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CHAPTER 1. INTRODUCTION 

Short-Term Electric Load Forecasting 

Short-term electric load forecasting (STELF) plays an important role in man-

aging an electric utility. The forecast can be used to help with operation decisions 

such as unit commitment, load dispatch, and reserve capacity allocation. The fore-

cast involves predicting the minutes-to-minutes loads for a few minutes ahead to 

predicting the hourly loads up to a week ahead. With accurate STELF, these opera-

tion decisions can be optimized so that economic savings and secure operating 

schedules can be realized by the utility. 

Many techniques have been developed to perform STELF. They can roughly 

be classified into statistically based techniques and expert system approaches. Sta-

tistically based techniques include stochactic time series approaches and multiple 

linear regression approaches. Time series methods use historical data to extrapo-

late future values and are well suited for stationary, seasonal time series. Electric 

load curves typically display th is type of behavior so time series methods are widely 

used and are the most popular methods for STELF [32]. But, electric load curves 

also possess elements that a time series approaches would have difficulties with. 

Examples include weekends, holidays, and unseasonably hot or cold days that 

cause load curves to vary from their normal seasonally. In addition, time series 

methods do not fully utilize explanatory variables, such as weather, which are impor-

tant for load forecasting. Multiple linear regression, on the other hand, does use ex-

planatory variables such as weather and societal factors, but creating reasonable 
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models that contains the dynamics of these external variable relations can be diffi-

cult. In addition, the relationships found between the explanatory variables are lin-

ear and the assumption of linearity may not be reasonable. An expert system also 

uses relations between external variables, but in the form of knowledge from an ex-

pert. Translating the knowledge of an expert into a set of rules and logic steps is 

often difficult or impractical. 

Artificial Neural Networks 

In attempts to gain accuracy and to decrease computational time, artificial neural 

networks (ANNs) have recently gained popularity for STELF because they demon-

strate many favorable characteristics for this type of problem . ANNs can be used for 

system modeling and prediction (25], can easily incorporate historical and regression 

data into one model [12], and can infer nonlinear relations between variables [30]. 

ANNs also save computational time because once trained, they are qu ite fast (7]. 

ANNs can do these types of tasks because they generalize [7]. Generalization 

is the abi lity to infer a reasonable relation from something never encountered before. 

ANNs can be used for STELF by utilizing past electric load curves, past weather in-

formation, and societal information to infer some relation so that forecasts of electric 

load curves can be performed. The relationships between electric load curves and 

weather variables are known to exist but the exact relation between the two is not 

known. In addition, the relation between the load curve and weather variables is most 

likely non-linear so linear methods for relating the two will not be completely reason-

able. Societal factors are also known to exists is some form . The relat ion between all 

of these variables, whatever it may be, can be determined by the ANN. Thus, by utiliz-

ing an ANN for STELF, input variables can easily be used in the modeling process by 
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eliminating having to know the complex relation between the input variables and the 

forecasted load. In addition to striving for faster and more accurate models, ANNs allow 

for an easier modeling process. 

Problem Statement 

This work explores the possibility of implementing an ANN methodology for 

STELF. Areas that will be examined are accuracy, computational time, and ease of 

modeling. In addition, the ANN STELF models will be used to perform predictions 

for an entire year. The forecasting period of interest in STELF is up to a week 

ahead so the ANN methodology was applied to perform hourly and daily predictions 

for a week in advance. The methodology involved two different aspects. The first 

dealt with unit commitment and reserve capacity allocations aspects. These areas 

were dealt with by designing ANNs that could perform forecast daily so that weekly 

forecast could be obtained and updated on a daily basis. The second methodology 

involved designing ANNs that could be updated for the smallest unit of time being 

considered, which happened to be hours, to address load dispatch concerns. 

Creating these ANN models involved obtaining hourly load and weather data and 

involved incorporating societal data. The modeling process also involved a deter-

mination of what variables to include in the models. The data used covered three 

years from 1990 to 1992 where 1992 was the year used to perform predictions. 
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CHAPTER 2. SHORT-TERM ELECTRIC LOAD FORECASTING 

Motivation 

Since the first operations of power systems, electric utilities have had to increase 

efficiency while maintaining or even increasing system reliabil ity. The deregulation of 

the electric industry in the late 1990's will push efficiency even more. There are many 

areas for increasing efficiency within a power system including fuel budgeting, trans-

mission planning studies, system planning studies, system operating policy, and load 

management studies. The work in this thesis will cover areas that benefit from short-

term electric load forecasting {STELF). These areas include unit commitment, reserve 

capacity allocation and load dispatch. 

Unit Commitment 

A power system can have vast hourly and daily load variations due to the differ-

ences between high mid-day, peak- hour demands and low early morning, valley-hour 

demands. Regardless of this fact, a utility must meet the electric demand in an econom-

ical manner while considering the operating and shutdown constraints of the generat-

ing units. The load variation can be meet by operating all generating units at proportion-

al rates to meet the current demand. This strategy will cause plants to operate near 

maximum capacity during peak hours and near minimum capacity during valley hours. 

An alternative to operating all generating units simultaneously is to operate the fewest 

number plants near maximum capacity to meet the electric demand. This later alterna-

tive tends to more economical because the fewest possible number of generating units 



5 

are on-line. This reduces staffing and operating costs for operating several plants. In 

addition , the generating units on-line are operating near maximum capacity where 

power generation is more economical than generating units operating near minimum 

capacity. Since a power system contains many generating units of different cost char-

acteristics, the generating units can be ranked in order of economics. Thus, when the 

decision comes to operate the fewest number of generating units, the plants with the 

highest ranking will operate first. 

To operate a power system with the fewest possible number of generating units 

on-line requires planning the start-up and shut~own schedules of the plants. Start-

up times can vary from a few minuets to a few days so obtaining reasonable forecasts 

are important. Planning the start-up and shut~own schedules also requires account-

ing for the mandatory up and down times that the generating units may have, which 

mandates the minimum number of continues hours that a plant can be operating or dor-

mant. In addition, start-up schedules should be planned in accordance with the 

associated start-up costs. Start-up costs can increase with longer off-line periods. 

This can be attributed to the fact that operating temperatures and pressures wi ll contin-

ue to decline with longer off-line periods having greater energy requirements to bring 

the plant back on-line. 

Reserve Capacity Allocation 

In addition to the economic considerations of unit commitment, system reliability 

is also an important concern. System reliability ensures that the load demand will be 

meet during reasonable load fluctuations outside unit commitment forecasts and during 

possible unplanned events such as forced outages. System reliability is established 

by having generating reserve capacity. Generating reserve capacity is classified as 

spinning reserve or quick-start reserve. Spinning reserve is the addit ional capacity that 
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a generating unit has by operating at less that full output. A 500-MW plant operating 

at 400-MW has 100-MW of spinning reserve. Quick-start reserve refers to generating 

units that can start up and deliver power quickly. Gas-turbines and pumped-storage 

hydro units are examples of quick-start units. 

Planning reserve capacity allocation involves utilizing both spinning reserve and 

quick-start reserve. Even though it is most economical to operate generating units at 

maximum capacity, quick-start reserve is less reliable since the plant may fail start or 

to operate. Generating units operating at 90% provide 10% of spinning reserve still and 

are operating in an economical manner. Spinning reserve is also distributed among the 

operating generating units in a power system. This reduces the risk of a single generat-

ing unit failure causing the system reliability to fall to an unacceptable level. The dis-

tribution of spinning reserve also allows the generating units to operate near maximum 

capacity. 

System reliability also requires that the operation of generating units be distrib-

uted to provide area protection. This provides system reliability because the smaller 

areas in a service region would have a degree of self reliability. There are also the trans-

mission cost of moving electricity over greater distances. A unit commitment/reserve 

capacity allocation algorithm is presented here [42]. The four-step approach is: 

1. Units available for operation are ranked in a priority list according to 
full-load operating cost in $/MWh. 

2. The area protection rule is applied to reorder the list generated in step 1. 

3. By using the priority list generated in steps 1 and 2, a minimum number of 
plants are committed each hour of the week to meet both {1) the load, using 
the continuous operating ratings of the units, and (2) the load plus spinning 
reserve requirement, using maximum ratings of the units. 

4. Step 3 is reviewed for unit minimum downtime violations. If a violation exist, 
the unit is required to operate during that period. 
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Load Dispatch 

By performing unit commitment and reserve capacity allocation scheduling, a 

power system can establish which generating units will be on-line for each hour. Load 

dispatch planning, on the other hand, determines the portion that each on-line gener-

ating unit will deliver to meet the immediate electric load. Load dispatch strives to meet 

the minute-by-minute system load demands in an economical and reliable manner. 

Transmission losses factor in determining the amount of power that the on-line gener-

ating units will deliver. Longer transmission distances between generating units and 

demand areas result in greater losses. But, plants with low operating costs can some-

times offset transmission losses. Generating units also have individual characteristics, 

such as fuel costs and incremental power cost which make some plants more economi-

cal to operate during load dispatch operations. 

A load dispatch equation as derived by Stoll [42] will be presented in a qualitative 

manner. He first begins by considering the constraint that system load must be met by 

power output from the committed units minus the transmission losses. The total system 

operating cost per hour is the summation over all committed plants of the product of the 

fuel cost times the fuel input, plus variable incremental operation and maintenance cost 

times the megawatt output. This cost is to be minimized so a first derivative of the sys-

tem cost with respect to each unit's power output must be zero. This yields the dispatch 

equation which implies that the maximum system economy results when the incremen-

tal generating cost plus the incremental cost of transmission losses are equal. 

Another concern of load dispatch is the environment. These environmental 

constraints basically deal with the limitations on the amount of pollutants that can be 

discharged from a generating unit and with the overall air quality in a given area based 

on the pollution. The first constraint can be dealt with by using appropriate fuel or with 
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pollution limiting techniques. The second constraint is more of a function of the con-

centration of plants in a given area. As a plant operates near maximum capacity, the 

pollution also is produced near maximum capacity. Environmental concerns could limit 

load dispatch for a concentrated area. 

Methods 

Accurate STELF can produce optimal unit commitment, reserve capacity alloca-

tion, and load dispatch. This, in turn, can benefit an electric utility by the operation of 

an efficient and reliable system. Many of the methods utilized involve the use of auto-

mated systems. For this reason, Bunn and Farmer have outlined four general charac-

teristics that a STELF model should posses [6]. They are; 

(1) adaptiveness 

(2) recursivness 

(3) robustness 

(4) economic computer utilization 

Adaptiveness allows the parameters in a model to change over time. This may be nec-

essary because the dynamics of some parameters may not be stationary. The greater 

the number of parameters that change yield a more adaptive model. Recursivness en-

ables a STELF model to process novel data in a reasonable manner. That is, the model 

should not have to be recomputed. Robustness permits a STELF model to perform re-

gardless of missing or noisy data. Incomplete and noisy data is often common in 

STELF. With any use of computational resources, economic utilization is always impor-

tant. These four characteristics provide good guidelines for developing STELF models 

but it is often not possible or difficult to incorporate all of them. Electric utilities differ as 

do their needs, so their STELF methods will utilize methods with characteristics that are 
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important to them. 

In attempts to create STELF models that incorporate these four characteristics, 

many different methods have been implemented to accomplish this task. Moghram and 

Rahman have identified the five most common methods [30). They are either statistical 

approaches or an expert system approach. The three most popular are listed below 

[3, 14,34); 

(1) Multiple Linear Regression 

(2) Stochastic Time Series 

(3) Knowledge-Based Approach 

All of these methods have their merits but they also have different characteristics. For 

example, time series approaches are well suited for seasonal data while knowledge-

based approaches can deal with irregularities. Any one of these methods can provide 

reasonable forecasts and with significant development can possibly provide very accu-

rate results. 

Multiple Linear Regression 

Many processes are functions of other variables, STELF being just one. These 

variables are usually referred to as explanatory or regression variables. Determining 

the exact relation of these variables can be often difficult because their relation is often 

non-linear or just not very well understood. In some instances, an assumption of linear-

ity may be reasonable. Modeling with multiple linear regression involves using explan-

atory variables to help describe a process. For STELF, the electric loads could be de-

scribed in terms of weather and societal variables. A typical equation will have the form 

[33) : 

Yi = Bo + B1 x i1 + B2xi2 + .. . +Bpxip + Ei ( 2.1 ) 

Where i = 1, 2, ... , n, Yi is the electric load, Xii •....• Xip are explanatory variables correlated 
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with Yi , Ei is a random variable, and Bo ..... Bp are regression coefficients. The explana-

tory variables are sought by making an educated guess as to what might be important. 

They are then tested individually with the electric load by using a some sort of linear 

correlation test. This test is used to determine which of the explanatory variables cho-

sen are significant. Once the statistically significant explanatory variables are found, 

their coefficients can be determined by using an estimation method such as a least 

squares estimation technique. 

Stochastic Time Series 

Often, many processes can be described and modeled as time series. A time 

series is a collection of observations made sequentially in time. Electric load curves 

are time series. Time series methods involves representing some series as an output 

from a linear filter where the input is a random series [37]. The time series can have 

several classifications depending on the filter characteristics. If the filter uses previous 

values of the electric load series as well as a random noise, it is said to be an autore-

gressive (AR) process or fi lter. If the filter uses the previous values of the random series 

as well as the electric load, it is said to be a moving-average (MA) process or filter. The 

filter can combine both processes to yield an autoregressive moving-average (ARMA) 

process. Another combined filter case involves modeling a non stationary series where 

a differencing process is involved. This is referred to as a autoregressive integrated 

moving-average (ARIMA) process or filter. 

For STELF, the modeling process involves a data series that contains periodici-

ties. These periodicities cause a slight modification to the ARIMA process . This pro-

cess involves using a seasonal differencing operator, much like a standard differencing 

operator, to yield a seasonal ARIMA or an SARIMA. The seasonal differencing operator 

is the same as a regular differencing operator except that the differencing occurs over 
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a period determined by the seasonally of the given problem. The general SARIMA 

equation is [37]: 

<l>p(B)<!Jp(85)VdVD 5Xt = 8q(B)8a(B5)Z1 ( 2.2 ) 

where B is a backshift operator and is denoted by: 

( 2.3) 

Where X1 are previous terms, and Z1 are random shocks. The autoregressive terms 

(AR) are denoted by 

cj>p(B) = ( 1 - cJ>1 B - ¢282 - ... - <l>pBPlXt ( 2.4) 

a nonseasonal AR operator, and 

<!Jp(BS) = (1 - <lJsBs - <lJ2sB2s - ... - <l>psBPS)Xt ( 2.5) 

a seasonal AR operator. The seasonally is denoted s which represents the seasonal 

periods. The moving average (MA) terms are denoted by 

eq(B) = (1 - 01 s 1 - e2s2- ··· -eqsqlz1 ( 2.6) 

a nonseasonal MA operator, and 

0a(B5 ) = ( 1 -0585 - 825825 - ··· - 0a8 B05)Zt ( 2.7) 

a seasonal MA operator. The remaining terms are differencing term and are denoted 

by 

Vd = (1 - B)dXt 

a nonseasonal differencing operator, and 

Vos= (1 - 9s)D 

( 2.8) 

( 2.9) 

a seasonal differencing operator. Equation 2.2 is referred to a (p,d,q) x (P,D,Q) SARI-

MA equation where the coefficients represent the degree of the AR, MA, and differenc-

ing performed. The coefficients p,d, and q refer to the non-seasonal components and 

the coefficients P,D, and Q refer to the seasonal components. 

Using an SARI MA model involves a long, modeling process of identification, es-

timation, and diagnostic checking. Identification involves using autocorrelation (ACF) 
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functions, partial autocorrelation (PACF) functions , and range-mean plots to deter-

mine an appropriate starting model from the data set. The resu lts of these test could 

indicate that the data might need to be transformed or differenced before the modeling 

process can continue. The ACF and PACF also provide information about what initial 

model to choose. Estimation involves obtaining values of <P, <I>, 8, and 0 for the tenta-

tive model chosen in the identification stage. This is usually accomplished by using a 

linear estimation method such as a least squares technique. These coefficients must 

meet certain mathematical criteria to ensure that the model is stationary and invertible. 

These criteria ensure model stability and can be examined further in a time series anal-

ysis book [37). Diagnostic checking is the last step to determine it the chosen model 

is acceptable. This step involves residual analysis and determines if the identification 

stage is needed again. 

Knowledge-Based Approach 

Abnormalities in processes always represented a problem for modeling proce-

dures. Some of these abnormalities are easily identifiable when examined by a human 

though . Knowledge based systems are efforts to tap into human knowledge in order to 

help in the modeling of abnormalities. STELF has such abnormalities present with holi-

days, weekends and days with unusual weather patterns. Knowledge based ap-

proaches were used for STELF in attempts to develop models that could deal with ab-

normal days such as holidays that are normally difficult to predict with other methods. 

This approach utilizes expert systems which are complex and vast sets of information 

and knowledge incorporated into a knowledge- base. The knowledge is usually sup-

plied by a human expert. The information is represented by or translated into rules and 

facts. The rules and facts are arranged in a hierarchic pattern with decision branches. 

Decisions are made based upon the rules and facts by querying one and deciding what 
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path to take onto the next rule or fact where the process is repeated again. This process 

occurs until a solution is reached. Different situations will take different paths and could 

face separate rules. Rules and facts based upon the relationship between electric load 

curves, weather information and other variables make up a STELF expert system. 

Once a decision has been presented by an expert system, a user can trace the path 

that the decision was made upon to examine the logic and reasoning 
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CHAPTER 3: ARTIFICIAL NEURAL NETWORKS 

Introduction 

The human brain is probably regarded as the most advanced, complex, and 

powerful machine ever. A human can perform actions that no computer has ever been 

able to recreate such as pattern and image identification. An example of this is that in-

fants can easily identify their parents from strangers. Even though infants can perform 

these actions, they cannot perform mathematical computations and even adults per-

form mathematical computations slowly and without exact precision. Computers, on 

the other hand, can perform numerous mathematical calculations in seconds, with 

great precision but are not good at pattern and image identification problems. Many 

pattern recognition problems such as telephone speech recognition and military target-

ing require speed and accuracy though . Artificial neural networks (ANNs) were devel-

oped in attempts to model biological systems for use in these pattern recognition types 

of problems. In fact , ANNs are good at solving problems that humans solve easily, such 

as pattern recognition, but are bad at solving problems, such as numerical computa-

tions, that computers can solve easily [7]. 

ANNs consists of simple processing elements, called neurons or nodes, which 

process signals through some sort of non-linear function to produce output signals. 

The signals usually come from other neurons so the produced outputs actually become 

inputs for other neurons. The neurons in an ANN are also usually highly interconnected 

so that an output signal from one node becomes the input for several other neurons. 

The connections between the neurons are usually weight values so that a neurons in 
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an ANN actually receives a weighted sum of input values. The processing elements 

and interconnections are the fundamental parts of ANNs. The arrangement of the neu-

rons and inter-connections constitutes the ANNs architecture. 

ANNs are used by utilizing some sort of data set, that contains a set of exem-

plars, to determine the internal parameters and values of the ANN so that it can be appli-

cable for a given problem. Thus, ANNs 'learn' by determining some sort of classifica-

tion or some sort of function mapping from the data sets. The manner in which the ANN 

utilizes the data sets constitutes a supervised or unsupervised learning scheme. In 

addition, both learning schemes have several different ways in which they operate. 

This refers to the manner in which the external data set is utilized in order in determine 

to internal ANN parameters and values so that learning occurs. The ANN developed 

for this thesis uses a multi-layer perceptron architecture with a supervised learning 

scheme that operates with a feed-forward, back propagation method for adjusting the 

internal parameters and values. The next sections will describe the features of the ANN 

written and used for this thesis. The ANN code is nnffbp1 .f and can be found in Appen-

dix A. More information about ANNs can be found in (7-11 ,19,21]. 

Multi-Layered Perceptions 

Neurons can be arranged in many different architectures. A single row of neu-

rons is referred to as a single-layer perceptron while a multi-layer perceptron (MLP) 

ANN consist of several neuron layers. Each layer consists of a number of neurons 

which are usually fully connected to the neurons in the preceding and proceeding layers 

but which are not connected to the neurons in it's own layer. For this work, the different 

layers were fully interconnected. The neuron layers are designated by names where 
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the first layer, the layer with no preceding layers, is referred to the input layer and re-

ceives any external signals that are to be processed by the ANN. Consequently, the 

last layer, the layer with no proceeding layers, is referred to as the output layer and pro-

duces the ANN output. The layers between the input and output layers are called hid-

den layers. An MLP ANN has one input layer and one output layer but can have several 

or no hidden layers. Figure 3.1 illustrates an MLP ANN architecture. Figure 2.1 is 

I 
I , . 1 . . 

' I 'v 
Neurons 

Output Layer 

.......... ..... ..... ..... ...., 
I 
I Hidden Layers 

Input Layer 

Figure 3.1 An MLP ANN architecture 

referred to as a I x H1 x H2 x . . . x Hn x 0 ANN, where I is the number of neurons in 

the input layer, H 1 is the number of neurons in the first hidden layer, and 0 in is the num-

ber of neurons in the hidden layer and where the ANN has n hidden layers. Sometimes 

the input layer in not counted when referring to the ANN architecture. For example, an 

architecture of 5 input neurons, 7 hidden neurons in one hidden layer, 3 hidden neurons 

in another hidden layer, and 1 output neuron is a 5x7x3x1 , three-layer ANN. The rea-

son for not counting the input layer when referring to the number of layers the ANN will 

be explained in a following section. 
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In most modeling problems, the number of input and output neurons is 

defined or determined by the problem. The dilemma lies in determining the number of 

hidden layers and then the number of neurons in each hidden layer. Kolmogorov's 

Theorem is used to show that any continuous function can be implemented in a two-

layer ANN where the number of hidden nodes equals 2n+ 1 and where n is the number 

of input nodes [8]. There are also theorems that state that any function can be mapped 

using one hidden layer with an infinite number of neurons or two hidden layers and a 

finite number of neurons [4]. As a general rule, it is desired to have the least number 

of hidden neurons [5]. Having the least number of hidden neurons yields better gener-

alization. With more hidden neurons, ANNs tend to memorize instead of generalize. 

Supervised Learning 

Supervised learning refers to using a data set that consists of examples or train-

ing patterns where the solutions are known. The examples are presented to the ANN 

to see if the outputs produced by the ANN matches the solutions of the given examples. 

These are referred to as the actual and desired outputs. It is quite likely that the actual 

and desired outputs will not match each other initially so the training patterns are usually 

presented to ANN in an iterating manner so that the ANN can adjust it's parameters and 

values so that it 'learns' the correct solutions of the examples. The different supervised 

learning schemes refers to the the different manners in which an ANN learns. An impor-

tant note is that the examples used should be representative of the given problem so 

that the ANN can infer the correct relations between the inputs and the outputs so when 

novel information is presented, the ANN can formulate a reasonable output. 

The manner in which the internal parameters and values were adjusted by the 

ANN in this work so that the learned occurred, happened in a two-step iterating pro-
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cess. The first step is a feed forward process and the second step is a error back propa-

gation process. This learning scheme is referred to as a feed forward back propagation 

(FFBP) method and quite common. The feed forward process refers to the processing 

of the examples in the data sets in the ANN by first presenting them to the input layer 

then through the hidden layers and finally through the output layer to produce outputs. 

The back propagation process refers to the adjusting of the internal parameters and 

values so that the actual and desired outputs match. 

Feed Forward 

The examples in the data sets are first presented to the ANN via the input layer. 

The input layer then takes those input signals and sends them directly to the neurons 

in the hidden layer without processing them through non-linear transfer functions. This 

is the reason that the input layer is often not included when referring the the number 

of layers in an ANN. Each neuron in the hidden layer then receives a weighted sum 

of the inputs from the neurons in the input layer. The neurons in the output layer also 

receive a weighted sum of inputs, but from the hidden layer. This sum is represented 

by the following equation, 

n 
sum . = ~w .. o. J L IJJ ( 3.1 ) 

where sumi is the sum for neuron jin the current layer, wii is the weight value from neu-

ron iin the previous layer to neuron jin the current layer, oi is the output value from neu-

ron i in the previous layer, and n is the number of neurons in the previous layer. This 

equation is used for all the neurons in the current layer. Figure 3.2 illustrates this pro-

cess for a one-layer MLP with two input neurons and one hidden neuron. 

The input of the neuron, the weighted sum, now passes through a non-linear 
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0 
Output Signals 

Weight Values 

Figure 3.2 Summation process in a 2x1 ANN 

transfer function. The function used for this work was an exponential sigmoid function. 

This function is represented by the following equation. 

f(sum) = 1 
( 1 + e - [g(sum - tll) 

( 3.2) 

where g is a gain value, tis a threshold value, and sum is the weighted sum value from 

equation 3.1. The sigmoid function allows the neurons to produce week, strong, or in-

termediate activations based on the value of the weighted summed input. The standard 

exponential sigmoid function has threshold value of zero and a gain value of unity and 

is illustrated in Figure 3.3. Using different values for the gain and threshold moves the 

Figure 3.3 A sigmoid function 
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curve from the 0.5 intersection point and gives the curve a steeper or flatter shape. 

This activation function was used in all of the hidden and output layer neurons. 

Back Propagation 

Now that the ANN has produced an output based on the current ANN weights, 

the difference between the actual and desired output will be used to adjust the internal 

parameters so that the difference between the two will be minimized. The internal pa-

rameters actually refer to the weight values for the ANN in this thesis. It should be noted 

that the starting values of the weights were set randomly to small values. The learning 

scheme used in this thesis to adjust the weights was the back propagation (BP) algo-

rithm derived by Hecht-Nielsen [20]. BP is a gradient decent approach that adjust the 

weights. The weights and the errors between the actual and desired outputs can be 

plotted against each other [9] to create an error surface. This error surface will be n-di-

mensional hyperparabola with peaks and valleys. Since BP is a gradient decent meth-

od, the weight values will move in the direction of the negative gradient or towards a 

valley where the error is small. 

The second stage of the FFBP process begins with the adjustment of the weight 

values between the output layer and the hidden layer preceding it. These weights are 

adjusted by using the Delta rule [8,20] which is given by 

Wnew =Wold+ ~Ex I lxl2 ( 3.3 ) 

where W old is the old weight value, ~ is a constant defined as the learning rate, E is 

the error of the neuron output, and x is the neuron input. It is interesting to note that 

when E = 0, the neuron has produced the correct result so the new weight value will 

equal the old weight value and thusly, remains unchanged. The error term in Equation 

3.2 can be computed easily for the layer between the output layer and the hidden layer 
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W new = Wold + ~·E*h2(out) / I ' 
I ""l ' W new= Wold + ~·E*h3(out) 

Error, E = D - 0 

""' Desired Output 

Figure 3.4 Delta Rule for Output Layer Neurons 

preceding it because the actual output from the output neurons can be used along with 

the desired output of the training pattern to determine the error. This weight adjustment 

is illustrated in Figure 3.4. 

Changing the weights between the hidden layers or between the hidden and in-

put layers is more difficult because the desired output is not known for the neurons in 

the hidden layer. For this reason the Generalized Delta Rule must be used to change 

the weights [9,20). For this case where the desired neuron output in not known, the BP 

algorithm determines each hidden neurons contribution to the error of the output neu-

rons. The corresponding contribution is then used in the error determination for the 

weight change calculation. This rule is basically the same as the Delta ru le except for 

calculation of the error which is given by 

n 

Eh = f ' (x)[_I wiiEi] 
i=1 ( 3.4 ) 

where E0 is the error or the output neurons and wh-o are the weights that connect the 

output neurons to a hidden node. The remaining term is the derivative of the exponen-

tial sigmoid activation function which is given by 

f '(x) = f(x) [ 1 - f(x) ] ( 3.5 ) 
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Actual Output - 0 ~ 
01 

Error, E = D - 0 

" Desired Output 
W1 /, W2 

'v/ K W3 

Err. Sum= E-W1 ""/ ~ 'i 
~~~ 

Err.Adj = Err.Sum*{h1 (out)[1-h1 (out)]} \ '~ Wnew =Wold+ ~*Err.Adj*i1 (out) 

~''& W00w = W~d + ~·Err.Adj"i2(out) 

Figure 3.5 Generalized Delta Rule for hidden neurons 

It is easy to show that this equation is just the neuron output multiplied by one minus 

the neuron output. The Generalized Delta rule is in Figure 3.5 

Learning Rate 

The learning rate, ~.is the rate in which the weights change. That is, the learning 

rate is multiplied by the weight change calculation. This variable can range from zero 

to one. Large values, around .9, will cause the ANN to converge quickly but can also 

cause the convergence to oscillate around the minimum due to the large steps taken 

on the error surface. If the ANN was close to the minimum on the error surface, a large 

learning rate could cause the next weight jump to miss the minimum and climb the the 

other side. Small values around .1, on the other hand, will reduce the possibility of os-

cillation, but will cause the ANN to converge more slowly. Ideally, the learning rate 

should start out near one and move towards zero as the ANN nears convergence. The 

ANN developed for this thesis used two learning rates, one for the hidden layer and one 
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for the output layer. This was incorporated so that the learning between level could be 

balanced in necessary. 

Batch Training 

Presenting the training patterns can occur in two fashions. The first method 

presents one pattern at a time then adjust the weights in the FFBP process. In this 

method, the ANN adjust it's weights for one pattern then adjusts it's weights for the next 

pattern. This can cause the ANN to forget some or all of what it has learned by the pre-

vious weight adjustment. This, in turn, can cause the ANN to converge slowly due to 

the fact that it may have to relearn each training pattern. The second method presents 

all of the training patterns before adjusting the weights. This method is referred to as 

batch training and was utilized in this work. For batch training, the error value is actually 

the accumulated error for all the training patterns. This allows the ANN to remember 

the incorrect response for each training pattern before adjusting the weights. The 

weights are adjusted only after all of the training patterns have been feed forward 

through the ANN. 

RMS Error and ANN Convergence 

After the ANN has performed one iteration of feed forward and backpropigation, 

or one pass of the entire training set, some criteria must be used to determine if the net-

work has converged. Convergence refers to the correctness in the ANN output and a 

criteria refers to utilizing some cost function to determine convergence. There are 

many cost functions that can be used to accomplish this but the one used for this work 

was the Root Mean Square (RMS) function. The RMS function is common and is most 
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( 3.6) 

where m is the number of output neurons, n is the number of training patterns and d 

is the difference between the actual and desired outputs. 

Momentum 

As the dimension of an ANN grows, so will the size and complexity of the error 

surface. With the complexity of an error surface, there is the possibility of the ANN con-

verging into a local minima instead of the global minimum. This ideal is expressed in 

Figure 3.6 with a two dimensional error surface. This is a common problem with BP and 

Error 

Local minimum 

Figure 3.6 Error surface and local minimum illustration 

a common solution and the one used in this thesis to help deal with this was to use a 

momentum term. A momentum term is designed to use the "momentum" built up during 

downhill descents on the error surface so that enough speed or inertia is present to 

make it up and over the local minimums. This term is employed by slight modification 

of the Delta rule 

Wnew =Wold+ ~Ex I lxl2 +a( Wnew +Wold )Prev (3.7) 

where a is a momentum rate and Prev refers to the previous weight change. As with 
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the learning rate, the momentum rate is between zero and one. In addition to escaping 

local minima, the momentum term also helps the ANN performance because it tends 

to speed up convergence. This is the case because the speed of the downhill descents 

is increased due to the momentum. 

Verification 

Since an ANN was developed for this work, it was first tested with some bench-

mark problems to determine if was functioning properly. The benchmark problems 

used were the exclusive-or (XOR) problem and the eight-to one decoder problem. 

The XOR problem involves two inputs and one output where these values exist in either 

an on or off pattern. Zero and one are typical values used for this procedure to repre-

sent on and off. Zero and one were used for inputs but the outputs used were 0.1 and 

0.9 which are close to zero and one, respectively. The results of this are illustrated in 

Table 3.1. The ANN used for this was a 2x3x1 , two layer network. The ANN was trained 

to an RMS of 0.01 

The eight-to one decoder problem also involved inputs and outputs with on or 

off representations. The input consisted of three neurons where different combinations 

of on and off patterns would indicate the desired activation for the output. The output 

Table 3. 1 XOR inputs and outputs. 

Input 1 Input 2 Desired Output Actual Output 

0.0 0.0 0.1 0.01023 

0.0 1.0 0.9 0.9044 

1.0 0.0 0.9 0.8838 

1.0 1.0 0.1 0.00995 
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consisted of eight neurons where one of eight output neurons would be on or have a 

value of one, and where the remaining input signals would be off or have values of zero. 

The output signals were represented with 0.9 values to represent one and 0.1 values 

to represent zero. The desired and actual outputs are illustrated in Table 3.2. This ANN 

was a 3x9x8 two layer network and was also trained to an RMS of 0.01 . The ANNs per-

formed well on the benchmark problems so the assumption that the ANN was valid and 

functioning properly was made. 

Table 3.2 8-to-1 decoder inputs and outputs. 

Input Desired Output Actual Output 

0.0 0.0 0.0 0.9 0 .1 0.1 0 .1 0 .1 0.1 0.1 0.1 .88 .11 .10 .10 .10 .09 .09 .10 

0.0 0.0 1.0 0.1 0 .9 0.1 0.1 0 .1 0.1 0.1 0.1 .10 .89 .10 .11 .09 .10 .10 .10 

0.0 1.0 0.0 0 .1 0.1 0 .9 0.1 0.1 0 .1 0.1 0.1 .10 .11 .90 .10 .09 .10 .11 .10 

0.0 1.0 1.0 0 .1 0.1 0 .1 0.9 0.1 0.1 0.1 0.1 .09 .09 .10 .91 .12 .10 .10 .10 

1.0 0.0 0.0 0 .1 0.1 0 .1 0.1 0.9 0.1 0.1 0.1 .09 .10 .10 .09 .90 .09 .10 .10 

1.0 0.0 1.0 0 .1 0.1 0.1 0.1 0.1 0.9 0.1 0.1 .10 .09 .10 .10 .10 .90 .11 .09 

1.0 1.0 0.0 0 .1 0.1 0.1 0.1 0.1 0.1 0.9 0.1 .10 .09 .09 .10 .10 .09 .90 .09 

1.0 1.0 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.9 .09 .10 .10 .09 .10 .12 .10 .89 
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CHAPTER 4: PROBLEM AND ARTIFICIAL NEURAL NETWORK METHOD 

Data Collecting and Processing 

An electric load curve displays highly seasonal behavior. Seasonally refers 

to the load curve having peaks and valleys with a regular period. This seasonally 

is due to the fact that society, for the most part, operates on a regular schedule. So-

ciety works during the day and sleeps during the night. However, these peaks and 

valleys do not all posses the same magnitude. One week might have relatively uni-

form peaks and valleys while the next might show greater variation. One explana-

tion of the variation in magnitude can be attributed to weather factors. For example, 

when the temperature rises in the summer, the use of air conditioners also rises 

which requires electrical power. Another source of variation arises through societal 

factors. For example, most of society works during weekdays while having week-

ends and holidays off. Consequently, the load demand on these days will be lower 

due to the non use of industrial equipment. The data required for the ANN modeling 

of STELF will consist of electric load data to account for the seasonally and weather 

and societal variables to account for the variability. 

The data used in this thesis consisted of hourly electric loads from Omaha 

Public Power District (OPPD) during the years of 1990, 1991, and 1992 [36]. Hourly 

weather variables for the same years from the Omaha, Nebraska area were also 

available [22]. These weather variables include air temperature, soil temperature, 

wind speed, wind direction, precipitation relative humidity , and solar radiation. So-

cietal variables which indicate the day of the week and holidays were also used the 

the ANN models but were generated. 
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The electric load and weather variables were available in individual data files 

but the societal variables needed to be generated. In addition, the electric load and 

weather variables needed to be normalized so that the ANNs used could utilize 

them. Recall that the transfer function was a sigmoid function and that it is asymp-

totic at zero and one. The electric load and individual weather minimum and maxi-

mum values were found and used to normalize the data between 0.1 and 0.9. A 

computer program was written to read the electric load and weather files, normalize 

the data, generate societal variables, and to create an input/output set for use in the 

ANNs. The program is called loadread.f and can be seen in Appendix A. Since the 

data files were available on an hourly basis for an entire year, the program created 

input/output sets which had a moving window of an hour. 

The generation of the societal variables involved establishing booleans. For 

the day of the week indicator, seven variables were used so that one could represent 

each day. Each day would have their variable equal one while the other variables 

would equal zero. For a Monday, the first variable would have a value of one while 

the other six variables had a value of zero. The holiday indicator consisted a single 

variable where a one would indicate a holiday and a zero would indicate a regular 

day. 

Artificial Neural Network Model Development 

The first step in developing an ANN model was to examine the data. The 

electric load curves have been plotted by year and by month and can be found in 

Appendix B. Many items can be noted from these curves. The first item deals with 

the shapes of the curves from the yearly plots. The middle portions display greater 



29 

values and greater variability. These middle sections represent summer months. 

The greater magnitude of the load peaks can be attributed to the fact that there is 

need for cool ing which is done with electric air conditioners. The remaining part of 

the yearly plots, the ends, are the winter months and tend to be fairly constant. This 

can be explained by the use of natural gas and heating oil, instead of electricity, for 

heating. 

Another item can be noted in the summer and winter months by examining 

the monthly graphs. There are daily peaks and valleys during both seasons but the 

shapes of these peaks differ. The peaks for the winter generally display two humps 

while the peaks for the summer generally display only one hump. The two humps 

in the winter can be attributed to the industrial and commercial use during the day 

for the first hump and to the residential lighting and general use during the evening 

for the second hump. The time between represents commuting time when people 

are between work and home. The single hump in the summer can be attributed to 

the longer daylight hours requiring less lighting and the continual use of air condi-

tioning. The differences between the seasons prompted the development of two 

ANN models, one for the summer and one for the winter. The summer ANN model 

ranged from the last two weeks in May to the first two weeks in September while the 

winter ANN model covered the remainder of the year not covered by the summer 

ANN model. This period was chosen by examining the curves for appropriate cut-

offs. 

In addition to dividing the ANNs into seasonal models, the ANNs for forecast-

ing the week ahead were also divided into separate models. This kept the ANN mod-

el from creating a large ANN with 168 outputs. For both winter and summer models 

ANNs were developed to perform one hour ahead predictions, 24 hours ahead pre-

dictions, and 24 hours ahead predictions for up to seven days ahead. The total num-
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ber of hourly networks for each season equaled eight, one for the 24 hour period 

tomorrow, one for the 24 hour period for the day after tomorrow, and so on for seven 

days and and eighth for hourly predictions. The hourly ANNs were developed to 

model and simulate load dispatch while the 24-hours ahead ANNs were developed 

for unit commitment and reserve capacity allocation scheduling. The ANN models 

developed are listed in Table 4.1. 

Table 4.1 List of ANN STELF models 

ANN Number Description 

w1h Winter model, one hour ahead prediction 

w24h Winter model, next 24 hours ahead prediction 

w24h2d Winter model, 2 days ahead 24 hours prediction 

w24h3d Winter model, 3 days ahead 24 hours prediction 

w24h4d Winter model, 4 days ahead 24 hours prediction 

w24h5d Winter model, 5 days ahead 24 hours prediction 

w24h6d Winter model, 6 days ahead 24 hours prediction 

w24h7d Winter model, 7 days ahead 24 hours prediction 

s1h Summer model, one hour ahead prediction 

s24h Summer model, next 24 hours ahead prediction 

s24h2d Summer model, 2 days ahead 24 hours prediction 

s24h3d Summer model, 3 days ahead 24 hours prediction 

s24h4d Summer model, 4 days ahead 24 hours prediction 

s24h5d Summer model, 5 days ahead 24 hours prediction 

s24h6d Summer model, 6 days ahead 24 hours prediction 

s24h7d Summer model, 7 days ahead 24 hours prediction 
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In developing 7 ANNs to perform 24 hours ahead predictions for an entire 

week, several items were considered. The first dealt with developing small net-

works. By developing 7 ANNs, each with 24 outputs, instead of one ANN with 168 

outputs, the dimensionality of the problem was reduced so that the corresponding 

error surface would be less complex. This would help the tra ining and learning of 

the ANN models by creating easier problems. This also allowed the data sets to 

contain training patterns that were similar in nature. Another consideration was that 

separating the ANNs into 7 models allowed the predictions to be updated daily. This 

would provide a new weekly-hourly prediction on a daily basis. 

Selection of Input Variables 

The selection of input variables for the ANNs involved choosing appropriate 

historical electric load data and pertinent weather data along with the inclusion of 

the societal variables. The next sections will cover each of these areas and the 

manner in which the inputs were selected. 

Historical Inputs 

Seasonallity in any time series indicates that historical data will be useful for 

any modeling [37]. For this reason, historical electric load data was utilized to indi-

cate the most likely path of the data. The problem was in determining the amount 

of historical data to utilize. Determining the amount of previous historical data for 

use in the one-hour ahead ANN models involved examining the load data which 

showed that the distance from a peak to a valley on a load curve can cover 1 O hours. 

Using the 12 previous hours should provide sufficient periodic information to indi-
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cate what the next hour might be. Hourly ANNs were tested with different amounts 

of historical load data and 12 proved to be a reasonable number. In addition to the 

information from the immediate previous electric load, previous periodicity also pro-

vides information. Daily periodicity can provide information because loads that are 

24 hours apart will be somewhat close in value. However, they will not be close for 

days involving weekends and holidays due to the societal influence of those day 

types. In addition, loads that are a week apart will also provide information because 

the days are the same so the societal influence from day types, excluding holidays, 

will be minimal. Thusly, these days that are a week apart will be similar except for 

the influence of weather. 

For 24 hour ahead predictions, the 24 hours of load data from the previous 

week was used due to the fact that it basically possesses the same societal data 

of the predicted day. For example, most industries start up every Monday and shut 

down on Fridays. Thusly, days that are a week apart should display nearly the same 

shape or behavior, excluding the influence of weather. 

Weather Inputs 

Choosing weather variables involved determining which ones caused varia-

tion in the load curves. Many weather variables are known or suspected to affect 

the behavior of the electric load curves. Air temperature is one and Stoll has shown 

how higher temperatures correlate with higher peak loads [42). In determining what 

additional weather variables to include, besides air temperature, into the ANN mod-

els, a series of experiments were performed. Several ANNs were set up to establish 

an importance ranking of weather variables. This was done by creating ANNs that 

contained the same historical input but only one of the seven weather variables. 

These ANNs were trained with the same training sets, except for the weather vari-
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ables, to the same RMS value. These ANNs were then tested on the same test set, 

again the only difference being the weather variable, to examine the test RMS. The 

ratio of test to training RMS was taken to determine the most valuable weather vari-

ables. By using this measure, a generalization method can be used to determine 

a ranking. For both winter and summer periods, air temperature was among the 

highest ranked but that is where the similarity ended. For the winter months, wind 

speed also ranked high. Thus, air temperature and wind speed were used in the 

winter models. For the summer periods, three weather variables were used due to 

the fact that th is period displayed greater variances in load peaks and valleys. The 

variables that ranked high for this period were air temperature, relative humidity, and 

solar radiation. It is interesting to note that the variables that ranked high in these 

experiments are also commonly used by other methods and are considered impor-

tant for STELF in general [6, 13). 

Now that the weather variables were determined, the manner of their use as 

inputs still needed to be determined. For the one hour ahead ANNs, historical 

weather information was used to indicate the general trend of the weather variable 

in question. By obtaining information on the trend, the most likely proceeding 

weather value could be used to determine the influence it might have on the electric 

load. Instead of using the 12 previous weather values as with the historical electric 

load data, the 6 previous values were used instead. Only 6 previous values were 

used because weather data typically displays more of a random behavior instead 

of seasonal behavior. With typical random behavior, less information is gained from 

previous values that are further in distance. Although there is little correlation in 

previous weather information, there was still information available. Since the elec-

tric load has correlation due to the seasonallity, the weather data that corresponds 

with the previous 24th hour or days load and previous 168th hour or weeks load will 
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be of value to provide correctional information for the differences for the deviation 

from seasonally. 

The 24 hour ahead models used the weather information in a different man-

ner. Since the goal was to predict the entire 24-hour period, more general weather 

terms were sought. Daily averages were computed and used in predicting the over-

all size of the daily curve. For the summer time, higher average air temperatures 

mean hotter days and increased electrical consumption due to air conditioner use. 

In addition, partial daily averages were also used to help estimate the shapes of the 

curves. They were established by averaging the hourly weather information in 

4-hour blocks. Consequently, a day would have 6 different daily averages. The 

separation began at 12am to 4am and continued with 4am to Sam , Sam to 12pm, 

12pm to 4pm, 4pm to Bpm, and finished with Bpm to 12am. These were used to 

indicate the weather information at various points along the electric load curve. 

Since the weather is known to effect the magnitude of the load curve it would 

be beneficial if the weather was known for the future period corresponding with the 

future period of the desired forecasted load. Fortunately, forecasted weather is per-

formed and can be used to help this process. Unfortunately, the data set used in 

this work did not contain forecasted weather. To overcome this dilemma, pseudo-

forecasted weather was generated from the actual weather data. The was per-

formed by adding Gaussian noise to the actual weather data to simulate forecasted 

weather information. The noise was based on the errors of forecasting periods that 

ranged from hours in advance to days in advance [17,23,35]. The forecasting errors 

were generalized for all the weather variables and are as follows: 1 day- 3%, 2 days 

- 4%, 3 days - 5%, 4 days - 7%, 5 days - 10%, 6 days- 13%, and 7 days- 17%. 

Since the pseudo-forecasted weather was generated using Gaussian noise, gen-

eralizing the error for all of the weather variables seemed reasonable. 
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Societal Inputs 

As mentioned earlier, the societal inputs used were day indicators and holi-

day indicators. The day indicators were used to indicate to the ANN the day being 

predicted. While weekends are typically different than weekdays, weekdays are 

usually similar, baring weather, to one another except for societal differences from 

sources such as early week industrial start up activities or late week industrial shut 

down procedures. For example, if the the last twelve hours of load data for a week-

day were being utilized in determining the first hour of the next day, how would the 

ANN know if the next day was a weekend or a weekday? The boolean was used 

to indicate the day that was being predicted. For the hourly ANN models, w1 hand 

s1 h, the day indicator represented the day of the week that the predicted hour fell 

on even if the historical load data was from the same day, the previous day, or from 

both the previous and current day. Since the 24 hour ahead models were separated 

into training patterns for every 24 hours, the historical data utilized was entirely from 

the previous day or days. 

The holiday variable indicated if there was a holiday or a regular day. As with 

the daily indicator, the holiday indicator was used to indicate the status of the pre-

dicted hour or day. There are many holidays in a calendar year and the number for 

a certain area is difficult to determine without exact data of the policies of the area 

employers. This information was not available so the graphs were examined to de-

termine which holidays displayed decreased loads. Out of the standard govern-

ment holidays, seven holidays were found to affect the expected pattern by produc-

ing electric load curves that display peaks and overall shapes that are smaller than 

expected. The holidays used for the ANN models are New Years Day, Memorial 

Day, Independence Day, Labor Day, Thanksgiving, the day after, and Christmas. 
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Figure 4.1 illustrates the architecture of one of the ANNs developed for this 

work, w1 h. Table 4.2 shows the architectures for the one-hour ahead ANN models, 

Table 4.3 shows the architectures for the winter ANN models and Table 4.4 shows 

the architectures for the summer ANN models. 
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Figure 4.1 Input node designation for winter one hour ahead ANN 
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Table 4.2 ANN architectures for one-hour ahead ANN models. 

Summary of architectures designations for one-hour ahead ANN models 

w1 h - 20 hidden neurons, s1 h - 30 hidden neurons, 
1 output neuron 1 output neuron 

Input# Description Values Input# Description Values 

1 Previous Hourly -168th 1 Previous Hourly -168th 
Electric Loads Electric Loads 

2 -24th 2 -24th 

3 ... 14 -12th ... -1st 3 .. . 14 -12th .. . -1st 

15 Previous Hourly - 168th 15 Previous Hourly -168th 

16 
Air Temperatures 

-24th 16 
Air Temperatures 

-24th 

17 ... 22 ~th ... -1st 17 ... 22 ~th ... -1st 

23 Previous Hourly -168th 23 Previous Hourly -168th 
Wind speeds Relative 

24 - 24th 24 Humidities - 24th 

25 .. . 30 ~th ... -1st 25 ... 30 Values ~th ... -1st 

31 ... 37 Day Indicator boolean 31 Previous Hourly -168th 

38 Holiday indicator 
Solar Radiation 

O or 1 32 Values -24th 

Output Forecasted Load Value 33 ... 38 ~th ... -1st 

1 Next Hour 1st 39 .. .45 Day Indicator boolean 

Note: "-1st" is the value before the value to be 46 Holiday indicator 0 or 1 
predicted "1st". 

Output Forecasted Value 
Electric Load 

1 Next Hour 1st 
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Table 4.3 ANN architectures for 24-hour ahead ANN winter models 

Summary of architecture designations for 24-hour ahead winter 
ANNs 

Models - 50 hidden, w24h w24h2d w24h3d w24h4d w24h5d w24h6d w24h7d 
24 output neurons 

Input Description Values 

1 .. . 24 Previous -168th -144th -120th -96th -72nd -48th -24th 
Hourly Electric ... ... ... ... ... ... . .. 
Loads -145th - 121st - 97th -73rd -49th -25th -1st 

25 ... 32 Air Temps. -7d ... -6d ... -5d ... -4d ... -3d ... -2d ... -1d & 
Total Daily -1d & - 1d & -1d & -1d & -1d & - 1d & 1d .. 7d 
Averages 1d 1d .. 2d 1d .. 3d 1d .. 4d 1d .. 5d 1d .. 6d 

33 ... 38 6 Daily Hourly -7d -6d -5d -4d -3d -2d -1d 

39 .. .44 Averages 1d 2d 3d 4d 5d 6d 7d 

45 ... 52 Wind S1:2eed -7d ... -6d ... -5d ... -4d ... -3d ... -2d ... -1d & 
Total Daily -1d & -1d & -1d & -1d & -1d & -1d & 1d .. 7d 
Averages 1d 1d .. 2d 1d .. 3d 1d .. 4d 1d .. 5d 1d .. 6d 

53 ... 58 6 Daily Hourly -7d -6d -5d -4d -3d -2d - 1d 

59 ... 64 Averages 1d 2d 3d 4d 5d 6d 7d 

65 ... 71 Day Indicator Boolean 

72 Holiday O or 1 

Output Description Value 

1 ... 24 Forecasted 1st ... 25th ... 49th ... 73rd ... 97th ... 121st... 145th ... 
Electric Load 24th 48th 72nd 96th 120th 144th 168th 

Notes: For weather variables, a"- " sign indicates previous values while no sign indicates to a 
pseudo-forecasted value. A "-1 d" is the last value before "1 d" where "-1 d" is the last known 
day and "1 d" is the next day. 
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Table 4.4 ANN architectures for 24-hour ahead ANN summer models 

Summary of architecture designations for 24-hour ahead summer 
ANNs 

Models - 60 hidden, w24h w24h2d w24h3d w24h4d w24h5d w24h6d w24h7d 
24 output neurons 

Input Description Values 

1 ... 24 Previous -168th -144th - 120th -96th -72nd -48th -24th 
Hourly Electric ... ... .. . . .. ... .. . .. . 
Loads - 145th -121 st -97th -73rd -49th -25th -1st 

25 ... 32 Air TemQs. -7d ... -6d ... -Sd ... -4d .. . -3d ... -2d ... -1d & 
Total Daily -1d& - 1d & - 1d & - 1d & -1d & -1d & 1d .. 7d 
Averages 1d 1d .. 2d 1d .. 3d 1d .. 4d 1d .. 5d 1d .. 6d 

33 ... 38 6 Daily Hourly -7d -6d - 5d -4d -3d -2d -1d 

39 .. .44 Averages 1d 2d 3d 4d Sd 6d 7d 

45 ... 52 Rel Hum -7d ... -6d ... -Sd ... -4d ... -3d ... -2d ... -1d & 
Total Daily -1d & -1d & -1d & -1d & - 1d & -1d & 1d .. 7d 
Averages 1d 1d .. 2d 1d .. 3d 1d .. 4d 1d .. 5d 1d .. 6d 

53 ... 58 6 Daily Hourly -7d -6d -5d -4d -3d -2d -1d 

59 ... 64 Averages 1d 2d 3d 4d 5d 6d 7d 

65 ... 72 SQlar Rad. - 7d ... -6d .. . -Sd ... -4d ... -3d ... -2d ... -1d & 
Total Daily - 1d & - 1d & - 1d & - 1d & - 1d & - 1d & 1d .. 7d 
Averages 1d 1d .. 2d 1d .. 3d 1d .. 4d 1d .. Sd 1d .. 6d 

73 ... 78 6 Daily Hourly -7d -6d -Sd -4d -3d -2d -1d 

79 ... 84 Averages 1d 2d 3d 4d 5d 6d 7d 

85 ... 91 Day Indicator Boolean 

92 Holiday 0 or 1 

Output Description Value 

1 ... 24 Forecasted 1st ... 25th ... 49th ... 73rd ... 97th ... 121st... 145th ... 
Electric Load 24th 48th 72nd 96th 120th 144th 168th 

Notes: For weather variables, a"-" sign indicates previous values while no sign indicates to a 
pseudcrforecasted value. A "-1 d" is the last value before "1 d" where "- 1 d" is the last known 
day and "1 d" is the next day. 
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ANN Testing and Training 

Testing and training the ANN models involved partitioning the electric load 

and weather data into two distinct sets. The training set consisted of the 1990 and 

1991 data while the test set consisted of the 1992 data. An original training set con-

sisted of only 1990 data, but it was soon realized that set alone was not enough in-

formation for the 24-hour ahead ANN models. The single year did not provide 

enough patterns with all the possible input/output combinations. The training set 

that contained the 1990 and 1991 sets performed much better. 

For the one hour ahead ANNs, the training sets were generated with loa-

dread.f which used a moving window of an hour. The corresponding files contained 

5808 training patterns for the summer ANN model and 11543 training patterns for 

the winter ANN model. The ANN models were trained with these large sets and 

tested with their corresponding test sets. The winter test set contained 5880 pat-

terns and the summer test set contained 2904 test sets. These large training sets 

were also stratified with the program loadstat.f to reduce their size in efforts to save 

computational time. The winter set was sampled at ever 9th pattern to produce a 

new training set with 1432 patterns. The summer set was sampled at every 7th pat-

tern to produce a set with 953 patterns. The reduced sets contained the entire hours 

for holidays so that the ANN models would still get a good representation of the holi-

day dynamics. The performance of these reduced training sets on the full test sets 

was nearly the same as the performance of the full training sets. 

The 24-hour ahead models were developed to make predictions on a daily 

basis so their training sets were sampled at every 24 pattern to yield daily patterns. 

The summer models all contained 242 patterns in their training sets and 121 pat-

terns in their test sets. The number of patterns in the winter ANN models are illus-
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trated in Table 4.5. The reason that the number of training and test patterns de-

creases for the ANN models with increasing prediction days is due to the fact 

that the increasing distance of the predicted day from the beginning of the data sets 

causes one less day due to the finite size of the data available. 

Table 4.5 Size of training and test sets for winter ANN models. 

ANN Model Number of Patterns in Number of Patterns in 
Training Set Test Set 

w24h 481 241 

w24h2d 480 240 

w24h3d 479 239 

w24h4d 478 238 

w24h5d 477 237 

w24h6d 476 236 

w24h7d 475 235 
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CHAPTERS.RESULTS 

Other Results 

This section will present STELF results from other papers. Both traditional meth-

ods and ANN methods will be presented. Traditional methods will be covered by pres-

enting a paper that directly compares the five most common traditional methods. ANN 

methods will be covered by reviewing several papers that implement ANN methodolo-

gies. 

Traditional Methods 

As stated previously, there are many methods for performing STELF, and Mogh-

ram and Rahman [32] have published a paper with a comparison of the five most com-

mon traditional methods. These methods include a multiple linear regression ap-

proach, a stochastic time-series approach including transfer function modeling, an 

expert-system approach, a general exponential smoothing approach, and a state-

space and Khalman filter approach. The results presented in this paper are illustrated 

in Table 5.1. The paper was done to illustrate these different methods and to make a 

comparison with one another by making predictions for the same day. The compari-

sons also involved using the same data set to develop the individual models. The paper 

also briefly illustrates the modeling procedure involved in developing the individual 

models. These modelling illustrations show the processes involved in using these 

methods and shows that some of the models development can be quite involved and 

can require a high degree of skill. 
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Other ANN Models 

A survey was also performed on other ANN models. The other ANN models de-

veloped performed a wide variety of predictions which ranged from hourly predictions 

to the prediction of the next days peak load. The other models also used different sized 

data sets for testing and training which ranged from a few weeks to a few months. Some 

of the ANNs even used different approaches in their design and execution which in-

cluded the use of self-organizing ANNs for data segregation to non-fully connected 

architectures for input enhancement. A summary of these ANNs can be found in Table 

5.2. Some of the results produced by the ANNs in Table 5.2 compare well with some 

of the results from Table 5.1. 

Table 5.1 Illustration of traditional STELF results 

Analysis and Evaluation of Five Short-Term Load Forecasting Techniques 
Moghram and Rahman [32] 

Forecasting Period - Hourly forecasts for 24 hours ahead 

Model Data Set % Summer Error % Winter Error 

Multiple Linear Regression 4 weeks of hourly data 2.78 3.76 

Time Series - SARI MA 4 weeks of hourly data 0.79 2.17 

Time Series - Transfer Function 0.51 2.70 

General Exponential Smoothing 5 previous weekdays 2.12 1.79 

State Space and Kalman Filter 4 weeks of hourly data 1.57 1.71 

Expert System Selection of reference day 1.22 1.29 
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Table 5.2 Comparison of other ANN models 

Comparison of Other ANN Models 

# Ref. Prediction Period(s) Data Set % error Notes 

1 [39] a. 24hr, one week ahead Tr. - Winter peak Utility a. 3.38 a. Perfonned decomposition of 
b. 24hrahead (T-F) 

Te. - a. 5-mo. period from Feb.1 b. 2.09 load and used 5 Adaline to model. 

b. 1000 hr. period (T-F) Each day had own set of ANNs. 

from Jan. 1 

2 [13] Next days peak a. Tr. 1/ 12-1125 Te. 1126-2/ 1 a. 1.15 Nonfully connected ANN, Pseudo 

b. Tr. 1/ 19-2/1 Te. 212-2/8 b. 1.22 forecasted weather. 

3 [38] a. peak load Tr. 1111 /88-1130/89 , except test Average Focus - nonnal weekdays, i.e. no 

b. total load Te. 1. 1123-1/30 2. 1119-11/17 a. 2.04 holidays or weekends. 

c. hourly load 3. 11/ 18-11/29 4. 12/8-12/ 15 b. 1.68 

5. 12127-1/4 c. 1.40 

4 [16] One hour ahead Tr. 20 days Te. 25 days 4.1 Used adaptive NN, no weekends. 

5 [2) One half hour ahead 16 months of data from 4/9~7/91 Average Modular ANN design partitioned 

forecasted for one year Win.-3.16 into season and day types, total 
Spr.-3.67 of 48 ANNs. No holidays. 

Sum-2.69 

Aut.-4.24 

6 [39) Total daily load Tr. 1 yr. Te. 1 yr. 2.95 ANN retrained each day because 

x is total of both years if forecasting period =X, then 

training cases= x-1 . Data divided 

into 5 subsets for day types. 

7 [1) Peak load on Thursday 6/83-4/94 16 pattems for training 3.11 

8 [29) a . 24hrahead Forecasted on 6 mo. Feb. to Jul. a. 1.89 a. Weekend and weekday models 

b. 1hrahead b. 1.84 weekends grouped into 5 types. 

9 [31) a. 1hrahead One year or data divided into 12 a. 2 .28 Errors averaged for same experi-

b. 24hrahead train/test groups. Tr. 1 to 2 mo. b. 3.08 men ts for different companies. 12 

c.peakload Te. 7 days c. 2.44 ANN models, 1 for each mo. 

10 [27, peak and valley Tr. 1 O previous similar days p. 1.57 Day identification w/self-<>rganiz-

28] Te. the next similar day v. 0.20 ing ANN. Retraining for each day. 

11 [26) peak and valley Tr. 30 previous similar pattems P. 0.10 Day type identification. Only 4 ex-

Te. next 7 similar days v. 0.26 amples presented. 
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Artificial Neural Network Solution 

The results produced by the ANN models from this thesis for the entire test set, 

which consisted of data for an entire year, are illustrated in Table 5.3. It is now desired 

to make some comparison between the ANN models in th is thesis and the the ANN 

models from Table 5.2. The comparison between the results produced in this thesis and 

the results from the other papers is difficult to make though due to the fact that the ANNs 

from Table 5.2 used different data sets with regards to their composition and to their 

sizes. Regardless, the ANNs in this thesis produced resu lts that compared well with 

the other ANN models. This is the case because the results produced in this thesis con-

tained a years worth of data for ANN testing which was larger than most test sets 

Table 5.3 Summary of ANN performance over entire training set 

Results of ANN models on entire test sets 

ANN Model Winter Models Summer Models 
(Test RMS) I Avg. % Err (Test RMS) I Avg. % Err 

1 hour ahead (0.01613) I 2.003 (0.01719) I 2.134 

1 day ahead, 24 hours (0.02464) I 3.212 (0.02502) I 3.303 

2 days ahead, 24 hours (0.02918) I 3.454 (0.03013) I 3.528 

3 days ahead, 24 hours (0.03167) I 3.521 (0.03000) I 3.472 

4 days ahead, 24 hours (0.03088) I 3.502 (0.03254) I 3.605 

5 days ahead, 24 hours (0.03392) I 3.832 (0.03468) I 3. 793 

6 days ahead, 24 hours (0.03764) I 4.325 (0.03723) I 4.217 

7 days ahead, 24 hours (0.04247) I 4.674 (0.04085) I 4.5525 
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in Table 5.2. Generally, one expects deteriorated performance with larger data sets 

but the performance of the ANNs in this work performed well. Also, many of the other 

methods excluded weekends and holidays in training and testing their models. This 

was done to eliminate these unusual or abnormal days from their training and testing 

procedure so that their accuracy could be enhanced. To help il lustrate this point, test 

sets were created without holidays and weekend days. Table 5.4 is a summary of the 

ANN models performance, in terms of% error, without weekends or holidays in the test 

sets. There is some improvement by excluding weekends and holidays from the test 

sets but the overall performance was not significantly better. The ANNs models in this 

work were able to model these days. Modeling weekends and holidays involves choos-

ing the appropriate inputs. 

Table 5.4. Summary of ANN performance over entire data set contain ing no holidays 
or weekend days 

Results of ANN models on entire data set containing no holidays or 
weekend days 

ANN Model Winter - % Error Summer - % Error 

1 hour ahead 1.923 2.042 

1 day ahead, 24 hours 3.103 3.263 

2 days ahead, 24 hours 3.318 3.375 

3 days ahead, 24 hours 3.485 3.407 

4 days ahead, 24 hours 3.493 3.549 

5 days ahead, 24 hours 3.738 3.632 

6 days ahead, 24 hours 4.113 4.152 

7 days ahead, 24 hours 4.523 4.492 
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Figures 5.1 and 5.2 illustrate some predictions with the one-hour ahead winter 

ANN model, w1 h, for a holiday period and a non-holiday period, respectively. Figures 

5.3 and 5.4 illustrate some predictions with the one-hour ahead summer ANN model, 

s1 h, for a holiday period and a non-holiday period, respectively. All of these figures 

show that the one-hour ahead ANN models performed well, regardless of a holiday, 

weekend, or normal day. 

Figures 5.5 through 5.9 illustrates the 24-hours ahead winter ANN models for 

the holiday period from Figure 5.1 . Figures 5.10 through 5. 14 illustrates the 24-hours 

ahead summer ANN models for the holiday period from Figure 5.3. These figures illus-

trate the predictions made by the seven seasonal ANN models. The figures are sepa-

rated by a single day to illustrate the daily update. For example, the seventh day in Fig-

ure 5.5 is predicted with ANN model, w24h7d, and with ANN model, w24h3d in Figure 

5.9. These predictions show that the ANN models performed fairly well but still lacked 

top accuracy. The accuracy was reasonable with some of the the other ANN models 

from Table 5.2, considering the sizes of the data sets involved. 
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Comparison of Actual and Predicted Electric Loads for 11/23 -12/1 
Load (MWe) x HP 
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Figure 5.1 ANN model w1 h on a holiday period 
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Figure 5.2 ANN model w1 h on a non-holiday period 
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Comparison of Actual and Predicted Electric Loads for 6/29 -7 /7 
Load (MWe) x 103 
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Figure 5.3 ANN model s1 h on a holiday period 

Comparison of Actual and Predicted Electric Loads for 5/17 -5/25 
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Figure 5.4 ANN model s1 h on a non-holiday period 
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Comparison of Actual and Predicted Electric Loads for 11/23 - 11/29 
Load (MWe) x 103 
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Figure 5.5 24-hour ahead winter ANN models for a holiday period 

Comparison of Actual and Predicted Electric Loads for 11/24 - 11/30 
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Figure 5.6 24-hour ahead winter ANN models for a holiday period, updated one day 
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Comparison of Actual and Predicted Electric Loads for 11/25 - 12/1 
Load ( MWe) x 103 
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Figure 5.7 24-hour ahead winter ANN models for a holiday period, updated two days 

Comparison of Actual and Predicted Electric Loads for 11/26 - 12/2 
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Figure 5.8 24-hour ahead winter ANN models for a holiday period, updated three days 
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Comparison of Actual and Predicted Electric Loads for 11/27 - 12/3 
Load ( MWc) x 103 
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Figure 5.9 24- hour ahead winter ANN models for a holiday period, updated four days 

Comparison of Actual and Predicted Electric Loads for 6/29 - 7/5 
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Figure 5.1 O 24- hour ahead summer ANN models for a holiday period 
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Comparison of Actual and Predicted Electric Loads for 6/30 - 7 /6 
Load ( MWt:) x 10-1 
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Figure 5.11 24-hour ahead summer ANN models for a holiday period, updated one day 

Comparison of Actual and Predicted Electric Loads for 7 /1 - 717 
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Figure 5.12 24-hour ahead summer ANN models for a holiday period, updated two days 
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Comparison of Actual and Predicted Electric Loads for 7 /2 - 7 /8 
Load ( MWe) x 103 
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Figure 5.13 24-hour ahead summer ANN models for a holiday period, updated three days 

Comparison of Actual and Predicted Electric Loads for 7/3 - 7/9 
Load ( MWc) x 103 
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Figure 5.14 24-hour ahead summer ANN models for a holiday period, updated four days 
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Discussion 

From the results produced by this work and from the survey of other ANNs given 

in Table 5.2, the accuracy of an ANN methodology for STELF can be quite good but 

generally does not match current methods for now. However, ANNs do benefit in the 

area of computational time. It is true that the initial time investment is great due to the 

training of the ANN models, but once this stage is over, the predictions can be per-

formed almost instantaneously. In addition, as the work in this thesis shows, these pre-

dictions can be made for an entire year after the initial training process is completed. 

Statistical approaches such as time-series and multi-linear regression modeling have 

to be continuously performed to give reasonable results. 

Another area where an ANN method is beneficial is in the ease of modeling. 

Modeling any problem requires two types of knowledge. The first type of knowledge 

is a good understanding of the problem. A good understanding of the problem is impor-

tant so that correct components of the problem are used in obtaining a solution. The 

second type of knowledge involves a good understanding of a tool or a method for solv-

ing the problem. To use statistical methods, complex assumptions regarding important 

input variables often have to be made. Also, as mentioned earlier, an expert-system 

may be very difficult to program. ANNs, on the other hand, do not require any complex 

assumptions for the inclusion of input variables. Thus, ANNs can help with the second 

type of knowledge with an easier modeling process. 
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CHAPTER 6. CONCLUSIONS 

Summary 

The work done in this thesis shows the feasibil ity of ANNs for STELF. The re-

sults produced in this thesis compare favorably with other ANN models and some of 

the other ANN results compare favorably with traditional methods. The accuracy 

achieved by ANNs can be good but overall are still not quite as good as traditional meth-

ods. However, ANNs do provide significant time savings in the fact that, once trained, 

can perform predictions instantaneously. ANNs can also save time by being utilized to 

make predictions for an entire year with a single set of models. There is no need to 

create separate models for holidays or weekends. The ease of modeling is also a bene-

fit. This allows the modeling process to be performed without having to make assump-

tions on the modeling process itself. Overall, ANNs are close to traditional methods 

for STELF and it is just a matter of time before the accuracy catches up with the other 

benefits of computational time and ease of modeling. 

Future Work 

There are many areas to explore for possible future work. One such area in-

volves utilizing ANN techniques to improve performance to produce more accurate 

STELF. The selection of hidden nodes can be performed by utilizing a dynamic node 

architecture scheme as demonstrated by Basu [5]. This would improve the generaliza-

tion of the ANN by selecting the appropriate number of hidden nodes. Another tech-
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nique that could be used is an importance determination method as used by Lane [24]. 

Lane utilizes this method to determine the importance of input variables. This could be 

used for STELF by creating an input layer with all of the suspected variables and letting 

the ANN determine the important ones. An extension of this wou ld be to use the impor-

tance idea to rank the training patterns so that a reduction could be performed to reduce 

the size of the data set while keeping the important ones while eliminating the redun-

dant ones. Another idea would be to Use a learning scheme such as the one Bartlett 

[4] introduces. He uses a stochastic code which generally trains better than Back-

Propagation. 

Another area that could be investigated is to use more data in the training pro-

cess. The performance or the 24-hour ahead ANN models improved when the training 

set increased from one year to two. There is no reason not to believe that the perfor-

mance can benefit even more with more data. Since load and weather data are re-

corded and kept by most utilities, this would be little problem . Also, other societal vari-

ables could be examined. Variables such as television ratings, computer sales, or the 

patterns of recreational athletic leagues could be important. These variables, on the 

other hand, could be more difficult to obtain. 
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Appendix A. COMPUTER CODES 

This chapter contains the computer codes used in this thesis. The ANN code 

is nnffbp_ 1. f. The data processing codes are loadread. f and loadstrat. f. 

nnffbp_ 1.f 

********************************************************************* 
* 
* BPNET2 

Eric Daugherty * 
* 
* 

Feed Forward, Back Propagation with momentum 

* ic = iteration count for saving best weights 
* tt = train(l,2) [1 =new, 2 =saved] or test(3) [once through] 
* ninpn = # of input nodes 
* noutn = # of output nodes 
* nhidn = # of hidden nodes 
* ntp = # of training patterns 
* lmrt2 = learning rate in layer 2 
* lmrtl = learning rate in layer 1 
* mom = momentum 
* thold = threashhold 
*gain= gain 
* jran = random number seed (integer) 
* ni = # of iterations (0 for infinite) 
* ertng = training criteria 
* x,y,z = loop counters 
* a,b = dummy variables 
* tp(l0000,200) =up to 10000 training patterns w/200 in+out node 
* wt(2,200,200) = weights 
* ran = random number between 0 and I 
* sum = sum of node outputs*weights 
* dlt(2,200,200) = change in weights for entire tp set for I itt. 
* 1 = tp counter for batch training 
* av(2,200) = activation or output of a node 
* err = the absolute error 
* rms = rms 
* d(200) = difference in output node from tp 
* er = backprop error 
* i = iteration counter 
* rmss = rms check to determine when to save weights 
* wts(2,200,200) = the best weights saved 
* m =momentum flag 
* dummwt =dummy weight for use in momentum 
* wtm(2,200,200) = weights used for momentum 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 



* h =save weight counter 
* 
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* 
* 

*****c***$*********$*********$*********$*********$*********$*********$ 

real lmrtl,mom,ertng,tp(l0000,200),wt(2,200,200),ran,sum, 
c dlt(2,200,200),av(2,200),err,rms,d(200),er,rmss,gain, 
c wts(2,200,200),dumwt,wtm(2,200,200),lmrt2,thold 

integer ic,tt,ninpn,noutn,nhidn,ntp,jran,ni,x,y,z,l,a,b,i,m,h 

********************************************************************* 
* Open up files * 
******************************************************************** 

open (12,file=' config_l.net' ,status=' old') 
open (13,file=' io_l.dat' ,status=' old') 
open (14,file=' rwts_l .dat' ,status=' unknown' ) 
open (16,file='out_l.dat' ,status=' unknown') 

********************************************************************** 
* Read in input file (config_l.net) * 
********************************************************************** 

read (12, *) ic,tt 
read (12, *) ninpn,noutn,nhidn,ntp 
read (12, *) lmrt2,lmrtl,mom,thold,gain,jran 
read (12, *) ni,ertng 

close (12) 

********************************************************************* 
* read in data file (io_l .dat) * 
********************************************************************* 

do 25 x=l,ntp 
read (13, *) (tp(x,y),y=l,ninpn+noutn) 

25 continue 

close (13) 

********************************************************************** 
* initalize weights or read in saved weights (rwts_l.dat) * 
********************************************************************** 

a=nhidn 
b=ninpn 
do 50 z:l ,2 

do40 x=l,a 
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do 40 y=l ,b 

40 continue 
a=noutn 
b=nhidn 

50 continue 

close (14) 

if (tt.eq.1) wt(z,x,y)=2.0*ranGran)-l.0 
if (tt.eq.2.or.tt.eq.3) read (14, *) wt(z,x,y) 

********************************************************************** 
* set the inital parameters to zero * 
********************************************************************** 

i=O 
rmsS=lOOO.O 
m=O 
b=O 

55 l=O 
err=O.O 
rms=O.O 

********************************************************************** 
* set the inital change to zero * 
********************************************************************** 

a=nbidn 
b=ninpn 
do 70 z=l,2 

do 60 x=l,a 

60 

70 continue 

do 60 y=l,b 
dlt(z,x,y)=O.O 

continue 
a=noutn 
b=nbidn 

*********************** 
* count the# of tp's * 
*********************** 

80 l=l+l 

********************************************************************** 
* 
* Foward activation loop 
* 

* 
* 
* 

*********************************************************************** 



a=nhidn 
b=ninpn 
do 350 z=l,2 

do 300 x=l,a 
sum=O.O 
do 250 y=l,b 
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if (a.eq.nhidn) sum=sum+wt(z,x,y)*tp(l,y) 
if (a.eq.noutn) sum=sum+wt(z,x,y)*av(z-1,y) 

250 continue 
av(z,x)= 1/(1 +exp(-gain*(sum+Lhold))) 

300 continue 
a=noutn 
b=nhidn 

350 continue 

********************************************************************* 
* 
*Test loop (out_l.dat) 
* 

* 
* 
* 

********************************************************************* 

if (tt.eq.3) then 
do 375 x=l,noutn 

write (16, *) tp(l,ninpn+x), av(2,x),abs(tp(l,ninpn+x)-av(2,x)) 
375 continue 

end if 
if (l.eq.ntp.and.tt.eq.3) goto 9030 
if (tt.eq.3) goto 80 

********************************************************************** 
* 
* Back propigation loop with batch learning 
* 

* 
* 
* 

*********************************************************************** 

********************************** 
* calculating error and nns for tp * 
********************************** 

do 400 z=l,noutn 
d(z)=tp(l,ninpn+z)-av(2,z) 
err=err+abs(d(z)) 
nns=rms+d(z)**2 

400 continue 

****************** 
* The Delta Rule * 
****************** 



do 425 x= 1,noum 
do 425 y= l ,nbidn 
dlt(2,x,y)=d(x)*av(l ,y)+dlt(2,x,y) 

425 continue 

****************************** 
* The Generalized Delta Rule * 
****************************** 

do 475 y= l ,nbidn 
er=O.O 
do 440 z= l,noum 

er=er +d( z) * wt(2, z, y) 
440 continue 

do 455 x=l ,ninpn 
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dlt( l ,y,x)=dlt(l ,y,x)+( er*(av( 1,y) *( 1-av(l ,y)) )*tp(l,x)) 
455 continue 
475 continue 

********************************************************************** 
* moving on to the next training pattern * 
********************************************************************** 

if (l.lt.ntp) goto 80 

********************************************************************** 
* 
* Check to see if rms is below error criteria and save best weights 
* 

* 
* 
* 

********************************************************************** 

525 

i=i+l 
h=h+l 
rms=(rms/ntp/noum)**0.5 
if (rms.lt.rmss) then 

a=nhidn 
b=ninpn 
do 550 z= l ,2 

do 525 x=l ,a 
do 525 y=l ,b 

wts(z,x,y)=wt(z,x,y) 
continue 
a=noum 
b=nbidn 

550 continue 
rmSS--nns 

end if 
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if (rms.le.ertng) goto 610 

********************************************************************** 
* 
* Set tbe new weights 
* 

* 
* 
* 

********************************************************************** 

a=noum 
b=nhidn 
do 600 z=2, 1,-1 

do 575 x= l ,a 
do 575 y= l ,b 

dumwt=wt(z,x,y) 

575 continue 
a=nhidn 

b=ninpn 
600 continue 

m=l 

if (z.eq.2) wt(z,x,y)=wt(z,x,y)+dlt(z,x,y)*lmrt2/mp 
if (z.eq.1) wt(z,x,y)=wt(z,x,y)+dlt(z,x,y)*lmrtl/ntp 
if(m.eq.1) wt(z,x,y)=wt(z,x,y)+mom*(dumwt-wtm(z,x,y)) 
wtm(z,x,y)=dumwt 

********************************************************************** 
* Write best weights to a file (swts_ll.dat, swts_l 2.dat) * 
********************************************************************** 

610 if (h.eq.ic.or.i .eq.ni.or.rms.le.ertng) then 
open (15,file='swcs_l 1.dat' ,status='unknown') 
open (17,file='swts_l2.dat',statuS=' unknown') 
open (18,fiJe='netstat_ l .dat' ,statuS='unknown') 
a=nhidn 
b=ninpn 
do 650 z= l ,2 

do 625 x=l,a 
do 625 y= l ,b 

625 continue 
a=noum 
b=nhidn 

650 continue 

write (15,*) wts(z,x,y) 
write (17,*) wts(z,x,y) 

write (18,*) ' Best RMS= ', rmss 
write (15,*) ' Best RMS=', rmss 
write (17, *) 'Best RMS = ', rmss 



write (18,*) 'Curent RMS= ', rms 
write (15.*) 'Curent RMS= ', nns 
write (17, *) 'Curent RMS = ', rms 
write ( 18, *) '# of itterations = ', i 
write (15, *) '# of i tterations = ', i 
write (17,*) '#of iuerations = ' , i 
close (15) 
close (17) 
close (18) 
h=O 
end if 

if (rms.le.ertng) goto 9000 
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•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• Move on to another itteration • 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

if (i.eq.ni) goto 9010 
goto 55 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
•The end 
• 

• 
* • 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
9000 
9010 

9030 

print*, 'The network has converged' 
print •, ' RMS = ', rms,' Error= ' , err 
print • . 'The number of itterations is ' , i 
print*, ' Hasta La Vista. ....... ..... Baby' 

close (16) 

end 

loadread.f 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
* 
• 
* 

loadread.f 
read data and put it into form 

• 
* 
* 
* 

************************************•································· 
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real el(30000),rsum,noise, value, 
c w1 (30000),w2(30000),w3(30000),w4(30000), 
c w5(30000), w6(30000),w7(30000), 
c suml ,sum2,sum3,sum4,wa{6,1 4), 
c sum(4,14),w(6,6,14) 

integer i,j ,k,b,y,d,acf,x,m, wi,su,lcl ,lc2,al ,a2,bl ,b2, 
c hol,dl ,d2,d3,d4,d5,d6,d7 ,jran,z,di 

commonjran 

open (12,statuS=' unknown' ,file=' eload90-92_space.dal') 
open (13,statuS=' unknown' ,file=' weatber90-92_comma.dat') 
open (14,statuS='unknown' ,file= 'winter_train.dal') 
open (15,status=' unknown' ,file='sum.mer_train.dat') 
open (16,status=' unknown' ,file='winter_test.dat') 
open (17,status=' unknown' ,file='summer_test.dat') 

********************************************************************* 
* Read in electric load files * 
********************************************************************* 

do 100 i=0,26303,24 
read (12,*) (el(i+j),j=l,24) 

100 continue 

print *, ' Finished reading in electric data' 

********************************************************************* 
* Normalize electric load data * 
********************************************************************* 

do 150 i=l,26304 
el(i)=0.8*((el(i}-441.0)/(1652.0-441.0))+0.1 

150 continue 

print *. 'Finished normalizing electric data' 

********************************************************************* 
* Read weather fi !es * 
********************************************************************* 

do 200 i= 1,26304 
read (13, *) wl (i), w2(i),w3(i),w4(i), w5(i), w6(i),w7(i) 

200 continue 
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••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
* Normalize weather data * 
********************************************************************* 

do 250i=1,26304 
******************************** 
* Air Temperature L90/S9 I * 
******************************** 

wl (i)=O.S*((wl (i)-(-15.16))/( 107.56-(- 15.16)))+0.1 
******************************** 
* Relatitive Humidity L91/S92 • 
******************************** 

w2(i)=0.8*((w2(i)- 12.95)/(l 18.07- 12.95))+0. l 
******************************** 
* Soil Temperature L90/S91 * 
******************************** 

w3(i)=0.8*((w3(i)-(- 3.89))/(102.38-(-3.89)))+0.l 
******************************** 
* Wind Speed L91/S90 * 
******************************** 

w4(i)=0.8*((w4(i}--0.0)/(40.45-0.0))+0. l 
******************************** 
* Wind Direction * 
******************************** 
* w5(i)=0.8*((w5(i)-sw5)/(lw5-sw5))+0. l 

******************************** 
*Solar Radia tion L91/S90 * 
•••••••••••••••••••••••••••••••• 

w6(i)=0.8*((w6(i}--0.0)/(962.0--0.0))+0.1 
******************************** 
* Precipation L90/S90 • 
******************************** 

w7(i)=0.8 *(( w7(i}--0.0)/(2.05-0.0))+0. l 
250 continue 

********************************************************************** 
* Writing the file for nnffbp.f * 
********************************************************************** 

print *, 'OK, Starting to write file' 
print *, 'Enter the first hour Predicted' 
read*, h 

print*, 'Enter the starting day' 
print*, 'Monday = (1)' 
print *, 'Tuesday = (2)' 
print *, 'Wednesday= (3)' 



print *, 'Thursday= (4)' 
print *, ' Friday= (5)' 
print*, 'Saturday= (6)' 
print *, 'Sunday= (7)' 
read *, d 

print *, 'Enter the starting' 
print*, 'First{l), Second(2), Tenth(10), ... etc.' 
read*, y 
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print *, 'Do you want to skip the averaging cal cs?' 
print *, ' (l) yes' 
print *, '(2) no' 
read *, acf 
print *, 'Enter a interger random# seed' 
read *, jran 

lc1=(26304-((y-1 )*24+h)) 
lc2=(1 7520--((y-1)*24+h)) 

do400 i=l ,lc l 

hol=O 
dl=O 
d2=0 
d3=0 
d4=0 
d5=0 
d6=0 
d7=0 

if (d.gt.7) d=l 

if (h.gt.24) then 
h=l 
d=d+l 
y=y+l 

end if 

if (d.eq.1) dl=l 
if(d.eq .2) d2=1 
if (d.eq.3) d3= 1 
if (d.eq.4) d4= 1 
if ( d.eq .5) d5= 1 
if ( d.eq .6) d6= 1 
if (d.eq.7) d7=1 

if (y.eq. l.or.y.eq.148.or.y.eq.187 .or.y.eq.246.or. 



c 
c 
c 
c 
c 
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y.eq.326.or.y.eq.327 .or.y.eq.359 .or.y.eq.366.or. 
y.eq.512.or.y.eq.551 .or.y.eq.610.or.y.eq.697 .or. 
y.eq.698.or.y.eq. 724.or.y.eq.731 .or.y.eq.876.or. 
y.eq.914.or.y.eq.981 .or.y.eq.1061.or.y.eq.1062.or. 
y.eq.1000) hol= 1 

****************************************** 
* Calculate daily weather averages * 
****************************************** 

if (acf.eq.1) goto 390 

do 330j=1,14 
if G .eq. l) then 

al=O 
a2=23 

else if o .eq.2) then 
a1=24 
a2=47 

else if o.eq.3) then 
a1=48 
a2=71 

else if o.eq.4) then 
a1=72 
a2=95 

else if G.eq.5) then 
a1=96 
a2=119 

else if G.eq.6) then 
a1=120 
a2=143 

else if G .eq. 7) then 
al=144 
a2=167 

else if o.eq.8) then 
al=168 
a2=191 
noise=0.03 

else if o.eq.9) then 
a1=192 
a2=215 
noise=0.04 

else if G .eq.10) then 
a1=216 
a2=239 
noise=0.05 

else if G.eq.11) then 
a1=240 



a2=263 
noise=0.07 

else if G .eq.12) then 
al=264 
a2=287 
noise=0.10 

else if G.eq.13) then 
a1=288 
a2=311 
noise=0.13 

else if G.eq.14) then 
a1=312 
a2=335 
noise=0.17 

end if 

suml=O.O 
sum2---0.0 
sum3=0.0 
sum4---0.0 

do 310 k=(i+al),(i+a2) 
suml=suml+wl(k) 
sum2=sum2+w2(k) 
swn3=sum3+w4(k) 
sum4=sum4+w6(k) 

310 continue 

if G .le. 7) then 
wa( l ,j)=suml/24 
wa(2,j)=sum2/24 
wa(4,j)=sum3/24 
wa( 6,j)=sum4/24 

end if 

if G.ge.8) then 
call pfore( (sum 1/24) ,noise, value) 
wa(lj)=value 
call pfore((sum2/24),noise, value) 
wa(2j)=value 
call pfore((sum3/24),noise, value) 
wa(4,j)=value 
call pfore((sum4/24),noise, value) 
wa(6j)=value 

end if 

330 continue 
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do 380j=l ,6 

if G.eq.1) then 
bl=O 
b2=3 

else if G.eq.2) then 
bl=4 
b2=7 

else if G.eq.3) then 
b1=8 
b2=11 

else if G.eq.4) then 
b1=12 
b2=15 

else if G.eq.5) then 
b1=16 
b2=19 

else if G.eq.6) then 
b1=20 
b2=23 

end if 

do 335 Z=l,14 
sum(l,z)=O.O 
sum(2,z)=0.0 
sum(3,z)=0.0 
sum(4,z)=O.O 

335 continue 

do 340 k=l,14 
if (k.eq.1) di=O 
if (k.eq.2) di=24 
if (k.eq.3) di=48 
if (k.eq.4) di= 72 
if (k.eq.5) di=96 
if (k.eq.6) di=120 
if (k.eq.7) di=l44 
if (k.eq.8) di= 168 
if (k.eq.9) di= 192 
if (k.eq.10) di=216 
if (k.eq .11) di=240 
if (k.eq.12) di=264 
if (k.eq.13) di=288 
if (k.eq.14) di=312 

do 340 z=(i+bl),(i+b2) 
sum( l ,k)=sum(l ,k)+w 1 (z+di) 
sum(2,k)=sum(2,k)+w2(z+di) 
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sum(3,k)=sum(3,k)+w4(z+di) 
sum(4,k)=sum(4,k)+w6(z+di) 
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340 continue 

do 350z=1, 14 
if (z.le.7) then 

w(l ,j,z)=sum(l,z)/4 
w(2,j,z)=sum(l,z)/4 
w( 4j ,z)=sum{l ,z)/4 
w( 6j,z)=sum( 1,z)/4 

end if 

if (z.eq.8) noise=0.03 
if (z.eq.9) noise=0.04 
if (z.eq.10) noise=0.05 
if (z.eq.11) noise=0.07 
if (z.eq.12) noise=0.10 
if (z.eq.13) noise---0.13 
if (z.eq. 14) noise---0.17 

if (z.ge.8) then 
call pfore((sum(l,z)/4),noise, value) 
w(lj,z)=value 
call pfore((sum(2,z)/4),noise, value) 
w(2,j ,z)=value 
call pfore((sum(3,z)/4),noise, value) 
w(4j,z)=value 
call pfore((sum(3,z)/4),noise, value) 
w( 6j ,z)=value 

end if 
350 continue 
380 continue 

••••••••••••••••••••••••••••••••••••••••••••••••••• 
* Write to individual files * 
*************************************************** 

390 if (i.le.lc2) then 
wi=l4 
su=15 

else if (i.gtlc2) then 
wi=l6 
su=17 

end if 
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******************** 
* WinLer * 
******************** 

if (y.lt 13 7 .or. y.gl.257 .and. y.ll.502.or. y.gl.622.and. 
c y.IL868.or.y.gL988) write (wi,*) 
c el(i+ 144),el(i+145),el(i+ 146),el(i+ 147),el(i+148), 
c el(i+ 149),el(i+ 150),el(i+ 151),el(i+ 152),el(i+ 153), 
c el(i+ 154),el(i+ 155),el(i+ 156),el(i+ 157),el(i+ 158), 
c el(i+ 159),el(i+ 160),el(i+ 161),el(i+ 162),el(i+ 163), 
c el(i+ 164),el(i+ 165),el(i+ 166),el(i+ 167), 
c wa(l,7),wa(l,8),wa(l,9),wa(l , 10), 
c wa(l,ll},wa(l,12),wa(l, 13), wa(l, 14), 
c w(l ,l,7),w(l,2,7),w(l,3,7},w(l,4,7),w(l,5,7},w(l,6,7}, 
c w(l ,l ,14),w(l,2,14),w{l,3,14), 
c w(l ,4,14),w(l,5,14),w(l ,6,14), 
c wa(4,7},wa(4,8),wa(4,9),wa(4, 10), 
c wa(4, ll},wa(4, 12),wa(4,13),wa(4,14), 
c w(4, 1,7},w(4,2, 7), w(4,3,7),w(4,4, 7), w(4,5,7},w(4,6, 7), 
c w(4, 1, 14),w(4,2, 14),w(4,3, 14), 
c w(4,4,14),w(4,5,14),w(4,6,14), 
c dl,d2,d3 ,d4,d5,d6,d7, 
c ho!, 
c el(i+312),el(i+313},el(i+314),el(i+315),el(i+316}, 
c el(i+ 317),el(i+ 318),el(i+ 319),el(i+ 320),el(i+ 321), 
c el(i+ 322),el(i+ 323 ),el(i+ 324),el(i+ 325),el(i+ 326), 
c el(i+ 327),el(i+ 328),el(i+ 329),el(i+ 330),el(i+ 331), 
c el(i+ 332),el(i+ 333),el(i+ 334),el(i+ 335) 

********************* 
*Summer * 
********************* 

if (y.gt. l 36.and.y.lL258.or.y.gt501 .and.y.lL623.or. 
c y.gL867.and.y.lt.989) write (su, *) 
c el(i+ 144),el(i+ 145),el(i+ 146),el(i+ 147),el(i+ 148), 
c el(i+ 149),el(i+ 150),el(i+ 151),el(i+152),el(i+ 153), 
c el(i+ 154),el(i+ 155),el(i+ 156),el(i+ 157),el(i+ 158), 
c el(i+ 159),el(i+ 160),el(i+ 161),el(i+ 162),el(i+ 163), 
c el(i+ 164),el(i+ 165),el(i+ 166),el(i+ 167), 
c wa(l,7},wa(l,8),wa(l,9),wa(l ,10), 
c wa(l,ll),wa(l,12),wa(l,13},wa(l ,14}, 
c w(l, 1,7),w(l,2,7), w(l,3,7),w(l,4,7},w(l ,5,7},w(l ,6,7), 
c w(l,l ,14},w(l,2,14),w(l,3, 14), 
c w(l,4,14),w(l,5,14},w(l ,6,14}, 
c wa(2, 7), wa(2,8), wa(2,9), wa(2, 10), 
c wa(2,11),wa(2,12),wa(2,13),wa(2,14), 
c w(2, 1, 7), w(2,2, 7), w(2,3, 7), w(2,4, 7), w(2,5, 7), w(2,6, 7), 
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c w(2, 1, 14), w(2,2, 14),w(2,3, 14), 
c w(2,4,14),w(2,5,14),w(2,6,14), 
c wa(6,7),wa(6,8),wa(6,9),wa(6, 10), 
c wa(6,11),wa(6,12),wa(6,13),wa(6, 14), 
c w(6, l ,7),w(6,2,7),w(6,3,7),w(6,4,7),w(6,5,7),w(6,6,7), 
c w(6,1,14),w(6,2,14),w(6,3,14), 
c w(6,4, 14), w(6,5,14),w(6,6, 14), 
c dl,d2,d3,d4,d5,d6,d7, 
c bol, 
c el(i+312),el(i+ 3 l 3),el(i+314),el(i+315),el(i+316), 
c el(i+317),el(i+318),el(i+319),el(i+320),el(i+321), 
c el(i+ 322),el(i+ 323 ),el(i+ 324),el(i+ 325),el(i+ 326), 
c el(i+ 327),el(i+ 328),el(i+ 329),el(i+ 330),el(i+ 331), 
c el(i+ 332),el(i+ 333),el(i+ 334),el(i+ 335) 

b=b+l 

400 continue 

close (12) 
close (13) 
close (14) 
close (15) 
close (16) 
close (17) 

end 

*********************************************************************** 
* 
* This Subroutine adds noise to actual weather to simulate 
* forecasted weather 
* 

* 
* 
* 
* 

*********************************************************************** 

Subroutine pfore(avg,noise, value) 

real avg,noise, value,rsum,ran 

commonjran 

integer k,jran rsum=O.O 
do 100 k=l,12 

rsum=rsum+(ranGran)) 
100 continue 

value=avg+noise*avg*((rsum-6)/12) 
end 
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loadstrat.f 
****************************************** 
*make io file smaller real dum(I5000,200) * 
****************************************** 

integer ij,k,nrp,s,np,x 

open (1,status=' unknown' ,file='summer_test.dat') 
open (2,status='unknown' ,file=' winter_test.dat') 
open (3,status=' unknown' ,file='load_sbort.dat') 

j=O 

print*, 'Summer(l) or winter(2)?' 
read*, x 
print*, 'Enter lhe #of raw patterns' 
read*, nrp 
print*, 'Enter lhe# for statification' 
read*, s 
print *, 'Enter lhe # inputs/outputs' 
read*, np 

do 100 i=l ,nrp 
read (x, *) (dum(i,k),k= l ,np) 

100 continue 

do 200 i= 1,nrp 
j=j+l 
if G.eq. l ) write (3, *) (dum(i,k),k= 1,np) 
if G.eq.s) j=O 

200 continue 

close (1) 
close (2) 
close (3) 

end 
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Appendix 8 . ELECTRIC LOAD CURVES 

The following section illustrates the electric load data which is plotted by years 

and by months. 
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Table 5.2 Comparison of other ANN models 

Comparison of Other ANN Models 

# Ref. Prediction Period(s) Data Set % error Notes 

1 (39] a. 24hr, one week ahead Tr. - Winter peak Utility a. 3.38 a. Perfonned decomposition of 
b. 24hr ahead (T-F) 

Te. - a. 5-mo. period from Feb.1 b. 2.09 load and used 5 Adaline to model. 

b. 1000 hr. period (T-F) Each day had own set of ANNs. 

from Jan. 1 

2 [13] Next days peak a. Tr. 1/ 12-1125 Te. 1126-211 a. 1.15 Nonfully connected ANN, Pseudo 

b. Tr. 1/ 19-2/1 Te. 2/2-2/8 b. 1.22 forecasted weather. 

3 [38] a. peak load Tr. 11/1/88-1/30/89, except test Average Focus - nonnal weekdays, i.e. no 

b. total load Te. 1. 1123-1/30 2. 11/9-11 / 17 a. 2.04 holidays or weekends. 

c. hour!yload 3. 11/18-11/29 4. 12/8-12/15 b. 1.68 

5. 12127-1/4 c. 1.40 

4 [16] One hour ahead Tr. 20 days Te. 25 days 4.1 Used adaptive NN, no weekends. 

5 [2] One half hour ahead 16 months of data from 4/90-7/91 Average Modular ANN design partitioned 

forecasted for one year Win.-3.16 into season and day types, total 

Spr.-3.67 of 48 ANNs. No holidays. 

Sum-2.69 
Aut.-4.24 

6 (39] Total daily load Tr. 1 yr. Te. 1 yr. 2.95 ANN retrained each day because 

x is total of both years if forecasting period =X, then 

training cases= x-1. Data divided 

into 5 subsets for day types. 

7 [1] Peak load on Thursday 6/83-4/94 16 patterns for training 3.11 

8 (29] a. 24hrahead Forecasted on 6 mo. Feb. to Jul. a. 1.89 a. Weekend and weekday models 
b. 1hrahead b. 1.84 weekends grouped into 5 types. 

9 [31 ] a. 1hrahead One year or data divided into 12 a. 2.28 Errors averaged for same experi-
b.24hrahead train/test groups. Tr. 1 to 2 mo. b. 3.08 men ts for different companies. 12 
c. peak load Te. 7 days c. 2.44 ANN models, 1 for each mo. 

10 [27, peak and valley Tr. 10 previous similar days p. 1.57 Day identification w/self-organiz-
28] Te. the next similar day v. 0.20 ing ANN. Retraining for each day. 

11 [26] peak and valley Tr. 30 previous similar patterns P. 0.10 Day type identification. Only 4 ex-
Te. next 7 similar days v. 0.26 amples presented. 


