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1. INTRODUCTION 

1.1 General 

Wood has been used as a bridge material in the United States for hundreds of years. 

Despite the exclusive use of wood bridges during much of the 19th century, the 20th 

century has brought a significant decline in the percentage of constructed wood bridges 

compared to bridges made of other materials. Presently, approximately 10% of the bridges 

listed in the National Bridge Inventory are made of wood. There has recently been a 

renewed interest in wood as a bridge material and in promoting the use of timber for bridge 

construction. 

The United States government passed the Timber Bridge Initiative in 1988. This 

program, headed by the United States Department of Agriculture Forest Service, helps local 

governments construct timber bridges. The Forest Products Laboratory evaluates and 

monitors these bridges through a series of periodic tests. Information from these tests 

provide insight into changes that can be made to improve performance, design and cost 

effectiveness. 
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1.2 Background 

To account for the dynamic loads imposed by passing vehicles, Standard 

Specifications for Highway Bridges created by the American Association of State Highway 

and Transportation Officials (AASHTO) [1] prescribes that dynamic allowance be applied. 

AASHTO has not required the application of the impact factor for wood because of its 

ability to absorb shock and carry larger loads for a short duration. Recently, the exclusion 

of wood bridges from dynamic loading requirements has been questioned. Studies have 

shown that the dynamic impact can account for a significant portion of the total response 

and thus should be considered. 

The dynamic behavior of steel and concrete bridges has been studied analytically and 

experimentally by many researchers. The dynamic behavior is affected by many 

characteristics and is relatively difficult to quantify when using only a few parameters. 

Material properties, vehicle characteristics, path and velocity of the vehicle, riding surface 

quality and initial conditions combine to affect the dynamic response of the bridge. 

Solutions to the problem of bridge vibration produced by moving vehicles have been 

obtained by various researchers by using bridge and vehicle models of various 

sophistication. Models of vehicles have included moving constant forces, rolling masses, a 

single sprung mass, and sprung mass systems with multi degrees of freedom. A review of 

analytical and experimental findings by Paultre et. al. [2] suggests that vehicle spring models 

can be used with reasonable accuracy to represent vehicle behavior. Although 2D models 

are most frequently used, Wang et. al. [3] introduced a 3D 12 degree offreedom model. 
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When modeling a structure's dynamic behavior, more advanced models will not 

generally produce more accurate results. Results have shown that a model improved by 

adding springs and dampers is harder to validate due to uncertainty associated with values 

of mechanical constants. These typically vary over a considerable range~ therefore, many 

authors (Bakht and Pinjarkar [4]) suggest that analytical investigation must always be 

compared to a full scale experiment. 

1.3 Objective of the study 

Since 1993, this program of timber bridge investigation has been ongoing at Iowa 

State University. The initial phases of the study concentrated on stress-laminated and 

longitudinal gIulam deck bridges. The objective of this study is to develop a model capable 

of simulating dynamic behavior and to study this behavior. In the next step to perform a 

test of several field bridges and to study their behavior. 

1.4 Timber stringer bridge 

Typical timber stringer bridge cross and longitudinal sections are shown in Fig. 1.1. 

Ritter [5] describes general design and construction parameters. A timber stringer bridge 

superstructure consists of a series of longitudinal timber beams and a transverse deck. 

Historically, this arrangement has been the most common and economical type of timber 

bridge. For the past 20 years, these bridges have been almost exclusively constructed from 

glued-laminated (gIulam) timber because of their performance superiority and availability in 
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Fig. 1.1 Typical glulam beam bridge configuration 
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larger sections. To enhance their performance further, different species of timber are used 

within one beam so that laminae with a higher modulus of elasticity can be used for outer 

fibers of beam sections. 

Timber stringer bridges are the most practical for clear spans between 20 to 100 ft. 

The most economical and practical beam spacing for transverse glulam decks supporting 

highway loads is between 4.5 to 6.5 ft, depending on performance of the deck. The beams 

and deck are connected with various types of connectors, the most typical being aluminum 

brackets and through bolts. The deck panels mayor may not be interconnected with steel 

dowels. Depending on the volume of traffic on the bridge, the deck is laid over with an 

asphalt wearing surface. 



2.1 Bridge model 

2.1.1 General 
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2. ANALYTICAL MODELS 

Although beam - deck bridges are a very common type of structure, related literature 

is lacking in published material pertinent to the topic of timber stringer bridges. To describe 

the bridge behavior, analysis of a three dimensional finite element (full) model utilizing the 

ANSYS software package [6] was used. The main objective of this step was to develop a 

model to correspond with typical field bridge. This chapter describes the composition of 

the model. 

2.1.2 Model 

The model was assembled using stringers, deck panels, stringer-deck connectors, 

transverse bracing, and supports, and appears in Fig. 2.1. Stringers exposed to in-plane 

loads only were modeled using quadrilateral shell (SHELL 63) elements. This element has 

six degrees of freedom for each node (three rotations and three translations). Material 

properties of the element are determined by a set of four independent engineering constants, 

Ex, By, Gxy and v xy. Deck panels were modeled using the same element as the stringers. 
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deck panel 

transverse stiffeners 
stringer-deck conector 

Fig. 2.1 View of the model 
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Because the panel's deflections are mainly influenced by bending, the membrane stiffness of 

the element was neglected. Stringer-deck connectors were modeled by flexible 3D links 

(BEAM 4). When the bending stiffness of the connections is known from experimental 

measurement, its flexural properties (product EI) are typically calculated as follows: 

where k is the experimentally determined stiffness of the connector and L is its length in the 

model. Transverse bracing (X-bracing) was modeled by tension-only spars (LINK 8). 

Supports were modeled by pin constraints in all x, y and z directions, with longitudinal 

release at one end. The structural elements and the finite elements used to model them are 

summarized in Table 2.1. 

Table 2.1 Finite element assignment to structural components 

I STRUCTURAL ELEMENT I FINITE ELEMENT [6] 

stringer quadrilateral shell (SHELL 63) 

deck quadrilateral shell (SHELL 63) 

stringer-deck connector flexible link (BEAM 4) 

transverse bracing tension-only spar (LINK 8) 

supports pin constraints 
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2.1.3 Composite action of the cross section 

Glulam decks are constructed of panels manufactured of vertically laminated lumber. 

The panels are placed transverse to supporting beams, and loads act parallel to the wide 

face of the laminations. The two basic types of glulam decks are non-interconnected decks 

and doweled decks. Non-interconnected decks have no mechanical connectors between 

adjacent panels. Doweled decks are interconnected with steel dowels to distribute loads 

between the panels. In this study only the case of deck without dowels was considered. 

In the case of non-interconnected deck, the transfer of longitudinal force through the 

composite deck, which determines the degree to which the sections behave as a composite, 

depends on the following factors: 

• Condition of the surfaces facing the gap. 

The deck is on the compression side of the composite section. Under gravity loads, 

negative strains may close the gaps and some portion of the compression force can 

be generated through bearing between the panels. 

• Geometrical position of the panel 

Placement of the stringers assumes high stiffness (EL) in the longitudinal direction of 

the bridge. The same direction for the panel, however, is associated with the 

transverse modulus of elasticity Er, which is about 118 -1110 of the EL value. 

• Flexural stiffness of the fasteners 
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The amount of composite action exhibited by the glulam stringer - deck section was 

experimentally studied by Gutkowski et. al. [7] as a function of all the three factors 

identified above. Ritter [5] suggests there are various types of deck attachments to glulam 

beams, the most common being aluminum brackets and lag screws. Gutkowski 

experimentally measured the stiffuess of lag screw connections. Depending upon the timber 

grade, the average stiffuess values were 47 kips/in. and 46 kips/in. for southern pine and 

Douglas fir, respectively. Considering only the case of interest (non-interconnected deck) 

we can conclude that for the practical stiffuess values of the connectors shown above, the 

amount of composite action is between 0 and 1 % depending on the grade of the used 

timber. The difference between deflection of a specimen with no composite action (the 

stringers carry all the load) and the deflection of a specimen where the composite 

contribution of the deck is allowed, was within 1 %. Considering that conclusion, it was 

decided to neglect the composite action entirely and proceed with the model that would 

allow for no composite action at all. 

2.1.4 Finite Element Mesh 

For this model, the mesh size was established by considering the following factors: 

• Longitudinal dimension of the mesh must be able to accommodate the changing 

position of a vehicle for dynamic analysis. 

• The layout of the mesh of the stringers must enable attachment of the deck. 
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• The non-restrained dimensions of the mesh will be kept to maintain small aspect 

ratio, yet a reasonable number of elements in terms of computation time will be used. 

The size of elements in a longitudinal direction of the bridge was then established at 

17 in. to match a step of the vehicle. 

2.2 Vehicle model 

The first chapter briefly discussed the approach to modeling a vehicle for dynamic 

analysis. This study continues as an ongoing project, and the concept of the model 

developed and validated by Wijesooriya [8] was adopted for this analysis. Nevertheless, 

since the research suggests that the vehicle model and parameters have a prominent effect 

on the response of the bridge, more attention was paid to the vehicle model than in the 

previous study. The research [2] has shown that the following vehicle parameters are 

important to the bridge response: 

• axle spacing 

• suspension parameters 

• initial conditions 

2.2.1 Vehicle suspensions 

2.2.1.1 Steel leaf suspension 

It was found that the force-deflection behavior of mechanical steel leaf suspensions 

that are commonly fitted in commercial vehicles is generally non-linear [9]. The test results 
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indicate that truck leaf springs may exhibit varying levels of effective spring rate in addition 

to damping, coulomb friction or hysteresis depending upon the loading of the spring and 

amplitude of the oscillation. The load test and behavior of this type of suspension is 

thoroughly described in references [9], [10] and [11]. In order to model this behavior, 

researchers used two approaches to the model. First is a linear spring-damper combined 

with a coulomb friction element model used by Drosner [12] and Wang [3]. Second is the 

analytical description developed by Francher [11], and used by Nowak [13] and Green et. 

al. [14]. The model accounts for nonlinearity of the spring rate, which is typically exhibited 

by multi-leaf rear springs. 

2.2.1.2 Air suspensions 

The air suspensions, sometimes also referred to as "road friendly" suspensions, were 

developed in attempt to reduce damage afforded to infrastructure and cargo. These 

suspensions display linear behavior with a natural frequency of about 2 Hz, and damping 

greater than 20010. Hardy and Cebon [15] modeled this type of suspension with a linear 

spring/viscous damper model. 

It has been recognized that air sprung vehicles usually apply smaller dynamic loads to 

the bridge, and produce smaller dynamic amplification compared to the steel suspensions. 

The bridge response is less dependent upon speed [14], [16]. The frequencies of the body 

bounce modes of vibration in vehicles fitted with air suspensions are also lower than the 

frequencies of steel suspension fitted vehicles. It is the opinion of the author that the higher 

(axle related) frequencies are the same regardless of the vehicle suspension. 
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2.2.2 Finite element model 

In the model shown in Fig. 2.2a, the largest portion of the vehicle mass is attributed 

to the rigid chassis, and is represented by mass Ml (MASS 21). Masses M2, M3, and M4 

are associated with the axles. Suspension of the front axle and the common suspension of 

the rear tandem and tires are modeled by linear spring-damper elements (COMBIN 14). 

These elements are connected with rigid links (BEAM 4). With regard to the previous 

discussion it is apparent that the vehicle is representative of one fitted with the air 

suspenSIOn. 

Based on the preVIOUS research [13], [14] and [15], the values of stiffuesses 

associated with the suspensions and tires were assumed to be 7 and 14 kips/in./axle for the 

front and rear suspensions, and 20 kips/in./axle for tires. To validate the model and justify 

these values, two sensitivity studies were considered: 

• mode shape analysis of the vehicle to determine its mode frequencies 

• transient analysis of the vehicle subjected to an impact load 

The criteria used to validate the model were frequencies exhibited by the vehicle. 

2.3.2 Model validation 

2.3.2.1 Modal analysis 

It was found that heavy commercial vehicles exhibit two vibration modes: body 

bounce vibration at frequencies ranging from 2 - 5 Hz, and wheel hop vibration at 
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frequencies greater than 7 Hz and typically around 15 Hz [14], [16]. For case of the air 

suspension, the vibration mode associated with the body is typically lower than 2 Hz. 

Two sets of values for suspension and tire stiffness were considered for the purpose 

of the analysis; they appear in Table 2.2. The vehicle was assumed to have five degrees of 

freedom, as shown in Fig. 2.2b. The summary of mode frequencies appears in Table 2.2 

and the respective mode shapes appear in Figs. 2.3. The first two modes are associated 

with the vehicle's body (body bounce and body pitch) and the other three modes describe 

action of the wheels (pitch and bounce). The literature often refers to the axle bounce 

modes as "axle hop". It can be concluded that, for the set of values selected for the analysis 

(set 1), both of the frequencies associated with the body and with the axles satisfy the 

assumptions for an air suspended vehicle. The frequencies determined for the other set, 

especially those associated with the wheels, are rather high. 

2.3.2.2 Transient analysis 

According to Green [14], an air sprung vehicle riding on rigid pavement imposes 

wheel forces with a frequency of less than 2 Hz. The transient analysis was conducted to 

validate this feature of the model. In lieu of analysis of the vehicle riding on a rough surface 

an impact of the magnitude of one-half of the weight of the truck was suddenly applied to 

the center of gravity of the vehicle for the time of 1 sec. and was then suddenly removed. 

Free vibration of one of the rear axles and of a point directly above the suspension were 

monitored for another two seconds (see nodes 8 and 5, respectively, in Fig. 2.2a). 
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Table 2.2 Vehicle modal shape analysis results 

Vehicle parameters Units Set 1 Set 2 

Front suspension stiffness Kfm./axle 7 10 

Rear suspension stiffness Kfm./axle 14 20 

Coefficient of suspension damping K-secrm. 0.05 0.05 

Tire stiffness Kfm./axle 20 30 

Mass of the chassis K-sec2rm. 0.115 0.115 

Axle mass K-sec2rm. 0.002 0.002 

Modal shape frequencies 

1st mode shape - body bounce Hz 1.7 2.0 

2nd mode shape - body pitch Hz 3.1 3.7 

3rd mode sh~ - axle_pitch Hz 15.9 19.5 

4th mode shape - axle hop Hz 18.5 22.5 

5th mode shape - axle hop Hz 18.6 22.6 
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-
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Fig. 2.3 Modal shapes of the vehicle 
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The time history plots of accelerations and frequency content plots are presented in 

Figs. 2.4 through and 2.7. The time history plots show only the free vibration parts of the 

response. The results correspond to observations from field tests made by Green [14] and 

Heywood [16], and provide evidence that frequency of the dynamic loads exerted by the 

wheels occur in the frequency of about 1.6 Hz and 3.1 Hz (Fig. 2.5 and 2.7), which 

corresponds to the first (body bounce) and second (body pitch) modes of the vehicle. The 

frequency of the axle hop was observed to be 18 Hz (Fig. 2.7). These frequencies also well 

correspond to the results of the mode analysis presented in Table 2.2 Hence both of the 

studies confirm the validity of the vehicle model. 

2.3 Vehicle/bridge interaction model 

2.3.1 General 

In the past, researchers have been trying to determine the most important factors that 

influence the dynamic response of a bridge subjected to moving vehicular forces and have 

concluded that the most important ones are: 

• 

• 

• 

• 

Bridge natural frequency. 

Speed of the vehicle. 

Roadway roughness. 

Approach to the bridge (bump). 
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2.3.2 Dynamic Amplification Factor 

The dynamic character of the response of bridges to traffic is presently well 

established. A moving vehicle on a bridge generates deflections and stresses that are 

generally greater than those caused when the same vehicle loads are applied statically. The 

dynamic amplification (DA) resulting from the passage of vehicle on a specific bridge is 

defined as: 

~ ely" - ~~-l~i 
bS"'''t 

The dynamic amplification factor (DAF) used herein to quantify comparison between 

different bridges is defined as: 

DAF= 1 +DA 

where: 

o dyn = Maximum deflection under the vehicle traveling at normal speed 

o stat = Maximum deflection under the vehicle traveling at crawling speed 

DAF = Dynamic amplification factor 

This definition is consistent with most recently published work [2], [14], [16], etc., 

and allows for direct comparison of results and findings. The maximum deflection under a 

vehicle traveling at crawling speed is usually very close to the static value. The published 
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research [2], [13], [14], [15], [16], [17] also agrees on some factors that influence the DAF, 

which can be summarized as follows: 

• The maximum dynamic amplification occurs when the dynamic component of a load 

varies at the bridge's first natural frequency. Therefore some national codes 

(Canada, Switzerland) increase the dynamic allowance for bridges with natural 

frequencies between 2 - 5 Hz. Heywood [16] points out that similar dynamic 

coupling with the wheel frequencies may occur for bridges with high natural 

frequencies. 

• Large amplification occurs when the maximum response due to succeeding axles 

coincide. 

• 

• 

• 

The maximum response (DAF, max) is not affected by damping. 

The dynamic factor is smaller for two vehicles than for one. 

The heavier the weight carried by a vehicle, the lower the impact factors are 

Some of these findings will be addressed in the sensitivity study presented in the subsequent 

chapter. 
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2.3.3 Bridge/vehicle interaction model 

The differential equation of motion defining the bridge/vehicle interaction is: 

[M] {x} + [C] {x} + [K] {x} = {Flo 

where [M],[C] and [K] are the known mass, damping and stiffness matrices of the bridge, 

respectively. {F} is the vector of dynamic excitation and {x} is the vector of the sought 

nodal displacements. The solution is obtained under the following assumptions: 

• The vehicle travels at a constant speed. 

• All the components move with the same velocity in a longitudinal direction. 

• Each tire contacts the roadway at a single point. 

• Force inputs are limited to the vertical direction. 

• The structural damping of the bridge is assumed 5% of critical. 

The solution for the displacement {x} was also developed and validated by Wijesooriya 

[8], and will not be discussed here. 
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3. SENSITIVITY STUDY 

3.1 General 

The main objective of this chapter is to investigate the behavior of the model and its 

sensitivity to parameters as identified in Chapter 2. Models of two bridges were selected to 

carry out this investigation. These bridges were carefully chosen to be representative of 

bridges with different structural characteristics. The first bridge is a 40 ft. long, two lane, 

five stringer bridge. The other is a 30 ft., one lane, four stringer bridge. For the purpose of 

the following discussion, they will be referred to as Bridge 1 and Bridge 2, respectively. 

With regard to transverse stiffuess, Bridge 1 is rather flexible compared to Bridge 2. 

Although both bridges have a deck of the same depth (5 in.), the stringers of Bridge 1 are 

farther apart (60 in. compared to 51 in. for Bridge 2)~ thus, Bridge I is more flexible. Also, 

the transverse stiffeners of Bridge I are twice as rigid as those of Bridge 2. A summary of 

the relevant structural bridge parameters appears in Table 3. I. The vehicle parameters 

conform to Set 1 in Table 2.2. 
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Table 3.1 Bridge parameters in sensitivity study 

Bridge parameters Units Bridge 1 Bridge 2 

Length in. 501 366 

Width in. 288 190 

Number of stringers - 5 4 

Stringer spacing in. 60 51 

Stringer dimensions (depth, width) in., in. 41 1/4 x 65/8 31 5/8 x 5 

Deck thickness in. 5 5 

Longitudinal Modulus EL Ksi 1830 1830 

Transverse Modulus ET Ksi 180 180 

Shear Modulus GLT Ksi 100 100 

Density pef 50 50 

Structural damping % crit. 5 5 
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3.2 Mode frequency analysis 

Mode frequencies are elementary dynamic characteristics of a bridge. In the second 

chapter it was mentioned that when the first mode frequency matches the vehicle body 

bounce or axle hop frequencies, large dynamic amplifications may occur. The first mode 

shape of Bridge 2 is longitudinal because of its transverse rigidity. In transversely flexible 

Bridge 1 the first mode shape is transverse and non-symmetrical. The first eight mode 

shapes of Bridge 1 appear in Fig. 3.1 and are summarized in Table 3.2. 

The first mode shape (Fig. 3.1 a ) is transverse, where the stringers have deflected in a 

half-sine wave shape. The deflection is maximum for the outside stringers (positive for one 

and negative for the other) and zero for the middle one at any section. The second shape 

(Fig. 3.1 b) is the first longitudinal one, where all the stringers underwent the same 

deflection in a transverse direction. The third shape (Fig. 3.1c) is a transverse shape similar 

to the first one, except both the outside stringers underwent downward deflection and the 

middle stringers underwent upward deflection. The transverse deflection of the section is no 

longer linear. In the fourth shape (Fig. 3.1d), the outside stringers already exhibit full sine­

wave deflection and the transverse deflection of the section is linear. The fifth shape (Fig. 

3 .1 e) is the second longitudinal one and all the stringers underwent the same full sine-wave 

deflection. In the sixth shape (Fig. 3.1t), the stringers have deflected in a half sine wave 

shape, and the section has transversely deflected in full sine wave. The seventh (Fig 3.1 g) 

shape is similar to the fourth one, except the outside stringers underwent the same 
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a) First mode shape. f~ 7.4 Rz: 

b) Second mode shape, f~ 7.5 liz 

Fig. 3.1 FujI model mOde shapes 
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c) Third mode shape, f = 13.9 Hz 

d) Fourth mode shape, f= 24.7 Hz 

Fig. 3. 1 (continued) 
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e) Fifth mode shape, f= 25.6 Hz 

f) Sixth mode shape, f= 27.6 Hz 

Fig. 3 .1 (continued) 
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g) Seventh mode shape, f= 28.5 Hz 

h) Eighth mode shape, f= 32.7 Hz 

Fig. 3 .1 (continued) 
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Table 3.2 Summary of the modal shape analysis results 

Bridge 1 Bridge 2 

Mode Frequency [Hz] Shape Frequency [Hz] Shape 

1 7.4 transverse 9.8 longitudinal 

2 7.5 longitudinal 10.1 transverse 

3 13.9 transverse 30.9 transverse 

4 24.7 transverse 33.1 transverse 

5 25.6 longitudinal 33.3 longitudinal 

6 27.3 transverse 41.4 transverse 

7 28.5 transverse 46.1 transverse 

8 32.7 transverse 64.3 longitudinal 

The vehicle mode frequencies appear in Table 2.2. 
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(downward) deflection, opposite to the middle one. The eight shape is again a transverse 

one, where the stringers exhibit one and a half sine wave deflection. 

The frequencies of the first longitudinal modes from the computer analysis were also 

compared to a hand calculation utilizing a formula for a simply supported beam with 

distributed properties: 

The results produced by the formula agreed with the ANSYS computation results within a 

10% degree. When compared with Paultre [2], there is an agreement. For the hand 

calculation, the stifihess of the stringers was assumed to contribute toward the longitudinal 

stiffuess of the bridge. Any effect of the deck was ignored. 

The effect of the finite element mesh coarseness on the mode frequency response was 

also investigated. The standard model of Bridge 1 was compared to a model with a finer 

mesh of the stringers (every finite element of the standard mesh was further horizontally 

divided into three elements). The differences were smaller than 2% and provided evidence 

that a finer mesh would not significantly improve the model. The values are also included in 

Table 3.2. 



3.3 Transient analysis 

3.3.1 General 
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The objective of the time history analysis was to investigate how the following 

parameters influence the model's dynamic response: 

• Vehicle speed 

• Initial conditions of the vehicle 

• Structural damping of the bridge 

• Axle spacing of the vehicle 

In order to simplify the comparison, the parameters of interest were varied. The response 

was compared to the standard conditions of the model. The summary of these standard 

conditions was already presented in Table 3.1. 

3.3.2 Vehicle speed 

Because timber stringer bridges are commonly found on county roads and lower 

grade highways, a spectrum of speeds between 15 and 45 mph was considered. The results 

for both bridges in tenns ofDAF are shown in Fig. 3.2 and Table 3.3. For Bridge 1, four 

time - deflection plots of static and dynamic displacements for speeds of 15,25,35, and 45 

mph, respectively, are presented in Figs 3.3a, 3.4a, 3.5a and 3.6a. It is apparent that the 

response changes with velocity. A large amplitude of vibration can be noted for the speed 
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Table 3.3 Summary of DAF for the sensitivity study 

BRIDGE 1 BRIDGE 2 

SPEED SMOOTH BUMP SMOOTH BUMP AXLE(*) 

15 1. 02 1.02 N/A 1.04 N/A 

20 1.04 1.09 1.03 1.08 N/A 

23 N/A 1.15 N/A N/A N/A 

25 1.08 1.47 1.05 1.14 1.05 

28 N/A 1.15 1.16 1.41 1.10 

30 1.05 1.11 1.14 1.25 1.09 

35 1.05 1.04 1.06 1.11 1.07 

37 N/A N/A 1.07 N/A 1.09 

40 N/A N/A 1.09 N/A 1.10 

42 N/A N/A 1.09 N/A 1.09 

45 1.08 1.11 . 1.05 1.06 1.07 

53 1.08 1.09 N/A N/A N/A 

* = Vehicle with longer axle spacing 
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of 25 mph. The dynamic amplification is high (1.47) at this speed and decreases afterwards. 

The dynamic amplification increases again for speeds greater than 35 mph. 

3.3.3 Vehicle initial conditions 

A 4 in. long and 1.5 in. high artificial bump placed at the entrance to the bridge was 

included in the model to excite vehicle vibration before it enters the bridge. The path of the 

tire riding over the bump was modeled as follows. The tire climbs on and off the bump 

gradually and follows a straight line path. The horizontal length of the ascending part of the 

tire path is 1.5 in. The next 1 in. the tire follows a horizontal straight line path on the top of 

the bump and then descents for another 1.5 in. The use of the bump to account for 

pavement irregularities is common in both analytical and experimental studies. Bakht and 

Pinjarkar [4] note, however, that this case may produce overestimated results if the bridge 

and approach pavement are well maintained. The results for both bridges in terms of DAF 

are shown in Fig. 3.2 and Table 3.3 and time deflection plots for Bridge 1 are shown in 

Figs. 3.3b, 3.4b, 3.Sb and 3.6b. It is shown, that for a given bridge/vehicle system, there 

exists a critical speed at which the response is amplified for a bump condition. Although the 

amplification for this speed is very high (DAF = 1.47 for Bridge 1), the speed range for the 

high amplification is very narrow (the DAF drops to 1.18 at speeds which are higher or 

lower by as little as 3 mph). The response of the bridge for speeds other than the critical 

ones does not seem to be influenced by the bump to a significant degree for the same 
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bridge. For Bridge 2 (see Fig. 3.2b), however, the difference is apparent for a wider range 

of speeds. 

3.3.4 Analysis in frequency domain 

To obtain a more in-depth understanding of the behavior at the critical speed, a 

detailed analysis in time and frequency domain was carried out for both bridges. Since the 

produced results were similar, only the case of Bridge 1 will be discussed. Three points on 

the bridge and three points on the vehicle were monitored (Fig. 3.7). Those for the bridge 

are: 

point 1 - midspan, at the bottom of the middle stringer 

point 2 - midspan, at the bottom of the most external stringer 

point 3 - quarterspan, at the bottom of the middle stringer 

Those for the vehicle are (Fig 3.7): 

point 1 - the center of the body mass 

point 2 - directly above the rear suspension 

point 3 - first axle of the rear tandem 

Barton et. al. [18] notes that most of the mode shapes can be identified with this layout of 

accelerometers. For each of the speeds, there are two cases (smooth and bump vehicle 

entry). For each of the two cases, there are three time-deflection plots for the bridge points, 

six time acceleration plots for the bridge and vehicle points and six frequency content plots 
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for the bridge and vehicle points. A Fast Fourier Transform (FFT) was utilized to obtain 

the frequency content plots. 

In Fig. 3.8 (smooth entry of the vehicle traveling at the speed of 45 mph) it is 

apparent that two frequencies dominate the response. Since the frequency of 15.2 Hz is 

apparent at all three bridge monitoring points, it is implied that the bridge vibrates in the 

third mode shape (mode frequency l3.9 Hz, Fig. 3.lc). Further proof can be observed 

through the time-deflection plots in Fig. 3.9. In Fig. 3. 1 c, the dynamic deflection should be 

maximum for the outside and minimum for the middle stringers at a given instant (and vice 

versa after a time equal to one-half of the natural period of the mode). This is consistent 

with the time deflection record, and is particularly noticeable in Fig. 3.9 at time t=0.45 sec, 

where the dynamic component of the deflection for points 1 and 3 (middle stringer) is 

exactly 180 degrees out of phase from point 2 (outside stringer). The other dominant 

frequency is 30.3 Hz, which is prominent only at point 3. The point is at the quarterspan of 

the middle stringer. This frequency is very close to the frequency of the seventh mode shape 

(28.5 Hz). In Fig.3.1g the points where the bridge vibration record is available, the seventh 

mode should contribute only at point 3 (points I and 2 are located at midspan which is a 

point of contraflexure for this shape and thus does not contribute to the response). 
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Based on the results of the analysis the following conclusions about the bridge 

behavior can be made: 

• Since the vehicle was in a concentric transverse position on the bridge, only the 

transversely symmetric modes of the bridge vibration were excited. 

• The participation of the modes differs with speed. 

• For smooth entry of the vehicle, the second mode (first longitudinal) dominated the 

response. 

• The bump case excites higher modes of vibration and the second (first longitudinal) 

mode is not always the dominant one. The third mode is dominant at 35 and 45 mph 

(Figs. 3.10 and 3.8). The fifth (second longitudinal) mode is excited at 20 mph (plots 

not included). The seventh mode is excited at 45 mph (Fig. 3.8). 

• When examining higher speeds (35 and 45 mph) for the bump condition, the higher 

modes tend to dominate the bridge response. 

• For the critical speed (25 mph), the second (first longitudinal) mode dominates the 

smooth entry condition (Fig. 3.11), and is the only participating mode for the bump 

case (Fig. 3.12). 

The following conclusions about the vehicle behavior can be made: 

• The level of accelerations measured on the axle (point 3) was always higher by an 

order of magnitude for the bump case. 

• Both the vehicle's body and axle related modes were excited. (Fig. 3.13) 
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• Within the axle related frequencies, both axle hop (Fig. 3.14) and axle pitch (Fig. 

3.15) modes were excited. 

• The high axle frequencies are dominant at the center of the body mass for the critical 

speed of the vehicle (Fig. 3.13) 

The plots of the analysis results not discussed in the text appear in Appendix 1. 

3.3.5 Bridge damping 

The undamped response of Bridge 1 was considered for smooth entry of the vehicle 

at the critical speed of25 mph. Time-deflection plots of the damped response (5% critical) 

and undamped response appear in Fig. 3.16. The undamped response produced higher 

maximum amplification and amplitudes of the bridge vibration. The observed DAFs were 

1.083 for the damped and 1.149 for the undamped responses. 

3.3.6 Vehicle axle spacing 

A case of longer distance between the rear tandem axles was considered. The 

standard 51 in. longer, 68 in. spacing was considered. The vehicle traveled over Bridge 2 in 

speeds ranging from 20 to 45 mph. The results in terms of DAF appear in Fig. 3.17. 

Compared to the response under the standard vehicle, the DAF is lower for the standard 

vehicle critical speed and higher for the speeds around 40 mph. The observation supports 

of the hypothesis that the DAF for a bridge is maximized when the loads due to succeeding 

axles coincide. Considering the natural frequency of the bridge (f = 9.764 Hz), the speed 
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Fig. 3.16 Damped and undamped response of the bridge 1 for vehicle speed 25 mph 
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for the rear tandem axles to pass the same point is 28 and 38 mph for the standard and 

modified vehicle, respectively. The higher amplification for the standard vehicle may be 

explained by the fact that it occurs for a lower speed, and thus, more oscillations can occur 

with the vehicle on the bridge. 

3.3.7 Conclusion 

Based upon the presented sensitivity study, the following conclusions can be made: 

• For both smooth and bump entry cases, a critical speed can be found for the 

particular vehiclelbridge system, for which the dynamic amplification is the highest. 

• The highest amplification (DAF) occurs for the speed, where time for the rear axles 

to pass the same point coincides with the natural period of the bridge. Also, for the 

critical speed the bridge appears to respond in the first longitudinal mode shape. 

• The bump placed at the entrance of the bridge amplifies the maximum dynamic 

deflection, possibly multiple times. 

• Higher modes participate or even dominate in the bridge response, particularly for 

higher speeds. 

• The undamped response seems to produce a higher DAF. 

• Different axle spacing of the vehicle changes the variation ofDAF with speed. 
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4. EXPERIMENTAL INVESTIGATION 

4.1 General 

The objectives of the experimental investigation were to determine the dynamic 

characteristics and perfonnance of several field bridges and to acquire data to validate the 

analytical models discussed in Chapters 2 and 3. The bridges selected for the tests were the 

Mud Creek Bridge, Wittson Bridge and Chambers Co. Bridge, each located in the state of 

Alabama. The first two bridges consisted of four simple spans, and the last one was a single 

span bridge. Mud Creek and Chambers Co. Bridge each have two traffic Janes, while 

Wittson Bridge has one. The instrumentation for the bridges and the testing procedures 

were generally the same for all of the bridges and will be discussed prior to the results for 

each bridge. A concluding summary of the results for all the bridges is presented at the end 

of this chapter. 

4.1.1 Bridge instrumentation 

The tests were designed according to Ritter et. al. [19] and Barton et. al. [18] to 

acquire data to determine the bridge's natural frequencies, dynamic amplification and 

structural damping. General layout and schematic of the bridge instrumentation appear in 
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Fig. 4.1. The dynamic response of the bridge was recorded during the passage of the 

testing vehicle traveling at a constant velocity and for several more seconds after the vehicle 

left the bridge to acquire both forced and free vibration data. Deflections were measured at 

midspan of each of the stringers, and at quarterspan of the middle stringer (or the one 

closest to the middle in the case of even number of stringers) using a Celesco string-type 

direct current potentiometer. A frame consisting of surveying tripods supporting a 2- by 

12-in. board was used to support the displacement transducers. Data was collected using a 

Hewlett-Packard 3852 data acquisition/control system (DAS) equipped with two HP 

44711,24 channel FET multiplexers and HP 44702, 14 bit high speed voltmeter. The DAS 

was controlled and the data was processed and stored in a portable 486DX-33 PC running 

mASIC for windows. The entire system was triggered when the vehicle crossed the tape 

switch at the bridge entrance. Another tapeswitch was installed at the end of the bridge to 

determine the actual velocity of the test truck. The system was powered by a portable 

generator. 

Three accelerometers [Seismic Accelerometer, Model 393C by PCB Piezotronics] 

were mounted on the bridge. Two of them were placed at midspan on two stringers 

(middle and exterior one) and one at quarterspan of the middle stringer (Fig. 4.1). This 

layout corresponds to the one used for the analytical study. 
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4.1.2 Vehicle instrumentation 

The vehicles used in this testing were three axle dump trucks with multi-leaf steel 

springs. The front axle had two tires and the rear axles had four tires each. The test 

vehicles were instrumented with two accelerometers to acquire a record of the vehicle 

vibration before it entered the bridge and while on the bridge. These accelerometers were 

mounted on the vehicle frame directly above the suspension (A2) and on the rear axle (AI) 

to determine frequency of the vehicle body and axle vibration. A schematic of the test 

vehicle and the vehicle instrumentation are shown in Fig. 4.2. A schematic of the vehicle 

suspension and placement of the accelerometers appear in Fig. 4.3. A photo of a typical 

test vehicle appears in Fig. 4.4. 

The vehicle acceleration data was collected simultaneously with the bridge 

displacement and acceleration data. The setup consisted of a Gould digital oscilloscope 

(DSO) and two PCB accelerometers. The accelerometers were high sensitivity integrated 

circuit piezoelectric with a quartz tri-shear design. The accelerometers were wired into 

conditioner modules and from there into the DSO. The DSO was connected to a laptop 

computer via IEEE-488 interface. Transition software from Gould controlled the DSO so 

that it waited for a trigger to collect the signals from both channels. Data was then 

transferred to the laptop and the DSO was reset for the next trigger. Power to the laptop 

and oscilloscope was provided by either batteries or the electrical system of the vehicle 

through the fuse box or cigarette lighter. Digital filtering of the acquired data was done 

during the reduction as need~d. 
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Fig. 4.2 Test vehicle 
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Fig. 4.4 Typical testing vehicle 
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A tapeswitch that was mounted to the front bumper of the vehicle was used to 

trigger the DSO. A 2- by 4-in. board was attached parallel to the bumper to extend the 

tapeswitch approximately 2 ft to the side of the truck to hit a vertical rod placed on the 

roadway to trigger the DSO. The rod was positioned so that the DSO was triggered 20 ft 

before the front axle of the vehicle entered the bridge. 

4.l.3 Test procedure 

The dynamic behavior of the bridge was evaluated for several vehicle velocities, 

generally between 10 and 40 mph with 5 mph increments. Two approach conditions were 

considered: in situ approach conditions and an artificial rough approach, which was 

simulated by a 2- by 4-in. board placed at the entrance of the bridge. For the two lane 

bridges two transverse positions of the vehicle were also considered: Concentric, with the 

axle of the truck centered on the bridge and eccentric, with the left wheel line right of the 

centerline. 

String lines were used to provide a guide for the driver to follow. Visual records 

were obtained on each test indicating the vehicle deviation from the string line position. 

The magnitude of the response was influenced by the differences in transverse position of 

the vehicle on the bridge for each test (tracking). Therefore, the maximum deflections were 

adjusted for calculation of the dynamic amplification. These adjustments are explained in 

detail in the appendix. 
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A crawl test was perfonned for each loading position to obtain a basis for a dynamic 

amplification evaluation. The crawl time-deflection plot was fitted with a smooth curve 

which was used for the actual amplification evaluation. The crawling speed of the truck 

was approximately 2 mph. The velocity of the truck was determined by the tapeswitches 

installed at the entrance and end of the bridge or bride span. Visual observation was made 

at each test site to assess the surface roughness of the approach road and the bridge wearing 

surface. The surface roughness was classified according to a scale presented by Dodds 

[20]. 

4. 1.4 General format of results discussion 

The respective bridges will be discussed in the following fonnat: 

Bridge and vehicle description 

Bridge dimensions, detailed layout of instrumentation, roadway roughness conditions and 

data pertaining to the vehicle will be discussed. 

Bridge free vibration response alld vehicle vibration 

Observed natural frequencies and calculated damping from the free vibration record of the 

bridge and record of vehicle vibration on pavement will be discussed. 

Forced vibration response 

Forced vibration response will be discussed based on analysis in time and frequency domain. 
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Dynamic amplification 

The bridge response will be discussed in terms of dynamic amplification factors calculated 

according to Chapter 2.3.2 

The following notation will be used in the discussion of results: 

I = in situ approach conditions and concentric vehicle test 

EI = eccentric vehicle test and in situ approach conditions 

B = "artificial bump approach conditions and concentric test of the vehicle 

EB = eccentric vehicle test and artificial bump approach conditions 

L = vehicle test with a decreased tire pressure to simulate a low tire stiffness 

8.7EB = vehicle test at speed specified in mph, approach conditions and vehicle 

position 

Al = accelerometer placed at the rear-most axle of the vehicle (Fig. 4.3b) 

A2 = accelerometer placed at the frame of the vehicle (Fig. 4.3a) 

4.2 Mud Creek Bridge 

4.2.1 Bridge and vehicle description 

Mud Creek Bridge is a two lane bridge consisting of four simple spans. A photo of 

the bridge appears in Fig. 4.5. The stringers of adjacent spans are placed end to end with 

no visible gaps between them. Also, deck panels overlap at the ends of stringers on 

adjacent spans (Fig. 4.6a). The 41.75 ft long south end span was selected for the test. The 
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a) vehicle on the bridge 

• 

b) vehicle entering the bridge for an eccentric run 

Fig. 4.5 Mud Creek Bridge 
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DECK PANEL 

STRINGER OF SPAN 1 

WEARING SURFACE 

STRINGER OF SPAN 2 

BEARING 

SUPPORT 

a) detail at internal support 

ATYPICAL SHORT DECK PANEL 

XXXXXXXX 

WEARING SURFACE 

TYPICAL DECK PANEL 

STRINGER OF SPAN 2 

BEARING 

ABUTMENT 

b) detail at external support 

Fig. 4.6 Mud Creek Bridge - details 
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22.5 ft long, 51 in. wide and 5 in. deep deck panels are supported by five stringers at 60 in. 

on centers~ A cross section of each is 43 in. deep and 6.75 in. wide. The stringers are made 

of Southern Yellow Pine (EL = 1,920 to 2,160 ksi). Steel guardrail on timber posts are is 

installed on both sides of the bridge. The layout of the bridge and the instrumentation 

appear in Fig. 4.7. The cross section is shown in Fig. 4.8. 

Travelling from the south, the approach road to the bridge is in a downward grade 

that levels at 150 ft before the bridge. An upward grade of 0.4% is constant along the 

bridge. According to a visual observation, the approach road surface roughness conditions 

could be characterized as good. The bridge pavement surface roughness could be 

characterized as very good. The first deck panel of the bridge was only 5 in. wide and 

elevated by approximately 0.75 in. above the riding surface in the panel's immediate 

vicinity. This created a natural bump (Fig. 4.6b). 

The test truck was a three axle dump truck with 145 in. between the steering axle 

and the first rear tandem axle (dimension 'a' in Fig. 4.1) and 53 in. between the rear tandem 

axles (dimension 'b' in Fig. 4.1). The axle loads WI, W2 and W3 were 11 kips, 25.2 kips 

and 25.2 kips, respectively~ total truck weight thus was 61.4 kips. Accelerometer data was 

taken while the truck was driven on the approach road to determine the frequencies inherent 

to the truck. 
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4.2.2 Discussion of the results 

4.2.2.1 Bridgejree vibration response and vehicle vibration 

Because of the deck panel placement at the stringer joint of adjacent spans, a certain 

degree of continuity was exhibited by the bridge. The accelerometer record of the free 

vibration was disturbed by the presence of the vehicle on subsequent spans of the bridge~ 

therefore it was difficult to determine structural damping. The fundamental frequency of 

the bridge was determined to be 8.9 Hz. The frequency of the vehicle body bounce was 

found to be 2.5 Hz. The frequency of the vehicle axle hop was 10.2 Hz (Fig. 4.9). 

4.2.2.2 Forced vibration response 

Due to the rough in situ approach to the bridge, only in situ tests were performed 

(i.e. no artificial bump was used). The vehicle transverse positions for both of the tests are 

shown in Fig. 4.8. The plots of bridge deflection and vehicle position along the bridge are 

shown in Fig. 4.10. The deflections of the middle stringer G3 and the exterior stringer G5 

are shown in the figures for the concentric and eccentric tests respectively. Observation of 

this data show three different patterns of bridge behavior. These patterns can be observed 

for both concentric and eccentric tests at these speed intervals: low (up to 10 mph), medium 

(11 to 24 mph) and high (over 25 mph). three speed intervals will be discussed in following 

paragraphs. 

The response of the vehicle in the low speed interval is dominated by a low 

frequency of 2.6 Hz (Fig. 4.11a). The frequency of the bridge vibration at speeds at 7.51, 

10.41 and lO.4E (2.54 Hz, Fig. 4. 11 b) is very close to the body bounce frequency of the 
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Frequency (Hz) 

b) frequency content, Al 

10 20 30 

Frequency (Hz) 

d) frequency content, A2 

Fig. 4.9 Mud Creek Bridge - accelerometer data and frequency analysis 
for control run on roadway 

, 

40 
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Fig. 4.10 Dynamic response for Mud Creek Bridge - Stringers G3 (n and G5 (En 
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Fig. 4.10 (continued) 
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Fig. 4.11 Frequency contents plots for Mud Creek Bridge 
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vehicle for that test. In this case, the vehicle is the source of the forcing function for the 

bridge response. 

At the speed of 14 mph, the bridge begins to respond in the frequency of 10Hz, 

which is close to the frequency of the first longitudinal mode of the bridge (8.9 Hz). The 

vehicle response is dominated by the axle hop frequency (10.4 Hz, Fig. 4.11c). The 

frequencies of the bridge and vehicle response are very similar and for some tests they are 

identical. The bridge behaves similarly for the speeds up to 20 mph for both concentric and 

eccentric tests. A typical bridge response at this speed interval is shown in Fig. 4.11d. It 

should be noted that for speeds up to 20 mph, the bridge always exhibits a regular pattern 

of vibration regardless of the frequency of the vibration. This observation is true for both 

concentric and eccentric positions of the vehicle (Fig. 4.10). 

A change in the pattern of bridge vibration can be noticed for vehicle velocities 

above 24 mph in the bridge response. The response is dominated by a low frequency of2.3 

Hz, which is again close to the body bounce frequency of the vehicle. A higher frequency 

of 10Hz can be observed superimposed on the low frequency (see deflection plots in Fig. 

4.10 and a frequency content plot in Fig. 4. 11 f). The contribution of the forced response 

due to the body bounce mode of the vehicle is significantly higher than the contribution of 

the bridge's natural frequency. This behavior can be observed at all high speeds (above 24 

mph) for both concentric and eccentric tests. The body bounce frequency becomes 

prominent again in the vehicle vibration (compare Fig. 4.11e to Fig. 4.11c). 
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4.2.2.3 Dynamic amplification 

The plot of dynamic amplification of the bridge response (DAF) and vehicle speed 

are shown in Fig. 4.12. When observing the DAF for the concentric tests, it was noted that 

the amplification was high for low speed ranges (i.e. when the bridge vibration was 

dominated by the low frequencies). The largest amplification of 1.38 was observed for the 

speed of33.3 mph. The amplification is low, when the bridge's first longitudinal frequency 

dominates the response at speeds of 14.4 and 19 mph. The same conclusions holds true for 

the eccentric tests. The largest amplification for the eccentric test (l.33) was observed at 

the speed of30.6 mph. 

4.3 Span 1 of Wittson Bridge 

Wittson Bridge is a single lane bridge consisting of four simple spans; 51.3 ft Span 

1, 5l.3 ft Span 2, 102 ft Span 3, and 35 ft Span 4. A photo of the bridge appears in Fig. 

4. 13. Although the ends of the stringers of adjacent spans were separated by a 1.5 to 3 in. 

gap, the deck panels overlapped from one span to another, creating possible rotational 

continuity. The stringers is made of Southern Yellow Pine (EL = 2,020 to 2,090 ksi). Steel 

guardrail on timber posts are installed on both sides of the bridge. The first and the third 

span were tested and will be called Span 1 and Span 3, respectively, and discussed 

separately. 



79 
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1.4 1-------------------------------------------1 

1.3 \-------------------------------"71-----------1 
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-II- CONCENTRIC -B- ECCENTRIC 

Fig. 4.12 Mud Creek Bridge - DAF plots 
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a) overall view of Witts on Bridge 

b) vehicle on Span 3 

Fig. 1.13 Wittson Bridge 
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4.3.1 Bridge and vehicle description 

A downward grade of 1.6% from North to South is constant along the bridge. The 

roadway approach to the bridge and the bridge surface are paved. The surface conditions 

of the approach road could be characterized as very good. The approach beyond 600 ft on 

the northern side of the bridge is a gravel road. 

The layout of the bridge and instrumentation used appear in Fig. 4. 14. The cross 

section is shown in Fig. 4.15. The deck panels are 25 ft long, 48 in. wide and 5 in. deep. 

The deck is supported by four stringers at 51 in. on centers. The cross section of each is 43 

in. deep and 6.75 in. wide. 

The test truck was a three axle dump truck with 194 in. between the steering axle 

and the first rear tandem axle (dimension 'a' in Fig. 4.2) and 53 in. between the rear 

tandem axles (dimension 'b' in Fig. 4.2). The axle loads WI, W2 and W3 were 18.68 kips, 

19.27 kips and 19.27 kips, respectively~ total truck weight thus was 57.22 kips. 

4.3.2 Discussion of the results 

4.3.2.1 Bridge free vibration response and vehicle vibration 

Due to a certain degree of rotational continuity exhibited by the bridge, the free 

vibration record was disturbed by the presence of the vehicle on the subsequent spans and 

it was possible to determine only the fundamental frequency of the bridge. The plot of the 

accelerometer record and the frequency content are shown in Fig. 4.16 with a fundamental 

frequency of 5.9 Hz. The structural damping was evaluated from the plot in Fig. 4.16a 



N
 •

 

~
 

~
 

N
 - -1
-

b>
 

N
 
~
 

: N
 

II 

to
 

M
 

~
 

~
 

@
 

('
t)

 t:
 ~
 

~
 

N
 

~
 

50
' -

1/
2"

 

12
' -

7
1

/4
" 
~ 

12
' -

7 
1/

4"
 

<t 
12

' -
7 

1/
4"

 
1/

4 
~
 

.
;
.
 

~
 :

..
 

--
r-

I 
I 

I 
I 

I 
I 

12
' -

7 
1/

4"
 

1/
4 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

G
1 

I 
I 

"l'"
 

" 
I I I I 

G
2 

l 
I 

I I I 

" 
I 

I 

G
3.

.t.
 

I 
I 

I 
.J

.I
 

! 
7 

i 
: 

I 
I 

I 
I 

I 
I 

I 
I 

G
4 

I 
.....

. ..:..
 

I 

i 
I 

I 
I 

I 
I 

I 

te
st

in
g 

ve
hi

cl
e 

di
re

ct
io

n 
* 

ac
ce

le
ro

m
et

er
 

, 
• 

D
C

D
T 

Fi
g.

 4
.1

4 
L

ay
ou

t a
nd

 i
ns

tr
um

en
ta

tio
n 

on
 S

pa
n 

1 
of

 W
itt

s o
n 

B
ri

dg
e 

g
ir

d
e

r 

d
e

ck
 

pa
ne

l 

0
0

 
N

 



~
 

4'
 -

7"
 

3"
 

3'
 

4'
 -

7"
 

~ 
-I
~ 

~i
· 

+
 

-I 

~~ 
i 

~~ 
~ G

1 
~G2

 
~ G

3 
~ G

4 

_
~
~
/
4
"
 

_~
~~
/4
" 

-
+
~
/
4
"
 

__
 ~
_~

/4
" 

rl
 4'-3

" 
1 

4
'-

3
" 

.1 
4

'-
3

" 
l~

'J
 

15
' -

2"
 

~ 

ro
 

M
 

.;
:t

 

Fi
g.

 4
.1

5 
C

ro
ss

 s
ec

tio
n 

di
m

en
si

on
s 

an
d 

tr
an

sv
er

se
 p

os
iti

on
 o

f t
he

 v
eh

ic
le

 o
n 

Sp
an

 1
 o

f W
itt

s o
n 

B
ri

dg
e 

0
0

 
w

 



84 

0.08 

0.06 

0.04 

- 0.02 .9 
c: 
0 0 ;; 
e 
Q) 

Q) -0.02 
0 
0 
C"O 

-0.04 

-0.06 

-0.08
0 1 2 3 4 

time (sec) 

a) free vibration record 

0.007 

0.006 

0.005 

Q) 

0.004 ""C 
::::J 
~ 

a. 
E 0.003 
C"O 

0.002 

0.001 

0 
0 10 20 30 40 

frequency (Hz) 

b) frequency content 

Fig. 4.16 Span 1 of Witts on Bridge - free vibration record and frequency content 
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using the logarithmic decrement method. The calculated structural damping was found to 

be 4.3% of critical. 

Frequencies inherent to the vehicle were determined while the truck was driven on 

the approach roadway. Plots of acceleration and frequency content for accelerometers Al 

and A2 appear in Fig. 4.17. The frequency of the body bounce was found to be 3.1 Hz and 

the frequency of axle hop was found to be 10.7 Hz. 

4.3.2.2 Forced vibration response 

Concentric tests with in situ and bump approaches were performed. The transverse 

position of the vehicle is shown in Fig. 4.15. Plots of the bridge deflection against the 

vehicle position along the bridge for the stringer with the largest observed deflections (G2) 

are shown in Fig. 4.18. Two different patterns of the bridge vibration can be observed at 

these speed intervals: low (up to 27 mph) and high (over 30 mph) speed. 

The bridge response being dominated by one mode is a common observation during 

all tests in the low speed interval. A regular pattern of vibration can be observed at the low 

speeds. The frequency of the forced response is 5.3 Hz at the speed at 151 mph (Fig. 

4. 19a), which is close to the bridge fundamental frequency of 5.6 Hz. The frequency of the 

response increases as the speed of the vehicle increases. The frequency of the bridge 

response is 7.0 Hz at the speed of 19.51 mph (Fig. 4.19c) and 8.2 Hz at the speed of26.31 

mph (Fig. 4.1ge). The same observations can be made for the bump approach conditions. 

The frequency of the bridge response is 5.7 Hz at the speed of 16 .2B mph (Fig. 4 . 19b), and 

7.2 Hz at the speed of20.9B mph (Fig. 4. 19d). 
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Fig. 4.19 Frequency contents plots for Span 1 of Witts on Bridge 
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Note that the frequency of the response is close at comparable speeds regardless of 

the approach conditions of the bridge (5.3 Hz at 151 mph and 5.7 at 16.2B mph~ 7.0 Hz at 

19.51 and 7.2 Hz at 20.9B mph). A frequency of 10 Hz appears in plots 4.19b and 4.19d. 

This frequency is not contained in the response for in situ approach conditions~ it comes 

from the axle hop vibration mode of the vehicle, which was excited by the bump. 

A change in the pattern of bridge vibration occurs as the vehicle speed increases 

above 30 mph. The response is dominated by a low frequency (Fig. 4. 199-i), which is close 

to the body bounce frequency of the vehicle, and again increases with speed. The frequency 

is 3.3 Hz at the speed of36.5B mph, 3.5 Hz at the speed of38.21 mph, and 3.9 at the speed 

of 42.3B mph. This observation is true for in situ and bump approach conditions. 

Analysis of the vehicle behavior appears in Fig. 4.20a-f An observation common to 

all the plots is that the vehicle exhibits vibration in the axle hop mode (f = 10Hz). This 

behavior remains unchanged regardless of vehicle speed, with the exception of the speed of 

151 mph. where the body bounce frequency can be observed. 

4.3.2.3 Dynamic amplification 

The plot of the DAF for the middle stringer (G3 versus speed) is shown in Fig. 4.21. 

For the lower speeds, the amplification is higher for the bump condition. In the analytical 

study presented in Chapter 3, the observation was made that the amplification is high when 

the time for the two rear axles to pass a common point is equivalent to the natural period of 

the bridge (pseudo-resonance). Based on the natural frequency of the bridge (5.6 Hz), the 

natural period is 0.176 sec. If the rear axle spacing is 53 in., the speed required for the rear 
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axles to satisfy this condition is 16.9 mph. According to the DAF plot, it is apparent that 

the amplification is high at this speed for the bump condition. This is logical, since the 

presence of the bump made the loading effect of the axles more prominent. 

The bridge amplification increases after the bridge begins to exhibit vibration in low 

frequencies close to the vehicle body bounce (from about 25 mph). At the speed of 42.3B 

mph, however, the amplification is low. In the author's opinion, this fact can be inferred by 

observing the deflection plots in Fig. 4.18. At the speed of 36.4B and 38.21 the downward 

vehicle oscillation occurs at the same moment the vehicle is in the position to cause 

maximum static (crawl) deflection; therefore, the maximum dynamic deflection is large. At 

the speed of 42.3B, the vehicle oscillation goes upward for the same position of the truck. 

Thus, the maximum dynamic deflection is small. 

4.4 Span 3 of Witts on Bridge 

4.4.1 Bridge and vehicle description 

The layout of the bridge and instrumentation used appear in Fig. 4.22 and the cross 

section is shown in Fig. 4.23. The stringers is made of South em Yellow Pine (EL = 1,690 

to 1,930 ksi). The deck panels are 25 ft long, 48 in. wide, and 5 in. deep. The deck is 

supported by four stringers at 51 in. on center. The cross section of each stringer is 43 in. 

deep and 6.75 in. wide. Other details pertaining to the bridge and vehicle are equal to those 

of Span 1 of Witt son Bridge. 
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4.4.2 Discussion of the results 

4.4.2.1 Bridge free vibration response and vehicle vibration 

Three normal mode frequencies were determined from the free vibration record. 

Figure 4.24a,c and d shows frequencies of 2.8 Hz, 8.8 Hz, and 10.6 Hz, respectively. A 

computer model of the bridge was created to identify mode shapes of the observed 

frequencies (see Appendix 3). Table 4.1 presents a comparison of results of the computer 

analysis and field observation. Structural damping was evaluated using free vibration 

records as shown in Figs. 4.24b and d. The calculated structural damping was found to be 

3.2% of critical. 

4.4.2.2 Forced vibration response 

Concentric tests with in situ and bump approaches were performed. The plots of 

the bridge deflection versus the vehicle position along the bridge for the stringer with the 

largest observed deflections (G2) are shown in Fig. 4.25. Selected typical frequency 

content plots of the bridge forced vibration response are shown in Fig. 4.26. The bridge 

response is dominated by one mode at the speed of 8.91 mph (Fig. 4.26a). The second 

longitudinal mode appears at the speed of24.61 mph (Fig. 4.26c). The second longitudinal 

mode is excited at the speeds of 9.7B mph and 15.6B mph. Only lower speeds have 

dominant frequencies of vibration. At the high speeds no particular frequency dominates 

the response. The vehicle response is dominated by the body bounce frequency at the 

lowest speed (8.91 and 9.7B) and at speeds between 25 and 30 mph (Fig. 4.27). At other 

speeds (10 to 25 mph) the response is dominated by the axle hop. 
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Table 4.1 Comparison of computed and experimentally observed modal 

frequencies for Witts on Bridge - Span 3 

COMPUTER FIELD 

RESULT OBSERVATION DESCRIPTION SHAPE 

[Hz] [Hz] 

2.5 N/A asymmetric transverse Fig. A3.1a 

2.7 2.8 fIrst longitudinal Fig. A3.1b 

9.4 N/A asyrrunetric transverse F!g. A3.1c 

9.5 8.8 second longitudinal Fig. A3.1d 

11.7 11.7 symmetric transverse Fig. A3.1e 
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4.4.2.3 Dynamic amplification 

The plot of dynamic amplification against speed appears in Fig. 4.28. The highest 

amplification occurs at the lower speeds of 8.91 mph and 9.7B mph. Based on the natural 

period of the first mode of vibration (0.357 sec), the speed of9 mph satisfies the condition 

for the pseudo-resonance with passage of the rear tandem axles. In the author's oppinion 

the pseudo-resonance is the reason for the high DAF. The amplification also increases at 

speeds around 25 to 30 mph. The body bounce dominates the response of the vehicle at 

these speeds. 

4.5 Chambers Co. Bridge 

4.5.1 Bridge and vehicle description 

Chambers Co. Bridge is a 53.1 ft long single span two lane bridge. A photo of the 

bridge appears in Fig. 4.29. The 29 ft long, 48 in. wide and 5 in. deep deck panels are 

supported by six stringers at 60 in. on center. A cross section of each was 53 112 in. deep 

and 8 5/8 in. wide. The stringers are made of Southern Yellow Pine (EL = 1,850 to 1,930 

ksi). Steel guardrail on timber posts are installed on both sides of the bridge. The bridge 

and instrumentation layout appear in Fig. 4.30. The cross section of the bridge is shown in 

Fig. 4.31. 

Travelling from the South, the approach roadway to the bridge has a downward 

grade that levels 350 ft before the bridge. According to the visual observation, the 

approach road surface roughness conditions could be characterized as good (asphalt 
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Fig. 4.29 Chambers Co. Bridge - vehicle on the bridge during crawl rest 
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pavement). The bridge pavement surface roughness could be characterized as very good. 

During the testing a depression about 1 in. deep developed in the middle of the immediate 

approach to the bridge. 

The test truck was a three axle dump truck with 179 in. between the steering axle 

and first rear tandem axle (dimension 'a' in Fig. 4.2) and S3 in. between the rear tandem 

axles (dimension 'b' in Fig. 4.2). The axle loads WI, W2, and W3 were 14.3 kips, 24.8 

kips, and 24.8 kips, respectively~ total truck weight thus was 62.9 kips. 

4.5.2 Discussion of the results 

4.5.2.1 Bridge free vibration response and vehicle vibration 

Four normal mode frequencies were determined from the free vibration record. 

Figure 4.3 3b, c show frequencies of 6.4 Hz, 11. 0 Hz, 17.5 Hz and 21. 7 Hz. A computer 

model of the bridge was created to identify mode shapes of these observed frequencies (see 

Appendix 3). Table 4.2 presents a comparison of results of the computer analysis and field 

observations. Structural damping was evaluated from the free vibration record in Fig. 4.33a 

and the calculated damping was found to be 5.8% of critical. Frequencies inherent to the 

vehicle were determined and the frequency of the vehicle body bounce was found to be 2.7 

Hz. The frequency of the vehicle axle hop was found to be 10.2 Hz (Fig. 4.32). 

4.5.2.2 Forced vibration response - concentric tests 

Three types of concentric vehicle tests were performed~ in situ and bump 

approaches and a test with an adjusted tire pressure to simulate a vehicle with a lower 
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Table 4.2 Comparison of computed and experimentally observed modal 

frequencies for Chambers Co. Bridge 

COMPUTER FIELD 

RESULT OBSERVATION DESCRIPTION 

[Hz] [Hz] 

6.6 6.44 fIrst longitudinal 

6.9 N/A asymmetric transverse 

10.7 11.0 symmetric transverse 

20.8 17.1 asymmetric transverse 

22.3 21.7 second longitudinal 

SHAPE 

Fig. A3.2a 

Fig. A3.2b 

Fig. A3.2c 

Fig. A3.2d 

Fig. A3.2e 
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vehicle tire stifihess. For this test, the pressure in the vehicle tires was decreased by 20%, 

from 115 psi to 90 psi. The deflections of the middle stringer G4 versus position of the 

vehicle along the bridge are shown in Fig. 4.34. Typical frequency content plots of the 

bridge response are shown in Fig. 4.35. Typical frequency content plots of the vehicle 

response are shown in Fig. 4.36. Three speed intervals with different bridge behavior were 

identified: low (up to 10 mph), medium (10 mph to 25 mph), and high (over 25 mph). A 

similar observation was made at Mud Creek Bridge. Generally, the bridge behavior was the 

same for all the three types of tests in each interval. 

At the low speed interval, the bridge vibrates at the frequency of2.7 Hz (Figs. 4.35 

a,b,g). The vehicle response is dominated by the low frequency of2.6 Hz (Fig. 4.36b). At 

medium speed interval, the bridge responds in frequencies of 6.9 Hz and 10.6 Hz (Fig. 4.35 

c,d,h). These frequencies are close to the observed bridge mode frequencies of 6.4 Hz and 

11.0 Hz. The transverse mode (f = 11.0 Hz) dominated the response for the bump tests. 

Also, the bridge oscillates regularly about the crawl curve. At high speeds, the pattern of 

vibration is different. The frequency of 2.6 Hz appears in the response along with the 

normal mode frequencies of 6.4 and 1l.0 Hz (Fig. 4.35 e,f,i). The low frequency of2.6 Hz 

is also present in the vehicle response (Fig. 4.36d). 

4.5.2.3 Forced vibration response - eccentric tests 

The deflections of the stringer with the largest observed deflection (G4) versus 

position of the vehicle along the bridge are shown in Fig. 4.37. Typical frequency content 

plots of the bridge response are shown in Fig. 4.38. The frequency domain analysis results 
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of the eccentric tests is similar to the concentric tests. Bridge response at the low speed 

interval is shown in Fig. 4.38a,b, at the medium speed interval in Fig. 4.38c,d, and at the 

high speed interval in Fig. 4.38e,f The bump tests excited the transverse normal mode of 

vibration (f= 11.0 Hz) rather than the longitudinal one (f= 6.4 Hz). 

4.5.2.4 Dynamic amplification 

The plots of dynamic amplification appear in Fig. 4.39. Based on the natural period 

of the bridge of 0.155 sec, the speed to satisfy the condition of the pseudo-resonance with 

passage of the rear tandem axles is 19.4 mph. At this speed, the amplification is high for the 

bump approach for both concentric and eccentric tests. The amplification increases as the 

speed of the vehicle increases over 25 mph. The low amplification at the speed of 29.5B 

mph occurs due to the upward amplitude of the truck vibration while the truck passes the 

midspan of the bridge. There is a 4% difference in the amplification at speeds of 7.51 mph 

and 7.5L mph. This difference may be due to the effect of the lower tire pressure during the 

test at 7.5L. For the speeds above 10 mph the bridge response for the vehicle with low tire 

pressure is very similar to the response for vehicle with the regular tire pressure (Fig. 

4.39a). 

4.6 Summary of the experimental findings 

4.6.1 Observed bridge behavior. 

One aspect of the bridge behavior was found to be common for Mud Creek Bridge, 

Span 1 of Witts on Bridge and Chambers Co. Bridge. Three distinct and different patterns 
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of vibration were observed at low, medium and high vehicle speeds. This behavior is 

summarized in Table 4.3, and discussed below. These patterns were consistently observed, 

regardless of the approach condition or transverse position of the vehicle and were not 

clearly observed for Span 3 of Wittson Bridge because the bridge natural frequency was 

close to the body bounce frequency of the vehicle. 

4.6.1.1 High speed interval 

The high speed interval includes speeds higher than 25 mph. At this interval each 

bridge vibrated at low frequencies between 2.5 and 3.5 Hz, which was the same as the 

frequency of response found in the low speed interval. Both body bounce and axle hop 

frequencies were usually present in the vehicle response. The dynamic amplification was 

usually relatively high in this speed interval. However, it was also observed that the 

amplification could have been low due to longitudinal position of the vehicle on the bridge 

at certain speeds. 

A possible explanation for the body bounce frequency of the vehicle dominating the 

response at high speeds is that the excitation of the truck vibration (i.e. initial conditions) is 

high due to the high speed. The higher vibration causes a higher variation in the vehicle 

forces. The high forces cause a forced response of the bridge, with a frequency equal or 

close to the vehicle body bounce frequency. 

4.6.1.2 Medium speed interval 

The medium speed interval includes velocities between 10 mph and 25 mph. Within 

this speed interval, the frequency of the bridge vibration tends to be similar to one or more 
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Table 4.3 Summary table of observed bridge behavior 

SPEED RANGE OBSERVED BEHAVIOR 

low low frequency vibration 

(up to 10 mph) frequency of the vibration between 2.5 Hz and 3.5 Hz 

medium high frequency vibration 

(10 mph to 25 mph) frequency of vibration close to bridge normal mode frequency 

high low frequency vibration 

(over 25 mph) frequency of the vibration between 2.5 Hz and 3.5 Hz 
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of the lower natural frequencies (longitudinal or transverse) of the bridge. The vehicle 

response was dominated by the axle hop frequency. It is possible that the effect of the body 

bounce of the vehicle was not as significant as in the case of high speeds because of the 

lower amplitude of the vehicle excitation (i.e. initial conditions) at medium speeds. 

4.6.1.3 Low speed interval 

The low speed interval includes speeds up to 10 mph. At this interval, the bridge 

was vibrating at a low frequency between 2.5 and 3.5 Hz. The bridge exhibited regular 

oscillation about the crawl curve. The body bounce frequency dominated the behavior of 

the vehicle. A typical plot of this behavior can be found in Fig. 4.37 (speeds 7.61 mph and 

8.0B mph). 

A possible explanation of the body bounce frequency dominating the response in the 

case of the low speeds is due to pseudo resonance. Although the amplitude of the vehicle 

excitation and vibration is lower than in case of medium speeds, the effect of this excitation 

is higher. The vibrating truck hit the bridge with its maximum force several times with a 

period very close to the time taken by the axles to pass a common point. This explanation 

is supported by observing bridge deflection curves (e.g. Fig. 4.10, speeds 7.51 mph and 

10.41 mph). The amplitude of the bridge vibration about the crawl curve increases as the 

vehicle approaches midspan. 

A frequency analysis was performed to determine whether the low frequency was 

present in the truck vibration before it entered the bridge. Figure 4.40a shows a plot of 

acceleration (A2) versus time for a test of 8.7B mph on Chambers Co. Bridge. The low 
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frequency is prominent after the rear axles passed the bump at the time of 2.9 sec (Fig. 

4.40c) - i.e. the bump excites the body bounce mode of the vehicle at low speeds. Figure 

4.40b shows the frequency content plot of the acceleration signal between 0 sec and 2.9 sec. 

It is clear that the low frequency was present in the truck vibration before it entered the 

bridge. This frequency was further amplified by the bump. 

4.6.2 Summary of other observations 

• Frequencies inherent to the trucks were observed in the tests on the approach 

roadway. The frequency of the body bounce was found to be 2.5 to 3.1 Hz and the 

frequency of axle hop was found to be 10.2 Hz to 10.7 Hz. These observations 

agree with observations of other researchers [5]. 

• The analysis of the experimental data investigated the effect of pseudo-resonance 

between a bridge's natural period and passage of consecutive axles of a vehicle. It 

was found that the pseudo-resonance amplified the response for the bump approach 

condition of the vehicle. This fact is logical, since the bump excited the axle hop 

vibration mode. This led to high axle forces, and made the effect of the axles more 

prominent. 

• Dynamic amplification was analyzed and discussed for each bridge. A summary was 

presented in section 4.6.1. The largest observed dynamic amplification was 1.38 for 
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the Mud Creek Bridge. This bridge had the highest natural frequency (8.9 Hz) ofall 

of the bridges tested. The largest DAF observed for the other bridges was 1.15. 

This observation suggests that dynamic amplification can be high for short span 

bridges. 

• Low dynamic amplification was observed for the Span 3 of Wittson Bridge, despite 

the potential for dynamic coupling of the bridge's natural frequency and the truck's 

body bounce frequency (2.8 Hz and 3.1 Hz). It is possible, however, that in the 

limited number of tests performed, the initial conditions of the vehicle were 

insufficient to cause high amplification. 

• The artificial bumps placed at the entrance to the bridges did not result in higher 

amplifications when compared to the in situ tests. The short bump only excited the 

axle hop frequency at high speeds. The high amplifications, however, occurred 

when the bridge response was dominated by the low body bounce frequency of the 

vehicle. Therefore, the bump did not cause large amplification of the bridge. 

• A lower tire stiffuess was simulated by decreasing the tire pressure by 20% on the 

test vehicle for the Chambers Co. Bridge test. The bridge behavior and response 

amplification were the same as for the original tire pressure, except for the lowest 

speed of 7. 6L mph. At this speed, lower amplification occurred (1.02 compared to 
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1.06 for the original pressure). The frequency of the response remained the same 

when compared to the test with the original tire pressure. 
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5. SUMMARY AND CONCLUSIONS 

5.1 Summary 

The study was divided into two parts. In the first part (Chapters 2 and 3), analytical 

models of the bridge and vehicle, and the interaction were developed and discussed. The 

second part (Chapter 4) presented an analysis of behavior of four field bridges based on 

experimentally acquired data. 

5.1.1 Bridge model 

The timber stringer bridge was modeled using the finite element general purpose 

ANSYS program. Four basic components were idealized by different types of finite 

elements. The stringers and deck panels were modeled using shell element SHELL 63. The 

connectors between the deck and the stringers were modeled using flexible beam element 

BEAM 4. The transverse stiffeners between adjacent stringers were modeled using tension­

only element LINK 8. Particular attention was paid to the degree of composite action 

exhibited by the cross section of the bridge. The validity of this aspect of the model was 

based upon data from a reduced scale experiment performed by another researchers. 
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5.1.2 Vehicle model 

The vehicle considered in the analytical investigation was a three axle dump truck. 

The ANSYS program was used to develop the model. The vehicle was idealized as a 

system of masses (MASS 21), representing the vehicle body (chassis) and axles, and spring­

damper-elements (CO:MBIN 14), representing the suspensions and tires. A significant 

effort was devoted to a literature study of different types of suspensions, their models, and 

their effect on the bridge-vehicle interaction. It was found that a majority of commercial 

vehicles exhibited two vibration modes associated with the vehicle's body and axles. 

Mechanical properties pertinent to the vehicle were used so that the vibration modes of the 

model matched the literature findings. The numerical algorithm of the vehicle-bridge 

interaction was adopted from previous studies done at ISU. 

5.1.3 Sensitivity study 

A set of parameters to influence the behavior of a bridge under a passing vehicle was 

identified from a literature study. A sensitivity of the bridge response to some of these 

parameters was analytically investigated in Chapter 3. A critical speed at which the bridge 

dynamic response is maximum was found to exist for each bride-vehicle system. The 

critical speed occurred when the time for the two rear axles to pass a common point was 

equal to the natural period of the bridge and is referred to as pseudo-resonance. The 

maximum dynamic deflection always occurred at this speed. The effect of the pseudo­

resonance was particularly prominent when the vehicle passed a bump placed on the 
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entrance of a bridge. The variation of DAF with speed was found to be affected by 

different axle spacing of the vehicle. Participation of bridge normal modes in the frequency 

response was found to change with speed. Generally, higher bridge modes were excited at 

higher vehicle speeds. The bridge response was dominated by one mode for the speed, 

when the pseudo resonance occurred. 

5.1.4 Experimental findings 

The behavior of three field bridges (a total of four different spans) and three vehicles 

was investigated experimentally. Different vehicles were used at each of the three bridges. 

Several types of tests were performed at each bridge depending on approach conditions (in 

situ and artificial bump) and/or transverse position of the vehicle on the bridge. Bridge 

deflection and acceleration data and vehicle acceleration data was acquired. The acquired 

data was analyzed in time and frequency domain. Three different patterns of the bridge 

response were observed at low, medium and high vehicle speeds. The maximum deflection 

always occurred at the high speed interval. The conclusions addressed the influence of the 

artificial bump placed at entrance of the bridge, pseudo-resonance between the bridge 

natural period and passage of vehicle's consecutive axles, and the influence of a vehicle with 

a lower tire pressure. Results of the vehicle analysis were also discussed and compared to 

observations of other researchers. 
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S. 1.5 Comparison of analytical and experimental results 

Two of the three bridges investigated experimentally were modeled analytically to 

validate the concept of the analytical bridge model (Span 3 of Witts on Bridge and Chambers 

Co. Bridge). These bridges were selected for the purpose of validation, because several 

normal modes observed experimentally were available for the comparison. The concept of 

the validation was to compare crawl deflections (experimental) to static deflections 

(analytical), and observed normal mode frequencies (experimental) to results of mode 

analysis (analytical). The agreement was found to be good. The analytical model of the 

vehicle was validated by comparing the observed frequencies inherent to the truck 

(experimental) to the results of mode analysis (analytical). Again, the agreement was good. 

Results of the time domain analysis (analytical) were compared to the experimental 

observations to validate the vehicle-bridge interaction part of the model. The effect of the 

pseudo-resonance was observed both analytically and experimentally. Also, both analytical 

and experimental results show that this effect is more prominent when high axle forces are 

excited by passage of the vehicle over a bump. 

The three patterns of the bridge behavior observed experimentally were not 

observed analytically. Regardless of the vehicle speed, the bridge response was always 

dominated by some of the bridge normal modes. This discrepancy should be explained by 

initial conditions of the vehicle. Experimentally it was observed that the vehicle was 

vibrating even before it entered the bridge. Zero initial conditions, however, were assumed 

in the analytical investigation. It is possible that since the vehicle stays on the bridge only 
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for a short time (about 1 sec) at the high speeds, the initial conditions necessary to cause the 

low frequency vibration cannot be developed. 

5.2 Conclusions and Recommendations 

The following conclusions and recommendations for additional studies are: 

• Initial conditions of the vehicle can play an important role in the bridge's response. 

The vehicle initial conditions in terms of frequency and level of acceleration should 

be determined from the experimental data. Complimentary analytical investigation 

should focus on clarification of their effect. 

• The analytical model of the vehicle-bridge interaction should be validated using the 

experimental data to account for the initial conditions of the vehicle. 

• The occurrence of low frequency bridge vibration at low vehicle speeds should be 

clarified. 

• The potential for dynamic coupling between bridges with low natural frequencies 

(e.g. Span 3 of Witts on Bridge) and vehicles should be investigated. Although such 

behavior was not observed experimentally, analytical investigations should 

concentrate on finding such vehicle initial conditions that would result in high 

dynamic amplification. This conclusion would be particularly important from the 

design criteria standpoint. 
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APPENDIX 1 

RESULTS OF THE ANALYSIS IN FREQUENCY DOMAIN 
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APPENDIX 2 

ADJUSTMENTS FOR DAF CALCULATIONS 

In Chapter 4 it was mentioned that calculation of DAP adjustments were made to 

account for tracking differences of the vehicle for different tests. During the testing, visual 

records were obtained on each test indicating the vehicle deviation from the projected path. 

Maximum deflections of all the stringers were observed for the test or tests, where the 

vehicle visual record indicated that the vehicle perfectly followed the projected path. A 

distribution of deflection in the cross section was established. For the cases, when the 

vehicle was off this path, maximum deflections of all the stringers were observed again and 

compared to the established deflection distribution. The deflections were subsequently 

modified to match transverse deflections of the test with good tracking. That way the 

difference due to the tracking problem was offset. The modified deflections were used for 

calculation of DAF for the particular test. Note, however, that the plots of bridge 

deflection versus position of the vehicle on the bridge show the observed (unmodified) data. 

The following tables Al through A4 present the maximum observed (unmodified) 

deflections. Also, the calculated DAFs shown in these tables are based on the unmodified 

maximum deflections. 
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Table A 2.1 Summary table for Wittson Bridge - Span 1 

OBSERVED DEFLECTIONS - IN SITU CONDITION 
speed (mph) G1 G2 G3 G4 

crawl -0.328 -0.411 -0.4302 -0.3931 
15.0 -0.422 -0.468 -0.447 -0.367 
19.5 -0.398 -0.445 -0.431 -0.359 
26.3 -0.403 -0.445 -0.419 -0.341 
31.4 -0.401 -0.438 -0.399 -0.315 
38.2 -0.464 -0.499 -0.471 -0.363 

OBSERVED DEFLECTIONS - BUMP CONDITION 
12.7 -0.405 -0.464 -0.445 -0.371 
16.2 -0.379 -0.460 -0.468 -0.424 
20.9 -0.413 -0.462 -0.444 -0.376 
27.0 -0.399 -0.436 -0.392 -0.308 
30.8 -0.390 -0.443 -0.423 -0.351 
36.4 -0.413 -0.472 -0.455 -0.374 
42.3 -0.376 -0.429 -0.401 -0.325 

DAF - IN SITU CONDITIONS 
speed (mph) G1 G2 G3 G4 

15.0 1.29 1.14 1.04 0.93 
19.5 1.21 1.08 1.00 0.91 
26.3 1.23 1.08 0.97 0.87 
31.4 1.22 1.07 0.93 0.80 
38.2 1.42 1.21 1.10 0.92 

DAF - BUMP CONDITIONS 
12.7 1.23 1.13 1.03 0.94 
16.2 1.16 1.12 1.09 1.08 
20.9 1.26 1.12 1.03 0.96 
27.0 1.22 1.06 0.91 0.78 
30.8 1.19 1.08 0.98 0.89 
36.4 1.26 1.15 1.06 0.95 
42.3 1.15 1.04 0.93 0.83 

Stringers Gl to G4 are shown in Fig. 4.14 
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Table A 2.2 Summary table for Witts on Bridge - Span 3 

OBSERVED DEFLECTIONS - IN SITU CONDITION 
speed (mph) G1 G2 G3 G4 

crawl -0.91545 -0.918471 -0.979758 -0.952791 
8.9 -1.017 -1.020 -1.047 -1.034 
15.2 -0.947 -0.950 -0.975 -0.964 
24.6 -0.993 -0.996 -1.013 -0.984 
29.3 -0.995 -0.998 -1.021 -0.988 
36.3 -0.946 -0.949 -1.003 -1.022 
39.4 -0.956 -0.959 -0.991 -0.970 

OBSERVED DEFLECTIONS - BUMP CONDITION 
9.7 -1.026 -1.029 -1.049 -0.988 
15.6 -0.985 -0.989 -0.970 -0.914 
19.4 -0.979 -0.982 -1.013 -0.986 
24.6 -0.987 -0.991 -0.990 -0.940 
27.9 -0.999 -1.003 -1.018 -0.947 
34.1 -0.948 -0.952 -0.992 -0.966 
38.0 -0.944 -0.947 -1.012 -0.992 

DAF - IN SITU CONDITIONS 
speed (mph) G1 G2 G3 G4 

8.9 1.08 1.11 1.07 1.09 
15.2 1.02 1.04 1.00 1.01 
24.6 1.05 1.08 1.03 1.03 
29.3 1.07 1.09 1.04 1.04 
36.3 0.98 1.03 1.02 1.07 
39.4 1.04 1.04 1.01 1.02 

DAF - BUMP CONDITIONS 
9.7 1.10 1.12 1.07 1.04 
15.6 1.07 1.08 0.99 0.96 
19.4 1.05 1.07 1.03 1.04 
24.6 1.04 1.08 1.01 0.99 
27.9 1.09 1.09 1.04 0.99 
34.1 0.96 1.04 1.01 1.01 
38.0 1.00 1.03 1.03 1.04 

Stringers G 1 to G4 are shown m FIg. 4.22 
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Table A 2.3 Summary table for Mud Creek Bridge 

OBSERVED DEFLECTIONS - CENTRIC RUN 
speed (mph) G1 G2 G3 G4 G5 

crawl -0.136 -0.261 -0.318 -0.244 -0.142 
7.5 -0.152 -0.314 -0.398 -0.314 -0.178 
10.4 -0.156 -0.312 -0.388 -0.300 -0.167 
14.1 -0.144 -0.268 -0.334 -0.268 -0.153 
19.0 -0.145 -0.267 -0.344 -0.277 -0.169 
25.4 -0.158 -0.310 -0.398 -0.333 -0.202 
28.7 -0.180 -0.345 -0.423 -0.327 -0.183 
33.3 -0.187 -0.360 -0.440 -0.348 -0.192 

OBSERVED DEFLECTIONS - ECCENTRIC RUN 
crawl -0.383 -0.362 -0.268 -0.110 -0.009 
10.4 -0.380 -0.373 -0.284 -0.116 -0.004 
14.2 -0.347 -0.367 -0.292 -0.125 . -0.013 
18.7 -0.399 -0.389 -0.309 -0.146 -0.037 
24.1 -0.464 -0.423 -0.310 -0.134 -0.024 
24.8 -0.440 -0.428 -0.323 -0.146 -0.020 
26.4 -0.467 -0.450 -0.342 -0.146 -0.005 
28.7 -0.520 -0.488 -0.355 -0.149 -0.012 
30.6 -0.512 -0.480 -0.355 -0.145 -0.005 

OAF - CENTRIC RUNS 
7.5 1.112 1.205 1.251 1.288 1.251 
10.4 1.146 1.197 1.220 1.231 1.177 
14.2 1.058 1.028 1.050 1.101 1.079 
19.0 1.063 1.026 1.079 1.136 1.191 
25.4 1.160 1.189 1.249 1.367 1.423 
28.7 1.320 1.325 1.328 1.342 1.288 
33.3 1.374 1.381 1.382 1.427 1.353 

OAF - ECCENTRIC RUNS 

10.4 0.991 1.031 1.062 1.054 0.462 
14.2 0.905 1.015 1.091 1.133 1.462 
18.7 1.041 1.076 1.153 1.325 4.308 
24.1 1.209 1.169 1.160 1.217 2.846 
24.8 1.149 1.182 1.207 1.331 2.308 
26.4 1.218 1.245 1.277 1.325 0.615 
28.7 1.358 1.350 1.328 1.355 1.385 
30.6 1.335 1.328 1.328 1.319 0.538 

Stringers G 1 to G5 are shown in Fig. 4.7 
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Table A 2.4 Summary table for Chambers Co. Bridge 

OBSERVED DEFLECTIONS - ECCENTRIC RUN, IN SITU CONDITION 
speed (mph) G1 G2 G3 G4 G5 G6 

crawl -0.043 -0.218 -0.415 -0.524 -0.457 -0.300 
7.8 -0.048 -0.225 -0.421 -0.536 -0.475 -0.319 
8.8 -0.047 -0.229 -0.419 -0.541 -0.473 -0.318 
15 -0.051 -0.215 -0.408 -0.518 -0.462 -0.321 

18.8 -0.068 -0.244 -0.441 -0.538 -0.462 -0.330 
22 -0.066 -0.235 -0.423 -0.551 -0.493 -0.349 

29.7 -0.048 -0.219 -0.417 -0.550 -0.502 -0.373 
34.8 -0.075 -0.259 -0.484 -0.593 -0.502 -0.346 

OBSERVED DEFLECTIONS - ECCENTRIC RUN, BUMP CONDITION 
9.9 -0.062 -0.239 -0.430 -0.547 -0.510 -0.334 
11.2 -0.057 -0.231 -0.418 -0.530 -0.450 -0.310 
14.8 -0.060 -0.225 -0.412 -0.520 -0.469 -0.326 
16.8 -0.099 -0.241 -0.435 -0.547 -0.484 -0.378 
20 -0.081 -0.233 -0.441 -0.553 -0.539 -0.334 

27.5 -0.058 -0.229 -0.419 -0.537 -0.478 -0.334 
30.6 -0.077 -0.252 -0.447 -0.542 -0.466 -0.319 

OAF - ECCENTRIC RUN, INSITU CONDITION 

7.8 1.104 1.032 1.015 1.023 1.038 1.065 
8.8 1.089 1.051 1.011 1.033 1.034 1.061 
15 1.181 0.989 0.984 0.988 1.011 1.072 

18.8 1.565 1.121 1.062 1.028 1.011 1.101 
22 1.519 1.078 1.021 1.052 1.079 1.165 

29.7 1.120 1.008 1.005 1.050 1.097 1.245 
34.8 1.749 1.189 1.168 1.133 1.099 1.154 

OAF - ECCENTRIC RUN, BUMP CONDITION 

9.9 1.442 1.100 1.037 1.044 1.115 1.116 
11.2 1.319 1.063 1.007 1.011 0.985 1.034 
14.8 1.381 1.035 0.994 0.993 1.025 1.087 
16.8 2.301 1.109 1.050 1.044 1.060 1.263 
20 1.871 1.072 1.064 1.055 1.180 1.114 

27.5 1.350 1.051 1.011 1.025 1.045 1.114 
30.6 1.779 1.158 1.078 1.035 1.019 1.065 

Stringers G 1 to G6 are shown in Fig. 4.30 
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Table A 2.4 continued 

OBSERVED DEFLECTIONS - CONCENTRIC RUN, INSITU CONDITION 
speed (mph) G1 G2 G3 G4 G5 G6 

crawl -0.194 -0.364 -0.515 -0.487 -0.307 -0.134 
7.6 -0.202 -0.391 -0.560 -0.526 -0.332 -0.154 
13.7 -0.156 -0.343 -0.517 -0.519 -0.345 -0.170 
15 -0.168 -0.344 -0.501 -0.505 -0.335 -0.176 

15.7 -0.180 -0.344 -0.501 -0.514 -0.352 -0.178 
19 -0.226 -0.378 -0.515 -0.498 -0.314 -0.170 
23 -0.208 -0.368 -0.506 -0.469 -0.289 -0.134 

31.3 -0.203 -0.203 -0.203 -0.203 -0.203 -0.203 
33 -0.211 -0.395 -0.559 -0.527 -0.341 -0.168 

OBSERVED DEFLECTIONS - CONCENTRIC RUN, BUMP CONDITION 
8 -0.163 -0.356 -0.527 -0.526 -0.350 -0.245 

12.6 -0.163 -0.352 -0.529 -0.525 -0.344 -0.182 
17.7 -0.198 -0.350 -0.532 -0.545 -0.370 -0.229 
19 -0.219 -0.370 -0.549 -0.543 -0.359 -0.217 

24.2 -0.175 -0.344 -0.517 -0.513 -0.324 -0.178 
29.7 -0.122 -0.314 -0.485 -0.503 -0.336 -0.224 
34.5 -0.190 -0.367 -0.536 -0.512 -0.332 -0.171 

OAF - CONCENTRIC RUN, INSITU CONDITION 

7.6 1.044 1.076 1.087 1.081 1.081 1.151 
13.7 0.808 0.944 1.003 1.066 1.122 1.265 
15 0.866 0.948 0.973 1.037 1.092 1.310 

15.7 0.931 0.946 0.973 1.055 1.148 1.330 
19 1.170 1.041 0.999 1.022 1.023 1.265 
23 1.075 1.014 0.982 0.962 0.942 0.998 

31.3 1.051 0.559 0.395 0.417 0.662 1.517 
33 1.088 1.087 1.085 1.082 1.109 1.256 

OAF - CONCENTRIC RUN, BUMP CONDITION 

8 0.842 0.979 1.023 1.081 1.142 1.826 
12.6 0.842 0.968 1.027 1.078 1.120 1.355 
17.7 1.023 0.962 1.032 1.120 1.206 1.712 
19 1.133 1.017 1.066 1.115 1.170 1.618 

24.2 0.903 0.946 1.004 1.053 1.056 1.330 
29.7 0.630 0.865 0.941 1.033 1.094 1.672 
34.5 0.982 1.010 1.040 1.051 1.081 1.275 
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Table A 2.4 continued 

OBSERVED DEFLECTIONS - CONCENTRIC RUN, LOW TIRE PRESSURE 
speed (mph) G1 G2 G3 G4 G5 G6 

7.8 -0.153 -0.338 -0.509 -0.507 -0.335 -0.166 
11.36 -0.168 -0.358 -0.534 -0.523 -0.344 -0.177 

15 -0.156 -0.324 -0.493 -0.514 -0.362 -0.194 
19.5 -0.195 -0.343 -0.492 -0.508 -0.350 -0.207 
21 -0.172 -0.323 -0.488 -0.514 -0.354 -0.211 

28.2 -0.144 -0.381 -0.562 -0.542 -0.364 -0.194 
27.1 -0.194 -0.360 -0.537 -0.528 -0.351 -0.187 

DAF - CONCENTRIC RUN, LOW TIRE PRESSURE 
7.8 0.791 0.931 0.987 1.041 1.092 1.236 

11.36 0.869 0.986 1.037 1.074 1.120 1.320 
15 0.804 0.891 0.957 1.056 1.178 1.449 

19.5 1.006 0.944 0.954 1.044 1.139 1.548 
21 0.890 0.889 0.946 1.056 1.154 1.578 

28.2 0.746 1.048 1.091 1.113 1.187 1.449 
27.1 1.003 0.990 1.042 1.085 1.144 1.395 
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APPENDIX 3 

MODE SHAPES 

a) first mode shape, f= 2.5 Hz 

b) second mode shape, f= 2.7 Hz 

Fig. A 3.1 Mode shapes of Witts on Bridge - Span 3 
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c) third mode shape, f= 9.4 Hz 

d) fourth mode shape, f= 9.5 Hz 

Fig. A 3 .1 (continued) 

y 
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e) fifth mode shape, f = 11.7 Hz 

Fig. A 3 .1 (continued) 

y 
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a) first !\lode shape, f~ 6.61:lz 

b) second !\lode shape, f ~ 6.91:lz 
Fig. A 3.2 Mode shapes of eh"",b

ers 
eo. Bridge 
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z 

c) third mode shape, f = 10.7 Hz 

d) fourth mode shape, f= 20.8 Hz 

Fig. A 3.2 (continued) 
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e) fifth mode shave, f~ 22.3 az 
Fig. A 3.2 (continued) 




