data from both Figure 3 and 
Figure 4. The name of each cell type is placed on the graph at its 
corresponding position for class I MHC expression and gene deliviery 
titer. P342 refers to PBAC 342 cells. The shaded region highlights the 
cells with the high combination of class I MHC expression and 
susceptibility to retroviral gene delivery. The highlighted cells are those 
most suitable as CTL target cells. 
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a low gene delivery titer and would be quite unsuitable as CTL target cells. 

Though P8AC 79A expressed a high level of class I MHC, they were not very 

susceptible to retroviral gene delivery, and thus would not make very good CTL 

target cells. Conversely, 80SK, 80TONG, 80TUR, F8L, and P8AC 342 all had 

high gene delivery titers, but low class I MHC expression; they would also make 

poor CTL target cells. Peripheral blood isolate 798 (P8AC 798) and bovine testes 

cells (80TEST) had the highest combination of class I MHC expression and gene 

delivery titer, and they would thus be most useful as potential target cells in a CTL 

assay using retroviral gene delivery. 

We chose to pursue further study with the P8AC cells rather than the 80TEST 

cells for several reasons. Isolation of P8AC requires far less surgical manipulation 

of the animal donor than do testes cell isolations, a CTL assay using testes cells 

would restrict researchers to studies of male cattle, and previous results indicate 

that bovine testes cells do not function well as target cells ( 14). 

PBAC cell type characterization 

Different P8AC isolates demonstrated noticeable differences in morphology, 

growth rates, susceptibility to retroviral gene delivery, and class I MHC expression 

(Tables 1 and 2, Figures 3 through 5). The cells were isolated as overgrowths of 

P8MC cultures, and there was some uncertainty about their origin. So, further 

characterizations were performed on the different P8AC isolates to try to provide 

guidelines as to which P8AC phenotype correlated with high potential as CTL 

target cells. 

None of the P8AC isolates contained epithelial cells, as evidenced by the 

absence of cytokeratin. They were isolated by collecting peripheral blood 

mononuclear cells (P8MC) as buffy coats from peripheral blood and selecting for 
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adherent cells. Because buffy coats contain primarily white blood cells, all PBAC 

isolates were tested for expression of CD45, a leukocyte marker. Fresh PBMC had 

very bright staining for CD45 on their surtace by IFA, but PBAC showed no staining 

(data not shown) . Thus, PBAC were not leukocytes. 

Typical endothelial cell morphology is a cobblestone appearance at 

confluence. Some of the PBAC exhibited cobblestone morphology (Table 1 ), so 

we tested the cells for two biochemical characteristics of endothelial cells: 

expression of von Willebrand factor and uptake of Dil-Ac-LDL. Von Willebrand 

factor is produced exclusively by vascular endothelium. Ac-LDL is taken up via the 

"scavenger cell pathway" present in macrophages and most vascular endothelial 

cells (45,85). When cells take up the fluorescently tagged form of Ac-LDL, known 

as Dil-Ac-LDL, the fluorescent Oil tag accumulates in cytoplasmic deposits, causing 

a punctate fluorescence when viewed under the microscope. Bovine pulmonary 

artery endothelial cells (CPAE) stained strongly positive for von Willebrand factor 

by IFA (data not shown), but all PBAC isolates were negative (data not shown) , and 

thus were not vascular endothelial cells. PBAC were incubated with Dil-Ac-LDL 

and their fluorescence measured by FACS analysis. Though all PBAC isolates 

took up far less Dil-Ac-LDL than CPAE positive control cells, their levels of uptake 

differed (Figure 6). PBAC 79B cells took up significantly more Dil-Ac-LDL than the 

MDBK epithelial cell control or the NIH/3T3 fibroblast control. PBAC 79A and 342 

took up more than NIH/3T3 cells, but less than MDBK. Thus, whereas as the 

vascular endothelial cell control, CPAE, had a high level of Dil-Ac-LDL uptake, 

PBAC 79B had a moderate level of uptake, and PBAC 79A and 342 had low levels 

of uptake. 

The absence of von Willebrand factor and moderate level of Dil-Ac-LDL uptake 

shown by PBAC 79B were consistent with the cell characteristics reported for 
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Figure 6. Dil-Ac-LDL uptake. Cells were incubated with normal media containing 
5 µg/ml Dil-Ac-LDL, and uptake of the fluorescent compound was 
measured by FAGS analysis. Values shown are the average of 
triplicate measurements, and error bars indicate standard deviation. 
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cultured high endothelial cells (45,71 ). High endothelial cells are involved in 

lymphocyte trafficking in vivo, and freshly isolated lymphocytes bind high 

endothelial cells in vitro (45,71 ). To test whether the PBAC isolates were high 

endothelial cells, a lymphocyte binding assay was performed, and the number of 

lymphocytes bound per cell was calculated (Figure 7). Again, differences were 

observed among the various PBAC isolates. The level of lymphocyte binding in 

PBAC 79A and 798 was consistent with reported results for high endothelial cells, 

but in PBAC 342 lymphocyte binding was at a level much lower than that found in 

high endothelial cells. 

Based on their cobblestone morphology, lack of von Willebrand factor, 

moderate level of Dil-Ac-LDL uptake, and level of lymphocyte binding, PBAC 798 

appear to be high endothelial cells. PBAC 79A was isolated from the same sample 

of blood as 798, and they differed from PBAC 798 mostly in their growth rate and 

level of Dil-Ac-LDL uptake. In vitro, vascular endothelial cells can lose the 

scavenging cell pathway, and their levels of Dil-Ac-LDL uptake will fall. PBAC 79A 

were probably high endothelial cells, but in course of being grown in culture their 

growth rate may have slowed and they may have lost their ability to take up 

moderate levels of Dil-Ac-LDL. PBAC 342, on the other hand, did not bind 

lymphocytes efficiently, they sometimes had a fibroblastic bipolar morphology 

(Table 1 ), and their target cell potential closely resembled that of the other 

fibroblastic primary cells (Figure 5). The most likely explanation is that the PBAC 

342 culture contained mostly fibroblasts. The appearance of sectors of 

cobblestone morphology may have been due to high endothelial cells which were 

later overgrown by fibroblasts. 
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Figure 7. Lymphocyte binding assay. Adherent cells were co-cultured with fresh 
lymphocytes (PBMC) for 2 hours, non-adherent cells were washed off, 
and cells were fixed and stained with CD45. The number of 
lymphocytes per adherent cultured cells was counted, and the ratio is 
given in the graph. The ratio of lymphocytes which bound high 
endothelial cells has been previously determined (45) , and it is 
displayed with the reported standard error. 
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Summary 

PBAC 798 cells were the isolate most suitable as a CTL target cell , as 

determined by high class I MHC expression and a high susceptibility to retroviral 

gene delivery. They appeared to be high endothelial cells, based on a 

cobblestone morphology, a lack of von Willebrand factor expression, a moderate 

level of Dil-Ac-LDL uptake, and a lymphocyte binding greater than 0.4 lymphocytes 

per cell. High endothelial cells are normally found in lymph nodes, but they have 

been previously isolated from bovine peripheral blood adherent cultures (71 ), just 

as the PBAC were. The less suitable PBAC 79A isolate also probably contained 

high endothelial cells, but its slow growth rate made it less susceptible to gene 

delivery, and thus less suitable as a CTL target cell. PBAC 342 cells did not 

appear to be high endothelial cells and had a low level of class I MHC expression, 

making them very unsuitable as CTL target cells. In conclusion, high endothelial 

cells isolated from peripheral blood are the most promising candidates for target 

cells in a CTL assay which uses retroviral gene delivery. 

Production of Retroviral Vectors for Delivery of Bovine Genes 

With a target cell chosen, the next step in developing a CTL assay was 

production of a retroviral vector which could deliver genes cloned from a bovine 

virus into the target cells. The model bovine virus used in this study was BIV. 

Production of the retroviral vector involved construction of transfer vector plasmids 

carrying BIV genes, transfection of packaging cells with the plasmids to make 

vector producer cells, and collection of retroviral vectors from the supernatant of 

vector producer cells. Target cells were then infected with the recombinant 

retroviral vector and tested for expression of the BIV genes. 
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BIV CA gene delivery and protein production 

The CA subunit of the BIV gag gene was chosen to be used in transfer vector 

construction (Figure 8) and gene delivery to target cells for several reasons. 

Monoclonal and polyclonal antibodies reactive to the CA protein were available. 

BIV-infected cattle develop humoral immune responses to the CA protein (4), and 

CTL specific to the FIV CA protein have been detected in FIV-infected cats by a 

CTL assay which used retroviral gene delivery (78). 

LNCX/CA construction and packaging cell assembly. The LNCX/CA 

transfer vector was made by first PCR amplifying the BIV CA gene from the 

pBacHisC/gag3 plasmid with primers carrying restriction enzyme sites and then 

ligating the PCR product into the easily manipulated intermediate plasmid, pCRll. 

The pBacHisC/gag3 plasmid was used as a source because it had previously been 

used to produce a baculovirus-gag3 fusion protein which could be detected by 

Western blot hybridization with the CA-specific monoclonal antibody, indicating a 

preservation of the open reading frame and the sequence of the monoclonal 

binding site in the CA gene. Intermediate plasmids containing the correct insert 

were detected using colony blot hybridization. Bacterial colonies carrying the CA 

gene were grown in quantity, and the pCRll/CA plasmid was isolated. Plasmids 

were screened by restriction enzyme digestion and fragment sizes visualized by 

agarose gel electrophoresis. Intermediate plasmids with the expected banding 

pattern were sequenced to verify that the BIV gene was intact. The BIV gene was 

then subcloned into the pLXSN transfer vector using the restriction enzyme sites 

added by the PCR primers. Correct construction of the transfer vector was also 

verified using colony blot hybridization, restriction enzyme analysis, and DNA 

sequencing. 
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LNCX/CA 
7.3 kb 

Figure 8. LNCX/CA transfer vector construction. The BIV CA gene segment was 
amplified from the baculovirus expression plasmid, pBacHisC/gag3, 
which has been shown to produce BIV CA protein detectable by 
monoclonal antibody (data not shown) , and ligated in the pCRll plasmid. 
After correct amplification and ligation were verified, the CA gene 
fragments was excised from the intermediate plasmid by restriction 
enzyme digestion and ligated into LNCX. 
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Packaging cell transfection, gene delivery, and testing of 

expression. The LNCX/CA plasmid was used to transfect PG13 packaging cells, 

and stable transfectants were selected for neomycin resistance (neoR) with G418. 

NeoR colonies formed, confirming successful transfection of packaging cells. 

Supernatant from neoR PG 13--LNCX/CA cells presumably contained recombinant 

CA retroviral vector, and the supernatant was used to infect bovine FBL cells. 

Upon selection with G418, neoR colonies formed. These results confirmed both 

production of retroviral vector and delivery of vector-borne genes into bovine cells. 

In order to verify that the BIV CA protein was being produced, neoR cells were fixed 

with methanol and stained by ICC using a CA-specific monoclonal antibody. 

Neither PG 13--LNCX/CA cells nor the neoR FBL cells visibly reacted with the 

antibody, suggesting that no CA protein was being produced after transfection or 

gene delivery. The absence of detectable protein could have been the result of 

any of several complications. In packaging cell lines, transfer vectors can undergo 

recombination to delete the inserted gene, in this case the CA gene. The promoter 

controlling the inserted gene can also become silenced. Both events block protein 

production from the inserted gene. When protein expression is blocked in a 

majority of cells, one way to find the unblocked minority is to examine clonal 

populations of cells. 

Clonal isolation of packaging cells and testing of expression. Clonal 

populations are the result of a single integration of the transfer vector in the host 

cell chromosome. Cells with an integration site that has a high probability of 

recombination or gene silencing will lose protein production within the first few 

rounds of cell division, and the entire colony will be negative. Cells with a more 

stable integration event will produce colonies with at least a portion of positive 

cells. By examining clonally-derived colonies, positive cells are concentrated 
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together and more easily identified as being above background than they would be 

when mixed together in a pool of cells. PG13--LNCX/CA cells were taken from the 

pool of cells generated by the first transfection, seeded at limiting dilutions, allowed 

to form colonies, and tested for CA protein by ICC. Several hundred colonies were 

examined, but all were negative for protein . 

It was possible that the packaging cells which had eliminated expression of the 

CA protein gained a selective advantage over those which maintained expression. 

The non-expressors could have outdivided the cells expressing the CA protein, 

eliminating the expressors before the cells were divided into clonal populations. 

To remove the bias that may have been produced by growing cells in a pool, 

another round of transfection and selection of PG13 and PA317 cells (a similar 

packaging line) was performed and colonies were grown up at limiting dilutions 

during the initial neomycin selection. Cell colonies were tested by ICC, but again 

all populations were negative for protein. 

Alternative transfer vectors 

It was not possible to detect protein produced by the LNCX/CA vector after 

transfection into packaging cells, gene delivery in bovine cells, or clonal selection 

of transfected packaging cells. One likely explanation was that the LNCX/CA 

vector had been somehow improperly constructed. For example, in constructing 

the vector, artificial start and stop codons had been introduced in the CA gene 

during PCR amplification. At that time, no consideration was given to the 

translation initiation context of the artificially introduced start codon, and the non-

consensus initiation context may have led to a large reduction in the level at which 

transfer vector RNA was transcribed. Other unknown construction errors may also 
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have taken place, and for this reason several other transfer vectors were 

constructed . 

LNCX constructs. Several other LNCX transfer vectors were made using the 

different segments of the BIV genome (Figures 9 and 10). The gag3 portion of BIV 

was used because it is exactly the same part of gag which was originally used in a 

fusion protein to detect anti-Gag humoral immune responses (4), and so has been 

shown to react with Gag-specific polyclonal and monoclonal antibodies. The entire 

gag gene was used to construct LNCX/gag because it contains the natural 

translation initiation and termination sites, so mRNA containing it should be as 

efficiently translated as mRNA from wild-type BIV virus. As shown in Figure 9, the 

plasmid p61-3E which was used as the source for gag in LNCX/gag had also been 

used as the source of gag3 in pBacHisC/gag3, and thus the source gene should be 

able to react with the available Gag-specific antibodies. BIV-infected cattle develop 

antibodies to the protein product of a portion of the env gene, known as Env8 (19), 

so sera from these cattle can be used to detect Env8. The Env8-specific antibodies 

were detected using an E. coli TrpE-Env8 fusion protein produced by the 

pTrpE/env8 plasmid, so this plasmid was used as the source of the env8 in 

LNCX/env8. Construction of the alternative LNCX transfer vectors was performed 

similarly to construction of LNCX/CA. 

Direct transfection, which has been reported to increase the frequency of 

transfer vector rearrangement and recombination (57), was used to introduce 

LNCX/CA transfer vector into PG13 packaging cells. Rather than being directly 

transfected into PG 13 cells, the LNCX/gag3, LNCX/gag, and LNCX/env8 transfer 

vectors were instead transiently transfected into the PA317 packaging cell line, and 

recombinant retroviral vectors in the supernatant from the PA317 were used to 

infect PG 13 packaging cells. This technique reportedly results in a much higher 
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Figure 10. LNCX transfer vector construction. Several different-sized segments of the BIV gag gene and one 
segment of the BIV env gene were used to construct transfer vectors in a manner similar to LNCX/CA 
construction. The gag3 insert was amplified from pBacHisC/gag3, and the gag insert was amplified from 
p61-3E, a pUC19 plasmid containing the 5' half of the BIV genome which had been used to construct the 
pBacHisC/gag3 plasmid. The envB insert was taken from the pATH/env8 plasmid which produces an E. 
coli TrpE-env8 fusion protein that reacts with sera from BIV-infected cattle (19). BIV DNA fragments were 
PCR amplified from the plasmids listed in the top row and ligated in intermediate plasmids. When correct 
amplification was verified, BIV gene fragments were subcloned into LNCX. 
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proportion of unrearranged transfer vector integrated in the packaging cells' nuclei 

(57). Serial dilutions of infected PG13 packaging cells were passed and selected 

for neomycin resistance. ICC was performed on the colonies using a Gag-specific 

monoclonal antibody tor neoR PG13 cells with the LNCX/gag3 or LNCX gag, and 

using a polyclonal calf serum previously demonstrated to react with Env8 protein 

(4) tor cells with LNCX/env8. No reaction was seen with any of the colonies 

containing LNCX/gag3 or LNCX/gag. Small differences in antibody reactivity were 

seen among colonies containing the LNCX/env8 vector, however the level of 

background staining of uninfected PG 13 control cells with the Env8-specific 

polyclonal sera was much higher than with the monoclonal , and sera did not react 

with any colonies to a greater degree than with the uninfected controls. No protein 

expression was detected in clonal populations of PG 13 packaging cells with 

LNCX/gag3, LNCX/gag, or LNCX/env8. Because of the different sources of the BIV 

genes and the different steps necessary in the construction of these vectors, it did 

not appear that the lack of expression was merely a result of faulty plasmid 

construction. 

LXSN constructs. Another possible explanation tor the lack of expression is 

some unknown inactivating interaction between the BIV lentiviral genes and the 

retroviral elements in the LNCX plasmid and the packaging cell. There is 

anecdotal evidence that lentiviral genes are spliced out of LNCX in cells (35,73). 

The LXSN transfer vector has been successfully used to express the CA protein of 

feline immunodeficiency virus (FIV), another of the lentiviruses (78) . The pLXSN 

plasmid was used to construct the LXSN/gag and LXSN/gag3 transfer vector 

plasmids (Figure 11 ). In order to eliminate any interaction between the retroviral 

genes in the packaging cell and the transfer vector, plasmids were transiently 

transfected into 293 cells, an easily transfected human kidney cell line. After two 
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Figure 11 . LXSN transfer vector construction. As with the LNCX vectors, BIV DNA 
segments were amplified from source plasmids, ligated in intermediate 
plasmids, and subcloned from the intermediate plasmid into LXSN. 
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days, 293 cells with each transfer vector were tested for protein by ICC using either 

methanol or formaldehyde fixation and either the CA-specific monoclonal antibody 

or a Gag-specific rabbit polyclonal. No specific protein expression was seen in 

cells with either LXSN/gag or LXSN/gag3 using any combination of fixative and 

antibody. The lack of expression seen with the LNCX-based transfer vectors was 

not due solely to an interaction of the BIV lentiviral genes with the retroviral genes 

in the LNCX plasmid or the PG 13 packaging cells. 

Eukaryotic expression constructs. A possible reason that no protein was 

detected is that the sequence of the BIV genes may have been faulty. This 

possibility seemed unlikely since sequencing of the DNA revealed no stop codons 

or frameshifts. The amino acid sequence appeared to contain two amino acid 

changes from the previously reported BIV sequence, but these were present in the 

pBacHisC/gag3 source plasmid as well, and protein produced by that plasmid 

reacted with the CA-specific monoclonal antibody. 

We did not have a gag-containing plasmid that we could transfect into PG 13 or 

293 cells to use as a positive control for ICC. Therefore, the problem may not have 

been a lack of expression, but instead merely a lack of detection. For this reason , 

we constructed gag and gag3 eukaryotic expression plasmids. The intermediate 

plasmid used in construction of the LXSN transfer vectors was pCR3.1 , a 

eukaryotic expression vector which uses the CMV promoter (Figure 11 ), and the 

pCR3.1 /gag3 and pCR3.1 /gag were tested for Gag expression. One plasmid clone 

of pCR3.1/gag3 and twenty different plasmid clones of pCR3.1/gag were 

transfected into 293 cells. Four sets of 293 cells transfected with different 

pCR3.1/gag plasmid clones were selected for neomycin resistance for three weeks 

before they were tested for Gag protein, and the remainder of transfected 293 cells 

were tested for protein two days after transfection. No cells tested positive by ICC 
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using any combination of methanol or formaldehyde fixation and CA-specific 

monoclonal or Gag-specific rabbit polyclonal antibody. These results indicated that 

either some problem had arisen in the nucleotide sequences of the segments of 

the gag genes that we used, or detection of Gag by ICC, though adequate to detect 

cells infected with wild-type BIV virus, was not sufficient to detect Gag protein 

produced by plasmids. 

Western blotting. Since Gag protein was not detectable by ICC, Western blot 

hybridization was used as an alternative method to try to detect Gag protein in 

transfected cells. Lysates were collected from 293 cells transiently transfected with 

the LNCX/CA, LNCX/gag3, LNCX/gag, LXSN/gag3, LXSN/gag, or pCR3.1 /gag3 

plasmids. Cell lysates were also taken from the sixteen sets of 293 cells transiently 

transfected with different pCR3.1/gag plasmid clones and the four sets of neoR 293 

cells stably transfected with pCR3.1/gag plasmid clones. The lysates were 

analyzed by Western blot using a CA-specific monoclonal antibody (Figure 12). 

Purified BIV virus was used as a positive control. A strong reaction was detected to 

the 26 kDa CA protein in BIV-infected cells, but no other proteins were detected. 

Although protein was detectable in virus isolated from BIV-infected cells, the CA 

protein is the most prevalent component of virions, so by concentrating the virus, 

the CA protein was concentrated as well. The lack of protein in cells transfected 

with the different gag plasmids could have been due to a non-functional form of the 

gag gene in the plasmids, but this seems unlikely since Gag protein was readily 

detectable by both ICC and Western blot in insect cells transfected with the 

pBacHisC/gag3 plasmid. An alternate possibility is that the Gag-specific antibodies 

were not sensitive enough to detect the amount of Gag protein produced in cell 

transfected with the LNCX, LXSN, or pCR3.1 plasmids. 
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Figure 12. Western blots of cells transfected with transfer vectors. Lanes 1 and 27 contain protein purified from BIV-
infected cells. Lane 2 contains the lysate of untransfected 293 cells. Lanes 3-13, 15-22, and 26 contain 
the lysates of 293 cells transiently transfected with different gag-containing plasmids as follows: 3 with 
LNCX/CA, 4-5 with LNCX/gag3, 6 with LNCX/gag, 7-8 with pCR3.1 /gag, 10 with LXSN/gag, 11 with 
LXSN/gag3, and 9, 12-13, 15-22, and 26 with pCR3.1/gag. Lanes 14 and 23-25 contain lysates of 293 
cells transfected with pCR3.1/gag and selected for neomycin resistance for four weeks with G418. 
Western blotting was performed using a monoclonal antibody to BIV CA and 1251-labeled Protein G. The 
bands indicated by solid arrowheads contain the 26 kDa CA protein from BIV-infected cells. 
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Transcriptional activity 

Production of Gag, CA, or Env8 proteins was not detected from any of transfer 

vector or eukaryotic expression plasmids in any of the experiments outlined thus 

far. The block to protein production could be at a translational level, or at a 

transcriptional level. Total RNA was isolated from a number of cells with transfer 

vectors or pCR3.1 eukaryotic expression vectors, and several tests were performed 

to determine if the transfer vectors and the eukaryotic expression plasmids were 

being transcribed to RNA within the cells. 

RNA isolation. RNA was isolated from PG 13 cells, from PG 13/LNc8 (these 

carry only the neoR gene), and PG13--LNCX/CA. Total RNA was also taken from 

normal FBL cells, FBL cells infected with recombinant LNCX/CA retrovirus, and 

neoR FBL--LNCX/CA cells. RNA was isolated from normal 293 cells and from 293 

cells transiently transfected with pCR3.1/gag3, pCR3.1/gag, LXSN/gag3, or 

LXSN/gag. Total RNA from BIV-infected cells was used as a positive control for 

gag. 

RT-PCR. Total RNA from normal PG13 cells, PG13/LNc8, PG13--LNCX/CA, 

unselected FBL--LNCX/CA, and neoR FBL--LNCX/CA was analyzed by RT-PCR 

(Figure 13). The templates were amplified using primers for neoR, CA, and a 

primer pair outside the multi-cloning site of LNCX, all of which give 0.70-0.76 kb 

products. No 0.7 kb bands were present in either normal PG13 (lanes 4-7) or 

normal FBL cells (lanes 8-11) or from reactions without reverse transcriptase (lanes 

2, 4, 8, 12, 19, and 23) , as expected. A 0.7 kb CA band amplified from the BIV RNA 

(lane 3) . From PG13/LNc8, only the neoR primers amplified a 0.7 kb band (lane 9) . 

From PG13--LNCX/CA, FBL--LNCX/CA, and neoR FBL--LNCX/CA, 0.7 kb bands 

amplified in the CA, neoR, and LNCX reactions (lanes 13-16, 20-22, and 24-26). 

These results indicated that in both packaging cells and bovine cells with the 
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Figure 13. Analysis of gene expression by RT-PCR in stably transfected and infected cells. Total RNA from cells with 
the LNCX/CA transfer vector was amplified using primers specific for the CA and neoR genes, or with 
primers outside the LNCX multi-cloning site. Primers are indicated above the gel and RNA templates are 
labeled below. Reactions labeled RT- were run without reverse transcriptase to test for DNA 
contamination. Positive controls included BIV-infected cells and PG 13/LNcS cells. Negative controls 
included normal PG13 cells and normal FBL cells. PG13--LNCX/CA cells were stably transfected with 
LNCX/CA plasmid. FBL--LNCX/CA were infected with LNCX/CA retroviral vector and used either 
unselected or selected for neoR. The expected RT-PCR product sizes from the CA, neoR, and LNCX 
primer pairs are indicated. 
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LNCX/CA transfer vector, the CA and neoR RNA was produced. In addition, in the 

LNCX reactions in cells with the transfer vector, a single clear band was present, 

indicating that the CA RNA was not spliced out of RNA transcripts. 

The presence of CA RNA was measured in total RNA from 293 cells transiently 

transfected with either pCR3.1/gag3, pCR3.1 /gag, LXSN/gag3, or LXSN/gag 

(Figure 14A). The expected PCR product for the CA primers is 703 base pairs (bp) , 

and a 0.7 kb product was detected in BIV-infected controls (panel A, lane 2) , as 

well as 293--LXSN/gag3 (lane 6) , 293--LXSN/gag (lane 10), and 293--

pCR3.1/gag3 cells (lane 8) . The 0.7 kb band was not detected in normal 293 cells 

(lane 4), or in cells to which no reverse transcriptase had been added (lanes 3, 5, 

7, 9, 11 , and 13), so the gag gene was not present in 293 cells before transfection, 

and no contaminating gag DNA was present in RT-PCR reactions. The expected 

RT-PCR product was not detected in 293--pCR3.1/gag cells (lane 12), which could 

either indicate that that transfection was not successful, or that something was 

wrong with the plasmid. LXSN/gag, the derivative of pCR3.1 /gag, was transcribed, 

so the lack of gag RNA was not due to a lack of the correct gag DNA. A poor 

transfection seems the most likely reason. In any case, the gag gene of 

LXSN/gag3, LXSN/gag, and pCR3.1/gag3 was transcribed by 293 cells, and thus 

the lack of protein was not due to an absence of RNA caused by a problem such as 

promoter-cell incompatibility. 

A further RT-PCR analysis was performed on a total RNA from 293 cells using 

several other primer pairs (Figure 148). An attempt was made to amplify RNA from 

293--pCR3.1 /gag and 293--pCR3.1/gag3 cells using a 5' primer from inside the 

gag gene and a 3' primer from outside the pCR3.1 multi-cloning site (panel B, 

lanes 8 and 9). The expected sizes are 1547 bp for pCR3.1/gag and 937 bp for 

pCR3.1 /gag3. Neither RT-PCR product was detected. This was not very surprising 
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Figure 14. Analysis of gene expression by RT-PCR in transiently transfected cells. 
Total RNA was isolated from 293 cells transiently transfected with the 
indicated transfer vector. In panel A, RT-PCR was performed with and 
without reverse transcriptase for all six total RNA samples using primers 
specific for BIV CA. The arrowhead indicates the expected position of 
the 703 bp CA RT-PCR product. In panel B, RT-PCR was performed 
with templates indicated by the lower labels using primers indicated by 
the upper labels. The solid arrowhead in panel B indicates the 
expected position of the 746 bp neoR RT-PCR product. 
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for the 293--pCR3.1/gag RNA since no CA RNA had been detected, but for 293--

pCR3.1/gag3 it may be a result of a poor primer pair since no positive control was 

used. A similar amplification of 293--LXSN/gag and 293--LXSN/gag3 was 

performed using primers outside the multi-cloning site of LXSN (panel B, lanes 10 

and 11 ). The expected product for LXSN/gag is 1501 bp, and for LXSN/gag3 an 

891 bp product is expected. Neither product was detected, but again no positive 

control was used. It is possible that only the interior of the gene was transcribed, 

but this seems highly unlikely. On the other hand, when RT-PCR was performed on 

293--LXSN/gag RNA using primers for neoR RNA, the expected 746 bp product 

was found (panel B, lane 13). This reinforced the conclusion that the LXSN 

transfer vectors were capable of being transcribed in 293 cells. 

Northern blotting. RT-PCR can detect an extremely small amount of RNA, 

and a positive reaction gives no indication of the amount of RNA present, so some 

of the RNA samples were electrophoresed in a denaturing agarose gel and 

analyzed by Northern blot hybridization (Figure 15). A BIV gag probe gave a 

strong signal from total RNA from BIV-infected cells (lane 2). In 293--LXSN/gag 

cells (lane 7), the BIV gag probe detected a 4.3-4.5 kb band, which is the expected 

size of RNA transcribed off the 5' L TR and terminating at the 3' L TR polyA site. A 

neoR probe detected the 4.3-4.5 kb band and a 1.6-1.7 kb band, the expected size 

of RNA transcribed from the SV40 promoter to the 3' L TR polyA (lane 7) . The two 

very high molecular weight bands visible in 293--LXSN/gag RNA with both gag 

and neoR probes also hybridized with a pUC 19 probe. Since the pUC 19 probe is 

homologous with the plasmid backbone of pLXSN outside the L TRs, this indicated 

that the large band is the transfected LXSN/gag plasmid DNA. It appeared to have 

a very high molecular weight because DNA migrates more slowly than RNA of the 

same size on denaturing agarose gels. Detectable levels of gag and neoR 
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Figure 15. Northern blot of RNA from cells containing transfer vectors. Total RNA was electrophoresed through a 

formaldehyde/agarose gel and blotted to a membrane. Lanes 1 and 8 contain 0.24 - 9.5 kb RNA ladders. 
Lane 2 contains RNA from BIV-infected cells. Lane 3 contains PG 13 RNA, lane 4 has PG13/LNc8 RNA, 
and lanes 5 and 6 have PG 13--LNCX/CA RNA. Lane 7 has RNA from transiently transfected 293--
LXSN/gag cells. All lanes contain 4 µg of total RNA, except lane 6 which has 7 µg. The open arrowhead 
indicates the 4.3-4.5 kb band in lane 7, and the closed arrowhead indicates the 1.6-1 .7 kb band in lane 7. 
The membrane was hybridized with 32P-radiolabeled BIV gag DNA, neoR DNA, and pUC19 DNA. The 
hybridized DNA was stripped from the membrane between different probes. The very strong gag-
hybridizing band in lane 2 was not completely stripped before probing with neoR DNA, but was stripped 
off before probing with pUC19. 
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transcription did take place in the 293--LXSN/gag cells (open and closed 

arrowheads) , but the RNA bands are very faint, indicating that the level of 

transcription was quite low. A low level of transcription in the 293 cells indicates 

that some protein may have been produced, but it probably was not in sufficient 

amount to detect by ICC or Western blotting 

No signal was detected in any of the lanes with PG 13 RNA, PG 13/LNc8 RNA, 

or PG13--LNCX/CA RNA with either a gag or neoR probe. If the expected 

transcription was taking place, the neoR probe should have detected RNA in the 

PG13/LNc8 lane and PG13--LNCX/CA lanes, and the gag probe should have 

detected RNA bands in the PG 13--LNCX/CA lanes. The PG 13/LNc8 and PG 13--

LNCX/CA cells did possess neomycin-resistance, and so they must have produced 

the neoR protein and neoR RNA. Apparently, if RNA was being produced, the level 

was too low to detect by Northern blot hybridization. 

Dot blotting. A method which is more sensitive at detecting RNA than 

Northern blot hybridization is dot blot hybridization. Because all the RNA in a 

sample is concentrated in one spot on the membrane, different sizes of RNA cannot 

be distinguished, but smaller quantities can be detected. PG13, PG13/LNc8, and 

PG 13--LNCX/CA were analyzed by dot blot hybridization at ten-fold serial dilutions 

(Figure 16). Serial dilutions of pLNCX/CA plasmid DNA were used as a positive 

control. Duplicate blots were made and probed with either BIV gag (Figure 16A) or 

neoR DNA (Figure 168). The gag probe detected the plasmid DNA, but did not 

detect PG 13--LNCX/CA RNA. On the other hand, the neoR probe detected the 

plasmid DNA, as well as PG 13/LNc8 RNA and PG 13--LNCX/CA RNA, though the 

signal in PG 13--LNCX/CA cells was much weaker. This indicated that neoR 

transcription off the LNCX/CA transfer vector was taking place at a somewhat low 

level in PG13--LNCX/CA cells, but transcription of the CA RNA had been reduced 
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Figure 16. Dot blot of total RNA from packaging cells. A duplicate blot of packaging 

cell RNA and pLNCX/CA plasmid DNA was made. The blot shown in 
panel A was hybridized with 32P-labeled BIV gag DNA, and the blot in 
panel B was hybridized with 32P-labeled neoR DNA. 
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to a very low level detectable only by RT-PCR. This result was somewhat 

surprising since the neoR gene should have been transcribed in RNA species 

which contained the CA gene, but by recombination or some other method, this 

aspect of the LNCX/CA transfer vector had been eliminated. The very low level of 

CA transcription in the PG13--LNCX/CA cells detectable only by RT-PCR 

accounted for the absence of detectable CA protein. 

Low levels of protein 

In order get a better understanding of the levels of protein production that can 

be expected using retroviral gene delivery and in order to verify that the technique 

could be used to express genes in the bovine cells other than resistance markers, 

an LNCX transfer vector carrying green fluorescent protein (GFP) was introduced 

into PG 13 packaging cells and into PBAC 798 cells. 

LNCX/GFP. The GPE86--LNCX/GFP packaging cell line was kindly provided 

by John Levy at the Human Gene Therapy Research Institute (Des Moines, Iowa). 

This cell line both produces high levels of GFP protein and of recombinant 

LNCX/GFP retroviral vectors. The GPE86 retrovirus was used to infect PG13 cells, 

which were selected for neomycin resistance at serial dilutions. After three weeks, 

colonies were examined by fluorescent microscopy for fluorescence. Control PG 13 

cells had no visible fluorescence. The number of fluorescent and non-fluorescent 

neoR PG13 colonies was counted. Approximately 3% of colonies showed any 

fluorescence, and only 1 % fluoresced brightly. In some fluorescent colonies, a 

portion of the cells did not fluoresce. This suggested that as the cells underwent 

division, occasionally expression of the GFP protein was eliminated without loss of 

neomycin resistance, as was observed in the PG13--LNCX/CA cells. In a pool of 

neoR cells, fewer than 1 % of cells fluoresced after three weeks. Since fewer 
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fluorescent cells were visible when cells were grown in the more competitive 

conditions of a cell pool than in the non-competitive conditions of isolated colonies, 

the cells which did not express the GFP protein were presumably able to outgrow 

the GFP-expressing cells. 

Supernatant from the PG 13--LNCX/GFP cells was used to infect P8AC 798 

cells, which were then selected for neomycin resistance with G418. Fluorescence 

was visible in more than ten percent of neoR P8AC after three weeks and in one 

hundred percent of cells after six weeks. At three weeks, colonies with fluorescent 

cells did not contain non-fluorescing cells (data not shown) . These results 

indicated that P8AC had a higher and more prolonged level of expression of 

transfer vector genes than did packaging cells. 

Gene delivery of LNCX/CA to PBAC 798 cells. If LNCX/CA that was 

delivered to P8AC 798 was expressed in a manner similar to LNCX/GFP, very low 

levels of protein would be present in some clonal colonies. Supernatant was again 

collected from a pool of PG 13--LNCX/CA cells, and the supernatant was used to 

infect P8AC 798. The P8AC were selected for neomycin resistance for three 

weeks, and then stained by ICC using methanol fixation and a Gag-specific Rabbit 

polyclonal antibody. P8AC 798 infected with LNCX/GFP were used as a negative 

control, and their background level of staining was much lower than in normal 

PG 13 cells or F8L cells. Compared with the very low background staining, some of 

the neoR P8AC 798--LNCX/CA colonies showed a very slight positive reaction 

which was higher than anything seen in the negative control cells (data not shown). 

Therefore, a low level of CA protein was produced in infected P8AC 798 cells, and 

this result indicated that protein expression probably had taken place in some of 

the other cells with transfer vectors, but a combination of a low number of 
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expressing cells and a low level of protein production had prevented detection of 

the BIV protein. 

Summary 

Several transfer vectors carrying BIV gag or env8 genes were constructed and 

used to transfect packaging cells. Retroviral vectors from a transfected packaging 

cell line were able to deliver BIV DNA to bovine cells, as detected by the presence 

of neoR colonies. However, no BIV protein was detected in packaging cells, in the 

majority of infected bovine cells, or in transfected 293 cells. In packaging cells with 

the LNCX/CA transfer vector, the neomycin resistance gene (neoR) was 

transcribed, but transcription of the BIV gag gene took place only at an extremely 

low level , as detected by dot blot hybridization and RT-PCR. Both neoR and BIV 

gag RNA was detected by Northern blot in 293 cells transfected with the LXSN/gag 

transfer vector. 

An LNCX transfer vector containing the green fluorescent protein (GFP) was 

successfully expressed in PG13 packaging cells, and recombinant LNCX/GFP 

retroviral vector was used to deliver and successfully express low levels of GFP in 

PBAC 79B cells. Bearing in mind the results with the GFP gene delivery, 

recombinant LNCX/CA retroviral vector was used to infect PBAC 79B cells, and a 

very low level of BIV CA protein was detected in some of the PBAC cells. 

In high endothelial cells, detectable BIV CA protein and GFP protein were 

found. In 293 human kidney cells, transcription driven by both transfer vector 

promoters was detectable by Northern blot, but BIV protein was not detectable. In 

PG13 and FBL cells, both fibroblast cell types, BIV RNA was detected only by RT-

PCR. GFP was weakly detectable in only a fraction of PG13 vector producer cells. 

These results indicated that high endothelial cells were suitable for expression of 
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genes delivered by retroviral vectors, and suggested that cultures of fibroblasts 

may be unsuitable for retroviral gene delivery because of a transcription level too 

low for detectable amounts of protein to be produced. 

These results indicated that retroviral gene delivery may be a suitable method 

to deliver viral genes to bovine target cells for detection of virus specific CTL. 
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DISCUSSION 

Cytotoxic T lymphocytes (CTL) are an important part of the immune system and 

are critical in the control of some intracellular pathogens, including viruses. The 

ability to detect cytotoxic T lymphocytes (CTL) which lyse virus-infected cells is an 

important tool in disease research, from the perspective of natural immunity and in 

vaccine development. Although a variety of different target cells and a number of 

gene delivery methods have been used for CTL research in mice and humans, 

technical difficulties have made detection of virus-specific CTL in cattle impossible 

for many pathogens. 

One obstacle to development of a bovine CTL assay is the lack of a suitable 

target cell. Bovine target cells and CTL must be genetically matched at class I 

MHC loci, and since cattle are outbred, genetically matched target cells and CTL 

can be obtained only by isolating both groups of cells from the same animal. 

Because target cell cultures must be established before CTL can be taken from an 

animal, isolation of the target cells cannot kill the animal. Also, target cells must 

express a relatively high level of class I MHC to ensure that endogenous antigens 

are efficiently presented to T cells. 

The virus can also pose problems in measuring CTL activity. Many viruses are 

only able to infect a limited range of host cells in vitro, and some viruses do not 

grow in vitro at all. Also, many of the viruses which can infect cultured cells lyse the 

cells they infect, creating a background of lysis above which CTL lysis of target 

cells cannot be detected. 

One way that the problems of limited host cell range and viral lysis have been 

overcome in other animals is by using vectored gene delivery to introduce 

individual viral genes into target cells. This method is doubly beneficial in a CTL 
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assay because it allows mapping of CTL responses within the viral genome. 

Retroviral vectors are a promising gene delivery method for use in CTL assays 

because they can deliver genes to cells at high efficiency, the genes are stably 

expressed, and no viral lysis occurs. By using vectored delivery of viral genes, 

limited viral host range is a much smaller consideration , and the choice of target 

cells can be based more on a non-intrusive isolation method and a high level of 

class I MHC expression. 

In the present study, a variety of primary cell cultures were evaluated for their 

potential as target cells in a CTL assay, and the usefulness of retroviral gene 

delivery as a vehicle for introducing viral genes into target cells was assessed. 

Among the different cell cultures examined, a peripheral blood adherent cell 

(PBAC) culture showed the most promise as a potential target cell. Retroviral 

vectors could deliver viral and non-viral genes to PBAC, and low levels of each 

gene's protein product were detected. 

Nine primary cell cultures were examined for their relative levels of class I MHC 

expression and their susceptibility to retroviral gene delivery. These are both 

important characteristics for a target cell in a CTL assay using retroviral gene 

delivery. The cell culture with the best combination of these two characteristics was 

the PBAC 798 culture. PBAC are attractive as target cells because blood cell 

isolations cause little trauma to cattle and are easily performed. The three PBAC 

cultures we examined had different levels of class I MHC expression and 

susceptibility to gene delivery and were further characterized by cell marker 

analyses and functional assays to better determine their cell type and to 

differentiate between them. None of the cultures displayed leukocyte, epithelial, or 

vascular endothelial markers. PBAC 798 cultures were found to be high 

endothelial cells based on a cobblestone morphology typical of endothelial cells 
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and a level of in vitro lymphocyte binding and Dil-Ac-LDL uptake similar to that 

reported for high endothelial cells (45,71) . P8AC 79A had a low susceptibility to 

gene delivery and P8AC 342 had a low class I MHC expression, making these 

other P8AC cultures much less suitable as target cells than P8AC 798. The P8AC 

79A cells grew much more slowly than 798 cells, had a lower susceptibility to 

retroviral gene delivery, and took up a very low level of Dil-Ac-LDL. Although 

PBAC 342 initially grew in a cobblestone pattern, after two passages the cells grew 

in a more bipolar fibroblastic morphology. The P8AC 342 had a low in vitro 

lymphocyte binding level. 

PBAC 79A and P8AC 798 were isolated from the same blood sample, but 

exhibited different characteristics. The growth rate of the P8AC 79A cells dropped 

as they were cultured, and the low growth rate explained their lower susceptibility 

to gene delivery, since retroviruses only infect dividing cells. Uptake of Dil-Ac-LDL 

has also been found to sometimes drop as cells are cultured in vitro. The P8AC 

79A cells' high lymphocyte binding and occasional cobblestone morphology 

indicate that they probably contain high endothelial cells and were originally 

identical to P8AC 798. The 79A cells experienced a drop in growth rate and Dil-Ac-

LDL uptake during culture, and consequently lost their suitability as potential target 

cells. The P8AC 342 culture, on the other hand, had a class I MHC expression and 

susceptibility to retroviral gene delivery in the range of the fibroblastic primary cell 

isolates. Also, they did not bind lymphocytes in vitro, and they grew in bipolar 

arrays. These characteristics all indicate that the P8AC 342 culture was composed 

primarily of fibroblasts, not high endothelial cells. Their initial morphology was 

characteristic of high endothelial cells, but the culture probably was overgrown by 

fibroblasts after several passages. All the fibroblasts that we tested were not 

suitable as potential CTL target cells. 
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In order for PBAC cultures to be routinely used as CTL target cells, it would be 

necessary to distinguish good potential target cells from bad ones. A doubling time 

of at most five days is necessary for good susceptibility to gene delivery. A level of 

lymphocyte binding higher than 0.4 lymphocytes per cell would indicate that the 

cultures are high endothelial cells, and not fibroblasts. PBAC cultures with a short 

doubling time and high lymphocyte binding correlate with a high potential as CTL 

target cells. 

Retroviral vectors were used to deliver bovine immunodeficiency virus (BIV) 

genes to bovine cells to test the usefulness of this gene delivery method in a 

bovine CTL assay. Several retroviral transfer vectors were constructed with 

different portions of the BIV gag gene or the BIV env gene and using either the 

LNCX or LXSN transfer vector backbone. The BIV transfer vectors were 

transfected into packaging cells and into 293 human kidney cells, and in all 

experiments no BIV protein was detectable. In transiently transfected cells, the BIV 

genes were transcribed at a low level, and a small but undetectable level of 

translation may have also taken place. In stably transfected packaging cells, the 

transfer vector's antibiotic resistance gene was readily transcribed, but the BIV 

gene was transcribed at an extremely low level. In the packaging cells, very little 

BIV protein, if any, could have been produced. When recombinant retroviral 

vectors from packaging cells were used to deliver BIV genes to PBAC 798 cells, a 

barely detectable amount of BIV protein was produced in some antibiotic-resistant 

colonies. Thus, bovine viral genes could be delivered and expressed, albeit at a 

low level, to potential bovine CTL target cells. 

A recombinant retroviral vector containing green fluorescent protein (GFP) was 

also used to infect bovine cells. Detection of GFP is much more sensitive than 

detection of the BIV genes. PBAC took up the GFP gene and showed green 
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fluorescence. The level of fluorescence was low, but it was more easily visible than 

the reaction with BIV protein had been. The expression of GFP in the PBAC 

confirmed the ability of retroviral gene delivery to introduce genes into potential 

bovine CTL target cells, and it confirmed that those genes were expressed. 

A low level of expression of retroviral vector-delivered genes was observed, 

though the level varied between clonally derived populations of cells. When a 

retroviral vector infects a cell , the genes it carries are integrated at a random site in 

the host cell DNA. If the vector integrates into a chromosome region that is 

transcriptionally silent, the retroviral genes will likely also be silenced. Even if the 

retroviral vector integrates into a transcriptionally active region, the L TR or CMV 

promoters of the vector can become hypermethylated after integration causing a 

change in chromatin conformation which can also down-regulate transcription of 

the inserted genes (38). The problem of down-regulation of the retrovirus-

delivered genes can be avoided by testing the expression levels of a large number 

of clonally derived populations of infected cells and selecting the highest 

expressors (56). Other researchers have used retroviral gene delivery of HIV and 

FIV genes to CTL target cells to measure the specificity of CTL lysis to viral genes 

in naturally infected animals (69,78). In the measurement of FIV-specific CTL, a 

low level of FIV CA gene expression was also found, but protein levels were 

sufficient to stimulate CTL to lyse cells. In the research using retroviral vectors 

carrying HIV net, a number of different cell clones were screened and one with high 

expression levels was used. The field of retroviral gene delivery continues to 

develop, and as it does retroviral vectors which elicit higher and more consistent 

levels of expression will become available. 

The genes delivered to bovine cells in this study using retroviral gene delivery 

were transcribed and translated at a low level, but a low level of expression may be 
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sufficient for use in a CTL assay. Unlike the humoral immune system, CTL can 

react to cells which present only 100 molecules of antigen on their surface (21,82), 

thus a low level of expression can be sufficient to elicit lysis of infected target cells. 

The most sensitive test of protein expression is CTL lysis of target cells, and that 

test has not yet been performed. 

In summary, adherent high endothelial cells cultured from peripheral blood 

were found to have a high potential as target cells for a CTL assay. These cells 

could prove widely useful in measuring bovine CTL activity to viruses. Retroviral 

gene delivery was successfully used to deliver and express viral and non-viral 

genes to high endothelial cells. The use of retroviral vectors for construction of a 

bovine CTL assay system which is proposed in this research has a real potential to 

allow elucidation of bovine cellular immune responses to viruses which until now 

have been impossible to measure. The next step in this line of research is to use 

the CTL assay outlined here to try to detect cellular immune responses in virus-

infected cattle. 
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APPENDIX A. SOLUTION RECIPES 

Agarose/formaldehyde gel 

Alkaline Transfer Buffer 

Ambion's Gel Loading Buffer II 

Denhardt's reagent 

DMEM 

FAGS buffer 

2X HBS 

HBSS 

IH Buffer 1 

1 X MESA Buffer 

NZY broth 

PBS 

Qiagen Wash Buffer 

Qiagen Elution Buffer 

RSC Lysis buffer 

Restoring buffer 

1.2% agarose, 1 X MESA buffert, 6.7% (2.2 M) 
formaldehyde, and 0.1 µg/ml ethidium bromide 

1.5 M NaCl, 0.25 M NaOH 

95% formamide, 0.025% xylene cyanol, 0.025% 
bromophenol blue, 0.5 mM EDTA, 0.025% SOS 

10 g/I Ficoll , 10 g/I polyvinylpyrrolidone, and 10 g/I 
BSA 

distilled water treated for at least 16 hours with 0.1-
0.2% DEPC to inactivate RNases and 
autoclaved to remove the DEPC 

Dulbecco's modified Eagle's medium (Sigma), 4.5 
mg/ml glucose, 1.2 mg/ml L-glutamine, 3.7 
mg/ml sodium bicarbonate, 100 U/ml Penicillin, 
100 µg/ml streptomycin, final pH 7.4 

PBS with 0.1 % sodium azide and 1 % BSA 

280 mMNaCI, 10 mMKCI, 1.5 mMNa2HP04 , 12 
mM dextrose, 50 mM Hepes, final pH 7.05 

Hanks' balanced salt solution (Sigma), 0.35 mg/ml 
sodium bicarbonate, final pH 7.4 

50 mM glucose, 10 mM EDTA, 25 mM Tris•HCI pH 
8.0 

40 mM MOPS pH 7.0, 10 mM sodium acetate, 1 
mMEDTA 

16 g/I NZ broth powder (Gibco), 5 g/1 yeast extract, 
final pH 7.2 

120 mMNaCI, 2.7 mMKCI, 10 mMsodium 
phosphate buffer, final pH 7.4 

1.0 M NaCl, 50 mM MOPS pH 7.0, 15% ethanol 

1.25 M Nacl, 50 mM Tris-HCI pH 8.5, 15% ethanol 

6 mM Na2HP04, 4-6 mM KH2P04 , final pH 7.4 

460 mM NaCl, 6 mM Na2HP04 , 1.5-2.5 mM 
KH2P04, final pH 7.4 
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SOB 20 g/1 of bacto-tryptone, 5 g/I of yeast extract, 10 
mM NaCl, 2.5 mM KCI, 10 mM MgS04 , 10 mM 
MgCl2, final pH 7.5 

SOC SOB with 20 mM glucose 
Sodium phosphate buffer mixture of equimolar solutions of NaH2P04 and 

Na2HP04 , to a desired pH 

Southern I Buffer 1.5 M NaCl, 0.5 M NaOH 
1X SSC 150 mM NaCl, 15 mM sodium citrate, final pH 7.0 

1X SSPE 180 mMNaCI, 10 mMNaH2P04 , 1 mMEOTA, final 
pH 7.4 

STV (saline-trypsin-versene) 8 g/I NaCl, 0.4 g/I KCI, 1 g/1 glucose, 0.58 g/I 
sodium bicarbonate, 0.5 g/1 trypsin, 0.2 g/I 
EOTA, 4.5x10-4% phenol red) 

Super Broth 12 g/I peptone 140, 24 g/I yeast extract, 0.4% 
glycerol, 17 mM KH2P04 , 72 mM K2HP04 

1X TE 10 mMTris pH 8.0, 1 mM EOTA 

TAE buffer 40 mMTris, 83 mM sodium acetate, 1 mM EOTA, 
final pH 7.9 

TFB (transformation buffer) 10 mM MES pH 6.3, 45 mM MnCl2•4H20 , 10 mM 
CaCl2•2H20 , 10 mM RuCI, 3 mM hexamine 
cobalt (Ill) chloride 

TN 10 mM Tris, 150 mM NaCl, final pH 7.4 
TNFBS TNt with 1% FBS 

TBS 0.2 M NaCl, 50 mM Tris 

TTBS TBSt with 0.1 % Tween-20 (Sigma) 

5X Western running buffer 15 g/I Tris, 72 g/I glycine, 5 g/1 SOS, final pH 8.3 

2X Western sample buffer 4% SOS, 20 mM sodium phosphate buffert , pH 
7.0, 20% glycerol, 10% B-mercaptoethanol, 0.2 
M dithiothreitol, 0.02% bromophenol blue 

Western transfer buffer 20% methanol, 25 mM Tris, 192 mM glycine, final 
pH 8.3 

YT-carbenicillin plates 1.5 % agar, 8 g/I bacto-tryptone, 5 g/1 bacto-yeast 
extract, 5 g/I NaCl, 250 µg/ml carbenicillin 
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BSA 

DEPC 
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APPENDIX B. ABBREVIATIONS 

acid, citrate, dextrose 

ammonium persulfate 

bovine serum albumin (Fraction V, Sigma) 

diethylpyrocarbonate 

Dil-Ac-LDL 1, 1 '-dioctadecyl-3,3,3' ,3'-tetramethyl-indocarbocyanine perchlorate 
(Dil)-labelled acetylated low density lipoprotein 

DMF 

EDTA 

FACS 

FBS 

FITC 

HBSS 

IPTG 

MES 

MESA 

MOPS 

PBAC 

PBMC 

PBS 

PCR 

PEGBOOO 
PVDF 

ABC 

RT-PCR 

sos 
SSC 
SSPE 

STV 

TE MED 

TFB 

N, N-dimethylformamide 

ethylenediaminetetraacetic acid 

fluorescent antibody cell sorting 

fetal bovine serum 

fluoroscein isothiocyanate 

Hank's buffered salt solution (se Solution Recipes) 

isopropyl B-D-thiogalactopyranoside 

2-(N-morpholino)ethanesulfonic acid 

MOPS, EDTA, sodium acetate (see Solution Recipes) 

3-(N-morpholino)propanesulfonic acid 

peripheral blood adherent eels 

peripheral blood mononuclear cells 

phosphate buffered saline (see Solution Recipes) 

polymerase chain reaction 

polyethylene glycol , 8000 average molecular weight 
polyvinylidene difluoride 

red blood cell 

reverse transcription - PCR 

sodium dodecyl sulfate 

standard sodium citrate (see Solution Recipes) 

standard sodium phosphate-EDTA (see Solution Recipes) 

saline-trypsin-versene (see Solution Recipes) 

N,N,N', N'-tetramethylethylenediamine 

transformation buffer (see Solution Recipes) 



TN 

TTBS 

X-Gal 
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Tris-NaCl (see Solution Recipes) 

Tween-20, Tris-buffered saline (see Solution Recipes) 

5-bromo-4-chloro-3-indolyl-B-D-galactoside in DMF 
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