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NOMENCLATURE 

Symbol Description 

A Body surface area (m2) 

Cp Heat capacity of the body (kcal/kg*°C) 

CpB Heat capacity of the blood (kcal/kg*oC) 

h Overall convective heat transfer coefficient 
( kcalfm2* min *°C) 

AHJi20(Tc) Heat of vaporization of water at Tc (kcal/kg) 

KcM Conductivity between core and muscle layers 
(kc a I/ m in *°C) 

KMs Conductivity between muscle and skin layers 
(kc a I/ m in *°C) 

m Body mass (kg) 

mJ Mass of compartment J [J = (C)ore, (M)uscles, or (S)kin] 
(kg) 

Mair Molecular weight of air 

Mwater Molecular weight of water 

MoJ Metabolic oxygen generation rate or carbon dioxide 
consumption rate in the Jth compartment [J = (C)ore, 
(M)uscles, or (S)kin] at rest (Umin) 
fv1oJ is converted to kcal/min for the energy balances 

AM Additional metabolic conversion rate (in the muscles 
compartment) due to exercise (Umin). AM = O at rest. 
Also converted to kcal/min for the energy balances. 



p 

p" 

Ptotal 

t 

Tc 

Ts 

vi 

Metabolic conversion rate (in the muscles compartment) 
due to shivering (Umin) 

Partial pressure of the component (mmHg) 

Vapor pressure (mmHg) 

Total pressure of the system [as defined] (mmHg) 

Ventilation rate (Umin) 

Total blood flow rate [Cardiac Output] (Umin) 

Blood flow to compartment J [J = (C)ore , (M)uscles, or 
(S)kin] (Umin) 

Sweat rate [evaporative heat loss] (kcal/min) 

Respiratory Quotient 

Percent saturation of hemoglobin with oxygen 

Time (min) 

Core temperature (°C) 

Ambient temperature (°C) 

Muscle temperature (°C) 

Skin temperature (°C) 

Volume of air in the lungs (L) 

Volume of blood and equivalent dissolved gas in 
compartment J [J = (C)ore, (M)uscles, or (S)kin] (L) 

Concentration fraction of oxygen or carbon dioxide in the 
arterial blood (exiting the lungs) 



XJ 

xv 

YA 

YI 

y 

p 

v i i 

Concentration fraction of oxygen or carbon dioxide leaving 
the Jth compartment [J = (C)ore , (M)uscles , or (S)kin] 

Concentration fraction of oxygen or carbon dioxide in the 
venous blood (returning to the lungs) 

Volume fraction of oxygen or carbon dioxide in the gas 
exiting the lungs 

Volume fraction of oxygen or carbon dioxide in the gas 
entering the lungs 

The gain in a control equation 

Absolute humidity of the air (kg H20/kg air) 

Partition coefficient ([dissolved gas volume/t issue 
volume]/[dissolved gas volume/blood volume]) 

Density of the blood (kg/L) 



1 

INTRODUCTION 

Numerous mathematical models have been developed to describe 

thermoregulation in the human body. Many of them are based on the 

"three cylinder" approach wh ich divides the body into three dist inct 

layers consisting of core , muscle , and skin which are "wrapped around" 

each other as shown in Figure 1. While this simple approach is fa irly 

useful for modeling conductive transport , that is, temperature changes 

produced by heat conducted between adjacent materials of different 

temperatures, it often ignores or over-simplifies the heat be ing 

exchanged through convective means, without regard to metabolic 

demands. Since blood is flowing between and among the different 

layers, heat exchange and oxygen transport are both being performed by 

the vascular system . 

.. - CORE 

MUSCLES 

SK IN 

Figure 1: Typical three-cylinder 
thermoregulation model. 
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In the early 1960s, Wissler developed a model which included al l of 

the basic exchange elements , such as conduction , convection , and 

sweating , plus a division of the body into multiple cylindrical sections. 

It also included radial temperature variations (Wissler , 1964). More 

recently, the 41-Node METMAN Program was developed by NASA 

researchers to expand this approach further. They included overall 

oxygen consumption and carbon dioxide product ion calculations based 

on the metabolic rate , but did not compartmentalize their analysis to 

differentiate between the changing concentrations in the various body 

elements. In 1979, Kuznetz, using the 41-Node Man as a basis, 

introduced temperature variations in angular as well as radial 

directions to study non-uniformity of ambient conditions and internal 

heat generation. 

In this work, we believe that the next important step in the 

development of this type of model should be to combine it with a 

metabolic circulatory modeling approach . Mitchell (1977) performed 

whole body mass and energy balances, primarily to describe the 

dynamics of working muscle, but did not attempt to develop a 

compartmentalized model using those balances. Le igh (1984) described 

some early attempts to do this in which the body was divided into 

tissue and lung compartments, with metabolism being added to the 

tissues and heat being exchanged with the environment. Temperature 

was considered to be uniform throughout the body, however, and only 

one energy balance was included . This is clearly an incomplete 

description of human thermoregulation . Since flowing blood carries 

energy, oxygen , and carbon dioxide, a combined approach is necessary to 
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understand the changes and limitations that take place when an 

external effect , such as exercise leve l, ambient temperature , or gravity 

is altered. 

Quite separately , models of the circulatory system have been 

developed to describe blood flows that carry oxygen , carbon dioxide , 

and water, but most of them have not included the changes in 

temperature which are also occurring. The coupled model in this work 

combines these approaches in order to better describe the 

thermoregulatory and circulatory effects resulting from dynamic 

changes from steady-state behavior (see Figure 2) . For example, when 

a person exercises, increased muscle blood flow is required to deliver 

additional oxygen to muscles. Blood flow to the skin usually also needs 

to be increased to meet the growing demand for heat transfer resulting 

from more heat being produced by the muscles. At least 80 percent of 

the energy released by oxygen consumption must go to thermal forms 

and ultimately, be dissipated as heat from the skin and respiratory 

tract (Mitchell, 1977). It is this contest between oxygen needs and 

temperature regulation that this work addresses. 



Figure 2a Figure 2b 
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Figure 2: Temperature regulation model (a) and oxygen transport model (b). 
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INCREASING BLOOD FLOWS DURING EXERCISE 

Increasing Blood Flow to Muscles and Skin -- The Partitioning Effect 

How are increases in blood flow to muscles and skin accomplished? 

Some possible mechanisms include ; a re-direction of the blood flow 

from certain internal organs to the periphery of the body (muscles and 

skin) , an increased cardiac output (the volumetric flow rate of blood 

ejected from the heart) due to an increased heart rate or an increase in 

intravascular fluid volume, or a combination of these mechanisms. 

Part itioning of increased blood flow to skin from working muscles 

during exercise will limit the delivery of oxygen to muscles, and thus 

reduce the ability to maintain a high rate of ATP resynthesis , which 

represents the energy production required in exercising. Partitioning 

more blood flow to muscles from skin , however, will limit the rate of 

heat transfer from the core to the skin , causing a rapid rise in the body 

co re temperature . Theories of Rowell , Blackmon , Martin , Mazzarella, 

and Bruce (1965) suggest that instead of either of these mechanisms, 

blood flow through special ized tissue beds is reduced during exercise. 

For example, splanchnic and renal blood flow have been shown to 

decrease during increased levels of exercise (from Nadel , 1980) . These 

theories suggest that this effect might compensate for the increased 

need of the skin , which requires extra blood flow to transfer some of 

the additional heat produced during mild or moderate exercise to the 

surroundings. In fact , Rowell ( 1974) determined that vasoconstriction 

(a decrease in the diameter of blood vessels, especially arteries, 
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brought about by contraction of their muscular walls) of these two 

regions during moderate exercise under heat stress could account for 

the redistribution of 600 to 800 ml/min of blood flow to the skin. At 

maximum vasoconstrict io n of splanchnic and renal blood vessels, about 

2.2 Umin of blood flow can be redistributed to working muscles and/or 

sk in. 

This partitioning effect could also occur between working and 

resting muscles. If the blood flow is confined to a specific muscular 

region, blood flow to other muscles could be decreased. Johnson and 

Rowell (1975) showed that , while skin blood flow to the arms 

increased during leg exercise, muscle blood flow decreased in that 

region. Both the metabolic and temperature regulation requirements 

are probably not capable of being met at higher levels of exercise or 

exercise performed under heat stress through this means, however. 

The means by which these partitioning effects occur involves 

reflexes that dilate or constrict certain blood vessels . During mild 

exercise, skeletal muscle vasodilation occurs to increase blood flow 

through the working muscles. A fall in the partial pressure of oxygen, a 

rise in the partial pressure of carbon dioxide, a rise in muscle 

temperature , and accumulation of metabolites (especially potassium) 

are the local mechanisms responsible for this response (Ganong , 1993). 

In this case, the amount of oxygen being supplied to the muscles over 

time is increased, but the total muscle blood volume increases very 

little because muscles continue to contract and then relax during 

exercise . 
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For the skin , however, the blood volume increases along with a rise 

in skin blood flow when cutaneous blood vessels dilate (Rowell, 1977). 

If taken to extremes, this central volume change can become 

compromising to stroke volume and central blood pressures. When 

these core volumes and pressures decrease while heart rate rises 

during prolonged exercise, it is referred to as "cardiovascular drift." 

When skin temperatures are maintained at a constant low value during 

exercise, this cardiovascular drift can be eliminated (Rowell , 1974) . 

Increasing Cardiac Output -- Problems Maintaining Blood Volume 

Increased blood flow to the periphery will reduce central (core) 

blood volume, reducing cardiac filling pressure and compromising 

stroke volume (the amount of blood ejected in one contraction of the 

left heart) . When stroke volume is reduced with the heart rate being 

held constant , cardiac output is also reduced because a smaller volume 

of blood is expelled from the heart in the same amount of time. If the 

heart rate is correspondingly increased, cardiac output can be 

maintained and will even increase in proportion to oxygen uptake , but 

this compensatory response has limits. During mild exercise in cool 

conditions, card iac output typically does not change signif icantly, but 

the A-V oxygen difference (the difference between the oxygen 

concentration in the arteries and the veins) increases (with increasing 

oxygen uptake) and heart rate increases to compensate for the 

decreased stroke volume (Ekelund, 1967). A maximum cardiac output of 

around 22 Umin (approximately a four-fold increase from rest) can be 
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reached in a typical person with a maximum oxygen uptake of 3.7 Umin 

in a relatively cool environment (Rowell , 1977). Both of these values 

are highly prone to individual variations and are given with wide ranges 

in most references. For the purposes of our model , we set maximum 

oxygen uptake at 2.66 Umin which is calculated for a standard 70 kg . 

man using Ganong's (1993) formula: 

Maximum Oxygen Uptake = (38 ml/kg/min)X(Body Mass) 

Since this calculation for maximum oxygen uptake results in a much 

lower value than is often observed , the sensitivity of the model to 

changes in maximum oxygen uptake was tested in a later part of this 

work (see p. 63). Maximum cardiac output was allowed to vary 

according to the increase in muscle blood flow which will be discussed 

in detail later . 

Besides the reduced blood flow circulating in the core due to 

increased peripheral requirements , blood volume is reduced due to loss 

of intravascular water to the tissues, especially active muscle tissues, 

during exercise. The results of Harrison , Edwards, and Leitch (1975) 

indicate that more protein may go into the vascular compartment 

during exercise to increase oncotic pressure , and favor water retention 

by the blood . They were able to show this for the recovery or post-

exercise period, but failed to obtain supporting evidence that it was a 

factor during the time of exercise. Of course, fluid is also lost from 

the body through sweat from the skin; one important thermoregulatory 

response to the increased heat generated in the muscles which is 

discussed in detail in a later part of this work. During low intensity 

exercise, this effect may be negligible, but if the skin temperature is 
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high or the exercise is more intense , it could become significant 

(Nadel , Cafarell i, Roberts, and Wenger, 1979). In fact , Rowell (1974) 

found that maximum cardiac output , which was hypothesized to 

increase in the heat to account for the increase in skin blood flow, 

actually was lower when exercising heavily in the heat than in cooler 

conditions, presumably because so much water was lost through sweat 

that heart rate could not increase enough to compensate for the reduced 

stroke volume . 

Under these conditions, the amount of water being diverted from the 

vascular system to the internal tissues (including muscles) may be 

negligible because of the extreme high rates of sweating that will 

result. According to Nadel (1980) , "above a critical water deficit , all 

body fluid compartments , including blood, are reduced in volume ." 

Senay and Christensen (1965) showed that osmotic pressure could act 

as an indicator of body volume changes (from Harrison , Edwards, and 

Fennessy, 1978). Generally, when the volume is reduced , core 

temperatures are higher, cardiac output decreases, and lactic acid 

(lactate) concentration increases, but usually not enough to indicate 

that oxygen is not being suff iciently supplied to the muscles (Nadel, 

Fortney, and Wenger, 1980). 

Dehydration is an important factor , especially during exercise in the 

heat, and can become a limitation to the physical work capacity . When 

cardiac filling pressure is reduced during dehydration when the blood 

volume is decreased , it has been theorized that antidiuretic hormone 

(ADH) release is controlled from the hypothalamus, and that this has a 

direct effect on the hypothalamic neurons that mediate 
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thermoregulation (Nadel, Fortney, and Wenger, 1980). Hortsman and 

Horvath (1972) showed that forearm blood flows, which supply both 

skin and muscle, could not be maintained during dehydration, so the 

storage of thermal energy in the body increased dramatically, causing 

body temperatures to increase. Sodium, Na+, loading is another factor 

which may affect blood volume. It has been shown to increase the core 

temperature during exercise. During sodium loading, the concentration 

of intravascular Na+ increases so that the peripheral circulation is 

reduced . Both dehydration and Na+ loading are presumed to decrease 

the effectiveness of the sweating mechanism (Nadel and Horvath , 

1977) . 

The Competition -- When Muscle Blood Flow is Favored 

If the exercise is continued to very high levels, vasoconstrict ion 

occurs (blood vessels become smaller to keep blood in the core and 

maintain stroke volume) . When this happens, the rate of heat transfer 

from the core to the skin becomes insufficient and core temperature 

continues to rise . It has been shown in numerous experiments (Nadel , 

1980) that metabolic circu latory regulation will be given precedence 

over temperature regulation in this case. 

Cutaneous vasoconstrict io n is just one reflex wh ich will favor 

oxygen delivery at the expense of thermoregulation. Increases in 

cutaneous venomotor tone (the basal amount of muscle contract ion 

controlled through reflex activity) and an increasing degree of tone 

during exercise will occur (Nadel , 1980). An upward shift in the core 
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temperature threshold for cutaneous vasodilation will also cause blood 

to shift toward the core by making the blood vessels of the skin stay 

constricted , even at higher temperatures (Nadel, Fortney , and Wenger, 

1980). Al l of these ref lexes will help to maintain the core blood 

volume (stroke volume) , but will also reduce the heat transfer rate 

from the core to the skin (Nadel , 1983). 

Early theories often supported the idea that, during maximal 

exercise, only the metabolic demands of the exercising muscles are 

important. As a result of the measures wh ich serve to protect the 

metabolic circulatory demands, many cardiovascular researchers 

tended to ignore thermoregulatory effects. However, more recent 

evidence shows that heat dissipation is also an important 

consideration. The central circulation can often meet increased 

demands for heat dissipation so " ... thermoregulatory factors can 

influence the central circulation during exercise" (Saltin, 1970) . 

In addition to increased redistribution of blood flow from 

splanchnic and renal areas and non-exercising muscles, Rowe ll (1983) 

suggests that vasoconstriction may also occur to some extent in 

exercising muscles to redirect blood flow to the skin . He states that at 

exercise levels up to about sixty percent of the maximum oxygen 

uptake , "muscle blood flow could decrease enough to provide skin with 

an additional liter or so of blood flow each minute ... " without 

decreasing oxygen uptake. Conflicting experimental results have not 

provided any direct evidence to support this theory , but increases in 

lactate concentrations and decreases in oxygen uptake have been shown. 
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If cardiac output decreases too much during maximal exercise 

levels, cardiac filling and arterial blood pressures can become 

compromised. To prevent this from happening, compensatory responses 

must occur within the cardiovascular system (Nadel, 1985) . Nadel 

(1984) states that it is probably blood pressure receptors that insure 

adequate muscle blood flow. Experiments of Rowell, Murray, 

Brengelmann , and Kraning (1969) showed that at a skin temperature of 

about 380C cardiac output started to level off after 10 to 15 minutes of 

exercise. Brengelmann, Johnson , Hermansen, and Rowell (1977) 

associate this break in cond itions with the point where blood pressure 

regulation starts to dominate the vasodilation response which was 

serving to increase skin blood flow. Sheriff, Wyss, Rowell , and Scher 

(1987) hypothesized that a nerve-acting "pressor substance" 

accumulates in the muscle , causing the systemic arterial pressure to 

be increased . They concluded that "pressor responses are apparently 

generated when 02 delivery falls below some cr itical level , causing 

accumulation of a pressor substance, the release of which is linked to a 

metabolic event that precipitates lactate accumulation ." This is also 

commonly called the muscle chemoreflex. 

Mechanoreflexes in the muscles, or arterial mechanoreflexes (also 

called baroreflexes), also serve to maintain blood pressure during 

exercise. When exercise begins, vagal withdrawal serves to increase 

heart rate to maintain cardiac output, and the baroreflex is set to a 

higher blood pressure. Vagal activity normally limits the maximum 

heart rate. During mild exercise, vagal withdrawal can raise heart rate 

and cardiac output enough to raise the blood pressure to this higher 
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level. When the level of exercise is more extreme, a point is reached 

where vagal withdrawal can no longer serve to increase the heart rate. 

When heart rate exceeds this range of vagal withdrawal , sympathetic 

nervous activity is increased (mostly by the muscle chemoreflex 

described above). This sympathetic nervous activity can serve to cause 

further increases in heart rate . There is usually a "blood pressure 

error", a mismatch between cardiac output and vascular conductance , 

because this response is slower . Sympathetic vasoconstriction must 

then occur to increase blood pressure (Rowell and O'Leary, 1990). 

Limitations of Muscle Blood Flow 

Circulatory requirements of the muscles may be favored over those 

of the skin when a competition exists, but they must also be limited. 

Exercise cannot be increased indefinitely, and oxygen uptake reaches a 

maximum at some point beyond which the subject cannot continue to 

use a higher rate of oxygen by the muscles. It has been shown to occur, 

typically, when about 80 to 85 percent of the cardiac output perfuses 

active muscles while inactive tissues are maximally vasoconstricted 

(Rowell, 1974). The maximum oxygen uptake of any particular 

individual is set by many factors, such as the degree of training. Many 

have hypothesized that circulatory delivery of oxygen is the single 

limiting step in the maximum oxygen uptake that is attainable. It has 

been shown that the rate of increase in cardiac output declines as the 

oxygen uptake approaches its maximum (Saltin, 1964) . 
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The Fick Principle relates maximum oxygen uptake to the functional 

capacity of the cardiovascular system as a product of the maximum 

cardiac output and the maximum A-V oxygen difference (Rowell , 1974) . 

Rowell (1974) also suggests that a better definition might be to 

redefine cardiac output as a ratio of maximal arterial mean pressure 

divided by minimum total peripheral resistance (if cardiac output is 

controlled by pressure regulation) . According to Jones and Lindstedt 

(1993) , this maximum rate of oxygen consumption is not mechanically 

limiting to muscle because anaerobic metabolic pathways can be 

utilized to generate more power, but aerobic capacity is limited and 

this limits maximal sustained performance. Core temperature is often 

measured as a function of oxygen uptake (muscle metabolism) and 

numerous sources (including Davies, Brotherhood, and Zeidifard (1976) ; 

Nielsen (1971 ); and Salt in and Hermansen (1966)) have determined that 

it is more closely related to the individual's percentage of maximum 

oxygen uptake than to the absolute amount of oxygen they use (from 

Rowell, 1983). 
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AMBIENT TEMPERATURE CHANGES 

Ambient temperature is another important factor in determin ing the 

behavior of the body's circulation . Brouha was one of the first to 

propose (in 1960) that cardiac output should increase during exerc ise 

in the heat to meet increased circulatory requirements and prolong the 

duration of work possible (from Nadel, Cafarelli , Roberts, and Wenger, 

1979). At rest , total cardiac output remains relatively unchanged up 

to an ambient temperature of 11 soF (46.1 oC). However, at such 

extremely high temperatures, skin blood flow can comprise over fifty 

percent of the cardiac output (Roddie , 1983). 

At higher temperatures, resting cardiac output was shown to 

increase, which was associated with decreased A-V oxygen 

differences. Damato , Lau, Stein, Haft , Kosowsky, and Cohen (1968) 

concluded from their studies of this phenomenon that up to 115°F 

(46 .10C) ambient temperature , the skin blood flow could be increased 

enough to maintain the thermal balance by diverting b lood flow from 

resting internal organs to the skin without increasing cardiac output. 

Arterial pressure decreases were also observed throughout the 

temperature range they studied , 78-125°F (25.6oC-51 . 7oC) in a hot, dry 

environment . Decreases in stroke volume by water lost through sweat 

appear to be compensated for by increased heart rates. 

When exercise is performed in hot environments, even at moderate 

levels, however , problems with maintaining adequate blood flows to 

both muscles and skin occur. Compensations for these problems are 

similar to the compensatory actions that take place during more severe 
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exercise under cool conditions, but they are usually encountered more 

quickly since skin blood flow is already increased dramatically by the 

heat stress. 

When exercising in a cool environment, skin blood flow remains low 

initially and cutaneous veins refill very slowly after muscles compress 

them during the action of exercise. This moves the majority of the skin 

blood vo lume to the central (core) regions and helps to maintain stroke 

volume and pressures. This is not the case when exercising in the heat. 

Muscles still compress cutaneous veins, but they refill so rapidly that 

the result is not as effective in displacing blood centrally (Rowel l, 

1983) . 

Mild exercise, if prolonged under heat stress, can produce increases 

in the cardiac output by two to three Umin to help meet the increased 

demands for skin blood flow. Arterial pressures can st ill be 

maintained in this case, but stroke volume has been shown to decrease 

continuously. If the level of exercise is more intense , cardiac output 

cannot continue to increase over time. Numerous conflicting sources 

have shown that oxygen uptake may increase, decrease, or remain 

constant during this period (Rowell , 1974). Since we know that the 

blood flow decreases, this effect must be a result of the dynamic 

changes in the A-V oxygen difference, which we can calculate by the 

mass balances. 

Stroke volume still decreases, even though heart rate increases 

considerably. When the heart rate reaches a maximum at around 200 

beats/min, a fall in cardiac output should result (Rowell, 1983). 

Maximal muscle blood flow cannot be reached because maximal cardiac 
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output is never reached . Also, as a result of the reduced stroke vo lume, 

maximal heart rate and A-V oxygen difference are reached at a lower 

oxygen uptake. Th is means that the peak oxygen uptake is reduced 

under these conditions. Rowell (1974) defines the peak oxygen uptake 

as the highest oxygen uptake observed under specific circumstances . 

This is not always the same as the maximum oxygen uptake, which 

determines the cardiovascular system functional capacity and does not 

change. Other possible reasons for peak oxygen uptake being reduced in 

the heat include increased sympathetic activity vasoconstrict ing 

muscle blood vessels and allowing more cardiac output to go to the skin 

(as was previously discussed) and/or a reduction in the subject's 

tolerance to work in the heat , which is not very likely to be the cause 

in every case. 



1 8 

TEMPERATURE CHANGES: WHERE HEAT TRANSFER BECOMES IMPORTANT 

Heat Influences on Muscle Metabolism --

The Value of Negative Work Experiments 

Many researchers have postulated that high muscle temperatures 

may be opt imal to ATP reaction . The rate of glycolysis and ATP 

utilization are both higher in heated muscle, but endurance times are 

shorter. Edwards, Harris , Hultman, Kaijser, Koh, and Nordesjo (1972) 

suggested that this early fatigue may be due to a reduction in the rate 

of regeneration of ATP from anaerobic glycolysis, so the muscle 

contraction cannot be sustained. Results of Jessen and Kuhnen (1990) 

show that low ambient temperatures could exert a direct effect on 

muscle metabolism and they also suggest that "the relationship 

between low skin temperature and metabolic rate (which they found 

experimentally) essentially reflects the influence of low muscle 

temperature on metabolic processes at a cellular level, i.e., the 

dependence of peak metabolic rate on muscle temperature." 

Others have addressed the issue as to whether or not muscle 

temperature is limiting to exercise. There is no direct evidence that 

muscle temperature contributes to fatigue but , since muscle 

temperature rarely rises above 40oC, it has been suggested that this 

temperature may be a limiting factor . Nadel (1983) found that subjects 

obtained muscle temperatures near 41 oC during eccentric exercise 

(negative work), but failed to prove that this higher temperature is not 

limiting . Still, most of the evidence indicates that it is not. Muscle 
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biopsy samples have shown that, even at high intensities, there is 

little indication of anaerobiosis. Also , Knuttgen , Nadel , Pandolf, and 

Patton (1982) found that training did not affect muscle temperatures 

and, thus, was not a factor that contributes to trained athletes being 

more resistant to fatigue. Guyton (1976) does state that body 

temperatures above 41 .1 oC can cause cellular damage . 

Many of the experiments performed to study metabolism and heat 

effects involve the comparison of positive and negative work. Positive 

work exercise is the typical type of exercise used to study 

thermoregulation . The muscles contract concentrically, producing 

metabolic heat and causing body temperatures to rise . During negative 

work exercise, muscles resist elongation due to an external force so 

excess heat, in addition to metabolic heat , is added to the muscles 

(Nadel , Bergh , and Saltin, 1972). These "negative work" experiments 

are especially helpful in studying thermal load, when muscles do not 

require as much blood to transport excess oxygen . Since extra heat is 

produced, temperature effects can be observed at lower muscle blood 

flow rates and lower metabolic rates. Core temperatures remain lower 

during negative work exercise while muscle and skin temperatures are 

higher. 

Temperature Measurements and Local Effects 

One problem that has been generally encountered in the area of 

temperature regulation is the physical measurement of temperatures. 

How do we measure a core, muscle, or skin temperature when the 
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actual temperature may vary greatly between different areas of the 

body? Core temperature , in our model , for example, includes everythi ng 

in the body that is not muscle or skin . Most models include this 

concept of core temperature, but it surely cannot be measured 

experimentally in humans. In fact , most of the individual components 

of the core are not accessible to temperature measurements. So what 

information do we use to test our models? Typ ically, tympanic , rectal, 

or esophageal temperature measurements are used to estimate the 

core. Nadel (1977) believes that esophageal temperature is the best 

indicator because tympanic temperature can be influenced by ambient 

temperature and rectal temperature has a very slow response time . 

Several others agree with this , but, unfortunately , much of the earlier 

experimental data only include rectal or tympanic temperature 

measurements. 

Skin temperature is usually taken to be a weighted average of the 

various areas of the skin , taking into account both area and sensitivity. 

Local effects of skin temperatures can be considerable. Most 

experiments performed to study blood flow effects hold the local 

temperature of the skin surrounding the muscle constant in order to 

reduce these local effects. Brengelmann (1977) , for example, held 

local forearm temperatures at 36oC or less when studying forearm 

blood flow measurements. 
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Core Temperature Elevation During Exercise -- A Change in Set Point? 

In 1938, M. Nie lsen became the first researcher to experimentally 

show that "internal body temperature increases during muscular 

exercise and eventually arrives at a new steady state that is roughly 

proportional to the absolute exercise intensity and independent of 

ambient temperature (between 5 and 30oC) ." (Nadel , 1983). Many other 

stud ies have agreed with this and have shown conversely that skin 

temperature is a linear function of ambient temperature and 

independent of metabolic rate (Stolwi jk, Saltin , and Gagge , 1968). 

More recently, Wyndham , Strydom, Morrison , duToit, and Kraan (1954) 

were one of the first to determine that core temperature does vary 

with environmental temperature . In fact, it also var ied in Nielsen's 

graphs, but he plotted his data on a coarser scale (Brengelmann, 1977). 

Davies (1979) presented results which were directly contrary to those 

of Nielsen and several others. He found that the rise in core 

temperature (rectal temperature) was not independent of ambient 

temperature from 5 to 30oC , using experiments with higher relative 

work loads and more convective cooling. Also , skin temperature will 

rise with metabolic rate if the skin blood flow is high and evaporative 

heat loss (convective cooling) cannot be maintained at a high enough 

level to satisfy the energy balances. 

A highly debated question has been whether temperature or heat 

content is the regulated variable in thermoregulation . It is now 

generally agreed that temperature must be the regulated variable and 

the body has no known sensors for heat flow or heat content. The 



22 

temperature difference will provide heat f low, but evidence shows that 

it is not what is regulated ; the body probably does not have thermal 

sensors at every depth of the epidermal layer (Nadel , 1977). 

Many subsequent arguments have arisen from this concerning 

whether or not core temperature is adjusted to a higher "set point" in 

exercise , as it appears to be in fever. As the energy balances which 

follow show, when a subject exercises, muscle metabol ism (~M) 

increases and the temperatures increase. They wil l eventually reach a 

new steady-state where heat production is balanced by heat 

dissipation , but this does not mean that there is a new, regulated core 

temperature . 



23 

THE MODEL EQUATIONS 

The "Standard Man" Concept 

Much of the research that has been done in the area of exercise 

physiology has concentrated on individual differences that affect 

performance. Many of the factors described here can be affected by 

external factors such as the degree to which an individual is 

acclimated to his or her surroundings or each individual's own re lative 

level of fitness . Stroke volume, for example , is related to heart size , 

but can be affected by other factors. Both cardiac output and stroke 

volume can be increased through aerobic training . (Jones and Lindstedt , 

1993) For the purposes of our model, we have used the concept of a 

"standard man" developed by Seagrave (1971) to obtain typical values 

for the physiological parameters that were used here. 

Energy Balances 

Energy balances on each of three compartments (core, muscles, and 

skin) include terms for energy consumption in that compartment , 

thermal energy flowing into or out of that compartment with blood 

flows (which are the same flows that carry oxygen throughout the 

circulatory system) , and the energy conducted between adjacent 

compartments. 
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The blood entering the core compartment is assumed to be a mixture 

of blood leaving the muscles and skin . Its temperature, T v is calculated 

as an average so that: 

and the energy balance for the core is: 

mcC P ddTtc = M o,c - K c M(Tc - TM ) - (aM + Os )PC ~(Tc - Tv) 

+ QA pC ~(TA - Tc) + Q A Pair( yamb - yexp )Mi ~20 (Tc) 

where the last two terms account for energy loss through the 

respiratory system . The difference between the absolute humidities of 

the inspired and expired air (yamb - yexp) can be simplified in terms of 

pressures and molecular weights so: 

These vapor pressures can be calculated using the Antoine equation 

with coefficients for water (Felder and Rousseau, 1986). 

The muscle equation includes both a resting energy consumption 

term (Mo M) and a term for added metabolism (~M) resulting from 

exercise : 
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= Mo,M+ K c M(Tc - TM ) + ~M - KMs(TM - Ts) 

+ QMpC ~ (Tc - TM ) 

The skin equation contains two additional terms to account for the 

release of heat from the skin to the environment . Ov represents the 

evaporative loss (the amount of water that is vaporized) and hM T is 

the overall heat convected from the skin to the surrounding air: 

m sCp ddTts = M o.s + KMs (TM - Ts) - Q v - hA (Ts - TA ) 

+ O sP C ~ (Tc - Ts) 

Figure 2a showed the basic model used to derive these equations. 

Mass Balances (Oxygen) 

Next, a simple mass balance is performed around each of the four 

compartments of the model with respect to the oxygen volume (see 

Figure 2b). Oxygen is brought into each compartment through the blood 

stream and also the air entering the lungs, in the first balance given 

below. A portion is metabolized (consumed) by the cells in the three 

compartments to which it is carried and the rest leaves the 

compartments, again through the blood stream. In the lung 

compartment, it is considered that only gas exchange between the air 

and the blood takes place. Oxygen uptake by the lung tissues may be 

included as a part of the core/tissues compartment. 
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The metabolism of oxygen in these equations is related to the 

metabolism of energy in the energy balances by the calorific oxygen 

equivalent statement given with a dependence on the respiratory 

quotient (which will be discussed in the next section) : 

kcal energy 
L oxygen 

1. 2 3 x RQ + 3 . 8 1 6 

This equation was obtained from the data given by Brobeck (1974) . 

The volume terms that multiply the derivative terms in all of these 

equations are actually combined volumes of the gas being considered 

(oxygen in this case) in a given compartment and in the blood in that 

compartment. For example, 

where Vs e is the volume of blood in the core and Vee is the total core 

volume . 
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In this case , the partit ion coefficient , I. 02, is close to zero since 

oxygen is almost immediately used by the cells and does not remain in 

the tissue space in a significant amount. Th is partition coeffic ient for 

oxygen is assigned a value of 0.024, so Ve 02 is just slightly larger than 

the volume of blood in the tissues. In the following case, the partition 

coefficient for carbon dioxide is closer to one, t. co2 - 0.57, so Ve c02 is 

much larger than the volume of blood in the tissue compartment. 

Mass Balances (Carbon Dioxide) 

The carbon dioxide mass balances are analogous to the oxygen mass 

balances except the metabolism terms are added to the right-hand side 

of the equations; carbon dioxide is generated instead of being 

consumed by the cells of each compartment. This metabolism can be 

related to the metabolism of oxygen by: 

RQ 
M C02 

M o2 
0 .8 + 0 . 083 x ~M (L 0 2 / min) 

This relationship is an approximation which is derived from the ratio 

of carbon dioxide production (200 ml/min) to oxygen consumption (250 

ml/min) at rest and STP conditions for a standard man (Seagrave , 

1971) and the assumption that the respiratory quotient increases 

linearly to reach a value of 1.0 at the maximum oxygen uptake. 

This "respiratory quotient" is strongly dependent on the diet of the 

subject. It is always equal to 1 .00 for carbohydrates, which have 
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exactly enough oxygen to oxidize all the hydrogen in the molecule. Just 

enough respiratory oxygen must be added to combine with the carbon in 

the carbohydrate molecule to produce the same amount of carbon 

dioxide . Fats typically produce a much lower respiratory quot ient , 

around 0.707. The average respiratory quotient for proteins is 0.801 . 

So the approximation we are using would vary between 0 .71 and 1.0 

depending on the type and amount of food the subject consumes and the 

level of exercise . Generally , shortly after a meal , most of the food is 

metabolized to carbohydrates , raising the respiratory quotient. When 

the subject has not eaten for a longer period of time, such as at night , 

litt le carbohydrate is present , and the value of the resp iratory quot ient 

is lowered , approaching that which would occur for fat metabolism 

(Guyton, 1976). 

The respiratory quotient also depends on the level of exerc ise being 

performed because, as exercise becomes more strenuous, more 

carbohydrates are used , so it increases toward unity. It may even 

appear to exceed one during anaerobic work because lactic acid 

accumulates and combines with bicarbonate base and the resp iratory 

compensation that takes place leads to decreased alveo lar and arterial 

p C0'2. The carbon dioxide which is released through the lungs can 

therefore exceed the amount of metabolically produced carbon dioxide 

(Mountcastle , 1974) . 
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dyC02 
V A 

A d t 
= 0 A ( y1co2 _ y;o2) + Q 6 (x~o2 _ x,;02) 

C02 
v co2 dxc 

c dt 
d C02 

VC02 XM 
M dt 

C02 
v co2 dxs 

s dt 

Q (xC02 _ XC02) + M C02 C A C O,C 

= 0 (xco2 -x co2) + Mco2 + L'l.M co2 
M A M O,M 

Q (xC02 _ XC 02) + M C02 
S A S O,S 

The Oxygen/Hemoglobin Dissociation Curve 

YA02 (the volume fraction of oxygen in the alveolar gas of the lungs) 

can be related to XA02 (the volume fraction of oxygen in the pulmonary 

capillary blood) through the oxygen/hemoglobin dissociation curve . 

When oxygen is dissolved in the blood, approximately 99% of it 

combines with the protein hemoglobin to be transported through the 

circulatory system. Since th is is true , we can say that the relationship 

between the percentage saturation of hemoglobin with oxygen in the 

blood and the partial pressure of oxygen in the lungs will specify an 

equilibrium relat ion between XA02 and YA02. 

In 1925, Adair developed the following equation which relates 

percent saturation (So2) to oxygen tension (or partial pressure, p02) : 

(from Willis, Clapham, and Mapleson, 1987). 
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The Ci'S in th is equat ion are empirically determined coeffic ients . In 

1972, Thomas found improved values for these constants to be: 

C1 = -2000 

C3 = 15 

C5 = 31100 

C7 = 15 

c 2 = 2045 

C4 = 2400000 

cs = 2400 

These values also fit wel l with the standard curve developed by 

Severinghaus in 1966. 

The value for partial pressure used in this equation can be obtained 

from the mass balance as: 

where Ptotal is taken to be 713 mm Hg on a dry basis at STP. 

It must be corrected for the influences of core temperature and carbon 

dioxide part ial pressure : 

(P02) . = ( P02) x 1 ol 0.024[37 - Tc I + o.os[ log40 - logpC021J 
virtual standard 

where 37oC is the temperature where the standard curve has been 

calculated and 40 mmHg is the carbon dioxide partial pressure of the 

standard curve (Kelman, 1966) . 

Percent saturation can be converted to xA02 by: 

x ~2 1
8~~ x(0 .201 ml 0 2/ m l blood) 



31 

Since at complete saturation there is 1.34 ml oxygen at STP per gram 

of hemoglobin, and about 15 grams of hemoglobin per deciliter of blood 

(Ganong, 1993), 0.201 ml 02/ ml blood was chosen as the saturated 

value for our standard man model. 

The Carbon Dioxide Dissociation Curve 

A similar equilibrium relationship can be used to relate YAC02 to 

XAc02. The so-called "carbon dioxide dissociation curve" used here 

relates xAC02 (in ml of carbon dioxide per liter of blood) to the partial 

pressure of carbon dioxide in the lungs: 

C 0 2 c o n t e n t ( m I I L) 

This formula was developed by Meade in 1972 and is based on the 

empirical data of Comroe (1963) . The standard curve is given at an 

oxyhemoglobin saturation level of 97.5% and a correction factor is 

added to account for changes in 802. 

A further correction for core temperature changes proposed by Nunn 

in 1965 and utilized by Thomas in 1972 is given by: 

P T
C02 ( C0 2 ) x 1 0 o.019 (T c - 37) 

p3 7° C 
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pC02 at 37oC can be calculated from the mass balance on carbon dioxide, 

as was done in the case of oxygen: 

The Model 

These equations and the control relations in the following chapter 

have been used to create a model which was developed on Matlab using 

the Simulink modeling package on a DEC Station (Model 2100) 

workstation . The equations were solved using a fifth order Runge-

Kutta method available in Simulink. 
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THE CONTROLLERS 

Skin Blood Flow 

The literature concerning the subject of thermoregulation is often 

contradictory. Contrary to the results of Wenger , Roberts, Stolwijk, 

and Nadel (1975), Benzinger (1959) claimed that skin temperature does 

not contribute to the control of skin blood flow. He also observed that 

thermoregulatory sweating is independent of skin temperature . Wenger 

et al. (1975) relate these findings to the possibi li ty of a significant 

contribution of skin temperature to tympanic temperature, wh ich 

Benzinger measured. 

Brengelmann, Wyss, and Rowell (1973) found that increases in 

forearm blood flow were due almost entirely to increases in core 

temperature and were unaffected by skin temperature . Most later 

stud ies disagree with this and Wenger et al. (1975) attribute 

Brengelmann et al.'s conclusion to the fact that it depends entirely on 

the assumption that core temperature has a relationship with heart 

rate independent of its relationship with forearm blood flow. Wenger 

et al. assert that Brengelmann et al.'s results really only support that 

control of forearm blood flow is similar to control of skin blood flow. 

Rowell (1983) states that skin temperature appears to be a more 

important factor in determining skin blood flow during exerc ise than 

during rest. He also asserts that changes in skin temperature may 

modulate vasoconstrictor outflow to skin wh ich is increased during 

heavy exercise. Still, he maintains that core temperature activates 
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vasodilation and has about a twenty-fold greater influence on skin 

blood flow than skin temperature (Rowell , 1977) . 

In our model, we have used a proport ional controller for skin blood 

flow based on core temperature , so: 

0 s 0 s.o + a 1 (Tc - T c.o ) 

The maximum Os in our model is set at 3.0 Umin . If the calculated 

value of 0 5 by this equation becomes greater than 3 .0, the model 

switches to use this constant value for Os. Accord ing to Ganong (1993), 

skin blood flow typically ranges between 0.02 and 3.0 Umin. Rowell 

(1974), however, has reported that skin blood flows between 7 and 8 

Umin can be attained at high levels of exercise and/or high ambient 

temperatures. 

The gain , a 1 , was set at 0.9 to yield skin temperatures similar to 

those found in literature, especially in comparison with the data of 

Saltin, Gagge, and Stolwijk (1968) . At the same time, Oc is allowed to 

decrease by 0.7 Umin from the resting state to simulate the effects of 

repartitioning of blood flow. Th is change occurs before cardiac output 

begins to increase. 

Muscle Blood Flow 

To model the increase in muscle blood flow during exercise, we have 

used a proportional controller based on oxygen concentration in the 

blood leaving the muscles. 
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The concentration term was squared in order to reduce errors. The 

gain, a2, was set at 5500. This value was chosen so that XM02 reaches 

0.044 at the maximum oxygen uptake, as is discussed on page 41 . 

Sweating Rate 

In 1949, Robinson described the sweating rate during exercise as a 

linear function of internal body temperatures . He said that skin 

temperature also influences sweating, but to a lesser degree than core 

temperature (Nadel , 1983) . According to Benzinger (1961), skin 

temperature suppresses sweating below 33oC while skin temperatures 

above 33°C do not affect sweating rate (from Brengelmann , 1977) . 

Saltin and Hermansen (1966) state that "sweat rate during work in a 

constant environmental temperature is linearly related to metabolic 

rate." They propose that an increasing temperature in the hypothalamus 

elicits a sweating rate related to the individual aerobic work capacity . 

Stolwijk, Salt in, and Gagge (1968) confirmed this finding and also 

showed that sweat rate can be described as a linear function of core 

and skin temperature. 

More recent studies have shown that muscle temperatures may also 

play a role . It is often difficult to determine if certain factors cause 

something to happen or are a result of something else causing changes 

to a system . This is certainly the case in the initiation of sweating 
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during exercise. A rapid rise in muscle temperature parallels a rise in 

sweating (Saltin , Gagge, and Stolwijk, 1968), but they probably do not 

directly affect each other. Work in the muscles generates heat, causing 

the muscle temperature to increase. When muscle temperatures 

increase, core temperatures increase, skin temperatures increase, and 

sweating is initiated . Although the muscle temperature rise was 

indirectly the cause for sweating to occur , it is probably not involved 

in the control mechanisms used to signal the sweating response. Most 

researchers conclude that it is impossible using the data they are able 

to collect to differentiate between core and muscle temperatures to 

find their individual effects on sweating , so it has not been 

demonstrated whether or not signals are sent from the muscles to the 

thermo regulatory center. B. Nielsen (1966) showed, in fact , that 

muscle temperature could not be the stimulus for correlating sweat 

rate with total heat production , because muscle temperature differs 

for the same rate of total heat production for positive and negative 

work . 

Control of sweat rate does pose an especially diff icult problem, in 

that Stolwijk, Saltin , and Gagge's (1968) linear model may not always 

be adequate. Wyndham and Atkins (1968) found that sweat rate control 

is too complex to model with a simple function of core and skin 

temperature . They suggest using non-linear control. Finally, Davies 

(1979) concluded that sweat rate can be expressed as a linear function 

of core and skin temperature during sub maximal work, but not during 

more severe work . His results showed that thermoregulat ion is only 

passive during extreme hard work where it becomes physical instead of 
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physiological, that is, the evaporative process becomes controlling and 

the circulatory transport of heat is insignificant compared to sweat 

rate control. 

When exposure to heat or exercise is prolonged , sweat rate is 

decreased. The question is often asked concerning why this occurs. 

Some postulate that there is a change in the "set po int" for the central 

nervous system control of the threshold temperature at which sweating 

begins. Many others support the idea that there is a decrease in sweat 

gland responsiveness to neuroglandular signals (Nadel , 1977) . 

We have not yet included this effect in our model and have based the 

heat loss through sweat (water evaporation) on Sto lwijk, Salt in, and 

Gagge's (1968) linear model discussed above. The general form of this 

equation is: 

O v = 3.42( Tc - 36.6° C) + 0 . 51( Ts - 33.3 °C) 

where Ov is in kcal/min. It is assumed that all water lost through 

sweat ing is replaced so that the total body water content does not 

decrease. 

Ventilation Responses 

When oxygen uptake is increased, another compensatory response to 

bring more oxygen into the blood stream and remove the excess carbon 

dioxide that is produced is an increase in ventilation . It has been 

postulated that this results from either baroreceptor reflexes or the 
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increased catecholamine level of the blood . (Ekelund , 1967). Also , it is 

possible that the increased concentration of potassium in the plasma 

which occurs during exercise stimulates peripheral chemoreceptors. 

Ganong (1993) states that body temperature increases may also play a 

role or the respiratory center may become more sensitive to carbon 

dioxide to provide the st imulus for vent ilation changes. Oxygen may 

also play some part, since as the amount of oxygen in the inspired air is 

increased, breathing rate decreases. Robinson (1974) observed that 

small reductions in po2 which do not affect the ventilation in rest ing 

subjects , cause substantial ventilation changes in subjects who are 

performing severe work. It is , most likely, some combination of these 

stimuli that regulates ventilation. 

The majority of the carbon dioxide found in the blood is in the form 

of bicarbonate (HCo3 - ) . The rest is either dissolved, or in carbamino 

compounds. This is why the acid/base balance in the blood is 

especially important during exercise. When exercising muscles produce 

carbon dioxide, a large amount of it is converted to bicarbonate, 

increasing the pH in the blood . The opposite effect occurs in the lungs, 

where the increased ventilation rate removes excess carbon dioxide, 

lowering the pH . The balance between these two events must be 

carefully maintained to preserve a near neutral pH in the body and avoid 

the problems associated with alkalosis or acidosis . 

There is usually a brief, abrupt ventilation increase at the onset of 

exercise , thought to be due mostly to psychic stimuli, but venti lat ion 

soon levels off and continues to increase more slowly as exercise is 

prolonged. First there is an increase in the depth of respiration , then 
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an increase in respiratory rate as the exercise becomes more 

strenuous. During mild to moderate exercise, arterial pH , carbon 

dioxide partial pressure , and oxygen partial pressure al l remain 

relatively constant (Ganong, 1993). 

When the level of exercise becomes more severe, greater amounts of 

lactic acid may be produced by the muscles, and the bicarbonate must 

be utilized as a buffer . More carbon dioxide is liberated and vent ilation 

increases further. The partial pressure of carbon dioxide then 

decreases as the partial pressure of oxygen increases due to this 

respiratory compensation for the resulting metabolic acidosis. Some 

of the lactic acid (about 20 percent) is metabolized to produce more 

carbon dioxide, so the respiratory quotient can increase considerably 

(Ganong, 1993). 

Ventilation control in our model is based on the chemoreflex control 

model of Duffin (1972) : 

r 
0 .83160 -

l 
6o(p~2 - 25) i + 

(p~2 - 25) + 2.5 j 

Shivering 

1 1 5(p; 02 - 3 7) 
(p;02 

- 3 7) + 7 0 

222o( p~2 
- 25) i 

( p~2 - 25) + 2.5 j 

+ 

When the ambient temperature is significantly cool and the subject 

is at rest , core temperature starts to fall and triggers a shivering 
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response. The muscle metabolism automatically increases to produce 

heat. This shivering response is triggered by hypothalamic stimulation, 

as will be discussed in the next chapter . The primary motor center for 

shivering, which is normally inh ibited , becomes activated and 

transmits impulses that increase the skeletal muscle tone . This 

causes an initial increase in metabolism and, when the muscle tone 

rises above a threshold level , initiates the muscle contractions of 

shivering. At maximum shivering, body heat production can increase by 

a factor of five (Guyton , 1976) . 

Since the typical thermal comfort zone for core temperature ranges 

between 36.6 and 37.1oC (Astrand and Rodahl , 1977), we have set a 

controller in our model to automatically increase muscle metabolism 

when core temperature falls below 36.60C so that: 

The value chosen for ash = 0.3 is based on the steady state values for 

core and skin temperatures given by Coffey and Seagrave (1972) at 

ambient temperatures as low as 18oC. 
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OTHER REGULATORY FACTORS AND THEIR LIMITATIONS 

Minimum Oxygen Concentrations and Effects on the Dissociation Curves 

The changes in ventilation that occur during exercise are closely 

related to the changes that are occurring at the cellular level. When 

muscles are exercising, more oxygen diffuses out of the blood stream 

(more oxygen is removed from hemoglobin) and the resulting venous po2 

drops severely . The p02 in venous blood leaving the cells can only 

decrease to the value in equilibrium with the oxygen present in the 

cells and fluid layer between the blood and cells (interstitial fluid) . 

Guyton (1976) states that , in heavy exercise , muscle cells can utilize 

oxygen at such a rapid rate that interstitial fluid p02 can fall as low as 

15 mmHg. At this pressure, about 4.4 ml of oxygen remains bound with 

hemoglobin in each 100 ml of blood . In our model , we have, therefore , 

set XM02 at 0.044 ml 02/ml blood when oxygen uptake reaches its 

maximum. Also, we prevent Xc02 from decreasing below 0.044 ml 

02/ml blood when Oc decreases in diverting blood flow from internal 

organs to the muscles during exercise. 

The fraction of blood that gives up its oxygen to the tissues is 

known as the utilization coefficient. Normally it is about 0.25. The 

highest value that can be obtained for the overall body is 0.75 to 0.85 

during strenuous exercise. In local areas, if the blood flow is very 

slow and/or the metabolic rate is very high , the utilization coefficient 

can approach 1 .0 (where all of the oxygen is removed) (Guyton, 1976) . 
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Another change that takes place during exercise is that the small 

arteries in the muscles are dilated to increase blood flow , so the 

distance that the oxygen molecule must travel from the blood to the 

muscle tissue cells is greatly decreased. Also , the rise in temperature 

and accumulation of carbon dioxide (the Bohr effect) serve to shift the 

curve to the right , th is too facilitating oxygen extraction from the 

blood (Ganong, 1993) . 

The carbon dioxide dissociation curve is also affected by these 

changes. The Haldane effect (the tendency of oxygen binding with 

hemoglobin to displace carbon dioxide from the blood) is even more 

significant for promoting carbon dioxide transport than the Bohr effect 

is for promoting oxygen transport (Guyton, 1976). When oxygen and 

hemoglobin combine, the acidity of the hemoglobin is increased, so 

carbon dioxide is less likely to combine with hemoglobin and the 

hydrogen ions in the acidified blood combine with bicarbonate ions 

forming carbonic acid and then releasing carbon dioxide from the blood . 

Therefore , both release of carbon dioxide in the lungs and pickup of 

carbon dioxide from the cells are enhanced by the Haldane effect . 

The Role of the Nervous System 

Thermoregulatory adjustments that take place involve local 

responses as well as more general reflex responses. When exercise is 

begun , a rise in core temperature is sensed by central thermodetectors, 

primarily in the anterior hypothalamus and spinal cord, to provide the 

signal for increased skin blood flow and the initiation of sweating. 
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Cutaneous temperature receptors (especially cold receptors) located in 

the subcutaneous tissues signal the hypothalamic temperature centers 

about changes in skin temperature ; such as those brought about by a 

change in ambient temperature . Cutaneous veins will not react to 

exercise or local cooling when body skin temperature is elevated . 

Reflex responses activated by cold are control led from the posterior 

hypothalamus and their stimulation causes a shivering response. 

Reflex responses activated by heat are controlled from the anterior 

hypothalamus and their stimulation causes cutaneous vasodilation and 

sweating (Ganong, 1993). 

The sympathetic nervous system is especially important in 

regulating circulatory control. Increased sympathetic nervous outflow 

in proportion to the severity of exercise causes increased heart rates. 

This is believed to be accompanied by increased sympathetic vasomotor 

outflow to visceral organs, such as renal and splanchnic beds, which 

causes their constriction . In heat stress without exercise, 

sympathetic nervous outflow increases in proportion to the rise in 

arterial blood temperature . 

When cutaneous vasodilation is opposed by vasoconstriction during 

exercise in the heat , it is sympathet ic nervous activity that causes the 

vasoconstriction . This is also this stimulus that is thought to 

vasoconstrict exercising muscles to help meet thermoregulatory 

demands. Vagal activity is also important in man , but evidence shows 

that man relies more on sympathetic activity, in contrast to some 

other species, such as the dog, which rely more on vagal activity . Some 
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other animals , most notably primates, rely on sympathetic activity to 

an even greater extent than humans (Rowell , 1974). 

Chemical Factors and Hormonal Regulation 

Chemical factors are also important in the contro l of constriction 

or dilation of blood vessels. An increase in calcium ion concentrat ion 

wi ll stimulate smooth muscle contraction , leading to vasoconstriction. 

Increasing potassium ion concentration will have the opposite effect , 

inhib iting smooth muscle contract ion and causing vasodilat ion . If the 

concentration of magnesium ions is increased, an even more powerful 

vasod ilat ion effect results from smooth muscle inh ibition (Guyton , 

1976). 

If the osmolality of the blood is increased, arteriolar dilation 

results . This can occur due to increases in sodium ions, glucose , or 

other nonvasoactive substances. Acetate and citrate are the only 

anions that have shown significant effects on blood vessels. Their 

presence can cause mild vasod ilation (Guyton , 1976) . 

pH can also have an effect on arteriolar dilation . A slight decrease 

in hydrogen ion concentration causes arteriolar constriction, but a 

severe decrease can cause dilation. Any level of increase in hydrogen 

ion concentration appears to cause dilation of arterioles (Guyton, 

1976) . 

Carbon dioxide has a varied effect on vasodilation/constrict ion. In 

most parts of the body, an increase in the carbon dioxide concentration 

will cause moderate vasodilat ion. In the brain , it will cause even more 
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severe vasodilation , but if it acts on the vasomotor center, it can 

become a powerful vasoconstrictor (Guyton, 1976). It is possible that 

this is an important factor during exercise, and that carbon dioxide 

only begins acting on the vasomotor center when the maximal oxygen 

uptake is approached and central blood volume is being compromised. 

Several hormones have also been shown to have significant dilat ion 

and constriction effects on the blood stream. Angiotensin is the most 

powerful vasoconstrictor. Vasopressin has a similar vasoconstrict ing 

effect, but acts only on the arterioles (angiotensin acts on the veins, as 

well). Vasopressin's main effect is the control of reabsorption of 

water from the renal tubules, but it can also act to substantially 

increase arterial pressure (Guyton , 1976) . 

Histamine is a powerful dilator for arterioles. Bradykinin also 

causes vasodilation and it has been claimed that it plays a role in 

regulating skin blood flow. In fact , many of the small polypeptides that 

are known as kinins are believed to be involved in blood flow regu lation 

(Guyton, 1976). 

Norepinephrine and epinephrine are secreted from the adrenal 

medulla when the sympathetic nervous system is stimulated . 

Norepinephrine is universally a vasoconstrictor. Epinephrine is often a 

constrictor, but in some vascular beds (including most types of muscle) 

it acts as a vasodilator. Serotonin can also act as a vasoconstrictor or 

a vasodilator, depending on the area of circulation or condition. Some 

prostaglandins cause vasoconstriction while others cause vasodilation 

(Guyton, 1976). 
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The Importance of Vasoconstriction and Related Effects 

Vasoconstriction is discussed throughout this work as a primary 

means for preserving central blood volume and central pressures. Other 

factors may also contribute to this effect, but usually they are not as 

sign ificant. The force of ventr icular contraction cou ld increase 

(increased inotropic influence) , for example , to help increase the 

ejection fraction. This cannot occur, however, when the heart rate is 

high and cardiac filling time is short (Nadel, Fortney, and Wenger , 

1980). Venomotor adjustments can also be an important factor . When 

peripheral veins are constricted, blood is still shifted centrally to 

serve in maintaining central blood volume, cardiac filling pressure , 

cardiac output, etc. Still, vasoconstriction, not venoconstriction , of 

the skin is most important in maintaining central pressures because it 

aids in reducing the rate at which cutaneous veins fill (Rowell , 1977). 
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MODEL VALIDATION 

The Basic Model with Exercise 

The basic model was developed for a 30oC ambient temperature and 

steady-state resting conditions (~M = 0) . This ambient temperature 

was chosen because it is very close to the minimum for humans to 

maintain a resting thermal balance . Astrand and Rodahl (1977) state 

that nude humans require an ambient temperature of 28oC to have a 

resting metabolic rate within the thermal comfort zone. This means 

that , at this temperature, no shivering should be present, but skin blood 

flow should be very low. The 30oC ambient temperature was chosen as 

the setpoint level for our controllers because more data could be found 

to test the model at this temperature than at 28oC. 

We can see that changes in exercise at this ambient temperature 

produce the expected increases in temperatures. At rest , muscle 

temperature is lower than core temperature, and skin temperature is 

much lower than muscle temperature . When exercise is begun, muscle 

temperature quickly increases to a value greater than core 

temperature. Core temperature also increases after a short, initial dip. 

This dip has been observed by Saltin and Hermansen (1966) as a 

common trend during the first 3 minutes of exercise. Skin temperature 

also increases, quickly at first , with a slight, subsequent dip , then a 

rise again to a new steady state . The initially fast rise presumably 

occurs because the evaporative heat loss, Qv, which is mainly a 



48 

function of core temperature , also falls initially then begins to 

increase . 

Figure 3 shows comparisons of our model predictions with the 

results of Saltin , Gagge, and Stolwijk (1968) for subjects exe rc ising at 

three different work loads in a 30oC environment . The predictions for 

sweat rate match well with the empirical equation used in its 

prediction. The gain on the equation for skin blood flow is set so that 

core temperature matches the measured value for rectal temperature 

at the lowest level of exercise. Results then show that at the lower 

exercise levels, skin temperature is underpredicted while it is slightly 

overpredicted at the highest exercise level. Muscle temperature is 

universally underpredicted in this case. The most likely reasons for 

this will be discussed in the next chapter. 

Changing Amb ient Temperatures and Exercising 

When ambient temperatures are increased or decreased , the model is 

allowed to approach a new steady-state in the changed environment to 

simulate a subject being introduced into a new environment and 

achieving a thermal balance. If the environment is cold enough to cause 

the subject 's core temperature to fall below 36 .6oC, he will shiver, 

bringing his temperature back up. If he then starts to exercise , 

shivering will stop as soon as his core temperature warms up above 

36 .6oC. 

Figure 4 shows a comparison between Saltin and Hermansen's (1966) 

values for esophageal , rectal , and muscle temperatures measured after 
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Figure 4: Predicted values for core (---) , muscle ( ...... ) , and skin ( __ ) temperature compared 
with the data (X) of Saltin and Hermansen (1966) . 
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60 min of exercise in a 20.5oC environment. The resting values are 

slightly underpredicted by our model ; shivering is apparently greater 

in the resting subjects or they are wearing more clothes. The core 

temperature predict ion usually falls between the measured values for 

rectal and esophageal temperatures during exercise. Muscle 

temperature is underpredicted by the model. At higher exercise levels, 

the predicted value is closer to the measured. 

Steady-State Compar isons 

As shown in previous examples, temperatures throughout the body 

typically increase to a new steady state when exercise is performed. 

Skin temperature , however, has been shown to increase, decrease, or 

stay the same, depending primarily on the environment in which the 

exercise is taking place and on the rate of skin blood flow and 

evaporative heat loss. Other variables predicted by the model also 

change as expected when exercise is simulated . Steady-state values 

for oxygen concentration throughout the blood stream decrease wh ile 

carbon dioxide concentrations increase. Sweat rate , ventilation rate , 

muscle and skin blood flow rates , and cardiac output all increase while 

blood flow to the tissues decreases. 

Rowell (1974) compared cardiac output distributions in cool 

(25 .6oC) and hot (43.3oC) environments at var ious exercise levels. The 

predict ions of this model are compared to his results in Figure 5. The 

total cardiac output is larger in our model. This appears to be due to 

the muscle blood flow rate controller being set to maintain a higher 
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flow rate in all conditions. The major trends are similar except for 

skin blood flow , wh ich is ove restimated during exercise in coo l 

conditions and underestimated during exerc ise in hot condit ions. 

Rowell (1986) gives evidence that this may occur because exercise 

increases the threshold core temperature at which skin blood flow 

begins to increase . If this is true , skin blood flow is increased more by 

a change in resting ambient temperature than by exercising in a cool 

env iro nment. 
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predictions during exercise at the given temperature . 
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The measured value for blood flow to internal tissues is decreased 

more during exerc ise in heat. Our model pred icts that it is already at 

its min imum value during exercise in the cooler condit ions. This could 

also be explained by the fact that we are assuming Qc decreases to a 

minimum before cardiac output begins to increase. Evidence shows 

that this assumpt ion is fair ly reasonable for heat stress conditions, 

but , as has been found for skin blood flow, the same might not be true 

for exercise with no heat stress. 

Another variable which is often studied in experiments involving the 

card iovascular system is the A-V oxygen difference. It is easy to 

measure through blood sampling and, as shown in Figure 6, comparable 

to our model results. Two major differences between these two plots 

need to be pointed out. First , our model predicts that oxygen 

concentration in the muscles is higher at rest than in the mixed venous 

blood . Th is is most likely due to an overestimated resting muscle blood 

flow rate in our model. In fact , when QM , o was reset at 0.55 Umin our 

resu lts showed that XM02 was lower than x..p2 at rest. It could also be 

explained by the assigned distribution of resting metabo lic rate if our 

model underpredicts oxygen consumption by the muscles at rest. 

The second distinguishable difference between these plots is that 

the difference between muscle venous and mixed venous oxygen content 

of the measured values continuously decreases until there is little 

difference between them . In the predicted results , muscle oxygen 

content quickly decreases, but then the difference between muscle and 

mixed oxygen content becomes nearly constant and much larger than is 

measured. This could be the result of several factors. It has been 
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shown that skin blood flow in our model is overpredicted in this case, 

so the calculation of mixed venous oxygen content would be high . 

Rowell does not give a temperature at which his data were obtained , 

but states that data from various studies were used. Even if skin blood 

flow was high, much of the blood would remain pooled in the cutaneous 

veins and the oxygen content of the mixed venous sample would not be 

as affected by it as much as our calculations would indicate. 

Other apparent differences between model predictions and measured 

values can be explained by where the parameters of the model were set. 

Maximum oxygen uptake in our model is not as high and muscle venous 

oxygen content is not allowed to decrease as much as in these results. 

These parameters were set according to average values given in 

literature. The observed trends, mainly that the A-V oxygen difference 

increases during exercise up to the maximum oxygen uptake, are the 

same. 

Figure 7 shows steady-state results for the blood flow model 

predictions at various oxygen uptakes up to the maximum oxygen 

uptake, and a comparison with the theoretical blood flow distribution 

of Rowell (1986) . At 25.6°C , both predictions are comparable. A few 

differences do exist. In the model, skin blood flow continuously 

increases during exercise and does not begin to level out as it does in 

Rowell's diagram. Our maximum cardiac output is higher, as set by the 

gain on the skin blood flow controller. This is in agreement with data 

from other sources. Lastly, blood flow to internal tissues decreases to 

a minimum initially in our model, but the theory of Rowell shows that 

during exercise at this temperature, cardiac output rises significantly 



Figure 7: The theory of Rowell (1986) compared to model predictions for blood flow 
distributions in 25 .6oC and 43.3oC ambient temperatures . 
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before it starts to decrease. 

At 43.3oC, more significant differences in the predictions occur. 

Most obviously, Rowell's skin blood flow is initially higher (by several 

Umin) than our model prediction shows. It then decreases sharply at 

low levels of exercise and continues to decrease more slowly as 

exercise becomes more strenuous. In our model , skin blood flow 

increases up to a maximum then stays constant. The same comparisons 

can be made about internal tissue blood flow as were made in the 

25 .6oC case. In Rowell's prediction here , visceral blood flow decreases 

to a smaller minimum while blood flow to the heart, brain , etc . 

increases slightly. Rowell states that the maximum oxygen uptake 

attainable in this case will be lower than at the cooler temperature . 

He attributes this to a reduct ion in stroke volume and states that the 

maximum cardiac output attainable will also be lowered . We assume 

complete water replacement in our model, but the maximum oxygen 

uptake appears to be reached at a similar metabolism level , limited in 

our case by the extremely high temperatures observed (Tc > 41 .1 oC) at 

oxygen uptakes near 3 Umin . 

Dynamic Validations 

Dynamic changes in esophageal temperature , skin blood flow, and 

cardiac output during the first few minutes of exercise were recorded 

by Nadel , Cafarelli, Roberts, and Wenger (1979) . Sample comparisons 

with the model predictions are given in Figure 8. Temperature and skin 

blood flow predictions appear to be good in most cases. The predicted 



Figure 8: Model predictions for core (---) , muscle ( .... ... ) , and skin (_) temperatures, cardiac 
output, and skin blood flow compared with the measured data (X) of Nadel , Cafarell i, 
Roberts , and Wenger (1979) over time . 
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cardiac output, however, consistently underest imates the measured 

values. This could be a result of inaccuracies in the experimental 

measurements of cardiac output since other experimental results have 

shown cardiac outputs lower than predicted here . 

Limitations 

The present limitations of this model most likely result from the 

simplicity of the predom inantly linear control mechanisms which it 

employs. This appears to be especially true in the case of skin blood 

flow. Since there is no adequate means for measuring skin blood flow 

in vivo (Rowell, 1977), most of the data we find is the result of crude 

approximations wh ich are inadequate to use as the basis for an 

empirical model. Because this is the case, we must base skin blood 

flow control mainly upon skin temperature measurements . These 

measurements can be subject to a great deal of variability , since skin 

temperature is highly inhomogeneous during exercise . 

Many different resources must be consulted since no experiments 

have been performed to test all of the variables calculated by this 

model. Th is introduces various errors from differing basal conditions 

in both the environment and the subjects involved in a specific 

experiment. Also , most studies just include one measurement when the 

variable appears to be at steady-state, but do not show measurements 

at different times throughout their experiment. This makes it difficult 

to validate the dynamic changes of the process. 
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SENSITIVITY OF THE MODEL 

Maximum Oxygen Uptake 

Maximum oxygen uptake is a factor which has been shown to vary 

greatly between different individuals. For the purposes of our model , 

setting the exercise level to make a comparison with literature values, 

we must set a value for maximum oxygen uptake and calculate the 

exercise level, ~M . based on a percentage of that number. Two typical 

values for an average person which were discussed in Chapter 2 of 3. 7 

Umin and 2.66 Umin were used , keeping all other initially set 

parameters constant. The gain on muscle blood flow was reset to allow 

for the minimum oxygen concentration exiting the muscles to be 

obtained at the maximum oxygen uptake and the relationship between 

the respiratory quotient and metabolism level was recalculated to find 

a new slope. 

All of the previous predictions shown were made using a maximum 

oxygen uptake of 2.66 Umin except those in the Steady-State 

Comparisons section which were compared with data from Rowell et al. 

who use 3. 7 Umin for their average maximum oxygen uptake. Figure 9 

can be compared to Figure 3a, showing predicted values for core and 

muscle temperatures that are now closer to the measured muscle 

temperature. Sweating rate is now overestimated and the core 

temperature prediction is high . Other factors , such as an 

overestimation of muscle to core conduction , may contribute to the 

prediction of core and muscle temperatures being closer to the same 



Figure 9 : Results from Figure 3(a) for a maximum oxygen uptake of 2.66 Umin compared with 
results for a maximum oxygen uptake of 3. 7 Umin. Data (X) from Salt in, Gagge, and 
Stolwijk ( 1968) . 
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value than in reality. This example does show, though, that some 

elements of this model are highly sensitive to the cho ice of maximum 

oxygen uptake. 

Volume Changes 

One important physiological effect of exercise and ambient 

temperature changes which has not been accounted for in th is model is 

the peripheral redistribut ion of water when blood flows, especially 

skin blood flow, are increased . While we assume complete water 

replacement for sweat losses, we do not increase skin blood volume 

and decrease core blood volume to account fo r the water redistribution 

that occurs when skin blood vessels dilate and skin blood flow 

increases. As is shown in Figure 10, this only affects the dynamics of 

our results slightly (the time it takes to reach steady state) and does 

not affect the f inal steady-state solution . 

Resting Blood Flows 

The resting blood flow rates were chosen based on estimates given 

in literature . Muscle blood flow was set at 1.1 Umin, according to 

Ganong (1993) . This f igure does vary considerably when it is 

approximated in literature. Ganong also gives a value equivalent to 

0.55 Umin for blood flow to only active muscles at rest. To test the 

model sensitivity to changes in resting muscle blood flow rate , we 

reset QM .o keeping Os ,o and Os,o constant. Controllers were removed 
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and the model was allowed to reach a steady state at Ta = 30oC. The 

setpoint for XM02 was reset to the new result of the mass balance in 

the QM control equation and the controllers were reconnected . When 

exerc ise was added , it was found that oxygen was removed from the 

blood stream to an unrealist ic level (XM02 < 0.044) , so the gain on the 

muscle blood flow equat ion was increased to obtain this value at 

maximum oxygen uptake . 

The plots in Figure 11 show a comparison between the result in 

Figure 3a and the result of our model with the lower QM , O· Figure 12 

shows a comparison between these steady-state results at Ta= 43.3oC 

and L\M = 1.486 Umin, the original model results for this case, and the 

data of Rowell , Marx, Bruce, Conn , and Kusumi (1966) . The lowered 

Ov1 , o has little effect on the model results during exercise when the 

muscle blood flow gains are increased to prevent impossible mass 

balance results. The expected temperature results occur at rest and 

during exercise when core temperature is increased while skin 

temperature decreases to account for the lowered peripheral blood 

f low . 

Resting skin blood flow was originally set at 0.05 Umin at 30oC 

ambient temperature to agree with experimental data. Resting skin 

blood flows at 0.425 Umin are reported by Ganong (1993), but this was 

presumably in a warmer environment. If we double the skin blood flow 

at rest while holding QM and Os constant and re-solving the steady-

state equations at Ta = 30oC again, we find that core and muscle 

temperatures decrease while skin temperature increases. Evaporative 

heat loss, therefore , decreases while the mass balances remain 



Figure 11 : Figure 3(a) (top) compared with the case of resting muscle blood flow halved and 
muscle blood flow gain, consequently , increased. Data (X) from Saltin, Gagge, and 
Stolwijk ( 1968) . 
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virtually unchanged . As shown in Figure 13, core temperature is now 

underestimated while skin temperature is overestimated , even at a low 

level of exercise. 

Resting cardiac output is set at 5 Umin for a standard man . In an 

attempt to study the effects of its variability upon the results of our 

model, it was set at 6 Umin with the increase reflected entirely in the 

core compartment since we have already studied changes in resting 

skin and muscle blood flows. In the resulting steady-state balances, 



Figure 13: Comparison between model predictions with resting skin blood flow doubled (bottom) 
and Figure 3(a) conditions. Data (X) from Saltin , Gagge, and Sto lwijk (1968) . 
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XCJ2 (and, consequent ly, Xy02) were increased while XrfJ02 and XvC02 

decreased . This is consistent with the increased blood flow through 

the t issue compartment wh ich results . All other variables were the 

same as when the cardiac output was 5 Umin. Exercise add ition to the 

increased cardiac output model yielded the same results as before, 

since tissue blood flow still decreases to the same minimum value . 

Rest ing cardiac output is a parameter which varies significantly with 

individual character ist ics such as size , age, and fitness level , but its 

variat ion does not have a significant effect on our model. 

Conduction 

In most cylinder-type thermoregulatory models, the effective 

thermal conductivity is calcu lated as a combined function of 

conduction and convection . It is shown to increase during blood vessel 

dilation to simulate increases in skin blood flow during exerc ise or 

increasing ambient temperatures . It decreases to a min imum level in a 

cold , rest ing state when blood vessels are constr icted . 

In this model , since we are separating convection by blood flow 

from conduction, a value for conduction between the tissue beds had to 

be est imated. According to Coffey and Seagrave (1972) , thermal 

conductivity approaches a constant value at temperatures lower than 

1 BoC . Since convection should be near a minimum at th is point , we used 

the thermal conductivity to calculate conduction , which can be 

approximated as remaining constant. Coffey and Seagrave also give 

estimations for the thickness of each layer (core, muscles, and skin) 
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which are used in this model. These are then used to calculate the 

values for KcM and KMs in kcal/min . KcM is always twice KMs due to the 

values assigned for the thicknesses of the layers. 

If these K values are doubled, while holding skin and muscle blood 

flows constant, the effect is similar to increasing resting skin blood 

flow (see previous section) considerably. Core and muscle 

temperatures are underestimated wh ile skin temperature is 

overestimated at a low level of exercise in neutral conditions, as 

shown in Figure 14(a). When the original K values are divided by two, 

the resu lts show the opposite effect , which is also fairly extreme (see 

Figure 14(b)) . 

The value of K does appear to have a large effect upon these results, 

but it can be seen that if K is varied , skin blood flow can be adjusted to 

achieve agreement with experimental data . It is actually the rat io of 

conduction to convection (at rest and during exercise) wh ich we are 

attempting to estimate. At rest , as the K values are increased , the 

distance between core and muscle temperatures also increases wh ile 

the difference between muscle and skin temperatures decreases within 

this range. This observation can be used to check the K values against 

rest ing temperature measurements when skin blood flow is low and 

before sh ivering begins (near Ta = 30oC), but most references give such 

a large range for resting muscle temperatures that it wou ld be 

unrealistic to use one value as a basis for determin ing the value of 

conduct ion . 
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Controller Gains 

Variation of the controller gains can have significant effects on 

important variables. The skin blood flow gain, for example , was 

particularly difficult to determine to account for both ambient 

temperature changes and exercise. A much higher value is required to 

support evidence that skin blood flow can reach 7 Umin at rest in a 

43 . 3oC environment. In fact , the gain should be set at 5. 7, assuming 

that below an ambient temperature of 1150f, skin blood flow at rest 

can be increased by diverting blood flow from internal organs. Above 

th is point, cardiac output must increase to provide more blood flow to 

the skin for cooling , as was discussed in Chapter 3. 

The value of 5. 7 is obtained by assuming that Oc can decrease by 2.2 

Umin from the resting state in order to simulate the effects of 

repartitioning of blood flow from splanchnic and renal regions when 

their vessels are maximally constricted. Th is change occurs before 

cardiac output begins to increase. Figure 15 shows the effects of 

changing the gain from 0 .9 to 5. 7 for near neutral ambient conditions 

and a low level of exercise. Skin blood flow appears to be high ly 

overestimated for this case. It is overestimated even more during 

higher exercise levels at the same ambient conditions. A value even 

lower than 0.9 is indicated in some examples of exercise, especially 

exercising in the cold where shivering was first present. 

The controller for muscle blood flow does not have as significant an 

effect on temperature, but does provide the main factor in determining 

cardiac output. Increasing this gain alone increases the muscle blood 



Figure 15: Figure 3(a) results compared to model predict ions when the skin blood f low gain is 
set at 5.7. Data (X) from Saltin, Gagge, and Stolwijk (1968) . 
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flow, but has very little effect on any other variables, besides the 

resulting mass balances. This gain cannot be decreased any further 

since it has been set to reach minimum oxygen concentration in the 

blood leaving the muscles at the maximum oxygen uptake. 

The controller gain for shivering is important in determining the 

magnitude of the oscillatory action of the metabolism changes 

associated with shivering. If the gain is large, metabolism will 

increase very fast when core temperature drops below 36.6oC. Core 

temperature will increase above this threshold and shivering will stop 

until the temperature decreases enough . A true steady-state is never 

reached, but if the gain is small enough, the oscillations become small 

and undetectable. With a gain of 0.3, as shown in Figure 4, no 

oscillations are detected for resting conditions at 20 .SoC. When the 

gain is increased to 0.6, oscillations start out large , but quickly 

dampen out. When the gain is increased further , the oscillations in 

metabolism are large and lead to large, continued, temperature 

oscillations (see Figure 16). 



Figure 16: Temperature oscillations (left) caused by metabolism oscillations (right) when the 
gain on shivering is (a) 0.6 and (b) 0.9. Data (X) from Saltin and Hermansen (1966) . 
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CONCLUSIONS 

A model which describes both the transport of oxygen and carbon 

dioxide and thermoregulation has been developed in this work. This 

model is unique in the fact that it separates convection and conduction 

in compartmental ized energy balances and that it provides a means for 

modeling the contest between skin and muscles in their needs for blood 

flow during exercise and heat stress. 

A major difficulty is encountered in validating this model because 

most studies measure only a few of the variables we are concerned 

with here. Individual variations between subjects and variations in 

experimental conditions between different data sources have produced 

significant disagreement. Nevertheless, the trends that are shown here 

are clearly in agreement with those shown by experimental data. 

Several physiological observations and theories are also supported 

by this model. Blood flow from the tissues to the skin has been 

included to show the repartitioning effect during exercise. The 

attainable skin blood flow rate has been limited at high rates of 

exercise and/or high ambient temperatures, showing that metabo lic 

circulatory regulation is given precedence over thermoregulation at 

high exercise levels. The circulatory delivery of oxygen can be the 

limiting factor in the maximum oxygen uptake attainable. Temperature 

limitations may also be a factor in the peak oxygen uptake attainable 

under certain conditions, at least during exercise in the heat. In a cold 

environment , the subject will exhibit a shivering response to generate 

heat so that the core temperature does not fall too low. 
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The major limitations of this model have now been determined and 

it has been shown which of these can be modeled better (see Future 

Work) and which are due to individual variations between subjects . The 

sensitivity of the model to various parameters has been tested and it 

has been determined which are the most significant to produce changes 

in the model results. 
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FUTURE WORK 

The development of this coupled model has demonstrated some 

important physiological concepts , but is by no means complete. The 

next steps in the modeling process should include: 

1. Attempting to change the skin blood flow algorithm so that it is 

affected more by changes in ambient temperature than by changes in 

metabolism . 

2. Making stroke volume vary, allowing for dehydration effects on the 

thermoregulatory system , and including water balances on the system . 

3. Combining the model with more detailed models of the pulmonary 

and cardiovascular systems. 

4. Expanding the model to include regional variation of flows with 

more compartments and sections, then modeling the effects of 

micrograv ity . 

5. Exploring the possible methods to improve the control relations for 

skin and muscle blood flows. 

6. Expanding on the ways in which changing environmental conditions 

affect the model. Including the effects of water immersion and 

swimming , which will have significant effects on the convective heat 

transfer coefficient. 
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